
Effects of Momentum in Implicit Bias of Gradient Flow for
Diagonal Linear Networks

Bochen Lyu1, 2, He Wang3, Zheng Wang4, Zhanxing Zhu*2

1DataCanvas Lab, DataCanvas, Beijing, China
2University of Southampton, UK

3UCL Centre for Artificial Intelligence, Department of Computer Science, UK
4University of Leeds, UK

bochen.lv@gmail.com, he wang@ucl.ac.uk, z.wang5@leeds.ac.uk, z.zhu@soton.ac.uk

Abstract

This paper targets on the regularization effect of momentum-
based methods in regression settings and analyzes the pop-
ular diagonal linear networks to precisely characterize the
implicit bias of continuous versions of heavy-ball (HB) and
Nesterov’s method of accelerated gradients (NAG). We show
that, HB and NAG exhibit different implicit bias compared to
GD for diagonal linear networks, which is different from the
one for classic linear regression problem where momentum-
based methods share the same implicit bias with GD. Specif-
ically, the role of momentum in the implicit bias of GD is
twofold: (a) HB and NAG induce extra initialization miti-
gation effects similar to SGD that are beneficial for gener-
alization of sparse regression; (b) the implicit regularization
effects of HB and NAG also depend on the initialization of
gradients explicitly, which may not be benign for generaliza-
tion. As a result, whether HB and NAG have better general-
ization properties than GD jointly depends on the aforemen-
tioned twofold effects determined by various parameters such
as learning rate, momentum factor, and integral of gradients.
Our findings highlight the potential beneficial role of momen-
tum and can help understand its advantages in practice such
as when it will lead to better generalization performance.

1 Introduction

Extensive deep learning tasks aim to solve the optimization
problem

argmin
β

L(β) (1)

where L is the loss function and β is the parameter. Gradi-
ent descent (GD) and its variants underpin such optimization
of parameters for deep learning, thus understanding these
simple yet highly effective algorithms is crucial to unveil
the thrilling generalization performance of deep neural net-
works (DNNs). Recently, Soudry et al. (2018); Ji and Tel-
garsky (2019); Lyu and Li (2020); Pesme, Pillaud-Vivien,
and Flammarion (2021); Azulay et al. (2021); Nacson et al.
(2019) have made significant efforts in this direction to un-
derstand GD-based methods through the lens of implicit
bias, which states that GD and its variants are implicitly bi-
ased towards selecting particular solutions among all global
minimum.

*Corresponding author

In particular, Soudry et al. (2018) pioneered the study of
implicit bias of GD and showed that GD selects the max-
margin solution for logistic regression on separable dataset.
For regression problems, the simplest setting is the linear re-
gression problem, where GD and its stochastic variant, SGD,
are biased towards the interpolation solution that is closest
to the initialization measured by the Euclidean distance (Ali,
Dobriban, and Tibshirani 2020). In order to investigate the
implicit bias for DNNs, diagonal linear network, a simpli-
fied version of deep learning models, has been proposed. For
this model, Woodworth et al. (2020); Azulay et al. (2021);
Yun, Krishnan, and Mobahi (2021) showed that the solu-
tion selected by GD is equivalent to that of a constrained
norm minimization problem interpolating between ℓ1 and ℓ2
norms up to the magnitude of the initialization scale. Pesme,
Pillaud-Vivien, and Flammarion (2021) further character-
ized that adding stochastic noise to GD additionally induces
a regularization effect equivalent to reducing the initializa-
tion magnitude.

Besides these fruitful progresses, Gunasekar et al. (2018);
Wang et al. (2022) studied the implicit bias of momentum-
based methods for one-layer linear models and showed that
they have the same implicit bias as GD. Jelassi and Li
(2022), on the other hand, revealed that momentum-based
methods have better generalization performance than GD
for a special linear CNN in classification problems. Ghosh
et al. (2023) conducted a model-agnostic analysis of O(η2)
approximate continuous version of HB from the perspec-
tive of IGR (Barrett and Dherin 2021). Momentum meth-
ods adopt a two-step manner and can induce different dy-
namics compared to vanilla GD: from the perspective of
their O(η)-continuous approximation modelling, the ap-
proximation for GD is a first-order ODE (gradient flow, GF):
dβ/dt = −∇L(β), while, as a comparison, the approxima-
tion for momentum-based methods can be seen as a damped
second-order Hamiltonian dynamic with potential L(β):

m
d2β

dt2
+ λ

dβ

dt
+∇L(β) = 0,

which was first observed by Polyak (1964). Due to the clear
difference in their dynamics, it is natural and intriguing to
ask from the theoretical point of view:

(Q): Will adding momentum to GD change its implicit bias
for DNNs?

For the least squares problem (single layer linear network),
Gunasekar et al. (2018) argued that momentum does not
change the implicit bias of GD, while the case for deep
learning models is more complex. From the empirical point
of view, momentum typically leads to a better generalization
performance and is crucial in the training of modern DNNs.
This suggests that they might enjoy a different implicit bias
compared to GD. Therefore, its theoretical characterization
is meaningful and necessary.

Hence, our goal in this work is to precisely character-
ize the implicit bias of momentum-based methods to take
a step towards answering the above fundamental question.
To explore the case for deep neural works, we consider the
popular deep linear models: diagonal linear networks. Al-
though the structures of diagonal linear networks are simple,
they already capture many insightful properties of DNNs,
including the dependence on the initialization, the over-
parameterization of the parameters, the non-convexity, and
the transition from lazy regime to rich regime (Woodworth
et al. 2020; Pesme, Pillaud-Vivien, and Flammarion 2021;
Azulay et al. 2021) which is an intriguing phenomenon ob-
served in many complex neural networks.

Heavy-Ball algorithms (Polyak 1964) (HB) and Nes-
terov’s method of accelerated gradients (Nesterov 1983)
(NAG) are the most widely adopted momentum-based meth-
ods. These algorithms are generally implemented with a
fixed momentum factor in deep learning libraries such as
PyTorch (Paszke et al. 2017). To be consistent with such
practice, we focus on HB and NAG with a fixed momen-
tum factor that is independent of learning rate or iteration
count. For the purpose of conducting a tractable theoretical
analysis, we rely on the tools of continuous time approxima-
tions of momentum-based methods (with fixed momentum
factor), HB and NAG flow, which were recently interpreted
by Kovachki and Stuart (2021) as modified equations in the
numerical analysis literature and by Shi et al. (2018) as high
resolution ODE approximation.

Our findings are summarized as follows. We show that,
unlike the case for single layer linear networks where
momentum-based methods HB and NAG share similar im-
plicit bias with GF, they exhibit different implicit bias for
diagonal linear networks compared to GF in two main as-
pects:

1. Compared to GF, although HB and NAG flow also con-
verge to solutions that minimize a norm interpolating be-
tween ℓ2-norm and ℓ1-norm up to initialization scales
of parameters, they induce an extra effect that is equiv-
alent to mitigating the influence of initialization of the
model parameters, which is beneficial for generalization
properties of sparse regression (Theorem 3). Note that
stochastic gradient flow (SGF) could also yield an ini-
tialization mitigation effects (Pesme, Pillaud-Vivien, and
Flammarion 2021), although momentum-based methods
and SGF modify GF differently.

2. The solutions of HB and NAG flow also depend on the
initialization of both parameters and gradients explic-
itly and simultaneously, which may not be benign for the
generalization performances for sparse regression.

Therefore, HB and NAG are not always better than GD
from the perspective of generalization for sparse regression.
Whether HB and NAG have the advantages of generalization
over GD is up to the overall effects of the above two distinct
effects determined by various hyper-parameters. In partic-
ular, when mitigation effects of initialization of parameters
brought by HB and NAG outperform their dependence on
the initialization of gradients, HB and NAG will have better
generalization performances than GD, e.g., when the initial-
ization is highly biased (Fig. 2(a)), otherwise, they will not
show such advantages over GD (Fig. 1(a)).

Organization. This paper is organized as follows. In Sec-
tion 2, we summarize notations, setup, and continuous time
approximation modelling details for HB and NAG. Sec-
tion 3 concentrates on our main results of the implicit bias
of momentum-based methods for diagonal linear networks
with corresponding numerical experiments to support our
theoretical findings. We conclude this work in Section 4. All
the proof details and additional experiments are presented in
Appendix.

1.1 Related works

To characterize the properties of momentum-based meth-
ods, continuous time approximations of them are introduced
in several recent works. Su, Boyd, and Candes (2014) pro-
vided a second-order ODE to precisely describe the NAG
with momentum factor depending on the iteration count.
Wilson, Recht, and Jordan (2016) derived a limiting equa-
tion for both HB and NAG when the momentum factor de-
pends on learning rate or iteration count. Shi et al. (2018)
further developed high-resolution limiting equations for HB
and NAG, and Wibisono, Wilson, and Jordan (2016) de-
signed a general framework from the perspective of Breg-
man Lagrangian. When the momentum is fixed and does not
depend on learning rate or iteration count, Kovachki and Stu-
art (2021) developed the continuous time approximation, the
modified equation in the numerical analysis literature, for
HB and NAG.

Compared to these works, we develop the continuous time
approximations of HB and NAG for deep learning models
and regression problems, and we focus on the implicit bias
of HB and NAG flow rather than GF. Furthermore, we also
take into account the effects of other sources of implicit bias
such as initialization and model architecture, which is differ-
ent from the model-agnostic analysis in Ghosh et al. (2023).

The recent work Papazov, Pesme, and Flammarion (2024)
also studied HB for diagonal linear networks using contin-
uous approximation where the initialization of speed of pa-
rameters are all zero. In particular, they characterized a cru-
cial quantity η(1− µ)−2 that can induce acceleration of the
optimization of HB and can make the solution of HB gener-
alize better when η(1−µ)−2 is sufficiently small. As a com-
parison, we do not impose restriction to initialization and
characterize the implicit bias for both HB and NAG flow. In
addition, we reveal the role of initialization of gradients and
show when HB and NAG flow can generalize better/worse
than GF.

2 Preliminaries

Notations. We let {1, . . . , L} be all integers between
1 and L. The dataset with n samples is denoted by
{(xi, yi)}

n
i=1, where xi ∈ R

d is the d-dimensional input
and yi ∈ R is the scalar output. The data matrix is rep-
resented by X ∈ R

n×d where each row is a feature xi

and y = (y1, . . . , yn)
T ∈ R

n is the collection of yi. For
a vector a ∈ R

d, aj denotes its j-th component and its
ℓp-norm is ∥a∥p. For a vector a(t) depending on time, we
use ȧ(t) = da/dt to denote the first time derivative and
ä(t) = d2a/dt2 for the second time derivative. The element-
wise product is denoted by ⊙ such that (a ⊙ b)j = ajbj .

We let ed = (1, . . . , 1)T ∈ R
d. For a square matrix W ∈

R
d×d, we use diag(W) to denote the corresponding vector

(W11, . . . ,Wdd)
T ∈ R

d.

Heavy-Ball and Nesterov’s method of accelerated gradi-
ents. Heavy-Ball (HB) and Nesterov’s method of acceler-
ated gradients (NAG) are perhaps the most widely adopted
momentum-based methods. Different from GD, HB and
NAG apply a two-step scheme (Sutskever et al. 2013). In
particular, for Eq. (1) let k be the iteration number, µ be the
momentum factor, η be the learning rate, and p ∈ R

d be the
momentum of parameter β, then HB updates β as follows:

pk+1 = µpk − η∇L(βk), βk+1 = βk + pk+1 (2)

where p0 = 0. Similarly, NAG can also be written as a two-
step manner

pk+1 = µpk − η∇L(βk + µpk), βk+1 = βk + pk+1 (3)

with p0 = 0. Note that although previous works (Su, Boyd,
and Candes 2014; Nesterov 2014; Wilson, Recht, and Jor-
dan 2016; Shi et al. 2018) considered HB and NAG with
momentum factor depending on the learning rate η or itera-
tion count k, HB and NAG are generally implemented with
constant momentum factor such as in PyTorch (Paszke et al.
2017). Therefore a constant momentum factor µ is assumed
in this work as in Kovachki and Stuart (2021) to be consis-
tent with such practice.

HB and NAG flow: continuous time approximations of
HB and NAG. In this work, we analyze the implicit bias
of HB and NAG through their continuous time approxima-
tions summarized as follows, which provide insights to the
corresponding discrete algorithms and enable us to take the
great advantages of the convenience of theoretical analysis
at the same time. We start with the definition of order of con-
vergence of continuous approximation for discrete HB and
NAG.

Definition 1 (Order of convergence of HB and NAG flow).
An ODE whose solution is β(t) is the order O(ηγ) contin-
uous approximate version of the discrete HB Eq. (2) and
NAG Eq. (3) if for k = 0, 1, 2, . . . , let β̄k be the sequence
given by Eq. (2) or Eq. (3) and let βk = β(t = kη), then
for any T ≥ 0, there exists a constant C > 0 such that
sup0≤kη≤T |βk − β̄k| ≤ Cηγ .

Proposition 1 (HB and NAG flow: O(η) continuous approx-
imate version of HB and NAG). For the model f(x;β) with

empirical loss function L(β), let µ ∈ (0, 1) be the fixed mo-
mentum factor and η be the learning rate, the O(η) contin-
uous approximate versions of the discrete HB (Eq. (2)) and
NAG (Eq. (3)) are of the form

αβ̈ + β̇ +
∇L(β)

1− µ
= 0, (4)

where α = η(1+µ)
2(1−µ) for HB, and α = η(1−µ+2µ2)

2(1−µ) for NAG.

Eq. (4) follows from Kovachki and Stuart (2021) and we
present an alternative proof in Appendix. Note that since the
learning rate η is small, Proposition 1 indicates that, for the
model parameter β, modifying GD with fixed momentum
is equivalent to perturb the re-scaled gradient flow equation
dβ/dt = ∇L(β)/(1− µ) by a small term proportional to η.
More importantly, this modification term offers us consid-
erably more qualitative understanding regarding the dynam-
ics of momentum-based methods than the re-scaled gradient
flow, which will become more significant for large learning
rateÐa preferable choice in practice.

Over-parameterized regression. We consider the regres-
sion problem for the n-sample dataset {(xi, yi)}

n
i=1 where

n < d and assume the existence of the perfect solution,
i.e., there exist interpolation solutions β∗ ∈ R

d such that
∀i ∈ {1, . . . , n} : xT

i β
∗ = yi. For the parametric model

f(x;β) = βTx, we use the quadratic loss ℓi = (f(xi;β) −
yi)

2 and the empirical loss L(β) is

L(β) =
1

2n

n∑

i=1

ℓi(β) =
1

2n

n∑

i=1

(f(xi;β)− yi)
2. (5)

Diagonal linear networks. The diagonal linear network
(Woodworth et al. 2020) is a popular proxy model for DNNs.
It corresponds to an equivalent linear predictor f(x;β) =
θTx, where θ = θ(β) is parameterized by the model param-
eters β. For the diagonal linear networks considered in this
paper, we study the 2-layer diagonal linear network, which
corresponds to the parameterization1 of θ = u ⊙ u − v ⊙ v
in the sense that

f(x;β) := f(x;u, v) = (u⊙ u− v ⊙ v)Tx, (6)

and the model parameters are β = (u, v), where u, v ∈ R
d.

We slightly abuse the notation of L(θ) = L(β). Our goal
in this paper is to characterize the implicit bias of HB and
NAG by precisely capturing the property of the limit point
of θ and its dependence on various parameters such as the
learning rate and the initialization of parameters for diagonal
linear networks f(x;β) trained with HB and NAG.

The use of O(η) order of convergence. The main reason
why we use the O(η) continuous approximation for HB and
NAG is that we aim to precisely characterize the the role
of momentum in the implicit bias of the widely-studied GF,
which is the O(η) approximate continuous version of GD,
for diagonal linear networks. The same order of approxima-
tions (O(η) in our case) for both momentum-based methods
and GD should be used to make a ªfairº comparison on their
implicit bias.

1A standard diagonal linear network is θ = u ⊙ v, which is
shown in (Woodworth et al. 2020) to be equivalent to our parame-
terization here. We further discuss this in Appendix.

3 Implicit Bias of HB and NAG Flow for

Diagonal Linear Nets

To clearly reveal the difference between the implicit bias
of (S)GD and momentum-based methods, we start with dis-
cussing existing results under the unbiased initialization as-
sumption, and our main result is summarized in Theorem 3.
We then discuss the dynamics of θ for diagonal linear net-
works trained with HB and NAG flow, which is necessary
for the proof of Theorem 3 and may be of independent inter-
est.

For convenience, given a diagonal linear network Eq. (6),
let ξ = (ξ1, . . . , ξ

d) ∈ R
d where ∀i ∈ {1, . . . , d} : ξj =

|uj(0)||vj(0)| measures the scale of the initialization, we
first present the definition of the unbiased initialization as-
sumed frequently in previous works (Woodworth et al. 2020;
Azulay et al. 2021; Pesme, Pillaud-Vivien, and Flammarion
2021).

Definition 2 (Unbiased initialization for diagonal linear net-
works). The initialization for the diagonal linear network
Eq. (6) is unbiased if u(0) = v(0), which implies that
θ(0) = 0 and ξ = u(0)⊙ v(0).

Implicit bias of GF. Recently, Woodworth et al. (2020);
Azulay et al. (2021) showed that, for diagonal linear network
with parameterization Eq. (6), if the initialization is unbiased
(Definition 2) and θ(t) = u(t) ⊙ u(t) − v(t) ⊙ v(t) con-
verges to the interpolation solution, i.e., ∀i ∈ {1, . . . , n} :
θT (∞)xi = yi, then under GF θGF(∞) implicitly
solves the constrained optimization problem: θGF(∞) =
argminθ QGF

ξ (θ), s.t. Xθ = y, where QGF
ξ (θ) =

∑d
j=1

[

θj arcsinh (θj/(2ξj))−
√

4ξ2j + θ2j + 2ξj

]

/4. The

form of QGF
ξ (θ) highlights the transition from kernel

regimes to rich regimes of diagonal linear networks under
gradient flow up to different scales of the initialization: the
initialization ξ → ∞ corresponds to the kernel regime or
lazy regime where QGF

ξ (θ) ∝ ∥θ∥22 and the parameters only

move slowly during training, and ξ → 0 corresponds to the
rich regime where QGF

ξ (θ) → ∥θ∥1 and the corresponding

solutions enjoy better generalization properties for sparse re-
gression. For completeness, we characterize the implicit bias
of GF without requiring the unbiased initialization (Defini-
tion 2) in the following proposition.

Proposition 2 (Implicit bias of GF for diagonal linear net
with biased initialization). For diagonal linear network
Eq. (6) with biased initialization (u(0) ̸= v(0)), if u(t)
and v(t) follow the gradient flow dynamics for t > 0, i.e.,
u̇ = −∇uL and v̇ = −∇vL, and if the solution converges
to the interpolation solution, then

θ(∞) = argmin
θ

QGF
ξ (θ) + θTRGF, s.t. Xθ = y (7)

where RGF = (RGF
1 , . . . ,RGF

d)T ∈ R
d, ∀j ∈ {1, . . . , d} :

RGF
j = arcsinh (θj(0)/2ξj) /4.

Compared to the unbiased initialization case, besides
QGF

ξ , an additional term RGF that depends on θ(0) is re-

quired to capture the implicit bias when the initialization is
biased. Note that RGF indicates that θ(∞) also depends on

the direction of the initialization and serves as a kind of self-
regularization.

3.1 Implicit bias of HB and NAG flow

Gunasekar et al. (2018); Wang et al. (2022) argued that mo-
mentum does not change the implicit bias of GF for single
layer model for both linear regression and classification. For
DNNs, will modifying GF with the widely adopted momen-
tum change the implicit bias? If it does, will momentum-
based methods lead to solutions that have better generaliza-
tion properties? In the following, we characterize the im-
plicit bias of HB and NAG flow (Proposition 1) for diagonal
linear networks to compare with that of GF and answer these
questions. For completeness, we do not require the unbiased
initialization u(0) = v(0) condition and let exp(a) ∈ R

d

denote the vector (ea1 , . . . , ead)T for a vector a ∈ R
d. We

now present our main theorem.

Theorem 3 (Implicit bias of HB and NAG flow for diago-
nal linear networks). For diagonal linear network Eq. (6),
let RM = (RM

1 , . . . ,RM
d)T ∈ R

d, if u(t) and v(t) follow
the O(η) approximate continuous version of HB and NAG
Eq. (4) for t ≥ 0 and if the solution θ(∞) = u(∞)⊙u(∞)−
v(∞)⊙ v(∞) converges to the interpolation solution, then,
neglecting all terms of the order O(η2),

θ(∞) = argmin
θ

QM
ξ̄(∞)(θ) + θTRM, s.t. Xθ = y (8)

where we define ξ̄(∞) = ξ ⊙ exp (−αϕ(∞)), and ∀j ∈
{1, . . . , d} :

RM
j =

1

4
arcsinh

(

θj(0)

2ξj
+

4α∂θjL(θ(0))

1− µ

√

1 +
θ2j (0)

4ξ2j

)

ϕ(∞) =
8

(1− µ)2

∫ ∞

0

∇θL (θ(s))⊙∇θL (θ(s)) ds,

QM
ξ̄(∞)(θ) =

1

4

d∑

j=1

[

θj arcsinh

(
θj

2ξ̄j(∞)

)

−
√

4ξ̄2j (∞) + θ2j + 2ξ̄j(∞)
]

. (9)

Specifically, α is chosen as
η(1+µ)
2(1−µ) if we run HB and α =

η(1−µ+2µ2)
2(1−µ) for NAG.

Remark. The QM
ξ̄(∞)

part for HB and NAG flow has a for-

mulation similar to QGF
ξ of GF: both of them are the hyper-

bolic entropy (Ghai, Hazan, and Singer 2020). The transition
from kernel regime to rich regime by decreasing ξ from ∞
to 0 also exists for HB and NAG (see Appendix). The dif-
ference between QM

ξ̄(∞)
and QGF

ξ lies in that HB and NAG

flow induce an extra initialization mitigation effect: given ξ,
QM

ξ̄(∞)
for HB and NAG flow is equivalent to the hyperbolic

entropy of GF with a smaller initialization scale since ξ̄(∞)
is strictly smaller than ξ due to the fact that ϕ(∞) is a posi-
tive integral and finite. As a result, QM

ξ̄(∞)
is closer to an ℓ1-

norm of θ than QGF
ξ . Furthermore, compared to the implicit

bias of GF when the initialization is biased (Proposition 2),
an additional term in RM that depends on the initialization
of gradient explicitly is required to capture the implicit bias
of HB and NAG flow. Such dependence is as expected since
the first step update of momentum methods simply assigns
the initialization of gradient to the momentum, which is cru-
cial for the following updates. Therefore, Theorem 3 takes
an important step towards positively answering our funda-
mental question (Q) in the sense that momentum changes
the implicit bias of GD for diagonal linear networks.

A natural question following the fact that HB and NAG
flow induce different implicit bias compared to GF is: will
this difference lead to better generalization properties of HB
and NAG? The implicit bias of HB and NAG flow is cap-
tured by two distinct parts, the hyperbolic entropy QM

ξ̄(∞)

and RM, where the effects of momentum on QM
ξ̄(∞)

is bene-

ficial for generalization while the effects on RM may hinder
the generalization performance and is affected by the biased
initialization. Thus the answer highly depends on various
conditions.

Due to the aforementioned initialization mitigation effects
of HB and NAG, GD with a smaller initialization might
achieve a similar regularization effect as HB and NAG. The
main harm, however, of using GD with a smaller initializa-
tion is the saddle point escape issue: very small initialization
scales lead to the issue that these scales correspond to the
initialization highly close to a saddle point (here u = v = 0)
that might be difficult to escape. This reveals the benefit of
the extra effects brought by momentum, i.e., avoiding the
saddle point escape problem by using a relatively large ini-
tialization to achieve good generalization.

In the following, we present a detailed analysis with cor-
responding numerical experimental results to compare the
implicit bias of GF and that of HB and NAG flow for the
case of both unbiased and biased initialization, respectively.

3.2 Comparison of HB/NAG flow and (S)GF for
unbiased initialization

When the initialization is unbiased, it is worth to mention
that a recent work (Pesme, Pillaud-Vivien, and Flammar-
ion 2021) studied the stochastic version of gradient flow,
the stochastic gradient flow (SGF), and revealed that the ex-
istence of sampling noise changes the implicit bias of GF
in the sense that θSGF(∞) = argminθ Q

SGF
ξ̃∞

(θ) under the

constraint Xθ = y, where

QSGF
ξ̃(∞)

(θ) =

d∑

j=1

1

4

[

θj arcsinh

(

θj

2ξ̃j(∞)

)

−
√

4ξ̃2j (∞) + θ2j + 2ξ̃j(∞)
]

(10)

with ξ̃(∞) being strictly smaller than ξ. The remarkable
point appears when we compare QM

ξ̄∞
with QSGF

ξ̃(∞)
: although

SGF and momentum-based methods modify GF differently,
i.e., SGF adds stochastic sampling noise while momentum-
based methods add momentum to GF, both of them induce
an effect equivalent to reducing the initialization scale! The

difference between them lies in the way how they control
such initialization mitigation effect. For SGF this is con-
trolled by the integral of loss function, while the effect de-
pends on the integral of gradients for HB and NAG flow.

To show the difference between (S)GF and momentum-
based methods HB and NAG flow, we note that RM

j in The-
orem 3 becomes

RM
j = arcsinh

(
4α(XT y)j
n(1− µ)

)

,

which is also determined by the dataset, and RGF in Propo-
sition 2 is simply zero. Therefore, as long as the initializa-
tion of gradients XT y = o(α−1n(1− µ)), i.e., RM is small
compared to QM

ξ̄(∞)
such that only QM

ξ̄(∞)
matters for char-

acterizing the implicit bias, HB and NAG flow will exhibit
better generalization properties for sparse regression due to
the initialization mitigation effects of HB and NAG flow that
lead QM

ξ̄(∞)
to be closer to the ℓ1-norm of θ than QGF

ξ . On the

other hand, when RM
j is not small compared to QM

ξ̄(∞)
, the

initialization mitigation effects of HB and NAG flow may
not be significant, thus there may not be generalization ben-
efit for HB and NAG flow.

To summarize, for unbiased initialization, HB and NAG
outperform GD regarding the generalization when αXT y is
much smaller than n(1−µ) and they would have worse gen-
eralization performance than GD otherwise. In the follow-
ing, we conduct numerical experiments to verify this claim.

Numerical Experiments. We consider the over-
parameterized sparse regression. For the dataset
{(xi, yi)}

n
i=1 where xi ∈ R

d and yi ∈ R, we set
n = 40, d = 100 and xi ∼ N (0, I). yi is generated by
yi = xT

i θ
∗ where θ∗ ∈ R

d is the ground truth solution. We
let 5 components of θ∗ be non-zero. Our models are 2-layer
diagonal linear networks f(x;β) = u ⊙ u − v ⊙ v. We use
∥ξ∥1 to measure the scale of initialization. The initialization
of parameters is unbiased by letting u(0) = v(0) = ced
where c is a constant and ∥ξ∥1 = c2d. We consider training
algorithms GD, SGD, HB, and NAG. And the generalization
performance of the solution for each training algorithm is
measured by the distance D(θ(∞), θ∗) = ∥θ(∞) − θ∗∥22.
Since RM is determined by the dataset, to control its mag-
nitude, we build two new datasets Dε = {(xi;ε, yi;ε)}

d
i=1

where ∀i ∈ {1. . . . , d} : xi;ε = εxi, yi;ε = εyi. We then
train diagonal linear networks using GD and momentum-
based methods HB and NAG on each dataset, respectively,
and learning rate η = 3 × 10−2 and momentum factor
µ = 0.9. As shown in Fig. 1, as we decrease the value of ε
which decreases the magnitude of RM, the generalization
benefit of HB and NAG becomes more significant since
their initialization mitigation effects are getting more
important. Note that Fig. 1 also reveals the transition to rich
regime by decreasing the initialization scales.

3.3 Comparison of HB/NAG flow and GF for
biased initialization

If the initialization is biased, i.e., u(0) ̸= v(0), both the im-
plicit bias of GF and that of HB and NAG flow additionally

10 3 10 2

0.02

0.04

0.06

0.08

0.10 GD
SGD
HB
NAG

(a) ε = 0.6

10 3 10 2 10 1

0.025

0.050

0.075

0.100

0.125 GD
SGD
HB
NAG

(b) ε = 0.2

Figure 1: D(θ(∞), θ∗) for diagonal linear networks with un-
biased initialization trained with different algorithms and ε
(smaller ε for smaller ∇L(θ(0))). x-axis denotes ∥ξ∥1.

depend on θ(0) (RGF for GF in Proposition 2 and RM in
Theorem 3 for HB and NAG flow) besides the hyperbolic
entropy. Compared to RGF, RM also includes the explicit
dependence on the initialization of gradient that is propor-
tional to α∇L(θ(0)). Therefore, recall that α is the order of
η, if ∇L(θ(0)) = o(α−1n(1− µ)) and α∇L(θ(0)) is small
compared to θ(0), then RGF is close to RM, leading to the
fact that the difference between the implicit bias of GF and
that of HB and NAG flow are mainly due to the initialization
mitigation effects of HB and NAG. As a result, we can ob-
serve the generalization advantages of HB and NAG over GF
(Fig. 2(a)). However, when the initialization is only slightly
biased, i.e., u(0) ̸= v(0) and u(0) is close to v(0), the de-
pendence on ∇L(θ(0)) of the solutions of HB and NAG is
important and the generalization benefit of HB and NAG for
sparse regression may disappear.

Numerical Experiments. We use the same dataset
{(xi, yi)}

d
i=1 as in Section 3.2. We set η = 10−1 and

µ = 0.9. To characterize the influence of the extent of the
biased part of the initialization, we let u(0) = φced and
v(0) = φ−1ced where φ ∈ (0, 1] is a constant measuring
the extent of the unbiased part of the initialization. In this
way, for any φ, we have ξj = |uj(0)||vj(0)| = c2. In or-
der to verify the above theoretical claims, we conduct two
sets of experiments: (i). We train diagonal linear network

10 3 10 2
0

1

2

3 GD
SGD
HB
NAG

(a) x-axis denotes ∥ξ∥1

0.02 0.04 0.06 0.08 0.10

0.25

0.50

0.75

1.00

1.25 GD
SGD
HB
NAG

(b) x-axis denotes φ

Figure 2: D(θ(∞), θ∗) for diagonal linear networks with bi-
ased initialization trained with different algorithms and (a).
different initialization scales with φ = 0.03; (b). different
extents of the biased part of the initialization (smaller φ im-
plies more biased initialization) and ∥ξ∥1 = 0.0046.

with different algorithms for different scales of initializa-
tion ∥ξ∥1 and fixed φ. As shown in Fig. 2(a), as a result of
the initialization mitigation effects, HB, NAG, and SGD ex-
hibit better generalization performance than GD for sparse
regression. (ii). We fix ∥ξ∥1 and train diagonal linear net-
works with different biased initialization (different values of
φ). As shown in Fig. 2(b), as we increasing φ, the initial-
ization becomes less biased and the extra dependence on the
initialization of gradient of HB and NAG outperforms their
initialization mitigation effects, and, as a result, the general-
ization benefits of momentum-based methods disappear.

3.4 Dynamics for θ of diagonal linear networks
under HB and NAG Flow

For diagonal linear networks Eq. (6), dynamics for θ un-
der HB and NAG flow is crucial to the proof of Theorem 3,
and may be of independent interest. Interestingly, different
from diagonal linear networks under gradient flow where θ
follows a mirror flow or stochastic gradient flow where θ
follows a stochastic mirror flow with time-varying potential,
due to the second-order ODE nature of HB and NAG flow
as formulated in Eq. (4), θ does not directly follow a mirror

flow. Instead, HB and NAG flow is specialÐit is θ+αθ̇ that

follows a mirror flow form with time-varying potential, as
shown below.

Proposition 4 (Dynamics of θ for diagonal nets trained with
HB and NAG flow). For diagonal linear networks Eq. (6)
trained with HB and NAG flow (Eq. (4)) and initialized as
u(0) = v(0) and u(0) ⊙ u(0) = ξ ∈ R

d, let θ̄α := θ +

αθ̇ ∈ R
d and its j-th component be θ̄α;j , then θ̄α follows a

mirror flow form with time-varying potential (RM is defined
in Theorem 3) in the sense that ∀j ∈ {1, . . . , d} :

d

dt
∇
[
QM

ξ,j(θ̄α, t) + θ̄α;jR
M
j

]
= −

∂θjL(θ)

1− µ
, (11)

where QM
ξ,j(θ̄α, t) is given by

QM
ξ,j(θ̄α, t) =

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄α;j

+2ξ̄j(t)
]

and ξ̄j(t) = ξje
−αϕj(t) with

ϕj(t) =
8

(1− µ)2

∫ t

0

∂θjL (θ(s)) ∂θjL (θ(s)) ds. (12)

Compared to the mirror flow form of diagonal linear
networks under gradient flow d∇QGF

ξ (θ)/dt = −∇L(θ),
there are three main differences in Eq. (11): (i). It is
a second-order ODE since Eq. (11) can be written as

α∇2QM
ξ,j(θ̄α, t)θ̈j + ∇2QM

ξ,j(θ̄α, t)θ̇j +
∂∇QM

ξ,j(θ̄α,t)

∂t
+

∂θj
L(θ)

1−µ
= 0, while the dynamics of GF is a first-order ODE;

(ii). It is θ̄α, not θ, appears in the mirror flow potential for
diagonal linear networks under HB and NAG flow, and an
extra term depending on the initialization of gradients is in-
cluded; (iii). The hyperbolic entropy part of the mirror flow
potential QM

ξ,j(θ̄α, t) under HB and NAG flow is a time-

varying one, and the time-varying part mainly mitigates the
influence of the initialization ξ (ξ̄j(t) ≤ ξ for any t ≥ 0).

3.5 Effects of Hyper-parameters for Implicit Bias

As a result of the fact that momentum-based methods (HB
and NAG) add a perturbation proportional to the learning
rate η to re-scaled gradient flow (Proposition 1), the differ-
ence of their implicit bias depends on η: the limit η → 0
leads to ξ̄(∞) → ξ and, as a consequence, QM

ξ̄(∞)
→

QGF
ξ . Therefore, for small learning rate, the implicit bias

of momentum-based methods and that of GD are almost
the same. This observation coincides with the experience
of Rumelhart, Hinton, and Williams (1986); Kovachki and
Stuart (2021) that setting momentum factor as 0 returns the
same solution as reducing the learning rate when momen-
tum factor is non-zero. The discrepancy between the implicit
bias of momentum-based methods and that of GD becomes
significant for moderate learning rate and momentum factor.

To verify this, we set ∥ξ∥1 = 0.1240, and run: (i). GD
with η = 10−2; (ii). HB and NAG with µ = 0.9 and differ-
ent η; (iii). HB and NAG with η = 10−2 and different µ. We
present the generalization performance D(θ(t), θ∗) during

100 101 102 103 104

100

GD(0.01)
HB(0.01)
NAG(0.01)
HB(0.005)
NAG(0.005)
HB(0.001)
NAG(0.001)

(a)

100 101 102 103 104

100

GD
HB(0.9)
NAG(0.9)
HB(0.8)
NAG(0.8)
HB(0.7)
NAG(0.7)

(b)

Figure 3: Diagonal nets trained with different algorithms and
hyper-parameters: (a). D(θ(t), θ∗) for different η (numbers
in the brackets) and µ = 0.9. (b). D(θ(t), θ∗) for different
µ (numbers in the brackets) and η = 0.01. x-axis denotes
iterations.

training for each algorithm with its corresponding training
parameters in Fig. 3(a) and Fig. 3(b). These results clearly
reveal that both decreasing the learning rate and the momen-
tum factor make the difference between the implicit bias of
momentum-based methods and that of GD not significant.
Experimental details are in Appendix.

4 Conclusion

In this paper, we have targeted on the unexplored regulariza-
tion effect of momentum-based methods and we have shown
that, unlike the single layer linear network, momentum-
based methods HB and NAG flow exhibit different implicit
bias compared to GD for diagonal linear networks. In par-
ticular, we reveal that HB and NAG flow induce an extra
initialization mitigation effect similar to SGD that is bene-
ficial for generalization of sparse regression and controlled
by the integral of the gradients, learning rate, data matrix,
and the momentum factor. In addition, the implicit bias of
HB and NAG flow also depends on the initialization of both
parameters and gradients explicitly, which may also hinder
the generalization, while GD and SGD only depend on the
initialization of parameters.

References

Ali, A.; Dobriban, E.; and Tibshirani, R. 2020. The Im-
plicit Regularization of Stochastic Gradient Flow for Least
Squares. In International Conference on Machine Learning.

Azulay, S.; Moroshko, E.; Nacson, M. S.; Woodworth, B.;
Srebro, N.; Globerson, A.; and Soudry, D. 2021. On the
Implicit Bias of Initialization Shape: Beyond Infinitesimal
Mirror Descent. arXiv:2102.09769.

Barrett, D.; and Dherin, B. 2021. Implicit Gradient Regular-
ization. In International Conference on Learning Represen-
tations.

Chizat, L.; and Bach, F. 2020. Implicit bias of gradient de-
scent for wide two-layer neural networks trained with the
logistic loss. In Conference on Learning Theory.

Chizat, L.; Oyallon, E.; and Bach, F. 2019. On lazy train-
ing in differentiable programming. In Advances in Neural
Information Processing Systems.

Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. In Journal of Machine Learning Research.

Even, M.; Pesme, S.; Gunasekar, S.; and Flammarion, N.
2023. (S)GD over Diagonal Linear Networks: Implicit
Regularisation, Large Stepsizes and Edge of Stability. In
arXiv:2302.08982.

Ghai, U.; Hazan, E.; and Singer, Y. 2020. Exponentiated
gradient meets gradient descent. In International Confer-
ence on Algorithmic Learning Theory.

Ghosh, A.; Lyu, H.; Zhang, X.; and Wang, R. 2023. Im-
plicit regularization in Heavy-ball momentum accelerated
stochastic gradient descent. arXiv:2302.00849.

Gunasekar, S.; Lee, J.; Soudry, D.; and Srebro, N. 2018.
Characterizing Implicit Bias in Terms of Optimization Ge-
ometry. In International Conference on Machine Learning.

Jelassi, S.; and Li, Y. 2022. Towards understanding
how momentum improves generalization in deep learning.
arXiv:2207.05931.

Ji, Z.; and Telgarsky, M. 2019. Gradient Descent Aligns the
Layers of Deep Linear Networks. In International Confer-
ence on Learning Representations.

Kingma, D. P.; and Ba, J. 2017. Adam: A method for
stochastic optimization. In arXiv:1412.6980.

Kovachki, N. B.; and Stuart, A. M. 2021. Continuous Time
Analysis of Momentum Methods. In Journal of Machine
Learning Research.

Li, Z.; Luo, Y.; and Lyu, K. 2021. Towards Resolving the
Implicit Bias of Gradient Descent for Matrix Factorization:
Greedy Low-Rank Learning. In International Conference
on Learning Representations.

Lyu, B.; and Zhu, Z. 2022. Implicit Bias of Adversarial
Training for Deep Neural Networks. In International Con-
ference on Learning Representations.

Lyu, B.; and Zhu, Z. 2023. Implicit Bias of (Stochastic)
Gradient Descent for Rank-1 Linear Neural Network. In Oh,
A.; Naumann, T.; Globerson, A.; Saenko, K.; Hardt, M.; and
Levine, S., eds., Advances in Neural Information Processing
Systems, volume 36, 58166±58201. Curran Associates, Inc.

Lyu, K.; and Li, J. 2020. Gradient Descent Maximizes the
Margin of Homogeneous Neural Networks. In International
Conference on Learning Representations.

Nacson, M. S.; Gunasekar, S.; Lee, J.; Srebro, N.; and
Soudry, D. 2019. Lexicographic and Depth-Sensitive Mar-
gins in Homogeneous and Non-Homogeneous Deep Mod-
els. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning
Research, 4683±4692. PMLR.

Nesterov, Y. 1983. A method of solving a convex program-
ming problem with convergence rate o(1/k2). In Soviet
Mathematics Doklady.

Nesterov, Y. 2014. Introductory Lectures on Convex Opti-
mization: A Basic Course. In Springer Publishing Company,
Incorporated.

Papazov, H.; Pesme, S.; and Flammarion, N. 2024. Lever-
aging Continuous Time to Understand Momentum When
Training Diagonal Linear Networks. In Dasgupta, S.;
Mandt, S.; and Li, Y., eds., Proceedings of The 27th Inter-
national Conference on Artificial Intelligence and Statistics,
volume 238 of Proceedings of Machine Learning Research,
3556±3564. PMLR.

Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in PyTorch. In Advances
in Neural Information Processing Systems 2017 Workshop
Autodiff.

Pesme, S.; Pillaud-Vivien, L.; and Flammarion, N. 2021.
Implicit Bias of SGD for Diagonal Linear Networks: a Prov-
able Benefit of Stochasticity. In Advances in Neural Infor-
mation Processing Systems.

Pillaud-Vivien, L.; Reygner, J.; and Flammarion, N. 2020.
Label Noise (stochastic) Gradient Descent Implicitly Solves
the Lasso for Quadratic Parametrisation. In Conference on
Learning Theory.

Polyak, B. 1964. Some Methods of Speeding Up the Conver-
gence of Iteration Methods. In Ussr Computational Mathe-
matics and Mathematical Physics.

Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J.
1986. Learning internal representations by error propaga-
tion. In Parallel Distributed Processing: Explorations in
Microstructures in Cognition, volume 1: Foundations.

Shi, B.; Du, S. S.; Jordan, M. I.; and Su, W. J. 2018. Under-
standing the Acceleration Phenomenon via High-Resolution
Differential Equations. In arXiv: 1810.08907.

Soudry, D.; Hoffer, E.; Nacson, M. S.; Gunasekar, S.; and
Srebro, N. 2018. The Implicit Bias of Gradient Descent
on Separable Data. Journal of Machine Learning Research,
19(70): 1±57.

Su, W.; Boyd, S.; and Candes, E. 2014. A differential equa-
tion for modeling nesterov’s accelerated gradient method:
Theory and insights. In Advances in Neural Information
Processing Systems.

Sutskever, I.; Martens, J.; Dahl, G.; and Hinton, G. 2013.
On the importance of initialization and momentum in deep
learning. In International Conference on Machine Learning.

Wang, B.; Meng, Q.; Zhang, H.; Sun, R.; Chen, W.; Ma,
Z.-M.; and Liu, T.-Y. 2022. Does Momentum Change the
Implicit Regularization on Separable Data? In Koyejo, S.;
Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; and Oh,
A., eds., Advances in Neural Information Processing Sys-
tems, volume 35, 26764±26776. Curran Associates, Inc.

Wibisono, A.; Roelofs, R.; Stern, M.; Srebro, N.; and Recht,
B. 2017. The Marginal Value of Adaptive Gradient Methods
in Machine Learning. In Advances in Neural Information
Processing Systems.

Wibisono, A.; Wilson, A. C.; and Jordan, M. I. 2016. A vari-
ational perspective on accelerated methods in optimization.
Proceedings of the National Academy of Sciences, 113(47):
E7351±E7358.

Wilson, A. C.; Recht, B.; and Jordan, M. I. 2016. A lya-
punov analysis of momentum methods in optimization. In
arXiv:1611.02635.

Woodworth, B.; Gunasekar, S.; Lee, J. D.; Moroshko, E.;
Savarese, P.; Golan, I.; Soudry, D.; and Srebro, N. 2020. Ker-
nel and rich regimes in overparametrized models. In Con-
ference on Learning Theory.

Yun, C.; Krishnan, S.; and Mobahi, H. 2021. A Unifying
View on Implicit Bias in Training Linear Neural Networks.
In International Conference on Learning Representations.

We first add more related works and provide additional numerical experiments to support our theoretical results. We then
present the detailed modelling techniques of momentum-based methods HB and NAG. Finally we discuss the proofs for main
theorems.

A Additional Related Works and Detailed Comparisons

Besides the early applications of momentum-based methods in the convex optimization literature, Rumelhart, Hinton, and
Williams (1986) firstly applied HB to the training of deep learning models. The recent work Sutskever et al. (2013) then
summarized these momentum-based methods and illustrated their importance in the area of deep learning. Wibisono et al.
(2017) demonstrated that SGD, HB and NAG generalize better than adaptive methods such as Adam (Kingma and Ba 2017)
and AdaGrad (Duchi, Hazan, and Singer 2011) for deep networks by conducting experiments on classification problems.

Implicit bias of GD and its variants. The study of implicit bias started from Soudry et al. (2018) where GD has been
shown to return the max-margin classifier for the logistic-regression problem. The analysis for classification problems was
then generalized to linear networks (Ji and Telgarsky 2019), more general homogeneous networks (Lyu and Li 2020; Chizat
and Bach 2020), and other training strategies (Lyu and Zhu 2022) for homogeneous networks. For regression problems, Li,
Luo, and Lyu (2021) showed that gradient flow for matrix factorization implicitly prefers the low-rank solution. Azulay et al.
(2021); Yun, Krishnan, and Mobahi (2021) studied the implicit bias of GF for standard linear networks. For the diagonal linear
networks, Azulay et al. (2021); Yun, Krishnan, and Mobahi (2021); Woodworth et al. (2020) further revealed the transition
from kernel regime (or lazy regime) (Chizat, Oyallon, and Bach 2019) to rich regime by decreasing the initialization scales
from ∞ to 0. Besides the full-batch version of gradient descent, Pesme, Pillaud-Vivien, and Flammarion (2021); Lyu and
Zhu (2023) studied the SGF and showed that the stochastic sampling noise implicitly induces an effect equivalent to reducing
the initialization scale. Pillaud-Vivien, Reygner, and Flammarion (2020) then analyzed GF with label noise and (Even et al.
2023), removing the infinitesimal learning rate approximation, studied the implicit bias of discrete GD and SGD with moderate
learning rate for diagonal linear networks. Gunasekar et al. (2018); Wang et al. (2022) showed that momentum-based methods
converge to the same max-margin solution as GD for single layer model and linear classification problem. Jelassi and Li (2022)
further revealed that momentum-based methods have better generalization performance than GD for classification problem.
Ghosh et al. (2023) conducted a model-agnostic analysis of O(η2) continuous approximate version of HB and also showed the
generalization advantages of HB.

Comparison to Gunasekar et al. (2018); Wang et al. (2022). Gunasekar et al. (2022) revealed that there is no difference
between the implicit bias of momentum-based methods and that of GD for linear regression problem. In addition, (Wang et al.
2022) studied the linear classification problem and showed that momentum-based methods converge to the same max-margin
solution as GD for single-layer linear networks, i.e., they share the same implicit bias. These works confirmed that momentum-
based methods does not enjoy possible better generalization performance than GD for single-layer models. Compared to these
works, our results reveal that momentum-based methods will have different implicit bias when compared to GD for diago-
nal linear networks, a deep learning models, indicating the importance of the over-parameterization on the implicit bias of
momentum-based methods.

Comparison to Jelassi and Li (2022). Jelassi and Li (2022) studied classification problem and also showed that momentum-
based methods improve generalization of a linear CNN model partly due to the historical gradients. The setting of our work
is different from that of Jelassi and Li (2022): our work focuses on regression problems and diagonal linear networks. In
addition, there are also differences between the conclusion of our work and that of Jelassi and Li (2022), in the sense that we
conclude that momentum-based methods does not always lead to solutions with better generalization performance than GD,
which depends on whether the initialization mitigation effect of momentum-based methods (interestingly this effect can also be
regarded as coming from the historical gradients as in Jelassi and Li (2022)) outperforms their extra dependence on initialization
of gradients. Therefore, the momentum-based method is not always a better choice than GD.

Comparison to Ghosh et al. (2023). The analysis in Ghosh et al. (2023) is model-agnostic, in the sense that it did not
consider other sources that affect the implicit bias such as model architectures and initialization, while our work focuses on
precisely characterizing the implicit bias of momentum-based methods and its explicit dependence on the architecture and the
initialization of both parameters and gradients, which cannot be captured solely by the analysis in Ghosh et al. (2023).

B Additional Experiments and Missing Experimental Details

B.1 Additional Numerical Experiments for Biased Initialization.

To further characterize the influence of the extent of the biased part of the initialization, we run similar experiments with same
hyper-parameters as in Fig. 2(b) except for the scale of the initialization ∥ξ∥1. The results are presented in Fig. 4. It can be
seen that, for different ∥ξ∥1, the generalization benefits of HB and NAG are significant when φ is small, i.e., the initialization
is highly biased.

For other biased initialization, we consider u(0) = ced for some constant c ∈ R and v(0) = ced + ρ for a random
gaussian vector ρ ∈ R

d. We use the same dataset as in Fig. 2(a). As shown in Fig. 5, the generalization performance of HB

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.2

0.4

0.6

0.8

D((), *)

GD
SGD
HB
NAG

(a)

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10

0.5

1.0

1.5

2.0

D((), *)

GD
SGD
HB
NAG

(b)

Figure 4: D(θ(∞), θ∗) for diagonal linear networks trained with different algorithms and different values of φ. (a). ∥ξ∥1 =
0.0022. (b). ∥ξ∥1 = 0.01.

and NAG solutions become better as we decrease the scale of the initialization, indicating the transition from kernel regime
to rich regime. Furthermore, as a result of the initialization mitigation effects, Fig. 5 shows that HB, NAG, and SGD exhibit
better generalization performance than GD, which further verifies the benefit of momentum on the generalization when the
initialization is biased.

B.2 Non-linear Networks

To explore whether the generalization benefit of momentum-based methods exists for non-linear networks, we conduct experi-
ments for non-linear networks in this section to compare GD with HB and NAG.

Experiment details for non-linear networks. We train a four-layer non-linear network f(x;W) with the architecture of
100× 100 Linear-ReLU-100× 100 Linear-ReLU-100× 100 Linear-ReLU-100× 1 Linear. The learning rate
is fixed as η = 10−2 and the momentum factor is fixed as µ = 0.9 for HB and NAG. To measure the initialization scales, we

vectorize all layer matrices and calculate the sum of ℓ2-norm, i.e., we calculate
∑4

k=1 ∥Wk∥
2
F where Wk is the weight matrix

of the k-th layer. Since non-linear networks are not equivalent to a linear predictor θTx as diagonal linear networks, we sample
a newly test data with {(xi;test, yi;test)}

40
i=1 using the ground truth solution θ∗ and the training data distribution and let the test

error

D =
1

2n

40∑

i=1

(f(xi;test;W)− yi;test)
2

measure the generalization performance.

10 1

|| ||1

0.0

0.2

0.4

0.6

0.8

D((), *)

GD
SGD
HB
NAG

Figure 5: D(θ(∞), θ∗) for diagonal linear networks with biased initialization trained with different algorithms and different
values of ∥ξ∥1.

We show the benefits of momentum for non-linear networks in the same data of Section 3.2 in Fig. 6, which reveals that the
benefit of momentum also exists in the non-linear networks, and the test errors are getting lower for smaller initialization scales
similar to the diagonal linear networks.

100 101 102 103 104

iterations

4 × 100

5 × 100
Test error, non-linear networks

GD (0.0203)
HB (0.0203)
NAG (0.0203)
GD (0.1027)
HB (0.1027)
NAG (0.1027)
GD (0.3247)
HB (0.3247)
NAG (0.3247)

Figure 6: D(θ(∞), θ∗) for non-linear networks trained with different algorithms and different initialization scales (numbers in
the bracket)

B.3 Experimental Details for Fig. 3

The dataset is the same as that in Section 3.2. To make the initialization biased, we consider u(0) = ced for some constant
c ∈ R and v(0) = ced + ρ for a random gaussian vector ρ ∈ R

d, where we fix ρ for the training of different algorithms with
different hyper-parameters.

Furthermore, to verify the statement of Section 3.5, we also report the dependence of D(θ(∞), θ∗) on η in Fig. 7(a) and the
effects of µ in Fig. 7(b).

C Details of the Continuous Modelling

In Section C.1 we study HB and present the results for NAG in Section C.2.

C.1 Continuous time approximation of HB

Recall that the discrete update rule for β is

pk+1 = µpk −∇L(βk),

βk+1 = βk + ηpk+1,

10 3 10 2

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36
D((), *)

GD
HB
NAG

(a) D(θ(∞), θ∗) for different η and µ = 0.9

0.80 0.82 0.84 0.86 0.88 0.90 0.92 0.94

0.12

0.14

0.16

0.18

0.20

0.22

D((), *)

GD
HB
NAG

(b) D(θ(∞), θ∗) for different µ and η = 0.01

Figure 7: Diagonal nets trained with different algorithms and hyper-parameters

which, noting that ηpk = βk − βk−1, can be further written as a single-step update

βk+1 = βk + µ(βk − βk−1)− η∇L(β). (13)

We let time t = kη and the continuous version of βk be β(t). Note that β(t+ η) ≈ βk+1 and that

β(t+ η) = β(t) + ηβ̇(t) +
η2

2
β̈(t) +O(η3),

by replacing all βk and βk+1 with β(t) and β(t+ η), respectively, Eq. (13) becomes

β(t+ η)− β(t) = µ(β(t)− β(t− η))− η∇L(β)

=⇒ ηβ̇(t) +
η2

2
β̈(t) = µ

(

ηβ̇(t)−
η2

2
β̈(t)

)

− η∇L(β), (14)

which gives us the continuous time approximation of HB:

αβ̈(t) + β̇(t) +
∇L(β)

1− µ
= 0.

with α = η(1+µ)
2(1−µ) .

C.2 Continuous time approximations of NAG

The discrete update rule for β trained with NAG is

pk+1 = µpk − η∇L(βk + µpk),

βk+1 = βk + pk+1,

which can also be written as a single-step update

βk+1 = βk + µ(βk − βk−1)− η∇L(β)|β=ρk
,

where we let
ρk = βk + µpk.

Following similar approach as in the case for HB, this discrete update rule implies that

ηβ̇(t) +
η2

2
β̈(t) = µ

(

ηβ̇(t)−
η2

2
β̈(t)

)

− η∇L(β)|β=ρ(t) (15)

=⇒
η(1 + µ)

2
β̈(t) + (1− µ)β̇(t) = −∇L(β)|β=ρ(t). (16)

Since the gradient is evaluated at β = ρ(t) rather than β(t), to further simplify this equation, we note that

ρ(t) = β(t) + µ(β(t)− β(t− η))

= β(t) + ηµβ̇(t) +O(η3),

therefore η∇L(β)|β=ρ(t) can be expanded around β(t):

η∇L(β)|β=ρ(t) = η∇L(β)|β=β(t) + η2µ∇2L(β) · β̇|β=β(t) +O(η2).

Meanwhile, by differentiating both sides of Eq. (16) w.r.t t, we have

η(1 + µ)

2

...
β (t) + (1− µ)β̈(t) = −∇2L(β) · β̇|β=ρ(t)

=⇒ η2µ∇2L(β) · β̇|β=β(t) = −η2(1− µ)β̈(t)

where we multiply η2 to both sides of the last equality and omit the terms of the order O(η3). In this way, Eq. (16) becomes

η(1 + µ)

2
β̈(t) + (1− µ)β̇(t) = −∇L(β) + ηµ(1− µ)β̈(t)

=⇒ αβ̈ + β̇ +
∇L(β)

1− µ
= 0

with

α =
2µ2 − µ+ 1

2(1− µ)
.

C.3 Generalization to O(η2) approximate continuous version of HB

Note that if it is compared to the O(η2) approximate continuous version for GD, e.g., the modified flow discussed in (Barrett
and Dherin 2021), the O(η2) approximate continuous version of HB presented in (Ghosh et al. 2023) is a justifiable choice
to characterize the role of momentum on the implicit bias for diagonal linear networks. The important thing is that the same
order of approximations for both momentum-based methods and GD should be used to make a ªfairº comparison on their
implicit bias for diagonal linear networks. This is similar to the spirit in (Ghosh et al. 2023) where the authors compared O(η2)
approximate continuous version of HB with the O(η2) version of GD (Barrett and Dherin 2021), rather than the usual O(η)
approximate continuous version of GD, i.e., gradient flow.

Therefore, the main reason why we use the O(η) continuous approximation for HB (and NAG) as discussed in Proposition 1
is that we aim to precisely characterize the the role of momentum in the implicit bias of the widely-studied gradient flow, which
is O(η) approximate continuous version of GD, for diagonal linear networks. And one can naturally generalize the current work
to the case following similar techniques: replacing the current O(η) approximate second-order ODE (Proposition 1) with the
O(η2) approximate version of HB in (Ghosh et al. 2023).

D Proofs for Theorems

In the following, we first discuss the proof sketch for Theorem 3. Then we prove Proposition 4 to show the θ dynamics and
its relation to mirror flow and present the convergence result of the corresponding time-varying potential. Finally, we prove
Theorem 3. The analysis of the effects of the initialization scale on the implicit bias is then presented. Finally, we discuss the
proof of Proposition 2.

Proof sketch for Theorem 3. Since our main result is Theorem 3, we first present the proof sketch. The proof mainly consists
of three steps. The first step is to derive the dynamics for θ = u⊙ u− v⊙ v of diagonal linear networks for HB and NAG. The
second step is to construct the connection of the θ dynamics with ªacceleratedº mirror flow (Wilson, Recht, and Jordan 2016)
with time-varying potential (Proposition 4). Since this time-varying potential converges along training, the third step is simply
to apply the optimality condition and derive the implicit bias result.

For diagonal linear networks, the parameterization of θ is u⊙u− v⊙ v and the model parameters are β = (u, v). According
to Proposition 1, the continuous dynamics of u and v are thus

αü+ u̇+
∇uL(u, v)

1− µ
= 0, αv̈ + v̇ +

∇vL(u, v)

1− µ
= 0, (17)

where

α =

{
η(1+µ)
2(1−µ) for HB

η(1−µ+2µ2)
2(1−µ) for NAG

and η is the learning rate. Note that since α is the order of η, we will omit all terms of the order O(η2), which is eligible because
the momentum ODE is established to the order of O(η), i.e., the momentum ODE in Proposition 1 is in fact

αβ̈ + β̇ +
∇β

1− µ
= O(η2).

Thus all terms of order higher than η appearing in anywhere else should also be dropped. To be consistent with this convention,
terms proportional to and higher than η2 are ignored in the following, otherwise there would be contradictions if O(η2) terms
are neglected in the momentum ODE while they are maintained in other equations. For convenience, we first present several
useful properties for the dynamics of HB and NAG for diagonal linear networks Eq. (6) for ∀j ∈ {1, . . . , d}:

1. Property 1: vj∂uj
L+ uj∂vjL = 0.

Proof. This is because

∂uj
L =

2

n
uj

n∑

i=1

rixi;j , ∂vj
L = −

2

n
vj

n∑

i=1

rixi;j =⇒ vj∂uj
L+ uj∂vj

L = 0 (18)

where

1

n

n∑

i=1

rixi;j = ∂θjL(θ) (19)

and ri = θTxi − yi is the residual.

2. Property 2: α(vj u̇j + v̇juj) = O(η2).

Proof. This can be obtained from

αu̇j = −α
∂uj

L

1− µ
+O(η2), αv̇j = −α

∂vj
L

1− µ
+O(η2) (20)

since α is the order of η, thus, according to Property 1,

α(vj u̇j + v̇juj) = −α(vj∂uj
L+ uj∂vj

L) +O(η2) = O(η2). (21)

3. Property 3: (uj + αu̇j)(vj + αv̇j) = ujvj +O(η2).

Proof. This can be obtained from

(uj + αu̇j)(vj + αv̇j) = ujvj + αu̇jvj + αv̇juj + α2u̇j v̇j = ujvj +O(η2),

where we use Property 2 in the last equality.

4. Property 4: dujvj/dt = 2αu̇j v̇j +O(η2).

Proof. To show this, we directly calculate

d

dt
ujvj = u̇jvj + v̇juj

=

[

−αüi −
∂uj

L

1− µ

]

vj +

[

−αv̈i −
∂vjL

1− µ

]

uj

= −α(üivj + u̇j v̇j + v̈iuj + u̇j v̇j) + 2αu̇j v̇j

= −
d

dt
[αu̇jvj + αv̇juj] + 2αu̇j v̇j

= 2αu̇j v̇j +O(η2), (22)

where the second line is due to the dynamics of u and v in Eq. (17), and the last equaility is due to Property 2.

D.1 Proof of Proposition 4

For convenience, we first recall that, under the conditions of Proposition 4, θ̄α;j follows a mirror flow form

∀j ∈ {1, . . . , d} :
d

dt

[
∇QM

ξ,j(θ̄α, t) + θjRj

]
= −

∂θjL(θ)

1− µ
,

where

QM
ξ,j(θ̄α, t) =

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄α;j + 2ξ̄j(t)

]

,

ξ̄j(t) = ξje
−αϕj(t), ϕj(t) =

8

(1− µ)2

∫ t

0

∂θjL (θ(s)) ∂θjL (θ(s)) ds.

Below we prove this result.

Proof. The proof consists of two steps: the first step is to derive the dynamics of θ and the second step is to derive the mirror
flow form of the dynamics.

The dynamics of θ. We start with the first step. Recall that the parameterization of θj = u2
j −v2j , we conclude that θj follows

a second-order ODE different from that of u and v (Eq. (17)) by inspecting the exact expression of θ̇j

θ̇j = 2uj u̇j − 2vj v̇j

= 2uj

(

−αüj −
∂uj

L

1− µ

)

− 2vj

(

−αv̈j −
∂vj

L

1− µ

)

= −2α [uj üj + u̇j u̇j − vj v̈j − v̇j v̇j] + 2αu̇j u̇j − 2αv̇j v̇j −
2
(
uj∂uj

L− vj∂vjL
)

1− µ

= −αθ̈j −
2
[
(uj + αu̇j)∂uj

L− (vj + αv̇j)∂vj
L
]

1− µ

where the second equality is because Eq. (17) and we use Eq. (20) in the last line. Note that if we let

Gj = 2
[
(uj + αu̇j)∂uj

L− (vj + αv̇j)∂vjL
]
,

then the dynamics of θj follows a second-order ODE

αθ̈j + θ̇j +
Gj

1− µ
= 0, (23)

note that although this is similar to the dynamics of u and v, they are not the same. To proceed, we need to express Gj with θj ,
which can be done by observing that

Gj = 4 [uj(uj + αu̇j) + vj(vj + αv̇j)] ∂θjL = 4Hj∂θjL

where use Eq. (19) in the first equality. Expressing Hj with θj will give us the desired results, which can be done as follows.

H2
j = [uj(uj + αu̇j) + vj(vj + αv̇j)]

2

= u2
j (uj + αu̇j)

2 + v2j (vj + αv̇j)
2 + 2vjuj(uj + αu̇j)(vj + αv̇j)

= u4
j + v4j + 2αu3

j u̇j + 2αv3j v̇j + 2u2
jv

2
j + 2αujvj(uj v̇j + vj u̇j) + α2u2

j u̇
2
j

+ α2v2j v̇
2
j + 2α2ujvj u̇j v̇j

= u4
j + v4j + 2u2

jv
2
j + 2αu3

j u̇j + 2αv3j v̇j +O(η2) (24)

where we use Eq. (21) and α is the order of η in the last equality. On the other hand, we observe that the quantity (θj +αθ̇j)
2 is

(θj + αθ̇j)
2 =

[
u2
j − v2j + α(2uj u̇j − 2vj v̇j)

]2

= u2
j (uj + 2αu̇j)

2 + v2j (vj + 2αv̇j)
2 − 2ujvj(uj + 2αu̇j)(vj + 2αv̇j)

= u4
j + v4j + 4αu3

j u̇j + 4αv3j v̇j − 2u2
jv

2
j +O(η2) (25)

where we use Eq. (21) in the last equality. Combining Eq. (24) and Eq. (25), we have

H2
j − (θj + αθ̇j)

2 = 4u2
jv

2
j

︸ ︷︷ ︸

♣

− (2αu3
j u̇j + 2αv3j v̇j)

︸ ︷︷ ︸

♢

, (26)

which establishes the relation between Gj and θ. In the following, our goal is to find the relation between ♣ and ♢ and θ to

complete the dynamics of θ. Now let ξ ∈ R
d and ξj = |uj(0)||vj(0)| at the initialization2, then for the term ♣, according to

Property 4 (Eq. (22)),

dujvj
dt

= 2αu̇j v̇j (27)

=
2α

(1− µ)2
∂uj

L∂vjL+O(η2)

= −
8α

(1− µ)2n2
ujvj

(
n∑

i=1

rixi;j

)2

+O(η2)

= −
8α

(1− µ)2
ujvj∂θjL(θ)∂θjL(θ) +O(η2) (28)

where we use Eq. (21) in the second equality and Eq. (19) in the third equality. Dividing ujvj on both sides and integrating the
above equation give us that

ln(ujvj) = ln(uj(0)vj(0))−
8α

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds (29)

=⇒ uj(t)vj(t) = uj(0)vj(0)e
− 8α

(1−µ)2

∫
t

0
∂θj

L(θ(s))∂θj
L(θ(s))ds

. (30)

For ease of notation, we denote

ϕj(t) =
8

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds ≥ 0, (31)

2Note that ξ measures the scale of the initialization and ξ becomes u(0)⊙ v(0) for unbiased initialization u(0) = v(0). Here we consider
the more general biased initialization case.

then ♣ becomes
♣ = 4u2

j (t)v
2
j (t) = 4ξ2j e

−2αϕj(t) ≤ 4ξ2j . (32)

For the ♢ term, we note that

θj θ̇j = 2(u2
j − v2j)(uj u̇j − vj v̇j)

= 2
[
u3
j u̇j − u2

jvj v̇j − v2juj u̇j + v3j v̇j
]

= 2
[
u3
j u̇j + v3j v̇j

]
− 2ujvj(uj v̇j + vj u̇j),

which, considering Property 2, further gives us

αθj θ̇j = 2α
[
u3
j u̇j + v3j v̇j

]
+O(η2).

Comparing with the form of ♢, we have

♢ = αθj θ̇j +O(η2). (33)

Combined with the expressions of ♣, Hj can be completely expressed by θ since Eq. (26) now becomes

H2
j = (θj + αθ̇j)

2 + 4ξ2j e
−2αϕj(t) − αθj θ̇j

=⇒ Hj =
√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t) − αθj θ̇j . (34)

Thus the form of θ dynamics Eq. (23) is now

1

4Hj

(αθ̈j + θ̇j) = −
∂θjL

1− µ
, (35)

where 1/Hj can be expanded to the order of η:

1

Hj

=
1

√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

√

1− αθθ̇j

(θj+αθ̇j)2+4ξ2j e
−2αφj(t)

=
1

√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

(

1 +
1

2

αθj θ̇j
θ2j + 4ξ2j

+O(η2)

)

=
1

√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

+
α

2

θj θ̇j

(θ2j + 4ξ2j)
3
2

+O(η2).

Deriving the mirror flow form. Now we present the second part of the proof. Given 1/Hj and its relation with θ, in the
following, we are now ready to derive the mirror flow form of θj . Note that the L.H.S of Eq. (35) includes a time derivative of

θ + αθ̇, thus we need to find a mirror flow potential as a function of θ + αθ̇, rather than θ. For this purpose, if we define

QM
ξ,j(θ + αθ̇, t) = qξ,j(θ + αθ̇, t) + hj(t)(θj + αθ̇j) (36)

such that qξ,j and hj(t) satisfy that

∇2qξ,j(θ + αθ̇, t) =
1

4
√

(θj + αθ̇j)2 + 4ξ2j e
−2αϕj(t)

, (37)

∂∇qξ,j(θ + αθ̇, t)

∂t
+

dhj(t)

dt
=

α

8

θj θ̇j θ̇j

(θ2j + 4ξ2j)
3
2

, (38)

then we will have

d

dt
∇QM

ξ,j(θ + αθ̇, t) =
d

dt
∇qξ,j(θ + αθ̇, t) +

d

dt
hj(t)

= ∇2qξ,j(θ + αθ̇, t)(αθ̈ + θ̇) +
∂∇qξ,j(θ + αθ̇, t)

∂t
+

dhj(t)

dt
,

which is exactly the L.H.S of Eq. (35). And we will have the desired mirror flow form of Proposition 4

d

dt
∇QM

ξ,j(θ + αθ̇, t) = −
∂θjL

1− µ
.

Therefore, it is now left for us to find qξ,j and hj(t) that satisfy Eq. (37) and Eq. (38).

• Find qξ,j(θ + αθ̇, t). Since qξ,j(θ + αθ̇, t) satisfies Eq. (37), let ξ̄j(t) = ξje
−αϕj(t), we integrate both sides of Eq. (37) to

obtain that

∇qξ,j(θ + αθ̇, t) =

∫
d(θj + αθ̇j)

4
√

(θj + αθ̇j)2 + 4ξ̄2j (t)

=
ln
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)

4
+ C. (39)

To determine the constant C, we require that

∇QM
ξ,j(θ(0) + αθ̇(0), 0) = 0, (40)

which gives us ∇qξ,j(θ(0) + αθ̇(0), 0) + hj(0) = 0. Let ∆j = θj(0) + αθ̇j(0) and note that ξ̄j(0) = ξj , we can determine
the constant C as

C = −
ln
(√

(θj(0) + αθ̇j(0))2 + 4ξ̄2j (0) + (θj(0) + αθ̇j(0))
)

4
− hj(0)

= −

ln

[

2ξj

(√

1 +
∆2

j

4ξ2j
+

∆j

2ξj

)]

4
− hj(0)

= −
ln(2ξj)

4
−Dξj ,∆j

− hj(0) (41)

where

Dξj ,∆j
=

ln

(√

1 +
∆2

j

4ξ2j
+

∆j

2ξj

)

4
=

1

4
arcsinh

(
∆j

2ξj

)

.

Therefore, ∇qξ,j(θ + αθ̇, t) should satisfy that

∇qξ,j(θ + αθ̇, t)

=
ln
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)

− ln (2ξj)

4
−Dξj ,∆j

− hj(0). (42)

The form of qξ,j can be obtained by solving the above equation. For convenience, we replace all θj + αθ̇j with a variable x
in the above equation and solve

∇qξ,j(x, t) =
1

4
ln





√

x2 + 4ξ̄2j (t) + x

2ξj



−Dξj ,∆j
− hj(0)

=
1

4
ln





√

x2 + 4ξ̄2j (t) + x

2ξje−αϕj(t)



+
ln(e−αϕj(t))

4
−Dξj ,∆j

− hj(0)

=
1

4
ln

(√

x2

4ξ̄2j (t)
+ 1 +

x

2ξ̄j(t)

)

−
αϕj(t)

4
−Dξj ,∆j

− hj(0)

=
1

4
arcsinh

(
x

2ξ̄j(t)

)

−
αϕj(t)

4
−Dξj ,∆j

− hj(0). (43)

Integrating both sides of the above equation directly gives us that qξ,j(x, t) has the form of

qξ,j(x, t)

=
1

4

∫

arcsinh

(
x

2ξ̄j(t)

)

dx−
αϕj(t)x

4
−Dξj ,∆j

x− hj(0)x

=
2ξ̄j(t)

4




x

2ξ̄j(t)
arcsinh

(
x

2ξ̄j(t)

)

−

√

1 +
x

4ξ̄2j (t)
+ C1



−
αϕj(t)x

4
−Dξj ,∆j

x− hj(0)x

=
2ξ̄j(t)

4

[

x

2ξ̄j(t)
arcsinh

(
x

2ξ̄j(t)

)

−

√

1 +
x2

4ξ̄j(t)2
+ 1

]

−
αxϕj(t)

4
−Dξj ,∆j

x− hj(0)x, (44)

where we set C1 = 1.

• Find hj(t). The form of hj(t) can be obtained by solving Eq. (38). According to the form of ∇qj in Eq. (42) and the
definition of ϕj(t) in Eq. (31), we need to first calculate ∂t∇qξ,j :

∂t∇qξ,j(θ + αθ̇, t)

=
1

4

4ξ̄j(t)
√

(θj + αθ̇j)2 + 4ξ̄2j (t)
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)
dξ̄i
dt

= −
αξj ξ̄j

√

(θj + αθ̇j)2 + 4ξ̄2j (t)
(√

(θj + αθ̇j)2 + 4ξ̄2j (t) + (θj + αθ̇j)
)
dϕj(t)

dt

= − α
ξ2j

√

θ2j + 4ξ2j

(√

θ2j + 4ξ2j + θj

)
8
(
∂θjL

)2

(1− µ)2
+O(η2). (45)

Putting the above equation back to Eq. (38) immediately gives us that

hj(t) = α

∫ t

0

θj θ̇j θ̇j

8(θ2j + 4ξ2j)
3
2

+
ξ2j

√

θ2j + 4ξ2j

(√

θ2j + 4ξ2j + θj

)
8
(
∂θjL

)2

(1− µ)2
ds+ C2

=
2α

(1− µ)2

∫ t

0

(
∂θjL(s)

)2

√

θ2j (s) + 4ξ2j




4ξ2j

√

θ2j (s) + 4ξ2j + θj(s)
+ θj(s)



 ds+ C2 +O(η2) (46)

where we use

αθ̇j = −4αHj

∂θjL

1− µ
+O(η2) = −4α

√

θ2j + 4ξ2j
∂θjL

1− µ
+O(η2) (47)

according to Eq. (35) in the second equality and C2 = hj(0) is a constant.

We are now ready to find QM
ξ,j by combining the form of qξ,j(θ + αθ̇, t) in Eq. (44) and the form of hj(t) in Eq. (46), which

gives us

QM
ξ,j(θ + αθ̇, t) =

2ξ̄j(t)

4




θj + αθ̇j
2ξ̄j(t)

arcsinh

(

θj + αθ̇j
2ξ̄j(t)

)

−

√

1 +
(θj + αθ̇j)2

4ξ̄j(t)2
+ 1





−
αθjϕj(t)

4
+ (θj + αθ̇j)hj(t)− (θj + αθ̇j)Dξj ,∆j

− (θj + αθ̇j)hj(0),

where, interestingly,

−
αθjϕj(t)

4
+ (θj + αθ̇j)hj(t)− (θj + αθ̇j)hj(0)

= −
2αθj

(1− µ)2

∫ t

0

(∂θjL)
2ds+

2αθj
(1− µ)2

∫ t

0

(∂θjL(s))
2

√

θ2j (s) + 4ξ2j




4ξ2j

√

θ2j (s) + 4ξ2j + θj(s)
+ θj(s)



 ds

=
2αθj

(1− µ)2

∫ t

0

(∂θjL(s))
2

√

θ2j (s) + 4ξ2j




4ξ2j

√

θ2j (s) + 4ξ2j + θj(s)
+ θj(s)−

√

θ2j (s) + 4ξ2j



 ds

= 0. (48)

As a result, let θ̄α = θ + αθ̇ and recall that

Dξj ,∆j
=

1

4
arcsinh

(

θj(0) + αθ̇j(0)

2ξj

)

(49)

where, let δj = u2
j (0)− v2j (0),

θj(0) + αθ̇j(0) = u2
j (0)− v2j (0) + 2α(uj(0)u̇j(0)− vj(0)v̇j(0))

= u2
j (0)− v2j (0) +

4α

1− µ

[
u2
j (0) + v2j (0)

]
∂θjL(θ(0))

= δj +
4α∂θjL(θ(0))

1− µ

√

δ2j + 4ξ2j (50)

we have the final form of QM
ξ,j :

QM
ξ,j(θ̄α, t) =

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]

−
1

4
θ̄α;j arcsinh






δj +
4α∂θj

L(θ(0))

1−µ

√

δ2j + 4ξ2j

2ξj




 . (51)

The simplest case is when δj = 0, i.e., the unbiased initialization with u(0) = v(0) such that θ(0) = 0 and ∇θL(θ(0)) =
1
n
XT (Xθ(0)− y) = −XT y

n
, then QM

ξ,j(θ̄α, t) has the form of

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) + θ̄α;j arcsinh

(
4α(XT y)j
n(1− µ)

)]

. (52)

Simply redefining

QM
ξ,j(θ̄α, t) =

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]

,

Rj = arcsinh

(
4α(XT y)j
n(1− µ)

)

,

we finish the proof of Proposition 4:

∀j ∈ {1, . . . , d} :
d

dt
∇
[
QM

ξ,j(θ̄α, t) + θ̄α;jRj

]
= −

∂θjL(θ)

1− µ
.

D.2 Convergence results for θ dynamics of HB and NAG

Since QM
ξ̄∞

(θ) in Theorem 3 involves an integral from t = 0 to ∞, it is necessary to show the convergence of this integral

to guarantee the implicit bias result. For this purpose, we establish the convergence result of ϕ(∞) in Theorem 3, whose j-th
component for t < ∞ is ϕj(t) in Proposition 4. Recall that QM

ξ,j is defined in Eq. (12), we have the following proposition.

Proposition 5 (Convergence of ϕ(∞)). Under the same setting of Theorem 3 and assuming that θ(∞) is an interpolation
solution, i.e., Xθ(∞) = y, then the integral ϕ(∞) converges and its j-th component ϕj(∞) satisfies that

ϕj(∞) =
16
[
diag

(
XTX

)]

j

n(1− µ)
QM

ξ,j (θj(∞), 0) + C,

where C = 4α
n(1−µ)

[

(
∑n

i=1 x
2
i;j)
(√

θ2j (0) + 4ξ2j − 2ξj

)

+
∑n

i=1 ϵi;j arcsinh
(

θj(0)
2ξj

)]

is a constant, ϵi;j =
(
∑d

k=1,k ̸=j θk(0)xi;k − yi

)

xi;j , and C = 0 for unbiased initialization θ(0) = 0.

Typically, solving the integral needs the entire training trajectory of θ, which is hard and equivalent to being aware of
the limiting point of θ. From this aspect, Proposition 5 is interesting due to the fact that ϕ(∞) has a rather simple explicit
form depending on the data matrix XTX and QM(θ(∞), 0). Furthermore, since the value of ϕj(∞) controls the initialization
mitigation effects of HB and NAG according to Theorem 3, as an immediate consequence of Proposition 5, such effects depend
on learning rate η (through the dependence on α), the data matrix XTX , initialization ξ (through the dependence on QM

ξ,j), and

the momentum factor µ.

Proof. Recall that ϕj(t) is defined as

ϕj(t) =
8

(1− µ)2

∫ t

0

∂θjL(θ(s))∂θjL(θ(s))ds

and, according to the dynamics of θ Eq. (35),

αθ̇j = −4α
√

θ2j + 4ξ2j
∂θjL

1− µ
+O(η2),

then we get that ϕj(t) satisfies

αϕj(t) = −
4α

1− µ

∫ t

0

∂θjL(θ(s))
√

θ2j (s) + 4ξ2j

dθj(s)

ds
ds

= −
4α

n(1− µ)

∫ t

0

∑n
i=1(

∑d
k=1 θk(s)xi;k − yi)xi;j
√

θ2j (s) + 4ξ2i

dθj(s)

= −
4α(
∑n

i=1 x
2
i;j)

n(1− µ)

∫ t

0

θj(s)
√

θ2j (s) + 4ξ2j

dθj(s)

︸ ︷︷ ︸

♡

−
4α

n(1− µ)

n∑

i=1

∫ t

0

(
∑d

k=1,k ̸=j θk(s)xi;k − yi

)

xi;j
√

θ2j (s) + 4ξ2j

dθj(s)

︸ ︷︷ ︸

♣

, (53)

where we replace α∂θjL with αθ̇j in the first equality. For the two integral terms, we note that

♡ =
1

2

∫ t

0

1
√

θ2j (s) + 4ξ2j

d(θ2j (s) + 4ξ2j)

=
√

θ2j (t) + 4ξ2j + C1 (54)

and, let ϵi;j(t) =
(
∑d

k=1,k ̸=j θk(t)xi;k − yi

)

xi;j ,

♣ = ϵi;j(t) arcsinh

(
θj(t)

2ξj

)

+ C2. (55)

As a result, we obtain the form of ϕj(t):

ϕj(t) = −
4α

n(1− µ)

[

(
n∑

i=1

x2
i;j)
(√

θ2j (t) + 4ξ2j − 2ξj

)

+
n∑

i=1

ϵi;j(t) arcsinh

(
θj(t)

2ξj

)]

+ C ′,

where C ′ is a constant to make ϕj(0) = 0:

C ′ =
4α

n(1− µ)

[

(

n∑

i=1

x2
i;j)
(√

θ2j (0) + 4ξ2j − 2ξj

)

+

n∑

i=1

ϵi;j(0) arcsinh

(
θj(0)

2ξj

)]

. (56)

Note that when the initialization is unbiased, then we simply have C ′ = 0. Since we assume θ converges to the interpolation
solution, i.e.,

θT (∞)xi = yi, ∀i ∈ {1, . . . n},

which implies that

d∑

k=1

θk(∞)xi;k − yi = 0, ∀i ∈ {1, . . . n} =⇒ −θj(∞)xi;j =
d∑

k=1,k ̸=j

θk(t)xi;k − yi

=⇒ ϵi;j(∞) = −θj(∞)x2
i;j , (57)

we obtain the form of ϕj(∞):

αϕj(∞) =
4α(
∑n

i=1 xi;j)
2

n(1− µ)

[

θj(∞) arcsinh

(
θj(∞)

2ξj

)

−
√

θ2j (∞) + 4ξ2j + 2ξj

]

+ C ′

=
16α(

∑n
i=1 xi;j)

2

n(1− µ)
QM

ξ,j(θ(∞), 0) + C ′. (58)

D.3 Proof of Theorem 3

In this section, we prove Theorem 3.

Proof. If we define

QM
ξ̄(t)(θ̄α, t) =

d∑

j=1

QM
ξ,j(θ̄α, t), (59)

then its gradient w.r.t θ̄α is

∇QM
ξ̄(t)(θ̄α, t) =

(
∇QM

ξ,1(θ̄α, t), . . . ,∇QM
ξ,d(θ̄α, t)

)T
,

which implies that

d

dt
∇QM

ξ̄(t)(θ̄α, t) =






d
dt
∇QM

ξ,1(θ̄α, t)
...

d
dt
∇QM

ξ,d(θ̄α, t)






= −
∇L(θ)

1− µ
(60)

where we apply Proposition 4 in the second equality. Integrating both sides of the above equation from 0 to ∞ gives us

∇QM
ξ̄(∞)(θ̄α(∞),∞)−∇QM

ξ̄(0)(θ̄α(0), 0) = −
n∑

i=1

xi

n(1− µ)

∫ ∞

0

ri(s)ds =
∑

i=1

xiλi. (61)

On the other hand, as t → ∞, since we assume θ(∞) converges to the interpolation solution, we have, according to Eq. (35),

αθ̇(∞) ∝ α∇L(θ(∞)) = 0 =⇒ θ̄α(∞) = θ(∞).

Considering that ∇QM
ξ̄(0)

(θ̄α(0), 0) = 0 when we derive the form of QM
ξ,j (Eq. (40)), Eq. (61) implies that

∇QM
ξ̄(∞)(θ(∞),∞) =

n∑

i=1

xiϵi. (62)

Note that the KKT condition for the optimization problem in Theorem 3 is

∇QM
ξ̄(∞)(θ(∞),∞)−

n∑

i=1

xiλi = 0, (63)

which is exactly Eq. (62). Thus we finish the proof.

D.4 Equivalence between Eq. (6) and standard diagonal linear networks

A standard diagonal linear network is

f(x;u, v) = (u⊙ v)Tx.

If u and v of this model follows the HB and NAG flow (Proposition 1) under the square loss, we note that there is no difference
between the forms of their dynamics, since the model f(x;u, v) is completely symmetrical regarding u and v, i.e., changing
the places of u and v would induce exactly the same model and make no difference. More specifically, the dynamics of u⊙u is

1

2

d

dt
u⊙ u = u⊙ u̇ = −u⊙

(
∇uL

1− µ
+ αü

)

= −
2

1− µ
u⊙ (XT r)⊙ v −

[

α
d

dt
u⊙ u̇− αu̇⊙ u̇

]

= −
2

1− µ
u⊙ (XT r)⊙ v + α

[
2

1− µ

d

dt
u⊙ (XT r)⊙ v +

4(XT r)⊙ v ⊙ (XT r)⊙ v

(1− µ)2

]

(64)

and the dynamics of v⊙ v can be obtained by simply replacing all u with v in Eq. (64). Thus if u(0)⊙u(0) = v(0)⊙ v(0), i.e.,
|u(0)| = |v(0)|, then we can immediately conclude that |u(t)| = |v(t)| for any t ≥ 0. Thus we can equivalently parameterize
this model with f(x;u) = (u ⊙ u)Tx further add the weight v such that f(x;u, v) = (u ⊙ u − v ⊙ v)Tx can output negative
values.

D.5 Analysis on the effects of the initialization

For simplicity, we consider the unbiased initialization, and the case for biased initialization is similar. Since the solutions of HB

and NAG are composed of two parts, QM
ξ̄(∞)

=
∑d

j=1 Q
M
ξ,j(θ̄α,∞) where (note that θ̄α(∞) = θ(∞) according to the proof of

Theorem 3)

QM
ξ,j(θ̄α, t) =

1

4

[

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t)

]

and R = (Rj , . . . ,Rd)
T ∈ R

d where

∀j ∈ {1, . . . , d} : Rj =
1

4
arcsinh

(
4α(XT y)j
n(1− µ)

)

,

we need to analyze both parts to show the transition from the rich regime to kernel regime, which is different from the case for
GD where one only needs to consider the hyperbolic entropy part.

Small initialization ξ → 0. We first discuss QM
ξ,j . When ξ → 0, we have that

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) → −|θ̄α;j |

and
θ̄α;j
2ξ̄j(t)

→ sign(θ̄α;j)∞ =⇒ θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

→ sign(θ̄α;j)θ̄α;j∞ = |θ̄α;j |∞,

thus QM
ξ̄(∞)

→
∑d

j=1 |θj(∞)|∞ = ∥θ(∞)∥1∞. On the other hand, the θTRM part is finite thus negligible compared to QM
ξ̄(∞)

.

As a result, we conclude that ξ → 0 corresponds to the rich regime.

Large initialization ξ → ∞. For QM
ξ,j , we note that as ξ → ∞, similar to the case for GD,

−
√

4ξ̄2j (t) + θ̄2α;j + 2ξ̄j(t) → 0

and

θ̄α;j arcsinh

(
θ̄α;j
2ξ̄j(t)

)

→
θ̄2α;j
2ξj

,

thus we obtain that, as ξ → ∞
QM

ξ,j(θ̄α, t) ∝ θ̄2α;j =⇒ QM
ξ̄(∞) ∝ ∥θ(∞)∥22. (65)

On the other hand, θTRM is simply a inner produce between θ and RM. Thus QM+ θTRM is captured by a kernel and ξ → ∞
corresponds to the kernel regime.

D.6 Proof of Proposition 2

Proof. Since momentum-based methods is a second-order ODE by adding a perturbation proportional to η to the re-scaled GF
ODE

u̇ = −
∇uL

1− µ
, v̇ = −

∇vL

1− µ
,

Proposition 2 can be proved by following similar steps as the proof of Theorem 3 in Appendix D.3. In particular, let all terms
of the order of η be zero (thus we ignore the perturbation brought by momentum) and let µ = 0 (thus we make the re-scaled
GF a standard GF) in the proof of Theorem 3, we can directly conclude that

θ(∞) = argmin
θ

Q(θ), s.t. Xθ = y (66)

where

Q(θ) = QGF
ξ (θ) + θTRGF,

RGF = (RGF
1 , . . . ,RGF

d)T ∈ R
d, ∀j ∈ {1, . . . , d} : RGF

j =
1

4
arcsinh

(
θj(0)

2ξj

)

. (67)

