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Abstract. Rota’s Basis Conjecture is a well known problem from matroid

theory, that states that for any collection of n bases in a rank n matroid, it

is possible to decompose all the elements into n disjoint rainbow bases. Here
an asymptotic version of this is proved. We show that it is possible to find

n− o(n) disjoint rainbow independent sets of size n− o(n).

1. Introduction

In 1989, Rota made the following conjecture “in any family B1, . . . , Bn of n
bases in a vector space V , it is possible to find n disjoint rainbow bases” (see [11],
Conjecture 4). Here a rainbow basis means a basis of V consisting of precisely one
vector from each of B1, . . . , Bn. In the context of this conjecture “disjoint” means
that we do not have two rainbow bases using the same vector from the same basis
Bi. Rota’s conjecture has attracted attention due to its simplicity and connections
to apparently unrelated areas. For example Huang and Rota [11] found connections
between it and problems about Latin squares and supersymetric bracket algebra.
Amongst other things, the recent collaborative Polymath project [3] studied an
approach to Rota’s conjecture using topological tools.

It was observed (by Rota as well), that this might hold in the much more gen-
eral setting of matroids rather than vector spaces. Matroids are an abstraction of
independent sets in vector spaces, which also generalize many other “independence
structures”. They are defined on a set V called the ground set of the matroid. A
matroid M is a nonempty family of subsets of V (called independent sets) which is
closed under taking subsets and satisfies the following additional property (called
the “augmentation property”): that if I, I ′ ∈ M are two independent sets with
|I| > |I ′|, then there is some element x ∈ I \ I ′ such that I ′ ∪ {x} is also an
independent set in M . A basis of M is a maximal independent sets. By the aug-
mentation property all bases of M must have the same size, which is called the
rank of M . Using this terminology, the general Rota’s Basis Conjecture (see [11])
can be phrased as:

Conjecture 1.1 (Rota’s Basis Conjecture). Let B1, . . . , Bn be disjoint bases in a
rank n matroid M . Then it is possible to decompose B1 ∪ · · · ∪Bn into n disjoint
rainbow bases.

Rota’s conjecture attracted a lot of attention due to its simple formulation, and
due to a large range of possible approaches towards it (coming from the many
different settings in which matroids can naturally arise). One research direction
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is to prove the conjecture for some particular naturally-arising class of matroids.
For example for matroids arising from real vector spaces (called real-representable
matroids), the conjecture is known to hold whenever n− 1 or n+ 1 is prime. This
was proved in a combination of papers. First, Huang and Rota [11] reduced the
conjecture for real-representable matroids to the Alon-Tarsi Conjecture (which is a
conjecture unrelated to matroids and states that for all n the number of even and
odd Latin squares of order n is different). The Alon-Tarsi Conjecture was proved
for n− 1 prime by Drisko [5] and for n+ 1 prime by Glynn [10]. Rota’s Conjecture
is known to hold for some other classes of matroids too. It was proved for paving
matroids by Geelen and Humphries [7], for strongly base orderable matroids by
Wild [14], and for rank ≤ 4 matroids computationally by Cheung [2].

Another research direction is to try and establish a weaker conclusion which
holds for all matroids. When B1, . . . , Bn are bases in a matroid, define a rainbow
independent set as a (possibly empty) independent set containing at most one
element from each Bi. There are a number of natural approaches here:

(1) Find many disjoint rainbow bases in B1 ∪ · · · ∪Bn: Finding one rainbow
basis is easy using the augmentation property. Finding more is already chal-
lenging. Geelen and Webb [8] found Ω(

√
n) disjoint rainbow bases. This was

improved to Ω(n/ log n) by Dong and Geelen [4], and further to n/2− o(n) by
Bucic, Kwan, Sudakov, and the author [1].

(2) Decompose B1 ∪ · · · ∪Bn into few rainbow independent sets: The con-
jecture asks for a decomposition into n independent sets. Aharoni and Berger
showed that you can decompose into 2n independent sets. This was investi-
gated further during the Polymath 12 project [13] where it was improved to
2n− 2.

(3) Find n disjoint rainbow independent sets of large total volume: This
means rainbow independent sets I1, . . . , In with

∑n
i=1 |In| as large as possible.

Rota’s conjecture says that we can get
∑n
i=1 |In| = n2. Both of the previous

approaches give something here — having s rainbow bases clearly gives a family
of independent sets of volume sn, whereas in a decomposition of B1 ∪ · · · ∪Bn
into t rainbow independent sets, the n largest of these must have total volume
at least (n/t)n2. Thus the best known results about (1) and (2) both give a
family of independent sets of volume around n2/2.

In each of the above three approaches it is desirable to obtain an asymptotic
version of the conjecture. In other words: Can you find (1−o(1))n disjoint rainbow
bases? Can you decompose B1 ∪ · · · ∪ Bn into (1 + o(1))n disjoint rainbow inde-
pendent sets? Can you find n disjoint rainbow independent sets of total volume
(1 − o(1))n2? Previously such results were proved only for special classes of ma-
troids — Friedman and McGuinness [6] proved an asymptotic version for large girth
matroids. Combining the results of [11, 5, 10] with the Prime Number Theorem
gives an asymptotic version for real-representable matroids [12]. In this paper, we
prove the first asymptotic version of the conjecture which holds for all matroids.

Theorem 1.2. Let B1, . . . , Bn be disjoint bases in a rank n matroidM . Then there
are n− o(n) disjoint rainbow independent sets in B1 ∪ · · · ∪Bn of size n− o(n).

Notice that the union of these independent sets has size (1−o(1))n2, and so this
theorem gives an asymptotic version of the conjecture, when one takes approach
(3) above. Going forward, it would be interesting to obtain stronger asymptotic
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versions of the conjecture as well as a proof for large rank matroids. Theorem 1.2
is likely to be a good starting point in proving such results — in recent years
“absorption techniques” have been used in related problems to turn asymptotic
solutions like Theorem 1.2 into exact ones.

2. Proof outline

Here, we explain the ideas of our proof by presenting a simplified version of it
with some complications missing. Aside from some definitions, everything here is
not used in the actual proof.

In this paper, we use the term “coloured matroids” to mean a matroid with
a colour assigned to each element in the ground set such that the colour classes
are independent. We will work with families T = (T1, . . . , Tm) of disjoint rainbow
independent sets in a coloured matroid M . These families will always be ordered,
with repetition allowed. We use (T )i to denote the ith independent set in T , i.e., if
T = (T1, . . . , Tm), then (T )i = Ti. We use E(T ) for the subset T1 ∪ · · · ∪ Tm of the
ground set of M . For two families T = (T1, . . . , Tm), S = (S1, . . . , Sm), we write
T ≤ S, if Ti ⊆ Si for all i. For a colour, we use ET (c) to denote the set of colour
c elements of T and fix eT (c) = |ET (c)|. For a coloured matroid M , use C(M) for
the set of colours occurring on M . For a colour c ∈ C(M), we use E(c) to denote
the set of colour c elements of M .A common consequence of the augmentation
property that we use is that given any independents sets I, J with |I| ≥ |J |, there
is an independent set B ⊆ I ∪ J with |B| = |I| and J ⊆ B (which is proved by
repeatedly adding elements from I to J using the usual augmentation property
until the two sets have the same size). We’ll also use the following consequence of
the augmentation property.

Observation 2.1 (Rainbow exchange property). Let S be a rainbow independent
set in a coloured matroid M . Then for every element e 6∈ S, there is a set Q ⊆ S
of at most two elements with S \Q ∪ {e} rainbow and independent.

Additionally, for any T ⊆ S with T + e rainbow and independent, we can choose
Q ⊆ S \ T

Proof. Let S′ be a maximum size independent subset of S+ e which contains T + e
(it exists because T + e is independent). We must have |S′| ≥ |S|, since otherwise
the augmentation property would give some x ∈ S with S′ + x independent. In
particular, using that e ∈ S′ ⊆ S+ e and e 6∈ S, we have |S \S′| = |(S ∪{e})\ (S′∪
{e})| = |(S ∪ {e}) \ S′| = |S|+ 1− |S′| ≤ 1. Note that since S′ contains T we have
that S \ S′ is disjoint from T . Let f be the colour c(e) element of S (if it exists),
noting that f 6∈ T since T + e is rainbow.

Set Q = (S \ S′) ∪ {f} to get a set satisfying the observation. We have S \ S′,
{f} disjoint from T , which shows Q ⊆ S \ T . Also, S \ Q ∪ {e} is rainbow since
S \ Q was rainbow, missing colour c(f) = c(e). Also S \ Q ∪ {e} is independent
since it is contained in S \ (S \ S′) ∪ {e} = S′ which is independent. �

We call a family T maximum if |E(T )| is maximum amongst families of disjoint
rainbow independent sets in M . Rota’s Conjecture is equivalent to saying that
a maximum family has n2 elements. Theorem 1.2 is equivalent to proving that
a maximum family has ≥ (1 − ε)n2 elements. We achieve this by studying how
elements can be moved between the rainbow independent sets of the family. The
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key definition is that of a “reduced family of T ” which informally means deleting
all elements from T which can be moved around robustly.

Definition 2.2 (Reduced family). Let T be a family of disjoint rainbow indepen-
dent sets in a coloured matroid. Define the `-reduced family T ′` of T to be T minus
all elements e ∈ E(T ) for which there are at least ` different choices of Tj ∈ T
with Tj + e a rainbow independent set. Define T (r)

` = T ′′′′`
...

, where we repeat the

operation r times. We fix T (0)
` = T .

We will need the following monotonicity properties of reduction.

Observation 2.3. T ′` ≤ T`

Proof. If T` = (T1, . . . , Tm) and T ′` = (T ′1, . . . , T
′
m), then each T ′i is formed by

deleting elements from Ti and so T ′i ⊆ Ti, verifying the definition of T ′` ≤ T`. �

Observation 2.4. If T ≤ T̂ , then T ′` ≤ T̂ ′` .

Proof. Consider some T̂ ∈ T̂ , and let T , T ′, T̂ ′ be the corresponding independent
sets in T , T ′` , T̂ ′` respectively. We know that T ⊆ T̂ , and need to show that T ′ ⊆ T̂ ′.
Suppose for contradiction that there is some e ∈ T ′ \ T̂ ′. Since Observation 2.3

gives T ′ ⊆ T , we know e ∈ T ⊆ T̂ . Since e 6∈ T̂ ′, the definition of T̂ ′` tells us

that there are at least ` choices of T̂j in T̂ with T̂j + e a rainbow independent set.

Since T ≤ T̂ , for each j there is some corresponding Tj ∈ T with Tj ⊆ T̂j . This

implies that Tj + e ⊆ T̂j + e is rainbow and independent for each j, i.e., we have
at least ` choices of Tj with Tj + e rainbow and independent. By the definition of
“`-reduced”, this shows that e 6∈ E(T ′` ), which is a contradiction. �

Observation 2.5. Let ` ≥ 2 and let T be a family of disjoint rainbow independent
sets. Suppose there is a colour c with c ∈ C(T ) for all T ∈ T . Then c ∈ c(T ′) for
all T ′ ∈ T ′` also.

Proof. Consider some colour c element e ∈ T ∈ T . Then for all S ∈ T with S 6= T ,
we have that S + e is not a rainbow independent set (by assumption S contains
some colour c element f . Since S 6= T and S, T are disjoint rainbow independent
sets we have e 6= f . Therefore, S+e is not rainbow, since it contains both e and f).
Thus there is only 1 < ` choice of S ∈ T with S + e rainbow and independent. �

A maximum family of rainbow independent sets T has the property that no
element e outside T can be added to any rainbow independent set T ∈ T without
breaking either rainbowness or independence. Our proof rests on this property
being preserved by reduction.

Lemma 2.6. Fix r = 0 or 1. Let M be a coloured matroid and T a family of

disjoint rainbow independent sets in M . Suppose we have T ∈ T (r)
3 and e 6∈ E(T )

with T + e rainbow and independent. Then T is not maximum.

Proof. Let R ∈ T with T ⊆ R. Since T + e is rainbow and independent, by

Observation 2.1, there is a set Q ⊆ R \ T ⊆ E(T ) \ E(T (r)
3 ) of size ≤ 2 with

R \Q∪ {e} rainbow independent. The proof proceeds differently based on the size
of Q:
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• If Q = ∅, then replacing R by R + e gives a family larger than T . In

particular, this deals with the case r = 0 (since in that case T (r)
3 = T (0)

3 = T
and R = T ).
• If Q = {f1}, then since f1 6∈ E(T ′3 ), then, by the definition of “reduced”,

there is some S1 ∈ T with S1 + f1 rainbow and independent. In fact we
get 3 choices for S1, so can choose it different from R. Now replace R by
R \ {f1} ∪ {e} and replace S1 by S1 ∪ {f1} to get a family larger than T .
• If Q = {f1, f2}, then since f1, f2 6∈ E(T ′3 ), then, by the definition of “re-

duced”, there are some S1, S2 ∈ T with S1 + f1, S2 + f2 rainbow and
independent. Since we have 3 choices for S1, S2, we can choose them dif-
ferent from each other and from R. Now replace R by R \ {f1, f2} ∪ {e},
replace S1 by S1 ∪{f1}, replace S2 by S2 ∪{f2} to get a family larger than
T .

�

The above lemma generalizes to arbitrary r in Lemma 3.10 (by increasing “3”
to something bigger). Our proof consists of showing that for any family T with

e(T ) ≤ (1 − ε)n2, its reduction T (r)
` becomes small for some r. We do this step

by step by showing the inequality “e(T ′` ) ≤ e(T ) − ε2n2” for such families T . By

iterating this inequality we get e(T (r)
` ) ≤ e(T )−rε2n2. The proof of this inequality

rests on the following lemma which estimates how many edges every colour loses
when reducing the family.

Lemma 2.7. Fix r = 0 or 1. Let M be a coloured matroid with n colours of size n
and let T be a maximum family of m disjoint rainbow independent sets in M . Let

T ∈ T (r)
3 and let c be a colour missing from T . Then

eT (r+1)
1

(c) ≤ |T | − n+m

Proof. By the augmentation property there are n − |T | colour c elements e with
T + e a rainbow independent set. Lemma 2.6 tells us that these all occur on T . By

definition of T ′1 , they are all absent from T (r+1)
1 . Additionally there are at least

n−m colour c elements absent from T , which remain absent in T (r+1)
1 . �

In the actual proof we use a version of this T (r)
` with larger r, ` (Lemma 3.8). The

above lemma gives its best bound when T is as small as possible. This motivates
us to define the excess of a colour c in T :

ex(c, T ) := max(0, eT (c) + n−m− min
T∈T :c 6∈T

|T |)

Lemma 2.7 now can be rephrased as saying that eT (r+1)
1

(c) ≤ eT (r)
3

(c)− ex(c, T (r)
3 )

for every colour missing from some T ∈ T . To get an inequality like “e(T (r+1)) ≤
e(T (r))− ε2n2” from this, we need to show that the average excess over all colours
is ε2n. We show the following:

Lemma 2.8. Let M be a coloured matroid with n colours of size n and let T be a
family of (1− ε)n disjoint rainbow independent sets in M . Then

1

n

∑
colours c

ex(c, T ) ≥ ε2n
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The proof of this has nothing to do with matroids or colours. The essence of it
turns out to be a very short lemma about bipartite graphs (see Lemma 3.4). We
now have all the ingredients that go into the proof of Theorem 1.2. To summarize,
the structure is:

• Start with M , a coloured matroid with n colours of size n.
• Consider a maximum family T of (1 − ε)n disjoint rainbow independent

sets in M .
• Suppose for contradiction that e(T ) ≤ (1− ε)n2.

• By a variant of Lemma 2.8, we have
∑

colours c ex(c, T (r)
` ) ≥ ε2n2 for all r

and large enough `.

• By a variant of Lemma 2.7, and maximality, we have e(T (r)
` ) < (1− rε2)n2

for all r and large enough `. At r = 1/ε2 this is a contradiction (mean-
ing that the assumption “T is maximum” in one of the applications of
Lemma 2.7 along the way was invalid).

In this sketch, there are a couple of things missing. Most of them are easy to fill in
— namely Lemmas 2.6 and 2.7 can be proved for larger r and `.

However there is one complication which appears to require significant changes
to the above strategy — namely the requirement that “c is missing from some

T ∈ T ” for the inequality “eT (r+1)
1

(c) ≤ eT (r)
3

(c) − ex(c, T (r)
3 )’. When there are

many colours that occur on all T ∈ T , then it is possible that T ′1 = T , which breaks
the above strategy (as an example, consider a family T consisting of (1−ε)n rainbow
independent sets of size n/2 all using the same n/2 colours and nothing else). The
way we get around this issue is to change what “maximum family” means. Rather
than asking them to have as many elements as possible, we instead ask them to
be “lexicographically maximum” which means roughly that mincolours c eT (c) is as
large as possible. The overall structure of the proof remains unchanged — it follows
analogues of the above lemmas with suitable changes.

3. Proof of Theorem 1.2

Rather than working with the excess of a family as in the proof outline, we
will associate an auxiliary bipartite graph to every family and study a parameter
k-exG(y) associated to the graph. All graphs we deal with will be simple. For a
vertex v in a graph G, recall that the neighbourhood NG(v) is defined as the set
of vertices connected to v, and the degree dG(v) is defined as |NG(v)|. For a set of
vertices A, we define δG(A) := minv∈A dG(v). For two sets of vertices A,B, we let
eG(A,B) be the number of edges ab with a ∈ A, b ∈ B. If G is bipartite with parts
X,Y , and A ⊆ X, then we will often use that eG(A, Y ) =

∑
a∈A dG(A) ≥ δG(A)|A|.

Where there is no ambiguity, we abbreviate NG(v) = N(v), dG(v) = d(v), δ(G) =
δG(A), e(A,B) = eG(A,B).

Definition 3.1. Let y be a vertex in a graph G. Let N(y) = {x1, . . . , xd(y)} be
ordered with d(x1) ≥ d(x2) ≥ · · · ≥ d(xd(y)). Define the k-excess of y in G

k-exG(y) = max(0, d(xk)− d(y)).

If a vertex y has less than k neighbours, then this definition says k-exG(y) = 0.
It’s immediate from the definition that k-exG(y) ≥ 0 always.

Observation 3.2. Let G be a graph and y ∈ V (G) with d(y) ≥ d(x) for all
x ∈ N(y). Then k-exG(y) = 0 for all k.
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Proof. Let N(y) = {x1, . . . , xd(y)} be ordered with d(x1) ≥ d(x2) ≥ · · · ≥ d(xd(y)).
If d(y) ≤ k, then we immediately have k-exG(y) = 0. If d(y) > k, then, by
assumption, we have d(xk) ≤ d(y), which gives k-exG(y) = max(0, d(xk)− d(y)) =
0. �

Observation 3.3. In a graph G, let M be a matching, which matches X to Y .
Then ∑

y∈Y
1-exG(y) ≥

∑
x∈X

d(x)−
∑
y∈Y

d(y).

Proof. For each y ∈ Y , let ay = maxx∈N(y) d(x) and let xy be the vertex matched
to y by M , noting that ay ≥ d(xy). We have that 1-exG(y) = max(0, ay − d(y)) ≥
ay − d(y) ≥ d(xy)− d(y). Summing this over all y ∈ Y gives the result. �

The following lemma will imply Lemma 2.8.

Lemma 3.4 (1-excess sum). Let G be a bipartite graph with parts X,Y . Let δ(Y )
denote the smallest degree in G out of vertices of Y . Then∑

y∈Y
1-exG(y) ≥ δ(Y )(|Y | − |X|)

Proof. Let M be a maximum matching in G and C a minimum vertex cover. By
König’s Theorem we have e(M) = |C| and so each edge of M contains precisely
one vertex of C. In particular V (M) ∩ Y \ C is matched to V (M) ∩X ∩ C. Since
C is a vertex cover, we have N(Y \ C) ⊆ V (M) ∩X ∩ C. This gives∑
y∈Y

1-exG(y) ≥
∑

y∈V (M)∩Y \C

1-exG(y) ≥
∑

x∈V (M)∩X∩C

d(x)−
∑

y∈V (M)∩Y \C

d(y)

= e(V (M) ∩X ∩ C, Y )− e(V (M) ∩ Y \ C,X)

≥ e(V (M) ∩X ∩ C, Y \ C)− e(V (M) ∩ Y \ C,X)

= e(X,Y \ C)− e(V (M) ∩ Y \ C,X)

= e(Y \ V (M), X)

=
∑

y∈Y \V (M)

d(y)

≥ δ(Y )|Y \ V (M)| ≥ δ(Y )(|Y | − |X|).

The first inequality is “1-exG(y) ≥ 0 always”. The second inequality is Obser-
vation 3.3 applied to Y ′ = V (M) ∩ Y \ C and X ′ = V (M) ∩ X ∩ C (which
we’ve already established are matched to each other). The third inequality is just
e(A,B) ≥ e(A,B′) for B′ ⊆ B, which holds for all graphs. The second equation
comes from “N(Y \ C) ⊆ V (M) ∩X ∩ C”. The third equation comes from Y \ C
being a disjoint union of (Y \ V (M)) \ C = Y \ (V (M) ∪ C) = Y \ V (M) and
(V (M)∩ Y ) \C. The fourth inequality is

∑
a∈A d(a) ≥ δ(A)|A| which holds for all

graphs. The last inequality comes from e(M) ≤ |X| which happens because any
matching in a bipartite graph G must be smaller than both of the parts of G. �

Lemma 3.5 (k-excess sum). Let G be a bipartite graph with parts X,Y . For a
subset Y ′ ⊆ Y , let δ(Y ′) be the smallest degree in G out of vertices of Y ′. Then∑

y∈Y ′
k-exG(y) ≥ δ(Y ′)(|Y ′| − |X|)− 2k|Y ′|
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Proof. If δ(Y ′) < k, then the right hand side δ(Y ′)(|Y ′|−|X|)−2k|Y ′| ≤ |Y ′|(δ(Y ′)−
2k) is negative and so the result trivially follows from “k-exG(y) ≥ 0 always”. So
assume that δ(Y ′) ≥ k.

Construct a subgraph G′ as follows: delete all vertices of Y \Y ′. For each y ∈ Y ′,
order N(y) = {x1, . . . , xd(y)} with d(x1) ≥ · · · ≥ d(xd(y)) and delete the k−1 edges
yx1, . . . , yxk−1.

Claim 3.6. k-exG(y) ≥ 1-exG′(y)− (k − 1) for each y ∈ Y ′.

Proof. Let x ∈ NG′(y) be the vertex with largest degree dG′(x), noting that
dG′(x) ≤ dG(xk) (otherwise we’d have dG(x) ≥ dG′(x) > dG(xk), meaning that x ∈
{x1, . . . , xk−1}, contradicting that x ∈ NG′(y)). From the definitions, k-exG(y) =
max(0, dG(xk)− dG(y)) and

1-exG′(y) = max(0, dG′(x)− dG′(y))(3.1)

≤ max(0, dG(xk)− dG′(y)) = max(0, dG(xk)− dG(y) + k − 1).(3.2)

When 1-exG′(y) = 0, we have dG(xk) − dG(y) ≤ dG(xk) − dG(y) + k − 1 ≤ 0
and so k-exG(y) = 0, giving k-exG(y) = 0 ≥ −(k − 1) ≥ 1-exG′(y) − (k − 1).
When 1-exG′(y) > 0, (3.2) gives 1-exG′(y) ≤ dG(xk) − dG(y) + k − 1, and so
k-exG(y) ≥ dG(xk)− dG(y) ≥ 1-exG′(y)− (k − 1). �

We also have δG′(Y
′) = δG(Y ′) − (k − 1). Applying Lemma 3.4 to G′ gives us

what we want∑
y′∈Y ′

k-exG(y) ≥
∑
y′∈Y ′

(1-exG′(y)− (k − 1)) ≥ δG′(Y ′)(|Y ′| − |X|)− |Y ′|(k − 1)

≥ (δG(Y ′)− (k − 1))(|Y ′| − |X|)− |Y ′|(k − 1)

≥ δG(Y ′)(|Y ′| − |X|)− 2k|Y ′|.
�

We associate a bipartite graph to every family T .

Definition 3.7 (Availability graph). Let T = (T1, . . . , Tm) be a family of rainbow
independent sets in a coloured matroid M . The availability graph of T , denoted
A(T ), is the bipartite graph with parts {T1, . . . , Tm} and C(M), and with Ticj an
edge of A(T ) whenever cj 6∈ C(Ti).

Notice that the degree dA(T )(Ti) is the number of colours missing from Ti and
the degree dA(T )(c) is the number of independent sets missing c. The two different
definitions of excess that we introduced should now make sense because we have
ex(c, T ) = 1-exA(T )(c) for any colour missing from some T ∈ T (whereas for
colours present on all T ∈ T , the definitions disagree since we have ex(c, T ) = n
and 1-exA(T )(c) = 0). Lemma 2.8 can now easily be deduced from Lemma 3.4
(although it is not used in the proof). The following is the analogue of Lemma 2.7
we use.

Lemma 3.8 (Increment lemma). Let T be a family of ≤ n rainbow independent
sets in a coloured matroid M with n colours of size ≥ n, and c a colour. At least
one of the following holds:

(i) There is some Ti ∈ T for which there are at least dA(T )(c) + 1
2k-exA(T )(c)

colour c elements e 6∈ E(T ) with Ti + e a rainbow independent set.
(ii) The `-reduced family has eT ′` (c) ≤ eT (c)− 1

2k-exA(T )(c) + `n/k.
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Proof. If k-exA(T )(c) = 0, then (ii) is true by Observation 2.3, so we can assume
that k-exA(T )(c) > 0. By the definition of k-exA(T )(c), there are k rainbow in-
dependent sets T1, . . . , Tk ∈ NA(T )(c) ⊆ T with dA(T )(T1) ≥ · · · ≥ dA(T )(Tk) and
k-exA(T )(c) = dA(T )(Tk) − dA(T )(c). Using the definition of A(T ), we have that
each Ti misses colour c and the number of colours each Ti misses is dA(T )(Ti) ≥
dA(T )(Tk) = dA(T )(c) + k-exA(T )(c). Define a bipartite graph H whose parts are
X = {T1, . . . , Tk} and E(c) with Tie an edge whenever Ti + e is a (rainbow) inde-
pendent set. The augmentation property tells us that dH(Ti) ≥ |E(c)| − |Ti| (the
augmentation property gives an independent B of size |E(c)| with B ⊆ E(C) ∪ Ti
and Ti ⊆ B. All |B| − |Ti| = |E(C)| − |Ti| elements e ∈ B \ Ti ⊆ E(C) have the
property that Ti + e is rainbow independent). Using this, and the fact that M
consists of n colours of size ≥ n (each of which is an independent set), we have that
for each i = 1, . . . , k

dH(Ti) ≥ |E(c)| − |Ti| ≥ n− |Ti| = dA(T )(Ti) ≥ dA(T )(c) + k-exA(T )(c).

Equivalently, there are at least dA(T )(c)+k-exA(T )(c) colour c elements e with Ti+e

a rainbow independent set. If, for some i = 1, . . . , k, at least dA(T )(c)+
1
2k-exA(T )(c)

of these have e 6∈ E(T ), then case (i) of the lemma holds.
Thus we can assume that for all i = 1, . . . , k, there are ≥ 1

2k-exA(T )(c) colour
c elements e ∈ E(T ) with Ti + e a rainbow independent set. Let H ′ be the in-
duced subgraph of H on X = {T1, . . . , Tk} and E(c) ∩ E(T ) (so we have that
the smallest degree in H ′ of vertices in X satisfies δH′(X) ≥ 1

2k-exA(T )(c)). Let
E≥` ⊆ E(c) ∩ E(T ) be the set of elements e with dH′(e) ≥ `. We have

|X||E≥`|+ `|E(c) ∩ E(T )| ≥
∑
e∈E≥`

|X|+
∑

e∈E(c)∩E(T )\E≥`

` ≥ e(H ′)

≥ |X|δH′(X) ≥ |X|1
2
k-exA(T )(c).

Using |X| = k and rearranging gives

|E≥`| ≥
1

2
k-exA(T )(c)− `|E(c) ∩ E(T )|/k ≥ 1

2
k-exA(T )(c)− `n/k.

Here the second inequality used |E(c) ∩ E(T )| ≤ n. From the definition of the
`-reduced family T ′` and H, we have that every element e ∈ E(c) ∩ E(T ) having
dH(e) ≥ ` is absent from ET ′` (c), i.e., that ET ′` (c) ⊆ ET (c) \ E≥`. This implies

eT ′` (c) ≤ eT (c)− |E≥`| ≤ eT (c)− 1
2k-exA(T )(c) + `n/k, demonstrating (ii). �

Next we prove the analogue of Lemma 2.6 we need. This analogue is Lemma 3.10.
In order to facilitate its inductive proof, we first prove the following far more tech-
nical lemma, and then use it to deduce Lemma 3.10.

Lemma 3.9. Let ` ≥ 2, m ∈ N, and let M be a coloured matroid. Suppose that we
have r ≤ log9 `− 1,S, T , R, F satisfying:

(B1) S = (S1, . . . , Sm), T = (T1, . . . , Tm) are families of disjoint rainbow indepen-
dent sets with T ≤ S.

(B2) R ⊆ [m] with |R| ≤ `/4r.
(B3) F ⊆ E(S) with |F | ≤ `/4r.
(B4) F is disjoint from E(T (r)

` ).

Then there are S∗, X, with r,S∗, X,S, T , R, F satisfying:
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(C1) S∗ is a family of disjoint rainbow independent sets.
(C2) E(S∗) = E(S) \X.
(C3) For all i ∈ R, we have (S∗)i = Si \ F .
(C4) X ⊆ E(S) \ E(T ) with |X| ≤ 2r|F |.

Proof. Fix `,m,M . The proof is by induction on r. So we prove the cases r =
0, 1, . . . , blog9 `c in order (for all valid choices of S, T , R, F ). For the initial case
“r = 0”, consider some S, T , R, F satisfying (B1) – (B4) with r = 0. We claim
that S∗ = (Sj \ F : j = 1, . . . ,m), X = F satisfy (C1) – (C4) (together with
r = 0,S, T , R, F ).

(C1) By construction we have S∗ ≤ S. Since S is a family of disjoint rainbow
independent sets, the same is true for S∗.

(C2) We have (S∗)j = Sj \ F for each j, which gives E(S∗) =
⋃m
j=1 Sj \ F =

E(S) \ F = E(S) \X.
(C3) We have (S∗)i = (S)i \ F for all i ∈ [m] (and so in particular for all i ∈ R).

(C4) X satisfies |X| = |F | = 20|F | and X = F ⊆ E(S) \ E(T (0)
` ) = E(S) \ E(T )

(by (B3),(B4)).

Now let r ≥ 1, and suppose that the lemma holds for all smaller r. Let

r,S, T , R, F satisfy (B1) – (B4). Partition F into F1 = F ∩ E(T (r−1)
` ) and F2 =

F \E(T (r−1)
` ). For each f ∈ F1, by the definition of `-reduction, there are ` indices

i(f) for which (T (r−1)
` )i(f) + f is rainbow and independent. For each f ∈ F1, fix

such an index with i(f) 6∈ R ∪ {i : Si ∩ F 6= ∅} and also i(f), i(f ′) are distinct for
different f, f ′ ∈ F1 (in total there are ≤ |R|+ |F |+ |F1| ≤ |R|+ 2|F | ≤ 3`/4r < `
indices to avoid, so there’s always space to choose each i(f)). Note that since
i(f) 6∈ {i : Si ∩ F 6= ∅}, we get that f 6∈ Si(f).

Using Observation 2.1 (applied with e = f, S = Si(f), T = (T (r−1)
` )i(f)), for each

f ∈ F1, there is a set Q(f) ⊆ Si(f) \ (T (r−1)
` )i(f) ⊆ E(S)\E(T (r−1)

` ) of size at most

2 with Si(f)\Q(f)∪{f} rainbow and independent. Let F̂ = F2∪
⋃
f∈F1

Q(f). Note

that since indices i(f), i(f ′) 6∈ {i : Si∩F 6= ∅} are distinct, we have Si(f)∩F = ∅ and

Si(f)∩
⋃
f ′∈F Q(f ′) = Q(f). This gives that Si(f)∩F̂ = Q(f) and that Q(f) ⊆ Si(f)

is disjoint from F .
Let Ŝ = (Sj \ F1 : j = 1, . . . ,m), T̂ = (Tj \ F1 : j = 1, . . . ,m), R̂ = R ∪ {i(f) :

f ∈ F1}. We claim that r − 1, Ŝ, T̂ , R̂, F̂ satisfy (B1) – (B4).

(B1) Ŝ, T̂ are families of disjoint rainbow independent sets, since they’re formed
from such families S, T by deleting elements. We have T ≤ S which means
that for all i, we have Ti ⊆ Si and hence Ti \ F1 ⊆ Si \ F1, giving T̂ ≤ Ŝ.

(B2) Note that |R̂| ≤ |R|+ |F | ≤ 2`/4r ≤ `/4r−1.

(B3) For “F̂ ⊆ E(Ŝ)”, note that by construction E(Ŝ) = E(S) \ F1. Next note

that F̂ ⊆ E(S). Indeed, F2 ⊆ F ⊆ E(S) (by (B3) holding for F,S) and

Q(f) ⊆ E(S) for each f by their definition. Finally, note that F̂ ∩ F1 = ∅.
Indeed, F1 ∩ F2 = ∅ and “Q(f) is disjoint from F” show this. Combining

F̂ ⊆ E(S), F̂ ∩ F1 = ∅, E(Ŝ) = E(S) \ F1 gives F̂ ⊆ E(Ŝ).

For the second part, note that |F̂ | ≤ |F2|+2|F1| ≤ 2|F | ≤ 2·`/4r ≤ `/4r−1.

(B4) Recall that Q(f) ⊆ E(S) \ E(T (r−1)
` ) and F2 = F \ E(T (r−1)

` ), which shows

that F̂ is disjoint from E(T (r−1)
` ). We also have T̂ ≤ T . Together with
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Observation 2.4, this shows that T̂ (r−1)
` ≤ T (r−1)

` , and so F̂ is disjoint from

E(T̂ (r−1)
` ).

By induction, there are Ŝ∗, X̂, with Ŝ∗, X̂, r − 1, Ŝ, T̂ , R̂, F̂ satisfying (C1) –
(C4) (with “r” replaced by “r − 1” in (C4)). Note that for each f ∈ F1 we have

(Ŝ∗)i(f) = (Ŝ)i(f) \ F̂ = Si(f) \ Q(f) (the first equation uses (C3) and i(f) ∈ R̂,

while the second uses (Ŝ)i(f) = Si(f) \ F1 = Si(f), F̂ ∩ Si(f) = Q(f)). Let S∗ be

Ŝ∗ with (Ŝ∗)i(f) = Si(f) \ Q(f) replaced by Si(f) \ Q(f) ∪ {f} for each f ∈ F1.

We show that S∗, X̂ satisfy (C1) – (C4) (together with r,S, T , R, F ), proving the
lemma.

(C1) First note that for all i, (S∗)i is rainbow and independent. Indeed for i 6∈
{i(f) : f ∈ F1}, we have (S∗)i = (Ŝ∗)i, which is rainbow and independent

due to Ŝ∗ satisfying (C1). For i = i(f) for f ∈ F1, we have (S∗)i = Si(f) \
Q(f) ∪ {f} which is rainbow and independent from Observation 2.1.

Next we show that for i 6= j we have (S∗)i, (S∗)j disjoint. To see this note

that, by construction of S∗, for all i we have (S∗)i \ F1 = (Ŝ∗)i. Together

with Ŝ∗ satisfying (C1), this shows that for i 6= j, we have (S∗)i∩(S∗)j ⊆ F1.
But, by construction of S∗, we have that each f ∈ F1 is in precisely one set
of S∗, which shows that (S∗)i ∩ (S∗)j = ∅ always.

(C2) We have E(S∗) = E(Ŝ∗)∪F1 by construction. Also E(Ŝ∗) = E(Ŝ) \ X̂ (from

Ŝ∗, Ŝ, X̂ satisfying (C2)). From construction of Ŝ, we have E(Ŝ) = E(S)\F1.

From (C4), we have X̂ ⊆ E(Ŝ) which shows X̂ ∩F1 = ∅. Combining all these
gives

E(S∗) = E(Ŝ∗) ∪ F1 = (E(Ŝ) \ X̂) ∪ F1 = ((E(S) \ F1) \ X̂) ∪ F1 = E(S) \ X̂
as required by (C2).

(C3) For all i ∈ R ⊆ R̂, we have (Ŝ∗)i = (Ŝ)i \ F̂ by Ŝ, Ŝ∗, R̂, F̂ satisfying (C3).

By construction of Ŝ, we have (Ŝ)i = Si \ F1, giving (Ŝ∗)i = (Si \ F1) \ F̂ =
Si \ (F1 ∪ F2 ∪ {Q(f) : f ∈ F1}). Since Q(f) ⊆ Si(f) for i(f) 6∈ R, we have
that for i ∈ R we have

Si \ (F1 ∪ F2 ∪ {Q(f) : f ∈ F1}) = Si \ (F1 ∪ F2) = Si \ F.

Thus we have shown that for i ∈ R we have (Ŝ∗)i = Si \ F , as required.

(C4) Since (C4) applies to X̂, Ŝ, T̂ , F̂ we have |X̂| ≤ 2r−1|F̂ | ≤ 2r−1(|F2|+2|F1|) ≤
2r|F |, and also X̂ ⊆ E(Ŝ)\E(T̂ ) = (E(S)\F1)\ (E(T )\F1) = E(S)\E(T ).

�

We now prove the analogue of Lemma 2.6 that we need. For technical reasons
there are two families S, T in this lemma, but the most important case is when
S = T . In that case the lemma is an extension of Lemma 2.6 to larger r, `.

Lemma 3.10 (Switching lemma). Let ` ≥ 9r+1. Let T , S be two families of
disjoint rainbow independent sets with T ≤ S. Suppose we have an e 6∈ E(S)

with T + e rainbow and independent for some T ∈ T (r)
` . Then there is a family

of disjoint rainbow independent sets S∗ with E(S∗) = {e} ∪ (E(S) \X), for some
X ⊆ E(S) \ E(T ) with |X| ≤ 2r+1.

Proof. Let S = {S1, . . . , Sm} and Si ∈ S with T ⊆ Si. By Observation 2.1, there
is some F ⊆ Si \ T of size ≤ 2 ≤ `/4r with Si \ F ∪ {e} a rainbow independent



12 ALEXEY POKROVSKIY

set. Notice that r,S, T , R = {i}, F satisfy (B1) – (B4). Indeed (B1) comes from
the lemma’s assumptions, (B2) is true since |R| = 1 ≤ `/4r, while (B3) and (B4)

come from Observation 2.1. Applying that lemma gives us Ŝ∗, X satisfying (C1) –

(C4). Note that by (C3) and i ∈ R, we have Si \F ∈ Ŝ∗. Let S∗ be Ŝ∗ with Si \F
replaced by Si\F∪{e}. Using e 6∈ E(S) and (C1), this is a family of disjoint rainbow

independent sets. Using (C2), we have E(S∗) = {e} ∪ E(Ŝ∗) = {e} ∪ (E(S) \X)
as required. Finally “X ⊆ E(S) \ E(T ) with |X| ≤ 2r+1” comes from (C4) and
|F | ≤ 2. �

We are now ready to show that Rota’s conjecture holds asymptotically.

Proof of Theorem 1.2. Let ε > 0 with ε−1 ∈ N. Fix r0 = 100/ε2, ` = 9r0+1,
k = 8ε−2`, h = 3r0/ε, noting that these are all integers. Let n be sufficiently
large compared to r0, k, h, ε — formally, picking any n ≥ 100r0 works. Let M be a
coloured matroid with n colours of size n. All rainbow independent sets throughout
the proof will use these colours (and so have size ≤ n). For a family of disjoint
rainbow independent sets S we say that an ordering σ = (c1, . . . , cn) of the colours
C(M) is increasing for S if it satisfies eS(c1) ≤ · · · ≤ eS(cn).

Define a partial order �lex on families of disjoint rainbow independent sets S, T
by defining S �lex T if there exists an ordering σS = (c1, . . . , cn) which is increasing
for S and an ordering σT = (d1, . . . , dn) which is increasing for T such that the
smallest index q with eS(cq) 6= eT (dq) has eS(cq) > eT (dq).

Claim 3.11. �lex is a partial order.

Proof. Define a vector v(S) ∈ Zn whose ith coordinate is eS(ci) where ci is the ith
colour in an increasing ordering for S. Note that the vector v(S) depends only on
S, rather than which increasing ordering σS we are considering for S. Also, note
that S �lex T ⇐⇒ v(S) is bigger than v(T ) in the usual lexicographic ordering on
Zn. Now “�lex” being a partial order comes from the same being true in the usual
lexicographic ordering — it is a general phenomenon that for a function f : S → P
from a set S to a poset P , defining “s > s′ ⇐⇒ f(s) > f(s′)” gives a partial order
on S. �

Let R = (R1, . . . , R(1−ε)n) be a family of (1 − ε)n disjoint rainbow indepen-
dent sets in M which is maximal with respect to �lex. Suppose for the sake of
contradiction that there are at more than 3εn colours c with eR(c) ≤ (1− 4ε)n.

Consider an arbitrary ordering σ0 = (c1, . . . , cn) of the colours which is increasing
for R.

Claim 3.12. There is some m ≥ 2εn with eR(cm) ≤ (1 − 2ε)n and for all i with
m+ h ≤ i ≤ n, we have eR(ci) ≥ eR(cm) + 3r0 .

Proof. Let t ≤ n be the largest index with eR(ct) ≤ (1 − 2ε)n. Note that t must
exist and satisfy t ≥ 3εn, since otherwise we’d have a contradiction to “there are at
more than 3εn colours c with eR(c) ≤ (1− 4ε)n”. If t > n− h, then picking m = t
works (since then there are no indices i with m+h ≤ i ≤ n). So suppose t ≤ n−h.
Note that to prove the lemma it is enough to find some m with 2εn ≤ m ≤ t with
eR(cm+h) ≥ eR(cm) + 3r0 . So suppose for contradiction that

(3.3) eR(cm+h)− 3r0 < eR(cm) for all 2εn ≤ m ≤ t
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For each integer i, set mi := d2εne + ih. Noting that m0 < 3εn ≤ t and the
mis are strictly increasing integers, there must exist some index k ≥ 0, for which
mk ≤ t and mk+1 > t. Note that we have k ≤ t/h (since for k′ > t/h, we have
mk′ = d2εne+ k′h > d2εne+h(t/h) > t). For i ∈ {0, . . . , k} we have 2εn ≤ mi ≤ t,
and so (3.3) gives eR(cmi+1

) − 3r0 = eR(cmi+h) − 3r0 < eR(cmi
). Add these

inequalities for i = 0, . . . , k to get
∑k
j=0 eR(cmi+1

) −
∑k
j=0 3r0 <

∑k
j=0 eR(cmi

)

which is equivalent to eR(cmk+1
) − (k + 1)3r0 < eR(cm0

) = eR(cd2εne). Using
mk+1 > t and the choice of t we have eR(cmk+1

) > (1− 2ε)n. Thus

eR(cd2εne) > (1− 2ε)n− (k + 1)3r0

≥ (1− 2ε)n− (t/h+ 1)3r0 = (1− 2ε)n− εt− 3r0 > (1− 4ε)n

The first inequality is “eR(cmk+1
) > (1− 2ε)n” combined with “eR(cmk+1

)− (k +
1)3r0 < eR(c1)”. The second inequality is k ≤ t/h. The equality is h = 3r0/ε.
The last inequality uses 3r0 ≤ εn, which is true because n is sufficiently large (and

it also follows from r0 = 100/ε2, n ≥ 100100/ε
2

). This is again a contradiction to
“there are at more than 3εn colours c with eR(c) ≤ (1− 4ε)n”. �

We call the colours c1, . . . , cm small, the colours cm+1, . . . , cm+h medium, and
the colours cm+h+1, . . . , cn large. Note that there are m ≥ 2εn > εn small colours.
For a family F , use Esmall(F)/Emedium(F)/Elarge(F) to denote the sets of elements
of corresponding colours in F .

Claim 3.13. There is a family of disjoint rainbow independent sets R∗ with
Esmall(R∗) = Esmall(R) + e for some element e outside R, and also Emedium(R∗) =
Emedium(R), and |Elarge(R) \ Elarge(R∗)| ≤ 2r0+1.

This claim implies the theorem since it implies R∗ �lex R (contradicting max-
imality of R). To check the definition of R∗ �lex R: we need two orderings σ/σ∗

of the colours C(M) which are increasing for R/R∗ respectively. Let ct be the
unique small colour with eR∗(ct) = eR(ct) + 1 which is guaranteed to exist by the
claim. The claim also guarantees that for all the other small/medium colours ci
we have eR∗(ci) = eR(ci). Let k be the largest index for which eR(ck) = eR(ct),
noting that t ≤ k ≤ m + h (for the last inequality first observe eR(ct) ≤ eR(cm),
since t is small. Then note that, from Claim 3.12, if we had k ≥ m + h, then
we’d have eR(ck) ≥ eR(cm) + 3r0 > eR(cm) ≥ eR(ct). This would contradict that
eR(ck) = eR(ct)). Thus the colours c1, . . . , ck are all small/medium.

Now we construct the two orderings σ, σ∗. The ordering σ is constructed from σ0
by moving the colour ct to be between ck and ck+1. Let dk+1, dk+2, . . . , dn be the
colours ck+1, ck+2, . . . , cn, but arranged in order of how many elements they have
in R∗. The ordering σ∗ is constructed from σ by rearranging ck+1, ck+1, . . . , cn in
the order dk+1, dk+2, . . . , dn. Formally, define:

σ = (c1, c2, . . . , ct−1, ct+1, . . . , ck−1, ck, ct, ck+1, . . . , cn)

σ∗ = (c1, c2, . . . , ct−1, ct+1, . . . , ck−1, ck, ct, dk+1, . . . , dn)

Note that σ/σ∗ is increasing for R/R∗ respectively. Indeed σ is increasing for
R, since the original ordering σ0 was increasing for R and since we have eR(ct) =
eR(ct+1) = · · · = eR(ck) by definition of ck. This also shows thatR∗ is increasing on
the segment (c1, c2, . . . , ct−1, ct+1, . . . , ck−1, ck) of σ∗ (since we’ve established that
these colours are small/medium and have eR∗(ci) = eR(ci)). Also the segment of
R∗ on (dk+1, . . . , dn) is increasing for R∗ by construction. Thus it remains to show
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that in R∗ the colour ct has at least as many elements as colours that precede it in
σ∗ and that ct has at most as many elements as colours that succeed it in σ∗. This
amounts to:

• For all i > k we have eR∗(ci) ≥ eR∗(ct): If ci is small/medium, then this
happens because eR∗(ci) = eR(ci) ≥ eR(ck+1) ≥ eR(ck)+1 = eR(ct)+1 =
eR∗(ct). If ci is large, then, using both claims, we have

eR∗(ci) ≥ eR(ci)− 2r0 ≥ eR(cm+h)− 2r0 ≥ eR(cm) + 3r0 − 2r0

≥ eR(cm) + 1 ≥ eR(ct) + 1 = eR∗(ct).

• For all i ≤ k we have eR∗(ci) ≤ eR∗(ct): For i = t, we have equality, while
for other i ≤ k we have eR∗(ci) = eR(ci) ≤ eR(ck) = eR(ct) = eR∗(ct)−1 ≤
eR∗(ct).

Proof of Claim 3.13. The basic idea of the proof is to use Lemma 3.10 to add a
small colour element to R. However we do not apply the lemma to R directly
(in order to avoid medium colours from being affected). Instead we add “dummy
elements” di,j of medium colours to independent sets from R in order to obtain a
new family S with the property that every S ∈ S contains every medium colour.
These dummy elements need not come from M — we enlarge M by adding as many
new medium colour dummy elements as are needed in an arbitrary fashion. Then,
at the end of the proof, we delete the dummy colours to end up with a family R∗
satisfying the claim. Formally: Let M ′ be a coloured matroid of rank n+hn formed
by adding a set of hn new elements D = {di,j : i ∈ [m + 1,m+ h], j ∈ [n]}, which
are independent of everything (meaning that the independent sets in M ′ are I ∪ J
where I is independent in M , while J is any subset of D). Give the element di,j
the colour i for all j (this colour is necessarily medium since i ∈ [m + 1,m + h]).
For each rainbow independent set Rj ∈ R (with j = 1, . . . , (1 − ε)n), let Sj =
Rj∪{di,j : i = m+1, . . . ,m+h and ci 6∈ C(Rj)}, noting that Sj is rainbow. Now let
S = (Sj : j = 1, . . . , (1− ε)n) to get our new family of disjoint rainbow independent
sets (the sets are all disjoint because each di,j is in at most one set, namely Sj).
Note that now each rainbow independent set in S contains each medium colour,
while on the small/large colours, the sets in S are the same as those in R.

Let T be formed from S by deleting all large colour elements. Notice that
A(T ) has parts of size |T | = (1 − ε)n and |C(M)| = n with all small colours
having dA(T )(c) ≥ εn (since they occur in less than eR(cm) ≤ (1 − 2ε)n of the
rainbow independent sets ofR— and the same holds for S, T since small colours are
unchanged for these families), all medium colours having dA(T )(c) = 0 (since every
T ∈ S contains every medium colour by construction of S — and the same holds
for T , since medium colours are unchanged when building it), and all large colours
having dA(T )(c) = (1 − ε)n ≥ εn (since none of the T ∈ T contain large colour
elements). Define Ysmall/large to be the set of small/large colours. By Lemma 3.5
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we have∑
c∈C(M)

k-ex
A(T (r)

` )
(c) ≥

∑
c∈Ysmall/large

k-ex
A(T (r)

` )
(c)

≥ δ
A(T (r)

` )
(Ysmall/large)(|Ysmall/large| − |T |)− 2k|Ysmall/large|

≥ δA(T )(Ysmall/large)(|Ysmall/large| − |T |)− 2k|Ysmall/large|
≥ εn(|Ysmall/large| − |T |)− 2k|Ysmall/large|
= εn(n− h− (1− ε)n)− 2k(n− h)

= ε2n2(1− h/εn− 2k/ε2n+ 2kh/ε2n2)

≥ ε2n2/2(3.4)

The first inequality used that k-ex
A(T (r)

` )
(c) ≥ 0 always. The second inequality

is exactly Lemma 3.5 (applied to the graph A(T (r)
` ) with X = T , Y = C(M),

Y ′ = Ysmall/large) . The third inequality uses that T (r)
` ≤ T by Observation 2.3,

which implies that A(T (r)
` ) ⊇ A(T ) (and so each vertex has d

A(T (r)
` )

(v) ≥ dA(T )(v)).

The third inequality uses that small/large colours c have dA(T )(c) ≥ εn, by the
preceding paragraph. The first equality uses that the number of small/large colours
is |Ysmall/large| = n− h and |T | = (1− ε)n. The second equality is rearrangement.
The last inequality uses that n is sufficiently large compared to r0, k, h, ε (more
concretely, it follows from n ≥ 100r0 , and the definitions of r0, k, h, ε). We claim
that the following is true:

P: There is some r ≤ r0, some small colour c, some colour c element e 6∈ ES(c),

and some independent set T ∈ T (r)
` with T + e a rainbow independent set.

There are two cases.

• Suppose that for some r ≤ r0 there is some T ∈ T (r)
` with d

A(T (r)
` )

(T ) ≥
(1− ε)n. Equivalently |T | ≤ εn. Since there are > εn small colours, there is
some small colour c absent from T . By definition of “small colour”, the fact
that small colours are unchanged going from R to S, and Claim 3.12, we
have eS(c) = eR(c) ≤ eR(cm) ≤ (1− 2ε)n. By the augmentation property
one of the ≥ 2εn colour c elements outside S is independent from T (let
I = E(c) \ E(S), noting that I is independent, since E(c) is independent
by the theorem’s assumption. Now I, T are independent sets with |I| > |T |
and so there’s some e ∈ I with T + e independent). Let e be such an
element, and note that c, r, e, T satisfy P.

• Suppose that for all r ≤ r0 we have d
A(T (r)

` )
(T ) < (1− ε)n for all T ∈ T (r)

` .

Notice that in the `-reduced families T (0)
` , T (1)

` , T (2)
` , . . . , T (r0)

` , no large
colours occur (since these families are ≤ T by Observation 2.3). Hence
large colours have d

A(T (r)
` )

(c) = |T | = (1 − ε)n > d
A(T (r)

` )
(T ) for all T ∈

T (r)
` , r ≤ r0. Observation 3.2 applied with G = A(T (r)

` ), y = c shows that
large colours have k-ex

A(T (r)
` )

(c) = 0. Also, all medium colours occur on all

independent sets of T (r)
` (from Observation 2.5), which shows that medium

colours are isolated vertices in A(T (r)
` ), and so have k-ex

A(T (r)
` )

(c) = 0.

Thus the only colours of positive k-excess in any A(T (r)
` ) are small.
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Apply Lemma 3.8 to the reduced families T (r)
` for r = 0, 1, . . . , r0−1 and

for every colour whose k-excess is positive in A(T (r)
` ). We claim that for at

least one of these applications case (i) of Lemma 3.8 has to occur. Indeed,
otherwise eT (r+1)

`

(c) ≤ eT (r)
`

(c) − 1
2k-ex

A(T (r)
` )

(c) + `n/k for all colours c

and all r = 0, 1, . . . , r0 − 1 (for positive excess colours this will be from
Lemma 3.8. For zero excess colours it happens because Observation 2.3
tells us that reducing a family always decreases the number of elements of
each colour it contains). Summing over all colours this would give that for
each r = 0, . . . , r0 − 1,

e(T (r+1)
` ) =

∑
c∈C(M)

eT (r+1)
`

(c) ≤
∑

c∈C(M)

(eT (r)
`

(c)− 1

2
k-ex

A(T (r)
` )

(c) + `n/k)

= e(T (r)
` ) + `n2/k −

∑
c∈C(M)

1

2
k-ex

A(T (r)
` )

(c)

≤ e(T (r)
` ) + `n2/k − ε2n2/4

= e(T (r)
` )− ε2n2/8

Here the second inequality is (3.4), while the last equation comes from
“k = 8ε−2`”. Adding these inequalities for r = 0, 1, . . . , r0 − 1 gives a
contradiction:

e(T (r0)
` ) ≤ e(T (0)

` )− r0(ε2n2/8)

= e(T )− 100n2/8 ≤ e(M ′)− 100n2/8 = n(n+ h)− 100n2/8 < 0.

Thus case (i) of Lemma 3.8 had to occur at some application, i.e., there

is some r ≤ r0− 1, some colour c of positive k-excess in A(T (r)
` ), and some

independent set T ∈ T (r)
` with at least d

A(T (r)
` )

(c) + 1
2k-ex

A(T (r)
` )

(c) colour

c elements e 6∈ E(T (r)
` ) with T + e a rainbow independent set. Let F ⊆

E(c) \E(T (r)
` ) be the set of these elements, noting that |F | ≥ d

A(T (r)
` )

(c) +
1
2k-ex

A(T (r)
` )

(c) > d
A(T (r)

` )
(c). Since medium/large colours have zero k-

excess in A(T (r)
` ), c is small. By the definition of the availability graph, we

have

d
A(T (r)

` )
(c) = (1− ε)n− |ET (r)

`

(c)| ≥ |ES(c)| − |ET (r)
`

(c)| = |ES\T (r)
`

(c)|

Here the inequality uses that |ES(c)| ≤ (1 − ε)n which happens because
there are (1 − ε)n independent sets in S. The last equation uses that

T (r)
` ≤ S which comes from T ≤ S and Observation 2.3. Since |F | >
d
A(T (r)

` )
≥ |ES\T (r)

`

(c)|, there must be at least one e ∈ F \ ES\T (r)
`

(c).

Since F is disjoint from E(T (r)
` ), this tells us that e 6∈ E(S). Thus we have

found a colour c element e 6∈ E(S) with T + e a rainbow independent set
as required by P.

Now, having established that P is true, let r, c, e, T be as in P. Let S ∈ S with
T ⊆ S. By Lemma 3.10, there is a family of disjoint rainbow independent sets S∗
with E(S∗) = {e}∪ (E(S) \X), for some X ⊆ E(S) \E(T ) with |X| ≤ 2r+1. Since
dummy elements di,j ∈ D all have medium colours and e is small (by P), we have
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e 6∈ D. SimilarlyX∩D = ∅ becauseX ⊆ E(S)\E(T ) and everything in E(S)\E(T )
is large. Let R∗ be S∗ with all dummy elements di,j ∈ D deleted, noting that we
have E(R∗) = E(S∗) \ D = ({e} ∪ (E(S) \ X)) \ D = {e} ∪ ((E(S) \ D) \ X) =
{e} ∪ (E(R) \X) (for the last equation, using that S was constructed from R by
adding dummy elements). Note that since e 6∈ E(S) and R ≤ S, we have e 6∈ E(R).
Since e is small and X contains only large elements, R∗ satisfies the claim. �

�

4. Concluding remarks

One apparent strengthening of the results in this paper is to just ask for the
colours to be size n independent sets (as opposed to bases). This follows by applying
Theorem 1.2 to a suitably defined matroid.

Corollary 4.1. Let B1, . . . , Bn be disjoint independent sets of size n in a matroid
M (of any rank). Then there are n − o(n) disjoint rainbow independent sets in
B1 ∪ · · · ∪Bn of size n− o(n).

Proof. Let M ′ be the family of independent sets of size ≤ n in M . Notice that M ′

is also a matroid (for any two independent sets I, I ′ ∈ M ′ with |I| > |I ′|, we have
I, I ′ ∈ M and so there is some x ∈ I \ I ′ with I ′ ∪ {x} independent in M . But
using I ∈ M ′, we have |I ′ ∪ {x}| = |I ′| + 1 ≤ |I| ≤ n and so I ′ ∪ {x} ∈ M ′ also),
and that M ′ has rank n. Now B1, . . . , Bn are bases in M ′ and the result follows
from Theorem 1.2. �

It is easy to work out the bounds our proof gives: it produces n− Cn√
logn

disjoint

rainbow independent sets of size n − Cn√
logn

(for some fixed large constant C).

It would be interesting to improve this. Additionally, it would be nice to prove
qualitatively stronger asymptotic versions of the conjecture. The following problems
are natural goals.

Problem 4.2. Let B1, . . . , Bn be disjoint bases in a rank n matroid M . Show that
there are (1− o(1))n disjoint rainbow bases.

Problem 4.3. Let B1, . . . , Bn be disjoint bases in a rank n matroid M . Show that
B1∪· · ·∪Bn can be decomposed into (1+o(1))n disjoint rainbow independent sets.

A solution to any of the above problems, would give a strengthening of Theo-
rem 1.2. Theorem 1.2 may be a good starting point for solving the above problems.
It is not uncommon in combinatorics for non-trivial reductions between different
kinds of asymptotic results to exist. Indeed in an earlier version of this paper the fol-
lowing problem was also posed “let B1, . . . , Bn be disjoint bases in a rank n matroid
M . Show that there are n disjoint rainbow independent sets of size (1 − o(1))n”.
Kwan [12] solved this problem by finding a nice reduction to Theorem 1.2.

The results in this paper may eventually lead to a solution of Rota’s Conjecture
for sufficiently large n via the absorption method. Absorption is a technique for
turning asymptotic results into exact ones. It has recently has found success in
rainbow problems related to Rota’s Conjecture [9]. Now that we have an asymptotic
solution to the conjecture in Theorem 1.2, it seems promising to try and turn it
into a exact solution using absorption.
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