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In this paper, we show how random fluctuations in the magnetic field gradient jitter the paths of a matter-wave
interferometer randomly, hence, decohere the quantum superposition. To create a large spatial superposition
with nanoparticles, we envisage embedding a spin in a nanoparticle as a defect and applying an inhomogeneous
magnetic field as in a Stern-Gerlach-type experiment to create a macroscopic quantum superposition. Such
matter-wave interferometers are the cornerstone for many new fundamental advancements in physics; partic-
ularly, adjacent matter-wave interferometers can use entanglement features to test physics beyond the standard
model, test the equivalence principle, improve quantum sensors, and test the quantum nature of space-time in
a laboratory. In particular, we study how white and flicker noise induces decoherence for a setup involving
superconducting wires embedded in a chip. We show that to obtain a tiny spatial superposition of a nanometer
separation, �x ≈ O(10−9) m and to minimize decoherence, � � O(ω0/2π ), where � is the dephasing rate and
ω0 is the frequency of the oscillator, we will need current fluctuations to be δI/I � O(10−8), which is not
impossible to obtain in superconducting wire arrangements. For such tiny fluctuations, we demonstrate that the
Humpty-Dumpty problem in a matter-wave interferometer arising from a mismatch in position and momentum
does not cause a loss in contrast.

DOI: 10.1103/9n6y-cc7r

I. INTRODUCTION

The color-center defects, known as a nitrogen-vacancy
(NV) center in a nanodiamond, have a multitude of ap-
plications from quantum metrology to quantum sensors
[1]. Furthermore, matter-wave interferometers with an NV-
centered nanodiamond open up a unique testing ground for
fundamental physics, such as testing the quantum nature of
space-time. Recently, the authors of Refs. [2–5], see also [6]
proposed a protocol to test the quantum nature of space-time
in a laboratory via spin entanglement witness [2], see also
Refs. [7–14]. Entanglement provides a bona fide quantum cor-
relation, which cannot be mimicked by any classical feature,
see Ref. [15]. If two masses in quantum superpositions can
be entangled solely via gravity, then the space-time ought to
behave like a quantum entity [4,5], known as the quantum
gravity mediated entanglement of masses (QGEM) protocol.
It is well known that entanglement between two quantum
systems requires quantum interaction, or quantum mediator,
which is the essence of a theorem known as local operations
and classical communication (LOCC), which cannot entangle
the two quantum systems.

Entanglement-based protocols can be used to witness
relativistic corrections to the Coulomb potential [16], post-
Newtonian corrections to the low-energy quantum theory of
gravity [17], massive graviton in the context of brane-world
scenarios [18], modified theories of low-energy quantum
gravity [19,20], physics beyond the standard model [21], and
tests of the quantum version of the equivalence principle

[22]. Most importantly, we can also test the entanglement
between matter and photon degrees of freedom [10], which
will certify the spin-2 nature of the graviton as a medi-
ator, and will provide a quantum entanglement version of
the light-bending experiment due to the quantum-natured
graviton. Also, matter-wave interferometers can ideally act
as a quantum sensor, detecting external accelerations due to
gravity [23–25], electromagnetic interactions [26–30], and
high-frequency gravitational waves [31].

Any of these experimental protocols will be subject to
decoherence [32] due to many external interactions that are
random. In general, any matter-wave interferometer is sen-
sitive to external noise and fluctuations in ambient pressure,
temperature, current, voltage, etc. [25,27,33–38]. There is
phonon-induced noise [39–41] and fluctuation in the spin de-
grees of freedom during the dynamics of rotation of the rigid
body [42,43], all leading to dephasing and decoherence, see
Refs. [32,44,45], and loss of contrast [46–49] In the backdrop
of all the above extensive studies of decoherence, however,
the most important is arguably the systematic noise stemming
from the nature of the protocol itself. As a Stern-Gerlach
mechanism is initiated by magnetic-field gradients, these gra-
dients form the core of the systematic noise. How much of
such a noise can be tolerated then becomes an important
question intrinsic to the process of wave function splitting and
recombination.

For NV-centered nanodiamonds, it is possible to create a
spin superposition of |+1〉 and |−1〉 states, and then by apply-
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ing the Stern-Gerlach force on the spin, which is susceptible
to the external inhomogeneous magnetic field [49,50], it is
possible to separate the center-of-mass motion of the nanodi-
amond onto left and right trajectories before bringing them
together to perform one-loop interferometry, thereby creat-
ing a Schrödinger cat state. There are many variants of this
scheme, see Refs. [2,31,42,43,51–61]. One might expect that
we would be able to cool the initial state of the center-of-mass
motion [62–66] before creating the spatial superposition.

In the QGEM protocol, precise control over the external
noise sources is crucial to maintain coherence in the spatial
superposition states. Since the setup prescribed in Ref. [2] is
based on diamagnetic levitation, see Refs. [36,37,67], and to
create the superposition, we also rely on the inhomogeneous
magnetic field. Hence, any fluctuations in the magnetic field
will give rise to random jitter, decoherence. Typically, these
random jitters will be the dominant source of dephasing. The
fluctuations in the magnetic field originate from the current-
carrying wires embedded in the chip, see Ref. [67].

The current analysis focuses on characterizing the dephas-
ing introduced by such noise by modeling using classical
stochastic processes at the Lagrangian level. We specifically
consider two types of noise: Gaussian white noise and 1/ f
(flicker or pink) noise, and investigate their respective impacts
on the phase evolution of the interferometric superposition.
We then analyze the Humpty-Dumpty problem in the one-
loop matter-wave interferometer, see Refs. [46–49]. The issue
is that the fluctuations in the path affect the position and the
momentum of both the left and right arms of the interfer-
ometer; hence, any classical mismatch will turn into a loss
of contrast in the interference pattern. We will consider the
constraints on the current fluctuations from the dephasing and
show how much the mismatch is in the classical trajectories in
the matter-wave interferometer.

II. FLUCTUATIONS AND DEPHASING

Let us consider the following general Lagrangian for an
interferometer:

Lj = 1
2 mv2

j − Ajx
2
j − Bjx j − Cj ∀ j ∈ R, L, (1)

where j = R, L denote the two arms of the interferometer.
The coefficients Aj , Bj , and Cj are system-dependent con-
stants in an ideal noiseless scenario. However, in a realistic
experimental setup, these parameters acquire time-dependent
fluctuations due to noise sources in the system. The ensemble
statistics of these fluctuations depend on the nature of the
noise present. Here m is the mass of the interferometer, and
v j are the velocities of the two arms. We show how linear in
position and quadratic terms appear in the Lagrangian by tak-
ing a simple example of Stern-Gerlach-type interferometery
[49,50,53,54].

The phase difference between the two paths, �φ(t ) (cor-
responding to the two interferometer paths), accumulates
throughout the experiment.

�φ =
∫ t f

ti

(LR − LL )dt . (2)

In the absence of noise, this phase difference purely reflects
the differential evolution of the two paths. However, noise in

the system introduces additional stochastic contributions δφ

to this phase difference, leading to dephasing.
Note that if Cj does not contain any element that introduces

fluctuations, it does not affect δφ. We shall see that this will
be the case in our setup, see below. The equations of motion
change randomly if there is an external noise. Let x j be the
trajectory that satisfies the equations of motion (EOM) before
the introduction of the noise, and xtot

j be the trajectory that
satisfies the EOM after the introduction of noise. Then,

δx j = xtot
j − x j (3)

is the deviation in trajectory due to the introduction of noise.
However, in the first analysis, we shall always assume that
the two trajectories meet to interfere after the completion of
one loop. Later on, we will relax this condition and study
the Humpty-Dumpty problem which will lead to the loss of
contrast.

At the lowest order, we assume that the fluctuations affect
the coefficients Aj, Bj, Cj only and not the trajectories them-
selves. Hence, we obtain:

δφ =
∫ t f

ti

[(
δALx2

L − δARx2
R

) + (δBLxL − δBRxR)

+ (δCL − δCR)
]
dt . (4)

Since noise is a stochastic process, we can only character-
ize ensemble averages of noise. Hence, we can theoretically
calculate the average deviation in phase difference that the
noise contributes to. If the experiment lasts for a total time
Texpt, then any noise with a frequency lower than T −1

expt (i.e.,
time period longer than Texpt) would be effectively static over
the course of the experiment. This means it would appear as
a constant offset rather than as a fluctuating noise. Frequen-
cies just below T −1

expt will start to be averaged out, and ones
much below are effectively static. In contrast, for noise to
have a measurable effect as a fluctuating signal within the
experiment, its frequency should be at least comparable to
T −1

expt or higher. Thus, we set the lower-frequency cutoff as
ωmin = 2π/Texpt, ensuring that all relevant frequencies con-
tributing to the phase decoherence are considered. To quantify
the impact of the noise in the phase evolution, we evaluate the
ensemble-averaged variance of the phase difference, denoted
�, assuming that the noise is Gaussian:

� = lim
τ→∞

1

τ
E [(δφ(τ ))2] (5)

= 1

h̄2

∫ ∞

ωmin

S(ω)|	i

√
Fi(ω)|2dω, (6)

where τ is the largest time period of the contributing noise,1

ω is the angular frequency of noise, S(ω) is the power spectral
density (PSD) of the noise, and Fi(ω) is a system-dependent

1The contribution of noise to dephasing can be regularized either by
constraining the integration range in frequency space (i.e., imposing
a lower bound ωmin ∼ 2π/Texpt) or by limiting the noise time period
τ ∼ Texpt. While doing both is mathematically rigorous, constraining
either variable is typically sufficient to isolate the relevant spectral
behavior of the noise.
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response/transfer function that encodes how these fluctuations
influence the accumulated phase. Equation (6) is a result of
the Weiner-Khinchin Theorem, see Refs. [68,69]. We refer to
Appendix A for the derivation of Eq. (6).

The function F (ω) contains information about how suscep-
tible the system is to noise at a given frequency. In the initial
analysis we neglect the effect of the noise on the trajectory
itself so that we may assume that at the end of a one-loop
interferometer, the paths meet. Then we compute the trans-
fer function by considering the difference in the trajectory
between the right and left arms of the interferometer in the fre-
quency domain. They are given by the linear and the quadratic
part of the EOM as

F1(ω) ∝
∣∣∣∣
∫ t f

ti

dt (xR − xL )eiωt

∣∣∣∣
2

, (7)

F2(ω) ∝
∣∣∣∣
∫ t f

ti

dt
(
x2

R − x2
L

)
eiωt

∣∣∣∣
2

. (8)

In case the sign of a term in the Lagrangian contributing to
the noise is dependent on the spin of the state [e.g., δBR =
−δBL in Eq. (1)], then the following transfer functions would
contribute as well:

F3(ω) ∝
∣∣∣∣
∫ t f

ti

dt (xR + xL )eiωt

∣∣∣∣
2

, (9)

F4(ω) ∝
∣∣∣∣
∫ t f

ti

dt
(
x2

R + x2
L

)
eiωt

∣∣∣∣
2

. (10)

In Eqs. (8)–(10), we have assumed that δAL and δBL are some
linear functions in δAR and δBR, respectively.

The noise spectrum S(ω) depends on the statistical prop-
erties of the fluctuations or noise. For illustration, we will
consider two kinds of noise, one is white noise to get an
estimation of how large a dephasing we can tolerate; and the
second, flicker noise as superconducting wires are known to
exhibit 1/f magnetic noise due to surface spin fluctuations
and disorder—making it a potentially dominant source of
low-frequency decoherence in our setup. This type of noise
is very common in magnetic fields generated from supercon-
ducting wires, see for a review Refs. [70–72]. We discuss their
properties below:

(1) For white noise, S(ω) = A2 is constant across all
frequencies. White noise is characterized by the following
statistics:

E [δη(t )] = 0, (11)

E [δη(t )δη(t ′)] = A2δ(t − t ′). (12)

From Eq. (12), we obtain the following PSD for white noise:2

Sηη(ω) = lim
τ→∞

1

τ
E [δη̃τ (ω)δη̃∗

τ (ω)] = A2. (13)

Here, A is a constant that depends on the characteristics of
the noise source. In Sec. IV, we constrain A based on the
maximum tolerable dephasing in the simplest matter-wave
interferometer.

2δη̃τ (ω) = 1
2π

∫ τ

−τ
δη(t ) eiωt dt .

(2) For flicker noise, S(ω) ∝ 1/|ω|α , which leads to
stronger low-frequency contributions, where α ∈ [0.5, 1.5],3

see Refs. [73,74]. The magnetic field is considered to be
produced by current flowing in a conductor or a supercon-
ducting wire. Any noise in the current will cause a noise
in the magnetic-field gradient. We consider the flicker noise
contribution with the following PSD [73,74]:

SII (ω) = lim
τ→∞

∫ τ
2

− τ
2

E [I (t )I (t ′)]eiω(t−t ′ )dtdt ′

= E [Ĩ (ω)Ĩ∗(ω)] = KI2

|ω|α , (14)

where I is the DC current without fluctuations and K is a
source-dependent constant.4 α ≈ 15 in the case of supercon-
ducting wires made of Nb.

Since we are levitating the nanoparticle at a distance d
away from a current-carrying chip, see Ref. [67], we consider
the thin-wire limit and that the wire is much longer than the
nanoparticle such that we can take the infinite-wire limit in
our computations:6

B = μ0I

2πd
. (15)

The magnetic field gradient is given by

η0 = ∂B

∂x
= − μ0I

2πd2
. (16)

Hence, the PSD of the noise due to the gradient of the
magnetic field is given by [73,74]

Sηη(ω) = μ0SII

2πd2
= μ0KI2

2πd2|ω|α . (17)

By analyzing the dependence of � on the noise spectral
density, we aim to quantify the impact of the two types of
magnetic-field fluctuations on the coherence of spin superpo-
sitions in a Stern–Gerlach-type interferometer [49,50,53,54].
In particular, we consider the parameter regime relevant to the
experimental proposal of levitating the nanodiamond, see Ref.
[67], and derive constraints on the associated experimental
parameters.

3α = 0 gives back white noise statistics. α = 2 gives back Brown-
ian noise statistics.

4The universal flux noise for SQUIDS and superconducting
thin films is given by S
 = A/ f α with amagnitude of A ∼
5–10 μ
0/

√
Hz at 1 Hz, and 0.58 < α < 0.80 [70], where S
 =

Sηη/(A2L2), and L and A are the length and area of the supercon-
ductor.

5For elements, Al: α ∈ [1, 1.1] and Nb: α ∈ [1, 1.4] [74].
6The current in Eq. (15) is an effective current from a combination

of wires, which is responsible for creating the superposition. Note
that current-carrying wires on the chip are also required to levitate the
nanodiamond, see Refs. [67] and [75]. However, here we are inter-
ested in the wire configuration which will trigger the linear magnetic
field gradient along one spatial dimension to create a superposition,
see Refs. [53,54,76].
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III. NV-CENTERED NANODIAMOND

For illustration, consider an NV-centered nanoparti-
cle with a mass m in a spin superposition entering a
Stern-Gerlach-type interferometer at t = 0. The following
is the Lagrangian for each of the states composing the
superposition [53–55]:7

Lj = 1

2
mv2

j − 1

2
mω2

0x2
j −

(
Sx j h̄γeη0 − χρm

μ0
B0η0

)
x j

+ χρm

2μ0
B2

0 − Sx j h̄γeB0 − h̄DS2
z ∀ j ∈ R, L, (18)

where the external magnetic field is taken to be B = (B0 +
η0x)x̂,8 and χρ = −6.286 × 10−9 m3 kg−1 (for the nanodi-
amond) represents the mass magnetic susceptibility of the
particle. We consider dynamics only along the x axis. Sx j is
the spin of the particle in state j. R, L represent the two spins
(in the x basis) and spatial superposition states (SxR = 1 and
SxL = −1); they denote the two arms of the interferometer.
Note that the spin and the center of mass are entangled in an
SG interferometer. D in the last term refers to the zero-field
splitting, which in the case of NV centers is D = 2.87 GHz
[77] and is a constant and ω0 is defined as follows, see
Refs. [53,54]:

ω0 =
(

−χρ

μ0

)1/2

η0. (19)

From Eq. (18), we obtain the following equation of motion:

mẍ j (t ) = −mω2
0x j (t ) − Cjη0, (20)

where

Cj =
(

Sx j h̄γe − χρm

μ0
B0

)
. (21)

Imposing x j (0) = 0 and ẋ = 0, we get

x j (t ) = Cjη0

mω2
0

[cos (ω0t ) − 1]. (22)

Now, we wish to probe the effect of noise in the magnetic
field in this setup. Hence, we consider the magnetic field
to have a time-dependent component arising from the noise.
Thus consider, along the x direction,

B(t ) = B0 + [η0 + δη0(t )]x. (23)

7We are assuming that the nanoparticle is levitated via diamagnetic
levitation. We are ignoring the effects of gravity or any fluctuations
due to gravity. Such fluctuations to some extent were discussed in
our earlier papers, see Refs. [23,25].

8We assume that the magnetic field is in the x-y plane, therefore,
By = −η0yŷ. However, we are assuming that the superposition will
take place in one dimension. We are assuming an ideal case where we
take the initial condition of y = 0. In reality, it will be extremely hard,
and this will require knowing the center-of-mass motion along the
x, z directions extremely well. We will need to initiate the experiment
at y = 0, in which case there will be no displacement due to the
external inhomogeneous magnetic field along this direction.

where δη0(t ) represents the noise in the magnetic field gra-
dient.9 The noise is characterized by the ensemble average
over time of its various time correlation functions: E [δη(t )],
E [δη(t )δη(t ′)], see Ref. [78]. We shall focus on two types of
noise: white noise and flicker noise.

In a closed-loop interferometric experiment involving a
spin superposition, the spin readout is typically performed
after the interferometric path is closed to extract information
about the evolution of the constituent spin states during the
experiment. Our objective is to study how noise influences the
relative phase accumulation between these spin components.
In addition to phase fluctuations, noise also perturbs the spa-
tial trajectory of the particle, which we denote by δx j . Thus,
the effect of noise relevant to us is encoded in the difference
in the phases between the spin states arising due to the noise:

δφ = 1

h̄

∫ T

0
[LR(t ) − LL(t )]dt (24)

= 1

h̄

∫ T

0

[
− 1

2
m

(
−χρ

μ0

)
2η0δη(t )

(
x2

R − x2
L

)

− 1

2
m

(
−χρ

μ0

)
η2

0(2xRδxR − 2xLδxL )

− h̄γeδη(t )(xR + xL ) − h̄γeη0(δxR + δxL )

+ χρm

μ0
B0δη(t )(xR − xL ) + χρm

μ0
B0η0(δxR − δxL )

]
dt,

(25)

where Lj (t ) denotes only the time-dependent parts of Lj .10

We have ignored terms with higher-order dependence on
deviations due to noise—higher order in δη and δx j . In the
present analysis, we shall ignore the contribution of the fluc-
tuations in the trajectory; the latter is considered in Appendix
D. In effect, we will be considering

δφ = 1

h̄

∫ T

0

[
− 1

2
m

(
−χρ

μ0

)
2η0δη(t )

(
x2

R − x2
L

)

− h̄γeδη(t )(xR + xL ) + χρm

μ0
B0δη(t )(xR − xL )

]
dt .

(26)

We now Fourier transform to the frequency domain, substitute
the trajectory using Eq. (22) and simplify further:

δφ = H

(∫ −ωmin

−∞
+

∫ ∞

ωmin

)[
δη̃(ω)

∫ T

0

×
{

(cos (ω0t ) − 1) cos (ω0t )

ω2
0

}
eiωt dt

]
dω, (27)

9We do not include the fluctuations in the magnetic field since we
focus on the noise due to the source creating the magnetic field
gradient—a wire-like approximation for the current source. How-
ever, the same procedure can be extended to include the noise in the
bias field, say, due to a Helmholtz-coil current source.

10Had we included fluctuations in the bias field, we would have an
additional term like (SxR − SxL )h̄γeδB0.
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where

H = 1

h̄

(
4h̄γeB0η0

χρ

μ0

)
= 4γeB0η0

χρ

μ0
. (28)

In this process of simplification from Eq. (26) to Eq. (27),
it was noticed that the effect of magnetic field perturbations
on the interaction of the spin with the external magnetic field
gradient and that of the diamagnetic environment with the
external magnetic field gradient are equal, i.e., the second and
third terms in Eq. (26) are equal upon substituting for x j with
Eq. (22).

In the following analysis, we compute �, as defined in
Eq. (6), for both white and flicker noise spectra in a sim-
ple Stern–Gerlach-type interferometer. Based on the resulting
dephasing, we then place constraints on the parameters char-
acterizing the noise source.

IV. NOISE IN BASIC ONE-LOOP INTERFEROMETER

In this section, we will be computing the values of de-
phasing under different noise statistics. We wish to see what
should be the maximum values of A2 in the case of white
noise [Eq. (12)] and K in the case of flicker noise [Eq. (17)]
so that the coherence at the end of the interferometer due
to these noises is around 10%. We also study the trend of
the dephasing rate under various experimental parameters,
and hence we can extrapolate to other values of coherence.
Since we want an order-of-magnitude estimate, we carry out
a simple first analysis for a single-loop interferometer and do
not consider time-dependent spin states (as would be the case
in the QGEM protocol). That is, we just consider a simple
harmonic oscillator case given by Eq. (18).

Using Eq. (27), we obtain the dephasing for a general noise
PSD to be

� = 8H2

ω5
0

∫ ∞

ωmin/ω0=1
Sηη(ξ )FHO(ξ )dξ, (29)

where we consider general noise statistics according to
Eq. (13), and ξ = ω/ω0, and FHO(x) is given by

FHO(ξ ) = sin2 (πξ )

[
1

2ξ
+ ξ

2(ξ 2 − 4)
− ξ

ξ 2 − 1

]2

= 1 − cos (2πξ )

2

[
ξ 2 + 2

ξ (ξ 2 − 4)(ξ 2 − 1)

]2

. (30)

We can consider Eq. (30) to represent the effective transfer
function11 for a harmonic oscillator up to a system constant
(and under the assumption of ignoring deviations in the tra-
jectory). Note that the transfer function is an even function in
ξ , and hence the integral over negative frequencies is the same
as that of positive values. Next, we shall compute the integral
over ω using numerical methods, for various forms of S(ω).

11It would be more meaningful to consider 4H2/ω5
0FHO to be the

effective transfer function because it captures the system-dependent
parameters via H and ω0.

TABLE I. List of parameters used in the calculation.

Parameter Value

Electron gyromagnetic ratio γe 1.761 × 1011 s−1 T−1

Bias magnetic field B0 0.2 T
Current I 12 A
Distance d from wire 20 µm
Nanodiamond density ρ 3.5 × 103 kg m−3

Mass magnetic susceptibility χρ −6.286 × 10−9 m3 kg−1

We first compute the parameter values expected in a typical
experiment, so that we can find the bounds on the order of
magnitude of noise. These parameters are motivated by the ex-
perimental setup of levitating nanoparticles in a diamagnetic
trap, see Ref. [67].

A. Estimation of parameters

The values of parameters considered in our analysis are
presented in Table I. The values of the current and the distance
from the wire are motivated from Ref. [67]. Next, we derive
the key quantities η0, H [see Eq. (28)], ω0, and the maximum
spin state separation �xmax using the parameter values from
Table I. We can evaluate the magnetic field gradient using
Eq. (16):

η0 = − μ0I

2πd2
= −0.6 × 104 T m−1. (31)

We can compute H using Eq. (28),

H = 4γeB0η0
χρ

μ0
= 4.23 × 1012 s−1 m kg−1 A−2, (32)

and ω0 using Eq. (19),

ω0 =
∣∣∣∣
(

−χρ

μ0

) 1
2

η0

∣∣∣∣ = 4.24 × 102 Hz. (33)

Thus, the experimental time, that is the time taken to complete
the one-loop interferometer, is given by

Texpt = 2π

ω0
= 1.48 × 10−2 s. (34)

Hence, the coherence is measured by e−�Texpt . Thus, for a
coherence of 10%, we get

� ≈ 155 Hz−1. (35)

The maximum separation of the spin states occurs at half the
time period of the oscillation(t = π/ω0) and is found from
Eq. (22). The final simplified form of the maximum separation
of spin states is given by

�x|Max = |xR(t ) − xL(t )|t= π
ω0

=
∣∣∣∣4h̄γeη0

mω2
0

∣∣∣∣ ≈ 2.5 × 10−9 m. (36)
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FIG. 1. Dependence of the dephasing rate �W , induced by white
noise in the current generating the magnetic field gradient, on the
noise amplitude A, for various distances d between the NV diamond
and the wire. The current and the values of d are motivated from a
levitating nanodiamond diamagnetically, via chip configuration, see
Ref. [67]. The remaining parameters follow the simplified Stern-
Gerlach model for creating spatial superposition (see Sec. IV A).
The quantity �x, defined in Eq. (36), represents the maximum spa-
tial separation between the spin components of the superposition
state. The plot illustrates how both the magnitude of current fluctua-
tions and the spatial configuration significantly affect spin coherence
in a Stern-Gerlach-type interferometer. We have ensured here that
�W Texpt � 2.5 for d = 20 µm.

B. White noise

We carry out the ω integrals in Eq. (29) using numerical
integration with the PSD for white noise Eq. (12):

Sηη(ξ ) = A2. (37)

The numerical analysis reveals that, despite the frequency-
independent nature of the power spectral density (PSD), the
effective transfer function (30) ensures that the resulting de-
phasing remains finite for a given value of A. A plot of the
transfer function is provided in Appendix E. This behav-
ior indicates that the harmonic oscillator is more sensitive
to low-frequency noise components than to high-frequency
ones.

The following calculation is helpful for any harmonic
oscillator potential. We take Texpt = 2π/ω0 since we are con-
sidering a single-loop interferometer.12 Now we impose the
bounds on ω: the frequency of the noise has to be greater than
the inverse of the total time of the experiment (as discussed
before). Thus, we take ωmin = ω0. From Eq. (29), we carry

12However, to obtain the phase information, we have to carry out
about 104 to 106 experimental runs. Hence, the precision of the
measurement increases with the number of experimental runs. How-
ever, this also increases the sensitivity to noise. Hence we need to
consider Texpt = 104 × 2π

ω0
if we consider 104 experimental runs. This

increases the bandwidth of frequencies to which the experiment is
sensitive since ωmin = 2π/Texpt.

out the integration numerically and obtain13

�W = 8H2

ω5
0

A2
∫ ∞

1
FHO(ξ )dξ

⇒ �W ≈ 8H2

ω5
0

A2 × 1.8 s−1, (38)

where H = 4γeB0η0
χρ

μ0
, as defined in Eq. (28). We observe

from Fig. 1 that increasing the distance d between the NV-
diamond and the wire leads to a decrease in dephasing �W for
a given noise amplitude A. Physically, this can be attributed
to the reduction in the magnetic field gradient with increasing
distance from the wire. Interestingly, a stronger magnetic field
gradient leads to a smaller spatial separation �x between
the spin states. This counterintuitive behavior arises because
the effective harmonic oscillator frequency ω0 increases with
the field gradient, thereby increasing the confining potential
and reducing the spatial spread of the wavepacket.

This introduces a design trade-off: while a smaller mag-
netic field gradient increases susceptibility to current noise,
it also results in a larger superposition size, which enhances
the interferometric signal. Also, other noise sources like the
electromagnetic field noise [27,79,80] contribute nearer to the
current-carrying wire. Hence, we have to choose an optimal
magnetic field gradient such that the noise is low but the
superposition size gives us measurable effects.

From Eq. (38), we find that, for a tolerable dephasing rate
of �W = �Wmax Hz, A can be constrained using

A �

√
�Wmax

ω5
0

8H2 × 1.8
. (39)

Specifically, if we demand that the dephasing rate should be
less than ≈100 Hz (i.e, �Wmax ≈ 100 Hz) and using the values
of H and ω0 from Eqs. (32) and (33), respectively, the noise
amplitude is constrained as

A � 2.9 × 10−6 T m−1 Hz−1/2. (40)

This allows us to estimate the maximum permissible ratio
of current noise14 to signal current for a dephasing rate of
≈102 Hz using Eq. (16):

δI

I
≈ A

√
1.8 ω0

η0
= 1.3 × 10−8. (41)

In the above we have taken the configuration where |η0| ≈
6 × 103 Tm−1.

If we consider noise sensitivity for the total experimental
time (say 104 × 2π

ω0
), then the bound on A must be reevaluated

13Since the integrand in Eq. (38) is well defined for all frequencies
(refer to Appendix E), we can obtain the upper bound on dephasing
by considering ωmin = 0. This gives us

∫ ∞
0 FHO(ξ )dξ ≈ 4.3 and the

upper bound on dephasing is �W ≈ 8H2

ω5
0

A2 × 4.3.
14The noise magnitude is given by [

∫ ∞
ω0

S(ω)FHO(ω) dω]1/2. This
can be intuitively understood as the square root of power, where
power is the product of the power spectral density (PSD) and the
effective bandwidth.
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accordingly. Under this consideration, the frequency band-
width to which the experiment is sensitive to increases (see
footnote 12), for example, corresponding to Texpt = 104 × 2π

ω0
,

ωmin = 10−4 × ω0. This further varies the bounds of the in-
tegral (see footnote 13) in Eq. (38). Hence Eq. (39) would
change accordingly. The bound on A becomes stricter, such
as for Texpt = 104 × 2π

ω0
, A � 1.8 × 10−6 T m−1 Hz−1/2. The

increase in bandwidth and stricter conditions on A compen-
sate for each other returning the same tolerance for current
fluctuations. This is further explained by Eq. (47).

As discussed earlier in this section, the convergence of
�W for flat (white) noise spectra arises due to the frequency-
dependent suppression built into the harmonic oscillator’s
transfer function. This indicates that the harmonic oscillator
is particularly sensitive to low-frequency noise. Since current
noise in conductors typically exhibits a 1/ f (flicker) behavior,
we now turn to an analysis of flicker noise in the next section.

C. Flicker noise

In the case of flicker noise, the PSD in terms of the dimen-
sionless quantity ξ is given by [73,74]

Sηη(ξ ) = μ0

2πd2

KI2

|ω0|α|ξ |α ≡ K̃2(ω0)

|ξ |α , (42)

where K̃ = ( μ0

2πd2
KI2

|ω0|α )1/2. We once again take Texpt = 2π/ω0

since we are considering a single loop interferometer and
we numerically carry out the ω integral. From Eq. (29), we
obtain15

�F = 8H2

ω5
0

K̃2(ω0)
∫ ∞

1

FHO(ξ )

|ξ | dξ

⇒ �F ≈ 8H2

ω5
0

K̃2(ω0) × 1.3 s−1. (43)

From Fig. 2, we observe that the greater the values of
K , the higher the dephasing, as expected. As the spectral
exponent α increases, the contribution of high-frequency
components in the noise spectrum diminishes, making the
noise increasingly dominated by slow, quasistatic fluctuations.
These low-frequency drifts behave effectively as static off-
sets in system parameters over the experimental timescale
(as discussed in Sec. II). Consequently, their impact on the
system’s coherence is reduced, since such slowly varying
fluctuations can often be compensated for or averaged out.
For this reason, their contribution to dephasing is neglected in

15The integrand in Eq. (43) is not well defined at ξ = 0 (refer to
Appendix E), hence to obtain the upper bound on dephasing we need
to consider a large but finite number of experimental runs. If we con-
sider 104 experimental runs, the total experimental time is given by
Texpt = 104 × 2π

ω0
. Thus ωmin

ω0
= 10−4. This gives us

∫ ∞
10−4 FHO(ξ )dξ ≈

24 and the corresponding dephasing is �F ≈ 8H2

ω5
0

K̃2 × 24. Simi-

larly, if we consider 106 experimental runs, the dephasing is �F ≈
8H2

ω5
0

K̃2 × 35.5. Therefore, the increase in the magnitude of dephasing

is utmost of order 101.

FIG. 2. Contour plot showing the behavior of the source-
dependent component of the flicker noise, K as a function of the
dimensionless parameter α ∈ [0.5, 1.5] that determines the depen-
dence of noise statistics on frequency, with the contours representing
varying levels of the resulting dephasing rate �F . ω0, is the char-
acteristic frequency of the system, defined in Eq. (33). Smaller α

causes stronger dephasing for the same value of K . This shows that
the system is particularly sensitive to low-frequency noise, which is
a characteristic trait of flicker noise. The plot helps visualize how
different combinations of K and α contribute to decoherence in the
system, and it can be used to identify safe operating regions where
dephasing remains within acceptable bounds.

this analysis. For superconductors, α ≈ 1, and for this value of
the spectral exponent, we observe the trend of the dephasing
rate as a function of source-dependent K . From Fig. 3, we
observe that dephasing increases with increasing distance d
from the wire. Specifically, doubling d results in an approx-
imate two-order-of-magnitude increase in the dephasing rate
�F . This trend arises because the magnetic field gradient gen-
erated by the current decreases with distance from the wire.
A weaker magnetic field gradient leads to a reduced harmonic
confinement frequency. Since the amplitude of flicker noise
is inversely proportional to the harmonic frequency, a lower
frequency results in increased noise. Physically, a reduced
harmonic frequency corresponds to weaker confinement,
allowing a larger spatial separation �x between the spin com-
ponents of the superposition state. This enhanced separation
increases the system’s sensitivity to magnetic-field-gradient
fluctuations.

From Eq. (43), we find that for a tolerable dephasing rate
of �F = �Fmax Hz, K̃ can be constrained using

K̃ �

√
�Fmax

ω5
0

8H2 × 1.3
. (44)

Specifically, if we demand that the dephasing rate should be
less than ≈100 Hz (i.e., �Fmax ≈ 100 Hz) and using the values
of H and ω0 from Eqs. (32) and (33), respectively, and further
using the relation between K and K̃ from Eq. (42), we can
constrain K :

K � 0.7 × 10−13 T m−1 A−1. (45)
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FIG. 3. Dependence of the dephasing rate �F , induced by flicker
(1/f) noise in the current generating the magnetic field gradient,
on the source-dependent noise amplitude K , for various distances
d between the NV diamond and the wire. We have fixed α = 1
since this is the approximate value of the exponent in the case of
superconductors. The parameter K depends on the material proper-
ties of the superconducting wire, such as temperature, composition,
and fabrication details. All other parameters are fixed as specified in
Sec. IV A, consistent with the simplified Stern-Gerlach model. The
quantity �x denotes the maximum spatial separation between the
spin components of the superposition state, as defined in Eq. (36).
This figure illustrates the sensitivity of spin coherence to both
current-noise magnitude and the geometric configuration of the
Stern-Gerlach-type interferometer.

K is a source-dependent constant; we note that values of
similar magnitude have been reported for niobium (Nb) su-
perconductors in previous studies [81].16

From this, we can estimate the tolerable ratio of the noise
(see footnote 14) and signal amplitudes for the magnetic field
gradient and also obtain it in terms of current amplitudes from
Eq. (16) at ω0 = 424 Hz:

δI

I
≈ K̃

√
1.3 ω0

η0
= 1.3 × 10−8, (46)

where K̃ is defined in Eq. (42).
If we consider noise sensitivity for the total experimental

time (say 104 × 2π
ω0

), then the bound on K must be reevaluated
accordingly. Under this consideration, the frequency band-
width to which the experiment is sensitive to increases (see

16Specifically, Ref. [81] defines a related source-dependent param-
eter C, which can be related to K in our paper as C = KA/T 2,
where A is the cross-sectional area of the superconducting wire
and T is the temperature. In our source, A ≈ 7.85 × 10−11 m2 and
T ≈ 4.2 K. Thus, we estimate C ≈ 0.3 × 10−23 m2 K−2 in our case.
This value is one order of magnitude smaller than the reported value
of C = 3.9 ± 0.4 × 10−23 m2 K−2 in 2004. However, given advances
in fabrication and noise mitigation, the current state of the art may
exhibit lower values of C, and our estimate could be within achiev-
able limits.

FIG. 4. Comparison of the upper bound on the relative current
noise δI/I as a function of the particle’s distance d from a current-
carrying superconductor for a dephasing rate of � ≈ 102 Hz. The
plot includes results for white noise (blue curve) and flicker noise
(red dots). As the distance of the particle from the wire increases,
the tolerance for noise drops sharply. Despite differing spectra, both
noise types impose similar constraints on current fluctuations over
the entire distance range, indicating comparable impacts on coher-
ence in this regime.

footnote 12), for example, corresponding to Texpt = 104 × 2π
ω0

,
ωmin = 10−4 × ω0. This further varies the bounds of the
integral15 in Eq. (43). Hence Eq. (44) would change ac-
cordingly. The bound on K becomes stricter, such as for
Texpt = 104 × 2π

ω0
, K � 0.04 × 10−13 T m−1 A−1. The increase

in bandwidth and stricter conditions on K compensate for each
other returning the same tolerance for current fluctuations.
This is further explained by Eq. (47).

D. Comparison

In Fig. 4, we compare the upper bound on the noise-to-
signal ratio of the current source (δI/I ) required to maintain a
dephasing rate of ≈102 Hz for the two types of noise consid-
ered in this study: flicker noise and white noise. We find that
the bounds on δI/I are nearly identical in both cases. While
the dephasing rate associated with white noise is inherently
larger than that of flicker noise, both noise types exhibit com-
parable tolerance to current fluctuations.

This observation suggests a potentially broader implica-
tion: for any spectral exponent α ∈ [0, 1.5], the constraints
imposed on experimental parameters by dephasing con-
siderations remain approximately constant. Therefore, the
requirement on the magnitude of current fluctuations to
achieve a given dephasing rate ≈102 Hz appears to be rel-
atively robust across different noise spectra. This is because
current and magnetic-field-gradient fluctuations are directly
related by Eq. (16) and, hence, putting a bound on the dephas-
ing rate obtained from magnetic-field-gradient fluctuations
directly yields the bounds on both magnetic field gradient
and current fluctuations from Eqs. (38) and (43). Hence,
by the definition of noise amplitude (see footnote 14) and

022416-8



MAGNETIC NOISE IN MACROSCOPIC QUANTUM SPATIAL … PHYSICAL REVIEW A 112, 022416 (2025)

from Eq. (29),

δI

I
= δη

η0
=

√
�

2

ω3
0

2Hη0
. (47)

Thus, given an upper bound on the dephasing, the tolerance of
current fluctuations is determined by system parameters and
not by noise parameters nor the experimental time; i.e., even if
we take the total experimental time including all experimental
runs (≈104 × 2π

ω0
), it imposes constraints only on the noise

parameters like A in the case of white noise and K̃ in the case
of flicker noise, but not on the bound of δI/I .

We also observe that as the distance between the particle
and the wire increases, the constraint on the noise-to-signal
ratio becomes more stringent in order to maintain low dephas-
ing. This is due to the reduction in the magnetic field gradient
η at larger distances, which leads to weaker confinement of the
particle, see Ref. [67]. As a result, the system becomes more
susceptible to noise-induced fluctuations, thereby requiring a
lower noise-to-signal ratio to preserve coherence.

V. HUMPTY-DUMPTY PROBLEM

In Sec. II, we discussed the general form of noise analysis
in cases where the deviations in the trajectory due to the
noise are ignored. Now we shall analyze the impact of the
deviations in the trajectory [indicated by δx j in Eq. (25)] due
to fluctuations in the magnetic field gradient and quantify this
effect with the contrast of the interference. The contrast C in
an interferometer experiment lies in the range [0,1], where
C = 1 means that the interferometer closes and C = 0 means
that the interferometer does not close and hence spin-readout
is not possible, see the definition below. The latter is part of the
Humpty-Dumpty problem of irreversibility associated with
quantum measurement, specifically the practical impossibility
of restoring a coherent superposition once decoherence has
occurred. We analyze the value of C subject to the parame-
ters obtained above, see Refs. [46–49]. In Appendix E, we
derive the dephasing when the deviations in the trajectory are
accounted for in Eq. (25).

A. Equations of motion

We start by analyzing the equation of motion of the de-
viations from the trajectory δx j . They satisfy the following
equation [obtained from Eqs. (3), (18), and (20)]:

δẍ j (t ) + ω2
0δx j (t ) = −Cjδη(t )

m
[2 cos (ω0t ) − 1]. (48)

To solve this, we obtain

δx j (t ) = − Cj

mω0

∫ t

0
dt ′[2 cos(ω0t ′) − 1] sin[ω0(t − t ′)]δη(t ′).

(49)

We can also obtain the solutions in the Fourier domain, which
would help evaluate Eq. (29):

δx̃ j (ω) = Cj

m
(
ω2 − ω2

0

) [δη̃(ω − ω0) + δη̃(ω + ω0) − δη̃(ω)].

(50)

To understand if the one-loop interferometer can be approx-
imated as a closed loop, we also need to understand the
evolution of the momentum.

p j = ∂Lj

∂ ẋ
= mẋ j ⇒ δp j (t ) = mδẋ j (t ).

Thus, from Eq. (20), we obtain

p j (t ) = −Cjη0

ω0
sin (ω0t ). (51)

From Eq. (48), we obtain

⇒ δp j (t ) = −Cj

∫ t

0
dt ′[2 cos(ω0t ′) − 1] cos[ω0(t − t ′)] δη(t ′),

(52)

where, ptot
j (t ) = p j (t ) + δp j (t ). In the Fourier domain,

δ p̃ j (ω) = − iωCj

m
(
ω2 − ω2

0

) [δη̃(ω − ω0)

+ δη̃(ω + ω0) − δη̃(ω)]. (53)

B. Calculating the contrast

Since we are considering a harmonic oscillator case, we
will compute the expected contrast loss for the ground-state
wave function, a Gaussian:

ψ =
(

1

2πσ 2
0

)1/4

exp

(
− x2

4σ 2
0

)
, (54)

where

σ0 ≡ σx(t = 0) =
√

h̄

2mω0
. (55)

We consider h̄ = 1. Contrast is given by Refs. [46–49]:

C(t ) = exp

(
−1

2

[(
�x(t )

σx

)2

+
(

�p(t )

σp

)2
])

, (56)

where �x(t ) and �p(t ) are the differences in position and
momentum between the two arms of the interferometer, at
time t :

�x(t ) = xtot
R (t ) − xtot

L (t ) = δxR(t ) − δxL(t ), (57)

�p(t ) = ptot
R (t ) − ptot

L (t )

= δpR(t ) − δpL(t ) − 2h̄γeη0

ω0
sin (ω0t ). (58)

Note that δp ≈ O(10−12δx) due to the small mass of the parti-
cle, m ≈ O(10−15 kg). Hence, the dominant term contributing
to �p comes from solving the unperturbed equation of
motion �p ≡ (−2h̄γeη0/ω0) sin(ω0t ). Therefore, assuming
minimum uncertainty, we obtain

σp = 1

2σx
. (59)

In each run of the experiment, at the final evolution time
Texpt = 2π/ω0, the interferometer must be closed such that
the wavepackets corresponding to different spin components
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overlap sufficiently in space. However, to extract the full in-
terference pattern via spin readout, data must be accumulated
over multiple experimental runs. Consequently, the theoretical
estimation of contrast requires analysis at both the single-
run and ensemble-averaged levels, as defined in Eq. (56).
The single-run contrast depends on a specific realization of
the noise, which is generally unknown and must therefore
be evaluated through numerical simulation. In contrast, the
ensemble-averaged contrast can be computed analytically, as
it relies on the known statistical properties of the noise. The
ensemble average is given by [46–49]

C(t ) = exp

[
−1

2

(
〈�x(t )2〉

σ 2
x

+ 4σ 2
x 〈�p(t )2〉

)]
. (60)

Now we will compute the theoretical values of contrast ex-
pected in the case of different noise statistics: white noise and
flicker noise.

Since we are interested in a one-loop interferometer, we
take measurements at t = Texpt = 2π/ω0. The width of a
Gaussian wave function after a one-loop interferometer ide-
ally returns to the original width of the wave function, see
Ref. [58]. Hence,

σx =
√

h̄

2mω0
. (61)

To evaluate the deviation in trajectory arising from noise in
a single experimental run, we numerically simulate the two
types of noise, white noise and flicker (1/f) noise, indepen-
dently. The algorithm generates noise in the frequency domain
by first defining the appropriate power spectral density (PSD)
corresponding to each noise type. The spectral characteristics
are introduced by weighting a complex Gaussian random
generator with the square root of the PSD, ensuring that
the generated frequency-domain signal exhibits the desired
statistical properties. This noise is then used to compute the
deviation in each of the trajectories (left and right arms of the
interferometer) by solving the perturbed equations of motion
in the Fourier domain, Eqs. (50) and (53). The resulting de-
viations in position and momentum are transformed to the
time domain via inverse Fourier transform and are subse-
quently used to calculate the expected contrast. This enables
an assessment of whether the noise-induced deviations in the
trajectory are small enough to allow measurement at the end
of the interferometer. The values of the parameters used in the
algorithm are from Sec. IV A and based on the upper bounds
on the source-dependent parameters obtained in the previous
sections [Eq. (40) for white noise and Eq. (45) for flicker
noise].

White noise and flicker noise

From Figs. 5(a) and 5(b), we observe that the contrast in
the cases of white noise or flicker noise affecting the system
is one. The deviations in the trajectory are extremely small
[O(10−19 m)] as compared to the size of the spatial superpo-
sition �x ≈ O(10−9 m). The plots have been generated for
the values of the source parameters obtained in the case of
≈10% coherence [Eq. (40) for white noise and Eq. (45) for

FIG. 5. Numerical simulations of trajectory deviations δxR(t ) −
δxL (t ) for (a) white noise and (b) flicker noise, using system parame-
ters from Sec. IV A. The y axis is represented in terms of meters. The
noise amplitudes are set according to bounds in Eqs. (40) and (45),
corresponding to a dephasing rate of ≈102 Hz, respectively. In both
cases, the resulting deviations are on the order of 10−19 m, which is
several orders of magnitude smaller than the interferometer’s spatial
superposition length (≈10−9 m). Consequently, the contrast remains
unity, indicating that noise-induced decoherence is negligible under
these conditions.

flicker noise]. Hence, the ensemble averages in each of the
cases, too, will be expected to have high contrast.

The following is the explicit expression of the ensemble
average of contrast in the case of white noise.

〈�x2(T )〉 = 〈[δxR(T ) − δxL(T )]2〉

=
(

2h̄γeA

mω0

)2 2π

ω0
= 4 × 10−70, (62)

〈�p2(T )〉 ≈
〈(

2h̄γeη0

ω0

)2
〉

= 5.25 × 10−22. (63)

Thus, C(T ) ≈ 1. This indicates that the noise in a mag-
netic field can be controlled such that the loss in con-
trast is negligible. The integral in the case of the flicker
noise is more complex, involving trigonometric integrals.
However, analytical approximations in both the low- and
high-frequency regimes yield results of comparable magni-
tude to Eq. (63). Thus, we conclude that loss of contrast
due to Gaussian noise in current fluctuations bounded by
values corresponding to a dephasing rate of 102 Hz is
negligible.
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VI. CONCLUSIONS

In this work, we have analyzed the impact of magnetic-
field-gradient noise on the phase evolution of a quantum
system modeled as a harmonic oscillator in an interferomet-
ric setup. By introducing noise at the Lagrangian level as a
stochastic perturbation, we derived analytic expressions for
the phase noise variance under two distinct spectral regimes:
Gaussian white noise and flicker noise (1/f noise), both of
which are relevant to real-world experimental environments.
We provide a general expression for the effective transfer
function of a harmonic oscillator subject to noise, which can
be readily adapted to other physical systems with similar
dynamics.

We established practical constraints on the noise ampli-
tude for both noise types. For white noise, the gradient
noise amplitude must satisfy A � 2.9 × 10−6 T m−1 Hz−1/2,
which corresponds to a maximum allowable current noise-
to-signal ratio of δI/I � 1.3 × 10−8. Similarly, for flicker
noise, the source-dependent term was determined to be K �
0.7 × 10−13 T m−1 A−1, leading to a comparable constraint of
δI/I � 1.3 × 10−8. These limits were derived using analytical
and numerical methods, for system parameters such as the
effective harmonic frequency ω0 derived following models for
the Stern-Gerlach-type setup [53,54].

Thus, our theoretical analysis revealed that white noise
leads to a higher dephasing rate compared to flicker noise.
Nevertheless, both types of noise were found to impose nearly
identical upper bounds on the permissible noise-to-signal ra-
tio in the current source for a tolerable dephasing rate of
approximately � ≈ 102 Hz. This observation suggests that
the experimental tolerance to current fluctuations is largely
insensitive to the exact spectral character of the noise within
a physically relevant range of the spectral exponent α ∈
[0, 1.5]. Such robustness provides a valuable degree of flex-
ibility in experimental design and noise mitigation strategies.

Next, we turned to the Humpty-Dumpty problem of the
fluctuations causing deviations in the trajectory such that
the interferometer may not close. We developed a numerical
simulation framework that generates synthetic noise in the fre-
quency domain to compute the contrast of the interferometer
output for a single run of the experiment.

The simulation results confirm that the trajectory de-
viations are several orders of magnitude smaller than the
characteristic experimental superposition length scale (i.e.,
≈10−19 m compared to ≈10−9 m). Consequently, the result-
ing contrast remains close to unity in both noise scenarios,
indicating that the Humpty-Dumpty problem is negligible and
that meaningful measurements can be conducted. Our find-
ings deliver a theoretical and computational framework for
assessing the effects of noise in magnetic-field gradients in
Stern-Gerlach-type interferometry.
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APPENDIX A: DERIVATION OF GENERAL FORM
OF THE DEPHASING RATE

In this section, we derive the general form of the dephasing
rate from the variation in the Lagrangian of a system due to
noise. We ignore deviations in the trajectory. However, the
method can be extrapolated to the same. We start by express-
ing the explicit time-dependence of the noisy terms in Eq. (4),

(δφδφ∗) = 1

h̄2

∫ t f

ti

∫ t f

ti

∣∣{[δAR(t )x2
R − δAL(t )x2

L

]
+ [δBR(t )xR − δBL(t )xL] + [δCR(t ) − δCL(t )]

}
dt

∣∣2
.

(A1)

Generally, we know the statistics of the noise as a function of
the frequency of the noise. Hence, we take a Fourier transform
of the time-dependent coefficients:

(δφδφ∗) = 1

h̄2

∣∣∣∣∣
∫ t f

ti

∫ ∞

ωmin

[(
δÃR(ω)x2

R − δÃL(ω)x2
L

)
+ (δB̃R(ω)xR − δB̃L(ω)xL )

+ (δC̃R(ω) − δC̃L(ω))
]
eiωt dω dt

∣∣∣∣∣
2

. (A2)

Now, we invoke the assumption that δAL and δBL are some
linear functions in δAR and δBR, respectively. Let

δAj (t ) = Sx jDAs fAs(t ) + DAn fAn(t ), (A3)

δBj (t ) = Sx jDBs fBs(t ) + DBn fBn(t ), (A4)

δCj (t ) = DC j fC j (t ), (A5)
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where DAn is the coefficient of the spin-independent part of
δAj that is dependent on noise:

δφδφ∗ = 1

h̄2

∣∣∣∣∣
∫ t f

ti

∫ ∞

ωmin

[
f̃An(ω)DAn

(
x2

R − x2
L

)
+ f̃As(ω)DAs

(
x2

R + x2
L

) + f̃Bn(ω)DBn(xR − xL )

+ f̃Bs(ω)DBs(xR + xL ) + DCR f̃CR(ω)

− DCL f̃CL(ω)
]
eiωt dω dt

∣∣∣∣∣
2

. (A6)

Now consider a single source of noise. Hence,

fAs(t ) = fAn(t ) = fBs(t ) = fBn(t ) = fC j (t ) = f (t ). (A7)

Hence,

δφδφ∗ = 1

h̄2

∣∣∣∣∣
∫ t f

ti

∫ ∞

ωmin

f̃ (ω)
[
DAn

(
x2

R − x2
L

) + DAs
(
x2

R + x2
L

)
+ DBn(xR − xL ) + DBs(xR + xL )

+ (DCR − DCL )
]
eiωt dωdt

∣∣∣∣∣
2

(A8)

= 1

h̄2

∫ ∞

ωmin

∫ ∞

ωmin

f̃ (ω) f̃ (ω′)

×
∣∣∣∣∣
∫ t f

ti

[
DAn

(
x2

R − x2
L

) + DAs
(
x2

R + x2
L

)
+ DBn(xR − xL ) + DBs(xR + xL )

+ (DCR − DCL )
]
ei (ω+ω′ )

2 t dt

∣∣∣∣∣
2

dωdω′. (A9)

Ultimately, what concerns us is the variance of the phase
difference due to noise:

E [δφδφ∗] = 1

h̄2

∫ ∞

ωmin

∫ ∞

ωmin

E [ f̃ (ω) f̃ (ω′)]

×
∣∣∣∣∣
∫ t f

ti

[
DAn

(
x2

R − x2
L

) + DAs
(
x2

R + x2
L

)
+ DBn(xR − xL ) + DBs(xR + xL )

+ (DCR − DCL )
]
ei (ω+ω′ )

2 t dt

∣∣∣∣∣
2

dωdω′. (A10)

FIG. 6. Log-log plot of �W versus A for various values of the
separation distance d . The data exhibit a clear linear trend, indicat-
ing a power-law relationship. Each curve corresponds to a different
distance d of the particle from the wire, with associated maximum
superposition distance being �x labeled. The slope remains consis-
tent across curves, while the intercept varies with d , highlighting its
influence on noise sensitivity. This is the log-log plot of Fig. 1.

Thus, from Eq. (5), we obtain

� = 1

h̄2

∫ ∞

ωmin

S(ω)

∣∣∣∣∣
∫ t f

ti

[
DAn

(
x2

R − x2
L

) + DAs
(
x2

R + x2
L

)
+ DBn(xR − xL ) + DBs(xR + xL )

+ (DCR − DCL )
]
eiωt dt

∣∣∣∣∣
2

dω (A11)

= 1

h̄2

∫ ∞

ωmin

S(ω)|	i

√
Fi(ω)|2dω, (A12)

where F1(ω) = | ∫ t f

ti
dt DAn(xR − xL )eiωt |2.

APPENDIX B: ANALYTICAL EXPRESSION FOR
DEPHASING RATE IN THE CASE OF WHITE NOISE

In Fig. 6, we observe that the log-log plot of �W vs A
follows a linear trend. Fitting the graphs, we obtain

log (�W ) ≈ 2 log (A) + cW (d ), (B1)

where cW (d ) is the y intercept as a function of d. We obtain
the following relation for cW (d ) via graphical analysis:

cW (d ) ≈ 6 log (d ) + 41.4680. (B2)

For d = 2 × 10−5 m to a linear curve, we obtain

log (�W ) ≈ 2 log (A) + 13.274

⇒ �W ≈ 1.88A2 × 1013. (B3)
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FIG. 7. Plot of �F versus spectral exponent α for noise strengths
K = 10−14, 10−13, 10−12 in the case of flicker (1/f) noise. While the
main analysis in the paper focuses on α = 1, this plot demonstrates
that the dephasing rate �F remains within the same order of magni-
tude across a range of α values for each fixed K . This supports the
validity of extrapolating the constraints derived at α = 1 to systems
characterized by other values of α.

APPENDIX C: ANALYTICAL EXPRESSION FOR
DEPHASING RATE IN THE CASE OF FLICKER NOISE

Linear fitting of the graphs in Fig. 3 yields

log (�F ) ≈ log (K ) + cF (d ), (C1)

where cF (d ) is the y intercept as a function of d. We obtain
the following relation for cF (d ) via graphical analysis:

cF (d ) ≈ 6 log (d ) + 43.5567. (C2)

Thus, corresponding to d = 20 µm we obtain

log (�F ) ≈ log (K ) + 15.3629

⇒ �F ≈ 2.31K × 1015. (C3)

To assess the robustness of our results with respect to varia-
tions in the spectral exponent α, we compute the dephasing
rate �F as a function of α for different values of the noise
strength K . While our primary analysis focuses on the case
α = 1, corresponding to 1/f noise, the results shown in Fig. 7,
demonstrate that �F remains within the same order of magni-
tude across a range of α values for each fixed K . This indicates
that the scaling of the dephasing rate is not highly sensitive to
the precise value of α, thereby justifying the extension of our
constraints on δI/I to materials or environments where α �= 1.

APPENDIX D: DEPHASING RATE ON INCLUSION
OF THE DEVIATION IN TRAJECTORY DUE TO NOISE

On substituting for deviations in the trajectory [Eq. (50)] in
Eq. (25), we obtain the total phase difference between the two
arms of the interferometer due to noise:

δφ = H

(∫ −ωmin

−∞
+

∫ ∞

ωmin

)[
δη̃(ω)

∫ T

0

{
cos (ω0t )[cos (ω0t ) − 1]

ω2
0

+ [2 cos (ω0t ) − 1] cos (ω0t )(
ω2 − ω2

0

) }
eiωt dt

]
dω. (D1)

TABLE II. Order-of-magnitude values used in estimating de-
phasing contributions. The values of x j , η0 and δI

I are consistent with
values used throughout the paper. The value of δx j is obtained from
numerical simulations similar to those in Sec. V.

Quantity Value

Typical position, x j 10−9 m
Magnetic field gradient, η0 6 × 103 T/m
Trajectory deviation, δx j 10−15 m
Gradient fluctuation, δη = δI

I η0 6 × 10−5 T/m

Dephasing rate accounting for terms arising only from devia-
tions in the trajectory arises from the second term in Eq. (D1).
This is given by

�dev = 8H2

ω5
0

∫ ∞

1
S(ξ )Fdev(ξ )dξ, (D2)

where ξ = ω/ω0:

Fdev(ξ ) = sin2 (πξ )

(1 − ξ 2)2

[
1

ξ
− ξ

ξ 2 − 1
+ ξ

ξ 2 − 4

]2

. (D3)

Thus, from Eq. (6), we obtain the following to be the addi-
tional contribution to the dephasing rate:

�tot = 8H2

ω5
0

∫ ∞

1
S(ξ )(

√
FHO(ξ ) +

√
Fdev(ξ ))2dξ . (D4)

We perform an order-of-magnitude estimate using parameter
values drawn from Secs. IV A and V to verify that the dephas-
ing rate due to trajectory deviations, denoted �dev, does not
exceed the order of magnitude of the dephasing rate calculated
without accounting for such deviations [i.e., Eq. (29)]. This
estimation is carried out using values in Table II.

FIG. 8. The graph shows the nature of the integrands in Eq. (29)
as a function of ξ = ω/ω0 in case of white noise (red curve) and
flicker noise (blue curve). Nature of integrands used to compute the
dephasing. It exhibits how, for ξ > 1, the area under the curve in
the case of flicker noise is less than that of white noise. We observe
how the seeming singularities in Eq. (30) at ξ = 1, 2 are removable
singularities. It also helps visualize how the dephasing in the case of
white noise, which has equal strength across the frequency spectrum,
gives rise to finite dephasing as a result of the system not being
susceptible to higher frequencies of noise.
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Using these values, we estimate the two types of con-
tributions to the dephasing in Eq. (25), one involving the
fluctuations directly in the magnetic field gradient and the
other involving the fluctuations in the trajectory as a result of
fluctuations in the field gradient. We note from Eq. (25) that
the dephasing is proportional to x jδη and δx jη0. Hence, we
use these values to estimate the order of magnitude of the two
types of contributions to the dephasing:

x jδη ≈ 10−13 T, (D5)

δx jη0 ≈ 10−11 T. (D6)

These contributions suggest that the dephasing due to de-
viations cannot be neglected. Hence, we have to explicitly
account for the contribution of the deviations in the trajectory
to the dephasing.

From the above analysis, we also note that, although the
deviations in trajectory may be small enough to close the
interferometer, i.e., we can have contrast = 1, the deviations
in the trajectory contribute to the dephasing and have to be
accounted for while obtaining precise bounds on experimental
parameters.

APPENDIX E: NATURE OF THE TRANSFER
FUNCTION AND PSD

To gain insight into how different noise spectra contribute
to dephasing, we examine the behavior of the integrand in
Eq. (29), plotted in Fig. 8 as a function of the normalized
frequency ξ = ω/ω0. The red curve corresponds to white
noise, characterized by a flat spectral density, while the blue
curve represents flicker noise, where the spectral density
scales as 1/ω. For ξ > 1, the integrand associated with flicker
noise lies below that of white noise, reflecting the fact that
flicker noise is predominantly concentrated at low frequen-
cies. Despite the constant strength of white noise across the
spectrum, the system’s frequency response FHO(ω) suppresses
contributions from higher frequencies, ensuring that the de-
phasing rate remains finite. The figure also highlights that
the apparent singularities in the harmonic oscillator response
function at ξ = 1 and ξ = 2, as suggested by Eq. (30), are in
fact removable and do not lead to divergences. These highlight
how the interplay between the noise spectrum and the sys-
tem’s susceptibility determines the extent of dephasing, and
they help justify the convergence properties of the integral in
both the white and flicker noise cases.
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