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Abstract
Asthma is a chronic respiratory disorder affecting individuals across all age groups. It is characterized by airway inflam-
mation and remodeling and leads to progressive airflow restriction. While corticosteroids remain a mainstay therapy, their 
efficacy is limited in severe asthma due to genetic and epigenetic alterations, as well as elevated pro-inflammatory cytokines 
interleukin-4 (IL-4), interleukin-13 (IL-13), and interleukin-5 (IL-5), which drive structural airway changes including sub-
epithelial fibrosis, smooth muscle hypertrophy, and goblet cell hyperplasia. This underscores the critical need for biologically 
targeted therapies. This review systematically examines the roles of IL-4 and IL-13, key drivers of type-2 inflammation, in 
airway remodeling and their potential as therapeutic targets. IL-4 orchestrates eosinophil recruitment, immunoglobulin class 
switching, and Th2 differentiation, whereas IL-13 directly modulates structural cells, including fibroblasts and epithelial 
cells, to promote mucus hypersecretion and extracellular matrix (ECM) deposition. Despite shared signaling pathways, IL-13 
emerges as the dominant cytokine in remodeling processes including mucus hypersecretion, fibrosis and smooth muscle 
hypertrophy. While IL-4 primarily amplifies inflammatory cascades by driving IgE switching, promoting Th2 cell polarization 

Rifat Hamoudi, Khuloud Bajbouj and Qutayba Hamid contributed 
equally to the work.

Key messages
• Airway remodeling contributes to asthma severity by reducing 

the reversibility of structural changes leading to persistent 
airway obstruction.

• IL-4 and IL-13 play a central role in airway remodeling and 
inflammation, making them promising therapeutic targets.

• The impact of IL-4 and IL-13 targeted therapies on airway 
remodeling in asthma requires further investigation to establish 
their therapeutic benefits.

 *	 Khuloud Bajbouj 
	 kbajbouj@upenn.edu

 *	 Rifat Hamoudi 
	 rhamoudi@sharjah.ac.ae

 *	 Qutayba Hamid 
	 qalheialy@sharjah.ac.ae

	 Lina Sahnoon 
	 u22105744@sharjah.ac.ae

	 Bassam Mahboub 
	 bhmahboub@dubaihealth.gov.ae

1	 Research Institute for Medical and Health Sciences, 
University of Sharjah, Sharjah, United Arab Emirates

2	 Department of Biomedical Sciences, School of Veterinary 
Medicine, University of Pennsylvania, Philadelphia, PA, 
USA

3	 Rashid Hospital, Dubai Health, 4545 Dubai, 
United Arab Emirates

4	 College of Medicine, University of Sharjah, Sharjah, 
United Arab Emirates

5	 Meakins‑Christie Laboratories, McGill University, Montreal, 
Québec, Canada

6	 Division of Surgery and Interventional Science, University 
College London, London, UK

7	 Biomedically Informed Artificial Intelligence Laboratory, 
University of Sharjah, Sharjah, United Arab Emirates

http://crossmark.crossref.org/dialog/?doi=10.1007/s12016-025-09045-2&domain=pdf


	 Clinical Reviews in Allergy & Immunology           (2025) 68:44    44   Page 2 of 23

that sustain cytokine release, and inducing chemokines to recruit eosinophils. In steroid-resistant severe asthma, biologics 
targeting IL-4/IL-13 show promise in reducing exacerbations and eosinophilic inflammation. However, their capacity to 
reverse established remodeling remains inconsistent, as clinical trials prioritize inflammatory biomarkers over long-term 
structural outcomes. This synthesis highlights critical gaps in understanding the durability of IL-4/IL-13 inhibition on airway 
structure and advocates for therapies combining biologics with remodeling-specific strategies. Through the integration of 
mechanistic insights and clinical evidence, this review emphasizes the need for long-term studies utilizing advanced imag-
ing, histopathological techniques, and patient-reported outcomes to evaluate how IL-4/IL-13-targeted therapies alter airway 
remodeling and symptom burden, thereby informing more effective treatment approaches for severe, steroid-resistant asthma.

Graphical Abstract
Schematic representation of the roles of IL-4 and IL-13 in driving inflammation and airway remodeling in asthma. IL-4 
primarily contributes to inflammation by (1) promoting Type 2 helper T (Th2) cell differentiation from naïve T cells, (2) 
stimulating IgE production by B cells, and (3) enhancing eosinophil recruitment. Conversely, IL-13 is predominantly involved 
in airway remodeling through (1) inducing goblet cell hyperplasia and excessive mucus production, (2) promoting fibrosis, (3) 
driving smooth muscle hypertrophy and hyperresponsiveness, and (4) activating or damaging airway epithelial cells (AEC).
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Introduction

Asthma is a chronic inflammatory disorder and one of the most 
common lung diseases, affecting individuals of all ages [1]. It 
is characterized by persistent airway inflammation and recur-
rent respiratory symptoms such as wheezing, coughing, and 
breathing difficulty, often leading to bronchoconstriction [2]. 

Globally, asthma impacts over 300 million people and was 
responsible for approximately 500,000 cases of death in 2019, 
according to the World Health Organization (WHO) [3].

The complexity of asthma arises from the interplay of 
genetic and environmental factors, resulting in diverse 
clinical, biochemical, and pathophysiological phenotypes. 
These subtypes are defined by differences in lung function, 
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atopy, age, sex, symptom duration, treatment responses, and 
inflammatory patterns [4–6]. Advances in diagnostic tools 
have refined the classification of asthma subtypes, reveal-
ing distinct molecular pathways and genetic influences that 
underscore its heterogeneity [7].

Corticosteroids remain the cornerstone of asthma man-
agement, with dosage adjusted according to disease severity. 
While it is effective in reducing exacerbations and improving 
symptom control, long-term use is limited by steroid resist-
ance and adverse side effects such as osteoporosis, diabetes, 
and adrenal suppression [8, 9]. This has spurred the devel-
opment of targeted therapies that block specific inflamma-
tory pathways, including those mediated by Type 2 (T2) 
cytokines, including IL-4, IL-5, and IL-13. These biologics 
offer improved symptom control with fewer systemic side 
effects, making them the preferable choice for corticosteroid 
resistance patients [10, 11]. Notably, these cytokines are cen-
tral to the pathogenesis of T2 asthma, a subtype characterised 
by eosinophilic airway infiltration and driven by innate and 
adaptive immune responses involving type 2 innate lymphoid 
cells (ILC2s) and T helper 2 (Th2) lymphocytes [12].

T2 cytokines modulate inflammation in T2 asthma from 
different aspects: IL-5 directly governs eosinophil activation 
and recruitment, amplifying airway inflammation, while IL-4 
and IL-13 promote eosinophil accumulation by IL-5 induction 
and chemokine secretion [13, 14]. Additionally, IL-4 and IL-5 
support mast cell survival, potentially triggering acute respira-
tory symptoms such as airway constriction [15–17]. Whereas 
IL-4 and IL-13 drive Th2 cell differentiation and immuno-
globulin E (IgE) production [18]. Beyond inflammation, 
these cytokines influence airway structural cells, including 
fibroblasts, epithelial cells, and airway smooth muscle (ASM), 
contributing to remodeling features such as fibrosis, epithelial 
detachment, and ASM thickening [19, 20]. These changes 
result in narrow, stiffer airways, leading to airflow limitation, 
persistent symptoms, and reduced responsiveness to standard 
therapies. Although IL-5 receptors are expressed on structural 
cells, their functional role remains poorly understood [21, 22].

Given the central the role these cytokines play in both 
inflammatory and structural aspects of asthma, research has 
increasingly focused on their contributions to disease pro-
gression [23]. In this review, we explore the recent advances 
in understanding the roles of IL-4 and IL-13 in asthma 
pathophysiology, particularly in airway remodeling. We 
also discuss their potential as therapeutic targets and their 
implications for asthma treatment.

Classification of Asthma

Asthma is a heterogeneous disease that manifests in several 
phenotypes, distinguished by features such as age of onset, 
disease intensity, inflammatory patterns, and the presence of 

atopic conditions [7]. Initially, the classification of asthma 
focused on assessing a patient’s atopic status, which refers 
to their sensitivity to allergens and the likelihood of devel-
oping asthma symptoms [24]. While atopic and non-atopic 
asthma phenotypes are often considered as separate forms of 
asthma, they have significant overlap in their clinical pres-
entation and the underlying inflammatory processes [25].

An alternative approach categorizes asthma pathophysi-
ology based on cellular inflammation patterns, particularly 
eosinophil and neutrophil infiltration in the airways. Sputum 
analysis has identified four inflammatory subtypes, including 
eosinophilic, mixed eosinophilic and neutrophilic, neutro-
philic, and paucigranulocytic (neutrophils and eosinophils 
both within normal range) [26]. Non-eosinophilic asthma is 
characterized by the presence of neutrophils and the absence 
of eosinophils. It can also include a paucigranulocytic sub-
type, where there is no increase in inflammatory cells, such 
as neutrophils or eosinophils, in the airways [27]. In contrast, 
eosinophilic asthma is driven by T2 inflammation, mediated by 
Th2 cells and ILC2s, leading to eosinophil accumulation [20].

Mosmann et al. introduced additional classification of 
asthma characterized by two distinct T helper cell types 
in mice [28]. Subsequent gene expression studies strati-
fied asthma into two molecular phenotypes based on Th2 
inflammation levels: Th2 "high" and Th2 "low" [29, 30]. 
Th2 "high" asthma, a well-recognized subtype, is marked 
by severe symptoms, including impaired lung function and 
frequent exacerbations [31]. It is characterized by elevated 
activity in T2 immune pathways, eosinophilic airway inflam-
mation, and increased level of cytokines like IL-4, IL-5, and 
IL-13, often requiring more intensive and targeted treat-
ments. On the other hand, Th2 "low" asthma generally has 
a different inflammatory profile and can be harder to manage 
due to its unpredictable response to standard asthma treat-
ment [32].

Severe Asthma: The Underlying 
Pathophysiological Features

Severe asthma is a chronic respiratory disorder characterized 
by persistent and intense airway inflammation [33]. Approxi-
mately 10% of adult asthma patients exhibit poor or partial 
responsiveness to current steroid therapies, classifying them 
as severe asthmatics [33]. According to the European Res-
piratory Society (ERS)/American Thoracic Society (ATS) 
definition, severe asthma was defined as “asthma which 
requires treatment with high-dose inhaled/systemic corti-
costeroids (ICS) plus a second controller to prevent it from 
becoming ‘uncontrolled,' or which remains ‘uncontrolled' 
despite this therapy” [33]. Although severe asthma affects a 
small group of patients, it accounts for most healthcare costs.
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Recent studies highlighted distinct phenotypic severe 
asthma subgroups, including gender-based disparities, as 
severe asthma is more prevalent in females than males [34]. 
These disparities in asthma severity between genders are 
primarily attributed to hormonal fluctuations, particularly 
the effects of estrogen and progesterone, along with genetic 
differences that contribute to gender-specific asthma pheno-
types, influencing immune system responses, airway inflam-
mation, and sensitivity to environmental triggers. When 
combined with hormonal changes, these genetic factors can 
further exacerbate asthma severity in women, particularly 
during puberty, pregnancy, and menopause [35].

Impaired steroid responsiveness is another hallmark of 
severe asthma, influenced by genetic variability and molecu-
lar mechanisms such as glucocorticoid receptor (GR) iso-
forms [36]. Glucocorticoid receptor alpha (GR-α) is an 
active form of the receptor found in all lung cells, while 
glucocorticoid receptor beta (GR-β) is an inactive form 
that is associated with steroid resistance [37]. Additional 
mechanisms include reduced anti-inflammatory gene expres-
sion and elevated pro-inflammatory cytokines (e.g., IL-2, 
IL-4, IL-13), which suppress T-cell responses by diminish-
ing ligand-receptor binding affinity [37–40]. Thus, severe 
asthma is determined by cytokine-mediated pathways detect-
able in peripheral blood or airways.

Individuals with Th2 "high" asthma tend to have several 
features of increased asthma severity; this type is orches-
trated by T2 cytokines IL-4, IL-5, and IL-13 functioning as 
a second-order cytokine released from activated Th2 cells 
and ILC2 [31]. Previous research indicated that mutations 
in IL-4, IL-13, and/or their respective receptors correlate 
with asthma severity; for instance, mutations in interleu-
kin-4 receptor Alpha (IL-4Rα) were linked to severe asthma 
exacerbations, impaired lung function, and heightened mast 
cell-related tissue inflammation [41]. Furthermore, another 
study indicated that mutations in IL-4 allele are a risk factor 
for life-threatening asthma, while mutations in the IL-4Rα 
allele are associated with reduced lung function in asthmatic 
individuals [42]. Similarly, IL-13 polymorphisms may alter 
asthma-related signaling pathways [43]. These findings raise 
questions about whether T2 cytokine mutations directly con-
tribute to steroid hypo-responsiveness.

Beyond the established role in inflammation, IL-4 and 
IL-13 also play a significant role in airway remodeling, a 
process marked by structural changes such as fibrosis and 
epithelial thickening. [44].

Airway Remodeling in Asthma

Airway remodeling refers to the permanent or semi-per-
manent structural changes in the large and small airways 
following airway tissue injury [45]. These changes include 

alterations to cellular and ECM components, epithelial cell 
apoptosis and detachment, mucus hypersecretion, ASM 
proliferation, and fibroblast activation (Fig. 1, Table 1) 
[45]. Deposition of ECM components, including collagen, 
fibronectin, and tenascin, from various airway structural 
cells is one of the key elements associated with airway 
remodeling [46, 47].

Asthmatic airway remodeling and pathogenesis are fur-
ther driven by an imbalance in the matrix metalloprotein-
ase (MMP) to tissue inhibitor of metalloproteinase (TIMP) 
ratio. MMP, a family of enzymes that degrade ECM pro-
teins, are regulated by TIMP (endogenous MMP inhibitors). 
Dysregulation of this balance disrupts ECM homeostasis, 
contributing to pathological tissue changes [48, 49]. How-
ever, the exact mechanism of IL-4 and IL-13 involvement in 
airway remodeling in severe asthma and their role in ECM, 
structural cells, and MMP:TIMP ratio distribution warrants 
further research.

Pathophysiological Role of IL‑4 and IL‑13 
in Asthma

The pathogenesis of asthma has been associated with Th2 
cytokine-producing cells [50, 51]. Investigation of the role 
of the classic Th2 cytokines, IL-4 and IL-13, has garnered 
significant interest in the effort to comprehend the processes 
by which Th2 cell-derived cytokines impact the develop-
ment of asthma. Initially, it was thought that IL-4 and IL-13 
would have overlapping functions in the development of 
allergic asthma [50]. The overlap in function between IL-4 
and IL-13, inferred from their shared genetic proximity, reg-
ulatory elements (e.g., GATA-3), and receptor components 
(IL-4Rα/IL-13Rα1), is reinforced by their co-production 
from overlapping cellular sources, primarily Th2 lympho-
cytes, which drive type 2 inflammation in allergic asthma. 
[52]. However, their distinct roles in disease pathogenesis 
may arise from differences in secondary cellular origins 
including Th2, and ILC2, with a lower secretion level from 
other cells, including Natural Killer (NK) Cells, Th1 cells, 
B lymphocytes, mast cells, macrophages, basophils, and 
eosinophils, in addition to basophils and CD8 + T lympho-
cytes [53–55]. Although the functional roles of IL-4 and 
IL-13 are similar, it is probable that these two closely related 
cytokines have distinct pathobiological effects in asthma and 
their contribution to airway remodeling.

This figure illustrates key structural changes in severe 
asthma, including goblet cell hyperplasia and mucus plug-
ging, epithelial damage, and basement membrane thicken-
ing from subepithelial fibrosis. Smooth muscle hypertrophy 
and hyperplasia heighten bronchoconstriction and reactivity, 
Increased vascularization supplies inflammatory cells, rein-
forcing inflammation.
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Role of IL‑4 and IL‑13 in Airway Remodeling 
in Asthma

Epithelial Cell Detachment and Mucus Hyper‑Secretion

The bronchial epithelium is essential for preserving the inter-
nal environment of the lung and serves as a barrier to the 
external environment. It plays a role in the epithelial-mesen-
chymal trophic unit by regulating the local microenvironment 

and supporting tissue homeostasis through maintaining the 
airway microenvironment during key processes including 
lung growth, tissue healing, and controlling the inflammatory 
response [62]. However, in case of asthma, the continuous 
disruption of these regulatory systems results in changes to 
the physical composition of the air passages [62]. Most of the 
Airway epithelial cells (AEC) disruption has been induced 
simply upon IL-13 stimulation with limited functional and 
structural abnormalities in severe asthma in response to IL-4.

Fig. 1   Pathophysiological features of airway remodeling in severe asthma

Table 1   Summary of key findings on airway remodeling processes and the corresponding study models

Airway Remodeling process Key findings Study model Ref

Epithelial cell changes Goblet cell hyperplasia, mucus hypersecretion and epithelial cell detachment Animal model [56]
Subepithelial Fibrosis ECM deposition and increase basement membrane thickening Human in vivo model [57]
Smooth Muscle Hypertrophy ASM cell proliferation and increased contractility Human in vivo model [58]
Angiogenesis Increased microvascular density and vascular endothelial growth factor 

(VEGF) expression
Human in vivo model [59]

Inflammatory Cell Infiltration Elevated eosinophils, mast cells, and neutrophils in airway walls Human in vivo model, 
Animal model

[60, 61]

Altered ECM Composition Imbalance of MMP and TIMP Human in vivo model [48]
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IL-13 and IL-4 play overlapping yet distinct roles in 
mucus hypersecretion and airway obstruction in asthma. 
IL-13 directly drives goblet cell hyperplasia and MUC5AC 
overexpression during epithelial differentiation, significantly 
increasing mucus-producing cells while suppressing cili-
ated cell formation [63, 64]. A recent study revealed that 
one of the hallmarks of asthma is the reversal of the nor-
mal MUC5B:MUC5AC ratio, with MUC5AC dominating 
in asthmatic sputum [65, 66]. IL-13 also has the ability to 
disrupt mucociliary clearance through binding mucus gels 
to the epithelium by MUC5AC, impairing ciliary transport 
without altering ciliary beat frequency [67].

In parallel, IL-4 contributes to mucus hypersecretion 
by upregulating mucin genes MUC5 and MUC4. Where 
MUC4 is mediated through Janus kinase 3 (JAK-3) sign-
aling [68–70]. MUC4 acts as a ligand to activate Human 
Epidermal Growth Factor Receptor 2 (HER2/ErbB2), a 
receptor tyrosine kinase that regulates epithelial cell prolif-
eration in response to airway damage in asthma [71]. While 
both cytokines promote mucus overproduction, IL-4 indi-
rect effects such as Th2 polarization and amplification of 
IL-13 release highlight its complementary role in sustaining 
inflammation and structural changes.

Another mechanism by which IL-4 and IL-13 contribute 
to epithelial disruption and loss of function in asthma is 
by impairing tight junction integrity. IL-13 reduces bron-
chial epithelial barrier function through histone deacetylase 
(HDAC)-mediated epigenetic regulation, increasing per-
meability in asthmatic patients [72]. Additionally, it alters 
tight junction protein expression in allergic rhinosinusitis 
through decreasing occludin (cldn) and junctional adhe-
sion molecule A (JAM-A) while elevating claudin-2 (cldn 
2), which enhances paracellular permeability in AEC [73]. 
IL-13 also downregulates claudin-18 (cldn18), increasing 
susceptibility to aeroallergens and airway hyperreactivity 
in Th2 asthma. [74]. Furthermore, IL-13 induces proteaso-
mal aggregation of tight junction proteins claudin-8 (cldn8), 
claudin-9 (cldn9), and claudin-16 (cldn16) and E2 ubiquitin 
conjugating enzyme (UBE2Z), destabilizing epithelial struc-
ture [75]. Destabilization and damage to the AEC stimulate 
the production of fibrogenic cytokines, including IL-4 and 
IL-13 that in turn reduce further the expression of proteins 
that maintain the integrity of cell junctions in an autocrine 
manner [76].

IL-4 similarly disrupts barrier function but through 
distinct pathways. It increases epithelial permeability by 
JAK-dependent mechanisms, as shown by IL-4-induced 
macromolecule leakage of 3 kDa dextran, as this effect was 
reversed with JAK inhibitors [77]. IL-4 also causes a notice-
able decrease in the function of the epithelial barrier and 
a decrease in the expression of two tight junction compo-
nents, occludin and Zonula Occludens-1 (ZO-1), displacing 

these proteins by EGFR-dependent Mitogen-activated pro-
tein kinase/ Extracellular signal-regulated kinase (MAPK/
ERK1/2) signaling [78].

Additionally, IL-13 drives airway epithelial disruption 
by dysregulating ECM dynamics. Differentiated fibroblasts 
known as myofibroblasts are the primary collagen producers 
in airways [79] and interact with epithelial cells to amplify 
asthma progression [80]. Prolonged IL-13 exposure induces 
a persistent epithelial phenotype that secretes elevated 
Transforming Growth Factor Beta 2 (TGF-β2), stimulating 
collagen deposition and fibroblast-mediated ECM remod-
eling [81]. Co-culture studies of asthmatic epithelial cells 
with lung fibroblasts reveal increased expression of ECM 
components, collagen Type I Alpha 1 (COL1A1), collagen 
Type III Alpha 1 (COL3A1), and hyaluronan synthase 2 
(HAS2) compared to healthy counterparts, underscoring 
disease-specific ECM dysregulation [80]. However, address-
ing the gap of IL-4 and IL-13 contribution in this process is 
needed to understand their role further in remodeling.

Complementing IL-13 ECM effects, IL-13 also upregu-
lates MMP enzymes critical for ECM degradation [82, 83]. 
For example, MMP-9 was reported to be released by epithe-
lial cells and cleaves collagen IV and entactin, facilitating 
structural breakdown [82]. In severe asthma, IL-13 elevates 
MMP-7 in basal epithelial cells, triggering membrane FasL 
cleavage and soluble FasL release, which exacerbates epi-
thelial inflammation and damage [83].

While IL-13 primarily disrupts ECM integrity, IL-4 
contributes to remodeling through epithelial-mesenchymal 
transition, a process where epithelial cells undergo a gradual 
transformation into mesenchymal-like cells, lose adhesion/
polarity and gain migratory/invasive properties, leading to 
airway thickening [84, 85]. IL-4 exhibited a synergistic effect 
with TGF-β1 in inducing epithelial-mesenchymal transition 
and epithelial cell cycle activation [86]. This mechanism is 
further supported by studies showing that inhibiting IL-4 
with bioactive alkaloids suppresses epithelial-mesenchymal 
transition, reduces TGF-β1/Smad3 signaling, and mitigates 
remodeling [87].

Beyond that, IL-4 stimulates bronchial epithelial cells to 
produce tenascin C, an ECM protein implicated in struc-
tural changes, though the signaling pathways regulating its 
expression remain unclear [88]. IL-4 also induces eotaxin-3 
release by AEC, amplifying inflammation and immune cell 
recruitment, which would enhance structural alterations and 
AEC damage [89].

Despite advances in understanding IL-4 and IL-13’s role 
in asthma, critical gaps persist in understanding their exact 
role in asthma pathogenesis. Both cytokines perpetuate 
inflammation and barrier dysfunction through fibrogenic 
feedback loops [76], but their direct versus indirect contri-
butions to mucus hypersecretion, epithelial changes, and 
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airway remodeling remain unclear. IL-4’s effect on profi-
brotic mediators and IL-13’s direct regulation of epithelial 
ECM production are poorly defined. Resolving these mecha-
nistic uncertainties is vital to disrupting disease progression 
and advancing targeted therapies.

Subepithelial Fibrosis

Subepithelial fibrosis is another form of airway remodeling 
that has been known to develop in patients with persistent 
asthma attacks and causes a gradual reduction in lung func-
tion [90]. Subepithelial fibrosis is defined as a thickening in 
the subepithelial layer, which takes place in the lamina retic-
ularis just below the basement membrane and could extend 
beyond in severe asthma [91]. Thickening of the basement 
membrane involves the accumulation and dispositioning 
of ECM proteins within the lamina reticularis, including 
collagen types I, III, and V, fibronectin, lumican, tenascin, 
periostin, and various proteoglycans [92, 93]. Additionally, 
fibroblasts, which are the main cellular component in the 
subepithelial layer, in an inflammatory environment such as 
asthmatic airways get activated or differentiated into myofi-
broblasts, which leads to further ECM protein disposition 
and pro-inflammatory mediator secretion [94].

Both IL-13 and IL-4 drive fibrotic processes in asthma 
by influencing lung fibroblasts and ECM dynamics, though 
their mechanisms and targets differ. IL-13 directly induces 
morphological changes in lung fibroblasts, promoting 
their differentiation into Alpha Smooth Muscle Actin 
(α-SMA)-positive myofibroblasts and selectively upregu-
lating COL1A2 in bronchial fibroblasts of moderate asthma 
patients, whereas this impact does not extend to the expres-
sion of COL1A1 or COL3A1 genes [95, 96]..

Beyond its direct effect, IL-13 amplifies fibrosis by acti-
vating TGF-β1 and MMP, key mediators of tissue remod-
eling. Studies show IL-13 stimulates MMP-9 and TGF-β1 
production in asthmatic fibroblasts, with TGF-β1 activa-
tion occurring via MMP-9-dependent processes [96–98]. 
This interdependence is evident in MMP-9-deficient mice, 
where IL-13-induced fibrosis is attenuated, and in IL-13 
transgenic mice, where TGF-β neutralization reduces lung 
collagen accumulation [97, 99]. IL-13 further promotes air-
way fibroblast invasion through TGF-β1/MMP pathways, a 
mechanism observed in asthmatic patients and reversed by 
inhibiting TGF-β1/MMP activity [100]. Additionally, IL-13 
was shown to suppress elastin expression in airway fibro-
blasts, contributing to airway remodeling in asthma through 
increasing the activity of MMP, particularly MMP-1 and 
MMP-2, which degrade elastin fibers [101]. This reduc-
tion increases collagen and alters ECM balance, causing 
airway elasticity loss and pathological stiffness. Yet IL-4 
role on elastin production in airway fibroblasts is less well-
documented. Since IL-4 and IL-13 share similar receptor 

components and signaling pathways, further research is 
needed to clarify IL-4’s impact on elastin production. More-
over, IL-13 was shown to stimulate fibroblast proliferation in 
asthma, though the underlying mechanisms remain unclear 
[95, 102–104]. Together, these findings underscore IL-13’s 
dual role by directly driving myofibroblast differentiation 
and collagen deposition while indirectly amplifying fibrosis 
via TGF-β1/MMP-9 signaling.

In contrast, IL-4 exhibits broader, context-dependent 
effects: it induces mRNA expression of procollagen I/III, 
fibronectin, and tenascin and promotes myofibroblast dif-
ferentiation in synovial/dermal fibroblasts [105–108] and, 
in murine lung fibroblasts, promotes collagen synthesis 
and proliferation [106]. Besides the role of IL-4 in ECM 
deposition, several findings suggest that IL-4 does not 
directly induce ECM synthesis. Instead, it largely functions 
as an indirect signal, potentially by controlling the expres-
sion of other stronger fibro-genic factors like TGF-β [103, 
109–111]. TGF-β itself amplifies fibrosis by driving connec-
tive tissue growth factor (CTGF), α-SMA, collagens, MMP, 
and TIMP [109, 112, 113], and by converting fibroblasts into 
ECM-producing myofibroblasts [79, 114–118]. Contrary, to 
the indirect role, it is reported that IL-4 can directly drive 
myofibroblast transition in lung fibroblasts by suppressing 
cyclooxygenase (COX) expression and prostaglandin E2 
production [95]. This process is linked to the activation of 
the c-Jun NH2-terminal kinase (JNK) pathway in asthma 
fibroblasts, a mechanism shared with IL-13 [119]. However, 
fibrosis involves the smooth muscle as well as epithelium 
and fibroblast. Understanding the role of smooth muscle in 
asthma is important.

Increased Smooth Muscle Mass

The involvement of ASM in asthma is essential, and there 
has been much focus on understanding its pathophysiologi-
cal contribution to inflammation and remodeling. ASM is 
believed to play a significant role in the increased constric-
tion of airways in asthma. Additionally, ASM is involved in 
poor relaxation of the airways and the promotion of struc-
tural alterations [120].

Both IL-13 and IL-4 contribute to airway hyperrespon-
siveness in asthma by modulating ASM contractility and 
receptor signaling, though their mechanisms differ. IL-13 
directly enhances ASM contraction through multiple path-
ways; it upregulates histamine (H1) and cysteinyl leukot-
riene (CysLT1) receptors, amplifies intracellular Ca2⁺ 
mobilization in response to agonists like histamine and ace-
tylcholine, and impairs β-adrenergic relaxation [121–128]. 
Additionally, IL-13 promotes ASM proliferation via store-
operated Ca2⁺ entry (SOCE) and synergizes with TGF-β 
to enhance Leukotriene D₄ (LTD₄)-driven proliferation 
through MAP kinase/ERK and Phosphoinositide 3-kinases 
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(PI3K) pathways [129–131]. In contrast, the role of IL-4 
in ASM mass and contractility is less defined. While ini-
tially thought to act indirectly by ECM (MMP-1) produc-
tion [132], recent evidence shows IL-4 directly increases 
histamine sensitivity by upregulating HRH1 and CYSLTR1 
receptors and boosting Ca2⁺ mobilization in human ASM 
cells (HASMCs), effects reversible upon IL-4 receptor 
blockade [128]. Unlike IL-13, IL-4’s influence on ASM 
proliferation remains underexplored, and its downstream 
mechanisms require further study. Both cytokines converge 
on receptor-mediated Ca2⁺ signaling to heighten contractil-
ity, but IL-13 exhibits broader involvement in proliferative 
pathways, underscoring its central role in ASM remodeling.

Moreover, IL-13 and IL-4 differentially regulate ASM 
migration and ECM remodeling in asthma. IL-13 drives 
ASM migration through multiple pathways; it synergizes 
with Tumor Necrosis Factor-alpha (TNF-α) to amplify 
eotaxin release from HASM cells, recruiting eosinophils 
and exacerbating inflammation [133], while also promot-
ing chemotaxis via Prostaglandin D₂ (PGD₂) and Platelet-
derived growth factor (PDGF)-dependent Src-kinase acti-
vation. This migration involves IL-4R subunit signaling, 
upregulation of PDGF receptors, and enhanced cysteinyl 
leukotriene receptor (CysLTR) expression [134]. However, 
IL-4 did not induce the same chemoattractant effect although 
the IL-13-primed migration was inhibited by blocking both 
the IL-13 and IL-4 receptors. Having said that, cellular 
migration has been previously observed in various diseases 
upon IL-4 stimulation [135, 136]. These findings would sug-
gest whether IL-4 induces ASM migration indirectly through 
other receptors or upon activation of other IL-4 dependent 
stimulants. Nonetheless, IL-4 is suggested to have a bifunc-
tional role in airway remodeling, one is characterized by 
suppression of the ASM hyperplasia and the other by the 
increase in VEGF release from the ASM cells [137].

ECM deposition is another mechanism by which IL-13 
induces ASM thickening, as the enrichment of the airway 
wall with collagen and fibronectin in asthma is potentially 
important for the regulation of ASM synthetic function. A 
previous study has indicated that both type I collagen and 
fibronectin augment the proliferation of healthy ASM cells 
activated by thrombin or platelet-derived growth factor-BB 
[138]. In asthmatic subjects, findings indicate that IL-13 
increased eotaxin secretion, and an autocrine fibronectin 
secretion by ASM was suggested to underlie this effect 
[138]. Another study reported that IL-13 plays an essential 
role in activating a set of "pro-asthmatic" genes in ASM, 
including Tenascin C [139], which is known to promote the 
accumulation of collagen and other ECM components.

However, IL-4 impact on ECM production remains 
unclear, with limited evidence of direct contributions to col-
lagen or fibronectin deposition. Further studies are needed 
to elucidate the roles of IL-4 and IL-13 in ASM migration, 

growth, and ECM production, which would enhance our 
understanding of their effects on ASM thickening. Addi-
tionally, the mechanisms by which IL-13 promotes cellular 
migration, including the potential role of IL-13-induced 
chemokines in driving ASM migration, require deeper inves-
tigation. In fact, besides IL-4 and IL-13 essential functions 
in asthma pathogenesis, both cytokines work synergisti-
cally to modulate downstream pathways linked to asthma.

IL‑4 /IL‑13 Receptor Complex: Signaling 
Pathway

Both IL-4 and IL-13 mediate their response in inflamma-
tion, remodeling, and airway hyperresponsiveness upon 
binding to their corresponding receptor. There are two types 
of receptors that IL-4 uses to transmit signals. One is the 
type I receptor, which includes IL-4R alpha and the common 
gamma chain (γC). The other is the type II receptor, which 
includes IL-4Rα and IL-13Rα1 [140]. IL-4Rα is observed in 
low levels in several cell types. In non-hematopoietic cells, 
γC expression is either inadequate or absent, but IL-13Rα1 
expression is strong. Lymphocytes exhibit low amounts of 
IL-13Rα1 and elevated levels of γC. Myeloid cells express 
both IL-13Rα1 and γC, positioning them between non-
hematopoietic cells and lymphocytes [141]. The  γC or 
IL-13Rα1 are recruited when IL-4 binds IL-4Rα with an 
extremely high affinity [142]. The interaction between IL-4 
and the type I receptor complex leads to the activation of 
Janus family kinases, namely JAK1, JAK2, and JAK3. This 
process results in the phosphorylation of signal transducer 
and activator transcription 6 (STAT6) through establishing 
specific locations for STAT6 and/or Insulin Receptor Sub-
strate 2 (IRS-2) to attach, and this promotes the formation 
of phospho-STAT6 homodimers, translocate them into the 
nucleus, and facilitates gene transcription [50, 143]. Other 
signaling pathways were reported to be activated upon 
IRS-2 phosphorylation, including PI3K, Nuclear Factor 
kappa-light-chain-enhancer of activated B cells (NF-κB), 
and Protein Kinase B (AKT) [144–146]. In addition to IRS, 
previous study findings reported that IL-4 has a function 
in protecting cells against apoptosis through a mechanism 
reliant on the transcription factor NF-κB. Although IL-4 is 
implicated in the NF-κB pathway, studies suggest that IL-4 
alone is not enough to activate this pathway. Yet, IL-4 can 
enhance NF-κB transcription factor family activation from 
other stimuli like TNF-α or T-cell receptor (TCR) engage-
ment [147].

However, IL-13 binds to the type II receptor through IL-
13R alpha 1 [141], whereby IL-13Rα1 serves either as a par-
ticular binding domain for IL-13 or as a dimerizing partner 
that joins with the ternary complex of the type II receptor. 
Both IL-4 and IL-13 activate Janus kinase 1 (JAK1) and 
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a tyrosine kinase 2 (TYK2), which are responsible for the 
phosphorylation of a STAT-6 and the subsequent transloca-
tion of this protein to the nucleus [141, 148]. The activation 
of receptor type II results in the activation of other tyrosine 
kinase proteins, such as JAK2, STAT1, and STAT3 [140]. 
Since JAKs play a crucial role in IL-4 and IL-13 signaling 
pathways, they are considered a beneficial targeted therapeu-
tic marker to reduce inflammation and remodeling. Several 
preclinical and clinical studies showed promising findings 
by improving lung function and limiting the inflammatory 
response, which in turn can prevent or reduce the structural 
changes associated with airway remodeling [77, 149]. How-
ever, NF-kB was also found to be activated by IL-13 through 
IL-13Rα1. One recent study demonstrated that IL-13 stimu-
lates β1 integrins in ASM cells, leading to an increase in cell 
adhesion to the ECM [150]. The enhanced adhesion led to 
augmented force transmission inside the ASM, a significant 
feature observed in chronic airway conditions, including 
asthma. The NF-κB pathway has been defined as a signaling 
cascade that activates β1 integrin upon IL-13 stimulation; 
NF-κB increases RhoA and its effector Rho kinase, resulting 
in the subsequent activation of Phosphatidylinositol-4-phos-
phate 5-kinase type 1 gamma (PIP5K1γ), which promotes 
phosphatidylinositol 4,5-bisphosphate (PIP2) synthesis and 
β1 integrin activation [150]. In addition, IL-13 and IL-4 have 
been reported to provide a novel mechanism of increasing 
susceptibility to infections in asthmatic patients, promoting 
T2 inflammation and exacerbating asthma pathology upon 
inhibiting activation of NF-κB by suppressing Toll-Like 
Receptor (TLR) expression on progenitor cells. IL-4 and 
IL-13 limit the innate immune activation potential of dif-
ferentiated eosinophils and basophils [151], whereas IL-13 
further dampens innate immunity in AEC, reducing their 
ability to respond to microbial threats [152].

A comparison was made between the signaling potency 
and kinetics of IL-13 and IL-4, and the results showed that 
IL-4 is more effective than IL-13 in activating the tyrosine 
phosphorylation of STAT6 [153], and this was explained in 
a manner of IL-13 signaling pathway follows a sequence 
of steps in which IL-13 first attaches to IL-13Rα1 before 
recruiting IL-4Rα to form a signaling complex with strong 
affinity [50, 154]. Whereas IL-4 first establishes a robust 
interaction with IL-4Rα and subsequently recruits IL-13Rα1 
to form the signaling complex. This explains why IL-4 has 
a greater potency than IL-13 at low concentrations, as IL-4 
is able to signal more efficiently. Conversely, IL-13Rα1 
exhibits a greater concentration in the cellular membrane in 
comparison to IL-4Rα. At high concentrations, IL-13 has 
a stronger signaling effect compared to IL-4, particularly 
through the type II IL-4R receptor [50].

In addition to IL-13Rα1, IL-13 can interact with 
another type of IL-13R known as IL-13 receptor α2-chain 
(IL-13Rα2) with greater affinity than IL-13R alpha1. It has 

been demonstrated that IL-13 does not activate any signal-
ing pathways after binding [155]. As a result, it has been 
referred to as a decoy receptor and it is founded in both 
membrane-bound and soluble forms [156, 157]. On the other 
hand, a recent study provided evidence that IL-13Rα2 is 
responsible for mediating MUC5AC expression through the 
mitogen-activated protein ERK1/2 pathway as well as the 
downstream C-JUN Activator Protein-1 (AP-1)-related gene 
in human nasal epithelial cells (Fig. 2) [158]. In another 
study, it was demonstrated that IL-13 is responsible for initi-
ating TGF-β1 production and fibrosis by means of activating 
IL-13Rα2 signaling, which in turn activates AP-1 related 
genes such as C-Jun and members of the Fos family (Fra-2). 
This phenomenon was reversed by blocking IL-13Rα2 sign-
aling, which resulted in a significant reduction in TGF-β1 
production and collagen deposition [159]. This was addition-
ally supported by Brunner et al. The induction of allograft 
fibrosis in a mouse model was triggered by TGF-β through 
IL-13 signaling via IL-13Rα2 [160]. On the other hand, 
IL-13R alpha 2 was suggested to be a neutralizer/inhibi-
tor of IL-13 signaling, which facilitates the prevention of 
inflammation and remodeling in asthma [161]. Additionally, 
subsequent findings provided evidence that the upregula-
tion of IL-13Rα2 expression is the cause of decreased air-
way hyperresponsiveness, mucus production, and fibrosis 
in a mouse model [162]. It can be mentioned that asthma 
is regulated by complex network of multiple pathways, this 
complexity makes it difficult to identify cures for asthma 
thus currently can only be managed.

Schematic illustration of the signaling pathways acti-
vated by IL-4 and IL-13 through IL-4Rα, a constituent of 
both type I (IL-4Rα and γc), type II receptors (IL-4Rα and 
IL-13Rα1), and IL-13Rα2, culminating in the transcription 
of IL-4/IL-13 responsive genes, fibroblast proliferation, 
ASM contraction, collagen synthesis, ECM deposition, and 
TGF-β production.

Asthma Management

Despite advances in asthma medications, 5% to 20% of adult 
asthma patients still experience uncontrolled or partially 
controlled symptoms. This has driven the development of 
monoclonal antibodies (mAbs) (Fig. 3), which have become 
essential for maintenance therapy. Although targeted ther-
apy reduces the need for oral corticosteroids (OCS), many 
patients still require low-dose inhaled corticosteroids (ICS) 
as part of their long-term asthma management [163]. Recent 
progress in targeting specific therapeutic pathways with 
mAbs has enabled more personalized treatment options.

This figure illustrates asthma management, focusing on 
pharmacological strategies to relieve symptoms, enhance 
lung function, and prevent exacerbations. Treatments 
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include quick-relief Short-Acting Beta-Agonists (SABAs) 
and controller options such as ICS, Long-Acting Beta-
Agonists (LABAs), leukotriene modifiers, and biologics 
targeting IL-4/IL-13 pathways.

Targeted IL‑4 and IL‑13 Therapies: Impact 
on Remodeling

Due to all previous findings and along with the association 
mechanism of IL-4 and IL-13 signaling in asthma both 
IL-13 and IL-4 along with their corresponding receptor 
became a potential target for add/on biological therapy as 
summarized in Table 2.

Targeted Anti‑IL‑4 Therapy

As previously stated, IL-4 plays a role in inflammation and 
remodeling in asthma. Numerous studies have demonstrated 
that the elimination or inhibition of IL-4 significantly pre-
vents the allergic inflammatory response and other char-
acteristics of asthma [164]. Pascolizumab, a humanized 
monoclonal antibody, was developed and evaluated in vitro 
against human cells that target IL-4, preventing IL-4-related 
inflammation events in asthma, such as eosinophilia, T cells 
differentiation, and B cell isotype switching where limiting 
these events may prevents further airway inflammatory cell 
infiltration and remodeling [165]. In addition to assessing 
the safety and toxicity profile of Pascolizumab, affinity tests 
and the kinetics of antibody binding to IL-4 were examined, 

Fig. 2   IL-4 and IL-13 activate intracellular signaling pathways through their specific membrane receptors
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exhibited fast attachment to IL-4 and a gradual separation 
phase with a k-on value of 3·4 × 106 M − 1s − 1 and k-off 
values of 2 × 10 − 4s − 1. Furthermore, it effectively hindered 
the binding of IL-4 to its receptor IL-4R alpha, with an IC50 
of around 10 nm [165]. The trials showed that Pascolizumab 
effectively inhibited IL-4-dependent T-cell proliferation, IgE 
production, and upregulation of the FcεRII (CD23) recep-
tor as an in vivo result showed a positive pharmacokinetics 
and safety of Pascolizumab in cynomolgus monkeys; these 
results were highly promising, although the only compli-
cation observed was the development of an anti-idiotypic 
response, which led to the rapid clearance of Pascolizumab 
[165]. However, insignifcant results were obtained at phase 
II human clinical trials, yet no treatment safety related issues 
were raised however further development was terminated 

[166]. Pascolizumab’s failure underscores the complexity of 
asthma pathophysiology and the need for targeted therapies 
in biomarker-defined subgroups. Additionally, since IL-4 
and IL-13 share signaling components (e.g., IL-4Rα), block-
ing IL-4 alone may not sufficiently inhibit inflammation, as 
IL-13 can compensate via these shared receptors. Newer 
agents that block multiple cytokines or target downstream 
pathways have since demonstrated greater success.

Another anti-IL-4 targeted therapy known as Altrakin-
cept, an inhaled humanized recombinant IL-4R that is used 
to neutralize and antagonize endogenously occurring IL-4 
in asthmatic patients [167]. The safety and dose finding of 
altrakincept were initially evaluated by double-blind, pla-
cebo-controlled trials, which constituted the first phase of 
the study [168]. The findings indicated that administering 

Fig. 3   Asthma management 
strategies
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a nebulized dose of 1.5mg of soluble IL-4R resulted in a 
considerable preservation of Forced Expiratory Volume in 
1 Second (FEV1) and forced expiratory flow, particularly 
during the mid-expiratory phase. Additionally, it led to the 
stabilization of asthma symptom scores and a reduction to 
the need of β2-agonist rescue medication [168]. Borish et al. 
undertook randomized, double-blind, placebo-controlled 
research to evaluate the safety and efficacy of long-term 
soluble IL-4R administration in the treatment of mild per-
sistent asthma. The findings demonstrated that administering 
3.0 mg of altrakincept effectively preserved lung function by 
sustaining FEV1 levels following the discontinuation of cor-
ticosteroids. In addition, it contributed to the maintenance of 
asthma symptom scores [169]. However, in phase III clini-
cal trial altrakincept failed to demonstrate any efficacy in 
patients with milder asthma therefore, this compound has 
now been discontinued [170] [167]. The reason behind this 
failure was suggested to be same as Pascolizumab which is 
due to the biological overlapping between IL-4 and IL-13 
[168, 171, 172]. In addition, smaller recombinant proteins 
often have shorter half-lives compared to monoclonal anti-
bodies. Altrakicept required frequent dosing due to its short 
half-life, reducing practicality compared to longer-acting 
biologics [173]. However, the IL-13 receptor complex 
consists of the IL-13Rα1 and IL-4Rα chains, meaning that 
IL-4Rα is necessary for IL-13-mediated signaling but can-
not bind IL-13 independently. This raises the possibility that 
soluble IL-4R (sIL-4R, or altrakincept) could block IL-13 
from interacting with the IL-13 receptor complex, poten-
tially providing long-term symptom relief. There is currently 
limited data on the effect of altrakincept on structural cells 
in asthma.

Targeted Anti‑IL‑13 Therapy

IL-13, along with IL-4, plays a critical role in Th2 inflam-
mation and airway remodeling, making it an appealing thera-
peutic target. Blocking IL-13's interaction with its recep-
tor may help regulate these pathological processes such as 
inflammation, airway remodeling, and reduced lung func-
tion thereby mitigating their contribution to asthma sever-
ity. Three monoclonal antibodies have been developed for 
this purpose, including Anrukinzumab, Lebrikizumab, and 
Tralokinumab. Anrukinzumab a humanized monoclonal 
antibody that targets IL-3 and inhibits downstream signal 
activation [174]. It has undergone phase II investigations in 
asthma and ulcerative colitis patients [174]. Anrukinzumab 
has been also subjected to clinical trials in patients diag-
nosed with mild allergic asthma. The test results showed 
a substantial improvement in both early and late asthmatic 
FEV1 response 14 days after treatment with no further effect 
on allergen-induced airway hyperresponsiveness or sputum 
eosinophils. Nevertheless, this decrease was not detected 35 

days following the treatment [175]. In addition, Anrukin-
zumab showed limited effectiveness in a clinical trial involv-
ing patients with uncontrolled asthma, leading to the discon-
tinuation of its development as a treatment for asthma [176].

Lebrikizumab is an Immunoglobulin G4 (IgG4) human-
ized monoclonal antibody that acts as an anti-IL-13 
antagonist. Its mechanism of action involves blocking the 
IL-4Rα/IL-13Rα1 signaling pathway by binding with a 
very high affinity to IL-13 and preventing it from attaching 
to the receptor [177]. An asthmatic adult cohort underwent 
a phase II randomized, double-blind, placebo-controlled 
research, the study observed an improvement in the lung 
function despite receiving inhaled corticosteroids (ICS) 
and a long-acting β2-andrenergic receptor agonist [178]. 
Another phase II study results revealed that patients under 
lebrikizumab medication experienced a decrease in the 
frequency of treatment failure and a decrease in fractional 
exhaled nitric oxide (FeNO) levels, indicating a beneficial 
impact, with no clinical or statistical significant in FEV1 
[179]. Additionally, lebrikizumab effect on mild asthmat-
ics who underwent airway allergen challenge was con-
ducted, the late asthmatic reaction (LAR) was 48% lower 
in the lebrikizumab group at Week 13 than in the placebo 
group [180]. However, LAR was found to be more sig-
nificantly reduced in patients with high eosinophil counts, 
higher IgE levels, or high periostin levels who were treated 
with lebrikizumab which suggest that this medication 
seems to work better for people with asthma who also 
have a Th2 inflammatory profile [181]. The effect was also 
tested in moderate to severe asthma, where 37.5, 125, and 
250 mg of lebrikizumab reduced asthma exacerbation rate 
by 60% in periostin-high asthmatics and 5% in periostin-
low asthmatics, as well as FEV1 increases of 9.1% and 
2.6%, respectively [182]. These data are consistent with 
the previous findings and would suggest that lebriki-
zumab effect is influenced by the severity of the disease 
as it relies on periostin as a biomarker, but its expression 
fluctuates and lacks standardization which gives a vari-
ability between patient’s response. Additionally, another 
key limitation of lebrikizumab was its immunogenicity, 
with anti-drug antibodies (ADAs) developing in 8–12% 
of patients in clinical trials [178, 182]. These antibodies 
reduced the drug’s efficacy over time, particularly in lung 
function and exacerbation outcomes. However, up to date 
Lebrikizumab has been recently approved by Food and 
Drug Administration (FDA) to be used clinically yet IL-13 
is not the only inflammatory mediated cytokine in asthma 
several additional cytokines and inflammatory pathways, 
are involved in asthma disease. Additionally, it has been 
proposed that lebrikizumab may exhibit greater efficacy 
in cases of steroid resistance asthma compared to mild 
asthma. This is because the IL-13 pathway may or may not 
be activated at all in individuals with mild type of asthma 
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[181]. While lebrikizumab has been found to enhance lung 
function in patients with moderate-to-severe uncontrolled 
asthma, its impact on airway inflammation and remodeling 
remains uncertain. However, only one study demonstrated 
that lebrikizumab effectively decreased the extent of sub-
epithelial fibrosis, a key characteristic of asthmatic airway 
remodeling [183].

Tralokinumab is a humanized monoclonal antibody tar-
geting IL-13 that underwent Phase I, II, and III clinical tri-
als to evaluate its efficacy in neutralizing IL-13 in severe 
uncontrolled asthma [184–186]. Preclinical studies, includ-
ing an IL-13-induced murine model by Blanchard et al., 
demonstrated its ability to reduce airway hyperresponsive-
ness and eosinophilia in both respiratory and esophageal 
tissues [184]. Phase I trials in mild-to-moderate asthmat-
ics established its pharmacokinetic profile, tolerability, 
and safety at doses of 1, 5, and 10 mg/kg, with no serious 
drug-related adverse effects [185]. However, Phase II trials 
revealed mixed outcomes: Piper et al. reported no improve-
ment in Asthma Control Questionnaire (ACQ-6) scores in 
moderate-to-severe asthma patients treated with 150–600 
mg tralokinumab, though forced expiratory volume (FEV1) 
improved without significant adverse effects [186]. A sub-
sequent Phase IIb trial in severe asthma patients using 300 
mg tralokinumab also failed to reduce exacerbation rates, 
though post-hoc analysis suggested improved lung function 
in subgroups with elevated periostin or dipeptidyl pepti-
dase-4 (DPP-4), hinting at potential biomarkers for patient 
selection [187]. Additional Phase II data showed reductions 
in fractional exhaled nitric oxide (FeNO) and IgE levels, but 
no impact on eosinophilic inflammation [188].

Despite promising results in biomarker-enriched sub-
groups with a 44% exacerbation reduction in high-FeNO 
patients in STRATOS 1, tralokinumab’s limitations became 
evident in STRATOS 2, where it failed to replicate efficacy, 
underscoring its inability to address IL-4-driven redundant 
pathways [189]. Reliance on nonspecific biomarkers like 
FeNO further exposed its mechanistic insufficiency in het-
erogeneous asthma populations. These shortcomings empha-
sized the need for therapies targeting multiple cytokines.

Beyond inflammation, limited studies explored traloki-
numab’s impact on remodeling. Brightling et al. (2016) 
used quantitative computed tomography (QCT) to dem-
onstrate improved subsegmental airway lumen parameters 
and reduced wall area percentage in severe asthma patients 
receiving tralokinumab [190]. Preclinical models also sug-
gested antifibrotic effects, including reduced epithelial apop-
tosis by decreased caspase-3 and clara cell secretory protein 
(CC16_ levels and increased E-cadherin and surfactant pro-
tein expression[191]. However, further research is needed 
to validate its role in airway remodeling or structural cell 
modulation in asthma, particularly as tralokinumab is now 
FDA-approved for atopic dermatitis.

Targeting IL‑4R Alpha

Evidence suggests that targeting IL-4 or IL-13 individually 
does not adequately control asthma, highlighting the need for 
alternative therapeutic strategies. These may involve target-
ing both cytokines simultaneously or blocking their common 
receptor and downstream signaling pathways. Pitrakinra, an 
IL-4 variant with tyrosine-124 and arginine-121 replaced 
by aspartate, acts as an IL-4Rα antagonist by binding to 
the receptor and preventing IL-4/IL-13-induced inflamma-
tion without signal transduction [192, 41]. While Phase 2a 
trials demonstrated short-term improvements in FEV1 via 
subcutaneous or nebulized administration [41], its modest 
efficacy and short duration of action became apparent in 
broader studies. As a recombinant protein, pitrakinra’s rapid 
clearance necessitated frequent dosing, limiting practicality 
compared to long-acting biologics. This shortcoming con-
tributed to its failure in Phase 2b trials, where no significant 
efficacy was observed in moderate-to-severe asthma patients 
overall, though a subgroup with specific IL4RA gene vari-
ants showed reduced exacerbations [193]. The transient 
therapeutic effect and inconsistent outcomes underscored 
its inability to fully suppress redundant IL-4/IL-13 pathways 
or maintain durable responses, ultimately halting Phase III 
development. Additionally, its impact on airway remodeling 
remains unclear, further emphasizing the need for therapies 
with robust, sustained activity and broader pathway inhi-
bition. Dupilumab, an FDA-approved fully human mono-
clonal antibody targeting IL-4Rα, inhibits signaling of both 
type I (IL-4-activated) and type II (IL-4/IL-13-activated) 
receptors [194]. An initial phase II trial (2013) evaluated its 
efficacy in moderate-to-severe eosinophilic asthma. Patients 
received weekly 300 mg subcutaneous dupilumab injections. 
By week 4, long-acting beta-agonists (LABA) were discon-
tinued, followed by inhaled glucocorticoids from weeks 
6–9[194]. Dupilumab reduced asthma exacerbations by 87% 
versus placebo, improved FEV1 by > 200 mL, and sustained 
benefits even after glucocorticoid withdrawal [194]. It also 
lowered Th2 biomarkers FeNO, IgE, eotaxin-3, TARC with-
out altering peripheral eosinophil counts or causing serious 
adverse events [194].

A latter phase II trial conducted by Wenzel et al. enrolled 
769 uncontrolled asthma patients on inhaled corticosteroids/
LABA, regardless of eosinophil levels. Dupilumab (200 
mg/300 mg every 2–4 weeks) increased FEV1 by week 12 
and reduced exacerbation rates, irrespective of eosinophil 
counts [195]. These results aligned with phase III trials: 
both 200 mg and 300 mg doses reduced exacerbations and 
improved FEV1 by 320 mL [196]. The LIBERTY ASTHMA 
QUEST study further confirmed enhancements in asthma 
control, symptoms, and quality of life [197]. while the VEN-
TURE trial demonstrated reduced glucocorticoid depend-
ence and severe exacerbations in steroid-dependent asthma 
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[198]. Positive outcomes were also observed in severe 
asthma children, with weight-adjusted dupilumab (100–200 
mg) lowering inflammatory biomarkers TARC, FENO, and 
total IgE compared to placebo [199].

Despite these benefits, dupilumab’s long-term impact on 
lung function decline remains uncertain. The ongoing TLAS 
trial (phase III/IV) aims to determine whether dupilumab 
slows lung function loss in T2 asthma over three years and 
identifies predictive biomarkers [200].

In terms of remodeling only two studies have explored 
dupilumab’s effects on mucus hypersecretion and airway 
remodeling. These showed reduced mucus scores, airway 
wall thickness, and cough symptoms [201, 202]. Preclinical 
studies in HDM-exposed mice revealed dupilumab normal-
ized mucus-related (MUC5AC, TFF1, ITLN-1) and remod-
eling-associated genes (MMP-12, Arg1, MRGPRG), while 
preventing eosinophil infiltration into lungs [203]. These 
data indicate that dupilumab can effectively reduce airway 
remodeling and gives vital insights into the processes that 
lead to the long-term decline in lung function of asthmatic 
patients. However, murine study may not fully incorporate 
all aspects of asthma pathophysiology, making it difficult to 
be clinically applied to human disease. Therefore, it was sug-
gested that additional in vivo models should be conducted to 
better comprehend the various pathways and mechanisms of 
severe asthma. This can potentially promote further clinical 
studies aimed at enhancing patient care.

Furthermore, as mentioned earlier to the ability of IL-4 
and IL-13 to induce ASM contractility [128], Dupilumab 
was able to reverses this effect by blocking histamine H1/
CysLT1 receptor upregulation and calcium mobiliza-
tion [128]. Nevertheless, its long-term effects on remodeling 
features including fibrosis and ASM hypertrophy remain 
unclear. Further studies are needed to elucidate intracellular 
mechanisms and confirm clinical relevance.

Targeting IL‑13R Alpha‑1

The most studied IL-13 targeted antibodies are tralokinumab 
and lebrikizumab which show a positive control of lung 
function and asthma exacerbation rate [182, 189]. Despite 
that, there is no specific IL-13 receptor targeted antibody 
that has been developed or evaluated in asthma.

Eblasakimab, a novel monoclonal antibody under 
investigation for atopic dermatitis (AD), specifically tar-
gets IL-13Rα1. By inhibiting its heterodimerization with 
IL-4Rα and blocks downstream signaling activation [204]. 
In an 8-week Phase 1b trial involving 52 patients with mod-
erate-to-severe AD, eblasakimab demonstrated favorable 
safety and efficacy [205]. Results showed significant clini-
cal improvement compared to placebo, though long-term 
safety effects require further evaluation, and larger trials are 
needed to confirm these findings [205].

Despite its mechanism of blocking IL-13Rα1 a receptor 
expressed in airway structural cells [53, 54] no studies have 
assessed eblasakimab’s potential impact on asthma. This 
raises the question of whether eblasakimab could indepen-
dently control asthma or act synergistically as a dual-block-
ing antibody in combination with anti-IL-4 or anti-IL-4Rα 
therapies.

While IL-13 binds to both IL-13Rα1 and IL-13Rα2 
receptors, the role of IL-13Rα2 in asthma remains under-
explored despite its variable expression in lung fibroblasts 
and other tissues. Notably, no biologic therapies targeting 
IL-13Rα2 have been evaluated for asthma, even though 
it has emerged as a potential therapeutic target in other 
diseases, such as cancer. For example, strategies like mono-
clonal antibodies, vaccines, and immunotoxins targeting 
IL-13Rα2 have shown promise in mitigating inflammation 
and tissue remodeling in preclinical cancer models [206, 
207].

Conclusion and Future Perspectives

Although systemic corticosteroids (SCS) are effective for 
managing acute asthma exacerbations and providing long-
term symptom control in asthma, results from various stud-
ies indicate that their therapeutic options, along with muscle 
relaxants, have limitations in treating steroid-hyporesponsive 
severe cases. The combined action of T2 cytokines, IL-4 
and IL-13 is critical in the development of allergic asthma. 
IL-4 promotes the growth of Th2 cells and the production 
of cytokines and IgE, while IL-13 is responsible for clinical 
characteristics such as excessive mucus production and col-
lagen deposition. Both cytokines have emerged as promising 
targets for therapy, and recent studies have shown that mono-
clonal antibodies targeting IL-4 and IL-13 yield encouraging 
results. However, despite numerous trials aimed at demon-
strating the benefits of anti-IL-4 and anti-IL-13 treatments 
in severe asthma patients, the mechanisms by which dual 
inhibition of these cytokines might prevent lung function 
decline and airway remodeling remain unclear. Collectively, 
further investigations are needed to understand the under-
lying molecular processes through which IL-4 and IL-13 
contribute to airway remodeling in severe asthma.
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