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Multiple sclerosis (MS) affects 2.9 million people. Traditional classification 
of MS into distinct subtypes poorly reflects its pathobiology and has 
limited value for prognosticating disease evolution and treatment 
response, thereby hampering drug discovery. Here we report a data-driven 
classification of MS disease evolution by analyzing a large clinical trial 
database (approximately 8,000 patients, 118,000 patient visits and more 
than 35,000 magnetic resonance imaging scans) using probabilistic 
machine learning. Four dimensions define MS disease states: physical 
disability, brain damage, relapse and subclinical disease activity. Early/
mild/evolving (EME) MS and advanced MS represent two poles of a disease 
severity spectrum. Patients with EME MS show limited clinical impairment 
and minor brain damage. Transitions to advanced MS occur via brain 
damage accumulation through inflammatory states, with or without 
accompanying symptoms. Advanced MS is characterized by moderate 
to high disability levels, radiological disease burden and risk of disease 
progression independent of relapses, with little probability of returning to 
earlier MS states. We validated these results in an independent clinical trial 
database and a real-world cohort, totaling more than 4,000 patients with 
MS. Our findings support viewing MS as a disease continuum. We propose 
a streamlined disease classification to offer a unifying understanding of 
the disease, improve patient management and enhance drug discovery 
efficiency and precision.

MS is a debilitating disorder of the central nervous system (CNS), 
affecting approximately 2.9 million individuals worldwide (one in 
3,000 people)1,2. MS course descriptors, defined and revised by clini-
cal consensus3,4, have aided patient–physician dialogue in the clinic 
and the design and recruitment of clinical trials. These clinical disease 
course descriptors—relapsing-remitting MS (RRMS), secondary pro-
gressive MS (SPMS) and primary progressive MS (PPMS)—have had a 
major impact on drug development, as they were used to delineate 

trial populations, and on the practical management of people living 
with MS, as they define treatment indications and patient access to 
approved MS therapies. However, these traditional course descrip-
tors are based on clinical presentations of the disease rather than 
on the underlying disease biology. Their value for prognostication 
is limited to the observation that patients with a progressive disease 
course (PPMS or SPMS) tend to have a worse prognosis than those 
with a relapsing-remitting disease course5, and responsiveness to 
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discovery (n = 6,419) and replication (n = 1,604) samples. Results were 
externally replicated in an independent Roche clinical trial dataset21,22 
(N = 2,243; see Extended Data Table 1 for source studies) and a real-world 
cohort, Multiple Sclerosis Partners Advancing Technology and Health 
Solutions (MS PATHS)23 (N = 2,080), based on predefined validation 
criteria (Methods). Demographics and MS feature distributions are 
compared across datasets in Extended Data Table 2 and Supplemen-
tary Fig. 1.2.

Four latent dimensions to characterize MS
The FAHMM model, which uses latent variable modeling, is presented 
alongside the validation results in Fig. 1 and is illustrated in Fig. 1a. 
Probabilistic latent variable modeling of all clinical and radiological 
features measured in the clinical trials identified four latent dimen-
sions of MS (Table 1): physical disability, brain damage, relapse and 
asymptomatic radiological activity. These were named based on clinical 
and radiological features in the loading matrix (Fig. 1b).

MS disease states and evolution over time
The longitudinal composite scores of the four latent dimensions (from 
the probabilistic model) were used to identify disease states (Fig. 1c). 
The number of states was selected using the Bayesian information 
criterion (BIC; Extended Data Fig. 2), which favored models with more 
states over simpler alternatives, particularly over the traditional MS 
subtypes (RRMS, SPMS and PPMS), which would resemble a three-state 
model with a single one-way transition from RRMS to SPMS and PPMS 
as a distinct, static entity. The more complex models revealed over-
lapping feature distributions between states that, in fact, represent 
a disease severity gradient in terms of disability and brain damage 
and identified distinct states only for relapses and for periods during 
which patients have high asymptomatic radiological disease activity 
(Extended Data Fig. 3). Models with eight or more states had similarly 
low BIC and adequately represented the data. We present an eight- 
state model and its external validation in the main text in Fig. 1 (with 
feature distributions in Supplementary Table 2.1), and nine-state and 
10-state variants are detailed in Extended Data Fig. 4 and Extended 
Data Tables 3 and 4. The disease states were successfully reproduced 
in the holdout data (Supplementary Fig. 3.1).

The FAHMM model provides a data-driven, probabilistic assess-
ment of how individuals with MS transition between disease states 
over time. This dynamic aspect of the FAHMM model is captured in the 
transition probability matrix (Fig. 1a,d), which allows patients to remain 
in or move between states from one visit to the next. Patients may 
transition between disease states in any order. We did not restrict the 
transitions before fitting the model to the data, allowing the discovery 
of transition patterns in a data-driven manner (see Methods for details).

A key finding is that there is no direct monthly transition from 
states 1–3 to states 6–8; patients must first pass through one of the 
active states (4 or 5) (Fig. 1a,d). Furthermore, once in states 6–8, 
patients do not return to earlier states (1–3). Hence, solely based on 
those transition patterns observed in the NO-MS dataset, the eight 
states can be grouped into four clinical (meta-)states, which we named 
by consensus of the co-authors and the disease characteristics of the 
patients in these states as ‘EME’ (states 1–3), ‘asymptomatic radiologi-
cal MS disease activity’ (state 4), ‘relapse’ (state 5) and ‘advanced’ state 
of MS (states 6–8). Table 1 provides a clinical characterization of the 
patients in each clinical (meta-)state of MS, along with the transition 
probabilities. A summary is as follows:

•	 EME MS (states 1–3) represents clinically stable, ambulatory 
patients with MS with low disability, minimal cognitive impair-
ment and limited brain damage. Patients with EME MS are most 
likely to remain in an EME state from one visit to the next. Transi-
tions to active states are possible by developing asymptomatic 
radiological activity (state 4) or by experiencing a relapse (state 5).  

treatments in the progressive spectrum of the disease depends on 
the presence of radiological disease activity rather than the subtype 
of MS6. Recent evidence from real-world studies and clinical trials 
shows that disease progression independent of relapse activity (PIRA) 
is common in RRMS7–10 and is associated with poor long-term progno-
sis11. Additionally, current MS course descriptors are categorical and 
mutually exclusive (with implications for patient access to approved 
medications), whereas, in reality, relapsing and progressive disease 
features often overlap10. Pathophysiological differences between 
relapsing and progressive MS are more quantitative than qualitative 
in nature, with many features associated with disease worsening, 
such as slowly expanding lesions, meningeal and compartmentalized 
inflammation, neuroaxonal injury and brain and spinal cord atrophy, 
being present from disease onset and shared between subtypes of 
MS12–15. This raises the important question of whether the current MS 
categorization into distinct subtypes is justified or whether MS would 
be better described as a disease continuum from a focal inflammatory 
to a progressive disease course.

Over the last three decades, progress has been made in the devel-
opment of efficacious therapies, which have markedly improved the 
outlook for people living with MS10,16. Current therapies are predomi-
nantly licensed for the relapsing phase of MS, with demonstrated 
benefits in progressive MS (SPMS and PPMS) mostly confined to 
patients with recent disease activity. Based on heterogeneous treat-
ment effects observed within progressive subtypes of MS and benefit–
risk considerations, regulators in the United States and Europe have 
created complex subclassifications to tailor indications (for example 
‘active SPMS’ and ‘early PPMS’) in recent approvals, thereby deviating 
from the original consensus definitions (Extended Data Fig. 1). Such 
inconsistent views of MS pose challenges in the drug development 
process, especially in the progressive spectrum of the disease where 
there remains a high unmet medical need. Differences in definitions 
between jurisdictions and deviations from the consensus definitions 
also have the potential to create confusion in clinical practice in terms 
of patient access to approved treatments17. To address these funda-
mental issues, it is crucial to reevaluate the current MS categorization 
using a data-driven and evidence-based approach15,18,19.

With the goal of achieving a data-driven reclassification of MS, we 
adopted an AI-based approach, more specifically a bespoke probabil-
istic machine learning method, to reclassify the disease trajectories of 
more than 8,000 patients from the Novartis-Oxford MS (NO.MS) data-
base, which is currently the largest and most comprehensive MS clini-
cal trial database20. Our methodology—a scalable probabilistic factor 
analysis hidden Markov model (FAHMM) agnostic to the traditional MS 
subtypes—uses a probabilistic latent factor analysis (PFA) to represent 
multimodal clinical and radiological trial data. This approach simplifies 
complex data by capturing the correlation between variables into com-
posite scores, which are then assumed to follow a hidden Markov model 
(HMM). By applying this model, we report homogeneous multivariate 
disease states and the transition probability matrix between these 
states, thus providing quantitative insights into transition pathways 
and a data-driven view of the evolution of MS over time. Drawing from 
our findings and existing literature, we propose a reclassification of MS, 
which offers an opportunity to unify the understanding of this disease 
with implications for drug development and the practical management 
of people living with MS.

Results
Discovery and validation
A total of 8,023 patients with up to 15 years of follow-up (118,235 vis-
its) from nine phase 2/3 MS clinical trials in the NO.MS database were 
included in the main analysis. Diagnoses at trial entry were RRMS 
(n = 5,761), SPMS (n = 1,550) or PPMS (n = 712). Baseline characteris-
tics largely overlapped across studies, with more disabled patients in 
progressive MS trials (Supplementary Fig. 1.1). The dataset was split into 
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Direct transition to advanced states of MS (6–8) without going 
to an activity state is highly unlikely (close to zero probability).

•	 Asymptomatic radiological MS disease activity (state 4): a radi-
ologically active but clinically silent state, marked by multiple 
gadolinium (Gd)-enhancing lesions in the absence of reported 

new or worsening neurological symptoms. Most patients in this 
state are young and have a diagnosis of RRMS, but those with SPMS 
or PPMS also reach the asymptomatic radiological activity state, 
as revealed by our clinical trial datasets, in which magnetic reso-
nance imaging (MRI) scans are collected at set times irrespective 
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Fig. 1 | Disease evolution of MS based on the transition probabilities among 
the eight states of MS as proposed by the FAHMM model for NO.MS (main 
result), the independent validation dataset (Roche MS) and the real-world 
cohort (MS PATHS). a, Graphical summary of the eight statistical states of MS 
and the transition probabilities among them. b, Estimated loading matrices to 
identify ‘key dimensions of MS’. Bolded numbers refer to measures significantly 
(positively or negatively) associated with the dimensions based on the posterior 
probability of belonging to the slab component. Asymptomatic MS disease 
activity is identified based on the presence of Gd+ T1 lesions, in the absence 
of relapses. c, Descriptive summary of the percentage of patients with an MS 
subtype diagnosis (RRMS, SPMS or PPMS) and empirical means of the original 
variables characterizing the eight states; for more complete summary statistics, 
see Supplementary Table 2.1 and Extended Data Fig. 3. Note that, for MS PATHS, 

the diagnosis was self-reported by the patient and was missing for most (53%) 
and, therefore, not reported here. For a more detailed comparison of baseline 
features of the patients in NO.MS, Roche MS and MS PATHS datasets, see 
Supplementary Fig. 1.2 and Extended Data Table 2. d, Transition matrix between 
disease states as estimated by FAHMM, where each cell indicates the probability 
of a patient transitioning from their current state (row) to a subsequent state 
(column) over the course of 1 month. Patients may transition in any order 
between disease states. The thickness of the arrows in a is proportional to 
the probability of the transition between states as described in the transition 
probability matrix in d. In all figures, the color code refers to the clinical meta-
states: blue indicates EME MS; yellow indicates asymptomatic MS disease 
activity; orange indicates relapse; and red indicates advanced MS. BPF, brain 
parenchymal fraction; Gd+, gadolinium-enhancing; s, seconds.
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of symptoms. Patients often enter from EME states (1–3) or after a 
relapse (state 5). They may remain in this state, return to EME states 
(1–3) or relapse by developing acute neurological develop symp-
toms (state 5) or transition to advanced MS (states 6–8). Notably, 
there is a measurable risk (approximately 11%) of progressing via 
asymptomatic disease activity directly to advanced states (6–8) 
of MS, showing that subclinical disease activity is a risk factor for 
disease evolution.

•	 Relapse (state 5): characterized by acute new or worsening 
neurological symptoms—can occur from any state. Although 
relapses are more common early in the disease, they also occur 
at older ages and in patients with higher disability; they are 
seen most commonly in patients with a diagnosis of RRMS but 
are also experienced by patients with a diagnosis of SPMS or 
PPMS. A relapse is a risk factor for further disease evolution, as 
direct transitions from the relapse state to one of the advanced 
MS states (that is, state 5 to states 6–8) are possible with a 18% 
probability.

•	 Advanced MS (states 6–8) is defined by higher levels of physical 
and cognitive impairment, greater brain atrophy and reduced 

focal inflammation. Once in an advanced state, patients are 
unlikely to return to earlier states. Although relapses and lesions 
can still occur, transitions out of the advanced meta-state are rare; 
most patients remain within these states. The model does not dif-
ferentiate between SPMS and PPMS in these advanced stages—that 
is, patients with SPMS and patients with PPMS are distributed with 
similar frequency across states 6–8.

Demographics and MS disease characteristics from NO.MS are 
provided for the four clinical (meta-)states in Table 2.

The clinical (meta-)states were replicated in the independent 
external clinical trial and real-world datasets based on predefined 
validation (Methods) criteria as follows:

Validation in the Roche ocrelizumab phase 3 program (Roche 
MS) clinical trial dataset (N = 2,243) confirmed the four MS dimen-
sions—physical disability, brain damage, relapse and asymptomatic 
disease activity—and showed that progression from EME to advanced 
MS occurred primarily through active states, despite the absence of 
patients with SPMS. The clinical interpretation aligned with the main 
findings and met validation criteria (Fig. 1).

Table 1 | Four dimensions, eight states and four clinical (meta-)states to characterize MS as identified by probabilistic latent 
variable analysis with a description of the patient features and transition probabilities

MS dimensions Description

Physical disability Associated with the EDSS score, the T25FWT and the 9HPT, which are objective assessments of physical impairment.

Brain damage (new) Quantifies cumulative radiological disease burden, assessed by total T2 lesion volume and normalized brain volume on MRI. Brain 
damage, although associated with cognitive deficits and physical impairment, provides information about the integrity of the CNS not 
captured by the level of disability alone.

Relapse Describes whether a patient is in a relapse. The relapse can occur at any time; in our database, it was captured in unscheduled visits at 
the time patients experienced new or worsening neurological symptoms.

Asymptomatic 
radiological disease 
activity (new)

Characterized by Gd-enhancing T1 lesions without patient-reported or physician-reported new or worsening symptoms. Our clinical 
trial databases (NO-MS and Roche MS) collect MRI scans at set times, regardless of symptoms, which is ideal for identifying and 
quantifying subclinical radiological disease activity. Asymptomatic radiological disease activity was frequently observed with varying 
levels of intensity across all traditional MS subtypes.

Clinical states of MS Patient description Transition probabilities

EME (states 1–3), 59,810 
instances observeda

Ambulatory MS patients with no or mild cognitive impairment. 
Clinically stable (that is, 100% not in a relapse, no or very 
few Gd lesions). Mean brain volume >1.5 l and mean T2 lesion 
volume <10 cm3. Mostly young, two-thirds female, most with 
an RRMS diagnosis. Notably, state 3 also comprises older 
ambulatory patients with longer-standing disease: 16% with a 
diagnosis of PPMS and 31% with a diagnosis of SPMS.

Patients in an EME state usually remain in an EME state with a high 
probability (>90%) from one visit to the next. Transition to state 4 
or state 5 can occur by developing high disease activity, which can 
occur subclinically (state 4) or be accompanied by new or worsening 
neurological symptoms (relapse, state 5). Close to zero probability 
of direct transitions to advanced states (without going to state 4 or 
state 5).

Asymptomatic 
radiological MS 
activity (state 4), 3,709 
instances observeda

Characterized by multiple Gd-enhancing T1 lesions in absence 
of any new or worsening clinical symptoms. Detected via 
contrast-enhanced MRI indicating blood–brain barrier 
breakdown. High subclinical activity is most typically seen 
in the youngest patients. Two-thirds female, >90% RRMS 
diagnosis. However, also seen in some SPMS (7.4%) and PPMS 
(2.4%) patients. Upper age quartile: 43 years.

Patients in state 4 typically come from an EME state (states 1–3) or 
from a previous inflammatory state (state 4 or state 5). Patients in 
state 4 are likely to remain in an inflammatory state (state 4 or state 
5) or to recover to an EME MS state (states 1–3). However, direct 
transitions from state 4 to advanced MS (states 6–8) are possible 
with an 11% probability, indicating that asymptomatic MS disease 
activity poses a risk for further disease evolution.

Relapse (state 5), 5,504 
instances observeda

State 5 defines the relapse as a distinct state of MS based  
on the presence of acute neurological symptoms. Mean of  
1.98 Gd lesions during the relapse. Two-thirds were female, and 
82% had a diagnosis of RRMS. However, 17% had a diagnosis 
of SPMS, and 1% had a diagnosis of PPMS. Although relapses 
occur most frequently early in MS in young and ambulatory 
patients, they can also happen at older ages (upper quartile 
at 47 years of age), in more advanced stages (upper quartile at 
EDSS 5) and late in the disease (upper quartile of MS disease 
duration: 21 years of MS).

Patients can experience relapses from any state of MS, most 
commonly after a previous relapse (that is, symptoms persist from 
one monthly visit to next, 37% probabilityb) or after asymptomatic 
activity (that is, patients who previously had Gd lesions develop 
symptoms, 6% probability). Relapses pose a risk for further disease 
evolution. Transitions from the relapse to advanced states of the 
disease are possible with 18% probability.

Advanced (states 6–8),  
25,668 instances 
observeda

Characterized by moderate to high physical disability, 
cognitive deficits, high levels of brain damage and low focal 
inflammation. Mean T2 lesion volume, >10 cm3; brain atrophy, 
<1.5 l. On average, patients are 6 years older than those in the 
EME states with a more balanced sex ratio. Most (72%) have a 
diagnosis of progressive MS (either SPMS or PPMS) without 
distinction between SPMS and PPMS being made by the model.

Patients in advanced states experience moderate to high disability 
and brain damage. Recovery to earlier states is improbable, and 
patients usually remain in advanced states.

aIncludes repeated counting of patients who were in one of these states on multiple occasions in our longitudinal dataset. bIn the NO.MS database, the average physician-reported duration of a 
relapse is 47 days, with many lasting up to 3 months or longer.
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Validation in the real-world MS PATHS cohort (N = 2,280). Despite 
using different measures (for example, new/enlarging T2 lesions, 
brain parenchymal fraction and no Expanded Disability Status Scale 
(EDSS)), lower-frequency assessments (6–12 monthly visits) and some 
patient-reported rather than physician-assessed measurements, the 
four MS dimensions and the EME-to-advanced disease gradient were 
also reproduced in the MS PATHS cohort. Transitions to advanced MS 
typically passed through active states, and direct worsening from early 
to advanced MS was confirmed to be rare. Minor differences emerged: 
only two advanced states were identified (versus three in NO.MS), 
and relapse was split into two relapsing states (one in earlier patients 
and one in more advanced patients). This is due to the fact that, in MS 

PATHS, which reflects real-world practice, visits were more symptom 
driven rather than scheduled independently, as is typically the case in 
clinical trials (Fig. 1).

Sensitivity analyses. An analysis for ‘bout-onset MS’ (RRMS and SPMS) 
and PPMS separately revealed similar disease states and transition 
patterns (Extended Data Fig. 5). The FAHMM requires complete data 
at each visit. In the main analysis, missing data were imputed only for 
partially observed visits, scheduled clinical visits and unscheduled 
relapse visits.

The missing data rates and mean absolute errors for imputed 
values on heldout data were as follows: Timed 25-Foot Walking Test 

Table 2 | Demographics and disease characteristics for the four clinical (meta-)states of MS based on NO.MS

Variable EME MS Asymptomatic radiological disease activity Relapse Advanced MS

n = 59,810 n = 3,709 n = 5,594 n = 25,668

Demographics, MS subtype and disease duration

Age

Mean (s.d.) 41 (10) 37 (9) 40 (9) 47 (9)

Median (IQR) 41 (34–48) 36 (30–43) 40 (33–47) 48 (41–54)

Sex

Female 41,029 (69%) 2,597 (70%) 3,984 (71%) 15,177 (59%)

Male 18,781 (31%) 1,112 (30%) 1,610 (29%) 10,491 (41%)

MS subtype

RRMS 48,416 (80.9%) 3,345 (90.2%) 4,595 (82.1%) 7,215 (28.1%)

SPMS 7,513 (12.6%) 274 (7.4%) 937 (16.8%) 14,837 (57.8%)

PPMS 3,881 (6.5%) 90 (2.4%) 62 (1.1%) 3,616 (14.1%)

Years since first symptom

Mean (s.d.) 12 (8) 10 (8) 13 (9) 17 (9)

Median (IQR) 9 (5–21) 8 (4–20) 9 (5–21) 20 (9–23)

Original MS measures

EDSS (total score)

Mean (s.d.) 2.44 (1.47) 2.32 (1.40) 3.88 (1.63) 5.26 (1.41)

Median (IQR) 2 (1.5–3.5) 2 (1.5–3.5) 4 (2.5–5) 6 (4.5–6.5)

T25FWT (s)

Mean (s.d.) 5.87 (2.38) 6.13 (3.56) 9.49 (11.03) 18.45 (19.43)

Median (IQR) 5.25 (4.40–6.50) 5.20 (4.35–6.55) 6.15 (4.81–9.25) 11.90 (7.95–20.60)

9HPT (s)

Mean (s.d.) 21.03 (4.45) 22.04 (5.45) 25.49 (10.88) 35.72 (18.38)

Median (IQR) 20.25 (18.08–23.18) 21.00 (18.50–24.15) 22.50 (19.52–27.12) 30.70 (25.68–39.06)

PASAT (number correct out of maximum 60)

Mean (s.d.) 51.93 (9.04) 48.66 (10.88) 47.23 (12.11) 40.96 (14.15)

Median (IQR) 55 (48–59) 52 (43–57) 51 (40–57) 43 (30–53)

Volume T2 lesions (ml)

Mean (s.d.) 5.84 (7.91) 10.93 (11.00) 9.57 (11.57) 16.18 (14.45)

Median (IQR) 2.92 (1.18–6.98) 7.58 (3.39–14.66) 5.38 (1.89–12.62) 12.07 (6.55–21.62)

Normalized brain volume (l)

Mean (s.d.) 1.52 (0.08) 1.53 (0.09) 1.51 (0.09) 1.45 (0.09)

Median (IQR) 1.52 (1.46–1.58) 1.53 (1.47–1.58) 1.52 (1.45–1.57) 1.44 (1.38–1.51)

Number of Gd+ T1 lesions

Mean (s.d.) 0.00 (0.00) 3.34 (5.22) 1.98 (5.05) 0.24 (0.97)

Median (IQR) 0 (0–0) 2 (1–3) 0 (0–2) 0 (0–0)

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific state; n represents the number 
of such visits to the specific state. Gd+, gadolinium-enhancing; IQR, interquartile range.
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(T25FWT): 32.3%, 0.14; 9-Hole Peg Test (9HPT): 43.6%, 0.17; Paced 
Auditory Serial Addition Test (PASAT): 53.9%, 0.30; T2 lesion volume: 
72.5%, 0.08; brain volume: 69.9%, 0.08; and Gd-enhancing lesions: 
73.1%, 0.08. These metrics suggest a reasonable level of imputation 
accuracy across variables.

EDSS and relapse data were complete. Results of a further sensitiv-
ity analysis without data imputation, mapping available assessments to 
annual visits based on the availability of annual brain scans, are given 
in Extended Data Fig. 6. It showed an EME MS to advanced MS disease 
severity gradient with transitions either via relapses or asymptomatic 
radiological disease activity, consistent with the main model despite 
a substantial loss of longitudinal information (88.5% of all patient 
visits and 87.1% of the relapses were missed due to the remapping to 
annual visits).

Progression independent of relapse activity by disease state
The time to the first PIRA event was analyzed by the disease state that 
patients were in at the baseline of a clinical trial (Fig. 2a). Patients start-
ing in EME or active states (relapse or asymptomatic activity) had a 
lower risk and longer time to PIRA than those starting in advanced 
states, indicating that, although progression risk exists early, it 
increases markedly in advanced MS.

Prognostication of individual trajectories
Individual patient journeys through the clinical disease states over 
5 years are visualized in a Sankey plot (Fig. 2b). At baseline of the clini-
cal trials, most patients are in an EME MS state (blue) or in an active 
disease state (yellow or orange); only a minority of patients are already 
in an advanced MS disease state (red), reflecting the composition of 
the NO.MS database and the eligibility criteria of the various trials. 
Patients transition between states annually, with both worsening and 
improvement observed. Each visit to an inflammatory state (relapse or 
asymptomatic activity) increases the risk of progressing to advanced 

MS. Over time, more patients accumulate disease burden and enter 
advanced states. Similar patterns were observed across RRMS, SPMS 
and PPMS (Supplementary Fig. 4.1), with consistent transition pathways 
from early to advanced states via inflammatory activity, regardless of 
MS subtype.

We evaluated the predictive performance of the proposed classi-
fication for the prognostication of an individual patient’s risk to transi-
tion into an advanced state of MS and the effect of disease-modifying 
therapies (DMTs) based on the estimated FAHMM model (Methods). 
The analysis revealed that, overall, the model predicts individual 
patient trajectories with high concordance in independent holdout 
data, with a good out-of-sample performance (C-score = 0.82, Brier 
score = 0.06).

Impact of DMTs on MS disease evolution
Treating with a DMT significantly reduces the risk of patients with EME 
MS transitioning into the highly active asymptomatic MS disease state 
as well as their risk of transitioning into a relapse state (Fig. 2c). Com-
pared to placebo, DMTs also lower the chance of remaining in an active 
state across visits. By interrupting the accumulation of damage to the 
CNS through these high-risk states, DMTs are associated with a higher 
probability of patients staying longer in the EME phase of MS.

Discussion
We developed a data-driven classification of MS by applying bespoke 
probabilistic machine learning methodology to the longitudinal mul-
timodal disease trajectories of more than 8,000 patients, covering 
all classical subtypes of MS. The main analysis in NO.MS is based on 
approximately 120,000 standardized neurological assessments and 
more than 35,000 MRI scans.

Our study was conducted in a clinical trial dataset with protocol- 
defined eligibility criteria as previously described20, resulting in a more 
narrowly defined population than typically encountered in clinical 
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Fig. 2 | Disease progression and effect of treatments based on NO.MS. a, Time 
to first 3-month PIRA as a function of the clinical state in which the patient started 
at trial baseline. Kaplan–Meier estimates with shaded area representing 95% 
confidence intervals. b, Sankey plot of individual patient trajectories among the 
four clinical states of MS over a timeframe of 5 years. At year 0, patients are shown 
in the disease state in which they entered into a clinical trial: patients were in an 
EME state (blue), in a state of asymptomatic radiological disease activity (yellow), 
in a relapse (orange) or in an advanced state of MS (red). From left to right, the 
plot illustrates the proportion of patients who remain in the same disease state 
or move to another disease state. Please note that, for clarity of the graphic, 
only the yearly status of the patients is shown, and transitions between yearly 
visits are not displayed to avoid overcrowding the figure. If patients had relapses 
or radiological inflammation at these annual visits, this is correctly presented 
in orange and yellow, respectively. However, patients may have experienced 

relapses or asymptomatic radiological inflammation states between these 
annual points that contributed to their worsening, which cannot appear in this 
graphical representation; this explains why the figure displays blue connection 
lines between EME and advanced disease states in the figure even though the 
probability of a direct transition between EME and advanced states without 
passing through the inflammatory states is, in fact, low (see underlying transition 
matrix in Fig. 1d). c, Effect of (any) DMTs (versus placebo) on the transition 
probabilities among the four clinical states of MS. ‘Any DMT’ includes one of 
the following: interferon beta-1, glatiramer acetate, teriflunomide, fingolimod, 
siponimod or ofatumumab, which were compared to ‘no DMT’ (that is, placebo). 
The numbers refer to the percentage risk reduction (1 − HR, where HR refers 
to the hazard ratio between treated and untreated (placebo) patients and is 
reported with 95% confidence limits).
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practice. We addressed this possible limitation by validating and repro-
ducing our findings not only on a holdout dataset but also in an inde-
pendent clinical trial dataset (Roche MS dataset)21,22 and in a real-world 
cohort (MS PATHS)23. The population included in our analysis is broadly 
similar to the NO.MS full dataset and to the real-world cohort based on 
reported demographics and disease features (Extended Data Table 2 
and Supplementary Fig. 1.2). By including MS PATHS and Roche MS, we 
markedly expanded the range of treatments used.

The model is agnostic to the diagnosed clinical subtype of MS, 
allowing us to contrast it with the consensus-based MS course descrip-
tors (Table 3). By contextualizing our findings within the traditional 
MS classification and existing literature, we propose revisions to the 
classification and recommend actions that could positively impact 
patient management and clinical trials alike.

Our FAHMM model results are more compatible with the view of 
MS as a disease continuum10,13,15 than with the traditional view of distinct 
phenotypes. A three-state model of static MS subtypes (RMS, SPMS 
and PPMS) was found to be inferior to more complex and dynamic 
models. In these dynamic models, the frequency of disease activity 
varies between individuals, explaining some of the individual dif-
ferences in the accumulation of damage to the CNS and the acquisi-
tion of physical and cognitive impairment over time. Based on four 
dimensions—physical disability, radiological disease burden (that is, 
focal and diffuse brain damage), relapse and subclinical disease activ-
ity—and the transition matrix between disease states, the FAHMM 
has good performance for predicting disease course at the individual 
level (C-score > 0.8). The model thus enables prognostication of time 
to advanced MS based on the frequency of visits into one of the active 
disease states and the accumulation of disease burden. The results 
of this approach support the proposal by Lublin24 that the time fram-
ing—that is, the frequency of disease activity and progression within 
a set time window (for example, within a year)—should be considered 
in the practical management of MS.

The disease continuum was identified by our modeling in the 
form of multiple overlapping states that represent a gradient in terms 
of disease severity as defined by the level of disability and damage to 
the brain. Thus, the accumulation of a radiological disease burden is 
a manifestation of disease worsening, which can be reduced (or even 
prevented) with efficacious DMTs. We identified the meta-states EME 
MS (states 1–3) versus advanced MS (states 6–8) as two poles of a dis-
ease severity gradient. Models with more than eight states show greater 
resolution of the same gradient with no additional value for the clinical 

interpretation. Separate models for ‘bout-onset MS’ (RRMS and SPMS) 
versus PPMS were essentially similar.

The FAHMM results indicate that focal inflammatory and progres-
sive forms of MS form a continuum in their phenotypic presentation. 
The model grouped RRMS, ‘active SPMS’ and ‘early PPMS’ together in 
the EME stages of MS without distinction, whereas fully evolved PPMS 
was grouped with SPMS in the advanced stages, also without distinc-
tion. The primary transition pathways from EME MS to advanced MS 
were through focal inflammatory states, either with accompanying 
neurological symptoms or stealthily via clinically silent radiological 
disease activity. The FAHMM considers the highly active disease states 
(4 and 5) as distinct disease states set apart from all other states by 
the occurrence of acute neurological symptoms or the unequivocal 
evidence of high levels of inflammation on the MRI scan (Gd-enhancing 
T1 lesions mean (s.d.): 3.34 (5.22)), respectively. This differs from the 
traditional view of MS that attributes lesions and relapses primarily 
to RRMS and is justified based on abundant evidence that lesions and 
relapses are not exclusive to any specific subtype of MS but can occur 
across the entire MS spectrum, including in patients with PPMS10,20.

The finding that ‘early PPMS’—that is, relatively young patients 
with low to moderate levels of disability and/or evidence of radiologi-
cal disease activity—can benefit from anti-inflammatory treatment is 
consistent with subgroup results of the first trials of B-cell-depleting 
antibodies in PPMS25,26. More recently, a meta-analysis of 12 studies in 
the progressive spectrum of the disease (SPMS or PPMS) in a total of 
8,659 patients showed that patients with recent disease activity could 
benefit from available DMTs, irrespective of whether their disease 
course was diagnosed as SPMS or PPMS, whereas patients without such 
recent disease activity could not6.

The 2013 revisions by Lublin et al.4 to the definition of the MS 
disease course introduced disease activity measures (MRI lesions and 
relapses) and progression as ‘modifiers’ of the classical static pheno-
types (RRMS, SPMS and PPMS), without substantiating the quantitative 
relevance of such modifiers for disease evolution. Our FAHMM results 
enhance understanding of MS by offering a data-driven examination of 
the latent dimensions for disease characterization and a probabilistic 
quantification of the transition pathways between disease states. 
In our analysis, focal inflammation, with or without accompanying 
neurological symptoms, is the key driver of worsening. This finding 
was validated in the independent clinical trial dataset as well as in the 
real-world cohort. Our FAHMM shows that clinical and radiological 
assessments provide complementary information that differs from 

Table 3 | A comparison between the MS disease classification as proposed by the FAHMM model and the consensus-based 
clinical disease course descriptors

Traditional course descriptors of MS4 FAHMM disease states

Dimensions to define 
MS subtypes/states

Two dimensions
1. Disability progression (mechanism)
2. Relapse

Four dimensions
1. Physical disability (absolute level)
2. Brain damage (reserve capacity)
3. Relapse
4. Asymptomatic radiological disease activity
The first two dimensions describe a disease severity gradient; the third and fourth 
dimensions can move the patient along on this gradient.

Main classification Distinct subtypes (static model)
1. RRMS
2. SPMS
3. PPMS
The classical subtypes of MS can be denoted as a 
static three-state model with only a single transition 
from RRMS to SPMS possible.

Disease continuum (dynamic model)
1. EME MS
2. Asymptomatic radiological disease activity
3. Relapse
4. Advanced MS
Patients move in and out of inflammatory disease states, thereby increasing the 
disease burden over time.

Modifiers of 
phenotypes

To express temporal status of patients
1. Inflammatory activity (MRI lesions or relapse)
2. Clinical progression
No evidence of the quantitative impact of these 
disease course modifiers on the disease evolution has 
been provided in the consensus definitions4.

No modifiers needed (data-driven dynamic model of MS).
Data from approximately 8,000 patients were used to estimate the transition 
pathways and probabilities between disease states in the form of a transition 
probability matrix between MS disease states, providing quantitative insights 
into MS disease evolution. These probabilities have been validated based on 
independent clinical trial data and real-world data from an additional more than 
4,000 patients with MS.
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the initial consensus-based classification of MS, which focused on only 
two clinical dimensions (relapses and disability progression)3. It also 
differs from a more recent data-driven classification of MS that used 
only MRI data based on the premise that this would better reflect the 
pathophysiology of MS27. FAHMM results suggest that, in addition to 
the level of disability and relapse, two MRI-based latent dimensions of 
MS are relevant and should be considered for disease characterization 
and disease evolution:

	(1)	 Brain damage: assessed by the total T2 lesion volume and the level  
of brain atrophy as cumulative measures of focal and diffuse  
radiological disease burden. As the disease evolves, disease-related  
damage to the brain gradually accumulates, progressively 
lowering the patient’s chances for disability improvement28 
and increasing the risk of further disability worsening29 and 
progression30,31. This decreasing ability to compensate and im-
prove as the disease advances will similarly contribute to the 
clinical presentation of a progressive disease course, much like 
active drivers of worsening would, albeit likely through a differ-
ent pathophysiological mechanism28. Thus, the accumulation 
of a radiological disease burden is a form of disease worsening, 
associated with poorer long-term outcomes; it should be mini-
mized through the use of efficacious DMTs.

	(2)	Asymptomatic radiological disease activity was revealed as a 
major pathway for patients to worsen, as shown by the FAHMM 
transition matrix. Our results from the much larger NO.MS 
dataset confirm the finding of a previous report by Thorpe 
et al.32, showing that more than 90% of the MS disease activ-
ity visible on regularly scheduled MRI scans (brain and spinal 
cord) is not accompanied by new or worsening neurological 
symptoms. High lesion activity is predominantly, but not ex-
clusively, seen in young patients and occurs in all subtypes of 
MS20 and contributes to neuronal injury33–35 and brain tissue 
loss36 and, thereby, to the overall accumulation of damage to 
the brain. Enhancing lesions contribute to disease worsening 
in the same direction as clinical relapses28. Such damage is, in 
turn, associated with a lower chance of improvement and an 
increased risk of disease worsening and progression28 (see the 
FAHMM-proposed brain damage-related latent dimension of 
MS). Therefore, monitoring and preventing subclinical disease 
activity to protect reserve capacities should be a priority in MS 
management, considering that brain reserve influences how 
structural damage translates into clinical symptoms37. Howev-
er, this approach may require novel strategies considering the 
current era of low relapse rates and safety concerns associated 
with regular use of Gd38.

Our FAHMM model confirms that PIRA starts early in MS and 
becomes the dominant feature in the advanced disease states when 
brain reserve is depleted, in line with the findings of Kappos et al.9 and 
Lublin et al.10. Patients in all states of MS can experience PIRA events, 
but the absolute risk of PIRA is higher in the advanced states compared 
to the EME states of the disease. In relative terms, PIRA is the most fre-
quent manifestation of disability accumulation across the full spectrum 
of traditional MS phenotypes, as summarized in a recent literature 
review39. Perhaps surprisingly, FAHMM did not identify any direct 
pathway from EME to advanced states of the disease without passing 
through focal inflammatory states (4–5). Among the various biological 
mechanisms for MS evolution that have been proposed40, this finding 
supports the view that inflammation is central to the pathogenesis of 
MS and that degenerative processes in MS are secondary in nature. 
The risk of PIRA was estimated to be highest in the advanced states of 
MS, when the amount of damage to the CNS is typically substantial and 
response to currently available treatments is least likely.

Regarding the advanced states of MS, our results do not support 
maintaining a distinction between SPMS and PPMS; patients with SPMS 

and patients with PPMS were similarly distributed among the advanced 
states of the disease, both in the NO.MS dataset and in the real-world 
validation set. Once patients reach the advanced states of the disease, 
the risk of progression is high, and the chances of a treatment response 
are low, regardless of whether the previous disease course was charac-
terized by relapses or not. Our results align well with the accumulating 
evidence that the apparent evolution from EME states to advanced 
states of the disease reflects a partial shift from predominantly local-
ized acute injury to widespread chronic inflammation and secondary 
neurodegeneration13,14,41–46. Aging has a modulating effect; it decreases 
the likelihood of focal inflammation, increases neural susceptibility to 
injury and reduces resilience15,20. Abandoning the distinction between 
primary and secondary progressive MS in the advanced spectrum 
would acknowledge that these patients likely progress for the same 
reasons. Treating advanced PPMS and advanced SPMS as a uniform 
population would facilitate trial recruitment and drug discovery and 
would simplify drug indications and access in the progressive spectrum 
of the disease (that is, advanced MS is seen as one indication).

One may consider how the classical disease course descriptors (at 
presentation) would map to the FAHMM states and how this relates to 
current and potentially future disease classification. Radiologically 
isolated syndrome (RIS), which, in specific situations, is now MS47, would 
be detected based on asymptomatic lesions (state 4). Clinically isolated 
syndrome (CIS) would be identified based on a first clinical episode (state 
5). Fully ambulatory patients with MS with limited damage to the brain 
who are not in a relapse and not in a highly inflammatory state would be 
considered in one of the EME disease states (1–3), irrespective of whether 
they have a relapsing or a progressive disease onset. Patients who have 
progressed in their disease, are impaired in their walking ability, have 
cognitive deficits and/or have accumulated a substantial lesion load or 
brain atrophy would likely qualify as being in an advanced disease state 
(6–8). It should be noted that, under the FAHMM, the combinations of 
physical and cognitive impairment and radiological damage to the brain 
that determine the classification of patients to a particular disease state 
can vary, reflecting inter-individual differences. Such differences render 
it impossible to provide simple thresholds that would demark movement 
between states and be applicable to all patients with MS. For the practical 
management of patients with MS and for the conduct of clinical trials, we 
propose it to be adequate and sufficient to consider the two ends of the 
disease continuum (EME MS versus advanced MS) while acknowledg-
ing that the shift in pathobiology is gradual rather than sudden, with 
considerable overlap of focal inflammatory and degenerative biology.

EME MS would include RIS, CIS and RRMS as well as ambulatory 
and cognitively functional patients with SPMS or PPMS who had recent 
imaging features characteristic of inflammatory activity. The primary 
goal would be to prevent relapses and asymptomatic disease activ-
ity by addressing the evolving disease pathology15. Meta-analyses 
suggest that such patients can benefit from currently available 
anti-inflammatory drugs6,16,48.

Advanced MS would include SPMS and PPMS (without distinc-
tion) and patients with RRMS who progressed in absence of relapse 
activity (PIRA) and who have moderate to high levels of disability with 
evidence of brain damage as shown by T2 lesion burden or evidence of 
disease-related brain atrophy. The primary goal would be to minimize 
the risk of further progression and to maintain or restore function. 
Secondary goals could be to minimize the risk of lesion expansion 
and brain atrophy. Developing treatments for advanced MS remains 
an urgent unmet medical need.

We summarized our recommendations for clinical practice and 
for clinical trials based on our findings and the literature in Table 4.

We acknowledge the limitations in our dataset in terms of imaging 
frequency (typically only available in annual visits) and lack of advanced 
MRI features, including spinal cord imaging, cortical lesions and slowly 
expanding and paramagnetic rim lesions, which might account for some 
discordance between MRI disease activity and clinical outcomes. The 
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overall limited data from spinal cord MRI in our database do not allow 
for definite or generalizable conclusions regarding its added value as 
a disease descriptor. Although there is evidence to show that spinal 
cord volume loss is significantly associated with present and future 
disability49–54, its potential added value over brain atrophy has not been 
studied or demonstrated. Regarding spinal cord lesions, based on a 
recent review55 systematic assessment of such lesions for monitoring of 
disease activity seems to have limited added value over monitoring of 
brain lesions and is considered optional based on current guidelines38.

To conclude, our model is a potentially important stepping stone 
to a data-driven disease characterization of MS. Although more com-
prehensive clinical information, such as spinal cord abnormalities or 
biological data, will be required before it can be considered definite, 
we think that if more advanced MRI measures and fluid biomarker data, 
such as proteomic or metabolomic data from banked samples, could 
be made available in this or any other large MS database, the FAHMM 
model would be suitable for a more in-depth pathophysiological 
description of MS and, provided availability of respective data, of any 
other diseases with similar complexities. With this comprehensive 
analysis, we hope to contribute to a more unified understanding of MS.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41591-025-03901-6.
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Methods
Analysis set from the NO.MS database
The NO.MS database was previously described20. In brief, it comprises 
39 clinical trials from 2003 to April 2021, approved by institutional 
review boards (IRBs) or ethics committees (‘Ethics’ subsection and 
Supplementary Table 5.2) and conducted following the principles of 
the Declaration of Helsinki and Good Clinical Practice. All patients 
from all 39 trials provided written informed consent. Trial proto-
cols prospectively defined the objectives, eligibility, endpoints, 
assessments and statistical analyses. The individual study results 
were previously published. Data were deidentified in a risk-based 
approach as reported elsewhere56,57. For this analysis, all phase 2 and 
3 studies conducted in RRMS, SPMS or PPMS and their correspond-
ing open-label extensions were selected based on the availability 
of protocol-defined standardized clinical assessments and regular 
MRI acquisitions. Studies contributing to the analysis are listed in 
Extended Data Table 1. In addition, an analysis of the wider NO.MS 
database, including all patients with clinical assessments of relapses 
and EDSS, investigated the risk of relapses and progression from 
pediatric MS to adult MS and from RRMS to SPMS and PPMS and iden-
tified a decreasing gradient of focal inflammation and an increasing 
gradient of the risk of progression10.

Ethics
The ethics committees and IRBs used in the nine NO.MS source stud-
ies included: Alta Bates Summit IRB; Asahikawa Medical Center IRB; 
Ascension Wisconsin IRB; Aurora IRB; Baltimore IRB; Biomedical IRB; 
CentraState IRB; Central Ethics Committee; Chiba University Hospital 
IRB; Christiana Care IRB Helen F.; Copernicus Group IRB; Crescent 
City IRB; Dean IRB; Ebara Hospital IRB; Ehime University Hospital 
IRB; Georgetown University IRB; Health Sciences Institutional Review 
Boards; Health Sciences Campus IRB; Health System IRB; Healthcare 
-IRB; Henry Ford Hospital IRB; Hospital IRB; IRB University of California 
Davis; IRB of Beijing Hospital; IRB of West China Hospital; IRB-WB2; IRB/
OSA; IRBMED; Institutional Ethics Committee, Bakirkoy; Institutional 
Ethics Committee, Dokuz Eylul; Institutional Ethics Committee, Ege; 
Institutional Ethics Committee, Gazi; Institutional Ethics Committee, 
Gaziantep; Institutional Ethics Committee, Hacettepe; Institutional 
Ethics Committee, Istanbul; Institutional Ethics Committee, Mersin; 
Institutional Ethics Committee, Uludag; Iwate Medical University Hos-
pital IRB N/A; Johns Hopkins IRB; Keio University Hospital IRB; Kyoto 
Min-iren Chuo Hospital IRB; Lifespan IRB; Local Ethics Committee of 
AHEPA; Multicentric Ethics Committee IKEM; NIMS Institutional Ethics 
Committee; National Ethics Committee; Network IRB; Osaka Univer-
sity Hospital IRB; Pro Health Care IRB Research; Providence Health & 
Service IRB; Providence Health & Services IRB; Psychiatry IRB; Quorum 
Review IRB; Research Ethics Committee; Saitama Medical Center IRB; 
Schulman Associates, IRB; Sone Clinic IRB; The Ethics Committee of Sri; 
University IRB; University of Colorado Health IRB; University of Utah 
IRB; WIRB; WakeMed IRB; Wayne State University IRB; and Wheaton 
Franciscan Healthcare IRB N/A (see Supplementary Table 5.2 for full 
list and further details).

Clinical assessments in NO.MS
For all the trials included in the NO.MS analysis set, the following clini-
cal assessments, which are commonly used in MS clinical trials, have 
been regularly monitored (typically every 3 months or 6 months; for 
details, see the individual protocols and study designs) by specifically 
trained healthcare professionals:

EDSS58,59: a standard tool for assessing the neurological disability 
status and disability progression, ranging from 0 (neurologically 
normal) to 10 (death due to MS).

T25FWT60: an objective quantitative measure of neurological func-
tion (patient’s walking speed).

9HPT60: an objective quantitative measure of upper extremity (arm 
and hand) function.

PASAT61: an objective measure of cognitive function that specifically 
assesses auditory information processing speed and flexibility as 
well as calculation ability.

Relapse occurrence: defined as the appearance of a new neurologi-
cal abnormality or worsening62, as experienced by the patients and 
reported by the study investigator. Patients who experienced new or 
worsening symptoms were instructed to come for an unscheduled 
visit where symptoms were assessed (with an EDSS assessment 
performed), and onset as well as end date were recorded by the 
physician. Patients were transferred to an EDSS rater (in phase 3 
trials) and an independent physician for the EDSS assessment. In the 
present analysis, all patient-experienced and physician-reported 
new or worsening symptoms are considered, irrespective of the 
EDSS confirmation.

It should be noted that such visits could happen at any time and 
would typically occur in unscheduled visits between the regular sched-
uled visits. For this reason, to capture the timing of events adequately, 
a monthly grid was used for modeling purposes.

Radiological assessments in NO.MS
In NO.MS, all images obtained according to study-specific standardized 
protocols were reanalyzed centrally by the Big Data Institute in Oxford, 
United Kingdom, using a harmonized MRI pipeline on standard MRI 
outcomes in MS (normalized brain volume using SIENAX63, part of FSL 
6.0; percentage brain volume change using SIENA64, part of FSL 6.0). 
Gd-enhancing lesions and T2 lesion volume were used as reported in 
the original trials.

Variables in NO.MS
The clinical and radiological variables used in our modeling are pre-
sented in Table 2, and their assessment is described in the previous 
two Methods subsections. Demographic and disease-related features 
are updated longitudinally. For each visit, the patient’s age is updated, 
and the normalized brain volume is calculated based on the normalized 
brain volume measured at baseline (using SIENAX63) and the percentage 
change from baseline measured at post-baseline visits (using SIENA64). 
Lesion assessments were done centrally as previously reported for 
each of the original trials.

Demographic features and the diagnosed phenotype of MS (RRMS, 
SPMS or PPMS) were not used in the modeling but are reported across 
visits for the disease states newly identified by the model to character-
ize the patients in a specific state and to help establish the link between 
the newly proposed FAHMM states and the traditional classification 
of MS. PIRA was derived as a 3-month EDSS-confirmed irreversible 
worsening of disability in the absence of relapses10.

FAHMM
The proposed hierarchical model uses a PFA65 model to find a parsimo-
nious representation of data. It exploits the shared information among 
elements of observed data to find MS dimensions (loading matrix) and 
corresponding composite scores (latent variables) that are continuous 
and a posteriori following a normal distribution. The spike and slab 
prior with Laplace components on the loading matrix favors sparsity 
that helps with the interpretation of MS dimensions. The number of MS 
dimensions is determined in a data-driven manner by putting an Indian 
buffet process prior on the inclusion/exclusion binary variables of spike 
and slab prior. Moreover, it helps with assigning observed variables to 
the MS dimensions by using a posterior probability of inclusion to the 
slab component greater than 0.5.

Next, our model assumes that the composite scores follow an 
HMM with multivariate normal emission distribution66. For modeling 
purposes, only the time gap between two consecutive visits is assumed 
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to be 1 month (except for MS PATHS where it is assumed to be 6 months; 
see Supplementary Information Section 5 for more details). The HMM 
models MS evolution over time by (1) finding homogeneous disease 
states (latent unobserved) where the distribution of longitudinal com-
posite scores is similar in terms of mean and covariance and (2) char-
acterizing the progression between states by a transition probability 
matrix where all transitions are a priori possible (we are not restricting 
the transition probability matrix or assuming any structure). The num-
ber of states is determined by using the BIC.

Our proposed probabilistic multivariate model for disease evolu-
tion using longitudinal data is capable of handling mixed data modali-
ties (binary, count and continuous) and missing data. The allocation 
of the observed variables to the MS dimensions does not change over 
time, which translates into a fixed loading matrix across visits. However, 
the composite scores are changing over time. The PFA uses baseline 
data where there are no missing data to estimate the loading matrix, 
and then the rest of the model parameters are estimated conditionally 
on the estimated loading matrix.

The model parameters are estimated using an expectation–maxi-
mization algorithm67. To evaluate the proposed classification’s predic-
tive performance for the prognostication of an individual patient’s risk 
to transition into an advanced state of MS, the effect of DMTs and the 
characterization of individual states, the estimated FAHMM model is 
used to assign each visit to the corresponding disease and clinical states 
using the Viterbi algorithm67. The states are characterized by calculat-
ing the mean and s.d. of the corresponding variables. The disease states 
and transition probabilities are illustrated in Supplementary Fig. 5.1.

A discrete time-to-event analysis using Bayesian Additive Regres-
sion Trees (BART)68 was used to evaluate the prognostication perfor-
mance of the clinical (meta-)states (Results). Time to first transition to 
one of the advanced states for patients who are in the early, relapse or 
asymptomatic states at baseline was predicted using baseline radiologi-
cal and clinical features and demographic characteristics, including 
age, sex, treatment, relapses and number of relapses before entering 
the trial.

A continuous-time Markov model was used to assess the associa-
tion between the use versus non-use of a DMT on the transition prob-
abilities between clinical (meta-)states (msm package69).

Replication in holdout data from NO.MS
The analysis was based on a total dataset of 8,023 patients that was 
randomly divided into a discovery set (6,419 patients) for analysis 
purposes and a holdout set (1,604 patients) for validation purposes. 
The k-means clustering method was used to identify a homogene-
ous group of patients using the average of longitudinal composite 
scores per patient. The clustering method found five different groups 
using the elbow approach, where 80% of patients in each group are 
randomly assigned to the discovery set and the remaining 20% to the 
validation set.

More methodological details can be found in Supplementary 
Information Section 5.

Sensitivity analysis
A sensitivity analysis was conducted to check whether the disease states 
and transition pattern for ‘bout-onset MS’ (RRMS and SPMS) is similar 
to that of PPMS. A separate model was fit to RRMS/SPMS (excluding 
patients with PPMS) and to patients with PPMS alone.

Another sensitivity analysis was conducted without data impu-
tation. This approach presents inherent complexities as the model 
requires complete data for all visits, whereas relapses can occur at any 
time, and other assessments are often unavailable at these timepoints. 
To conduct an analysis without data imputation, it was, therefore, 
necessary to remap all available data to annual visits based on the avail-
ability of MRI scans. This approach has the limitation that all data points 
collected between these annual visits are either ignored or shifted in 

time. After remapping the data to annual visits, the model was fit to 
these ‘complete case’ data.

External validation on independent datasets
After submitting the initial version of this paper to Nature Medicine 
based on the NO.MS data, we sought to ensure the reproducibility and 
generalizability of our findings through validation using independ-
ent external datasets where we established predefined validation 
criteria prior to accessing these datasets. The model was then fitted to 
each external dataset, including an independent clinical trial dataset 
(Roche MS dataset) and a real-world cohort (MS PATHS), confirming 
the reproducibility of our results following the data preparatory steps 
described further in this section.

Validation step 1: replication of MS dimensions
The PFA part of FAHMM65 uses baseline data to find MS dimensions 
(loading matrix) and corresponding composite scores (latent vari-
ables). The FAHMM model was fitted to all datasets where validation 
was evaluated by examining whether the same disease dimensions 
would emerge in the external datasets. Specifically, we determined 
whether the same or similar sets of variables from the primary analysis 
were assigned to the corresponding latent variables in the valida-
tion datasets. The validation of the latent dimensions of MS would be 
considered successful (validation criterion 1) if we could re-identify 
four dimensions related to (1) physical disability, (2) brain damage,  
(3) relapse and (4) asymptomatic MS disease activity.

Validation step 2: replication of disease evolution modeling
In the main analysis, the MS evolution modeling using FAHMM discov-
ered eight states that were grouped in four meta-states based solely 
on the patterns of the transition probability matrix using NO.MS data: 
EME MS, asymptomatic radiological MS disease activity, relapse and 
advanced MS. To replicate the main findings from the NO.MS dataset, 
we fit the FAHMM to either the Roche MS or the MS PATHS data with 
eight states as in the main model. A successful validation would entail 
finding meta-states with similar clinical interpretation and similar 
transition probability to NO.MS (validation criterion 2): the validation 
would be considered successful if we could re-identify an EME MS 
versus an advanced state of MS with a disease severity gradient and if 
the transition from the first to the second would primarily be through 
focal inflammatory disease states—that is, through a relapse or an 
asymptomatic radiological disease state—with little to no probability 
for patients to worsen from EME MS to advanced states without passing 
through these focal inflammatory states.

As described above, the validation focused on the qualitative simi-
larity of the clinical interpretability rather than on numerical thresh-
olds. By applying these predefined validation criteria to unseen data, 
we aimed to show the generalizability and robustness of our findings 
across independent datasets, including real-world data.

Variables in external datasets
In the Roche MS dataset, the same clinical and radiological variables 
as in the NO.MS dataset were available. As in the NO.MS dataset, the 
clinical measurements were collected by trained neurologists, and 
MRI assessments (lesions and brain volume change) were measured 
by a central reading center. All assessments were used as reported in 
the original trials.

For the real-world dataset from MS PATHS, data assertation was dif-
ferent than in NO.MS and in Roche MS. Specifically, no EDSS assessments 
were available (patient determined disease steps (PDDS) measurements 
were collected rather than EDSS, but this was not used in the modeling). 
For most other variables in NO.MS, corresponding similar measures in 
MS PATHS could be identified: an iPad version of the 9HPT test was used 
(labeled as ‘manual dexterity test’); the walking test (noted as ‘walking 
speed test’) was found to be similar to the T25FWT; and an iPad version of 
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a cognitive text (noted as ‘processing speed test’) similar to the Symbol 
Digit Modality Test (SDMT) was used. In MS PATHS, brain parenchymal 
fraction70 was calculated instead of normalized brain volume, and the 
number of new/enlarging T2 lesions was used instead of the number of 
Gd-enhancing T1 lesions. Other differences between MS PATHS and the 
clinical trial datasets were a lower frequency of visits (typically every 
6–12 months) and the fact that visit occurrence was not independent 
of the occurrence of clinical symptoms (scanning frequency seemed 
to depend on the occurrence of relapses). Therefore, whereas, in the 
NO.MS and the Roche MS datasets, the transition probabilities refer 
to the probability of changing from one disease state to another one 
within a period of 1 month, in MS PATHS they refer to the probability of 
changing from one disease states to another within 6 months.

Data preparatory steps
In each of the respective independent external validation datasets, visits 
were mapped to a regular grid to capture the timing of regularly sched-
uled visits as well as of unscheduled visits (for example, due to new or 
worsening neurological symptoms). For the Roche MS dataset, this was 
a monthly grid, similar to that of NO.MS, whereas, for MS PATHS, due to 
the lower visit frequency, this was a six-monthly visit grid (subsequently, 
probabilities in the transition matrix refer to monthly versus six-monthly 
transitions, respectively). To account for incomplete records and miss-
ing post-baseline data, the observed variable’s trajectory over time was 
used to impute missing values using generalized additive models. Such 
data imputation was done only at scheduled or unscheduled patient 
visits where partial patient data were available (Supplementary Infor-
mation Section 5). The percentage of imputed values overall and for 
each variable is reported together with the mean absolute error for the 
imputation. In the clinical trial dataset, baseline was defined as the last 
assessment prior to randomization, whereas, in MS PATHS, baseline was 
defined as the first timepoint that patients had all the necessary meas-
urements required for modeling; furthermore, the availability of serial 
post-baseline assessments was required for inclusion into the analysis 
set, which led to the total sample size of 2,080 patients from MS PATHS.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
For NO.MS, the reader is able to request the raw data (anonymized) and 
related documents (for example, protocol, reporting and analysis plan 
and clinical study report) of all the studies that underlie the modeling 
results reported in this article by connecting to CSDR (https://www.
clinicalstudydatarequest.com) and signing a data-sharing agreement 
with Novartis. The data will be made available to researchers, with 
requests reviewed and approved by an independent review panel of 
CSDR. For Roche MS, including phase 3 ocrelizumab trial data used for 
the clinical trial validation, qualified researchers can request access 
to patient-level data by making a request via https://vivli.org/. The 
anonymized MS PATHS dataset used for the real-world validation can 
be obtained for purposes of replicating the findings of this study by 
contacting H.W. at heinz.wiendl@uniklinik-freiburg.de.

Code availability
SIENA/X, part of FSL 6.0, available at https://fsl.fmrib.ox.ac.uk/fsl/, was 
used to derive normalized brain volume and percentage of brain vol-
ume change. The FAHHM code used in this work is available at https://
github.com/habib61/FAHMM.
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FDA 2019 US PI implementation
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«Progressive MS» (PMS)

«Progression in MS» starts in RRMS
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Extended Data Fig. 1 | Disease classification of multiple sclerosis. Consensus 
definitions from 1996 and in its ‘2013 revisions’ and variants of it as used in 
indication statements in US packet inserts, summaries of product characteristics 
by the European Medicines Agency and in scientific publications. Relapsing 
forms of multiple MS include CIS, RRMS, and aSPMS in adults. aRRMS, active 
RRMS; aSPMS, active SPMS; CIS, clinically isolated syndrome; haRRMS, 

highly active RRMS; IPPMS, late PPMS (as opposed to ‘early PPMS’); MS, 
multiple sclerosis; naSPMS, non-active SPMS (as opposed to ‘active SPMS’); 
PMS progressive MS (SPMS + PPMS); PPMS, primary progressive MS; PRMS, 
progressive relapsing MS; RRMS relapsing remitting MS; SPMS, secondary 
progressive MS; «progression in MS » refers to the process of progression, which 
occurs in all subtypes of MS.

http://www.nature.com/naturemedicine


Nature Medicine

Article https://doi.org/10.1038/s41591-025-03901-6

5e+05

4e+05

3e+05

BI
C

2e+05

1e+05

2 3 4 5 6 7
Number of States

8 9 10 11 12 13

Extended Data Fig. 2 | Selecting the number of states. BIC, Bayesian 
Information Criterion. A local minimum would indicate the optimal number 
of states. However, no single best number of states was identified. Models 

with more and more states with overlapping disease features (as illustrated in 
Extended Data Fig. 3) – representing a gradient in disease severity features – were 
found to be a better representation of the data than simpler models.
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Extended Data Fig. 3 | Graphical illustration of disease states and MS as 
a gradient. The states represent a gradient of disease severity based on 
physical disability and brain damage with distinct inflammatory states without 
accompanying symptoms (state 4) or with such symptoms, that is relapse 
(state 5). a, Density plots in the eight-state model: Latent factor distribution in 
the eight states. Overlapping distributions form a gradient of disease severity 

based on physical disability and brain damage. Distinct inflammatory states for 
the clinical relapse (state 5), and for asymptomatic lesions (state 4) b, Endpoint 
distribution of the original clinical and radiological variables in the eight states. 
EDSS, Expanded Disability Status Scale; Gd, gadolinium-enhancing; MS, multiple 
sclerosis; PASAT, Paced Auditory Serial Addition Test.
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9-Hole Peg Test (s) 21.97 27.82 32.05 24.03 27.95 26.56 36.47 48.73

PASAT (correct out of
max 60) 54.19 47.58 46.36 52.38 45.46 51.09 46.55 37.67

Relapse probability 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
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Number of Gd+ T1
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4 0.01 0.01 0.01 0.95 0.00 0.01 0.02 0.00

5 0.00 0.02 0.01 0.00 0.95 0.00 0.02 0.01

6 0.01 0.00 0.00 0.00 0.00 0.94 0.05 0.00
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Extended Data Fig. 5 | Eight-state modelling by MS subtypes.  Clinical states 
(a) and transition matrices between states (b) for bout-onset MS (RRMS, SPMS) 
and PPMS separately. The disease severity gradient from EME to advanced states 
of MS, as well as the relapse and asymptomatic disease activity states, were re-
discovered for PPMS, and similar to those observed for bout-onset MS. As a minor 

difference, only one EME state and several advanced states were discovered when 
fitting the model only to PPMS patients. This is expected, as studies in PPMS 
systematically excluded patients with an EDSS < 3.5. Overall, disease states and 
transition patterns were similar between RRMS-SPMS and PPMS patients.
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PASAT (correct out of
max 60) 53.84 46.21 49.35 47.81 45.20 49.33 38.96 37.85

Relapse probability 0.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00

T2 lesion volume (mL) 1.66 10.64 5.89 3.06 7.92 1.51 11.13 15.45

Brain volume (L) 1.56 1.46 1.53 1.52 1.51 1.51 1.45 1.46

Number of Gd+ T1
lesions 0.00 0.00 2.84 0.00 3.92 0.00 0.00 2.46
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Extended Data Fig. 6 | Eight-state modelling with no imputation of missing 
data. Analysis based on non-missing data, that is analysis without data 
imputation performed by mapping data to annual visits (based on the availability 
of annual MRI scans): (a) clinical states and (b) transition matrix between states. 

The frequency of subclinical disease activity is underestimated in this model 
due to the remapping of relapses from other timepoints were they occurred to 
the annual visits where MRI scans are available. Overall, the disease states and 
transition patterns observed were similar to those in the main model.
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Extended Data Table 1 | Number of participants and timepoints per study in NO.MS and Roche MS

For NO.MS, all longitudinal data from the same participants in corresponding extension studies are also included in the analysis. For Roche MS, all longitudinal data from the same participants 
in corresponding extension studies were also included in the analysis for ORATORIO. For OPERA I and II, the Multiple Sclerosis Functional Composite (MSFC) with its components T25FWT, 
9HPT and PASAT were collected only in the core study but not the extension studies. Therefore, only the core phase from OPERA I and II could be used for the validation.
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Extended Data Table 2 | Demographics and baseline MS variables for the different datasets

aTwo patients have missing data on sex in NO.MS (full) and three patients in MS PATHS. bMS PATHS also includes patients with CIS (16%) and patients with progressive relapsing MS (2.5%). The 
RRMS value for Roche MS here is reported as RMS. cPASAT was used in NO.MS and Roche MS (maximum of 60 correct answers); the cognitive test used for MS PATHS was similar to the SDMT. 
dFor MS PATHS, brain parenchymal fraction was calculated instead of the normalized brain volume. eNumber of Gd+ T1 lesions is not reported in MS PATHS, so the number of new/enlarging T2 
lesions is used for this dataset instead. fFingolimod, glatiramer acetate, interferon beta-1, ofatumumab, siponimod, teriflunomide and placebo were used in NO.MS. Interferon beta-1a, placebo 
and ocrelizumab were used in the Roche MS dataset based on the ocrelizumab phase 3 program. All the active treatments listed were used in MS PATHS. BPF, brain parenchymal fraction; Gd+, 
gadolinium-enhancing; IQR, interquartile range.
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Extended Data Table 3 | Demographics and disease characteristics for the nine-state model

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific clinical state; n represents 
the number of such visits to the specific state. Gd+, gadolinium-enhancing; IQR, interquartile range.
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Extended Data Table 4 | Demographics and disease characteristics for the 10-state model

Demographic characteristics and MS variables are summarized by clinical disease states across all visits, counting patients each time that they were in a specific clinical state; n represents 
the number of such visits to the specific state. Gd+, gadolinium-enhancing; IQR, interquartile range.

http://www.nature.com/naturemedicine







	AI-driven reclassification of multiple sclerosis progression

	Results

	Discovery and validation

	Four latent dimensions to characterize MS

	MS disease states and evolution over time

	Sensitivity analyses

	Progression independent of relapse activity by disease state

	Prognostication of individual trajectories

	Impact of DMTs on MS disease evolution


	Discussion

	Online content

	Fig. 1 Disease evolution of MS based on the transition probabilities among the eight states of MS as proposed by the FAHMM model for NO.
	Fig. 2 Disease progression and effect of treatments based on NO.
	Extended Data Fig. 1 Disease classification of multiple sclerosis.
	Extended Data Fig. 2 Selecting the number of states.
	Extended Data Fig. 3 Graphical illustration of disease states and MS as a gradient.
	Extended Data Fig. 4 Alternative models with nine or ten states.
	Extended Data Fig. 5 Eight-state modelling by MS subtypes.
	Extended Data Fig. 6 Eight-state modelling with no imputation of missing data.
	Table 1 Four dimensions, eight states and four clinical (meta-)states to characterize MS as identified by probabilistic latent variable analysis with a description of the patient features and transition probabilities.
	Table 2 Demographics and disease characteristics for the four clinical (meta-)states of MS based on NO.
	Table 3 A comparison between the MS disease classification as proposed by the FAHMM model and the consensus-based clinical disease course descriptors.
	Table 4 Summary of recommendations for clinical practice and for clinical trials.
	Extended Data Table 1 Number of participants and timepoints per study in NO.
	Extended Data Table 2 Demographics and baseline MS variables for the different datasets.
	Extended Data Table 3 Demographics and disease characteristics for the nine-state model.
	Extended Data Table 4 Demographics and disease characteristics for the 10-state model.




