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Abstract—This paper studies the use of multiple planar fluid
antennas at a full-duplex base station (BS) for integrated sensing
and communication (ISAC). In this model, the BS communicates
with a downlink user, an uplink user, and performs target sensing
simultaneously. Our objective is to maximize the communication
sum-rate of the up and downlink users while meeting the sensing
and power constraints. Given the problem is non-convex, we first
reformulate the problem using the fractional programming (FP)
framework. After that, we iteratively optimize the beamforming
vectors of the BS, the uplink transmit power from the user, and
the antenna positions of both transmit and receive fluid antenna
systems (FASs) at the BS. In particular, the transmit and receive
beamforming vectors are optimized by utilizing the majorization-
minimization (MM) framework, and a closed-form solution for
the uplink transmit power is derived. To optimize the BS antenna
positions, we transform the problems into convex quadratically
constrained quadratic programs (QCQP) by using Taylor series
expansion. The subproblems can then be solved based on the
successive convex approximation (SCA). Simulation results show
that FAS can greatly improve the communication rate compared
to the traditional fixed-position antenna (FPA) system.

Index Terms—Fractional programming, fluid antenna system,
full-duplex system, integrated sensing and communication.

I. INTRODUCTION

THE SIXTH generation (6G) wireless network is hopeful
to revolutionize communications to yet again an unprece-

dented level far beyond the current systems. This time there is
huge excitement around artificial intelligence (AI) and sensing
capabilities to innovate a plethora of applications [1], [2], [3].
The primary objectives in 6G can boil down to hitting data
rates of 1 terabit per second (Tbps), achieving an extraordinary
spectral efficiency of 1000 bps/Hz, and keeping latency as low
as 1 microsecond (µs), according to [4].

To support massive connectivity, conventional schemes rely
on multiuser multiple-input multiple-output (MIMO) antenna
technologies [5]. Multiuser MIMO emerged as early as 2000
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[6], [7] and classical results were reported in [8], [9]. Since the
fourth generation (4G), multiuser MIMO has been the root of
the physical layer in wireless communications. In recent years,
multiuser MIMO has also evolved into massive MIMO, as a
key attempt to simplify the precoding design [10], [11]. Extra-
large MIMO (XL-MIMO) is also being regarded as one key
direction to pursue in the 6G development [12].

While the push to include more antennas at the base station
(BS) will continue, this is met with concern for the low power
efficiency and the hefty cost of the increasing number of radio-
frequency (RF) chains. This has motivated researchers to seek
alternatives to enhance MIMO without necessarily increasing
the number of antennas. One direction is to leverage the new
generation of reconfigurable antennas that offers new degrees-
of-freedom (DoFs) within the antenna itself to strengthen the
physical layer. In 2020, Wong et al. presented a broad concept,
referred to as fluid antenna system (FAS), for embracing all
forms of shape and position reconfigurability in antennas for
improving wireless communications [13], [14], [15]. A recent
article in [16] provides a comprehensive tutorial on the topic
whereas [17] gives theoretical foundation and interpretation to
FAS from the electromagnetic perspective.

The concept of FAS is motivated by the advances in highly
reconfigurable antenna structures such as liquid antennas [18],
[19], movable arrays [20], [21], metamaterial based antennas
[22], [23], [24] and reconfigurable pixels [25], [26], etc. The
latter two technologies are particularly suitable since they have
practically zero response time and the reconfigurability does
not impose high power consumption like the first two.

Following the early results in [13], [14], [15], great efforts
have been made to advance the research field. For example,
[27] examined the use of FAS to enhance the performance in
the millimeter-wave band while [28], [29], [30], [31] studied
the performance of FAS under different channel models. FAS
with continuous antenna positioning was investigated in [32].
More recently, FAS has also been employed at both ends of
a communication channel, with its diversity and multiplexing
tradeoff characterized in [33]. FAS has also been shown to be
effective in raising the DoF for MIMO in multiuser channels
[34] while [35] adopted FAS at the BSs in a cell-free setup.

A branch of research efforts also sees FAS applied to tackle
a niche multiple access problem, the one that is able to serve
many users on the same physical channel without the channel
state information (CSI) at the transmitter side. This has led to
the fluid antenna multiple access (FAMA) technique in [36].
Since then, a practical scheme, called slow FAMA [37], [38],
was proposed to allow several users to share the same channel
without precoding or interference cancellation. More research
on FAMA can be found in [39], [40], [41], [42].

Additionally, the application of FAS has also extended to
wireless powered communication systems [43], [44], physical-
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layer security [45], [46] and near-field communications [47].
Needless to say, CSI is essential for a FAS-equipped terminal
to optimize its antenna positioning. Several methods have been
developed to tackle the channel estimation problems in FAS,
including the successive Bayesian reconstructor [48], the low-
sample-size sparse channel reconstruction (L3SCR) [49], and
the linear minimum mean-squared error (LMMSE) technique
[50]. In [51], the role of oversampling in the spatial domain
in channel estimation for FAS channels was analyzed.

On the other hand, integrated sensing and communication
(ISAC) in recent years has been a key driver for 6G [52]. The
enormous interest in ISAC stems from the idea of combining
sensing and communications into a unified system with shared
resources [53], [54]. Despite its brilliance, ISAC puts pressure
on the resources that are already very limited. Recent efforts
therefore have explored the use of FAS to make ISAC viable.
For example, [55] adopted a deep reinforcement learning based
approach to maximize the sum rate in the downlink under a
sensing constraint for a FAS-aided multiuser MIMO system.
In [56] and [57], the results showed a considerable expansion
of the ISAC tradeoff region when utilizing FAS compared to
the fixed-position antenna (FPA) counterpart. The authors of
[58], [59] further applied position-flexible antennas at both
the transmitter and receiver sides to perform ISAC tasks in a
bistatic radar system, where the transmitter and receiver are
separated without self-interference (SI). Most recently, ISAC
was also combined with backscatter communications in a FAS-
aided system in [60], where the outage probability and ergodic
sensing rate were derived. Recognizing the potential of smart
environment technologies including FAS, [61] discusses the
vision of future ISAC and its many opportunities.

On the other hand, there has been great interest to use full-
duplex communication. Compared to traditional half-duplex
systems that switch between transmission and reception, full-
duplex communication significantly improves spectrum effi-
ciency and reduces latency by enabling simultaneous trans-
mission and reception over the same frequency band [62]. A
stochastic-geometry-based analytical framework for the FAS-
aided full-duplex communication was proposed in [63], while
[64] presented a self-interference cancellation (SIC) frame-
work for the FAS-aided full-duplex system. In [65], the authors
investigated the outage probability of a multi-user full-duplex
NOMA network, where the users were equipped with FAS. It
is anticipated that in ISAC systems, full-duplex technology can
further enhance sensing accuracy and real-time performance if
the SI can be handled satisfactorily while reducing hardware
overhead through the integrated architecture [66].

In this paper, we aim to further the efforts of using FAS for
ISAC but different from previous studies, a full-duplex FAS-
equipped BS is considered, meaning that the BS is required to
transmit to a downlink user and also receive from an uplink
user on the same physical data channel for higher spectral
efficiency. Note that we consider the use of a mono-static radar
and the SI in this paper to see if FAS has sufficient capability
for the BS to mitigate the SI for full-duplex communication
while performing the ISAC task. In particular, the BS has
two separate, planar fluid antenna arrays, one for transmission
and another for reception. Our objective is to jointly optimize
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Fig. 1. An ISAC system with a full-duplex FAS-assisted BS, a downlink
user, an uplink user, and a sensing target.

the beamforming vectors, the uplink transmit power, and the
transmit and receive antenna positions of FAS at the BS to
maximize the sum of the communication rates of the uplink
and downlink users while satisfying the constraint of sensing
signal-to-interference plus noise ratio (SINR).

Our main contributions are summarized as follows:
• First, we formulate the communication rate maximization

problem for the full-duplex ISAC system, which is non-
convex and intractable due to the coupled variables. To
tackle this, we transform the problem using the fractional
programming (FP) framework, and propose an alternative
optimization algorithm to iteratively optimize the transmit
and receive beamforming vectors, the transmit power of
the uplink user, and both the transmit and receive antenna
positions of the FAS at the BS. We obtain the transmit
and receive beamforming vectors using majorization min-
imization (MM) and provide a closed-form solution for
the uplink transmit power optimization.

• When the other variables are fixed, the subproblems of
optimizing the transmit and receive antenna positions of
the BS remain non-convex and hard to solve. To tackle
this, we adopt Taylor series expansion to transform the
problems into convex quadratically constrained quadratic
program (QCQP) forms that can be solved efficiently. The
antenna positions can then be optimized by the successive
convex approximation (SCA) technique. Specifically, the
proposed theorems and lemmas can reformulate the an-
tenna position optimization problems that share the same
structures in Table I into convex forms.

• Simulation results illustrate that using the proposed al-
gorithm, the communication rate obtained by using FAS
is much higher than that of the traditional FPA system.
While the joint optimization of both transmit and receive
antenna positions achieves a higher communication rate,
updating only the transmit or receive FAS also greatly
improves the system performance.

II. SYSTEM MODEL

A. Signal Model

As shown in Fig. 1, we consider a FAS-assisted full-duplex
ISAC system where the BS serves a downlink user, an uplink
user, and attempts to sense a target simultaneously. Both users
are equipped with a FPA. The BS has an M -antenna planar
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TABLE I
SUMMARY OF THE PROPOSED THEOREMS AND LEMMAS

Theorem Original Function Form Surrogate Type Surrogate Function Form Parameters Reference Equations
Theorem 1 |aTTHχ1

(V )b|2 Concave vT Λ̂v + ĉv + d̂ Λ̂ (NSD), ĉ, d̂ (53)

Theorem 1 |aTTHχ1
(V )b|2 Convex −vT Λ̂v + c̄v + d̄ Λ̂ (NSD), c̄, d̄ (53), (56)

Theorem 2 Re{aTTHχ1
(V )b} Concave vT Λ̃v + c̃v + d̃ Λ̃ (NSD), c̃, d̃ (59)

Theorem 3 Re{(aTTHχ (V )b)(ǎTTHχ̌ (V )b)H} Convex vT Λ̌v + čv + ď Λ̌ (PSD), č, ď (63)

Lemma 1 |bTRχ2 (U)a|2 Concave uT Ω̂u + p̂u + q̂ Ω̂ (NSD), p̂, q̂ (40) (53)

Lemma 1 |bTRχ2 (U)a|2 Convex −uT Ω̂u + p̄u + q̄ Ω̂ (NSD), p̄, q̄ (40) (53), (56)

Lemma 2 Re{bTRχ2 (U)a} Concave uT Ω̃u + p̃u + q̃ Ω̃ (NSD), p̃, q̃ (66)

Lemma 3 Re{
(
bTRχ̌(U)ǎ

)(
bTRχ(U)a

)H} Convex uT Ω̌u + p̌u + q̌ Ω̌ (PSD), p̌, q̌ (46) (63)

FAS for transmiting signal and an N -antenna planar FAS for
receiving signal. The size of each FAS is S = [0,W ]× [0,W ].
Each antenna at the FAS can be freely switched to any position
within the given region instantly. The positions of the m-th
transmit antenna and the n-th receive antenna are denoted by
vm = [xt

m, y
t
m]
T and un = [xr

n, y
r
n]
T , respectively.

Let wt ∈ CM×1and sd ∼ CN (0, 1) be the precoding vector
and information symbol for the downlink user, respectively.
Then the signal received by the donwlink user is given by

yd = hd(V )wtsd + nd, (1)

where hd(V ) ∈ C1×M is the channel vector from the BS to
the downlink user, V = [v1, . . . ,vM ] ∈ R2×M , and nd ∼
CN (0, σ2

d ) is the additive complex white Gaussian noise.
Similarly, denote the uplink symbol and channel by su ∼

CN (0, 1) and hu(U) ∈ CN×1, and U = [u1, . . . ,uN ] ∈
R2×N . The received signal at the BS is written as

yr = hu(U)
√
pusu + (Hs(V ,U) +HSI(V ,U))wtsd + nr,

(2)
where pu is the transmit power of the uplink user, Hs ∈
CN×M and HSI ∈ CN×M are the sensing and SI channels,
respectively, and nr ∼ CN (0, σ2

r I) is the additive noise.

B. Channel Model

Here, we provide the expressions for the channel vectors
hd and hu, and the channel matrices Hs and HSI. Denote
the azimuth and elevation angles of departure (AoDs) of the
l-th downlink path by φd

l and θd
l , respectively. The propa-

gation distance difference in the l-th path of the downlink
channel between the position of the m-th transmit antenna
vm = [xt

m, y
t
m]
T and its origin [0, 0]T is

ρd
l (vm) = xt

mδ
d
l + yt

mξ
d
l , (3)

where δd
l = sin θd

l cosφd
l and ξd

l = cos θd
l . The steering vector

of the l-th path of the downlink channel is thus given by

td
l (V ) =

[
e−j

2π
λ ρ

d
l(v1), . . . , e−j

2π
λ ρ

d
l(vM )

]T
∈ CM×1, (4)

where λ is the wavelength. Let Ld be the number of downlink
propagation paths. Then we have

hd(V ) = 1HΓdT
H
d (V ) ∈ C1×M , (5)

in which 1 represents an all-ones column vector, Γd =
diag{γ1

d , . . . , γ
Ld
d } ∈ CLd×Ld is the channel coefficient matrix,

and Td(V ) =
[
td
1(V ), . . . , td

Ld
(V )

]
∈ CM×Ld .

Next, we denote the azimuth and elevation angles of arrival
(AoAs) of the l-th uplink path by φu

l and θu
l , respectively.

The propagation distance difference in the l-th path of the
uplink channel between the n-th receive antenna position
un = [xr

n, y
r
n]
T and the origin is given by

ρu
l (un) = xr

nδ
u
l + yr

nξ
u
l , (6)

where δu
l = sin θu

l cosφu
l and ξu

l = cos θu
l . Then the steering

vector of the uplink channel can be expressed as

ru
l (U) =

[
e−j

2π
λ ρ

u
l(u1), . . . , e−j

2π
λ ρ

u
l(uN )

]T
∈ CN×1. (7)

Let Lu represent the number of uplink propagation paths. The
uplink channel can then be written as

hu(U) = Ru(U)Γu1 ∈ CN×1, (8)

where Γu = diag{γ1
u , . . . , γ

Lu
u } ∈ CLu×Lu is the channel coef-

ficient matrix and Ru(U) =
[
ru

1(U), . . . , ru
Lu

(U)
]
∈ CN×Lu .

Consider a mono-static radar, and that the AoA and AoD
of the sensing channel are the same. Denote the azimuth and
elevation angles of the sensing path with respect to the BS by
φs and θs, respectively. The receiving and transmitting steering
vectors of the sensing channel are written as

ar(U) =
[
e−j

2π
λ ρr(u1), . . . , e−j

2π
λ ρr(uN )

]T
∈ CN×1,

at(V ) =
[
e−j

2π
λ ρt(v1), . . . , e−j

2π
λ ρt(vM )

]T
∈ CM×1,

(9)

where ρr(un) , xr
nδ

s +yr
nξ

s and ρt(vm) = xt
mδ

s +yt
mξ

s with
δs = sin θs cosφs and ξs = cos θs. The sensing channel can
therefore be expressed as

Hs(V ,U) = αsar(U)aHt (V ) ∈ CN×M , (10)

where αs is the reflection coefficient including the path loss
and the radar cross section (RCS).

Denote the AoDs and AoAs of the SI channel by (φSI
t,l, θ

SI
t,l)

and (φSI
r,l, θ

SI
r,l), respectively. The receiving and transmiting

steering vectors of the SI channel are found as
rSI
l (U) =

[
e−j

2π
λ ρ

SI
r,l(u1), . . . , e−j

2π
λ ρ

SI
r,l(uN )

]T
∈ CN×1,

tSI
l (V ) =

[
e−j

2π
λ ρ

SI
t,l(v1), . . . , e−j

2π
λ ρ

SI
t,l(vM )

]T
∈ CM×1,

(11)
where ρSI

r,l(un) , xr
nδ

SI
r,l + yr

nξ
SI
r,l with δSI

r,l = sin θSI
r,l cosφSI

r,l
and ξSI

r,l = cos θSI
r,l, and ρSI

t,l(vm) , xt
mδ

SI
t,l + yt

mξ
SI
t,l with δSI

t,l =
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sin θSI
t,l cosφSI

t,l and ξSI
t,l = cos θSI

t,l. Let LSI be the number of
paths of the SI channel. Then, the SI channel is written as

HSI(V ,U) = RSI(U)ΓSIT
H
SI (V ) ∈ CN×M , (12)

where ΓSI = diag{γ1
SI, . . . , γ

LSI
SI } ∈ CLSI×LSI is the channel co-

efficient matrix, RSI(U) =
[
rSI

1 (U), . . . , rSI
LSI

(U)
]
∈ CN×LSI ,

and TSI(V ) =
[
tSI
1 (V ), . . . , tSI

LSI
(V )

]
∈ CM×LSI .

III. PROBLEM FORMULATION

A. Communication Metric

According to (1), the SINR of the downlink user is

ηd(V ,wt) =
|hd(V )wt|2

σ2
d

. (13)

Similarly, the uplink communication SINR at the BS is

ηu(Φ) =
pu
∣∣wH

r hu(U)
∣∣2

|wH
r H(V ,U)wt|2 + σ2

r ‖wH
r ‖2

, (14)

where wr ∈ CN×1 is the linear beamformer adopted by the BS
for detecting su, H(V ,U) = Hs(V ,U) +HSI(V ,U), and
Φ = {V ,U ,wt,wr, pu} contains all the optimizing variables.

B. Sensing Metric

Since the detection probability is directly proportional to the
sensing SINR [67], maximizing the sensing SINR has a direct
effect of maximizing the detection probability. Therefore, we
adopt the sensing SINR, given by

ηs(Φ)=

∣∣wH
r Hs(V ,U)wt

∣∣2
pu |wH

r hu(U)|2+|wH
r HSI(V ,U)wt|2+σ2

r ||wH
r ||2

,

(15)

as the main sensing performance metric.

C. Optimization Problem

We aim to maximize the commmunication sum rate subject
to a sensing SINR constraint by optimizing the transmit and
receive antenna positions V and U , the precoding and receive
beamforming vectorswt andwr, and the uplink transmit power
pu. Mathematically, this is formulated as

max
Φ

f0(Φ) = log
(
1 + ηd(V ,wt)

)
+ log

(
1 + ηu(Φ)

)
s.t. ηs(Φ) ≥ η,

‖wt‖2 ≤ Pt,

0 ≤ pu ≤ Pu,

vm,vm′ ∈ S,vm 6= vm′ , ∀m,m′ ∈M,m 6= m′,

un,un′ ∈ S,un 6= un′ , ∀n, n′ ∈ N , n 6= n′, (16)

where η is the sensing performance threshold, Pt and Pu are
the power budgets of the BS and the uplink user, and M =
{1, . . . ,M} and N = {1, . . . , N} denote the index sets of the
transmit and receive antennas, respectively.

IV. PROPOSED SOLUTION

Problem (16) is non-convex and hence intractable. To pro-
ceed, we first remove Φ from the log operation in the objective
function f0(Φ). Specifically, we introduce auxiliary variables
∆ = {∆d, ∆u} and transform f0(Φ) to

f1(Φ,∆)=log(1+∆d)−∆d+
(1+∆d)|hd(V)wt|2

|hd(V)wt|2 + σ2
d

+log(1+∆u)

−∆u+
(1 +∆u)pu

∣∣wH
r hu(U)

∣∣2
pu|wH

r hu(U)|2+|wH
r H(V ,U)wt|2+σ2

r ‖wH
r ‖2

. (17)

For fixed Φ, by setting ∂f1

∂∆d
and ∂f1

∂∆u
to zero, we have


∆∗d =

|hd(V )wt|2

σ2
d

,

∆∗u =
pu
∣∣wH

r hu(U)
∣∣2

|wH
r H(V ,U)wt|2 + σ2

r ‖wH
r ‖2

.

(18)

It is easy to prove that f1(Φ,∆∗) = f0(Φ). Therefore, (16)
can be equivalently transformed to

max
Φ,∆

f1(Φ,∆)

s.t. fs(Φ) ≥ 0,

‖wt‖2 ≤ Pt,

0 ≤ pu ≤ Pu,

vm,vm′ ∈ S,vm 6= vm′ , ∀m,m′ ∈M,m 6= m′,

un,un′ ∈ S,un 6= un′ , ∀n, n′ ∈ N , n 6= n′, (19)

where fs(Φ) =
∣∣wH

r Hs(V ,U)wt
∣∣2 − η

(
pu
∣∣wH

r hu(U)
∣∣2 +∣∣wH

r HSI(V ,U)wt
∣∣2+σ2

r ||wH
r ||2

)
. To deal with the fractional

terms in f1(Φ,∆), we further introduce auxiliary variables
ω = {ωd, ωu} as in [68], [69] to reformulate f1(Φ,∆) as

f2(Φ,∆,ω) = log(1+∆d)−∆d

+ (1 +∆d)
[
2Re{ωHd hd(V )wt} −|ωd|2

(
|hd(V )wt|2+σ2

d

) ]
+log(1+∆u)−∆u + pu(1 +∆u)

[
2Re{ωHu wH

r hu(U)}

− |ωu|2
(
pu
∣∣wH

r hu(U)
∣∣2+∣∣wH

r H(V ,U)wt
∣∣2+σ2

r ‖wH
r ‖2

)]
.

(20)

By setting ∂f2

∂ωd
and ∂f2

∂ωu
to zero, we can obtain the optimal

value of f2(Φ,∆,ω) at
ω∗d =

hd(V )wt

|hd(V )wt|2+σ2
d

,

ω∗u =
wH

r hu(U)

pu|wH
r hu(U)|2+|wH

r H(V ,U)wt|2+σ2
r ‖wH

r ‖2
.

(21)
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Since f2(Φ,∆,ω∗) = f1(Φ,∆), (19) can be recast as

max
Φ,∆,ω

f2(Φ,∆,ω)

s.t. fs(Φ) ≥ 0,

‖wt‖2 ≤ Pt,

0 ≤ pu ≤ Pu,

vm,vm′ ∈ S,vm 6= vm′ , ∀m,m′ ∈M,m 6= m′,

un,un′ ∈ S,un 6= un′ , ∀n, n′ ∈ N , n 6= n′. (22)

Though (22) is much simpler than (16), it is still hard. In the
sequel, we iteratively update each variable while considering
others fixed. For notation convenience, when V and U are
fixed, we omit them from the channel variables, e.g., we denote
hd(V ) and hu(U) as hd and hu, respectively.

A. Updating Auxiliary Variables
According to the FP framework, we find the optimal values

of ∆ and ω based on (18) and (21), respectively.

B. Updating Transmit Beamforming Vector
Here, we aim to solve the sub-problem of optimizing wt.

With fixed {V ,U ,wr, pu,∆,ω}, (22) reduces to

max
wt

−wH
t φ1wt + µ1Re{ωHd hdwt} (23a)

s.t. wH
t φ2wt −wH

t φ3wt + µ2 ≤ 0, (23b)

‖wt‖2 ≤ Pt, (23c)

where µ1 = 2(1 + ∆d), φ1 = (1 + ∆d)|ωd|2hHd hd +
pu(1 + ∆u)|ωu|2HHwrw

H
r H , φ2 = ηHH

SIwrw
H
r HSI, φ3 =

HH
s wrw

H
r Hs, and µ2 = η

(
pu
∣∣wH

r hu
∣∣2 +σ2

r ‖wH
r ‖2

)
. Since

(23b) is in the difference of convex (DC) form, we apply
the MM framework to iteratively optimize wt. In particular,
a lower-bound of wH

t φ3wt can be constructed through the
Taylor series expansion, given by

wH
t φ3wt ≥ 2Re{wH

t,0φ3(wt −wt,0)}+wH
t,0φ3wt,0, (24)

where wt,0 is the value of wt in the previous iteration. Then
(23) can be rewritten as

max
wt

−wH
t φ1wt + µ1Re{ωHd hdwt}

s.t. wH
t φ2wt − 2Re{wH

t,0φ3wt}+ µ3 ≤ 0,

‖wt‖2 ≤ Pt, (25)

where µ3 = µ2 + wH
t,0φ3wt,0. Obviously, problem (25) is a

QCQP and thus can be solved by CVX.

C. Updating Receive Beamforming Vector
Now, we deal with the sub-problem of optimizing wr. With

fixed {V ,U ,wt, pu,∆,ω}, problem (22) becomes

max
wr

−wH
r ψ1wr + 2Re{ωHu wH

r hu}

s.t. wH
r ψ2wr −wH

r ψ3wr ≤ 0, (26)

where ψ1 = |ωu|2(puhuh
H
u + Hwtw

H
t H

H + σ2
r I), ψ2 =

η(puhuh
H
u +HSIwtw

H
t H

H
SI +σ2

r I), and ψ3 = Hswtw
H
t H

H
s .

Note that (26) has the same form as (23). Therefore, it can
also be transformed into a QCQP and solved by CVX.

D. Updating Uplink Transmit Power

Next, we address the sub-problem related to pu. With fixed
{V ,U ,wt,wr,∆,ω}, (22) becomes

max
pu

− α1p
2
u + α2pu

s.t. pu ≤ α3,

0 ≤ pu ≤ Pu, (27)

where α1 = |ωu|2|wH
r hu|2, α2 = 2Re{ωHu wH

r hu} −
|ωu|2

( ∣∣wH
r Hwt

∣∣2 + σ2
r ‖wH

r ‖2
)
, and α3 =

[∣∣wH
r Hswt

∣∣2−
η
( ∣∣wH

r HSIwt
∣∣2+σ2

r ‖wH
r ‖2

)]
/
(
η
∣∣wH

r hu
∣∣2). Obviously, prob-

lem (27) is feasible only when α3 ≥ 0. If α3 ≥ 0 and α1 = 0,
the optimal solution of the problem can be reached at pu = 0
if α2 ≤ 0, or at pu = min{α3, Pu} if α2 > 0. If α3 ≥ 0 and
α1 > 0, the objective function of (27) is a parabola with a
downward opening. Then, it is easy to verify that for α3 ≥ 0
and α1 > 0, the optimal value of pu is given by

p∗u = min

{
max

{
α2

2α1
, 0

}
,min{α3, Pu}

}
. (28)

E. Updating Transmit Antenna Positions

In this subsection, we solve the sub-problem of optimizing
V using the proposed theorems and the SCA algorithm. With
fixed {U ,wt,wr, pu,∆,ω}, problem (22) becomes

max
V

αd

(
2Re{ωHd hd(V )wt}−|ωd|2 |hd(V )wt|2

)
− αu

∣∣wH
r H(V )wt

∣∣2
s.t.

∣∣wH
r Hs(V )wt

∣∣2 − η ∣∣wH
r HSI(V )wt

∣∣2 ≥ β1,

vm,vm′ ∈ S,vm 6= vm′ , ∀m,m ∈M,m 6= m′, (29)

where αd = 1 +∆d, αu = pu(1 +∆u)|ωu|2, and β1 =

η
(
pu
∣∣wH

r hu
∣∣2 + σ2

r ‖wH
r ‖2

)
. Denoting Ts(V ) = at(V ) and

considering the model in Section II-B, (29) is rewritten as

max
V

αd

(
2Re{ωHd 1HΓdT

H
d (V )wt}−|ωd|2

∣∣1HΓdT
H
d (V )wt

∣∣2)
−αu

(∣∣αsw
H
r arT

H
s (V )wt

∣∣2 +
∣∣wH

r RSIΓSIT
H
SI (V )wt

∣∣2
+2Re{

(
αsw

H
r arT

H
s (V )wt

)(
wH

r RSIΓSIT
H
SI (V )wt

)H})
s.t. η

∣∣wH
r RSIΓSIT

H
SI (V )wt

∣∣2−∣∣αsw
H
r arT

H
s (V )wt

∣∣2≤−β1,

vm,vm′ ∈ S,vm 6= vm′ , ∀m,m ∈M,m 6= m′. (30)

Since the problem is still non-convex and difficult to solve,
we resort to SCA. For convenience, denote v = vector{V } =
[xt

1, . . . , x
t
M , y

t
1, . . . , y

t
M ]T = [v1, . . . , v2M ]T .

Theorem 1. For arbitrary vectors a = [a1, . . . , aL]T and
b = [b1, . . . , bM ]T , vT Λ̂v + ĉv + d̂ and −vT Λ̂v + c̄v +
d̄ are concave and convex quadratic surrogate functions for
|aTTHχ1

(V )b|2 respectively, where χ1 ∈ {d,SI, s}, Λ̂, ĉ, and
d̂ are given in (53), while c̄ and d̄ are given in (56), and Λ̂
is a negative semi-definite (NSD) matrix.

Proof: See Appendix A.
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Based on Theorem 1, a concave quadratic surrogate function
of
∣∣αsw

H
r arT

H
s (V )wt

∣∣2 can be obtained as

vT Λ̂sv + ĉsv + d̂s. (31)

Moreover, we can obtain the convex quadratic surrogate
functions of

∣∣1HΓdT
H
d (V )wt

∣∣2,
∣∣αsw

H
r arT

H
s (V )wt

∣∣2, and∣∣wH
r RSIΓSIT

H
SI (V )wt

∣∣2 as

− vT Λ̂dv + c̄dv + d̄d, (32)

− vT Λ̂sv + c̄sv + d̄s, (33)

− vT Λ̂SIv + c̄SIv + d̄SI. (34)

Theorem 2. For any a ∈ CL×1 and b ∈ CM×1, a concave
quadratic surrogate function for Re{aTTHχ1

(V )b} is given by
vT Λ̃v + c̃v + d̃, where χ1 ∈ {d,SI, s}, and Λ̃ is an NSD
matrix defined in (59) along with c̃ and d̃.

Proof: See Appendix B.
According to Theorem 2, a concave quadratic surrogate

function of Re{ωHd 1HΓdT
H
d (V )wt} can be written as

vT Λ̃dv + c̃dv + d̃d. (35)

Theorem 3. For any vectors a = [a1, . . . , aL]T , b =
[b1, . . . , bM ]T , and ǎ = [ǎ1, . . . , ǎĽ]T , a convex quadratic sur-
rogate function for Re{

(
aTTHχ (V )b

)(
ǎTTHχ̌ (V )b

)H} can be
expressed as vT Λ̌v+ čv+ ď, where χ, χ̌ ∈ {d,SI, s}, χ 6= χ̌,
Λ̌ is a positive semi-definite (PSD) matrix, and Λ̌, č, ď are
given in (63).

Proof: See Appendix C.
Then we denote the convex quadratic surrogate function

for Re{
(
αsw

H
r arT

H
s (V )wt

)(
wH

r RSIΓSIT
H
SI (V )wt

)H} using
Theorem 3 as

vT Λ̌sSIv + čsSIv + ďsSI. (36)

Denoting Λ1 = αd(2Λ̃d + |ωd|2Λ̂d) + αu(Λ̂s + Λ̂SI − 2Λ̌sSI),
c1 = αd(2c̃d−|ωd|2c̄d)−αu(c̄s + c̄SI + 2čsSI), d1 = αd(2d̃d−
|ωd|2d̄d) − αu(d̄s + d̄SI + 2ďsSI), Λ2 = −ηΛ̂SI − Λ̂s, c2 =
ηc̄SI − ĉs, and d2 = ηd̄SI − d̂s, (30) can be transformed to

max
v

vTΛ1v + c1v + d1, (37a)

s.t. vTΛ2v + c2v + d2 ≤ −β1, (37b)
0 ≤ vm ≤W,m = 1, . . . , 2M, (37c)
[vm, vm+M ] 6= [vm′ , vm′+M ], ∀m,m′ ∈M,m 6= m′.

(37d)

Without (37d), (37) is convex and can be solved by CVX.
Noting that in Theorems 1, 2, and 3, the quadratic surrogate
functions are based on the Taylor series expansion in the given
antenna positions V0, we apply the SCA method to solve (29).
Specifically, we start SCA from valid v that satisfies (37d), and
then update v only if it satisfies (37d) in each iteration. The
main steps of solving (29) are summarized in Algorithm 1.

Algorithm 1 SCA-based algorithm for solving (29)
Initialize V0 by randomly generating antenna positions
that satisfy (37d). Let i = 0.
repeat

Calculate Λ1, c1, d1, Λ2, c2, and d2.
Solve (37a), (37b) and (37c) by CVX and obtain v.
if v satisfies (37d) then

Let i= i+1 and V (i) =[v1, . . . vM ; vM+1, . . . v2M ].
end if

until convergence
Let V (i) be the solution of problem (29).

F. Updating Receive Antenna Positions

In the following, we address the sub-problem of optimizing
U using the proposed lemmas and the SCA algorithm. With
fixed {V ,wt,wr, pu,∆,ω}, (22) can be recast as

max
U

2Re{ωHu wH
r hu(U)}−|ωu|2

(
pu
∣∣wH

r hu(U)
∣∣2+∣∣wH

r H(U)wt
∣∣2)

s.t.
∣∣wH

rHs(U)wt
∣∣2−ηpu

∣∣wH
r hu(U)

∣∣2−η∣∣wH
rHSI(U)wt

∣∣2≥β2,

un,un′ ∈ S,un 6= un′ , ∀n, n′ ∈ N , n 6= n′, (38)

where β2 = ησ2
r ‖wH

r ‖2. For convenience, denote Rs(U) =
ar(U). Based on the model in Section II-B, (38) is

max
U

2Re{ωHu wH
rRu(U)Γu1}−|ωu|2

(
pu
∣∣wH

rRu(U)Γu1
∣∣2

+
∣∣αsw

H
r Rs(U)aHt wt

∣∣2 +
∣∣wH

r RSI(U)ΓSIT
H
SI wt

∣∣2
+2Re{

(
αsw

H
r Rs(U)aHt wt

)(
wH

r RSI(U)ΓSIT
H
SI wt

)
H}
)

s.t.
(
ηpu

∣∣wH
r Ru(U)Γu1

∣∣2 + η
∣∣wH

r RSI(U)ΓSIT
H
SI wt

∣∣2
−
∣∣αsw

H
r Rs(U)aHt wt

∣∣2 + β2

)
≤ 0,

un,un′ ∈ S,un 6= un′ , ∀n, n′ ∈ N , n 6= n′. (39)

Although (39) cannot be transformed directly into a convex
problem, we can obtain the concave and convex quadratic
surrogate functions for the terms in (39) based on Theo-
rems 1–3. For convenience, we denote u = vector{U} =
[xr

1, . . . , x
r
N , y

r
1, . . . , y

r
N ]T = [u1, . . . , u2N ]T .

Lemma 1. For χ2 ∈ {u,SI, s}, ∀a = [a1, . . . , aL]T and
∀b = [b1, . . . , bN ]T , we can construct concave and convex
quadratic surrogate functions for |bTRχ2(U)a|2 as uT Ω̂u+
p̂u+ q̂ and −uT Ω̂u+ p̄v+ q̄, respectively, according to the
transformation in (40) and Theorem 1.

Proof: Now we omit the subscript χ2 for brevity. For
vectors a = [a1, . . . , aL]T and b = [b1, . . . , bN ]T , we know
that bTR(U)a =

∑L
l=1

∑N
n=1 alrl(un)bn, where rl(un) =
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e−j
2π
λ ρl(un). Then, similar to (49), |bTR(U)a|2 becomes

|bTR(U)a|2

=

L∑
i=1

N∑
m=1

L∑
l=1

N∑
n=1

alrl(un)bnb
H
mr

H
i (um)aHi

=

L∑
i=1

L∑
l=1

|ai||al|

[
N∑
m=1

N∑
n=1

|bm||bn| cos
(
f̂i,l(um,un)

)]
,

(40)

where f̂i,l(um,un) = 2π
λ [ρi(um)− ρl(un)] +∠(albnb

H
ma

H
i ).

Since (40) has a similar form to that of (49), the concave and
convex quadratic surrogate functions of |bTR(U)a|2 can be
obtained using Theorem 1 by taking f̂i,l → fi,l, u → v, and
N →M . As a consequence, Lemma 1 is now proven.

Using Lemma 1, we can derive a concave quadratic surro-
gate functions of

∣∣αsw
H
r Rs(U)aHt wt

∣∣2 as

uT Ω̂su+ p̂su+ q̂s, (41)

and furthermore, the convex quadratic surrogate
functions of

∣∣wH
rRu(U)Γu1

∣∣2,
∣∣αsw

H
r Rs(U)aHt wt

∣∣2, and∣∣wH
r RSI(U)ΓSIT

H
SI wt

∣∣2 are obtained as

− uT Ω̂uu+ p̄uv + q̄u, (42)

− uT Ω̂su+ p̄sv + q̄s, (43)

− uT Ω̂SIu+ p̄SIv + q̄SI. (44)

Lemma 2. For any vectors a = [a1, . . . , aL]T and b =
[b1, . . . , bN ]T , uT Ω̃u + p̃u + q̃ is a concave quadratic
surrogate function for Re{bTRχ2

(U)a} ∀χ2 ∈ {u,SI, s},
where Ω̃ is NSD, and Ω̃, p̃ and q̃ are given in (66).

Proof: See Appendix D.
Based on Lemma 2, a concave quadratic surrogate function

of Re{ωHu wH
rRu(U)Γu1} can be obtained as

uT Ω̃uu+ p̃uu+ q̃u. (45)

Lemma 3. By letting f̌ ′i,l → f̌i,l, u → v, and
N → M , a convex quadratic surrogate function of
Re{
(
bTRχ̌(U)ǎ

)(
bTRχ(U)a

)H} can be written as uT Ω̌u+
p̌u + q̌ using Theorem 3, where χ, χ̌ ∈ {u,SI, s}, χ 6= χ̌,
a ∈ CL×1, ǎ ∈ CĽ×1 and b ∈ CN×1.

Proof: With a= [a1,. . ., aL]T, b= [b1,. . ., bN ]T, and ǎ=
[ǎ1,. . ., ǎĽ]T, we get bTRχ(U)a=

∑L
i=1

∑N
m=1air

χ
i (um)bm

and bTRχ̌(U)ǎ=
∑Ľ
l=1

∑N
n=1̌alr

χ̌
l (un)bn, where rχi (um) =

e−j
2π
λ ρ

χ
i (um). Then, similar to (60), we obtain

Re
{(
bTRχ̌(U)ǎ

)(
bTRχ(U)a

)
H
}

=Re


L∑
i=1

N∑
m=1

Ľ∑
l=1

N∑
n=1

ǎlr
χ̌
l (un)bnb

H
m(rχi (um))HaHi


=

L∑
i=1

Ľ∑
l=1

|ai||ǎl|

[
N∑
m=1

N∑
n=1

|bm||bn| cos
(
f̌ ′i,l(um,un)

)]
,

(46)

where f̌ ′i,l(um,un) = 2π
λ [ρχi (um)−ρχ̌l (un)]+∠(ǎlbnb

H
ma

H
i ).

Considering f̌ ′i,l → f̌i,l, u→ v, and N →M , (46) is the same

as (60). The convex surrogate function uT Ω̌u+ p̌u+ q̌ can
thus be obtained by Theorem 3, which proves Lemma 3.

Based on Lemma 3, we can now express
the convex quadratic surrogate function for
Re{
(
αsw

H
r Rs(U)aHt wt

)(
wH

r RSI(U)ΓSIT
H
SIwt

)H} as

vT Ω̌sSIv + p̌sSIv + q̌sSI. (47)

DenotingΩ1 = 2Ω̃u+|ωu|2(puΩ̂u+Ω̂s+Ω̂SI−2Ω̌sSI), p1 =
2p̃u− |ωu|2(pup̄u + p̄s + p̄SI + 2p̌sSI), q1 = 2q̃u− |ωu|2(puq̄u +
q̄s + q̄SI + 2q̌sSI), Ω2 = −ηpuΩ̂u − ηΩ̂SI − Ω̂s, p2 = ηpup̄u +
ηp̄SI− p̂s, and q2 = ηpuq̄u + ηq̄SI− q̂s, (39) is transformed to

max
u

uTΩ1u+ p1u+ q1, (48a)

s.t. uTΩ2u+ p2u+ q2 ≤ −β2, (48b)
0 ≤ un ≤W,n = 1, . . . , 2N, (48c)
[un, un+N ] 6= [un′ , un′+N ], ∀n, n′ ∈ N , n 6= n′.

(48d)

Note that (48) has the same form as (37). Therefore, we can
solve the original problem (38) using Algorithm 1.

G. Alternative Optimization

So far, we have provided different schemes for optimizing
each variable. Overall, the main steps of solving problem
(16) can be summarized in Algorithm 2. The summary of the
proposed theorems and lemmas is given in Table I.

Algorithm 2 Alternative optimization for solving (16)
Initialize: wt,wr, pu,V ,U .
Using the FP framework to reformulate the original prob-
lem (16) as (22) by introducing variables ∆ and ω.
repeat

1. Update ∆ and ω using (18) and (21), respectively.
2. Optimize wt: obtain the sub-problem (23) of opti-

mizing the transmit beamforming vector and update wt
via (25).

3. Optimize wr: solve the sub-problem (26) using
CVX to optimize the receive beamforming vector wt.

4. Optimize pu: obtain the sub-problem (27) of op-
timizing the uplink transmit power pu and optimize it
through the closed-form solution in (28), respectively.

5. Optimize V : transform the sub-problem (29) into
(37) based on Theorems 1, 2, 3 and update the transmit
FAS positions V by using Algorithm 1.

6. Optimize U : transform the sub-problem (38) into
(48) based on Lemmas 1, 2, 3 and update the receive
FAS positions U by using Algorithm 1.
until convergence

H. Convergence and Complexity Analysis

1) Convergence Analysis: To begin, we denote the objective
function of (29) by f(v) and (37a) by g(v). According to (53),
(56), (59), and (63), we know that f(v(i+1)) ≥ g(v(i+1)|v(i))
and f(v(i)) = g(v(i)|v(i)). In each iteration, we can al-
ways find v(i+1) satisfying g(v(i+1)|v(i)) ≥ g(v(i)|v(i)).
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The convergence of Algorithm 1 is thus guaranteed since
f(v(i+1)) ≥ g(v(i+1)|v(i)) ≥ g(v(i)|v(i)) = f(v(i)).

For Algorithm 2, the communication rate increases in each
iteration by optimizing ∆,ω,wt,wr, pu,V ,U iteratively. The
convergence of Algorithm 2 is guaranteed since the commu-
nication rate is upper-bounded.

2) Complexity Analysis: We assume that the number of
propagation paths for each channel is the same, i.e., Ld =
Lu = LSI = L. Algorithm 1 involves solving a QCQP problem
using CVX for a vector variable with 2M elements, which has
a complexity ofO((2M)3). Denoting the maximum number of
iterations in Algorithm 1 by NSCA, the complexity of updating
V and U using Algorithm 1 are OV = O(NSCA[(2M)3 +
M2L2]) and OU = O(NSCA[(2N)3 + N2L2]), respec-
tively. Calculating pu based on (28) has a complexity of
Op = O(NM). Denote the maximum number of iterations
in optimizing wt and wr by Nt and Nr, respectively. The
complexity of updating the beamforming vectors wt and wr
are Ot = O(Nt(M)3 +M(N +M)) and Or = O(Nr(N)3 +
N(N + M)), respectively. Denote the maximum number of
iterations of Algorithm 2 by NAO, solving (16) requires a
complexity of O(NAO(Ot +Or +Op +OV +OU )).

V. SIMULTION RESULTS

Here, we evaluate the performance of the proposed algo-
rithms using Monte Carlo simulation. The carrier frequency is
30 GHz. The azimuth and elevation AoAs and AoDs follow
uniform distribution over [0, π], and all the channel coefficients
γ ∼ CN (0, 1). We assume that the number of paths is
equal, i.e., Ld = Lu = LSI = L. Considering unit noise
power, the maximum transmit signal-to-noise ratios (SNRs)
of the BS and the uplink user are SNRt = 10 log Pt dB and
SNRu = 10 log Pu dB. Unless otherwise specified, we set
W = 5λ, M = N = L = 2, αs = 10, η = 1, SNRt = 20 dB,
and SNRu = 17 dB in the simulations. We compare the
proposed algorithm with the following benchmarks:
• FPA-nonAO: BS adopts FPAs with antenna spacing of
λ/2, and the beamforming vectors and the transmit power
are optimized once without iteration.

• FPA-AO: BS uses FPAs with antenna spacing of λ/2,
and the beamforming vectors and the transmit power are
alternatively optimized until convergence.

• Transmit FAS (FAS-Tx): The BS transmits signals using
FAS while receiving signals using FPA. The positions of
the transmit FAS V are optimized while the positions of
FPA are fixed and spaced by λ/2.

• Receive FAS (FAS-Rx): The BS transmits signals using
FPA while receiving signals using FAS. The positions of
the receive FAS U are optimized while the positions of
FPA are fixed and spaced by λ/2.

• FAS-Tx+Rx: The BS uses FAS for both transmitting and
receiving signals.

In Fig. 2, we show the communication rate with different
numbers of transmit BS antennas. As expected, the communi-
cation rate increases with M for all schemes. In particular,
when M increases from 2 to 50, the communication rate
obtained by using FAS increases by 3 bps/Hz. Note that FAS
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Fig. 2. Communication rate versus the number of transmit BS antennas, M .
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Fig. 3. Communication rate versus the number of receive BS antennas N .

with 20 transmit antennas can outperform the FPA system
with 50 transmit antennas when N = 5 and N = 20. While
optimizing only the transmit FAS can significantly enhance the
communication rate, updating both the transmit and receive
FAS can further improve the communication performance.

Fig. 3 considers how the number of receive BS antennas
affects the communication rate. By updating the positions of
the receive antennas, the communication rate is increased by
1.5 bps/Hz compared to the FPA when L = 2. Optimizing
both transmit and receive FAS also further increases the
communication rate by 1.25 bps/Hz compared to optimizing
only the receive FAS.

In Fig. 4, we verify the relationship between the communi-
cation rate and the number of paths. In comparison, updating
the transmit FAS has better performance than updating the
receive FAS. This is because both the uplink and downlink
rates are related to the BS transmitter, but only the BS receiver
is independent of the downlink rate. In addition, optimizing
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Fig. 4. Communication rate versus the number of propagation paths, L.
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Fig. 5. Communication rate versus the normalized antenna size, W/λ.

both the transmit and receive FAS achieves the highest rate,
showing an improvement of 2 bps/Hz over FPA.

In Fig. 5, we analyze how the communication rate changes
with the size of FAS. We can see that the communication rate
initially increases with the antenna size and then saturates.
When the antenna size is small, the spatial DoF obtained by
changing the antenna positions is limited, so is the perfor-
mance. Once the antenna size is large enough, further increases
in size no longer increase the communication performance.

Figs. 6 and 7 illustrate the communication rate obtained
with different values of the power budgets of the BS and the
uplink user, respectively. As expected, the communication rate
increases with the power budgets. Compared to increasing the
power budget of the uplink user, increasing the power budget
of the BS contributes more to the communication rate since
the downlink rate is independent of the uplink transmit power.
As SNRt increases from 0 dB to 20 dB, the communication
rate obtained by using FAS and FPA increases by 7.5 bps/Hz
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Fig. 6. Communication rate versus the maximum transmit SNR of the BS,
SNRt = 10 log Pt dB.
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Fig. 7. Communication rate versus the maximum transmit SNR of the uplink
user, SNRu = 10 log Pu dB.

and 5.8 bps/Hz, respectively. FAS always provides a 2 bps/Hz
improvement compared to FPA as SNRu increases.

Finally, in Fig. 8, we study the communication rate under
different sensing thresholds. As we can see, the communica-
tion rate decreases for all schemes when the sensing threshold
increases. As η increases, the communication rate obtained by
FAS shows more decrease compared to FPA. However, when
η = 5, FAS still outperforms FPA by more than 1 bps/Hz.

VI. CONCLUSION

This paper addressed the problem of maximizing the com-
munication rate under sensing performance and power budget
constraints. We first introduced the FP framework to transform
the problem into subproblems, each of which could be solved
in an iterative manner. In particular, the beamforming vectors
were optimized using the MM algorithm, while a closed-form
solution of the uplink transmit power was given. In addition,



10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Sensing threshold, 

5

6

7

8

9

10

11

12

13

FPA-nonAO

FPA-AO

FAS-Rx

FAS-Tx

FAS-Tx+Rx

Fig. 8. Communication rate versus the sensing threshold, η.

we provided an SCA-based algorithm to optimize the antenna
positions by transforming the corresponding subproblems into
convex forms. Simulation results demonstrated that using the
proposed algorithm, FAS greatly outperforms FPA in terms of
communication rate for ISAC tasks. It is noted that in real-
time systems, hardware constraints such as processing latency,
response times, and energy consumption should be carefully
taken into account. As such, future research should consider
these practical limitations and explore the development of low-
complexity, real-time-compatible algorithms to enable efficient
deployment of FAS in real-world scenarios.

APPENDIX A
PROOF OF THEOREM 1

Subscript χ1 is omitted in this proof for notational brevity.
For vectors a = [a1, . . . , aL]T and b = [b1, . . . , bM ]T ,
we have aTTH(V )b =

∑L
i=1

∑M
m=1 ait

H
i (vm)bm, where

ti(vm) = e−j
2π
λ ρi(vm). Then we have

|aTT (V )Hb|2 =

L∑
i=1

M∑
m=1

L∑
l=1

M∑
n=1

ait
H
i (vm)bmb

H
n tl(vn)aHl

=

L∑
i=1

M∑
m=1

L∑
l=1

M∑
n=1

aibmb
H
n a

H
l e

j 2π
λ [ρi(vm)−ρl(vn)]

(a)
=

L∑
i=1

M∑
m=1

L∑
l=1

M∑
n=1

Re
{
aibmb

H
n a

H
l e

j 2π
λ [ρi(vm)−ρl(vn)]

}
=

L∑
i=1

M∑
m=1

L∑
l=1

M∑
n=1

|aibmbHn aHl | cos (fi,l(vm,vn))

(b)
=

L∑
i=1

M∑
m=1

L∑
l=1

M∑
n=1

|ai||bm||bn||al| cos (fi,l(vm,vn))

=

L∑
i=1

L∑
l=1

|ai||al|

[
M∑
m=1

M∑
n=1

|bm||bn| cos (fi,l(vm,vn))

]
,

(49)

where fi,l(vm,vn) = 2π
λ [ρi(vm)− ρl(vn)] + ∠(aibmb

H
n a

H
l ),

equation (a) holds since |aTT (V )Hb|2 is real, and equation
(b) holds due to the fact that |pq| = |p||q| ∀p, q ∈ C. Based on
Taylor series expansion, we can construct a concave quadratic
surrogate function g for any cosine function as

cos(ψ)
(c)
≈ cos(ψ0)− sin(ψ0)(ψ − ψ0)− 1

2
cos(ψ0)(ψ − ψ0)2

(d)
≥ g(ψ|ψ0) , cos(ψ0)−sin(ψ0)(ψ−ψ0)− 1

2
(ψ−ψ0)2, (50)

where (c) is the second order Taylor series expansion of the
cosine function, and (d) holds since cos(ψ0) ≤ 1. Denoting
vm,0 and vn,0 as the position vectors obtained in the previous
iteration and using (50), we know that

cos(fi,l(vm,vn)) ≥ g(fi,l(vm,vn)|fi,l(vm,0,vn,0))

= cos
(
f0
i,l,m,n

)
− sin

(
f0
i,l,m,n

)(
fi,l(vm,vn)− f0

i,l,m,n

)
− 1

2
(fi,l(vm,vn)− f0

i,l,m,n)2

= cos
(
f0
i,l,m,n

)
−sin

(
f0
i,l,m,n

)(2π

λ
[ρi(vm)−ρl(vn)]−τi,l,m,n

)
− 1

2

(
2π

λ
[ρi(vm)− ρl(vn)]− τi,l,m,n

)2

= cos
(
f0
i,l,m,n

)
− sin

(
f0
i,l,m,n

)(2π

λ
zi,l(vm,vn)− τi,l,m,n

)
− 1

2

(
2π

λ
zi,l(vm,vn)− τi,l,m,n

)2

=
−2π2

λ2

(
zi,l(vm,vn)

)2
+

2π

λ

(
τi,l,m,n−sin(f0

i,l,m,n)
)
zi,l(vm,vn)

+ cos
(
f0
i,l,m,n

)
+ sin

(
f0
i,l,m,n

)
τi,l,m,n −

1

2
τ2
i,l,m,n, (51)

where f0
i,l,m,n = fi,l(vm,0,vn,0), τi,l,m,n = 2π

λ [ρi(vm,0) −
ρl(vn,0)], and zi,l(vm,vn)=ρi(vm)−ρl(vn) = xt

mδi+y
t
mξi−

xt
nδl − yt

nξl. Then we obtain a lower-bound of (49) as

|aTT (V )Hb|2

≥
L∑
i=1

L∑
l=1

|ai||al|

[
M∑
m=1

M∑
n=1

|bm||bn|g
(
fi,l(vm,vn)|fi,l(vm,0,vn,0)

)]

=

L∑
i=1

L∑
l=1

|ai||al|
[
vT Λ̂i,lv + ĉi,lv + d̂i,l

]
, (52)
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where

Λ̂i,l =
−2π2

λ2

[
Ai,l Ci,l
Ci,l Bi,l

]
,

Ai,l = (δ2
i + δ2

l )diag(κb̄)− 2δiδlb̄b̄
T ,

Bi,l = (ξ2
i + ξ2

l )diag(κb̄)− 2ξiξlb̄b̄
T ,

Ci,l = (δiξi + δlξl)diag(κb̄)− (δiξl + δlξi)b̄b̄
T ,

b̄ = [|b1|, . . . , |bM |]T ,

κ =

M∑
m=1

|bm|,

ĉi,l =
2π

λ
[δiΥi,l −δlΨi,l, ξiΥi,l −ξlΨi,l],

Υi,l = [|b1|Υ i,l1 , . . . , |bM |Υ i,lM ],

Ψi,l = [|b1|Ψ i,l1 , . . . , |bM |Ψ i,lM ],

Υ i,lm =

M∑
n=1

|bn|
(
τi,l,m,n−sin(f0

i,l,m,n)
)
,

Ψ i,ln =

M∑
m=1

|bm|
(
τi,l,m,n−sin(f0

i,l,m,n)
)
,

d̂i,l =

M∑
m=1

M∑
n=1

|bm||bn|%̂i,l,m,n,

%̂i,l,m,n , cos
(
f0
i,l,m,n

)
+ sin

(
f0
i,l,m,n

)
τi,l,m,n −

1

2
τ2
i,l,m,n.

Now, denoting Λ̂ =
∑L
i=1

∑L
l=1 |ai||al|Λ̂i,l,

ĉ =
∑L
i=1

∑L
l=1 |ai||al|ĉi,l, and d̂ =

∑L
i=1

∑L
l=1 |ai||al|d̂i,l,

(52) can be rewritten as

|aTT (V )Hb|2 ≥ vT Λ̂v + ĉv + d̂. (53)

Since Λ̂i,l is symmetric and vTΛ̂i,lv =
−2π2

λ2

∑M
m=1

∑M
n=1 |bm||bn|

(
zi,l(vm,vn)

)2 ≤ 0, Λ̂i,l is
an NSD matrix, and so is Λ̂.

Similar to (50), a convex quadratic surrogate function ḡ for
the cos function can also be derived as

cos(ψ) ≈ cos(ψ0)− sin(ψ0)(ψ − ψ0)− 1

2
cos(ψ0)(ψ − ψ0)2

(e)
≤ ḡ(ψ|ψ0) , cos(ψ0)−sin(ψ0)(ψ−ψ0)+

1

2
(ψ−ψ0)2, (54)

where (e) holds due to cos(ψ0) ≥ −1. Therefore, based on

(54), we have

cos(fi,l(vm,vn)) ≤ ḡ(fi,l(vm,vn)|fi,l(vm,0,vn,0))

= cos
(
f0
i,l,m,n

)
− sin

(
f0
i,l,m,n

)(
fi,l(vm,vn)− f0

i,l,m,n

)
+

1

2
(fi,l(vm,vn)− f0

i,l,m,n)2

= cos
(
f0
i,l,m,n

)
−sin

(
f0
i,l,m,n

)(2π

λ
[ρi(vm)−ρl(vn)]−τi,l,m,n

)
+

1

2

(
2π

λ
[ρi(vm)− ρl(vn)]− τi,l,m,n

)2

= cos
(
f0
i,l,m,n

)
− sin

(
f0
i,l,m,n

)(2π

λ
zi,l(vm,vn)− τi,l,m,n

)
+

1

2

(
2π

λ
zi,l(vm,vn)− τi,l,m,n

)2

=
2π2

λ2

(
zi,l(vm,vn)

)2− 2π

λ

(
τi,l,m,n+sin(f0

i,l,m,n)
)
zi,l(vm,vn)

+ cos
(
f0
i,l,m,n

)
+ sin

(
f0
i,l,m,n

)
τi,l,m,n +

1

2
τ2
i,l,m,n, (55)

where f0
i,l,m,n, τi,l,m,n and zi,l(vm,vn) are defined in (51).

An upper-bound of (49) can thus be written as

|aTT (V )Hb|2

≤
L∑
i=1

L∑
l=1

|ai||al|

[
M∑
m=1

M∑
n=1

|bm||bn|ḡ
(
fi,l(vm,vn)|fi,l(vm,0,vn,0)

)]

=

L∑
i=1

L∑
l=1

|ai||al|
[
−vT Λ̂i,lv + c̄i,lv + d̄i,l

]
,

=− vT Λ̂v + c̄v + d̄, (56)

where Λ̂i,l is given in (52),

c̄ =

L∑
i=1

L∑
l=1

|ai||al|c̄i,l,

d̄ =

L∑
i=1

L∑
l=1

|ai||al|d̄i,l,

c̄i,l =
−2π

λ
[δiῩi,l −δlΨ̄i,l, ξiῩi,l −ξlΨ̄i,l],

Ῡi,l=[|b1|Ῡ i,l1 , . . . , |bM |Ῡ i,lM ],

Ψ̄i,l = [|b1|Ψ̄ i,l1 , . . . , |bM |Ψ̄ i,lM ],

Ῡ i,lm =

M∑
n=1

|bn|
(
τi,l,m,n+sin(f0

i,l,m,n)
)
,

Ψ̄ i,ln =

M∑
m=1

|bm|
(
τi,l,m,n+sin(f0

i,l,m,n)
)
,

d̄i,l =

M∑
m=1

M∑
n=1

|bm||bn|q̄i,l,m,n,

q̄i,l,m,n = cos
(
f0
i,l,m,n

)
+ sin

(
f0
i,l,m,n

)
τi,l,m,n +

1

2
τ2
i,l,m,n.

Since Λ̂ is a NSD matrix as given in (53), −vT Λ̂v+ c̄v+ d̄
is a convex quadratic function. This completes the proof.
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APPENDIX B
PROOF OF THEOREM 2

In the following, we omit the subscript χ1 for brevity.
Denote a = [a1, . . . , aL]T and b = [b1, . . . , bM ]T . Based on
the transmitting steering matrices in Section II-B, we have

Re{aTT (V )Hb} = Re

{
L∑
i=1

M∑
m=1

ait
H
i (vm)bm

}

=Re

{
L∑
i=1

M∑
m=1

aibme
j 2π
λ ρi(vm)

}

=

L∑
i=1

M∑
m=1

|aibm| cos

(
2π

λ
ρi(vm) + ∠aibm

)
(f)
=

L∑
i=1

M∑
m=1

|ai||bm| cos

(
2π

λ
ρi(vm) + ∠aibm

)

=

L∑
i=1

|ai|
M∑
m=1

|bm| cos
(
f̄i(vm)

)
, (57)

where f̄i(vm) = 2π
λ ρi(vm) +∠(aibm) and equation (f) holds

for the same reason as equation (b) in (49). Based on the
Taylor series expansion in (50), we have

cos(f̄i(vm)) ≥ g(f̄i(vm)|f̄i(vm,0))

= cos
(
f̄i(vm,0)

)
− sin

(
f̄i(vm,0)

)(
f̄i(vm)− f̄i(vm,0)

)
− 1

2

(
f̄i(vm)− f̄i(vm,0)

)2

= cos
(
f̄i(vm,0)

)
− sin

(
f̄i(vm,0)

)(2π

λ
[ρi(vm)− ρi(vm,0)]

)
− 1

2

(
2π

λ
[ρi(vm)− ρi(vm,0)]

)2

=
−2π2

λ2

(
ρi(vm)

)2
+

2π

λ

[
2π

λ
ρi(vm,0)−sin

(
f̄i(vm,0)

)]
ρi(vm)

+cos
(
f̄i(vm,0)

)
+

2π

λ
sin
(
f̄i(vm,0)

)
ρi(vm,0)− 2π2

λ2

(
ρi(vm,0)

)2
,

(58)

which gives a lower-bound of (57) as

Re{aTT (V )Hb} ≥
L∑
i=1

|ai|
M∑
m=1

|bm|g(f̄i(vm)|f̄i(vm,0))

=

L∑
i=1

|ai|(vT Λ̃iv + c̃iv + d̃i)

=vT Λ̃v + c̃v + d̃, (59)

where Λ̃=
∑L
i=1 |ai|Λ̃i, c̃=

∑L
i=1 |ai|c̃i, d̃=

∑L
i=1 |ai|d̃i,

Λ̃i =
−2π2

λ2

[
Ãi C̃i
C̃i B̃i

]
,

Ãi = δ2
i diag(b̄), B̃i = ξ2

i diag(b̄), C̃i = δiξidiag(b̄),

Υ̃ im=
2π

λ
ρi(vm,0)−sin

(
f̄i(vm,0)

)
, Υ̃i=[|b1|Υ̃ i1, . . . , |bM |Υ̃ iM ],

c̃i =
2π

λ
[δiΥ̃i, ξiΥ̃i], d̃i =

M∑
m=1

|bm|%̃i,m,

%̃i,m=cos
(
f̄i(vm,0)

)
+

2π

λ
sin
(
f̄i(vm,0)

)
ρi(vm,0)−

2π2

λ2

(
ρi(vm,0)

)2
,

and the definition of b̄ is given in (52). Since vT Λ̃iv =
−2π2

λ2

∑M
m=1 |bm|

(
ρi(vm)

)2≤0, Λ̃i is NSD. Therefore, Λ̃ =∑L
i=1 |ai|Λ̃i is also NSD, which proves Theorem 2.

APPENDIX C
PROOF OF THEOREM 3

For any vectors a = [a1,. . ., aL]T , b = [b1,. . ., bM ]T,
and ǎ = [ǎ1, . . . , ǎĽ]T, we have aTTHχ (V )b =∑L
i=1

∑M
m=1 ai(t

χ
i (vm))Hbm and ǎTTHχ̌ (V )b =∑Ľ

l=1

∑M
n=1 ǎl(t

χ̌
l (vn))Hbn, where tχi (vm) = e−j

2π
λ ρ

χ
i (vm)

and tχ̌i (vm) = e−j
2π
λ ρ

χ̌
i (vm). Then, it is known that

Re
{(
aTTHχ (V )b

)(
ǎTTHχ̌ (V )b

)H}
=Re


L∑
i=1

M∑
m=1

Ľ∑
l=1

M∑
n=1

ai(t
χ
i (vm))Hbmb

H
n t

χ̌
l (vn)ǎHl


=Re


L∑
i=1

M∑
m=1

Ľ∑
l=1

M∑
n=1

aibmb
H
n ǎ

H
l e

j 2π
λ [ρχi (vm)−ρχ̌l (vn)]


=

L∑
i=1

M∑
m=1

Ľ∑
l=1

M∑
n=1

Re
{
aibmb

H
n ǎ

H
l e

j 2π
λ [ρχi (vm)−ρχ̌l (vn)]

}

=

L∑
i=1

M∑
m=1

Ľ∑
l=1

M∑
n=1

|aibmbnǎl| cos
(
f̌i,l(vm,vn)

)
(g)
=

L∑
i=1

M∑
m=1

Ľ∑
l=1

M∑
n=1

|ai||bm||bn||ǎl| cos
(
f̌i,l(vm,vn)

)

=

L∑
i=1

Ľ∑
l=1

|ai||ǎl|

[
M∑
m=1

M∑
n=1

|bm||bn| cos(f̌i,l(vm,vn))

]
,

(60)

where f̌i,l(vm,vn) = 2π
λ [ρχi (vm)−ρχ̌l (vn)]+∠(aibmb

H
n ǎ

H
l ),

and equation (g) holds due to the same reason as equation (b)
in (49). According to (54), we have

cos(f̌i,l(vm,vn)) ≤ ḡ(f̌i,l(vm,vn)|f̌i,l(vm,0,vn,0))

=
2π2

λ2

(̌
zi,l(vm,vn)

)2− 2π

λ

(̌
τi,l,m,n+sin(f̌0

i,l,m,n)
)̌
zi,l(vm,vn)

+ cos
(
f̌0
i,l,m,n

)
+ sin

(
f̌0
i,l,m,n

)
τ̌i,l,m,n +

1

2
τ̌2
i,l,m,n, (61)

where f̌0
i,l,m,n = f̌i,l(vm,0,vn,0), τ̌i,l,m,n = 2π

λ [ρχi (vm,0)−
ρχ̌l (vn,0)], and ži,l(vm,vn)=ρχi (vm)−ρχ̌l (vn)=xt

mδ
χ
i+y

t
mξ

χ
i−

xt
nδ
χ̌
l −yt

nξ
χ̌
l .

Although the expressions of (55) and (61) look simi-
lar, the construction of the convex surrogate function of
Re{

(
aTTHχ (V )b

)(
ǎTTHχ̌ (V )b

)H} is very different from that
of Re{

(
aTTHχ (V )b

)
}, since the corresponding angles in

ρχ̌l (vn) are different from those in ρχl (vn).
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Using (61), an upper-bound of (60) can be found as

Re
{(
aTTHχ (V )b

)(
ǎTTHχ̌ (V )b

)H}
≤

L∑
i=1

Ľ∑
l=1

|ai||ǎl|

[
M∑
m=1

M∑
n=1

|bm||bn|ḡ
(
f̌i,l(vm,vn)|f̌i,l(vm,0,vn,0)

)]

=

L∑
i=1

Ľ∑
l=1

|ai||ǎl|
[
vT Λ̌i,lv + či,lv + ďi,l

]
, (62)

where

Λ̌i,l =
2π2

λ2

[
Ǎi,l Či,l
Či,l B̌i,l

]
,

Ǎi,l =
(
(δχi )2 + (δχ̌l )2

)
diag(κb̄)− 2δχi δ

χ̌
l b̄b̄

T ,

B̌i,l =
(
(ξχi )2 + (ξχ̌l )2

)
diag(κb̄)− 2ξχi ξ

χ̌
l b̄b̄

T ,

Či,l = (δχi ξ
χ
i + δχ̌l ξ

χ̌
l )diag(κb̄)− (δχi ξ

χ̌
l + δχ̌l ξ

χ
i )b̄b̄T ,

či,l =
−2π

λ
[δχi Υ̌i,l−δ

χ̌
l Ψ̌i,l, ξ

χ
i Υ̌i,l − ξ

χ̌
l Ψ̌i,l]

T ,

Υ̌i,l=[|b1|Υ̌ i,l1 , . . . , |bM |Υ̌ i,lM ]T,

Ψ̌i,l=[|b1|Ψ̌ i,l1 , . . . , |bM |Ψ̌ i,lM ]T,

Υ̌ i,lm =

M∑
n=1

|bn|
(
τ̌i,l,m,n+sin(f̌0

i,l,m,n)
)
,

Ψ̌ i,ln =

M∑
m=1

|bm|
(
τ̌i,l,m,n+sin(f̌0

i,l,m,n)
)
,

ďi,l =

M∑
m=1

M∑
n=1

|bm||bn|%̌i,l,m,n,

%̌i,l,m,n , cos
(
f̌0
i,l,m,n

)
+ sin

(
f̌0
i,l,m,n

)
τ̌i,l,m,n +

1

2
τ̌2
i,l,m,n,

with κ and b̄ are given in (52).

Defining Λ̌ =
∑L
i=1

∑Ľ
l=1|ai||ǎl|Λ̌i,l, č =∑L

i=1

∑Ľ
l=1|ai||ǎl|či,l, and ď =

∑L
i=1

∑Ľ
l=1 |ai||ǎl|ďi,l,

(62) can then be simplified as

Re
{(
aTTHχ (V )b

)(
ǎTTHχ̌ (V )b̌

)H}≤vT Λ̌v + čv + ď.

(63)

Since Λ̌i,l is in a symmetric form and vTΛ̌i,lv =
2π2

λ2

∑M
m=1

∑M
n=1 |bm||bn|

(
ži,l(vm,vn)

)2 ≥ 0, Λ̌i,l is a PSD
matrix, and so is Λ̌ =

∑L
i=1

∑Ľ
l=1|ai||ǎl|Λ̌i,l. As a conse-

quence, Theorem 3 is now proven.

APPENDIX D
PROOF OF LEMMA 2

Subscript χ2 is omitted here for brevity. For vectors a =
[a1, . . . , aL]T and b = [b1, . . . , bN ]T , we know that

Re
{
bTR(U)a

}
= Re

{
L∑
i=1

N∑
m=1

airi(um)bm

}

=Re

{
L∑
i=1

N∑
m=1

aibme
−j 2π

λ ρi(um)

}

=

L∑
i=1

N∑
m=1

|aibm| cos

(
−2π

λ
ρi(um) + ∠aibm

)
(h)
=

L∑
i=1

N∑
m=1

|ai||bm| cos

(
−2π

λ
ρi(um) + ∠aibm

)

=

L∑
i=1

|ai|
N∑
m=1

|bm| cos
(
f̄ ′i(um)

)
, (64)

where f̄ ′i(um) = −2π
λ ρi(um) + ∠(aibm) and equation (h)

holds for the same reason as equation (b) in (49).
Based on the Taylor series expansion in (50), a lower bound

of (64) is written as

cos(f̄ ′i(um)) ≥ g(f̄ ′i(um)|f̄ ′i(um,0))

= cos
(
f̄ ′i(um,0)

)
− sin

(
f̄ ′i(um,0)

)(
f̄ ′i(um)− f̄ ′i(um,0)

)
− 1

2

(
f̄ ′i(um)− f̄ ′i(um,0)

)2

= cos
(
f̄ ′i(um,0)

)
+ sin

(
f̄ ′i(um,0)

)(2π

λ
[ρi(um)− ρi(um,0)]

)
− 1

2

(
2π

λ
[ρi(um)− ρi(um,0)]

)2

=
−2π2

λ2

(
ρi(um)

)2
+

2π

λ

[
2π

λ
ρi(um,0)+sin

(
f̄ ′i(um,0)

)]
ρi(um)

+cos
(
f̄ ′i(um,0)

)
−2π

λ
sin
(
f̄ ′i(um,0)

)
ρi(um,0)− 2π2

λ2

(
ρi(um,0)

)2
.

(65)

Note that the Taylor series expansion of (64) is different
from that of (57) due to the negative term in f̄ ′i(um). Thus,
the concave quadratic surrogate function cannot be constructed
directly from Theorem 2. A concave quadratic surrogate
function of Re{bTR(U)a} can be obtainted using (65) as

Re
{
bTR(U)a

}
≥

L∑
i=1

|ai|
N∑
m=1

|bm|g(f̄ ′i(um)|f̄ ′i(um,0))

=

L∑
i=1

|ai|(uT Ω̃iu+ p̃iu+ q̃i)

=uT Ω̃u+ p̃u+ q̃, (66)
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where Ω̃=
∑L
i=1 |ai|Ω̃i, p̃=

∑L
i=1 |ai|p̃i, q̃=

∑L
i=1 |ai|q̃i,

Ω̃i =
−2π2

λ2

[
Ã′i C̃ ′i
C̃ ′i B̃′i

]
,

Ã′i = δ2
i diag(b̂), B̃′i = ξ2

i diag(b̂), C̃ ′i = δiξidiag(b̂),

b̂ , [|b1|, . . . , |bN |]T ,

p̃i=
2π

λ
[δiε̃i, ξiε̃i]

T, q̃i=

M∑
m=1

|bm|%̃′i,m,

ε̃i=[|b1|ε̃i1, . . . , |bN |ε̃iN ]T , ε̃im=
2π

λ
ρi(um,0)+sin

(
f̄ ′i(um,0)

)
,

%̃′i,m=cos
(
f̄ ′i(um,0)

)
−2π

λ
sin
(
f̄ ′i(um,0)

)
ρi(um,0)−

2π2

λ2

(
ρi(um,0)

)2
,

Since Ω̃i is symmetric and uT Ω̃iu =
−2π2

λ2

∑N
m=1 |bm|

(
ρi(um)

)2 ≤ 0, Ω̃i is an NSD matrix,
and so is Ω̃. Lemma 2 is thus proven.
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