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Abstract
We show that the edges of any 𝑑-regular graph can
be almost decomposed into paths of length roughly 𝑑,
giving an approximate solution to a problem of Kotzig
from 1957. Along the way, we show that almost all of
the vertices of a 𝑑-regular graph can be partitioned into
𝑛∕(𝑑 + 1) paths, asymptotically confirming a conjecture
of Magnant and Martin from 2009.
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1 INTRODUCTION

A typical decomposition problem asks if the edges of some graph can be partitioned into copies
of another graph. The origins of this area can be traced back to Euler who asked the following
question in 1782: for which 𝑛 does the balanced complete 4-partite graph 𝐾𝑛,𝑛,𝑛,𝑛 decompose into
copies of the complete graph on four vertices (i.e. copies of 𝐾4)? Euler’s problem is customar-
ily phrased using the language of Latin squares and transversals, but the two formulations are
equivalent. In 1847, Kirkman studied decompositions of a complete graph into triangles (copies
of 𝐾3). Such decompositions are also referred to as Steiner triple systems. In 1882, Walecki stud-
ied decompositions of complete graphs into Hamilton paths and cycles. All of this work, and
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other early approaches to graph decomposition problems, used exclusively algebraic or construc-
tive techniques. In contrast, there have been many applications of the probabilistic method [2] to
graph decomposition problems in the last few decades, and several major problems have recently
been resolved. Highlights include, but are certainly not limited to, Keevash’s resolution [26] of the
Existence Conjecture for designs, which is a far reaching generalisation of the work of Kirkman
(see also [21]), and the proof for large 𝑛 of Ringel’s conjecture [26, 32] which states that 𝐾2𝑛+1
decomposes into copies of any 𝑛-edge tree. We refer the reader to [10, 22] for two recent surveys
of the area.
The common denominator in these recent advances is that they concern decompositions of

highly dense structures, such as complete graphs. There is also a large body of conjectures on
the decomposition of sparse graphs, where there has been much less progress as existing proof
techniques like those involving Szemerédi’s regularity lemmaonly apply to dense graphs. Perhaps,
the most famous conjecture about decomposing sparse graphs is the linear arboricity conjecture
of Akiyama, Exoo and Harary [1] from 1980, which says that every graph withmaximum degreeΔ
can be decomposed into ⌈(Δ + 1)∕2⌉ path forests. The conjecture was resolved asymptotically by
Alon [3] who showed such a graph can be decomposed into (1 + 𝑜(1))Δ∕2 path forests. The error
term was later sharpened by Ferber, Fox and Jain [20] and the current best bound is due to Lang
and Postle [29] who proved that such a graph always has a decomposition into Δ∕2 + 3

√
Δ log4 Δ

path forests. For decompositions into paths rather than path forests, there is a conjecture of Gallai
which predicts that every connected 𝑛-vertex graph can be decomposed into at most (𝑛 + 1)∕2
paths (see [30]). The best general result for this is that every such graph can be decomposed into
at most 2𝑛∕3 paths, proved in [14, 34]. What if we require all the paths to be of the same length
𝑑? Here, some extra conditions are required on the host graph 𝐺, since at the very least we need
𝑑 to divide 𝑒(𝐺). Botler, Mota, Oshiro andWakabayashi [7] showed that such a 𝑃𝑑-decomposition
exists if, furthermore, the graph is 𝑓(𝑑)-edge-connected, for some function 𝑓, a result motivated
by a now-solved conjecture of Barát and Thomassen (see [4]). A natural way to ensure 𝑑 divides
𝑒(𝐺)when 𝑑 is odd is to require𝐺 to be 𝑑-regular. In 1957, Kotzig [28] proved that a 3-regular graph
has a 𝑃3-decomposition if and only if 𝐺 has a perfect matching, and raised the following general
question for larger 𝑑.

Problem 1.1. When 𝑑 is odd, which 𝑑-regular graphs can be decomposed into paths of length 𝑑?

In 1990, Bondy [5] proposed a further extension of this problemwithout the regularity assump-
tion. There are very few general results known about these problems. Some progress has been
made on a related problem of Favaron, Genest and Koudier [17], who conjectured that a 𝑑-regular
graph 𝐺 (for odd 𝑑) decomposes into copies of 𝑃𝑑 if 𝐺 contains a perfect matching. See [6, 8, 9] for
some partial progress on this conjecture concerning the cases when 𝑑 is small, or when the host
graph 𝐺 is assumed to have high girth.
As obtaining a precise decomposition appears to be so difficult, it is of independent interest

to show that the existing conjectures hold true approximately, in part as it may eventually be
used as a stepping stone towards a full resolution. For example, even the approximate version of
the Existence Conjecture for designs was a longstanding open problem of Erdős and Hanani [16]
before it was resolved through the influential work of Rödl [33]. This approximate solution plays
a key component in the work of Keevash [26] resolving the full conjecture.
In this paper, we address a relaxed version of Kotzig’s problem by showing that almost all of

the edges of a 𝑑-regular graph can be decomposed into paths of length roughly 𝑑.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 3 of 40

Theorem 1.2. For every 𝜀 > 0, there exists 𝑑0 ∈ ℕ such that the following holds for all 𝑑 ⩾ 𝑑0. If 𝐺
is a 𝑑-regular 𝑛-vertex graph, then all but at most 𝜀𝑛𝑑 edges of 𝐺 can be decomposed into paths of
length ⌈(1 − 𝜀)𝑑⌉.
Constructing large edge-disjoint path forests plays a large part in our methods. However, note

that Theorem 1.2 cannot be strengthened to require that the paths in the decomposition can be
arranged into ⌈(𝑑 + 1)∕2⌉ path forests (as in the linear arboricity conjecture), as seen by consid-
ering the vertex-disjoint union of 𝑑-regular graphs of order 3𝑑∕2. Our methods, though, can be
used to make progress on a problem related to the linear arboricity conjecture, as follows. Note
that, when 𝑑 is odd, if the linear arboricity conjecture is true for 𝑑-regular graphs, then one of the
path forests in such a decomposition would have at least 𝑛𝑑

2
∕𝑑+1

2
= 𝑛 − 𝑛

𝑑+1
edges, and therefore

(adding isolated vertices if necessary) form a spanning path forest with atmost 𝑛

𝑑+1
paths. Though

naturally much weaker than the linear arboricity conjecture, showing even the existence of such
a path forest in a 𝑑-regular graph appears very difficult. This (for odd or even 𝑑) is the topic of
the following conjecture by Magnant and Martin [31] from 2009 (which, as per [19], also has an
interesting connection to tour length problems).

Conjecture 1.3. The vertices of every 𝑑-regular 𝑛-vertex graph can be partitioned into ⌊𝑛∕(𝑑 +
1)⌋ paths.
The disjoint union of complete graphs on 𝑑 + 1 vertices shows that this conjecture would be

optimal. It was confirmed for all 𝑑 ⩽ 5 by Magnant and Martin [31], and for 𝑑 = 6 by Feige and
Fuchs [18]. It has also recently been confirmed in the dense case (𝑑 = Ω(𝑛)) by Gruslys and
Letzter [23], but in general even the weaker conjecture by Feige and Fuchs [18] that every 𝑑-
regular 𝑛-vertex graph can be partitioned into 𝑂(𝑛∕(𝑑 + 1)) paths remains wide open. We prove
the following approximate version of Conjecture 1.3.

Theorem 1.4. For every 𝜀 > 0, there exists 𝑑0 ∈ ℕ such that the following holds for all 𝑑 ⩾ 𝑑0. Let
𝐺 be a 𝑑-regular 𝑛-vertex graph. Then, all but at most 𝜀𝑛 of the vertices of 𝐺 can be partitioned into
at most 𝑛∕(𝑑 + 1) paths.

If we consider decomposing approximately the edges of a 𝑑-regular graph 𝐺 into copies of 𝑃𝓁
starting with small 𝓁, then the extremal examples for why we cannot increase 𝓁 beyond 𝑑 all
contain small dense subgraphs (e.g. the cliques in the disjoint union of copies of 𝐾𝑑+1), which we
refer to as ‘dense spots’. In 𝑑-regular graphs without these dense spots, it would be relatively easy
(using techniques developed for the linear arboricity conjecture) to decompose almost all of the
edges of 𝐺 into paths with length ⌈(1 − 𝜀)𝑑⌉ by using the local lemma to partition 𝑉(𝐺) into sets
between which we can find many edge-disjoint matchings which combine to form many paths,
and then iteratively connect some of these paths together using a set of reserved vertices to get
longer and longer paths (as we do later in parts of our proof). The main idea in our proof is to
set aside the dense spots in a 𝑑-regular graph and then show that if the preceding approach goes
wrong, then we will be able to connect paths which we cannot lengthen into dense spots, so that
we can then decompose approximately the dense spots along with their attached paths into paths
with length ⌈(1 − 𝜀)𝑑⌉. To do so, we will need the set of reserved vertices to ‘sample’ each dense
spot appropriately in a precise manner, and how we manage this is the key technical novelty in
our methods. However, there are many further challenges in developing these initial ideas into a
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4 of 40 MONTGOMERY et al.

proof of Theorem 1.2, and even approximately decomposing the dense spots with connected paths
requires new ideas. Thus, in the next section, after outlining our notation,we give a detailed sketch
of our methods. Following this, we outline the rest of the paper. After our proofs, we make some
concluding remarks in Section 6, including on generalisations of path decomposition conjectures
to other trees.

2 PRELIMINARIES

Following an overview of our notation in Section 2.1, in Section 2.2, we give a sketch of the proof
before outlining the rest of the paper. For ease of notation, we will assume throughout that 𝑑 is
even, for example constructing paths forests 𝑖 , 𝑖 ∈ [𝑑∕2]. The case where 𝑑 is odd follows almost
identically as the proofs apply to (𝑑 − 1)-regular graphs without any significant alteration.

2.1 Notation

For a graph 𝐺, let 𝑉(𝐺) and 𝐸(𝐺) denote the vertex set and edge set of 𝐺, respectively, and let|𝐺| = |𝑉(𝐺)|. For a vertex 𝑣 ∈ 𝑉(𝐺), let 𝑁𝐺(𝑣) denote the neighbourhood of 𝑣 in 𝐺 and, for a
subset 𝑈 ⊂ 𝑉(𝐺), let 𝑁𝐺(𝑣,𝑈) = 𝑁𝐺(𝑣) ∩ 𝑈. We let 𝑑𝐺(𝑣) = |𝑁𝐺(𝑣)| denote the degree of 𝑣 and
write 𝑑𝐺(𝑣,𝑈) = |𝑁𝐺(𝑣,𝑈)| for the degree of 𝑣 into a subset 𝑈 ⊂ 𝑉(𝐺). As we do elsewhere, we
omit 𝐺 from the subscript whenever there is no risk of confusion. The minimum and maximum
degree of𝐺 is denoted by 𝛿(𝐺) and Δ(𝐺), respectively. For a subset𝑈 ⊆ 𝑉(𝐺), let𝐺[𝑈] denote the
graph induced by 𝑈 and, given a subset 𝑈′ ⊂ 𝑉(𝐺) ⧵ 𝑈, let 𝐺[𝑈,𝑈′] denote the bipartite graph
with bipartition𝑈 ∪ 𝑈′ and edges of the form 𝑢𝑢′ ∈ 𝐸(𝐺)with 𝑢 ∈ 𝑈 and 𝑢′ ∈ 𝑈′. Given a subset
𝑈 ⊂ 𝑉(𝐺), we let 𝐺 − 𝑈 be the graph 𝐺[𝑉(𝐺) ⧵ 𝑈], which is 𝐺 with the vertices in 𝑈 removed,
and use similar natural and common other notation. When  is a collection of graphs, 𝑉() and
𝐸() will be the set of vertices and edges used in some graph in  , respectively.
For each positive integer 𝑛, we let [𝑛] = {1, … , 𝑛}. Given real numbers 𝑎, 𝑏, 𝑐, wewrite 𝑎 = 𝑏 ± 𝑐

to denote that 𝑏 − 𝑐 ⩽ 𝑎 ⩽ 𝑏 + 𝑐. We say that a graph 𝐺 is (1 ± 𝛾)𝑑-regular if 𝑑𝐺(𝑣) = (1 ± 𝛾)𝑑 for
each 𝑣 ∈ 𝑉(𝐺). We use standard notation for ‘hierarchies’ of constants, writing 𝑥 ≪ 𝑦 to mean
that there is a non-decreasing function 𝑓 ∶ (0, 1] → (0, 1] such that all the relevant subsequent
statements hold for 𝑥 ⩽ 𝑓(𝑦). Hierarchies with multiple constants are defined similarly, with the
functions chosen from right to left, for example, for 𝑥 ≪ 𝑦 ≪ 𝑧. We omit rounding signs where
they are not crucial.
In this paper, we will often add paths to connect paths in a path forest. Given two path forests

and , we use  + to denote the graph with vertex set 𝑉() ∪ 𝑉() and edge set 𝐸() ∪ 𝐸().
Furthermore, we exclusively use this when the resulting graph is also a path forest, and each path
in  has at least one endpoint among the endpoints of  .

2.2 Proof sketch

Let 𝐺 be an 𝑛-vertex 𝑑-regular graph and let 1∕𝑑 ≪ 𝜀 and 𝓁 ⩽ (1 − 𝜀)𝑑. Suppose that we wish
to find edge-disjoint paths of length 𝓁 in 𝐺 covering all but at most 𝜀𝑛𝑑 edges (noting that if
we can do this with 𝓁 = (1 − 𝜀)𝑑, then we will have proved Theorem 1.2). The following natural
strategy, developed in part for attacking the linear arboricity conjecture (see, e.g. Section 1.1 in [20]
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 5 of 40

which builds on [3, 27]), can accomplish this if 𝓁 ⩽ 𝑑1∕5−𝑜(1). Take a random partition of 𝑉(𝐺)
into roughly equal sets 𝐴1 ∪ … ∪ 𝐴𝓁+1. Using the local lemma (see Section 2.4.2), show that, with
positive probability, each bipartite subgraph 𝐺[𝐴𝑖, 𝐴𝑗] with 𝑖 ≠ 𝑗 is almost (𝑑∕(𝓁 + 1))-regular.
Taking such a partition, then decompose each 𝐺[𝐴𝑖, 𝐴𝑗] into 𝑘0 matchings𝑀𝑖𝑗,𝑘, 𝑘 ∈ [𝑘0], where
𝑘0 is only slightly more than 𝑑∕(𝓁 + 1) (using, say, Vizing’s theorem). Decompose the complete
graph𝐾𝓁+1 into paths with length 𝓁 (it is well known that this is possible whenever 𝓁 + 1 is even),
and then, for each path and each 𝑘, take the corresponding matchings𝑀𝑖𝑗,𝑘 for the edges 𝑖𝑗 of the
path, and combine them to findmany paths of length 𝓁 in𝐺 (alongwith some shorter pathswhere
the matchings do not align exactly). Carried out carefully, this approach will give paths of length
𝓁 covering all but at most 𝜀𝑛𝑑 edges, as long as 𝓁 ⩽ 𝑑1∕5−𝑜(1) so that not too many edges are lost
from the potentially misaligned matchings. The constant 1∕5 here is the natural barrier for our
implementation of this method later, but more generally, such an approach encounters a strong
natural barrier for 𝓁 ≈ 𝑑1∕2 (see [29]).
Of course, we wish to have an approach that works for 𝓁 up to (1 − 𝜀)𝑑. A tempting route

forward is to first take aside a small ‘sample’ set 𝑋 of ≈ 𝑝𝑛 vertices (likely chosen via the local
lemma), with 𝑝 ≪ 𝜀, where𝐺 − 𝑋 is close to regular, and then decompose almost all of𝐺 − 𝑋 into
paths with length 𝑑1∕5−𝑜(1). Then, we could use vertices from 𝑋 to iteratively join these paths into
longer paths. The above partitioning and matching argument naturally produces edge-disjoint
path forests 1, … ,𝑑∕2 covering most of the edges of 𝐺 − 𝑋 using paths with length 𝑑1∕5−𝑜(1).
Given any set of (1 + 𝜀)𝑛∕𝑑 paths in one of these path forests, if we take one endpoint from each
path to form the set 𝑌, then, as the neighbours of the vertices in 𝑌 must overlap, we could hope
that some of the overlap will be sampled into 𝑋 so that we can join up two of the paths using a
single vertex in 𝑋, and, perhaps, even to do this iteratively until the path forest contains at most
(1 + 𝜀)𝑛∕𝑑 paths.
By making sure that the initial path forests do not together use any vertex as an endpoint too

much, and that no path forest counts too many neighbours of a vertex among its endpoints, and
by further dividing 𝑋 into several subsets to exhaust in turn while connecting paths, this can be
made to work (see Sections 3.1 and 3.2), and, furthermore, even, used to prove Theorem 1.4 (see
Section 3.3). However, this approach will approximately decompose the 𝑛-vertex 𝑑-regular graph
𝐺 into paths with average length (1 − 𝜀)𝑑 (see Lemma 2.3), rather than paths of length (1 − 𝜀)𝑑,
so really is only the starting point for our proof of Theorem 1.2.
To go further, we consider what might stop us from joining up more paths in our path forests

via 𝑋. After all, if we could continue to connect paths together until our paths forests mostly had
paths with length at least 𝐾𝑑, for some 1∕𝐾 ≪ 𝜀, then each such path can be further decomposed
into paths with length (1 − 𝜀)𝑑 and atmost 𝑑 − 1 other edges, where these other edges will then in
total be a small portion of the edges of the graph𝐺 so thatwewill not need to decompose them. The
disjoint union of copies of𝐾𝑑+1 demonstrates that hoping to always get paths of this length,𝐾𝑑, is
fanciful. However, the presence of small dense subgraphs (which we shall call ‘dense spots’) turns
out to be the only thing that can stop this from working. Indeed, suppose that we had 𝑟 ∶= 𝑛∕𝐾𝑑

vertex-disjoint paths 𝑃1, … , 𝑃𝑟 in 𝐺 − 𝑋, and could not find a short path (say of length at most 𝑘,
with 1∕𝑑 ≪ 1∕𝑘 ≪ 1∕𝐾) in𝐺 between two endpoints of different paths, so that the short path has
all its interior vertices in 𝑋. Then, if, for each 𝑖 ∈ [𝑟], 𝑌𝑖 was the set of vertices in 𝑋 which can be
reached by a path in 𝐺 of length at most 𝑘∕2 from an endpoint of 𝑃𝑖 while using otherwise only
vertices from 𝑋, then the sets 𝑌𝑖 , 𝑖 ∈ [𝑟], must all be disjoint. Then, one of these sets 𝑌𝑖 will be
small (with ⩽ 𝐾𝑑 vertices), which will imply that 𝐺[𝑌𝑖]must contain some dense subgraph. It is
reasonable, then, to hope that, startingwith some initial paths forests, we could join the endpoints
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6 of 40 MONTGOMERY et al.

F IGURE 1 As shown on the left, having found a maximal collection of vertex-disjoint dense spots 𝐺1, … , 𝐺𝑡
in a graph 𝐺, we take a ‘sample set’ 𝑋 which will intersect with each of these dense spots. Partitioning
𝑉(𝐺) ⧵ (𝑋 ∪ 𝑉(𝐺1) ∪ … ∪ 𝑉(𝐺𝑡)) into sets 𝐴1 ∪ … ∪ 𝐴𝓁+1, we then cover most of the edges between each 𝐴𝑖 and
𝐴𝑗 with matchings𝑀𝑖𝑗,𝑘 , for 𝑘 ∈ [𝑑′] with 𝑑′ ≈ 𝑑∕𝑠. For a path 𝑃 with length 𝓁 in 𝐾𝓁+1 (as on the right, with
endvertices 𝑖′, 𝑗′ ∈ 𝑉(𝐾𝓁+1) and each 𝑘, we put together the matchings𝑀𝑖𝑗,𝑘 for each 𝑖𝑗 ∈ 𝐸(𝑃) to get a path
forest of few paths, most of which end in 𝐴𝑖′ and 𝐴𝑗′ . We then connect up as many as possible of these endvertices
with short paths using internal vertices in 𝑋 (shown in red) and connect more of them into the dense spots with
short paths using vertices in 𝑋 (shown in orange).

of these paths together via short connecting paths using new vertices in 𝑋 until most of the paths
are either (a) long (with length ⩾ 𝐾𝑑) or (b) connected into a ‘dense spot’ in 𝐺[𝑋].
In the case (b), we cannot hope to decompose these paths along with the dense spot in 𝐺[𝑋]

they are connected to, for, as |𝑋| ≈ 𝑝𝑛 and 𝑋 will be chosen randomly, such a dense spot (say a
sample of a copy of 𝐾𝑑+1) may only have around 𝑝𝑑 vertices, and thus only have paths of length
up to 𝑝𝑑. Therefore, we will have to argue that we can take the sample 𝑋 accurately enough that
any dense spot in 𝐺[𝑋] must lie within some dense spot in 𝐺, so that we can mostly decompose
the original dense spot alongwith any paths we have attached to it into paths with length (1 − 𝜀)𝑑.
Reordering, slightly, then, we will do the following (see Figure 1).

(i) Take a maximal collection  = {𝐺1, … , 𝐺𝑡} of dense spots in 𝐺 and a small ‘sample set’ 𝑋.
(ii) Mostly decompose 𝐺 − 𝑉() − 𝑋 into 𝑑∕2 path forests consisting of medium-length paths.
(iii) Iteratively join paths within each path forest together using short paths with internal vertices

in 𝑋.
(iv) Having exhausted the possible connections, we argue that, except for some small number

of paths, most of the paths must be connectable into a dense spot in 𝐺[𝑋], and therefore,
somehow, connectable into one of the dense spots 𝐺𝑖 , 𝑖 ∈ [𝑡].

(v) Mostly decompose the long paths into paths of length 𝓁 = (1 − 𝜀)𝑑 and, similarly, mostly
decompose the dense spots along with the paths connected into them.

By this scheme, we will find the required decomposition of all but at most 𝜀𝑛𝑑 edges of 𝐺 into
paths of length 𝓁 = (1 − 𝜀)𝑑, but in setting aside the collection  , we have introduced a further
issue. While we can choose 𝑋 so that 𝐺 − 𝑋 is nearly regular, we now have the problem that the
graph 𝐺 − 𝑉() − 𝑋may not be nearly regular (which we require for partitioning into vertex sets
and findingmany edge-disjoint matchings between them). Critically, here, we will use two results
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 7 of 40

shown by very recent techniques of Chakraborti, Janzer, Methuku and Montgomery [12, 13] to
efficiently find nearly-regular subgraphs. Moreover, we will develop these results non-trivially,
using them to show that we can mostly decompose 𝐺 − 𝑉() − 𝑋 into a small number of edge-
disjoint nearly-regular subgraphs (see Section 3.4).We also apply one of the results of [12, 13] while
decomposing the dense spots along with the attached paths.
This completes an overall sketch of our methods for Theorem 1.2. In Section 2.3, we will show

that Theorem 1.2 follows from three key lemmas, Lemmas 2.3–2.5, which roughly correspond
to steps (ii), (iv) and (v) above, respectively. The proofs of each of these three key lemmas will
need more new ideas than could be included in the sketch above, and they are discussed in more
detail later where appropriate. In Section 2.4, we cover some tools we will need, including some
comments on our use of the local lemma in Section 2.4.2. In Section 3, we give the decomposition
into path forests we will use for 𝐺 − 𝑉() − 𝑋, thus proving Lemma 2.3. In Section 4, we will
show the existence of a good ‘sample set’ 𝑋 and show how to connect some paths to small dense
spots within 𝐺[𝑋] and hence to some dense spot in  , thus proving Lemma 2.4. In Section 5, we
will decompose the dense spots along with some attached paths, proving Lemma 2.5 and hence
completing the proof of Theorem 1.2. Finally, in Section 6,wewillmake some concluding remarks.

2.3 Proof of Theorem 1.2 subject to three key lemmas

We now introduce two key definitions to formalise some of the notions in Section 2.2. The first
we will use to quantify what we want from our ‘dense spots’.

Definition 2.1. A graph 𝐺 is (𝜂, 𝑑, 𝐾)-dense if 0 < |𝑉(𝐺)| ⩽ 𝐾𝑑 and 𝛿(𝐺) ⩾ (1 − 𝜂)𝑑.
Our second definition records properties of path forests, where we require each forest to not

contain too many paths and that the endpoints of the paths are relatively well spread out around
a graph.

Definition 2.2. Say a collection of path forests1, … ,𝓁 is (𝑚, Δ0, Δ1)-bounded if each𝑖, 𝑖 ∈ [𝓁],
has at most𝑚 paths, each vertex appears as the endvertex of at most Δ0 paths in total in all of the
path forests, and, for each 𝑖 ∈ [𝓁], each vertex has at most Δ1 neighbours among the endvertices
of 𝑖 .

We can now give our lemma which we will use to find a good collection of path forests for step
(ii) in Section 2.2. The lemma applies more generally than to a 𝑑-regular graph as we apply it to a
regular graph with a maximal set of dense spots (and a ‘sample set’) removed.

Lemma 2.3. Let 1∕𝑑 ≪ 𝛾 ≪ 𝜀 ⩽ 1. Let 𝐺 be an 𝑛-vertex graph with maximum degree at most
𝑑 in which all but at most 𝛾𝑛 vertices have degree at least (1 − 𝛾)𝑑. Then, 𝐺 contains a ((1 +
𝜀)𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded edge-disjoint collection of 𝑑∕2 path forests which cover all but at most
𝜀𝑛𝑑 of the edges of 𝐺.

Note that (as seen by the disjoint union of (𝑑 + 1)-vertex cliques) the bound (1 + 𝜀)𝑛∕𝑑 in
Lemma 2.3 is close to optimal. Given 𝑑∕2 edge-disjoint path forests which each contain (1 +
𝜀)𝑛∕𝑑 ⩽ 2𝑛∕𝑑 paths in an 𝑛-vertex 𝑑-regular graph, note that there are in total at most 2𝑛 endver-
tices, so that on average each vertex appears in total as the endvertex of at most two paths. Thus,
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8 of 40 MONTGOMERY et al.

the corresponding upper bound of 𝑑1∕4 in Lemma 2.3 is relatively unambitious; while it could be
pushed much further with our methods, this will be sufficient for our purpose. Similarly, for just
one of these path forests, on average a vertex can expect to have at most two neighbours among
the endpoints of the at most (1 + 𝜀)𝑛∕𝑑 ⩽ 2𝑛∕𝑑 paths. Again, the corresponding upper bound of
𝑑1∕4 in Lemma 2.3 is chosen loosely, only so that it is comfortably enough for our later proofs.
Next, we give the lemma that represents the heart of our proof. It shows the existence of our

‘sample set’ 𝑋 such that, given a collection of path forests as produced by Lemma 2.3, we can
join paths together using vertices from 𝑋 and find further paths to get a collection of path forests
in which the paths are connected into the dense spots (in a well spread manner similar to the
conditions in Definition 2.2) or can be collectively mostly decomposed into paths with length
(1 − 𝜀)𝑑.

Lemma 2.4. Let 1∕𝑑 ≪ 𝑝, 𝜂 ≪ 1∕𝐾 ≪ 𝜀. Let 𝐺 be a 𝑑-regular 𝑛-vertex graph. Let  = {𝐺1, … , 𝐺𝑡}

be amaximal family of vertex-disjoint (𝜂, 𝑑, 𝐾)-dense subgraphs. Then, there is a set𝑋 ⊂ 𝑉(𝐺)with

A1 |𝑋| ⩽ 2𝑝𝑛 and, for each 𝑣 ∈ 𝑉(𝐺), 𝑑𝐺(𝑣, 𝑋) = (1 ± 𝜂)𝑝𝑑, and
A2 for each 𝑗 ∈ [𝑡], |𝑋 ∩ 𝑉(𝐺𝑗)| ⩽ 2𝑝|𝑉(𝐺𝑗)| and, for each 𝑣 ∈ 𝑉(𝐺𝑗), 𝑑𝐺(𝑣, 𝑋 ∩ 𝑉(𝐺𝑖)) = (1 ±

3𝜂)2𝑝𝑑,

such that the following holds.
For any (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded edge-disjoint collection of path forests 1,2, … ,𝑑∕2 in 𝐺 −

𝑉() − 𝑋, we can find in 𝐺 − (𝑉() ⧵ 𝑋) an edge-disjoint collection of path forests  ′
1
, ′

2
, … , ′

𝑑∕2
,

such that the following hold.

A3 For each 𝑖 ∈ [𝑑∕2], every path in  ′
𝑖
has both of its endvertices in 𝑋 ∩ 𝑉().

A4 Each vertex in 𝐺 is in total an endvertex of at most
√
𝑑 paths in  ′

𝑖
, 𝑖 ∈ [𝑑∕2].

A5 For each 𝑗 ∈ [𝑡] and 𝑖 ∈ [𝑑∕2] at most
√
𝑑 of the paths in  ′

𝑖
end in 𝐺𝑗 .

A6 All but at most 𝜀𝑛𝑑∕4 of the edges of 𝐸(1 ∪ … ∪ 𝑑∕2) ⧵ 𝐸(
′
1
∪ … ∪  ′

𝑑∕2
) can be decomposed

into copies of 𝑃(1−𝜀)𝑑.

Finally, we give our lemmawhich can decompose the dense spots alongwith some paths which
all have their endpoints among the dense spots in a relatively well spread manner, as follows.

Lemma 2.5. Let 1∕𝑑 ≪ 𝜂 ≪ 𝑝, 1∕𝐾 ≪ 𝜀. Let 𝐺 be a graph consisting of a vertex-disjoint family
 = {𝐺1, … , 𝐺𝑡} of (𝜂, 𝑑, 𝐾)-dense graphs and path forests 1, … ,𝑑∕2 where each path in each path
forest has both its endpoints in 𝑉() and all its internal vertices not in 𝑉(). Suppose also that the
following properties hold.

B1 For each 𝑖 ∈ [𝑡], there is some 𝑋𝑖 ⊆ 𝑉(𝐺𝑖) so that 𝑋𝑖 contains all of the vertices of 𝑉(1) ∪ … ∪
𝑉(𝑑∕2) in 𝑉(𝐺𝑖) (which are necessarily endpoints), and, for each 𝑣 ∈ 𝑉(𝐺𝑖), 𝑑𝐺𝑖 (𝑣, 𝑋𝑖) = (1 ±

𝜂)𝑝𝑑.
B2 Each vertex 𝑣 ∈ 𝑉() is an endpoint of in total at most

√
𝑑 paths from 1, … ,𝑑∕2.

B3 For each 𝑗 ∈ [𝑡] and 𝑖 ∈ [𝑑∕2], at most
√
𝑑 of the paths in 𝑖 have at least one endpoint in 𝐺𝑗 .

Then, all but at most 𝜀𝑑 ⋅ |𝑉()| of the edges of 𝐺 can be decomposed into copies of 𝑃(1−𝜀)𝑑.

Subject to the proof of these three key lemmas, we can now prove Theorem 1.2, following the
steps (i)–(v) in Section 2.2.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 9 of 40

Proof of Theorem 1.2. Let 𝐾 ∈ ℕ and 𝜂, 𝑝 > 0 satisfy

1∕𝑑 ≪ 𝜂 ≪ 𝑝 ≪ 1∕𝐾 ≪ 𝜀 ⩽ 1.

Let𝐺 be an𝑛-vertex𝑑-regular graph. Let = {𝐺1, … , 𝐺𝑡} be amaximal collection of vertex-disjoint
(𝜂, 𝑑, 𝐾)-dense graphs in 𝐺. Using Lemma 2.4, let 𝑋 ⊂ 𝑉(𝐺) be such that the following hold.

C1 |𝑋| ⩽ 2𝑝𝑛, and, for each 𝑣 ∈ 𝑉(𝐺), 𝑑𝐺(𝑣, 𝑋) ⩽ 2𝑝𝑑.
C2 For each 𝑖 ∈ [𝑡], |𝑋 ∩ 𝑉(𝐺𝑖)| ⩽ 2𝑝|𝑉(𝐺𝑖)| and, for each 𝑣 ∈ 𝑉(𝐺𝑖), 𝑑𝐺(𝑣, 𝑋 ∩ 𝑉(𝐺𝑖)) = (1 ±

𝜂)𝑝𝑑.
C3 For any (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded edge-disjoint collection of path forests 1,2, … ,𝑑∕2

in 𝐺 − 𝑉() − 𝑋, we can find in 𝐺 − 𝑉( ⧵ 𝑋) an edge-disjoint collection of path forests
 ′
1
, ′

2
, … , ′

𝑑∕2
such that the following hold.

(i) For each 𝑖 ∈ [𝑑∕2], every path in  ′
𝑖
has both of its endvertices in 𝑋 ∩ 𝑉().

(ii) Each vertex in 𝑉(𝐺) is an endvertex of at most
√
𝑑 paths in  ′

𝑖
, 𝑖 ∈ [𝑑∕2].

(iii) For each 𝑗 ∈ [𝑡] and each 𝑖 ∈ [𝑑∕2], at most
√
𝑑 of the paths in  ′

𝑖
end in 𝐺𝑗 .

(iv) All but at most 𝜀𝑛𝑑∕4 edges of𝐸(1 ∪ … ∪ 𝑑∕2) ⧵ 𝐸(
′
1
∪ … ∪  ′

𝑑∕2
) can be decomposed

into copies of 𝑃(1−𝜀)𝑑.

Let𝐺′ = 𝐺 − 𝑉() − 𝑋. If |𝑉(𝐺′)| ⩽ 𝜀𝑛∕2, then let1 =⋯ = 𝑑∕2 = ∅, noting that these cover
all but at most 𝜀𝑛𝑑∕4 edges of 𝐺′ and they therefore trivially form a (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded
collection of paths which cover all but at most 𝜀𝑛𝑑∕4 of the edges of 𝐺′. Suppose, otherwise, that|𝑉(𝐺′)| > 𝜀𝑛∕2. As each𝐺𝑖 , 𝑖 ∈ [𝑡], is (𝜂, 𝑑, 𝐾)-dense, the number of edges incident on𝑉(𝐺′)with,
for some 𝑖 ∈ [𝑡], one vertex in some𝐺𝑖 is atmost

∑
𝑖∈[𝑡] |𝑉(𝐺𝑖)| ⋅ 𝜂𝑑 = 𝜂𝑑|𝑉()|. Therefore, byC1,

|𝐸(𝐺′)| ⩾ 1

2
𝑑|𝑉(𝐺′)| − 𝜂𝑑|𝑉()| − 2𝑝𝑑|𝑋| ⩾ 1

2
𝑑(1 − 5𝑝)|𝑉(𝐺′)|.

Let 𝛾 =
√
5𝑝. As Δ(𝐺′) ⩽ 𝑑, if 𝑁 is the number of vertices in 𝐺′ with degree at most (1 − 𝛾)𝑑 in

𝐺′, then 𝑁 ⋅ 𝛾𝑑 ⩽ 5𝑑𝑝|𝑉(𝐺′)|, so that 𝑁 ⩽ 𝛾|𝑉(𝐺′)|. Thus, as 1∕𝑑 ≪ 𝑝 ≪ 𝜀, by Lemma 2.3, 𝐺′
contains a (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded edge-disjoint collection of path forests 1, … ,𝑑∕2 which
together cover all but at most 𝜀𝑛𝑑∕4 of the edges of 𝐺′ = 𝐺 − 𝑉() − 𝑋.
Then, by C3, we can find an edge-disjoint collection of path forests  ′

1
, … , ′

𝑑∕2
in 𝐺 − 𝑉()

such that (i)–(iv) hold. Using (iv), let 1 be a set of edge-disjoint copies of 𝑃(1−𝜀)𝑑 which
decompose all but at most 𝜀𝑛𝑑∕4 edges of 𝐸(1 ∪ … ∪ 𝑑∕2) ⧵ 𝐸(

′
1
∪ … ∪  ′

𝑑∕2
).

Let 𝐺′′ =
(⋃

𝑖∈[𝑡] 𝐺𝑖
)
∪
(⋃

𝑖∈[𝑑∕2]

⋃
𝑃∈ ′

𝑖
𝑃
)
. By Lemma 2.5 (with 𝑋𝑖 = 𝑋 ∩ 𝑉(𝐺𝑖) for each 𝑖 ∈

[𝑡], 𝜂′ = 3𝜂, and using C2 and (i)–(iii)), let 2 be a set of edge-disjoint copies of 𝑃(1−𝜀)𝑑 which
decomposes all but at most 𝜀𝑛𝑑∕4 of the edges of 𝐺′′.
Then, 1 ∪2 is an edge-disjoint collection of copies of 𝑃(1−𝜀)𝑑 which decomposes all but at

most 𝜀𝑛𝑑∕2 edges of 1, … ,𝑑∕2, , and therefore all but at most 3𝜀𝑛𝑑∕4 of the edges in 𝐸(𝐺′) ∪
𝐸(). As 𝐺𝑖 is (𝜂, 𝑑, 𝐾)-dense for each 𝑖 ∈ [𝑡], each vertex in 𝑉() has at most 𝜂𝑑 neighbours
in 𝑉(𝐺′), so that there are at most 𝜂𝑛𝑑 edges in 𝐺 between 𝑉() and 𝑉(𝐺′). Furthermore, as|𝑋| ⩽ 2𝑝𝑛 by C1, there are at most 2𝑝𝑛𝑑 edges in 𝐺 between 𝑋 and 𝑉(𝐺) ⧵ 𝑋. Therefore, as the
only edges of 𝐺 which are not in 𝐸(𝐺′) ∪ 𝐸() are those with a vertex in 𝑋 or which are between
𝐺′ and 𝑉(), 1 ∪2 decomposes all but at most 3𝜀𝑛𝑑∕4 + 𝜂𝑛𝑑 + 2𝑝𝑛𝑑 ⩽ 𝜀𝑛𝑑 of the edges of 𝐺
into copies of 𝑃(1−𝜀)𝑑, as required. □
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10 of 40 MONTGOMERY et al.

2.4 Tools

We collect here some standard results we will use in our proofs.

2.4.1 Concentration inequalities

We will use the following standard version of Chernoff’s bound (see, e.g. [25, Corollary 2.2 and
Theorem 2.10]).

Lemma 2.6 (Chernoff’s bound). Let 𝑋 be a random variable with mean 𝜇 which is binomially dis-
tributed or hypergeometrically distributed. Then, for any 0 < 𝛾 < 1, we have that ℙ(|𝑋 − 𝜇| ⩾ 𝛾𝜇) ⩽
2𝑒−𝜇𝛾

2∕3.

Given a product probability space Ω =
∏

𝑖∈[𝑛] Ω𝑖 , a random variable 𝑋∶ Ω → ℝ is called 𝐶-
Lipschitz if |𝑋(𝜔) − 𝑋(𝜔′)| ⩽ 𝐶 whenever 𝜔 and 𝜔′ differ in at most 1 co-ordinate. We will use the
following standard version of Azuma’s inequality (see, e.g. [25, Corollary 2.27]).

Lemma 2.7 (Azuma’s inequality). Let 𝑋 be 𝐶-Lipschitz random variable on a product probability
space with 𝑛 co-ordinates. Then, for any 𝑡 > 0,

ℙ(|𝑋 − 𝔼(𝑋)| > 𝑡) ⩽ 2𝑒
−𝑡2

2𝑛𝐶2 .

2.4.2 The local lemma

Wewill use the local lemma of Lovász (see [2]) many times throughout our proofs, so after stating
the form that we use, we will make some remarks on how we use it.

Lemma2.8 (The local lemma).Let𝐵1, 𝐵2, … , 𝐵𝑛 be events in anarbitrary probability space. Suppose
that, for each 𝑖 ∈ [𝑛], the event 𝐵𝑖 is mutually independent of a set of all but at most Δ of the other
events andℙ(𝐵𝑖) ⩽ 𝑝. Then, if 𝑒𝑝(Δ + 1) ⩽ 1, the probability that none of the events𝐵𝑖 , 𝑖 ∈ [𝑛], occurs
is strictly positive.

Each time we apply the local lemma we will do so within a 𝑑-regular (or approximately 𝑑-
regular) 𝑛-vertex graph 𝐺. The ‘bad events’ 𝐵𝑖 , 𝑖 ∈ 𝐼, that we use, where 𝐼 is some appropriate
index set, will all be of the form that ‘a binomial or hypergeometric variable is not concentrated
around its mean’, where these variables will depend on some partition of the vertices (or in one
case of the edges) for which each vertex (or edge) is placed in a set of the partition independently
at random. Thus, using Chernoff’s bound (Lemma 2.6), we can bound the probability of each ‘bad
event’ occurring, which in each instance will be at most 𝑝 ∶= 𝑒−𝑑

0.1∕100.
Each bad event will, for some central vertex, depend only on the placement of vertices within a

distance 𝑘 of the central vertex, for some 𝑘 with 1∕𝑑 ≪ 1∕𝑘. Changing the placement of a single
vertex (or edge) in the partition will affect at most 𝑑𝑘 of the ‘bad events’. Therefore, for each ‘bad
event’, 𝐵 say, after identifying the central vertex, we take the set of events which depend on any
vertex within a distance 𝑘 of the central vertex, and note that 𝐵 is mutually independent of the set
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 11 of 40

of all the other ‘bad events’. As we have a graphwithmaximum degree 𝑑, the number of events we
omitted from the set is at most Δ ∶= 2𝑑𝑘 ⋅ 𝑑𝑘. Therefore, as 1∕𝑑 ≪ 1∕𝑘, we comfortably have that
𝑒𝑝(Δ + 1) = 𝑒 ⋅ 𝑒−𝑑

0.1∕100(2𝑑2𝑘 + 1) ⩽ 1, and we can apply the local lemma, Lemma 2.8, to show
that there is some instance in which none of the ‘bad events’ occur.
Let us also note that, when, for example, choosing a subset 𝑋 ⊂ 𝑉(𝐺) by including vertices

independently at random with probability 𝑝, the ‘bad events’ that we wish to consider may
include that |𝑋| ≠ (1 ± 𝛾)𝑝𝑛 (where 1∕𝑑 ≪ 𝑝, 𝛾). This event will not be independent of any
other bad event we define as it is influenced by every vertex in 𝐺. We could deal with this
using the asymmetric local lemma, but, instead, to keep using Lemma 2.8, we will take an arbi-
trary partition of 𝑉(𝐺) into sets 𝑉1,… , 𝑉𝑡 which each have size between 𝑑∕2 and 𝑑. If, for each
𝑖 ∈ [𝑡], 𝐵𝑖 is the event that 𝑉𝑖 ∩ 𝑋 ≠ (1 ± 𝛾)𝑝|𝑉𝑖|, then, when no event 𝐵𝑖 , 𝑖 ∈ [𝑡], holds then|𝑋| = (1 ± 𝛾)𝑝𝑛 and, furthermore, each of these events only depends on the location of at most 𝑑
vertices.
As an example of how we use the local lemma, we will give here the details of our first applica-

tion, from Lemma 3.1. Let 𝑠 = 2⌈𝑑0.15⌉ and 𝜂 = 4𝑑−0.4 with 1∕𝑑 ≪ 𝜂 ≪ 1. Suppose that 𝐺 has
vertices degrees which are (1 ± 𝜂∕2)𝑑 and let 𝑉(𝐺) = 𝑉1 ∪ … ∪ 𝑉𝑡 be a partition of 𝑉(𝐺) into
sets of size between 𝑑∕2 and 𝑑. Let 𝑉(𝐺) = 𝐴1 ∪ … ∪ 𝐴𝑠 be a partition of 𝑉(𝐺) formed by taking
each 𝑣 ∈ 𝑉(𝐺) and, independently at random, placing it in each 𝐴𝑖 , 𝑖 ∈ [𝑠], with probability 1∕𝑠.
For each 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠], let 𝐵𝑣,𝑖 be the event that 𝑑𝐺(𝑣, 𝐴𝑖) ≠ (1 ± 𝜂)𝑑∕𝑠. For each 𝑖 ∈ [𝑠]

and 𝑗 ∈ [𝑡], let 𝐵𝑖,𝑗 be the event that |𝐴𝑖 ∩ 𝑉𝑗| ≠ (1 ± 𝜂)|𝑉𝑗|∕𝑠. Note that, by Chernoff’s bound,
each of these events occur with probability at most exp(−𝜂2 ⋅ (𝑑∕2𝑠)∕3) ⩽ exp(−𝑑0.1). For each
𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠], the event 𝐵𝑣,𝑖 only depends on whether each vertex in 𝑁𝐺(𝑣) is in 𝐴𝑖 or
not, so therefore on the placement of at most 𝑑 vertices in the partition 𝐴1 ∪ … ∪ 𝐴𝑠. Similarly,
for each 𝑖 ∈ [𝑠] and 𝑗 ∈ [𝑡], 𝐵𝑖,𝑗 only depends on the placement of at most 𝑑 vertices in the par-
tition 𝐴1 ∪ … ∪ 𝐴𝑠. For any vertex 𝑤 ∈ 𝑉(𝐺), the placement of 𝑤 only affects an event 𝐵𝑣,𝑖 with
𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠] if 𝑣 is a neighbour of𝑤, so atmost 𝑑𝑠 pairs (𝑣, 𝑖). Furthermore, the placement
of𝑤 only affects an event𝐵𝑖,𝑗 with 𝑖 ∈ [𝑠] and 𝑗 ∈ [𝑡] if𝑤 ∈ 𝑉𝑗 , and thus affects only atmost 𝑠 such
events. Therefore, the placement of each vertex affects at most 𝑑𝑠 + 𝑠 ⩽ 𝑑2 events. Therefore, each
event in {𝐵𝑣,𝑖 ∶ 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑠]} ∪ {𝐵𝑖,𝑗 ∶ 𝑖 ∈ [𝑠], 𝑗 ∈ [𝑡]} is mutually independent of a set of all
but at most Δ ∶= 𝑑 ⋅ 𝑑2 = 𝑑3 other events. Thus, as 𝑒𝑝Δ = 𝑒 ⋅ exp(−𝑑0.1) ⋅ 𝑑3 ⩽ 1, by Lemma 2.8,
we have that, with positive probability, none of the events in {𝐵𝑣,𝑖 ∶ 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ [𝑠]} ∪ {𝐵𝑖,𝑗 ∶ 𝑖 ∈

[𝑠], 𝑗 ∈ [𝑡]} hold. Therefore, we can take a partition of 𝑉(𝐺) into 𝐴1 ∪ … ∪ 𝐴𝑠 for which none of
these events hold, and hence, for each 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠], we have 𝑑𝐺(𝑣, 𝐴𝑖) = (1 ± 𝜂)𝑑∕𝑠 and,
for each 𝑖 ∈ [𝑠], as no event 𝐵𝑖,𝑗 , 𝑗 ∈ [𝑡], holds, we have |𝐴𝑖| = (1 ± 𝜂)𝑛∕𝑠.
Finally, here let us highlight the instance in which we use the most ‘bad events’, in the proof

of Lemma 4.3. There, working with a 𝑑-regular graph 𝐺, we will consider the collection  of
all subsets of 𝑉(𝐺) of size at most 𝑘 such that these vertices are all pairwise at most 𝑘 apart in
𝐺, where 1∕𝑑 ≪ 1∕𝑘. Each vertex in 𝐺 will be allocated to some set 𝑋 or not independently at
random with probability 𝑝. There will be some bad events 𝐵𝑖 , 𝑖 ∈ 𝐼, where, for each 𝑈 ∈  , at
most 𝑑|𝑈| + 1 ⩽ 𝑑𝑘 + 1 of the indices 𝑖 ∈ 𝐼 will contain 𝑈. Any event 𝐵𝑖 whose index includes
𝑈 ∈  will depend only whether or not the vertices in

⋃
𝑣∈𝑈 𝑁𝐺(𝑣) are in 𝑋, where this set has

size at most |𝑈|𝑑 ⩽ 𝑑𝑘. As each vertex𝑤 will appear as a neighbour of at most (2𝑑2𝑘+1)𝑘−1 sets in
 , we will have that at most 𝑑2𝑘2 ⋅ (𝑑𝑘 + 1) events 𝐵𝑖 , 𝑖 ∈ 𝐼, depend on whether or not 𝑤 is in 𝑋.
As 1∕𝑑 ≪ 1∕𝑘, then, we can think of this as every event depending on at most a polynomial of 𝑑
(whose power is a function of 𝑘) many other bad events, while the probability of each bad event
will be exp(−𝑑0.1∕100), allowing us to apply Lemma 2.8 once again.
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12 of 40 MONTGOMERY et al.

F IGURE 2 For 𝑠 = 12, an embedding of a path of length 𝑠 − 1 = 11 which can be rotated 𝑠∕2 = 6 times to
form together a complete graph with 𝑠 = 12 vertices, with one clockwise rotation depicted in red, giving a
decomposition of 𝐾𝑠 into paths of length 𝑠 − 1 in which each vertex appears as an endpoint exactly once (a
decomposition first given by Walecki). In general, we label the vertices by [1, 𝑛′], and set the 𝑖th path to have
sequence 𝑃𝑖 = 𝑛′ − 1 + 𝑖, 𝑖, 𝑛′ − 2 + 𝑖, 1 + 𝑖, 𝑛′ − 3 + 𝑖, 2 + 𝑖, … , 𝑛′∕2 + 1 + 𝑖, 𝑛′∕2 − 2 + 𝑖, 𝑛′∕2 + 𝑖, 𝑛′∕2 − 1 + 𝑖,
where all calculations are done modulo 𝑛′.

2.4.3 Matchings in bipartite graphs

In order to find the matchings𝑀𝑖𝑗,𝑘 described in Section 2.2, we will use the following result.

Lemma 2.9. Let 𝑑, 𝑛 > 0 and let 0 < 𝛾 < 1. Let 𝐺 be a bipartite graph with vertex class sizes (1 ±
𝛾)𝑛 and 𝑑(𝑣) = (1 ± 𝛾)𝑑 for each 𝑣 ∈ 𝑉(𝐺). Then,𝐺 contains (1 − 10

√
𝛾)𝑑 edge-disjoint matchings

which have size (1 − 10
√
𝛾)𝑛.

Proof. Note that 𝑒(𝐺) ⩾ (1 − 𝛾)𝑑 ⋅ (1 − 𝛾)𝑛 > (1 − 2𝛾)𝑛𝑑. By a classical result of König (see [15],
Section 5.3), the edge set of 𝐺 can be partitioned into at most (1 + 𝛾)𝑑matchings. If the statement
of the lemma fails, then

𝑒(𝐺) ⩽ (1 − 10
√
𝛾)𝑑 ⋅ (1 + 𝛾)𝑛 + (10

√
𝛾 + 2𝛾)𝑑 ⋅ (1 − 10

√
𝛾)𝑛

= (1 − 97𝛾 + 30𝛾3∕2)𝑛𝑑 ⩽ (1 − 2𝛾)𝑛𝑑,

a contradiction. □

2.4.4 Decomposing complete graphs into paths

In decomposing our dense spots, we will use the following result. We are grateful to the
anonymous referee who suggested the following elementary proof (in an earlier version of the
manuscript, we cited a result from [11] to deduce an asymptotic version of the same result).

Theorem 2.10. Let  be a collection of paths of length at most 𝑛 whose total length is at most
(𝑛
2

)
.

Then,  packs into 𝐾𝑛+3.

Proof. It suffices to show that 𝐾𝑛+2 or 𝐾𝑛+3 has an Eulerian circuit with the additional prop-
erty that all its subtrails of length at most 𝑛 are paths. Indeed, arbitrarily ordering  , we can
then embed the paths in  along the Eulerian trail in that order. To see that such an Eulerian
circuit exists, let 𝑛′ ∈ {𝑛 + 1, 𝑛 + 2} be even. Consider the well-known construction by Walecki
in Figure 2. This gives a decomposition of 𝐾𝑛′ into 𝑛′∕2 paths, each with 𝑛′ vertices, which can
be labelled as 𝑃1, … , 𝑃𝑛′∕2 and whose edges can be directed into directed paths, so that, for each
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 13 of 40

1 ⩽ 𝑖 < 𝑛′∕2, 𝑃𝑖+1 is formed by rotating 𝑃𝑖 so that vertex moves one place clockwise in the natural
ordering, for example, as drawn in Figure 2.
Note that these 𝑛′∕2 vertex directed paths 𝑃𝑖 have the property that, for each 𝑖 ∈ [𝑛′∕2], if a

vertex 𝑣 appears in the 𝑗th position in 𝑃𝑖 , then the earliest it can appear in 𝑃𝑖+1 is the (𝑗 − 2)th
position, where we work modulo 𝑛′∕2 in the index. This can be seen by first noting that by
symmetry, it is enough to verify it for 𝑖 = 1, and then observing that 𝑃1 = 𝑛′, 1, 𝑛′ − 1, 2, 𝑛′ −

2, 3, … , 𝑛′∕2 + 2, 𝑛′∕2 − 1, 𝑛′∕2 + 1, 𝑛′∕2 and 𝑃2 = 1, 2, 𝑛′, 3, 𝑛′ − 1, 4, … , 𝑛′∕2 + 3, 𝑛′∕2, 𝑛′∕2 +

2, 𝑛′∕2 + 1. Furthermore, each vertex appears exactly once as the end or start vertex of one of
these paths.
Now, add a new vertex 𝑣 and all the edges from it to the other vertices, to get 𝐾𝑛′+1. Direct the

edges from 𝑣 so that 𝑃1𝑣𝑃2𝑣 …𝑃𝑛′∕2𝑣 forms an Eulerian circuit,𝐶 say, in𝐾𝑛′+1 whose edges are all
directed forward. As the paths 𝑃𝑖 each have 𝑛′ ⩾ 𝑛 + 1 vertices, and vertices appear on subsequent
paths 𝑃𝑖 in the sequence at most two places earlier, and the vertex 𝑣 appears between each such
pair of paths, each vertex repeats in 𝐶 only after at least 𝑛 + 1 − 2 = 𝑛 − 1 other vertices. Thus,
each subtrail of 𝐶 with at most 𝑛 vertices is a path. □

3 DECOMPOSING OUTSIDE THE DENSE BITS

In this section, we prove Lemma 2.3. We begin, in Section 3.1, by finding an initial collection of
path forests which are, together, weakly bounded (see Definition 2.2), before using this to find a
collection of path forests in Section 3.2 which are more strongly bounded. In Section 3.3, we give a
short proof of Theorem 1.4 from this. In Section 3.4, we take near-regularisation results from [12,
13] and develop them to find very nearly regular subgraphs in a roughly regular graph. Finally, we
put this all together in Section 3.5 to prove Lemma 2.3.

3.1 Initial path forests

We prove the following lemma by partitioning the vertex set of a regular graph using the local
lemma and putting togethermatchings between different vertex classes, as sketched in Section 2.2.

Lemma 3.1. Let 1∕𝑑 ≪ 𝜀 ⩽ 1 and 𝛾 = 2𝑑−0.4. Let 𝐺 be an 𝑛-vertex graph with vertex degrees in
(1 ± 𝛾)𝑑. Then, 𝐺 contains an (𝑛∕𝑑1∕8, 𝑑7∕8, 𝑑7∕8)-bounded edge-disjoint collection 1, … ,𝑑∕2 of
path forests which cover all but at most 𝜀𝑛𝑑 edges of 𝐺.

Proof. Let 𝑠 = 2⌈𝑑0.15⌉ and 𝜂 = 4𝑑−0.4. Let 𝑉(𝐺) = 𝐴1 ∪ … ∪ 𝐴𝑠 be a partition of 𝑉(𝐺) formed by
taking each 𝑣 ∈ 𝑉(𝐺) and, independently at random, placing it in each𝐴𝑖 , 𝑖 ∈ [𝑠], with probability
1∕𝑠.
By the local lemma (see Section 2.4.2 for details) and Chernoff’s bound, with positive

probability, we can have the following properties.

D1 For each 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠], 𝑑𝐺(𝑣, 𝐴𝑖) = (1 ± 𝜂)𝑑∕𝑠.
D2 For each 𝑖 ∈ [𝑠], |𝐴𝑖| = (1 ± 𝜂)𝑛∕𝑠.

Let 𝜂′ = 20
√
𝜂 = 40𝑑−0.2 and 𝑑′ = (1 − 𝜂′)𝑑∕𝑠. For each edge 𝑒 = 𝑗𝑘 in the complete 𝑠-vertex

graph 𝐾𝑠, using Lemma 2.9,D1 andD2, find 𝑑′ edge-disjoint matchings in 𝐺[𝐴𝑗, 𝐴𝑘] which each
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14 of 40 MONTGOMERY et al.

have at least (1 − 𝜂′)𝑛∕𝑠 edges. Call these matchings𝑀𝑒,𝑖 , 𝑖 ∈ [𝑑′]. Now, take paths 𝑄1,… , 𝑄𝑠∕2 of
length 𝑠 − 1 in the complete graph 𝐾𝑠 in which each vertex is the endpoint of exactly one path.
(It is well known that such a decomposition exists due to Walecki, whenever 𝑠 is even. See, for
example, Figure 2.) For each 𝑗 ∈ [𝑠∕2] and 𝑘 ∈ [𝑑′], let 𝑗,𝑘 be the union of all the matchings
𝑀𝑒,𝑘 with 𝑒 ∈ 𝐸(𝑄𝑗) and let  ′

𝑗,𝑘
be the subcollection of paths in 𝑗,𝑘 of length 𝑠 − 1.

Claim 3.2. For each 𝑗 ∈ [𝑠∕2] and 𝑘 ∈ [𝑑′], there are at most 𝜀𝑛∕3 edges of 𝑗,𝑘 which are not in
 ′
𝑗,𝑘
.

Proof. Set 𝑗 ∈ [𝑠∕2] and 𝑘 ∈ [𝑑′]. For each 𝑖 ∈ [𝑠] which is not an endpoint of 𝑄𝑘, note that the
number of vertices in 𝐴𝑖 which can be an endpoint of a path in 𝑗,𝑘 is at most 2(|𝐴𝑖| − (1 −
𝜂′)𝑛∕𝑠) ⩽ 3𝜂′𝑛∕𝑠, usingD2. Therefore, atmost 3𝜂′𝑛 paths in𝑗,𝑘 can have an endpoint in some𝐴𝑖
where 𝑖 is amiddle vertex of𝑄𝑘. As each path in𝑗,𝑘 ⧵  ′

𝑗,𝑘
has such an endpoint, there are atmost

(𝑠 − 1) ⋅ 3𝜂′𝑛 ⩽ 𝜀𝑛∕3 edges of 𝑗,𝑘 which are not in  ′
𝑗,𝑘
, where we have used that 𝑠 = 2⌊𝑑0.15⌋,

𝜂′ = 40𝑑−0.2 and 1∕𝑑 ≪ 𝜀. ⊡

Relabel the path forests  ′
𝑗,𝑘
, 𝑗 ∈ [𝑠∕2] and 𝑘 ∈ [𝑑′], as 𝑖 , 𝑖 ∈ [𝑠𝑑′∕2]. Noting that 𝑠𝑑′∕2 =

(1 − 𝜂′)𝑑∕2 ⩽ 𝑑∕2, let 𝑖 = ∅ for each 𝑠𝑑′∕2 < 𝑖 ⩽ 𝑑∕2. The number of edges in 𝑖 , 𝑖 ∈ [𝑑∕2], is,
by Claim 3.2 and as 1∕𝑠, 𝜂′ ≪ 𝜀, at least

𝑠𝑑′

2
⋅ (𝑠 − 1) ⋅

(1 − 𝜂′)𝑛

𝑠
−
𝑠𝑑′

2
⋅
𝜀𝑛

3
⩾
𝑠𝑑′

2

((
1 −

𝜀

3

)
𝑛 −

𝜀𝑛

3

)
=
(1 − 𝜂′)𝑑

2
⋅
(
1 −

2𝜀

3

)
𝑛 ⩾

𝑛(1 + 𝜂)𝑑

2
− 𝜀𝑛𝑑

⩾ |𝐸(𝐺)| − 𝜀𝑛𝑑.
Thus, it is only left to show that the path forests 𝑖 , 𝑖 ∈ [𝑑∕2], form an (𝑛∕𝑑1∕8, 𝑑7∕8, 𝑑7∕8)-
bounded collection.
For each 𝑖 ∈ [𝑑∕2], if 𝑖 ≠ ∅, then there are some distinct 𝑗, 𝑘 ∈ 𝑉(𝐾𝑠) such that all the end-

vertices of 𝑖 are in 𝐴𝑗 ∪ 𝐴𝑘. Thus, by D1, each vertex in 𝐺 has at most 4𝑑∕𝑠 ⩽ 𝑑7∕8 neighbours
among the endvertices of 𝑖 and, by D2, 𝑖 contains at most 2𝑛∕𝑠 ⩽ 𝑛∕𝑑1∕8 paths. Furthermore,
for each 𝑣 ∈ 𝑉(𝐺), if 𝑗, 𝑘 are such that 𝑣 ∈ 𝐴𝑗 and 𝑗 is an endvertex of 𝑄𝑘, then the only paths
in 𝑖 , 𝑖 ∈ [𝑑∕2], that can end in 𝑣 are those from 𝑘,𝑘′ , 𝑘′ ∈ [𝑑′], so that 𝑣 is the endvertex of
at most 𝑑′ ⩽ 𝑑∕𝑠 ⩽ 𝑑7∕8 paths in 𝑖 , 𝑖 ∈ [𝑑∕2]. Therefore, the path forests 𝑖 , 𝑖 ∈ [𝑑∕2], form an
(𝑛∕𝑑1∕8, 𝑑7∕8, 𝑑7∕8)-bounded collection, as required. □

3.2 Improving a bounded collection of path forests

Having set aside a set 𝑌 (which fulfils a similar ‘sample set’ function as 𝑋 in the sketch in Sec-
tion 2.2) in a 𝑑-regular graph 𝐺, we can then improve a collection of path forests in 𝐺 − 𝑌 by
taking each path forest in turn and iteratively connecting paths in any path forest using a path of
length two whose middle vertex comes from 𝑌 (for practical reasons, we actually write this in the
proof through taking some maximal set 𝐼). In order to do this efficiently, we use the local lemma
to partition 𝑌 into 10 parts and find as many such paths using a middle vertex from these sets,
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 15 of 40

exhausting each set in turn. Furthermore, for all but only a few of the remaining endpoints in the
resulting path forest, we attach an extra edge randomly from this endpoint to the last set in the
partition of 𝑌, using the local lemma with regard to all these choices to make sure that no vertex
has too many neighbours among these new endpoints. This last step is critical in ensuring that
(once a few paths are removed from the resulting path forests) the endpoints of the path forests
will be well spread.

Lemma 3.3. Let 1∕𝑑 ≪ 𝛾 ≪ 𝑝 ≪ 𝜀. Let𝐺 be a 𝑛-vertex graphwithΔ(𝐺) ⩽ 𝑑. Let𝑌 ⊂ 𝑉(𝐺) be such
that |𝑌| ⩽ (1 + 𝛾)𝑝𝑛 and, for each 𝑣 ∈ 𝑉(𝐺), 𝑑𝐺(𝑣, 𝑌) = (1 ± 𝛾)𝑝𝑑. Let1, … ,𝑑∕2 be edge-disjoint
path forests in 𝐺 − 𝑌 which are (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-bounded.
Then, 𝐺 contains an edge-disjoint collection of path forests  ′

1
, … , ′

𝑑∕2
such that at most 𝜀𝑛∕𝑑

paths can be removed from each  ′
𝑖
, 𝑖 ∈ [𝑑∕2], to get altogether a ((1 + 𝜀)𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded

edge-disjoint collection of path forests, and, for each 𝑖 ∈ [𝑑∕2], 𝐸(𝑖) ⊂ 𝐸( ′
𝑖
).

Proof. LetΔ0 = 𝑑1∕4 andΔ1 = 𝑑1∕4. Take amaximal set 𝐼 ⊂ [𝑑∕2] forwhich there are edge-disjoint
collections𝑖 ,𝑖 , 𝑖 ∈ 𝐼 of path forests in𝐺, and, for each 𝑖 ∈ 𝐼, a path forest ′′

𝑖
consisting of some

of the paths in  ′
𝑖
(where  ′

𝑖
= 𝑖 +𝑖 +𝑖), such that, for each 𝑖 ∈ 𝐼,

E1 each path in 𝑖 has length 2 with endvertices among the endvertices of 𝑖 and its middle
vertex in 𝑌,

E2 each path in𝑖 has length 1 with an endvertex among the endvertices of 𝑖 and an endvertex
in 𝑌,

E3 the paths in 𝑖 are vertex disjoint from the paths in𝑖 ,
E4 𝑖 , 𝑖 ,𝑖 combine to form a path forest  ′

𝑖
= 𝑖 +𝑖 +𝑖 ,

E5  ′′
𝑖
contains all but at most of the 𝜀𝑛∕𝑑 paths in  ′

𝑖
,

and the collection  ′′
𝑖
, 𝑖 ∈ 𝐼, is ((1 + 𝜀)𝑛∕𝑑, Δ0, Δ1)-bounded.

Take such path forests 𝑖 ,𝑖 ,
′
𝑖
, ′′

𝑖
, 𝑖 ∈ 𝐼. Note that if 𝐼 = [𝑑∕2], then taking  ′

𝑖
, 𝑖 ∈ [𝑑∕2],

gives us a collection of edge-disjoint path forests in 𝐺 which satisfies the conditions in the lemma
(as seen by considering  ′′

𝑖
, 𝑖 ∈ [𝑑∕2]). Therefore, assume for contradiction that 𝐼 ≠ [𝑑∕2].

Let 𝐺′ be the graph of all of the edges of 𝐺 which are not in any of the paths in𝑖 or𝑖 for any
𝑖 ∈ 𝐼. As the collection 𝑖 , 𝑖 ∈ [𝑑∕2], is (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-bounded, each vertex 𝑣 ∈ 𝑉(𝐺) ⧵ 𝑌

appears as the endpoint of at most 𝑑8∕9 paths in total among the paths of 𝑖 , 𝑖 ∈ [𝑑∕2], and there-
fore 𝑣 has at most 𝑑8∕9 neighbouring edges in total in the path forests 𝑖 and 𝑖 , 𝑖 ∈ 𝐼. Thus, as
𝑑𝐺(𝑣, 𝑌) ⩾ (1 − 𝛾)𝑝𝑑 and 1∕𝑑 ≪ 𝛾, 𝑝, we have 𝑑𝐺′(𝑣, 𝑌) ⩾ (1 − 2𝛾)𝑝𝑑. Take a random partition
𝑌 = 𝑌1 ∪ … ∪ 𝑌10 by choosing the location of each 𝑣 ∈ 𝑌 independently and uniformly at ran-
dom. Using the local lemma and Chernoff’s bound, we can assume that, for each 𝑣 ∈ 𝑉(𝐺) ⧵ 𝑌

and 𝑗 ∈ [10], 𝑑𝐺′(𝑣, 𝑌𝑗) ⩾ (1 − 3𝛾)𝑝𝑑∕10 and |𝑌𝑗| ⩽ (1 + 2𝛾)𝑝𝑛∕10.
Using that 𝐼 ≠ [𝑑∕2], pick 𝑖 ∈ [𝑑∕2] ⧵ 𝐼. For each 1 ⩽ 𝑗 ⩽ 10 in turn, let 𝑖,𝑗 be a maximal set

of vertex-disjoint paths of length 2 in 𝐺′ such that each path in 𝑖,𝑗 has its middle vertex in 𝑌𝑗
and its endvertices among the endvertices of 𝑖 +𝑖,1 +⋯ +𝑖,𝑗−1, and 𝑖 +𝑖,1 +⋯ +𝑖,𝑗 is a
path forest. We will show the following.

Claim 3.4. For each 0 ⩽ 𝑗 ⩽ 10, 𝑖 +𝑖,1 +⋯ +𝑖,𝑗 contains at most (1 + 𝜀∕2)𝑛∕𝑑 +

𝑛∕𝑑(𝑗+1)∕10 paths.

Proof. We will prove this by induction on 𝑗, noting that it follows for 𝑗 = 0 as 𝑖 contains at
most 𝑛∕𝑑1∕9 ⩽ 𝑛∕𝑑1∕10 paths by the (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-boundedness condition. Then, suppose
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16 of 40 MONTGOMERY et al.

𝑗 ∈ [10], and that 𝑖 +𝑖,1 +⋯ +𝑖,𝑗−1 contains at most (1 + 𝜀∕2)𝑛∕𝑑 + 𝑛∕𝑑𝑗∕10 paths. There-
fore, 𝑖,𝑗 contains at most 3𝑛∕𝑑𝑗∕10 paths, and so, if 𝑌′

𝑗
⊂ 𝑌𝑗 is the set of vertices in 𝑌𝑗 not

appearing in any path in 𝑖,𝑗 , then |𝑌𝑗 ⧵ 𝑌′𝑗| ⩽ 3𝑛∕𝑑𝑗∕10.
Let 𝑋𝑗 ⊂ 𝑉(𝐺) ⧵ 𝑌 be a maximal set of endvertices of 𝑖 +𝑖,1 +⋯ +𝑖,𝑗 which are in 𝑉(𝐺) ⧵

𝑌 and which are such that no two vertices in 𝑋𝑗 are endpoints of the same path in 𝑖 +𝑖,1 +

⋯ +𝑖,𝑗 . By the maximality of 𝑖,𝑗 , no two vertices in 𝑋𝑗 have a common neighbour in 𝑌′𝑗 in 𝐺
′.

Thus, the number of edges in 𝐺′ between 𝑋𝑗 and 𝑌′𝑗 is at most |𝑌′𝑗| ⩽ |𝑌𝑗| ⩽ (1 + 2𝛾)𝑝𝑛∕10.
On the other hand, each vertex 𝑣 ∈ 𝑋𝑗 ⊂ 𝑉(𝐺) ⧵ 𝑌 satisfies 𝑑𝐺′(𝑣, 𝑌𝑗) ⩾ (1 − 3𝛾)𝑝𝑑∕10, so the

number of edges in𝐺′ between𝑋𝑗 and𝑌′𝑗 is (as each vertex in𝑌𝑗 ⧵ 𝑌
′
𝑗
has atmost 𝑑8∕9 neighbours

among the endvertices of𝑖 by the (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-boundedness of the𝑘, 𝑘 ∈ [𝑑∕2]) at least

|𝑋𝑗| ⋅ (1 − 3𝛾)𝑝𝑑∕10 − |𝑌𝑗 ⧵ 𝑌′𝑗| ⋅ 𝑑8∕9 ⩾ |𝑋𝑗| ⋅ (1 − 3𝛾)𝑝𝑑∕10 − 𝑑8∕9 ⋅ 3𝑛∕𝑑𝑗∕10,
so that, as 1∕𝑑 ≪ 𝑝 and 𝛾 ≪ 𝜀,

|𝑋𝑗| ⩽ (1 + 2𝛾)𝑝𝑛∕10 + 𝑑8∕9 ⋅ 3𝑛∕𝑑𝑗∕10

(1 − 3𝛾)𝑝𝑑∕10
⩽ (1 + 6𝛾)𝑛∕𝑑 + 𝑛∕𝑑(𝑗+1)∕10 ⩽ (1 + 𝜀∕2)𝑛∕𝑑 + 𝑛∕𝑑(𝑗+1)∕10.

Then, by the definition of 𝑋𝑗, we have that 𝑖 +𝑖,1 +⋯ +𝑖,𝑗 contains at most (1 + 𝜀∕2)𝑛∕𝑑 +
𝑛∕𝑑(𝑗+1)∕10 paths, as required. ⊡

Let𝑖 = 𝑖,1 +⋯ +𝑖,10 so that, by the claimwith 𝑗 = 10,𝑖 +𝑖 contains at most (1 + 𝜀)𝑛∕𝑑
paths as 1∕𝑑 ≪ 𝜀. Let 𝑍𝑖 be the set of vertices in 𝑌10 which appear in 𝑖,10, so that, as 𝑖 +𝑖,1 +

⋯ +𝑖,9 contains atmost (1 + 𝜀∕2)𝑛∕𝑑 + 𝑛∕𝑑 paths byClaim 3.4with 𝑗 = 9, we have |𝑍𝑖| ⩽ 3𝑛∕𝑑.
Let 𝑍 ⊂ 𝑌 be the set of vertices in 𝑌 which are the endvertices of more than Δ0∕2 = 𝑑1∕4∕2 of the
paths in ′′

𝑗
, 𝑗 ∈ 𝐼. Then, as ′′

𝑗
, 𝑗 ∈ 𝐼, is ((1 + 𝜀)𝑛∕𝑑, Δ0, Δ1)-bounded and hence contains atmost|𝐼| ⋅ (1 + 𝜀)𝑛∕𝑑 paths in total, we have, as |𝐼| ⩽ 𝑑∕2,
|𝑍| ⩽ 2 ⋅ |𝐼| ⋅ (1 + 𝜀)𝑛∕𝑑

Δ0∕2
⩽
4𝑛

Δ0
. (1)

Let 𝐴𝑖 be the set of endvertices of the paths in 𝑖 +𝑖 for which both endvertices have at
least 𝑝𝑑∕30 neighbours in 𝑌10 ⧵ (𝑍 ∪ 𝑍𝑖) in 𝐺′. Note that, by the maximality of 𝑖,10, the sets
𝑁𝐺′(𝑢, 𝑌10) ⧵ 𝑍𝑖 and 𝑁𝐺′(𝑢

′, 𝑌10) ⧵ 𝑍𝑖 are disjoint for 𝑢, 𝑢′ ∈ 𝐴𝑖 unless 𝑢 and 𝑢′ are endpoints of
the same path in 𝑖 +𝑖 . Note then that 𝐴𝑖 partitions naturally into a set of unordered pairs 𝑖
where if {𝑢, 𝑢′} ∈ 𝑖 , then𝑢 and𝑢′ are endpoints of the same path in𝑖 +𝑖 . For each {𝑢, 𝑢′} ∈ 𝑖 ,
pick a vertex 𝑣𝑢 from 𝑁𝐺′(𝑢, 𝑌10 ⧵ (𝑍 ∪ 𝑍𝑖)) and a vertex 𝑣𝑢′ ∈ 𝑁𝐺′(𝑢

′, 𝑌10 ⧵ (𝑍 ∪ 𝑍𝑖)) uniformly
and independently at random subject to 𝑣𝑢 ≠ 𝑣𝑢′ and add 𝑢𝑣𝑢 and 𝑢′𝑣𝑢′ to𝑖 .
For each 𝑣 ∈ 𝑉(𝐺), let𝐵𝑣 be the event that 𝑣 hasmore thanΔ1 = 𝑑1∕4 neighbours among the set

{𝑣𝑢, 𝑣𝑢′ ∶ {𝑢, 𝑢
′} ∈ 𝑖}. For each 𝑤 ∈ 𝑁𝐺(𝑣, 𝑌10), there is at most one pair {𝑢, 𝑢′} ∈ 𝑖 for which

𝑤 ∈ 𝑁𝐺′(𝑢)(by the maximality again of 𝑖,10). Therefore, as 𝑢, 𝑢′ ∈ 𝐴𝑖 here, ℙ(𝑤 ∈ {𝑣𝑢, 𝑣𝑢′ }) ⩽

2∕(𝑝𝑑∕30) = 60∕𝑝𝑑. Therefore, by Chernoff’s bound, ℙ(𝐵𝑣) ⩽ 𝑒−
√
𝑑 as 1∕𝑑 ≪ 𝑝. Note that, for

each {𝑢, 𝑢′} ∈ 𝑖 , the choice of 𝑣𝑢 and 𝑣𝑢′ can affect 𝐵𝑣 only if 𝑣 is within a distance 2 of 𝑢 or 𝑢′ in
𝐺. Therefore, by the local lemma, we can assume that each vertex in 𝑉(𝐺) has at most Δ1 = 𝑑1∕4

neighbours among the set {𝑣𝑢, 𝑣𝑢′ ∶ {𝑢, 𝑢′} ∈ 𝑖}. Let  ′
𝑖
= 𝑖 +𝑖 +𝑖 , and let  ′′

𝑖
be the paths

in  ′
𝑖
with both endvertices in 𝑌10. Then, by the choice from the local lemma, we have that every
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 17 of 40

vertex in 𝑉(𝐺) has at most Δ1 neighbours among the endvertices of  ′′
𝑖
. As, furthermore, none

of the endvertices of the paths in  ′′
𝑖
are in 𝑍, and there are at most (1 + 𝜀)𝑛∕𝑑 paths in  ′

𝑖
, and

therefore  ′′
𝑖
, we have that  ′′

𝑗
, 𝑗 ∈ 𝐼 ∪ {𝑖}, is ((1 + 𝜀)𝑛∕𝑑, Δ0, Δ1)-bounded, while E1–E4 hold for

each 𝑗 ∈ 𝐼 ∪ {𝑖} by construction. Therefore, if we can show E5 for 𝑖, we will get a contradiction to
the choice of 𝐼, and thenwe can conclude that 𝐼 = [𝑑∕2], which, as noted above, finishes the proof.
To prove E5, we simply need to show that at most 𝜀𝑛∕𝑑 of the paths in  ′

𝑖
have an endpoint

which is not in 𝐴𝑖 . Take a maximal set 𝑋 of endvertices of the paths in 𝑖 which come from
different paths, such that each vertex in 𝑋 has at most 𝑝𝑑∕30 neighbours in 𝑌10 ⧵ (𝑍 ∪ 𝑍𝑖). Recall
that each vertex in𝑉(𝐺) ⧵ 𝑌 has at least (1 − 3𝛾)𝑝𝑑∕10 neighbours in𝑌10 in𝐺′. Thus, each vertex
in 𝑋 has at least 𝑝𝑑∕20 neighbours in 𝑍𝑖 ∪ 𝑍 in 𝐺′.
Now, as the vertices in 𝑋 are endpoints of different paths in 𝑖 +𝑖 , we have concluded that

they share no neighbours in 𝑌10 ⧵ 𝑍𝑖 , and therefore, each vertex in 𝑍 ⧵ 𝑍𝑖 has at most one neigh-
bour in𝐺′, so there are atmost |𝑍| ⩽ 4𝑛∕Δ0 edges between𝑋 and𝑍 ⧵ 𝑍0 in𝐺′ by (1). Furthermore,
we deduced that |𝑍𝑖| ⩽ 3𝑛∕𝑑 and so, as 𝑗 , 𝑗 ∈ [𝑑∕2], is (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-bounded, and every
vertex in 𝑋 is an endvertex of some path in 𝑖 , there are at most |𝑍𝑖| ⋅ 𝑑8∕9 ⩽ 3𝑛∕𝑑1∕9 edges from
𝑋 to 𝑍𝑖 . Therefore, as 1∕𝑑 ≪ 𝑝, 𝜀,

|𝑋| ⩽ (4𝑛∕Δ0) + (3𝑛∕𝑑
1∕9)

𝑝𝑑∕30
⩽
𝜀𝑛

𝑑
,

as required. Thus, by the definition of 𝑋, there are at most 𝜀𝑛∕𝑑 paths in  ′
𝑖
which are not in  ′′

𝑖
.

This completes the proof of E5, and hence the lemma. □

3.3 Proof of Theorem 1.4

Lemma 3.1 and Lemma 3.3 already allow us to prove Theorem 1.4.

Proof of Theorem 1.4. Let 𝑑0, 𝛾 and 𝑝 be such that 1∕𝑑0 ≪ 𝛾 ≪ 𝑝 ≪ 𝜀 and let 𝑑 ⩾ 𝑑0. Let 𝐺 be a
𝑑-regular 𝑛-vertex graph. Let𝑌 ⊂ 𝑉(𝐺) be a random set chosen by including each vertex indepen-
dently at random with probability 𝑝. Using the local lemma and Chernoff’s bound, and that 𝐺 is
𝑑-regular and 1∕𝑑 ≪ 𝛾, 𝑝, we can assume that 𝑑𝐺(𝑣, 𝑌) = (1 ± 𝛾)𝑝𝑑 for each 𝑣 ∈ 𝑉(𝐺) and |𝑌| =
(1 ± 𝛾)𝑝𝑛. Note that 𝐺 − 𝑌 has vertex degrees in (1 ± 𝛾)(1 − 𝑝)𝑑. Therefore, by Lemma 3.1, and
as 1∕𝑑 ≪ 𝑝, 𝐺 − 𝑌 contains an (𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-bounded edge-disjoint collection 1, … ,𝑑∕2
of path forests which cover all but at most 𝜀𝑛𝑑∕8 of the edges of 𝐺 − 𝑌. As there are at most
𝑛 ⋅ (1 + 𝛾)𝑝𝑑 ⩽ 𝜀𝑛𝑑∕8 edges with a vertex in 𝑌, these path forests contain all but at most 𝜀𝑛𝑑∕4 of
the edges of 𝐺. Then, applying Lemma 3.3, we get an edge-disjoint collection  ′

1
, … , ′

𝑑∕2
of path

forests which cover all but at most 𝜀𝑛𝑑∕4 edges of 𝐺 such that (simplifying the conclusion) for
each 𝑖 ∈ [𝑑∕2],  ′

𝑖
has at most (1 + 𝜀∕4)𝑛∕𝑑 paths.

Taking 𝑗 ∈ [𝑑∕2] to maximise |𝐸( ′
𝑗
)|, we have that |𝐸( ′

𝑗
)| ⩾ (𝑛𝑑∕2 − 𝜀𝑛𝑑∕4)∕(𝑑∕2) = (1 −

𝜀∕2)𝑛. Letting 𝑘 be the number of paths in  ′
𝑗
, we have that 𝑘 ⩽ (1 + 𝜀∕4)𝑛∕𝑑, and note that we

are done if 𝑘 ⩽ 𝑛∕(𝑑 + 1), so we can assume otherwise. Then, observe that the total number of
edges in the ⌊𝑛∕(𝑑 + 1)⌋ longest paths in  ′

𝑗
is at least

(1 − 𝜀∕2)𝑛 ⋅
⌊𝑛∕(𝑑 + 1)⌋

𝑘
⩾ (1 − 𝜀∕2)𝑛 ⋅

𝑛∕(𝑑 + 1) − 1

(1 + 𝜀∕4)𝑛∕𝑑
⩾ (1 − 𝜀∕2)2𝑛 ⩾ (1 − 𝜀)𝑛.
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18 of 40 MONTGOMERY et al.

Thus,  ′
𝑗
contains a set of at most 𝑛∕(𝑑 + 1) paths which cover all but at most 𝜀𝑛 vertices of 𝐺, as

required. □

3.4 Almost-spanning nearly-regular subgraphs

The purpose of this section is to prove the following lemma, Lemma 3.5. As discussed in Sec-
tion 2.2, the removal of dense spots can significantly weaken the regularity of the graph we are
decomposing. Given a graph with such weaker conditions, the following lemma partitions most
of the edges into a few subgraphs which are all very close to being regular, so that we can later
apply Lemma 3.1 to each of them.

Lemma 3.5. Let 1∕𝑑 ≪ 𝜇 ≪ 𝜀 ⩽ 1 and 𝜂 = 𝑑−0.9. Let 𝐺 be an 𝑛-vertex graph with Δ(𝐺) ⩽ 𝑑.
Then, there is some 𝑘 ∈ ℕ such that there are edge-disjoint subgraphs 𝐺1,… , 𝐺𝑘 in 𝐺 and some even
𝑑1, … , 𝑑𝑘 ⩾ 𝜇𝑑 such that all but at most 𝜀𝑛𝑑 edges of 𝐺 are in

⋃
𝑖∈[𝑘] 𝐺𝑖 ,

∑
𝑖∈[𝑘] 𝑑𝑖 ⩽ (1 + 𝜀)𝑑, and,

for each 𝑖 ∈ [𝑘], 𝐺𝑖 is (1 ± 𝜂)𝑑𝑖-regular.

To prove Lemma 3.5, we will use the following two lemmas, which follow using very recent
methods of Chakraborti, Janzer, Methuku and Montgomery [12, 13]. For completion, we prove
the lemmas in an appendix. Each lemma takes a graph which is roughly regular (with degrees
varying by at most a constant multiple 𝐶, and a multiple (1 + 𝛾), respectively) and finds within it
a subgraph whose vertex degrees only differ by at most the addition of a constant multiple of the
logarithmof the average degree andwhich has average degree comparable to the original graph. In
the second lemma, the average degree of the subgraph is particularly close to the original average
degree and the subgraph contains almost all of the original vertices.

Lemma 3.6. Let 1∕𝐶′ ≪ 1∕𝐶 ⩽ 1. For any 𝑑, if a graph has degrees between 𝑑 and 𝐶𝑑, then it
contains a subgraph with degrees between 𝑑′ and 𝑑′ + 𝐶′ log 𝑑′ for some 𝑑′ ⩾ 𝑑∕𝐶′.

Lemma3.7. There exists some𝐶 > 0 such that for each 1∕𝑑 ≪ 𝛾 ⩽ 1∕100, the following holds. Let𝐺
be a graph with 𝑑 ⩽ 𝛿(𝐺), Δ(𝐺) ⩽ (1 + 𝛾)𝑑. Then, for some 𝑑′ ⩾ (1 − 40𝛾)𝑑, 𝐺 contains a subgraph
𝐺′ with |𝑉(𝐺′)| ⩾ (1 − 40𝛾)|𝑉(𝐺)| and 𝑑′ ⩽ 𝛿(𝐺′), Δ(𝐺′) ⩽ 𝑑′ + 𝐶 log 𝑑′.
To prove Lemma 3.5, we start by taking a maximal collection 𝐻1,… ,𝐻𝑡 of nearly-regular sub-

graphs of 𝐺 whose average degree is not too far below that of 𝐺. It will follow easily from
Lemma 3.6 that they will cover most of the edges of 𝐺; however, these subgraphs may contain
significantly fewer vertices than 𝐺 (and so, in particular, the sum of the average degree of the
subgraphs may exceed 𝑑). However, each vertex of 𝐺 will be in very few of the subgraphs 𝐻𝑖 , so
we can randomly choose 𝑘 (for some particular 𝑘) almost-spanning subgraphs of 𝐺 by, for the
𝑗th subgraph, allocating each vertex to a different subgraph 𝐻𝑖 which contains that vertex and
including in the 𝑗th subgraph any edge of any 𝐻𝑖 which has both vertices allocated to 𝐻𝑖 for the
𝑗th subgraph. These 𝑘 subgraphs will not be edge disjoint. In fact, using the local lemma (and
Chernoff’s bound), we will choose such subgraphs so that each edge in each 𝐻𝑖 will appear in
many of the 𝑘 subgraphs; for each of these edges, we will then randomly allocate it to one such
subgraph and delete it from all the others. By carefully choosing all the probabilities involved, and
using again the local lemma, we will be able to get subgraphs𝐺′

𝑖
, 𝑖 ∈ [𝑘], which contain almost all
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 19 of 40

of the vertices of𝐺 andwhich are nearly regular. Finally, as these subgraphswill not be quite regu-
lar enough (as the application of the local lemma cannot preserve as much of the near-regularity
as we would like), we will boost the near-regularity of each 𝐺′

𝑖
using Lemma 3.7 to get a more

regular subgraph 𝐺𝑖 ⊂ 𝐺′
𝑖
with only the loss of relatively few edges or vertices.

Proof of Lemma 3.5. Let 𝛾 and 𝛽 be such that 1∕𝑑 ≪ 𝛾 ≪ 𝜇 ≪ 𝛽 ≪ 𝜀 and note that we can assume
𝜀 ≪ 1. Let 𝐻1,… ,𝐻𝑡 be a maximal edge-disjoint collection of subgraphs of 𝐺 such that, for each
𝑖 ∈ [𝑡], there is some 𝑑′

𝑖
⩾ 𝛽𝑑 such that𝐻𝑖 is (1 ± 𝛾)𝑑′𝑖 -regular. Let𝐻 =

⋃
𝑖∈[𝑡] 𝐻𝑖 .

Claim 3.8. We have |𝐸(𝐺) ⧵ 𝐸(𝐻)| ⩽ 𝜀𝑛𝑑∕3.
Proof. Suppose, for contradiction, that |𝐸(𝐺) ⧵ 𝐸(𝐻)| > 𝜀𝑛𝑑∕3. Then, by the well-known folklore
result, 𝐺 ⧵ 𝐻 has a subgraph 𝐺′ with minimum degree at least 𝜀𝑑∕3. Using that Δ(𝐺) ⩽ 𝑑 and
𝛽 ≪ 𝜀, apply Lemma 3.6 with 𝐶 = 3∕𝜀 to find a subgraph𝐻𝑡+1 of 𝐺′ that is (1 ± 𝛾)𝑑𝑡+1-regular for
some 𝑑𝑡+1 ⩾ 𝛽𝑑, contradicting the maximality of the subgraphs𝐻𝑖 , 𝑖 ∈ [𝑡]. □

For each 𝑖 ∈ [𝑡], let 𝛽𝑖 = (1 − 𝛾)𝑑′
𝑖
∕𝑑 ⩾ 𝛽∕2. For each 𝑣 ∈ 𝑉(𝐺), let 𝐼𝑣 be the set of 𝑖 ∈ [𝑡] with

𝑣 ∈ 𝑉(𝐻𝑖), noting that

𝑑 ⩾ 𝑑𝐺(𝑣) ⩾
∑
𝑖∈𝐼𝑣

𝑑𝐻𝑖 (𝑣) ⩾
∑
𝑖∈𝐼𝑣

𝛽𝑖𝑑 ⩾ |𝐼𝑣| ⋅ 𝛽𝑑∕2,
so that |𝐼𝑣| ⩽ 2∕𝛽. Take 𝑘 = 1∕2𝜇. For every 𝑗 ∈ [𝑘], take disjoint subsets 𝑅(𝑗)

1
, … , 𝑅

(𝑗)
𝑡 of 𝑉(𝐺), by

determining the location of each 𝑣 ∈ 𝑉(𝐺) independently and uniformly at random subject to the
following rule.

∙ For each 𝑖 ∈ 𝐼𝑣, there are exactly ⌊𝛽𝑖𝑘⌋ values of 𝑗 ∈ [𝑘] for which 𝑣 ∈ 𝑅
(𝑗)

𝑖
.

To see that this is possible, note that, for each 𝑣 ∈ 𝑉(𝐺),
∑
𝑖∈𝐼𝑣

𝛽𝑖𝑑 ⩽
∑
𝑖∈𝐼𝑣

𝑑𝐻𝑖 (𝑣) ⩽ 𝑑, so that∑
𝑖∈𝐼𝑣

𝛽𝑖 ⩽ 1.
For each 𝑖 ∈ [𝑡], let𝐻′

𝑖
⊂ 𝐻𝑖 be the subgraph of edges 𝑒 ∈ 𝐸(𝐻𝑖) such that the number of 𝑗 ∈ [𝑘]

with 𝑉(𝑒) ⊂ 𝑅
(𝑗)

𝑖
is (1 ± 𝛽)𝛽2

𝑖
𝑘. Let𝐻′ =

⋃
𝑖∈[𝑡] 𝐻

′
𝑖
.

Claim 3.9. With positive probability, |𝐸(𝐻) ⧵ 𝐸(𝐻′)| ⩽ 𝜀𝑛𝑑∕6 and, for each 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑘], if
𝑅
(𝑗)

𝑖
≠ ∅, then𝐻′

𝑖
[𝑅

(𝑗)

𝑖
] is (1 ± 𝛽)𝛽2

𝑖
𝑑-regular.

Proof. For each 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ 𝐼𝑣, let 𝐵𝑣,𝑖 be the event that at least 𝜀𝑑′𝑖 ∕3 edges incident to
𝑣 in 𝐻𝑖 are not in 𝐻′

𝑖
. Let 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ 𝐼𝑣, and suppose we know which sets 𝑅(𝑗)

𝑖
, 𝑗 ∈ [𝑘],

contain 𝑣. Then, for each 𝑢 ∈ 𝑁𝐻𝑖
(𝑣) the probability that 𝑢𝑣 ∈ 𝐸(𝐻′), or, equivalently, that 𝑢 is

not in (1 ± 𝛽)𝛽2
𝑖
𝑘 of the ⌊𝛽𝑖𝑘⌋ sets 𝑅(𝑗)𝑖 , 𝑗 ∈ [𝑘] which contain 𝑣, is, by Chernoff’s bound applied

to the appropriate hypergeometric variable, at most exp(−𝛽2𝛽2
𝑖
𝑘∕12) ⩽ 𝜀∕6, where we have used

that 1∕𝑘 ≪ 𝛽, 𝜀 and 𝛽𝑖 ⩾ 𝛽∕2. Furthermore, these events are independent over each 𝑢 ∈ 𝑁𝐺𝑖
(𝑣).

Thus, by Chernoff’s bound, ℙ(𝐵𝑣) ⩽ 2𝑒
−𝜀2(1−𝛾)𝑑′

𝑖
∕103 ⩽ 𝑒−

√
𝑑, as 𝑑′

𝑖
⩾ 𝛽𝑑 and 1∕𝑑 ≪ 𝛽, 𝜀.

For each 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ 𝐼𝑣 and 𝑗 ∈ [𝑘], let 𝐵𝑖,𝑗𝑣 be the event that 𝑣 ∈ 𝑅
(𝑗)

𝑖
but 𝑑𝐻′

𝑖
(𝑣, 𝑅

(𝑗)

𝑖
) ≠

(1 ± 𝛽)𝛽2
𝑖
𝑑. Let 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ 𝐼𝑣 and 𝑗 ∈ [𝑘] and suppose we know which sets 𝑣 lies in, and that

one of these sets is 𝑅(𝑗)
𝑖
. Then, for each 𝑢 ∈ 𝑁𝐻𝑖

(𝑣) and 𝑗 ∈ [𝑘], the probability that 𝑢 ∈ 𝑅
(𝑗)

𝑖
is
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20 of 40 MONTGOMERY et al.

⌊𝛽𝑖𝑘⌋∕𝑘 = (1 ± 𝛾)𝛽𝑖 , and, when this happens, the probability that, of the ⌊𝛽𝑖𝑘⌋ − 1 other sets 𝑅(𝑗)𝑖
which contain 𝑣, 𝑢 is not in (1 ± 𝛾)(𝛽2

𝑖
𝑘 − 1) of them is, by Chernoff’s bound applied to the appro-

priate hypergeometric variable, at most exp(−𝛾2𝛽2
𝑖
𝑘∕12) ⩽ 𝛾. Thus, for each 𝑢 ∈ 𝑁𝐻𝑖

(𝑣) and 𝑗 ∈
[𝑘] with 𝑣 ∈ 𝑅

(𝑗)

𝑖
, the probability that 𝑢 ∈ 𝑅

(𝑗)

𝑖
and 𝑢 ∈ 𝑁𝐻′

𝑖
(𝑣) is (1 ± 2𝛾)𝛽𝑖 . Note, furthermore,

that these events are independent over each 𝑢 ∈ 𝑁𝐺𝑖
(𝑣) and 𝑑𝐻𝑖 (𝑣) = (1 ± 𝛾)𝑑′

𝑖
= (1 ± 3𝛾)𝛽𝑖𝑑.

Thus, ℙ(𝐵𝑖,𝑗𝑣 ) ⩽ 𝑒−
√
𝑑 by Chernoff’s bound.

Note that any bad event we have defined depends on the placement of a vertex𝑤 only if the ver-
tex 𝑣 in the subscript is within a distance 1 of each other in𝐺, where Δ(𝐺) ⩽ 𝑑, and the placement
of each vertex𝑤 therefore affects at most (𝑑 + 1) ⋅ (2∕𝛽) ⋅ 𝑘 ⩽ 𝑑2 events (where we have used that,
for each 𝑣 ∈ 𝑉(𝐺), |𝐼𝑣| ⩽ 2∕𝛽, and 1∕𝑑 ≪ 𝜇, 𝛽). Thus, by the local lemma, with positive probabil-
ity none of the events 𝐵𝑣,𝑖 , 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ 𝐼𝑣, or 𝐵

𝑖,𝑗
𝑣 , 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ 𝐼𝑣 and 𝑗 ∈ [𝑘] hold. If none

of the events 𝐵𝑖,𝑗𝑣 , 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ 𝐼𝑣 and 𝑗 ∈ [𝑘] hold, then, for each 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑘], if 𝑅(𝑗)
𝑖

≠ ∅,
then 𝐻′

𝑖
[𝑅

(𝑗)

𝑖
] is (1 ± 𝛽)𝛽2

𝑖
𝑑-regular. We will show that if none of the events 𝐵𝑣,𝑖 , 𝑣 ∈ 𝑉(𝐺) and

𝑖 ∈ 𝐼𝑣, hold, then |𝐸(𝐻) ⧵ 𝐸(𝐻′)| ⩽ 𝜀𝑛𝑑∕6, which completes the proof of the claim.
For this, note that, if none of the events 𝐵𝑣,𝑖 , 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ 𝐼𝑣, hold, then

|𝐸(𝐻) ⧵ 𝐸(𝐻′)| = 1

2

∑
𝑣∈𝑉(𝐺)

(𝑑𝐻(𝑣) − 𝑑𝐻′(𝑣)) =
1

2

∑
𝑣∈𝑉(𝐺)

∑
𝑖∈𝐼𝑣

(𝑑𝐻𝑖 (𝑣) − 𝑑𝐻′
𝑖
(𝑣)) ⩽

1

2

∑
𝑣∈𝑉(𝐺)

∑
𝑖∈𝐼𝑣

𝜀𝑑′
𝑖

3

⩽
1

2

∑
𝑣∈𝑉(𝐺)

∑
𝑖∈𝐼𝑣

𝜀𝑑𝐻𝑖 (𝑣)

3
⩽
1

2

∑
𝑣∈𝑉(𝐺)

𝜀𝑑

3
=
𝜀𝑛𝑑

6
.

Thus, with positive probability, the properties in the claim hold. ⊡

Fix a choice of 𝑅(𝑗)
𝑖
, 𝑖 ∈ [𝑡] and 𝑗 ∈ [𝑘], satisfying the properties in the claim. For each 𝑖 ∈ [𝑡]

and 𝑒 ∈ 𝐸(𝐻′
𝑖
), independently and uniformly at random assign 𝑒 to some 𝑗 ∈ [𝑡] with 𝑒 ⊂ 𝑅

(𝑗)

𝑖

and let 𝑓(𝑒) = 𝑗. Then, for each 𝑗 ∈ [𝑘], let𝐺′
𝑗
be the graph with vertex set

⋃
𝑖∈[𝑡] 𝑅

(𝑗)

𝑖
and edge set⋃

𝑖∈[𝑡]{𝑒 ∈ 𝐸(𝐻′
𝑖
) ∶ 𝑓(𝑒) = 𝑗}. Let 𝑑′ = 𝑑∕𝑘 and note that the graphs 𝐺′

𝑗
, 𝑗 ∈ [𝑘], are, by design,

edge disjoint.

Claim 3.10. With positive probability, for each 𝑗 ∈ [𝑘], 𝐺′
𝑗
is (1 ± 4𝛽)𝑑′-regular.

Proof. Let 𝑣 ∈ 𝑉(𝐺), 𝑖 ∈ 𝐼𝑣 and 𝑗 ∈ [𝑘] with 𝑣 ∈ 𝑅
(𝑗)

𝑖
. Recall that the degree of 𝑣 in 𝐻′

𝑖
[𝑅

(𝑗)

𝑖
] is

(1 ± 𝛽)𝛽2
𝑖
𝑑, and each edge 𝑒 in𝐻′

𝑖
has (1 ± 𝛽)𝛽2

𝑖
𝑘 indices 𝑗′ ∈ [𝑘]with𝑉(𝑒) ⊂ 𝑅

(𝑗′)

𝑖
. Therefore, the

expected degree of 𝑣 in 𝐺′
𝑗
is at least (1 − 𝛽)𝛽2

𝑖
𝑑∕(1 + 𝛽)𝛽2

𝑖
𝑘 and at most (1 + 𝛽)𝛽2

𝑖
𝑑∕(1 − 𝛽)𝛽2

𝑖
𝑘,

so that

𝔼(𝑑𝐺′
𝑗
(𝑣)) = (1 ± 3𝛽)𝑑∕𝑘 = (1 ± 3𝛽)𝑑′.

Thus, as 1∕𝑑 ≪ 𝜇, 𝛽 and 𝑘 = 1∕2𝜇, using Chernoff’s bound, for each 𝑣 ∈ 𝑉(𝐺), 𝑗 ∈ [𝑘], we have
with probability at most 𝑒−

√
𝑑 that if 𝑣 ∈ 𝑉(𝐺′

𝑗
) then 𝑑𝐺′

𝑗
(𝑣) ≠ (1 ± 4𝛽)𝑑′. For each edge 𝑒, which

graph 𝐺′
𝑗
, 𝑗 ∈ [𝑘], is in affects the degrees of at most 2𝑑 − 1 vertices in each of the 𝑘 graphs, and
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 21 of 40

each degree is affected by the location of at most 𝑑 edges, and therefore, an application of the local
lemma implies the claim. ⊡

Using this claim, we can thus partition 𝐻′ ⊂ 𝐺 into edge-disjoint graphs 𝐺𝑖 , 𝑖 ∈ [𝑘], in 𝐺 such
that, for each 𝑖 ∈ [𝑘], 𝐺′

𝑖
is (1 ± 4𝛽)𝑑′-regular. For each 𝑖 ∈ [𝑘], by Lemma 3.7 (with 𝛾 = 10𝛽 and

𝑑 = 1 − 4𝛽), we can find some 𝐺𝑖 ⊂ 𝐺′
𝑖
and even 𝑑𝑖 with (1 − 400𝛽)(1 − 4𝛽)𝑑′ ⩽ 𝑑𝑖 ⩽ (1 + 5𝛽)𝑑′

such that |𝑉(𝐺𝑖)| ⩾ (1 − 400𝛽)|𝑉(𝐺′𝑖 )| is (1 ± 𝜂)𝑑𝑖-regular (wherewe have used that 𝜂 = 𝑑−0.9 and
1∕𝑑 ≪ 𝛽, 1∕𝑘). Note that∑
𝑖∈[𝑘]

|𝐸(𝐺′𝑖 ) ⧵ 𝐸(𝐺𝑖)| ⩽ ∑
𝑖∈[𝑘]

((1 + 4𝛽)𝑑′ ⋅ |𝑉(𝐺𝑖) ⧵ 𝑉(𝐺′𝑖 )| + 𝑛 ⋅ ((1 + 4𝛽) − (1 − 400𝛽)(1 − 4𝛽))𝑑′

⩽ 𝑘 ⋅ (1 + 4𝛽)𝑑′ ⋅ 400𝛽𝑛 + 𝑘 ⋅ 𝑛 ⋅ 410𝛽𝑑′ ⩽ 1000𝛽𝑑𝑛 ⩽ 𝜀𝑛∕3,

as 𝛽 ≪ 𝜀 and 𝑑′ = 𝑑∕𝑘. Thus, combined with the properties from Claim 3.8 and Claim 3.9, we
have that the graphs 𝐺1,… , 𝐺𝑘 cover all but at most 2𝜀𝑛𝑑∕3 + 𝜀𝑛𝑑∕6 ⩽ 𝜀𝑛𝑑 edges of 𝐺, so that, as
𝜇 ≪ 𝛽, they satisfy the conditions of the lemma as∑

𝑖∈[𝑘]

𝑑𝑖 ⩽ (1 + 5𝛽)
∑
𝑖∈[𝑘]

𝑑′ = (1 + 5𝛽)𝑑 ⩽ (1 + 𝜀)𝑑.
□

3.5 Proof of Lemma 2.3

Given Lemmas 3.1, 3.3 and 3.5, it is now short work to prove Lemma 2.3.

Proof of Lemma 2.3. Recall that we have 1∕𝑑 ≪ 𝛾 ≪ 𝜀 ⩽ 1 and 𝐺 is an 𝑛-vertex graph with
maximum degree at most 𝑑 in which all but at most 𝛾𝑛 vertices have degree at least (1 − 𝛾)𝑑.
Let 𝑝 satisfy 𝛾 ≪ 𝑝 ≪ 𝜀. Let 𝑌 ⊂ 𝑉(𝐺) be a random set chosen by including each vertex inde-
pendently at random with probability 𝑝. Using the local lemma and Chernoff’s bound, we can
assume that, for every 𝑣 ∈ 𝑉(𝐺) with 𝑑𝐺(𝑣) ⩾ (1 − 𝛾)𝑑, we have 𝑑𝐺(𝑣, 𝑌) = (1 ± 2𝛾)𝑝𝑑, and that|𝑌| ⩽ (1 + 𝛾)𝑝𝑛.
Let 𝑋 be the set of vertices 𝑣 ∈ 𝑉(𝐺) ⧵ 𝑌 with 𝑑𝐺(𝑣, 𝑌) = (1 ± 2𝛾)𝑝𝑑, so that |𝑋| ⩾ 𝑛 − (1 +

𝛾)𝑝𝑛 − 𝛾𝑛, and let 𝐺′ = 𝐺[𝑋]. Note that

|𝐸(𝐺) ⧵ 𝐸(𝐺′)| ⩽ ((1 + 𝛾)𝑝𝑛 + 𝛾𝑛) ⋅ 𝑑 ⩽ 𝜀𝑛𝑑∕4.
Let 𝜂 = 𝑑−0.9. By Lemma 3.5, there is some 𝑘 ∈ ℕ such that there are edge-disjoint subgraphs
𝐺1,… , 𝐺𝑘 in 𝐺′ and some even 𝑑1, … , 𝑑𝑘 ⩾ 𝛾𝑑 such that all but at most 𝜀𝑛𝑑∕4 edges of 𝐺′ are in⋃
𝑖∈[𝑘] 𝐺𝑖 ,

∑
𝑖∈[𝑘] 𝑑𝑖 ⩽ (1 + 𝜀∕10)𝑑 and, for each 𝑖 ∈ [𝑘], 𝐺𝑖 is (1 ± 𝜂)𝑑𝑖-regular. Note that 𝑘 ⩽ 2∕𝛾.

For each 𝑖 ∈ [𝑘], using Lemma 3.1, find in𝐺𝑖 an (𝑛∕𝑑
1∕8

𝑖
, 𝑑

7∕8

𝑖
, 𝑑

7∕8

𝑖
)-bounded edge-disjoint collec-

tion  𝑖
1
, … , 𝑖

𝑑𝑖∕2
of path forests which cover all but at most 𝜀𝑛𝑑𝑖∕3 edges of 𝐺. If (

∑
𝑖∈[𝑘] 𝑑𝑖)∕2 <

𝑑∕2, then relabel these path forests as 𝑗 , 1 ⩽ 𝑗 ⩽ (
∑
𝑖∈[𝑘] 𝑑𝑖)∕2 and, for each (

∑
𝑖∈[𝑘] 𝑑𝑖)∕2 ⩽ 𝑖 ⩽

𝑑∕2, let 𝑖 be an empty path forest. If (
∑
𝑖∈[𝑘] 𝑑𝑖)∕2 ⩾ 𝑑∕2, then let 𝑗 , 𝑗 ∈ [𝑑∕2], be path forests

from  𝑖
𝑗
, 𝑗 ∈ [𝑑𝑖∕2] and 𝑖 ∈ [𝑘], which maximise the total number of edges in 𝑗 , 𝑗 ∈ [𝑑∕2]. Note

that, as
∑
𝑖∈[𝑘] 𝑑𝑖 ⩽ (1 + 𝜀∕10)𝑑, these path forests contain all but at most 𝜀𝑛𝑑∕4 of the edges in

 𝑖
𝑗
, 𝑗 ∈ [𝑑𝑖∕2] and 𝑖 ∈ [𝑘].
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22 of 40 MONTGOMERY et al.

Note that, as 𝑘 ⩽ 2∕𝛾 and 1∕𝑑 ≪ 𝛾, the collection of path forests 𝑖 , 𝑖 ∈ [𝑑∕2], is
(𝑛∕𝑑1∕9, 𝑑8∕9, 𝑑8∕9)-bounded, and contains all but at most 𝜀𝑛 ⋅

∑
𝑖∈[𝑡] 𝑑𝑖∕4 ⩽ 𝜀𝑛𝑑∕4 of the edges

of  𝑖
𝑗
, 𝑗 ∈ [𝑑𝑖∕2] and 𝑖 ∈ [𝑘]. Then, by Lemma 3.3, there is a ((1 + 𝜀)𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded col-

lection of edge-disjoint path forests in 𝐺′ which covers all of the edges of 𝑖 , 𝑖 ∈ [𝑑∕2]. Thus, this
collection of paths forests covers all but at most 𝜀𝑛𝑑∕4 of the edges of  𝑖

𝑗
, 𝑗 ∈ [𝑑𝑖∕2] and 𝑖 ∈ [𝑘],

and hence, all but at most 𝜀𝑛𝑑∕2 of the edges of
⋃
𝑖∈[𝑡] 𝐺𝑖 , and hence all but at most 3𝜀𝑛𝑑∕4 of the

edges of 𝐺′, and hence all but at most 𝜀𝑛𝑑 of the edges of 𝐺, as required. □

4 CONNECTING TO THE DENSE BITS

In this section, we prove Lemma 2.4. In Section 4.1, we show that there will exist a ‘good sample’
𝑋 which samples certain important dense spots appropriately, before using this to connect paths
to a maximal set of dense spots through 𝑋 in Section 4.2.

4.1 Sampling of dense spots

In order to facilitate our use of the local lemma, we need some control over the number of dense
spots that we consider for our ‘sampling’. We do this using the following definition.

Definition 4.1. Say a (𝜇, 𝑑, 𝐾)-dense graph 𝐻 ⊂ 𝐺[𝑋] is (𝑘, 𝜂, 𝑑)-approximable in 𝐺 by neigh-
bourhoods in 𝑋 if 𝐺 contains a set 𝑉 of at most 𝑘 vertices, which are pairwise a distance at most
𝑘 apart in 𝐺, and such that |𝑉(𝐻)△⋃

𝑣∈𝑉 𝑁𝐺(𝑣, 𝑋)| ⩽ 𝜂𝑑.
We now formalise the notion of a good sample. The following definition will be used with  as

the set of vertex sets of the dense spots in the maximal collection  (see Section 2.2). The set 𝑋
should be thought of as a random set (with properties chosen to exist togetherwith strictly positive
probability by the local lemma) with vertex density 𝑝 in 𝑉(𝐺), which then has approximately the
expected size, as well as approximately the expected intersection with each of the sets in 𝑉 ∈  ,
and, moreover, similar properties with respect to the neighbourhoods of each vertex in all these
subsets (see F1 and F2). Finally, andmost importantly, if there is an (appropriately approximable)
dense spot in 𝐺[𝑋], then there must be a larger dense spot 𝐻 in 𝐺 such that if 𝐻 intersects on
quite a few vertices in 𝑉 ∈  , then the original smaller dense spot must also intersect that 𝑉 (this
will be used to join the smaller dense spot to one of the dense spots in  in our application).

Definition 4.2. A set 𝑋 ⊂ 𝑉(𝐺) is a (𝑑, 𝛾, 𝑘, 𝜂, 𝐾, 𝑝,)-good-sample in 𝐺, where  is a set of
subsets of 𝑉(𝐺), if the following hold.

F1 |𝑋| = (1 ± 𝛾)𝑝|𝑉(𝐺)| and, for any 𝑣 ∈ 𝑉(𝐺), we have that 𝑑𝐺(𝑣, 𝑋) = (1 ± 𝛾)𝑝𝑑.
F2 For each 𝑉 ∈  , |𝑉 ∩ 𝑋| = (1 ± 𝛾)𝑝|𝑉|, and, for any 𝑣 ∈ 𝑉(𝐺), we have that 𝑑𝐺(𝑣, 𝑉 ∩ 𝑋) =

𝑝 ⋅ 𝑑𝐺(𝑣, 𝑉) ± 𝛾𝑝𝑑.
F3 For any 𝐻 ⊂ 𝐺[𝑋] which is (𝜂, 𝑝𝑑, 𝐾)-dense and (𝑘, 𝜂, 𝑝𝑑)-approximable in 𝐺 by neighbour-

hoods in 𝑋, there exists some𝐻′ ⊂ 𝐺 which is (6𝜂, 𝑑, 2𝐾)-dense such that, for each 𝑉 ∈  , if|𝑉 ∩ 𝑉(𝐻′)| ⩾ 𝑑∕2, then 𝑉 ∩ 𝑉(𝐻) ≠ ∅.

Given these definitions, using the local lemma (as discussed in Section 2.4.2), it is relatively
straightforward to show the existence of the good samples that we will need, as follows.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 23 of 40

Lemma 4.3. Let 1∕𝑑 ≪ 𝛾, 1∕𝑘, 𝜂, 1∕𝐾, 𝑝. Let 𝐺 be a 𝑑-regular graph and let  be a set of vertex-
disjoint subsets of 𝑉(𝐺) which each have size at least 𝑑∕2 and at most 2𝐾𝑑. Then, there is a
(𝑑, 𝛾, 𝑘, 𝜂, 𝐾, 𝑝,)-good sample 𝑋 in 𝐺.

Proof. Let 𝑡 = ⌈|𝑉(𝐺)|∕𝑑⌉, and let𝐴𝑖 , 𝑖 ∈ [𝑡], be a partition of𝑉(𝐺) into sets which each have size
between 𝑑∕2 and 𝑑. Let 𝑋 ⊂ 𝑉(𝐺) be chosen by including each vertex independently at random
with probability 𝑝. For each 𝑣 ∈ 𝑉(𝐺), let 𝐵𝑣 be the event that 𝑑𝐺(𝑣, 𝑋) ≠ (1 ± 𝛾)𝑝𝑑. For each
𝑉 ∈  , let 𝐵𝑉 be the event that |𝑉 ∩ 𝑋| ≠ (1 ± 𝛾)𝑝|𝑉|. For each 𝑖 ∈ [𝑡], let 𝐵𝑖 be the event that|𝐴𝑖 ∩ 𝑋| ≠ (1 ± 𝛾)𝑝|𝐴𝑖|. For each 𝑉 ∈  and 𝑣 ∈ 𝑉(𝐺), let 𝐵𝑉,𝑣 be the event that 𝑑𝐺(𝑣, 𝑉 ∩ 𝑋) ≠

𝑝 ⋅ 𝑑𝐺(𝑣, 𝑉) ± 𝛾𝑝𝑑.
Let  consist of all of the subsets of 𝑉(𝐺) of size at most 𝑘 such that these vertices are all

pairwise at most 𝑘 apart in 𝐺. For each𝑈 ∈  , let 𝑌𝑈 =
⋃
𝑢∈𝑈 𝑁𝐺(𝑢) and let 𝐵𝑈 be the event that

the following do not all hold.

G1 For each 𝑣 ∈ 𝑉(𝐺), we have 𝑑𝐺(𝑣, 𝑌𝑈 ∩ 𝑋) ⩽ 𝑝 ⋅ 𝑑𝐺(𝑣, 𝑌𝑈) + 𝜂𝑝𝑑.
G2 If 𝑍𝑈 is the set of vertices in𝑌𝑈 with at least (1 − 3𝜂)𝑑 neighbours in 𝐺[𝑌𝑈], then |𝑍𝑈 ∩ 𝑋| ⩽

𝑝|𝑍𝑈| + 𝜂𝑝𝑑.
G3 |𝑌𝑈 ∩ 𝑋| = 𝑝|𝑌𝑈| ± 𝜂𝑝𝑑.
For each 𝑈 ∈  and 𝑉 ∈  with 𝑌𝑈 ∩ 𝑉 ≠ ∅, let 𝐵𝑈,𝑉 be the event that the following does not
hold.

G4 |(𝑌𝑈 ∩ 𝑉) ∩ 𝑋| ⩾ 𝑝|𝑌𝑈 ∩ 𝑉| − 𝜂𝑝𝑑.
Using the local lemma and Chernoff’s bound, we can assume that none of the events we have
defined holds (see Section 2.4.2).
As no event 𝐵𝑖 , 𝑖 ∈ [𝑡], or 𝐵𝑣, 𝑣 ∈ 𝑉(𝐺), holds, we have that F1 holds. As no event 𝐵𝑉 ,𝑉 ∈  , or

𝐵𝑉,𝑣,𝑉 ∈  and 𝑣 ∈ 𝑉(𝐺), holds, we have that F2 holds. It is left then only to show that F3 holds.
For this, suppose that we have𝐻 ⊂ 𝐺[𝑋]which is (𝜂, 𝑝𝑑, 𝐾)-dense and (𝑘, 𝜂, 𝑝𝑑)-approximable

in 𝐺 by neighbourhoods in 𝑋. By the approximability of 𝐻, there exists some 𝑈 ∈  such that|𝑉(𝐻)△ (𝑌𝑈 ∩ 𝑋)| ⩽ 𝜂𝑝𝑑. Note that every vertex in 𝑉(𝐻) ∩ 𝑌𝑈 has at least (1 − 2𝜂)𝑝𝑑 neigh-
bours in 𝑌𝑈 ∩ 𝑋 as 𝐻 ⊂ 𝐺[𝑋] is (𝜂, 𝑝𝑑, 𝐾)-dense, and, by G1, if a vertex 𝑣 ∈ 𝑉(𝐺) has at least
(1 − 2𝜂)𝑝𝑑 neighbours in𝑌𝑈 ∩ 𝑋, then it has at least

1

𝑝
(𝑑𝐺(𝑣, 𝑌𝑈 ∩ 𝑋) − 𝜂𝑝𝑑) ⩾ (1 − 3𝜂)𝑑 neigh-

bours in 𝑌𝑈 in 𝐺, and hence belongs to 𝑍𝑈 (as defined in G2). Therefore, 𝑍𝑈 ∩ 𝑋 ⊂ 𝑌𝑈 ∩ 𝑋 has
size at least |𝑉(𝐻) ∩ 𝑌𝑈| ⩾ |𝑌𝑈 ∩ 𝑋| − 𝜂𝑝𝑑 and hence

𝑝|𝑍𝑈| + 𝜂𝑝𝑑 𝐆𝟐
⩾ |𝑍𝑈 ∩ 𝑋| ⩾ |𝑌𝑈 ∩ 𝑋| − 𝜂𝑝𝑑 𝐆𝟑

⩾ 𝑝|𝑌𝑈| − 2𝜂𝑝𝑑,
so that |𝑍𝑈| ⩾ |𝑌𝑈| − 3𝜂𝑑. Thus, setting 𝐻′ ∶= 𝐺[𝑍𝑈], we have 𝛿(𝐻′) ⩾ (1 − 6𝜂)𝑑 by the
definition of 𝑍𝑈 in G2. Furthermore,

|𝑍𝑈| ⩽ |𝑌𝑈| 𝐆𝟑⩽ 1

𝑝
(|𝑌𝑈 ∩ 𝑋| + 𝜂𝑝𝑑) ⩽ 1

𝑝
(|𝑉(𝐻)| + 2𝜂𝑝𝑑) ⩽ 1

𝑝
(𝐾𝑝𝑑 + 2𝜂𝑝𝑑) ⩽ 2𝐾𝑑,

and therefore,𝐻′ is (6𝜂, 𝑑, 2𝐾)-dense.
To show the last part of F3 holds for 𝐻′ = 𝐺[𝑍𝑈], suppose that 𝑉(𝐻′) intersects with at least

𝑑∕2 vertices in 𝑉, for some 𝑉 ∈  . Then, as 𝑌𝑈 contains 𝑍𝑈 as so also interests with at least
𝑑∕2 vertices in 𝑉, and as the event 𝐵𝑈,𝑉 does not hold, we have |(𝑌𝑈 ∩ 𝑉) ∩ 𝑋| ⩾ 𝑝𝑑∕4. As
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24 of 40 MONTGOMERY et al.

|(𝑌𝑈 ∩ 𝑋) ⧵ 𝑉(𝐻)| ⩽ 𝜂𝑝𝑑, we have by G4 that 𝑉 ∩ 𝑉(𝐻) ≠ ∅. Thus, F3 holds, and therefore 𝑋
is a (𝑑, 𝛾, 𝑘, 𝜂, 𝐾, 𝑝,)-good-sample in 𝐺, as required. □

4.2 Proof of Lemma 2.4

We come now to perhaps the most important part of our proof. Using a good sample, say 𝑋, pro-
vided by Lemma 4.3, we show that 𝑋 has the property required in Lemma 2.4. That is, given a
bounded edge-disjoint collection of path forests 1, … ,𝑑∕2 in 𝐺 − 𝑉() − 𝑋 (as in the setup of
Lemma 2.4), we join lots of these paths together in an edge-disjoint fashion before joining all but
at most a few of the resulting paths into the dense spots, all in some relatively well spread man-
ner (that is, A4 and A5 will hold). To do this, we join as many of the paths together in each path
forest using vertices in 𝑋 (using paths with length at most 2𝑘 where 1∕𝑑 ≪ 1∕𝑘 ≪ 𝜂, 𝑝, which
together form the path forests denoted in the proof by𝑖 , 𝑖 ∈ [𝑑∕2]), and then try to join as many
of the paths into the dense spots in a well spread fashion using vertices in 𝑋 (using paths with
length at most 𝑘, which together form the path forests denoted by 𝑖 , 𝑖 ∈ [𝑑∕2]). We then show
(for Claim 4.4) that all of the 𝑑∕2 resulting path forests will not have that many paths which do
not end in some dense spot.
We will show this by contradiction: If we can pick many endvertices of some 𝑖 that have not

had a path joined to them in 𝑖 or 𝑖 , then, looking at the iterative neighbourhoods in 𝑋 from
these vertices, if they intersectwithin distance 𝑘, wewill have a pathwe could perhaps add to𝑖 (if
the path uses no vertices in 𝑖). This will imply that not many of these iterating neighbourhoods
can grow very large, and thus allow us to connect one of the path ends to an approximable dense
spot in𝐺[𝑋], and, hence, to one of the dense spots in the maximal collection  , using F3. In order
to get a contradiction, we will need these iterating neighbourhoods to avoid vertices in 𝑖 and
𝑖 , the edges of all the connecting paths we have found, and some further vertices in order to
ensure that the final paths will be well spread (for A4 and A5) — all of these vertices we collect
into the set 𝑍𝑖 in the proof of Claim 4.4 (see I1–I3) and all of these edges we delete from 𝐺 to get
𝐺′. We cannot find a subgraph of 𝐺′[𝑋 ⧵ 𝑍𝑖]with all its degrees close to 𝑝𝑑 (as we would need for
a simple iterating neighbourhood argument to work), but what we can do is find a large subset
𝑋𝑘 of almost all of 𝑋 ⧵ 𝑍𝑖 such that we can iteratively find many neighbours in 𝐺′ in 𝑋 from
vertices in 𝑋𝑘 as long as we only iterate up to 𝑘 times (by finding neighbours in subsequent sets
𝑋𝑘−1 ⊂ … ⊂ 𝑋1 ⊂ 𝑋 ⧵ 𝑍𝑖 that we found in reverse order, showing that they are large by induction,
as at (4)). Then, if there are too many unconnected endvertices of some 𝑖 , from at least one such
endpoint we can do this iteration without growing in total very much (as intersecting iterated
neighbourhoods would provide a short path connect two more original endpoints together).
Not only will this allow us to connect one more of the path ends in 𝑖 to a dense spot in 𝐺′[𝑋 ⧵

𝑍𝑖], but, in this iteration, we can easily find a sequence of vertices which are at distance at most 2𝑘
apart pairwise in 𝐺 whose neighbourhoods in 𝑋 together approximate the dense spot we find in
𝐺′[𝑋 ⧵ 𝑍𝑖]. This allows us to use F3 to connect the endpoint of 𝑖 into a dense spot in  , gaining
the contradiction that will conclude the proof of the key claim, Claim 4.4, from which we easily
deduce Lemma 2.4.

Proof of Lemma 2.4. Let  = {𝑉(𝐺𝑖) ∶ 𝑖 ∈ [𝑡]} and take 𝛾 and 𝑘 such that 1∕𝑑 ≪ 𝛾 ≪ 1∕𝑘 ≪ 𝑝, 𝜂.
Using Lemma 4.3, let 𝑋 ⊂ 𝑉(𝐺) be a (𝑑, 𝛾∕4, 𝑘, 𝜂∕6, 𝐾∕2, 𝑝,)-good-sample in 𝐺. That is, the
following hold.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 25 of 40

H1 |𝑋| = (1 ± 𝛾∕4)𝑝𝑛 and, for any 𝑣 ∈ 𝑉(𝐺) we have that 𝑑𝐺(𝑣, 𝑋) = (1 ± 𝛾∕4)𝑝𝑑.
H2 For each 𝑖 ∈ [𝑡], |𝑉(𝐺𝑖) ∩ 𝑋| = (1 ± 𝛾∕4)𝑝|𝑉(𝐺𝑖)|, and, for any 𝑣 ∈ 𝑉(𝐺), we have that

𝑑𝐺(𝑣, 𝑉(𝐺𝑖) ∩ 𝑋) = 𝑝 ⋅ 𝑑𝐺(𝑣, 𝑉(𝐺𝑖)) ± 𝛾𝑝𝑑∕4.
H3 For any 𝐻 ⊂ 𝐺[𝑋] which is (𝜂∕6, 𝑝𝑑, 𝐾∕2)-dense and (𝑘, 𝜂∕6, 𝑝𝑑)-approximable in 𝐺 by

neighbourhoods in 𝑋, there exists some 𝐻′ ⊂ 𝐺 which is (𝜂, 𝑑, 𝐾)-dense such that if 𝐻′

intersects with some 𝐺𝑖 , 𝑖 ∈ [𝑡], in at least 𝑑∕2 vertices, then 𝑉(𝐺𝑖) ∩ 𝑉(𝐻) ≠ ∅.

Due to themaximality of = {𝐺1, … , 𝐺𝑡}, and as any two (𝜂, 𝑑, 𝐾)-dense spots in𝐺 that intersect
on some vertex must intersect in at least (1 − 2𝜂)𝑑 ⩾ 𝑑∕2 vertices (as Δ(𝐺) ⩽ 𝑑),H3 immediately
implies the following.

H4 For any 𝐻 ⊂ 𝐺[𝑋] which is (𝜂∕6, 𝑝𝑑, 𝐾∕2)-dense and (𝑘, 𝜂∕6, 𝑝𝑑)-approximable in 𝐺 by
neighbourhoods in 𝑋, there exists some 𝑖 ∈ [𝑡] with 𝑉(𝐺𝑖) ∩ 𝑉(𝐻) ≠ ∅.

We will show that 𝑋 satisfies the required property. Firstly, A1 follows from H1, and A2
follows from H2 and each 𝐺𝑖 being (𝜂, 𝑑, 𝐾)-dense. Now, take any (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded
edge-disjoint collection of path forests1, … ,𝑑∕2 in𝐺 − 𝑉() − 𝑋.Wewill show that there exists
in𝐺 − (𝑉() ⧵ 𝑋) an edge-disjoint collection of path forests ′

1
, ′

2
, … , ′

𝑑∕2
such thatA3–A6hold,

completing the proof of the lemma.
Let 𝑌 = 𝑉(𝐺) ⧵ (𝑉() ∪ 𝑋). Let 1, … ,𝑑∕2 be edge-disjoint path forests of paths in 𝐺[𝑋 ∪ 𝑌]

with length at most 2𝑘 and no internal vertices in 𝑌, such that, for each 𝑖 ∈ [𝑑∕2], all of the end-
vertices of 𝑖 are among the endvertices of 𝑖 , and 𝑖 + 𝑖 creates a path forest. Subject to this,
maximise the total number of all of the paths in1, … ,𝑑∕2. Then, take edge-disjoint path forests
1, … ,𝑑∕2 of paths in 𝐺[𝑌 ∪ 𝑋] with length at most 𝑘, such that, for each 𝑖 ∈ [𝑑∕2], the paths
in𝑖 each have one endvertex among the endvertices of 𝑖 +𝑖 and one endvertex in 𝑋 ∩ 𝑉()

and all of their internal vertices in 𝑋 ⧵ 𝑉( ∪ 𝑖 ∪𝑖), and such that each vertex in 𝑉(𝐺) is an
endvertex in total of at most

√
𝑑 paths in 𝑖 , 𝑖 ∈ [𝑑∕2], and, for each 𝑗 ∈ [𝑡] and 𝑖 ∈ [𝑑∕2], at

most
√
𝑑 of the paths in 𝑖 end in 𝐺𝑗 . Subject to this, maximise the total number of all of the

paths in 1, … ,𝑑∕2. For each 𝑖 ∈ [𝑑∕2], let  ′
𝑖
be the set of paths in 𝑖 +𝑖 +𝑖 which have

both endvertices in 𝑉(). By construction, we have that A3, A4 and A5 hold, so it is left only to
prove A6.
For each 𝑖 ∈ [𝑑∕2], let  ′′

𝑖
be the path forest of paths in 𝑖 +𝑖 +𝑖 which are not in  ′

𝑖
. We

will show the following.

Claim 4.4. For each 𝑖 ∈ [𝑑∕2],  ′′
𝑖
contains at most 16𝑛∕𝐾𝑑 paths.

Proof. Suppose, for a contradiction, that there is some 𝑖 ∈ [𝑑∕2] for which  ′′
𝑖
contains at least

16𝑛∕𝐾𝑑 paths. Let 𝑍𝑖 be the set of vertices 𝑣 ∈ 𝑋 such that one of the following holds.

I1 𝑣 is in a path in 𝑖 +𝑖 .
I2 𝑣 is in 𝐺𝑗 for some 𝑗 ∈ [𝑡] such that at least

√
𝑑∕2 of the paths in  ′

𝑖
end in 𝐺𝑗 .

I3 𝑣 is an endpoint of at least
√
𝑑∕2 paths in the collection  ′

𝑖′
, 𝑖′ ∈ [𝑑∕2].

Then,

|𝑍𝑖| ⩽ 2𝑛

𝑑
⋅ 2𝑘 + 𝐾𝑑 ⋅

2 ⋅ 𝑛∕𝑑√
𝑑∕2

+
𝑑∕2 ⋅ 2𝑛∕𝑑 ⋅ 2√

𝑑∕2
⩽
10𝐾𝑛√

𝑑
. (2)
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26 of 40 MONTGOMERY et al.

Let 𝐺′ be the graph 𝐺 with every edge in
⋃
𝑖∈[𝑑∕2]𝑖 and

⋃
𝑖∈[𝑑∕2]𝑖 removed, so that

|𝐸(𝐺) ⧵ 𝐸(𝐺′)| ⩽ 𝑑

2
⋅ 2 ⋅

2𝑛

𝑑
⋅ 2𝑘 = 4𝑛𝑘. (3)

Let 𝑋0 = 𝑋 ⧵ 𝑍𝑖 . Iteratively, for each 1 ⩽ 𝑗 ⩽ 𝑘, let 𝑋𝑗 be the set of vertices in 𝑋𝑗−1 with at least
(1 − 𝛾∕2)𝑝𝑑 neighbours in 𝑋𝑗−1 in 𝐺′. We will show, by induction, that, for each 0 ⩽ 𝑗 ⩽ 𝑘,

|𝑋 ⧵ 𝑋𝑗| ⩽ (16∕𝛾)𝑗 ⋅ 10𝐾𝑛√
𝑑
. (4)

Note first that this holds for 𝑗 = 0 by (2). Let then 𝑗 ∈ [𝑘] and assume that |𝑋 ⧵ 𝑋𝑗−1| ⩽ (16∕𝛾)𝑗−1 ⋅
10𝐾𝑛∕

√
𝑑. Then, as every vertex in 𝑋𝑗−1 has at least (1 − 𝛾∕4)𝑝𝑑 neighbours in 𝑋 in 𝐺 by H1,

every vertex in 𝑋𝑗−1 ⧵ 𝑋𝑗 has at least 𝛾𝑝𝑑∕4 neighbouring edges which are either in 𝐺[𝑋] ⧵ 𝐺′ or
which lead to a vertex of 𝑋 ⧵ 𝑋𝑗−1. Thus, usingH1 for each vertex in 𝑋 ⧵ 𝑋𝑗−1,

|𝑋𝑗−1 ⧵ 𝑋𝑗| ⋅ 𝛾𝑝𝑑4 ⩽ |𝑋 ⧵ 𝑋𝑗−1| ⋅ 2𝑝𝑑 + 𝐸(𝐺[𝑋] ⧵ 𝐺′) (3)⩽ (16∕𝛾)𝑗−1 ⋅
10𝐾𝑛√

𝑑
⋅ 2𝑝𝑑 + 4𝑛𝑘

⩽ 3 ⋅ (16∕𝛾)𝑗−1 ⋅
10𝐾𝑛√

𝑑
⋅ 𝑝𝑑,

so that |𝑋𝑗−1 ⧵ 𝑋𝑗| ⩽ (12∕𝛾) ⋅ (16∕𝛾)𝑗−1 ⋅ 10𝐾𝑛∕√𝑑, and hence

|𝑋 ⧵ 𝑋𝑗| ⩽ (12∕𝛾) ⋅ (16∕𝛾)𝑗−1 ⋅ 10𝐾𝑛√
𝑑

+ (16∕𝛾)𝑗−1 ⋅
10𝐾𝑛√

𝑑
⩽ (16∕𝛾)𝑗 ⋅

10𝐾𝑛√
𝑑
,

as required. This completes the proof of the inductionhypothesis, and therefore, (4) holds for every
0 ⩽ 𝑗 ⩽ 𝑘. In particular, then, |𝑋 ⧵ 𝑋𝑘| ⩽ (16∕𝛾)𝑘 ⋅ 10𝐾𝑛∕√𝑑 ⩽ 𝑛∕𝑑1∕3, as 1∕𝑑 ≪ 𝛾, 1∕𝑘, 1∕𝐾.
Now, recalling that  ′′

𝑖
contains at least 16𝑛∕𝐾𝑑 paths, we will show that at least 8𝑛∕𝐾𝑑 of

these paths have an endpoint which is not in 𝑉() which has at least 𝑝𝑑∕4 neighbours in 𝐺′ in
𝑋𝑘. Suppose to the contrary that there is a set𝐴 of at least 8𝑛∕𝐾𝑑 of the endpoints of ′′

𝑖
which are

each not in𝑉() and have at most 𝑝𝑑∕4 neighbours in𝐺′ in𝑋𝑘. For each 𝑣 ∈ 𝐴, as 𝑣 ∉ 𝑉(), and
as1, … ,𝑑∕2 is (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-bounded, 𝑣 is the endvertex of atmost𝑑1∕4 paths in1, … ,𝑑∕2,
and hence, has degree at most 𝑑1∕4 in 𝐺 − 𝐺′. Thus, by the choice of 𝐴 and byH1, 𝑣 has at least
𝑝𝑑∕2 neighbours in 𝐺 in 𝑋 ⧵ 𝑋𝑘. On the other hand, again as 1, … ,𝑑∕2 is (2𝑛∕𝑑, 𝑑1∕4, 𝑑1∕4)-
bounded, each vertex in 𝑋 ⧵ 𝑋𝑘 is the neighbour of at most 𝑑1∕4 of the vertices in 𝐴 (a subset of
the endpoints of 𝑖). Therefore,

4𝑝𝑛

𝐾
=
8𝑛

𝐾𝑑
⋅
𝑝𝑑

2
⩽ |𝐴| ⋅ 𝑝𝑑

2
⩽ |𝑋 ⧵ 𝑋𝑘| ⋅ 𝑑1∕4 ⩽ 𝑛

𝑑1∕12
,

a contradiction as 1∕𝑑 ≪ 1∕𝐾, 𝑝.
Therefore,  ′′

𝑖
contains at least 8𝑛∕𝐾𝑑 paths with an endpoint which is not in 𝑉() and has

at least 𝑝𝑑∕4 neighbours in 𝐺′ in 𝑋𝑘. Thus, taking 𝑟 = 8𝑛∕𝐾𝑑, we can let 𝑣1, … , 𝑣𝑟 ∉ 𝑉(), be
endvertices of different paths in  ′′

𝑖
which each have at least 𝑝𝑑∕4 neighbours in 𝑋𝑘 in 𝐺′.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 27 of 40

Now, by the maximality of the path forests 1, … ,𝑑∕2 and I1, there is no path of length
at most 2𝑘 in 𝐺′ − 𝑍𝑖 with internal vertices in 𝑋 between any two of the vertices 𝑣𝑗 , 𝑗 ∈
[𝑟]. Therefore, we can pick some 𝑗 ∈ [𝑟] for which there are at most |𝑋|∕𝑟 ⩽ 2𝑝𝑑∕𝑟 ⩽ 𝐾𝑝𝑑∕2
vertices in 𝑋 ⧵ 𝑍𝑖 which can be reached by a path of length at most 𝑘 from 𝑣𝑗 in 𝐺′ with
vertices otherwise in 𝑋 ⧵ 𝑍𝑖 . Let 𝑤1 = 𝑣𝑗 and 𝐴1 = 𝑁𝐺′(𝑣𝑗, 𝑋𝑘), so that |𝐴1| ⩾ 𝑝𝑑∕4. Then, for
each 2 ⩽ 𝑖′ ⩽ 𝑘, if possible, pick 𝑤𝑖′ ∈ 𝐴𝑖′ with |𝑁𝐺′(𝑤𝑖′−1, 𝑋𝑘−𝑖′+1 ⧵ 𝐴𝑖′−1)| ⩾ 𝜂𝑝𝑑∕12 and let
𝐴𝑖′ = 𝐴𝑖′−1 ∪ 𝑁𝐺′(𝑤𝑖′ , 𝑋𝑘−𝑖′+1), and, otherwise, stop. As each |𝐴𝑖′ | ⩽ 𝐾𝑝𝑑∕2 and |𝐴𝑖′ ⧵ 𝐴𝑖′−1| ⩾
𝜂𝑝𝑑∕12, this must stop for some 𝑖′ < 𝑘 as 1∕𝑘 ≪ 𝜂, 1∕𝐾. Let𝐻 = 𝐺′[𝐴𝑖′ ]. We will show that𝐻 is
(𝜂∕6, 𝑝𝑑, 𝐾∕2)-dense and (𝑘, 𝜂∕6, 𝑝𝑑)-approximable in 𝐺 by neighbourhoods in 𝑋.
As 𝑖′ < 𝑘, for each 𝑣 ∈ 𝐴𝑖′ ⊂ 𝑋𝑘−𝑖′+1, 𝑣 has at least (1 − 𝛾∕2)𝑝𝑑 neighbours in 𝐺′ in 𝑋𝑘−𝑖′ and

at most 𝜂𝑝𝑑∕12 neighbours in 𝑋𝑘′−𝑖′+1 ⧵ 𝐴𝑖′ , so at least (1 − 𝜂∕6)𝑝𝑑 neighbours in 𝐴𝑖′ . Thus,
as |𝑉(𝐻)| = |𝐴𝑖′ | ⩽ 𝐾𝑝𝑑∕2,𝐻 is (𝜂∕6, 𝑝𝑑, 𝐾∕2)-dense. Furthermore, each vertex𝑤1,… ,𝑤𝑖′ ∈ 𝑋1
has at most 2𝛾𝑝𝑑 neighbours in 𝐺[𝑋] outside of𝐻 byH1 and the definition of 𝑋1, and therefore,
as 𝛾 ≪ 1∕𝑘, 𝜂, 𝑝, the vertices altogether have at most 𝑘 ⋅ (2𝛾𝑝𝑑) ⩽ 𝜂𝑝𝑑∕6 vertices outside of𝑉(𝐻)
in 𝑋. Therefore, as 𝑉(𝐻) ⊂

⋃
𝑖′′∈[𝑖′] 𝑁𝐺(𝑤𝑖′′ , 𝑋), 𝐻 ⊂ 𝐺[𝑋] is (𝑘, 𝜂∕6, 𝑝𝑑)-approximable in 𝐺 by

neighbourhoods in 𝑋.
Therefore, byH4, there exists some𝑚 ∈ [𝑡]with 𝑉(𝐺𝑚) ∩ 𝑉(𝐻) ≠ ∅. Then, we can find a path

from 𝑣𝑗 to 𝑉(𝐺𝑚) ∩ 𝑉(𝐻) with length at most 𝑘, which contradicts the maximality of the path
forests 𝑖′′ , 𝑖′′ ∈ [𝑑∕2], where we recall that 𝑉(𝐻) contains no vertex in 𝑍𝑖 and use I1, I2 and
I3. ⊡

As all but at most (1 − 𝜀)𝑑 edges of each path in  ′′
𝑖
, 𝑖 ∈ [𝑑∕2], can be decomposed into

paths of length (1 − 𝜀)𝑑, and 1∕𝐾 ≪ 𝜀, by Claim 4.4 all but at most (𝑑∕2) ⋅ (1 − 𝜀)𝑑 ⋅ (16𝑛∕𝐾𝑑) ⩽
𝜀𝑛𝑑∕4 edges of 𝐸( ′′

1
∪ … ∪  ′′

𝑑∕2
) can be decomposed into copies of 𝑃(1−𝜀)𝑑, so that A6 holds, as

required. □

5 DECOMPOSING INSIDE THE DENSE BITS

In this section, we will (mostly) decompose the dense spots with attached paths (see Section 2.2).
Firstly, we note that so far we have no conditions on the dense spots that imply that they are
connected, which we will need to connect various paths together. Therefore, in Section 5.1, we
give the notation of connectivity we will use (Definition 5.1) and show that we can partition the
vertices of our dense spots into (essentially) connected dense spots (Lemma 5.3), and in each such
connected dense spot, find a small vertex subset which can connect each pair of vertices in the
connected dense spot using many possible short edge-disjoint paths using internal vertices only
in that vertex subset. In Section 5.2, we show that we can decompose a dense spot into many
path forests of some specified numbers of vertices and few overall paths (which we later connect
up, including to an attached path where appropriate, using our connectivity property). Finally, in
Section 5.3, we put this all together and prove Lemma 2.5, thus completing the proof of all our key
lemmas, and hence Theorem 1.2.

5.1 Connectivity

Firstly, we define our connectivity.
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28 of 40 MONTGOMERY et al.

Definition 5.1. A graph 𝐺 is (𝜁, 𝜆, 𝑑)-connected if, for all𝐴, 𝐵 ⊆ 𝑉(𝐺)with |𝐴|, |𝐵| ⩾ 𝜁𝑑, and for
all 𝐹 ⊆ 𝐸(𝐺) such that |𝐹| ⩽ 𝜆𝑑2, there exists a path between 𝐴 and 𝐵 in 𝐺 − 𝐹.

Observe that any graph with fewer than 2𝜁𝑑 vertices is trivially (𝜁, 𝜆, 𝑑)-connected. We also
have the following observation.

Observation 5.2. If 𝐺 is (𝜁, 𝜆, 𝑑)-connected and 𝐹 ⊆ 𝐸(𝐺) satisfies |𝐹| ⩽ 𝜏𝑑2, then 𝐺 − 𝐹 is (𝜁, 𝜆 −
𝜏, 𝑑)-connected.

We now show how to partition a dense graph into highly connected subgraphs.

Lemma 5.3. Let 1∕𝑑 ≪ 𝜆 ≪ 1∕𝐾, 𝛽 with 𝛽 ⩽ 1∕4. Let 𝐺 be a (𝛽, 𝑑, 𝐾)-dense graph. Then, for
some 𝑡 ⩽ 2𝐾, there exists a set 𝐽 ⊆ 𝑉(𝐺) and vertex-disjoint subgraphs 𝐺1,… , 𝐺𝑡 ⊂ 𝐺 with 𝑉(𝐺) =
𝑉(𝐺1) ∪ … ∪ 𝑉(𝐺𝑡) such that

J1 |𝐽| ⩽ √
𝜆𝑑,

J2 𝐺𝑖 − 𝐽 is (2𝛽, 𝑑, 𝐾)-dense for each 𝑖 ∈ [𝑡] and
J3 𝐺𝑖 is (𝜆1∕4, 𝜆, 𝑑)-connected for each 𝑖 ∈ [𝑡].

Proof. Set 𝜁 ∶= 𝜆1∕4. Initialise  = {𝐺}, and, while there is some 𝐺′ ∈  which is not (𝜁, 𝜆, 𝑑)-
connected, take such a𝐺′ and use this to find a set 𝐹 ⊆ 𝐸(𝐺′) and partition𝑉(𝐺′) = 𝑉1 ∪ 𝑉2 such
that |𝐹| ⩽ 𝜆𝑑2, |𝑉1|, |𝑉2| ⩾ 𝜁𝑛 and 𝑒𝐺−𝐹(𝑉1, 𝑉2) = 0, before deleting the edges of 𝐹 and replacing
𝐺′ in  by 𝐺′[𝑉1] and 𝐺′[𝑉2].
Once this process terminates, for 𝑡 ∶= ||, enumerate  as {𝐺1, … , 𝐺𝑡}. Note that, from the pro-

cess, if 𝑖 ≠ 𝑗, then we have deleted all of the edges in 𝐺 between 𝑉(𝐺𝑖) and 𝑉(𝐺𝑗), while each 𝐺𝑖
is (𝜁, 𝜆, 𝑑)-connected (and so, in particular, J3 holds) with size at least 𝜁𝑑, and we deleted at most
𝑡 ⋅ 𝜆𝑑2 edges from 𝐺 to get

⋃
𝑖∈[𝑡] 𝐺𝑖 . Noting that𝑉(𝐺) = 𝑉(𝐺1) ∪ … ∪ 𝑉(𝐺𝑡) is a partition, we will

define a 𝐽 satisfying J1 and J2, and show that 𝑡 ⩽ 2𝐾, completing the proof of the lemma.
Note that, 𝑡 ⩽ |𝑉(𝐺)|∕(𝜁𝑑) ⩽ 𝐾∕𝜁 = 𝐾𝜆−1∕4, and the number of deleted edges is at most 𝑡 ⋅ 𝜆𝑑2.

Denote by 𝐽 the vertices of 𝐺 which are incident to more than 𝜆1∕5𝑑 deleted edges. Note that

|𝐽| ⩽ 2𝑡 ⋅ 𝜆𝑑2

𝜆1∕5𝑑
⩽
2𝐾𝜆−1∕4 ⋅ 𝜆𝑑2

𝜆1∕5𝑑
⩽
√
𝜆𝑑, (5)

where we have used that 𝜆 ≪ 1∕𝐾. Thus, J1 holds.
Now, for each 𝑖 ∈ [𝑡] and 𝑣 ∈ 𝑉(𝐺𝑖) ⧵ 𝐽, 𝑣 is adjacent to at most 𝜆1∕5𝑑 edges in 𝐺 that were

deleted (as 𝑣 ∉ 𝐽) and at most |𝐽| ⩽ √
𝜆𝑑 edges to 𝐽. Thus, as 𝐺 is (𝛽, 𝑑, 𝐾)-dense and 𝜆 ≪ 𝛽, 𝑣

has at least (1 − 𝛽)𝑑 −
√
𝜆𝑑 − 𝜆1∕5𝑑 ⩾ (1 − 2𝛽)𝑑 neighbours in𝐺𝑖 − 𝐽. As |𝑉(𝐺𝑖)| ⩽ |𝑉(𝐺)| ⩽ 𝐾𝑑,

𝐺𝑖 − 𝐽 is therefore (2𝛽, 𝑑, 𝐾)-dense, so J2 holds. As, for each 𝑖 ∈ [𝑡], we now have |𝑉(𝐺𝑖)| ⩾ (1 −
2𝛽)𝑑 ⩾ 𝑑∕2, we get the improved bound 𝑡 ⩽ 2|𝑉(𝐺)|∕𝑑 ⩽ 2𝐾, completing the proof of the required
properties. □

Next, we show that our connectivity implies that we can find a short connecting path between
any two vertex sets which are not too small.

Lemma 5.4. Let 1∕𝑑, 𝜁, 𝜆 ⩽ 1 and𝐾 ⩾ 1. Let𝐺 be (𝜁, 𝜆, 𝑑)-connected and have at most𝐾𝑑 vertices,
and suppose𝑈,𝑉 ⊂ 𝑉(𝐺) are sets with size at least 𝜁𝑛.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 29 of 40

Then, 𝐺 contains a path from𝑈 to 𝑉 with length at most 8𝐾∕𝜆.

Proof. Let 𝓁 = 4∕(𝐾𝜆). Let𝑈0 = 𝑈. For each 1 ⩽ 𝑖 ⩽ 2𝓁 in turn, let𝑈𝑖 = 𝑈𝑖−1 ∪ 𝑁𝐺(𝑈𝑖−1). Then,
𝑈0 ⊂ 𝑈1 ⊂ 𝑈2 ⊂ … ⊂ 𝑈2𝓁 is a nested sequence of sets in𝑉(𝐺), and |𝑉(𝐺)| ⩽ 𝐾𝑑, so theremust be
> 𝓁 values of 𝑖 ∈ [2𝓁] for which |𝑈𝑖 ⧵ 𝑈𝑖−1| ⩽ 2𝐾𝑑∕𝓁. Therefore, we can find some 𝑗 ∈ [2𝓁 − 1]
such that |𝑈𝑗 ⧵ 𝑈𝑗−1| ⩽ 2𝐾𝑑∕𝓁 and |𝑈𝑗+1 ⧵ 𝑈𝑗| ⩽ 2𝐾𝑑∕𝓁. Then,

𝑒𝐺(𝑈𝑗, 𝑉(𝐺) ⧵ 𝑈𝑗) = 𝑒𝐺(𝑈𝑗 ⧵ 𝑈𝑗−1,𝑈𝑗+1 ⧵ 𝑈𝑗) ⩽

(
2𝐾𝑑

𝓁

)2

⩽ 𝜆𝑑2.

As 𝐺 is (𝜁, 𝜆, 𝑑)-connected, we therefore must have that either |𝑈𝑗| < 𝜁𝑑 or |𝑉(𝐺) ⧵ 𝑈𝑗| < 𝜁𝑑. As|𝑈𝑗| ⩾ |𝑈0| ⩾ 𝜁𝑑, we thus must have |𝑉(𝐺) ⧵ 𝑈𝑗| < 𝜁𝑑, and hence, 𝑉 ∩ 𝑈𝑗 ≠ ∅. That is, there is
a path from 𝑈 to 𝑉 in 𝐺 with length at most 𝑗 ⩽ 2𝓁 − 1 ⩽ 8𝐾∕𝜆, as required. □

Combined with Observation 5.2, this tells us that many such (almost as short) paths will exist,
as follows.

Corollary 5.5. Let 1∕𝑑, 𝜁, 𝜆 ⩽ 1 and 𝐾 ⩾ 1. Let 𝐺 be (𝜁, 𝜆, 𝑑)-connected and have at most 𝐾𝑑
vertices, and suppose𝑈,𝑉 ⊂ 𝑉(𝐺) are sets with size at least 𝜁𝑛.
Then, 𝐺 contains at least 𝜆2𝑑2∕32𝐾 edge-disjoint paths from𝑈 to 𝑉 with length at most 16𝐾∕𝜆.

Proof. Take amaximal collection of edge-disjoint paths from𝑈 to𝑉 in𝐺which eachhave length
at most 16𝐾∕𝜆 and let the set of all of their edges be 𝐸. Then, by Lemma 5.4, the maximality of
 implies that 𝐺 − 𝐸 is not (𝜁, 𝜆∕2, 𝑑)-connected. Therefore, by Observation 5.2, we must have|𝐸| ⩾ 𝜆𝑑2∕2. Thus, || ⩾ |𝐸|∕(16𝐾∕𝜆) ⩾ 𝜆2𝑑2∕32𝐾, as required. □

From this corollary, we can now show that we can even find many of these paths which only
use internal vertices in a preselected, small vertex set (chosen randomly within the proof).

Lemma 5.6. 1∕𝑑 ≪ 𝑞 ≪ 𝜆, 𝜁, 1∕𝐾, 𝜀 ⩽ 1. Let 𝐺 be a (𝜁, 𝜆, 𝑑)-connected graph such that Δ(𝐺) ⩽ 𝑑,|𝑉(𝐺)| ⩽ 𝐾𝑑, and 𝛿(𝐺) ⩾ 𝜁𝑑.
Then, there is some𝑊 ⊆ 𝑉(𝐺) with |𝑊| ⩽ 2𝜀|𝑉(𝐺)| and the following properties.

K1 For each distinct 𝑣, 𝑤 ∈ 𝑉(𝐺), 𝐺[𝑊] contains at least 𝑞𝑑2 edge-disjoint paths of length at most
1∕𝑞 between𝑁𝐺(𝑣) and𝑁𝐺(𝑤).

K2 For all 𝑣 ∈ 𝑉(𝐺), 𝑑𝐺(𝑣,𝑊) ⩽ 2𝜀𝑑.

Proof. Let 𝑊 be a random subset of 𝑉(𝐺), sampled by including each vertex independently at
randomwith probability 𝜀. For each 𝑢, 𝑣 ∈ 𝑉(𝐺), we will show thatK1 does not hold for that pair
of vertices with probability at most 𝑒−

√
𝑑. Taking a union bound over all pairs of vertices will then

show thatK1 holds with probability at least 3∕4.
Fix then 𝑢, 𝑣 ∈ 𝑉(𝐺). Using Corollary 5.5, take a collection 𝑢,𝑣 of at least 𝜆2𝑑2∕32𝐾 edge-

disjoint paths from 𝑁𝐺(𝑢) to 𝑁𝐺(𝑣) in 𝐺 which each have length at most 16𝐾∕𝜆. Let 𝑋𝑢,𝑣 be the
number of paths in𝑢,𝑣 whose vertices all lie in𝑊. Note that, as the paths are edge-disjoint and
Δ(𝐺) ⩽ 𝑑, changingwhether a vertex is in𝑊 or not can change𝑋𝑢,𝑣 by atmost 𝑑, so therefore𝑋𝑢,𝑣
is 𝑑-Lipschitz. Furthermore, each path in𝑢,𝑣 has all of its vertices in𝑊 with probability at least
𝜀1+16𝐾∕𝜆, so 𝔼𝑋𝑢,𝑣 ⩾ (𝜆2𝑑2∕32𝐾) ⋅ 𝜀1+16𝐾∕𝜆 ⩾ 2𝑞𝑑2 as 𝑞 ≪ 𝜆, 1∕𝐾, 𝜀. Therefore, by Lemma 2.7, we
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30 of 40 MONTGOMERY et al.

have

ℙ(𝑋𝑢,𝑣 < 𝑞𝑑2) ⩽ 2 exp

(
−

1

2|𝑉(𝐺)| ⋅
(
𝑞𝑑2

𝑑

)2
)
⩽ 2 exp

(
−
(𝑞𝑑)2

2𝐾𝑑

)
⩽ exp(−

√
𝑑),

as claimed. Thus, as described above, by a suitable union bound, we have that K1 holds with
probability at least 3∕4.
Furthermore, by a simple application of Chernoff’s bound and aunion bound, asΔ(𝐺) ⩽ 𝑑, with

probability at least 3∕4we have thatK2 holds. Finally, again, by a simple application of Chernoff’s
bound, with probability at least 3∕4, we have that |𝑊| ⩽ 2𝜀|𝑉(𝐺)|. Together, then,𝑊 satisfies all
of the properties in the lemma with positive probability, and hence some such𝑊 as desired must
exist. □

5.2 Decomposing dense spots into path forests with specified sizes

Using the work in Section 5.1, we can decompose each dense spot in Lemma 2.5 into a few con-
nected dense spots and join up any paths in the same path forest coming into the same connected
dense spot. This will leave at most 𝑑∕2 paths coming into each dense spot, as there are at most 𝑑∕2
distinct path forests to begin with. For example, suppose that we have paths 𝑃1, … , 𝑃𝑑∕2 which are
attached to a well-connected dense spot 𝐺, where every path 𝑃𝑖 has length 𝑑∕2. Having set aside
a vertex subset of 𝐺 to make connections (as in Section 5.1), we will then wish to find in 𝐺 plenty
(almost 𝑑∕2) edge-disjoint paths of length (1 − 𝜀)𝑑 − 𝑑∕2 to join to the paths 𝑃𝑖 to get (roughly)
a path of length (1 − 𝜀)𝑑, while decomposing the rest of the edges mostly into paths of length
(1 − 𝜀)𝑑. To make this easier, we find instead an edge-disjoint path forest of few paths which have
the right number of vertices, before using the connectivity property to join them up (including
possibly to some path 𝑃𝑖).
To find edge-disjointly path forests with specified numbers of vertices in our dense spots, we

will use the following lemma. Its proof is similar to that of Lemma 3.1: we partition the vertices into
sets𝐴𝑖 , 𝑖 ∈ [𝑠], with 𝑠 = 2𝑑0.15 and findmany largematchings between each of them, putting them
together to find large path forests without too many paths. Instead of decomposing the auxiliary
graph 𝐾𝑠 into paths of length (𝑠 − 1), however, we will use Theorem 2.10 to mostly decompose 𝐾𝑠
into paths of different lengths, chosen so that the path forests we produce will have the desired
size. For this, we start the proof by batching together the desired path forest sizes into groups with
similar sizes, as each path we find in 𝐾𝑠 will produce many path forests with a similar size.

Lemma 5.7. Let 1∕𝑑 ≪ 𝛽, 1∕𝐾 ≪ 𝜀 ⩽ 1. Let 𝐺 be a (𝛽, 𝑑, 𝐾)-dense graph. Let 𝑟 ∈ ℕ, and suppose
𝑛1, … , 𝑛𝑟 ∈ [𝜀𝑑, (1 − 𝜀)𝑑] are such that

∑
𝑖∈[𝑟] 𝑛𝑖 ⩽ (1 − 10

3𝜀)|𝑉(𝐺)|𝑑∕2.
Then, 𝐺 contains edge-disjoint path forests 𝐹1, … , 𝐹𝑟 such that, for each 𝑖 ∈ [𝑟], |𝑉(𝐹𝑖)| = 𝑛𝑖 and

𝐹𝑖 contains at most 𝑑9∕10 paths.

Proof. Note that we can assume that 𝜀 ⩽ 1∕103. Let 𝑛 = |𝑉(𝐺)| ⩽ 𝐾𝑑 and note that 𝑟 ⩽|𝐸(𝐺)|∕(𝜀𝑑) ⩽ 𝐾𝑑∕2𝜀. Let 𝑠 = 2𝑑0.15 and 𝑛̄ = ⌊𝑛∕𝑠⌋ ⩾ (1 − 𝜀)𝑛∕𝑠. Take 𝜇 such that 1∕𝑑 ≪ 𝜇 ≪

𝛽, 1∕𝐾 and 𝜇𝑛 ∈ ℕ with 𝜇𝑛 = 0 mod 𝑛̄. We will batch the lengths 𝑛𝑖 together so that in each
batch, they have length varying by only up to 𝜇𝑛. For this, for each 𝑖 ∈ [𝑟], let 𝑛′

𝑖
= ⌈𝑛𝑖∕𝜇𝑛⌉ ⋅ 𝜇𝑛 ⩽
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 31 of 40

𝑛𝑖 + 𝜇𝑛. Note that there are at most 𝑑∕(𝜇𝑑) + 1 ⩽ 2∕𝜇 different values taken by 𝑛′𝑖 , 𝑖 ∈ [𝑟], and

∑
𝑖∈[𝑟]

𝑛′𝑖 ⩽
∑
𝑖∈[𝑟]

(𝑛𝑖 + 𝜇𝑛) ⩽ (1 − 10
3𝜀)𝑛 ⋅

𝑑

2
+
𝐾𝑑

2𝜀
⋅ 𝜇𝑛 ⩽ (1 − 5 ⋅ 102𝜀)𝑛 ⋅

𝑑

2
, (6)

as 1∕𝑑 ≪ 𝜇 ≪ 𝛽, 1∕𝐾, 𝜀.
Let 𝑖min = min{𝑛′

𝑖
∕𝑛̄ ∶ 𝑖 ∈ [𝑟]} and 𝑖max = max{𝑛′

𝑖
∕𝑛̄ ∶ 𝑖 ∈ [𝑟]}, so that 𝑖min ⩾ 𝜀𝑛∕𝑛̄ ⩾ 𝜀𝑠 and

𝑖max ⩽ (1 − 𝜀 + 𝜇)𝑛∕𝑛̄ ⩽ (1 − 𝜀∕2)𝑠. Let 𝐼 = {𝑖 ∶ ∃𝑗 ∈ [𝑟] s.t. 𝑛′
𝑗
= 𝑖 ⋅ 𝑛̄}, so that 𝑖min ⩽ 𝑖 ⩽ 𝑖max for

each 𝑖 ∈ 𝐼, and |𝐼| ⩽ 2∕𝜇. For each 𝑖 ∈ 𝐼, let 𝑚𝑖 be the number of 𝑛′𝑗 , 𝑗 ∈ [𝑟], with 𝑛′
𝑗
= 𝑖 ⋅ 𝑛̄. Let

𝜂′ = 40𝑑−0.2 and 𝑑′ = (1 − 𝜂′)(1 − 100𝛽)𝑑∕𝑠. For each 𝑖 ∈ 𝐼, let 𝑠𝑖 = ⌈𝑚𝑖∕𝑑
′⌉. Then,

∑
𝑖∈𝐼

𝑖 ⋅ 𝑠𝑖 ⩽
∑
𝑖∈𝐼

𝑖 +
∑
𝑖∈𝐼

𝑖 ⋅
𝑚𝑖

𝑑′
⩽
2𝑠

𝛽
+
∑
𝑖∈𝐼

𝑖 ⋅
|{𝑗 ∈ [𝑟] ∶ 𝑛′

𝑗
= 𝑖 ⋅ 𝑛̄}|

(1 − 𝜂′)(1 − 100𝛽)𝑑∕𝑠

⩽
𝜀𝑠2

10
+

∑
𝑗∈[𝑟]

𝑛′
𝑗

𝑛̄
⋅

𝑠

(1 − 𝜂′)(1 − 100𝛽)𝑑

⩽
𝜀𝑠2

10
+

∑
𝑗∈[𝑟]

𝑛′
𝑗

(1 − 𝜀)𝑛∕𝑠
⋅

𝑠

(1 − 𝜂′)(1 − 100𝛽)𝑑

(6)
⩽
𝜀𝑠2

10
+ (1 − 5 ⋅ 102𝜀)𝑛 ⋅

𝑑

2
⋅

1

(1 − 𝜀)𝑛∕𝑠
⋅

𝑠

(1 − 𝜂′)(1 − 100𝛽)𝑑

⩽ (1 − 𝜀∕4)

(
𝑠

2

)
⩽

(
(1 −

√
𝜀∕3)𝑠

2

)
.

Thus, by Theorem 2.10, we can take a collection of edge-disjoint paths in 𝐾𝑠 such that, for each
𝑖 ∈ 𝐼, there are 𝑠𝑖 paths with 𝑖 vertices in . For each 𝑖 ∈ 𝐼, let 𝑖 be the set of paths in  with 𝑖
vertices, so that |𝑖| = 𝑠𝑖 .
Let 𝛾 = 2𝑑−0.4. Apply Lemma 3.7 to 𝐺 with (1 − 𝜀)𝑑 in place of 𝑑 and 2𝜀 in place of 𝛾 to find a

subgraph 𝐺′ ⊂ 𝐺 with |𝑉(𝐺′)| ⩾ (1 − 100𝜀)|𝑉(𝐺)| and some 𝑑0 ⩾ (1 − 100𝜀)𝑑 such that, for each
𝑣 ∈ 𝑉(𝐺′), 𝑑𝐺′(𝑣) = (1 ± 𝛾)𝑑0.
Let 𝜂 = 4𝑑−0.4. As in the proof of Lemma 3.1, using the local lemma and Chernoff’s bound, take

a partition of 𝑉(𝐺′) as 𝐴1,… ,𝐴𝑠 for which the following properties hold.

L1 For each 𝑣 ∈ 𝑉(𝐺) and 𝑖 ∈ [𝑠], 𝑑𝐺(𝑣, 𝐴𝑖) = (1 ± 𝜂)𝑑∕𝑠.
L2 For each 𝑖 ∈ [𝑠], |𝐴𝑖| = (1 ± 𝜂)𝑛∕𝑠.

Note that 𝜂′ = 40𝑑−0.2 = 20
√
𝜂 and 𝑑′ = (1 − 𝜂′)𝑑0∕𝑠. For each edge 𝑒 = 𝑗𝑘 in the complete 𝑠-

vertex graph𝐾𝑠, using Lemma 2.9,L1, andL2, find 𝑑′ edge-disjointmatchings in𝐺[𝐴𝑗, 𝐴𝑘]which
each have at least (1 − 𝜂′)𝑛∕𝑠 edges. Call these matchings𝑀𝑒,𝑖 , 𝑖 ∈ [𝑑′].
For each 𝑃 ∈  and 𝑖 ∈ [𝑑′], let 𝐹𝑃,𝑖 be the path forest with vertex set ∪𝑗∈𝑉(𝑃)𝐴𝑗 and edge set⋃
𝑒∈𝐸(𝑃) 𝑀𝑒,𝑖 . Observe that, as the paths in  are edge-disjoint, the subgraphs 𝐹𝑃,𝑖 , 𝑃 ∈  and

𝑖 ∈ [𝑑′] are edge disjoint. Moreover, observe that, for each 𝑃 ∈  and 𝑖 ∈ [𝑑′], if 𝑗 is an interior
vertex of 𝑃, then there are at most 2(|𝐴𝑗| − (1 − 𝜂′)𝑛∕𝑠) vertices in 𝐴𝑗 which are an endvertex of
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32 of 40 MONTGOMERY et al.

a path in 𝐹𝑃,𝑖 . Thus, the number of paths in 𝐹𝑃,𝑖 is at most, by L2,

2(1 + 𝜂)
𝑛

𝑠
+ (𝑠 − 2) ⋅ 2((1 + 𝜂) − (1 − 𝜂′))

𝑛

𝑠
⩽
3𝑛

𝑠
+ 4𝜂′𝑛 ⩽

4𝑛

𝑠
⩽ 𝑑9∕10,

as 𝑛 ⩽ 𝐾𝑑, 𝑠 = 2𝑑0.15 and 1∕𝑑 ≪ 1∕𝐾.
Thus, the path forests 𝐹𝑃,𝑖 , 𝑃 ∈  and 𝑖 ∈ [𝑑′], are edge-disjoint, each have at most 𝑑9∕10 paths,

and, for each 𝑖 ∈ 𝐼, there are at least 𝑠𝑖 ⋅ 𝑑′ ⩾ 𝑚𝑖 path forests with 𝑛̄ ⋅ 𝑖 vertices. Thus, by the choice
of the𝑚𝑖 , 𝑖 ∈ 𝐼, we can find 𝑟 edge-disjoint path forests 𝐹𝑖 , 𝑖 ∈ [𝑟], in 𝐺 such that, for each 𝑖 ∈ [𝑟],
𝐹𝑖 has at most 𝑑9∕10 paths and at least 𝑛′𝑖 ⩾ 𝑛𝑖 vertices. Iteratively removing 𝑛

′
𝑖
− 𝑛𝑖 leaves from

𝐹𝑖 , for each 𝑖 ∈ [𝑟], then gives the desired paths. □

For our application, we now prove a simple variant of Lemma 5.7 in which the endvertices of
the paths additionally satisfy some weak spreadness condition.

Corollary 5.8. Let 1∕𝑑 ≪ 𝛽, 1∕𝐾 ≪ 𝜀 ⩽ 1. Let𝐺 be a (𝛽, 𝑑, 𝐾)-dense graph. Let 𝑟 ∈ ℕ, and suppose
𝑛1, … , 𝑛𝑟 ∈ [𝜀𝑑, (1 − 𝜀)𝑑] are such that

∑
𝑖∈[𝑟] 𝑛𝑖 ⩽ (1 − 2 ⋅ 10

3𝜀)|𝑉(𝐺)|𝑑∕2.
Then, 𝐺 contains edge-disjoint path forests 𝐹1, … , 𝐹𝑟 such that, for each 𝑖 ∈ [𝑟], 𝑛𝑖 ⩽ |𝑉(𝐹𝑖)| ⩽

(1 + 𝜀)𝑛𝑖 and 𝐹𝑖 contains at most 𝑑9∕10 paths, and each vertex in 𝐺 appears as the endpoint of at
most 𝑑19∕20 paths in 𝐹1, … , 𝐹𝑟 .

Proof. For each 𝑖 ∈ [𝑟], let 𝑛′
𝑖
= (1 + 𝜀)𝑛𝑖 , noting that

∑
𝑖∈[𝑟]

𝑛′𝑖 = (1 + 𝜀)
∑
𝑖∈[𝑟]

𝑛𝑖 ⩽ (1 − 𝜀)(1 − 2 ⋅ 10
3𝜀) ⋅

|𝑉(𝐺)|
2

⩽ (1 − 103𝜀) ⋅
|𝑉(𝐺)|
2

.

Therefore, by Lemma 5.7, we can find edge-disjoint path forests 𝐹′
1
, … , 𝐹′𝑟 in 𝐺 such that, for each

𝑖 ∈ [𝑟], |𝐹′
𝑖
| = 𝑛′𝑟 and 𝐹

′
𝑖
contains at most 𝑑9∕10 paths.

For each 1 ⩽ 𝑖 ⩽ 𝑟 in turn do the following to find 𝐹𝑖 ⊂ 𝐹′
𝑖
with at most 𝑑9∕10 paths. Let 𝑍𝑖 be

the vertices of 𝐺 which appear as the endpoints of at least 𝑑19∕20 different paths in 𝐹𝑗 , 𝑗 < 𝑖, so
that |𝑍𝑖| ⩽ 𝑟 ⋅ 2𝑑9∕10∕𝑑19∕20 ⩽ (𝐾𝑑2∕𝜀𝑑) ⋅ 2𝑑−1∕20 ⩽ 𝜀2𝑑 ⩽ 𝜀𝑛𝑖 . Thus, we can iteratively delete any
endpoints in 𝑍𝑖 from the paths in 𝐹′

𝑖
until they are all outside of 𝑍𝑖 , to get 𝐹𝑖 , while deleting at

most |𝑍𝑖| ⩽ 𝜀𝑛𝑖 vertices, so that, hence, |𝐹𝑖| ⩾ 𝑛𝑖 . By the choice of 𝑍𝑖 , 𝑖 ∈ [𝑟], the path forests 𝐹𝑖 ,
𝑖 ∈ [𝑟], have our desired properties. □

We now use Corollary 5.8 to deduce an almost decomposition of a connected dense spot with a
few attached paths, as follows.

Lemma 5.9. Let 1∕𝑑 ≪ 𝜆 ≪ 𝑝, 1∕𝐾 ≪ 𝜀 ⩽ 1. Let𝐺 be a (𝜆1∕4, 𝜆∕2, 𝑑)-connected graph which con-
tains a set 𝐽 ⊂ 𝑉(𝐺) with |𝐽| ⩽ 𝜀𝑑∕4 such that 𝐺 − 𝐽 is (𝑝, 𝑑, 𝐾)-dense, and suppose that 𝛿(𝐺) ⩾
𝑑∕8𝐾 and Δ(𝐺) ⩽ 𝑑. Let 𝑃1, … , 𝑃𝑑∕2 be edge-disjoint paths which each have exactly one vertex in 𝐺,
which is, moreover, an endvertex and in 𝐽. Suppose that no vertex of 𝐺 is the endvertex of more than√
𝑑 paths 𝑃𝑖 , 𝑖 ∈ [𝑑∕2].
Then, all but at most 𝜀|𝑉(𝐺)|𝑑 edges of 𝐺 ∪ 𝑃1 ∪ … ∪ 𝑃𝑑∕2 can be decomposed into copies of

𝑃(1−𝜀)𝑑.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 33 of 40

Proof. Let 𝑞 be such that 1∕𝑑 ≪ 𝑞 ≪ 𝜆. By Lemma5.6, there is a set𝑊 ⊂ 𝑉(𝐺)with |𝑊| ⩽ 𝜆|𝑉(𝐺)|
and the following property.

M For each distinct 𝑣, 𝑤 ∈ 𝑉(𝐺), there are at least 𝑞𝑛2 edge-disjoint paths with length at most
1∕𝑞 between 𝑁𝐺(𝑣) and 𝑁𝐺(𝑤) in 𝐺[𝑊] with all their vertices in𝑊.

Now, as 𝐺 − 𝐽 is (𝑝, 𝑑, 𝐾)-dense, and |𝑊| ⩽ 𝜆𝑑, 𝐺′ ∶= 𝐺 − 𝐽 −𝑊 is (2𝑝, 𝑑, 𝐾)-dense, and

|𝑉(𝐺′)| ⩾ |𝑉(𝐺) ⧵ 𝐽| − |𝑊| ⩾ 𝛿(𝐺 − 𝐽) − 𝜆𝑑 ⩾ (1 − 𝑝)𝑑 − 𝑝𝑑 = (1 − 2𝑝)𝑑. (7)

For each 𝑖 ∈ [𝑑∕2], let 𝓁𝑖 be the length of 𝑃𝑖 , and let 𝑛𝑖 ∈ [(1 − 𝜀)𝑑] be such that 𝓁𝑖 + 𝑛𝑖 = 0

mod (1 − 𝜀)𝑑. Note that

∑
𝑖∈[𝑑∕2]

𝑛𝑖 ⩽ (1 − 𝜀)𝑑 ⋅ 𝑑∕2
(7)
⩽ (1 − 𝜀∕4)|𝑉(𝐺′)|𝑑∕2.

Using this, let 𝑠 be the largest integer such that

(𝑠 − 𝑑∕2) ⋅ (1 − 𝜀)𝑑 +
∑

𝑖∈[𝑑∕2]

𝑛𝑖 ⩽ (1 − 𝜀∕4)|𝑉(𝐺′)|𝑑∕2, (8)

and, for each 𝑑∕2 < 𝑖 ⩽ 𝑠, let 𝓁𝑖 = 0 and 𝑛𝑖 = (1 − 𝜀)𝑑. Note that, by the choice of 𝑠,

(1 − 𝜀∕4)|𝑉(𝐺′)|𝑑∕2 (8)
⩾

∑
𝑖∈[𝑠]

𝑛𝑖 = (𝑠 − 𝑑∕2) ⋅ (1 − 𝜀)𝑑 +
∑

𝑖∈[𝑑∕2]

𝑛𝑖 ⩾ (1 − 𝜀∕4)|𝑉(𝐺′)|𝑑∕2 − (1 − 𝜀)𝑑
⩾ (1 − 𝜀)|𝑉(𝐺)|𝑑∕2 ⩾ |𝐸(𝐺)| − 𝜀|𝑉(𝐺)|𝑑∕2, (9)

where we have used that Δ(𝐺) ⩽ 𝑑.
By Corollary 5.8, there are edge-disjoint path forests 𝐹1, … , 𝐹𝑠 ⊂ 𝐺′, each of at most 𝑑9∕10 paths,

such that 𝑛𝑖 ⩽ |𝑉(𝐹𝑖)| ⩽ (1 + 𝜀)𝑛𝑖 for each 𝑖 ∈ [𝑠] and every vertex in 𝑉(𝐺𝑗) appears as the end-
vertex of at most 𝑑19∕20 of the paths in 𝐹1, … , 𝐹𝑠. Now, for each 𝑖 ∈ [𝑠], let 𝐸𝑖 be a set of pairs of
vertices from the endvertices of𝐹𝑖 and𝑃𝑖 so that𝑃𝑖 ∪ 𝐹𝑖 + 𝐸𝑖 is a path, and note that |𝐸𝑖| ⩽ 𝑑9∕10 as
𝐹𝑖 contains at most 𝑑9∕10 paths. Let 𝐹 ⊂ {(𝑖, 𝑥𝑦) ∶ 𝑖 ∈ [𝑑∕2], 𝑥𝑦 ∈ 𝐸𝑖} be a maximal set for which
there are edge-disjoint paths 𝑅𝑖,𝑥𝑦 , (𝑖, 𝑥𝑦) ∈ 𝐹, for which the following hold.

N1 For each (𝑖, 𝑥𝑦) ∈ 𝐹, 𝑅𝑖,𝑥𝑦 is an 𝑥, 𝑦-path in 𝐺 with length at most 2∕𝑞 and internal vertices
in𝑊.

N2 For each 𝑖 ∈ [𝑑∕2], the internal vertices of 𝑅𝑖,𝑒, (𝑖, 𝑒) ∈ 𝐹, are all distinct.
N3 Every vertex in 𝑉(𝐺) appears in at most 2𝑑199∕200 edges in

⋃
(𝑖,𝑥𝑦)∈𝐹∶𝑣∉{𝑥,𝑦} 𝑅𝑖,𝑥𝑦 .

Suppose for contradiction that there is some (𝑖, 𝑥𝑦) with 𝑖 ∈ [𝑑∕2] and 𝑥𝑦 ∈ 𝐸𝑖 such that
(𝑖, 𝑥𝑦) ∉ 𝐹. By N3 and as each vertex in 𝐺 appears as the endvertex of at most

√
𝑑 paths 𝑃𝑖 ,

𝑖 ∈ [𝑑∕2], and at most 𝑑19∕20 of the paths in 𝐹1, … , 𝐹𝑠, each vertex is in at most 2𝑑199∕200 + 2
√
𝑑 +

2𝑑19∕20 ⩽ 𝑞𝑑∕4 edges in paths in
⋃
(𝑖,𝑥𝑦)∈𝐹 𝑅𝑖,𝑥𝑦 . UsingM, find a set of 𝑞𝑑2 edge-disjoint paths

of length at most 1∕𝑞 between 𝑁𝐺(𝑥) and 𝑁𝐺(𝑦) and internal vertices in 𝑊. Note that, due to
the maximality of 𝐹, every path in  must either contain an edge of 𝑅𝑖′,𝑒, (𝑖′, 𝑒) ∈ 𝐹, or contain
an internal vertex in 𝑅𝑖,𝑒, (𝑖, 𝑒) ∈ 𝐹, or contain a vertex appearing in at most 2𝑑199∕200 edges in
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34 of 40 MONTGOMERY et al.

⋃
(𝑖′,𝑒)∈𝐹 𝑅𝑖′,𝑒, or there is an edge from its endpoints to {𝑥, 𝑦} which is in

⋃
(𝑖,𝑥𝑦)∈𝐹 𝑅𝑖,𝑥𝑦 . However,

in order, this implies that

|| ⩽ 𝑠 ⋅ 𝑑9∕10 ⋅ 2
𝑞
+ 𝑑9∕10 ⋅

2

𝑞
⋅ 𝑑 +

𝑠 ⋅ 2 ⋅ 𝑑9∕10 ⋅ (2∕𝑞)

2𝑑199∕200
⋅ 𝑑 + 2 ⋅ 𝑑9∕10 ⋅ 𝑑 ⩽

𝑞𝑑2

2
, (10)

where we have used that 𝑠 ⩽ |𝑉(𝐺)| ⋅ (𝑑∕2)∕((1 − 𝜀)𝑑) ⩽ 𝐾𝑑. As (10) contradicts that || ⩾ 𝑞𝑑2,
we must then have that 𝐹 = {(𝑖, 𝑥𝑦) ∶ 𝑥𝑦 ∈ 𝐸𝑖}.
Now, note that, for each 𝑖 ∈ [𝑠], 𝑃𝑖 ∪ 𝐹𝑖 ∪ (

⋃
𝑒∈𝐸𝑖

𝑅𝑖,𝑒) is a path with length at least 𝓁𝑖 + 𝑛𝑖 . As,
for each 𝑖 ∈ [𝑠], 𝓁𝑖 + 𝑛𝑖 = 0 mod (1 − 𝜀)𝑑, 𝑃𝑖 ∪ 𝐹𝑖 ∪ (

⋃
𝑒∈𝐸𝑖

𝑅𝑖,𝑒) contains edge-disjoint copies of
𝑃(1−𝜀)𝑑 which cover at least 𝓁𝑖 + 𝑛𝑖 edges. Therefore, in total, we can find edge-disjoint copies of
𝑃(1−𝜀)𝑑 which cover at least

∑
𝑖∈[𝑠](𝓁𝑖 + 𝑛𝑖) edges of 𝐺 ∪ (𝑃1 ∪ … ∪ 𝑃𝑑∕2). As the number of edges

in 𝑃1 ∪ … ∪ 𝑃𝑑∕2 is
∑
𝑖∈[𝑠] 𝓁𝑖 , and, from (9), these paths cover all but at most 𝜀|𝑉(𝐺)|𝑑 edges of

𝐺 ∪ 𝑃1 ∪ … ∪ 𝑃𝑑∕2, as required. □

5.3 Proof of Lemma 2.5

Finally, then, we can prove Lemma 2.5.

Proof of Lemma 2.5. Take 𝑞 and 𝜆 with 1∕𝑑 ≪ 𝑞 ≪ 𝜆 ≪ 𝜂. We will prove the lemma by induction
on 𝑡 = | |. If | | = 0, then wemust have that all of the path forests are empty, as there is nowhere
for their endvertices to go, and thus, the result is trivial in this case. Suppose then that 𝑡 ⩾ 1 and
that the lemma is true if | | = 𝑡 − 1, and let | | = 𝑡.
Let𝐻 = 𝐺𝑡, and, usingB1, let𝑋𝐻 ⊆ 𝑉(𝐻) be such that𝑋𝐻 contains all the vertices of∪𝑖∈[𝑑∕2]𝑖

in𝑉(𝐺𝑖) (which are necessarily endpoints), and, for each 𝑣 ∈ 𝑉(𝐻), 𝑑𝐻(𝑣, 𝑋𝐻) = (1 ± 𝜂)𝑝𝑑. From
this, and as𝐻 is (𝜂, 𝑑, 𝐾)-dense,wehave that𝐻 − 𝑋𝐻 is (2𝑝, 𝑑, 𝐾)-dense. Therefore, by Lemma5.3,
we can find some 𝑠 ∈ ℕ and a set 𝐽 ⊂ 𝑉(𝐻) ⧵ 𝑋𝐻 and vertex-disjoint subgraphs 𝐻1,… ,𝐻𝑠 whose
vertex sets partition 𝑉(𝐻) ⧵ 𝑋𝐻 such that each 𝐻𝑖 , 𝑖 ∈ [𝑠], is (𝜆1∕4, 𝜆, 𝑑)-connected, each 𝐻𝑖 − 𝐽

is (4𝑝, 𝑑, 𝐾)-dense, 𝑠 ⩽ 2𝐾, and |𝐽| ⩽ √
𝜆𝑑. Furthermore, using that 𝐻 is (𝜂, 𝑑, 𝐾)-dense, and so

each vertex in𝑋𝐻 has at least (1 − 𝜂)𝑑 − (1 + 𝜂)𝑝𝑑 ⩾ 𝑑∕2 neighbours in𝑉(𝐻) ⧵ 𝑋𝐻 , partition𝑋𝐻
as

⋃
𝑖∈[𝑠] 𝑋𝐻,𝑖 so that, for each 𝑖 ∈ [𝑠] and 𝑣 ∈ 𝑋𝐻,𝑖 , 𝑣 has at least 𝑑∕4𝐾 neighbours in 𝐺 in 𝑉(𝐻𝑖).

Let0 = ∅ and, for each 𝑖 ∈ [𝑑∕2], let 0
𝑖
= 𝑖 . We will show by induction the following claim,

where, essentially, for each 𝑗 in turn, we look to connect paths in 
𝑗−1

𝑖
(for each 𝑖 ∈ [𝑑∕2]) with

endvertices in 𝐻𝑗 together while decomposing at most 1 path from each 
𝑗−1

𝑖
, 𝑖 ∈ [𝑑∕2], along

with the unused edges in𝐻𝑗 into copies of 𝑃(1−𝜀)𝑑 using Lemma 5.9 (below, these copies of 𝑃(1−𝜀)𝑑
appear as those in the set 𝑗 , while 𝑗

𝑖
will be some of the paths in 

𝑗−1

𝑖
which have been joined

up where necessary so that they have no endpoints in 𝐻𝑗).

Claim 5.10. For each 0 ⩽ 𝑗 ⩽ 𝑠, there are edge-disjoint path forests𝑗

𝑖
, 𝑖 ∈ [𝑑∕2], and𝑗 such that

the following hold (where O1–O3 allow us to maintain the properties for the paths 𝑗

𝑖
that will

later allow us to apply the induction hypothesis to these paths and 𝐺1,… , 𝐺𝑡−1).

O1 For each 𝑖 ∈ [𝑡 − 1], there is some𝑋𝑖 ⊆ 𝑉(𝐺𝑖) so that𝑋𝑖 contains all of the vertices of𝑉(
𝑗
1
) ∪

… ∪ 𝑉(
𝑗

𝑑∕2
) in 𝑉(𝐺𝑖), and, for each 𝑣 ∈ 𝑉(𝐺𝑖), 𝑑𝐺𝑖 (𝑣, 𝑋𝑖) = (1 ± 𝜂)𝑝𝑑.
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 35 of 40

O2 Each vertex 𝑣 ∈ 𝑉(𝐺1) ∪ … ∪ 𝑉(𝐺𝑡−1) is an endpoint of in total at most
√
𝑑 paths from


𝑗
1
, … ,

𝑗

𝑑∕2
.

O3 For each 𝑗′ ∈ [𝑡 − 1] and 𝑖 ∈ [𝑑∕2], at most
√
𝑑 of the paths in 

𝑗

𝑖
have at least one endpoint

in 𝐺𝑗′ .
O4 For each 𝑖 ∈ [𝑑∕2], the path forest 𝑗

𝑖
is contained in 𝑖 ∪ (

⋃
𝑗′⩽𝑗 𝐻𝑗′) and its paths have both

endpoints in
⋃
𝑗′>𝑗 𝑋𝑗′ .

O5 𝑗 is a collection of edge-disjoint copies of 𝑃(1−𝜀)𝑑 with edges in 𝐸(
⋃
𝑗′⩽𝑗 𝐻𝑗′) ∪

(
⋃
𝑖∈[𝑑∕2] 𝐸(𝑖)) which is edge-disjoint from each 

𝑗

𝑖
, 𝑖 ∈ [𝑑∕2].

O6 The number of edges in
⋃
𝑗′⩽𝑗 𝐻𝑗′ and

⋃
𝑖∈[𝑑∕2] 𝑖 which are not in 

𝑗

𝑖
, 𝑖 ∈ [𝑑∕2], or 𝑗 is at

most
∑
𝑗′⩽𝑗 𝜀|𝑉(𝐻𝑗′)|𝑑∕2.

Proof. Note that this is easily true for 𝑗 = 0 using that we set 0
𝑖
= 𝑖 for each 𝑖 ∈ [𝑑∕2] and

0 = ∅, whereO1–O3 follow fromB1–B3. Assume then that 𝑗 ∈ [𝑠] and thatwehave edge-disjoint
path forests𝑗−1

𝑖
, 𝑖 ∈ [𝑑∕2], and𝑗−1 satisfyingO1–O6with 𝑗 − 1 in place of 𝑗. For each 𝑖 ∈ [𝑑∕2],

let 𝐸𝑖 ⊂ 𝑋
(2)
𝐻,𝑗

be a maximal set of pairs of vertices from the endpoints of 𝑗−1

𝑖
in 𝑋𝐻,𝑗 such that


𝑗−1

𝑖
+ 𝐸𝑖 is a path forest (where it may be that none of the pairs in 𝐸𝑖 are edges in the graph).

Note that in 
𝑗−1

𝑖
+ 𝐸𝑖 at most 1 path will have an endpoint in 𝑉(𝐻𝑗), by the maximality of 𝐸𝑖 .

Wewill now greedily find edge-disjoint paths𝑅𝑖,𝑒, 𝑖 ∈ [𝑑∕2] and 𝑒 ∈ 𝐸𝑖 , such that, the following
hold.

P1 For each 𝑖 ∈ [𝑑∕2] and 𝑥𝑦 ∈ 𝐸𝑖 , 𝑅𝑖,𝑥𝑦 is an 𝑥, 𝑦-path in𝐻𝑗 with length at most 2∕𝑞.
P2 For each 𝑖 ∈ [𝑑∕2], the internal vertices of 𝑅𝑖,𝑒, 𝑒 ∈ 𝐸𝑖 , are all pairwise disjoint.
P3 Every vertex in 𝑉(𝐻𝑗) appears in at most 2𝑑3∕4 edges in

⋃
𝑖∈[𝑑∕2],𝑒∈𝐸𝑖

𝑅𝑖,𝑒.

To see this is possible, suppose that we have found paths 𝑅𝑖,𝑒, (𝑖, 𝑒) ∈ 𝐹, for some 𝐹 ⊂ {(𝑖, 𝑒) ∶

𝑖 ∈ [𝑑∕2], 𝑒 ∈ 𝐸𝑖
𝑗
} and are looking to find the path 𝑅𝑖′,𝑥𝑦 , for some 𝑖′ ∈ [𝑑∕2] and 𝑥𝑦 ∈ 𝐸𝑖 with

(𝑖′, 𝑥𝑦) ∉ 𝐹. Let 𝑍𝑖′,𝑥𝑦 be the set of vertices 𝑣 in𝐻𝑗 which either

∙ are in at least 𝑑3∕4 edges in
⋃
(𝑖,𝑒)∈𝐹 𝑅𝑖,𝑒, or

∙ are an internal vertex of one of the paths 𝑅𝑖′,𝑒, (𝑖′, 𝑒) ∈ 𝐹, or
∙ are such that 𝑥𝑣 or 𝑦𝑣 are in some 𝑅𝑖,𝑒, (𝑖, 𝑒) ∈ 𝐹.

By O3 we have |𝐹| ⩽ 𝑑3∕2, so that, using O3 and O2, we have
|𝑍𝑖′,𝑥𝑦| ⩽ 𝑑3∕2 ⋅ (2∕𝑞)

𝑑3∕4
+ (2∕𝑞) ⋅

√
𝑑 + 2

√
𝑑 ⩽

𝑞𝑑

4
. (11)

Let 𝐸𝐹 be the set of all the edges of all the paths 𝑅𝑖,𝑒, 𝑖 ∈ [𝑑∕2] and 𝑒 ∈ 𝐸𝑖 , so that |𝐸𝐹| ⩽ (2∕𝑞) ⋅
𝑑3∕2 ⩽ 𝑞𝑑2∕2 byO3. By the choice of𝑋𝐻,𝑗 , and as 𝑥, 𝑦 ∈ 𝑋𝐻,𝑗 implies 𝑑𝐺(𝑥, 𝑉(𝐻𝑗)), 𝑑𝐺(𝑦, 𝑉(𝐻𝑗)),
and as 𝜆 ≪ 1∕𝐾 and 𝐻𝑗 is (𝜆1∕4, 𝜆, 𝑑)-connected, by Corollary 5.5, there is a set of at least 𝑞𝑑2
edge-disjoint paths of length at most 1∕𝑞 between𝑁𝐺(𝑥, 𝑉(𝐻𝑗) ⧵ 𝑍𝑖′,𝑥𝑦) and𝑁𝐺(𝑦, 𝑉(𝐻𝑗) ⧵ 𝑍𝑖′,𝑥𝑦)

in 𝐺. As Δ(𝐺) ⩽ 𝑑, for each 𝑣 ∈ 𝑉(𝐺) at most 𝑑 of the paths in  go through 𝑣. Therefore, as|𝐸𝐹| ⩽ 𝑞𝑑2∕2 and as |𝑍𝑖′,𝑥𝑦| ⩽ 𝑞𝑑∕4 by (11), we can find a path 𝑅′𝑖′,𝑥𝑦 ∈  which has no vertex in
𝑍𝑖′,𝑥𝑦 or edge in 𝐸𝐹 . Say 𝑅′𝑖′,𝑥𝑦 has endpoints 𝑥

′ ∈ 𝑁𝐺(𝑥, 𝑉(𝐻𝑗) ⧵ 𝑍𝑖′,𝑥𝑦) and 𝑦′ ∈ 𝑁𝐺(𝑦, 𝑉(𝐻𝑗) ⧵

𝑍𝑖′,𝑥𝑦). Add edges 𝑥𝑥′ and 𝑦𝑦′ to 𝑅′𝑖′,𝑥𝑦 and call this path 𝑅𝑖′,𝑥𝑦 . Then, by the choice of 𝑍𝑖′,𝑥𝑦 (so
that 𝑥𝑥′, 𝑦𝑦′ ∉ 𝐸𝐹) and 𝐸𝐹 , this path avoids all of the edges in 𝐸𝐹 , and its internal vertices are
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36 of 40 MONTGOMERY et al.

disjoint from those of 𝑅𝑖′,𝑒, (𝑖′, 𝑒) ∈ 𝐹, and no vertex in 𝑉(𝐻𝑗) appears in more than 2𝑑3∕4 edges
in

⋃
(𝑖,𝑒)∈𝐹∪{(𝑖′,𝑥𝑦)} 𝑅𝑖,𝑒. Therefore, we can pick 𝑅𝑖′,𝑥𝑦 as required, and thus can pick paths 𝑅𝑖,𝑒, 𝑖 ∈

[𝑑∕2] and 𝑒 ∈ 𝐸𝑖 satisfying P1–P3.
Now, for each 𝑖 ∈ [𝑑∕2], by the choice of 𝐸𝑖 and by P1 and P2, we have that 

𝑗−1

𝑖
∪ (

⋃
𝑒∈𝐸𝑖

𝑅𝑖,𝑒)

is a path forest. Let 𝑗

𝑖
be the path forest of paths in 

𝑗−1

𝑖
∪ (

⋃
𝑒∈𝐸𝑖

𝑅𝑖,𝑒)with no endvertices in𝑋𝑗 ,
so that, therefore, O4 holds. For each 𝑖 ∈ [𝑑∕2], by the maximality of 𝐸𝑖 , we have that there is at
most one path in 

𝑗−1

𝑖
⧵ 

𝑗

𝑖
—call this path 𝑃𝑖 where it exists, and otherwise set 𝑃𝑖 = ∅. Let𝐻′

𝑗
be

𝐻𝑗 with the edges of the paths in 
𝑗

𝑖
removed. Then, as𝐻𝑗 − 𝐽 is (4𝑝, 𝑑, 𝐾)-dense, by P3, we have

that 𝐻′
𝑗
− 𝐽 is (5𝑝, 𝑑, 𝐾)-dense. Furthermore, as we removed at most (2∕𝑞) ⋅ 𝑑3∕2 ⩽ 𝜆𝑑2∕2 edges

from𝐻𝑗 to get𝐻′
𝑗
, we have that𝐻′

𝑗
is (𝜆1∕4, 𝜆∕2, 𝑑)-connected. Finally, each path 𝑃𝑖 which is non-

empty has an endvertex with at least 𝑑∕4𝐾 −
√
𝑑 ⩾ 𝑑∕8𝐾 neighbours in 𝑉(𝐻𝑗) in 𝐺′. Thus, by

Lemma 5.9, there is a set, say, of copies of 𝑃(1−𝜀)𝑑 which decomposes all but at most 𝜀|𝑉(𝐻𝑗)|𝑑∕2
of the edges of 𝐺′

𝑗
∪ (

⋃
𝑖∈[𝑑∕2] 𝑃𝑖). Let 𝑗 = 𝑗−1 ∪, and note that both O5 and O6 are satisfied.

Finally, then, note thatO1–O3 hold as, for each 𝑖 ∈ [𝑡], all the endvertices of 𝑗
1
, … ,

𝑗

𝑑∕2
in 𝑉(𝐺𝑖)

are endvertices of 𝑗−1
1

, … ,
𝑗−1

𝑑∕2
. Thus, O1–O6 hold, as required. ⊡

Setting 𝑗 = 𝑠 in Claim 5.10, take edge-disjoint path forests  𝑠
𝑖
, 𝑖 ∈ [𝑑∕2], and 𝑠, such that

O1–O6 hold. Now,O4 implies that the collections of paths all have no endpoints in𝐻, and there-
fore, 𝑠 is a collection of edge disjoint copies of 𝑃(1−𝜀)𝑑 in 𝐺 by O5 which, by O6, decomposes
all but at most 𝜀

∑
𝑗∈[𝑠] |𝑉(𝐻𝑗)|𝑑∕2 of the edges of ⋃𝑗∈[𝑠] 𝐺𝑗 and 𝑖 , 𝑖 ∈ [𝑑∕2], which are not in

 𝑠
𝑖
, 𝑖 ∈ [𝑑∕2]. As there are at most |𝐽|𝑑 + |𝑉(𝐺𝑡)| ⋅ 𝑝𝑑 ⩽ 𝜀|𝑉(𝐺𝑡)|𝑑∕2 edges of 𝐺𝑗 which are not

in
⋃
𝑗∈[𝑠] 𝐻𝑗 , all but at most 𝜀|𝑉(𝐺𝑡)|𝑑 edges of 𝐺𝑡 and 𝑖 , 𝑖 ∈ [𝑑∕2], are contained in 𝑠 or  𝑠

𝑖
,

𝑖 ∈ [2]. Then, using O1–O3, by the induction hypothesis on  ′ = {𝐺1, … , 𝐺𝑡−1} and the paths  𝑠
𝑖
,

𝑖 ∈ [𝑑∕2], there is a set  of copies of (1−𝜀)𝑑 which decomposes all but at most 𝜀
∑𝑡−1
𝑖=1 |𝑉(𝐺𝑖)|𝑑

edges of  ′ = {𝐺1, … , 𝐺𝑡−1} and the paths  𝑠
𝑖
, 𝑖 ∈ [𝑑∕2]. Combined with 𝑠, this gives a set of

copies of 𝑃(1−𝜀)𝑑 which decomposes all but at most 𝜀
∑𝑡
𝑖=1 |𝑉(𝐺𝑖)|𝑑 = 𝜀|𝑉(𝐺)|𝑑 of the edges of 

and 𝑖 , 𝑖 ∈ [𝑑∕2]. This completes the proof of the induction step, and hence the lemma. □

6 CONCLUDING REMARKS

In this paper, we showed that it is possible to approximately decompose 𝑑-regular graphs into
pathswith length approximately𝑑. Improving this to give a full answer toKotzig’s orginal problem
(Problem 1.1), even for large 𝑑, appears very hard and certainly requires further new ideas and
methods. This is true even for strengthening Theorem 1.2 to find paths of length 𝑑 instead of⌈(1 − 𝜀)𝑑⌉, where it should be noted that our ‘dense spots’mayhave (slightly) fewer than𝑑 vertices
and thusmay not approximately decompose into paths of length 𝑑. Though this paper ismotivated
by the paucity of results on the decomposition of sparse graphs, we note that Kotzig’s problem is
unsolved even in the dense regime, and showing that, when 𝑑 = Ω(𝑛), any 𝑑-regular 𝑛-vertex
graph can be decomposed into copies of 𝑃𝑑 is an interesting open problem.
Decompositions of regular sparse graphs into other subgraphs have also been studied, where

the existence of sparse regular graphs with high girth mean that we can only study comparable
questions to Problem 1.1 when the graph will be decomposed into trees. Here, Graham and Häg-
gkvist [24] conjectured in 1989 that any 2𝑑-regular graph decomposes into any 𝑑-edge tree, giving a
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APPROXIMATE PATH DECOMPOSITIONS OF REGULAR GRAPHS 37 of 40

far reaching generalisation of Ringel’s conjecture. This problem is wide open. Theorem 1.2 implies
that every 2𝑑-regular graph decomposes approximately into copies of 𝑃𝑑, and it would be very
interesting to generalise this to obtain an approximate decomposition of any 2𝑑-regular graph
into any 𝑑-edge tree, which appears to be beyond the capabilities of the methods used here.

APPENDIX A: NEAR REGULARISATION: PROOF OF LEMMAS 3.6 AND 3.7
In this appendix, we prove the two lemmas we need to efficiently find near-regular subgraphs,
which we restate here for convenience.
Lemma 3.6. Let 1∕𝐶′ ≪ 1∕𝐶 ⩽ 1. For any 𝑑, if a graph has degrees between 𝑑 and 𝐶𝑑, then it
contains a subgraph with degrees between 𝑑′ and 𝑑′ + 𝐶′ log 𝑑′ for some 𝑑′ ⩾ 𝑑∕𝐶′.

Lemma3.7. There exists some𝐶 > 0 such that for each 1∕𝑑 ≪ 𝛾 ⩽ 1∕100, the following holds. Let𝐺
be a graph with 𝑑 ⩽ 𝛿(𝐺), Δ(𝐺) ⩽ (1 + 𝛾)𝑑. Then, for some 𝑑′ ⩾ (1 − 40𝛾)𝑑, 𝐺 contains a subgraph
𝐺′ with |𝑉(𝐺′)| ⩾ (1 − 40𝛾)|𝑉(𝐺)| and 𝑑′ ⩽ 𝛿(𝐺′), Δ(𝐺′) ⩽ 𝑑′ + 𝐶 log 𝑑′.
Asnoted in [13, Section 8], these lemmas can be proved using a recent technique of Chakraborti,

Janzer, Methuku and Montgomery [12, 13]. In this, we take any graph 𝐺 which is approximately
regular and carefully take a random subgraph 𝐺′ which we can show is slightly closer to being
regular with positive probability (see [13, Section 2.4] for a more detailed sketch). This will give us
the following lemma, which we can then apply iteratively to ultimately find a very nearly regular
subgraph without losing very much in the average degree.

Lemma A.1. Let 1∕𝑑 ≪ 1, 𝜀 ⩽ 1∕100 and 𝛾 ⩾ 10𝜀 such that 𝜀𝑑 ⩾ 103 log 𝑑. Let 𝐺 be a graph in
which 𝑑 ⩽ 𝑑(𝑣) ⩽ (1 + 𝛾)𝑑 for each 𝑣 ∈ 𝑉(𝐺). Then, for some 𝑑′ ⩾ (1 − 2𝜀)𝑑,𝐺 contains a subgraph
𝐺′ with 𝑑′ ⩽ 𝑑𝐺′(𝑣) ⩽ (1 + 𝛾)(1 − 𝜀∕2)𝑑′ and |𝑉(𝐺′)| ⩾ (1 − 2𝜀)|𝑉(𝐺)|.
Proof. Let 𝑛 = |𝑉(𝐺)| and assume that 𝐺 has no edges between any vertex with degree at least
𝑑 + 1 (for otherwise we could delete such an edge and maintain that 𝛿(𝐺) ⩾ 𝑑). Let 𝑈𝐿 = {𝑣 ∈

𝑉(𝐺) ∶ 𝑑(𝑣) ⩽ (1 + 𝛾∕2)𝑑} and 𝑈𝐻 = {𝑣 ∈ 𝑉(𝐺) ∶ 𝑑(𝑣) > (1 + 𝛾∕2)𝑑} be the set of low and high
degree vertices in 𝐺 respectively, and note that there are no edges in 𝐺[𝑈𝐻]. Let 𝐺′ be a random
subgraph of 𝐺 given by

∙ deleting each edge from 𝑈𝐿 to 𝑈𝐻 independently at random with probability 𝜀, and
∙ deleting each vertex in 𝑈𝐿 independently at random with probability 𝜀.

For each 𝑣 ∈ 𝑉(𝐺), let 𝐵𝑣 be the event that 𝑣 ∈ 𝑉(𝐺′) but 𝑑𝐺′(𝑣) ∉ [(1 − 5𝜀∕4)𝑑, (1 − 7𝜀∕4)(1 +

𝛾)𝑑]. Let 𝑡 = ⌈|𝑉(𝐺)|∕𝑑⌉ and let 𝑉(𝐺) = 𝐴1 ∪ … ∪ 𝐴𝑡 be an arbitrary partition of 𝑉(𝐺) into sets
with size between 𝑑 and 𝑑∕2. For each 𝑖 ∈ [𝑡], let 𝐵𝑖 be the event that |𝑉(𝐺′) ∩ 𝐴𝑖| < (1 − 2𝜀)|𝐴𝑖|.
Let𝑑′ = (1 − 5𝜀∕4)𝑑, so that, as (1 − 7𝜀∕4) ⩽ (1 − 5𝜀∕4)(1 − 𝜀∕2), if no event𝐵𝑣, 𝑣 ∈ 𝑉(𝐺), occurs,
then the degrees of 𝐺′ are in [𝑑′, (1 − 𝜀∕2)(1 + 𝛾)𝑑′]. Furthermore, if no event 𝐵𝑖 , 𝑖 ∈ [𝑡], occurs,
then |𝑉(𝐺′)| ⩾ (1 − 2𝜀)|𝑉(𝐺)|. Therefore, it is sufficient to show that, with positive probability,
no event 𝐵𝑣, 𝑣 ∈ 𝑉(𝐺), or 𝐵𝑖 , 𝑖 ∈ [𝑡], holds.
For each 𝑖 ∈ [𝑡], as |𝐴𝑖| ⩾ 𝑑∕2, we have, by Chernoff’s bound, that

ℙ(𝐵𝑖) = ℙ(|𝐴𝑖 ⧵ 𝑉(𝐺′)| > 2𝜀|𝐴𝑖|) ⩽ 2 exp(−𝜀𝑑∕24) ⩽ 𝑑−3. (A.1)

If 𝑣 ∈ 𝑈𝐻 , then, for each 𝑢 ∈ 𝑉(𝐺)with 𝑢𝑣 ∈ 𝐸(𝐺), we have 𝑢 ∈ 𝑈𝐿, and so 𝑢𝑣 ∈ 𝐸(𝐺′) exactly
when 𝑢 and 𝑢𝑣 are not deleted, so the probability that 𝑢𝑣 ∈ 𝐸(𝐺′) is (1 − 𝜀)2. Thus, if 𝑣 ∈ 𝑈𝐻 , then
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𝔼(𝑑𝐺−𝐺′(𝑣)) = (2𝜀 − 𝜀2) ⋅ 𝑑𝐺(𝑣). As 𝛾 ⩾ 10𝜀 and 𝜀 ⩽ 1∕100, we have here that (1 − 9𝜀∕4) ⋅ 𝑑𝐺(𝑣) ⩾
(1 − 9𝜀∕4)(1 + 𝛾∕2)𝑑 ⩾ (1 − 5𝜀∕4)𝑑. Thus,

ℙ(𝐵𝑣) ⩽ ℙ(𝑑𝐺′(𝑣) ∉ [(1 − 9𝜀∕4) ⋅ 𝑑𝐺(𝑣), (1 − 7𝜀∕4) ⋅ 𝑑𝐺(𝑣)])

= ℙ(𝑑𝐺−𝐺′(𝑣) ∉ [(7𝜀∕4) ⋅ 𝑑𝐺(𝑣), (9𝜀∕4) ⋅ 𝑑𝐺(𝑣)]).

Then, by Chernoff’s bound (in particular, Lemma 2.6 applied with 𝛾 = 1∕10)

ℙ(𝐵𝑣) ⩽ 2 exp(−(2𝜀 − 𝜀
2)𝑑∕300) ⩽ 𝑑−3. (A.2)

Now, suppose 𝑣 ∈ 𝑈𝐿. If 𝑣 survives into 𝑉(𝐺′), then, note that, for each 𝑢𝑣 ∈ 𝐸(𝐺), if 𝑣 ∈ 𝑈𝐿,
then the probability that 𝑢𝑣 ∉ 𝐸(𝐺′) is 𝜀 (the probability that 𝑣 is deleted), while if 𝑣 ∈ 𝑈𝐻 then
the probability that 𝑢𝑣 ∈ 𝐸(𝐺′) is also 𝜀 (the probability that 𝑢𝑣 is deleted). Thus, if 𝑣 ∈ 𝑈𝐿,
then 𝔼(𝑑𝐺−𝐺′(𝑣) ∣ 𝑣 ∈ 𝑉(𝐺′)) = 𝜀 ⋅ 𝑑𝐺(𝑣). As 𝛾 ⩾ 10𝜀 and 𝜀 ⩽ 1∕100, we have that 𝑑𝐺(𝑣) ⩽ (1 +
𝛾∕2)𝑑 ⩽ (1 − 7𝜀∕4)(1 + 𝛾)𝑑, so that, by Chernoff’s bound

ℙ(𝐵𝑣) ⩽ ℙ(𝑑𝐺−𝐺′(𝑣) ⩾ 5𝜀𝑑𝐺(𝑣)∕4 ∣ 𝑣 ∈ 𝑉(𝐺′)) ⩽ exp(−𝜀𝑑𝐺(𝑣)∕48) ⩽ exp(−𝜀𝑑∕48) ⩽ 𝑑
−3.

(A.3)
By (A.1), (A.2), and (A.3), all the ‘bad events’ we have defined occur with probability at most

𝑑−3. Each ‘bad event’ is affected by the possible deletion of at most (1 + 𝛾)𝑑 vertices and (1 + 𝛾)𝑑
edges, and the possible deletion of each vertex/edge affects at most (1 + 𝛾)𝑑 + 1 ‘bad events’. As
1∕𝑑 ≪ 1, we have 𝑒 ⋅ 𝑑−3 ⋅ (2(1 + 𝛾)𝑑((1 + 𝛾)𝑑 + 1) + 1) ⩽ 1, so by the local lemma there is some
choice of 𝐺′ for which none of the ‘bad events’ hold, as required. □

Note that if 𝛾 ⩽ 1∕10, then we can iteratively apply Lemma A.1 with 𝜀 = 𝛾∕20 at most 50 times
to immediately get the following corollary.

Corollary A.2. Let 1∕𝑑 ≪ 1 and 𝛾 ⩽ 1∕10 such that 𝛾𝑑 ⩾ 105 log 𝑑. Let 𝐺 be a graph in which
𝑑 ⩽ 𝑑(𝑣) ⩽ (1 + 𝛾)𝑑 for each 𝑣 ∈ 𝑉(𝐺). Then, for some 𝑑′ ⩾ (1 − 10𝛾)𝑑, 𝐺 contains a subgraph 𝐺′
with 𝑑′ ⩽ 𝑑𝐺′(𝑣) ⩽ (1 + 𝛾∕2)𝑑′ and |𝑉(𝐺′)| ⩾ (1 − 10𝛾)|𝑉(𝐺′)|.
We can now apply Corollary A.2 iteratively to prove Lemma 3.7.

Proof of Lemma 3.7. Let 𝐺0 = 𝐺, and let 𝑟 be the smallest integer with 𝛾𝑑∕2𝑟 ⩽ 105 log 𝑑. For
each 0 ⩽ 𝑖 < 𝑟 in turn, apply Corollary A.2 with 𝛾′ = 𝛾∕2𝑖 to 𝐺𝑖 to get 𝐺𝑖+1 with |𝑉(𝐺𝑖+1)| ⩾ (1 −
10𝛾∕2𝑖)|𝑉(𝐺𝑖+1)| and vertex degrees in [𝑑𝑖+1, (1 + 𝛾∕2𝑖+1)𝑑𝑖+1] for some 𝑑𝑖+1 ⩾ (1 − 10𝛾∕2𝑖)𝑑𝑖 .
Then, we have

|𝑉(𝐺𝑟)| ⩾ 𝑟−1∏
𝑖=0

(1 − 10𝛾∕2𝑖)|𝑉(𝐺)| ⩾ (
1 − 10𝛾 ⋅

∞∑
𝑖=0

2−𝑖

)|𝑉(𝐺)| = (1 − 20𝛾)|𝑉(𝐺)|
and the degrees in 𝐺𝑟 are between [𝑑𝑟, (1 + 𝛾∕2𝑟+1)𝑑𝑟] ⊂ [𝑑𝑟, 𝑑𝑟 + 10

5 log 𝑑], where

𝑑𝑟 ⩾

𝑟−1∏
𝑖=0

(1 − 10𝛾∕2𝑖)𝑑 ⩾ (1 − 20𝛾)𝑑,

so that 𝐺′ = 𝐺𝑟 satisfies the required conditions with 𝐶 = 2 ⋅ 105 as log 𝑑𝑟 ⩾ (log 𝑑)∕2. □
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Finally, we can prove Lemma 3.6.

Proof of Lemma 3.6. Note that we can assume that 𝐶 ⩾ 10 and 1∕𝑑 ≪ 1. Let 𝜀 = 1∕1000 and
𝑘 = 105 log 𝐶. Let 𝐺 be a graph with vertex degrees between 𝑑 and 𝐶𝑑. Apply Lemma A.1 iter-
atively 𝑘 times to 𝐺 to get a subgraph 𝐺′′ in which the vertex degrees differ by a factor of at
mostmax{1 + 10𝜀, (1 − 𝜀∕4)𝑘 ⋅ 𝐶} ⩽ 1 + 1

100
with 𝑑(𝐺′) ⩾ (1 − 2𝜀)𝑘𝑑(𝐺) ⩾ 2𝑑∕𝐶′. Then, applying

Lemma 3.7 gives the required subgraph. □
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