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In brief

The DRAC challenge explored the use of
artificial intelligence to tackle clinical
tasks related to diabetic retinopathy (DR)
using ultra-wide OCTA imaging. Here, the
organizers present a comprehensive
summary of the top three algorithms and
the results for each task, including image
quality assessment, lesion segmentation,
and DR grading. These methods provide
new insights into the diagnosis of DR and
could potentially enhance the diagnostic
capabilities of healthcare professionals in
DR evaluation.
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THE BIGGER PICTURE Diabetic retinopathy (DR) is a common eye disease that can lead to visual impair-
ment and even blindness. The study of DR is an important area that significantly affects the lives of millions
of people worldwide. Understanding and managing DR is not only a medical challenge but also a societal
one, emphasizing the need for early detection and intervention. A key to such understanding is ultra-wide
optical coherence tomography angiography (UW-OCTA), a non-invasive imaging modality that could enable
precise assessment of microvascular changes in retinal layers. To this end, we organized a medical image
challenge and provided a UW-OCTA dataset for developing the computer-aided diagnostic system for DR
diagnosis. The dataset can potentially accelerate the development of advanced artificial intelligence tech-
nologies and ultimately improve patient care.

SUMMARY

We described a challenge named “DRAC - Diabetic Retinopathy Analysis Challenge” in conjunction with the
25th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI
2022). Within this challenge, we provided an ultra-wide optical coherence tomography angiography (UW-
OCTA) dataset (1,103 images) addressing three primary clinical tasks: diabetic retinopathy (DR) lesion seg-
mentation, image quality assessment, and DR grading. The scientific community responded positively to the
challenge, with 11, 12, and 13 teams submitting different solutions for these three tasks, respectively. This
paper presents a concise summary and analysis of the top-performing solutions and results across all chal-
lenge tasks. These solutions could provide practical guidance for developing accurate classification and seg-
mentation models for image quality assessment and DR diagnosis using UW-OCTA images, potentially
improving the diagnostic capabilities of healthcare professionals. The dataset has been released to support
the development of computer-aided diagnostic systems for DR evaluation.

INTRODUCTION vision impairment and even blindness than healthy individuals.

DR affects a large amount of the working-age population world-
Diabetic retinopathy (DR) is one of the most common complica-  wide. According to the International Diabetes Federation,? it is
tions caused by diabetes.' Patients with DR are more likelytoget ~ estimated that about 700 million people in the world are
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expected to have diabetes by 2045, and one-third of them will
have DR. DR is diagnosed by visually inspecting retinal fundus
images for the presence of retinal lesions, such as exudates, mi-
croaneurysm (MA), intraretinal microvascular abnormality
(IRMA), and neovascularization (NV).®> Hence, the detection of
these lesions is significant for DR diagnosis.

Regular DR screening and timely treatment can be imple-
mented to reduce the risks of vision loss and blindness."> How-
ever, there are many challenges to population screening. First,
comprehensive DR screening puts a heavy burden on ophthal-
mologists. Especially in developing countries and rural parts,
there may not be enough medical resources and ophthalmolo-
gists to perform the DR screening.®® Second, DR screening re-
lies heavily on the experience of ophthalmologists. Differences
in the experience of professional ophthalmologists may lead to
different diagnoses, and the inadequate training of ophthalmol-
ogists can also result in misdiagnosis and low accuracy in DR
screening.®'° Third, systematic DR screening is associated
with complicated social management and economic burden.
Hence, the implementation of an efficient computer-aided sys-
tem becomes indispensable in supporting manual DR
screening. Such a system can assist in achieving precise diag-
noses, thereby significantly alleviating the workload of
ophthalmologists.’'~"®

The most commonly used imaging modalities for the clinical
diagnosis of DR include fundus photography, fluorescein angi-
ography (FA), and optical coherence tomography angiography
(OCTA). Fundus photography is a common modality for rapid
screening of DR. It effectively captures the distribution of hard
exudates and retinal changes in severe non-proliferative DR
(NPDR). However, it is difficult to detect early or small neovascu-
lar lesions. FA primarily detects the presence of NV but involves
invasive fundus imaging and is unsuitable for patients with al-
lergies, pregnancy, or poor kidney function. OCTA provides a
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non-invasive means of identifying changes in NV and assists
ophthalmologists in diagnosing proliferative DR (PDR). Further,
ultra-wide OCTA (UW-OCTA) reveals a broader peripheral retinal
area beyond the scope of typical OCTA. For example, UW-OCTA
imaging allows the assessment of peripheral retinal vascular net-
works, the detection of early stages of NPDR through capillary
flow analysis, and the localization of NV lesions in patients with
PDR.'*'> Several studies have used UW-OCTA images for DR
diagnosis, screening, and follow-up purposes.'®'®

In particular, Pichi et al.’® conducted a comparative analysis of
UW-OCTA against UW-field FA (UWF-FA) and UWF color fundus
photography (UWF-CP) for detecting NV in eyes with PDR. Their
findings indicated that WF-OCTA can identify NV that is not
evident in UWF-CP and serves as a swifter and safer alternative
to UWF-FA for PDR monitoring, delivering comparable diag-
nostic accuracy. Khalid et al.'® conducted a retrospective obser-
vational case series comprising patients clinically diagnosed
with PDR or severe NPDR. They reported that 12 x 12 mm
UW-OCTA imaging exhibits superior PDR detection rates
compared to clinical examination. This implies the non-invasive
potential of this modality for early NV detection and characteriza-
tion. Moreover, Kim et al.'® quantified the foveal avascular zone
(FAZ), vessel density (VD), and NPA across three distinct OCTA
field sizes: 3 x 3,6 x 6, and 10 x 10 mm. Their experiment re-
vealed that NPA measurements from the larger 10 x 10 mm
scan were the sole discriminating parameter for the three
NPDR stages, with the 10 X 10 mm scan demonstrating the
highest sensitivity in determining five-grade DR severity. Simi-
larly, Zhu et al.?° performed a prospective study comparing NV
detection among four different OCTA field sizes: 3 X 3 mm angi-
ography (angio), 6 x 6 mm angio, 15 X 9 mm montage, and 12 x
12 mm angio. Both the 12 X 12 mm angio scan and the 15 x
9 mm montage scanning exhibited high detection rates, but
the former offered the advantage of taking less time to perform.

PATTER 100929

Q8



Please cite this article in press as: Qian et al., DRAC 2022: A public benchmark for diabetic retinopathy analysis on ultra-wide optical coherence to-
mography angiography images, Patterns (2024), https://doi.org/10.1016/j.patter.2024.100929

Patterns

Table 1. Detailed descriptions for each image quality level

Image quality level Overall quality Artifacts Vascular quality
Poor insufficient severe blurring
Good moderate moderate moderate
blurring or blurring
stripe noise
Excellent slight blurring or  slight clear or slight
with slight blurring
stripe noise

All of these studies collectively underscore the potential of UW-
OCTA imaging in DR detection.

Artificial intelligence challenges play a crucial role in advancing
the application of deep learning techniques in medical image
analysis. These challenges define one or more clinically signifi-
cant tasks and provide the corresponding datasets, encouraging
participants to develop algorithms for these tasks and enabling a
fair comparison. Many challenges have been organized for DR
analysis, such as ROC,”" IDRID,?” and DeepDRiD,** all employ-
ing fundus photography as the imaging modality. These initia-
tives have led to the creation of a multitude of state-of-the-art

Q9 (SOTA) algorithms, significantly contributing to the research

community. However, to our knowledge, there is a dearth of pub-
licly available UW-OCTA datasets for evaluating DR. Against this
background, we organized the Diabetic Retinopathy Analysis
Challenge (DRAC) at the 25th International Conference on Med-
ical Image Computing and Computer Assisted Intervention
(MICCAI 2022), with the aim of establishing a benchmark and
evaluation framework for the automated analysis of DR using
UW-OCTA images.

In this paper, we describe in detail the dataset, challenge setup,
and the top-performing solutions. We also report and analyze the
challenge results, including ranking stability, model ensembile,
and statistical significance. Finally, we discuss the clinical value
of the dataset for future users, strategies to improve the model
performance, limitations of the study, and the future work.

Methods

Data

All the images were acquired with the VG200D UW swept-source
OCTA device. The scan captures a 12 x 12 mm area of the inner
retinal layer, centered on the fovea. A total of 1,103 UW-OCTA
images were collected with a resolution of 1,024 x 1,024 pixels.
There are three types of annotations for corresponding clinically
relevant tasks. First, image quality has a profound impact on dis-
ease diagnosis, and high-quality images are essential for accu-
rate DR diagnosis. Therefore, the first task is image quality
assessment, including poor, good, and excellent quality levels.
The images of good and excellent quality can then be used for
two other DR-related tasks: DR grading and DR lesion segmen-
tation. One of the advantages of UW-OCTA imaging is its ability
to detect NV, which is a critical indicator of PDR. Therefore, the
second task is to identify PDR images from non-DR and NPDR
images. In the lesion segmentation task, there are three different
lesions to be segmented: IRMA, non-perfusion area (NPA), and
NV. These three lesions are important morphological features
of DR severity and can help to visualize pathological features
of DR.?*2°
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In the process of image annotating, many factors affect the im-
age quality,”®*” such as artifacts, vascular quality, etc. The spe-
cific annotation standard of image quality assessment is shown
in Table 1. For DR grading, the fundus photograph correspond-
ing to the UW-OCTA image was used to grade the DR, with the
specific grading standard for non-DR, NPDR, and PDR referring
to the international clinical DR severity scale.?® For each task,
two ophthalmologists participated in the annotation process.
First, the two ophthalmologists independently annotated the la-
bels for each image according to the annotation standards. In the
event of any disagreement, two additional, more experienced
ophthalmologists were involved to help reach a consensus on
the annotation.

The data division method for each task in this challenge is as
follows. For image quality assessment task, the images were
split into 60% for training (665 images) and 40% for testing
(438 images). For the DR-grading task and the DR lesion seg-
mentation task, the data division method was the same as the
task of image quality assessment, but in the DR-grading task,
we removed the images with the poor quality levels and images
that caused considerable controversies about the DR grade by
ophthalmologists, and then the rest of the images were retained
as the training set (611 images) and the test set (386 images),
respectively. In the DR lesion segmentation task, we only re-
tained images that show representative lesions to form the
training set (109 images) and the test set (65 images). The images
were stored in gray png format. The ground truth of training set
for the classification task was stored and provided in a CSV
file. For the segmentation task, the ground truth was provided
in the form of binary masks stored in png format.

Challenge setup

The DRAC challenge aimed at providing a benchmark for evalu-
ating the algorithms that are used for the automatic DR analysis
using UW-OCTA images. It addressed the current lack of pub-
licly available UW-OCTA datasets for fair performance evalua-
tion of DR diseases. The challenge was subdivided into three
tasks as follows. Image quality assessment and DR grading

are both three classification tasks, so we have grouped them Q10

together as task 2 and task 3 in this challenge. Figure 1 shows
the example images in each task.

(1) Task 1: segmentation of DR lesions. There are three types
of lesions to be segmented, including IRMA, NPA,
and NV.

(2) Task 2: image quality assessment. Classification of the
image quality levels, including poor quality level, good
quality level, and excellent quality level.

(3) Task 3: DR grading. Classification of DR grades according
to the severity level of DR, including non-DR, NPDR,
and PDR.

The organization of the challenge referred to the Biomedical
Image Analysis Challenges guideline.?® The challenge was offi-
cially announced at MICCAI 2022 and was hosted on the Grand
Challenge platform. The challenge website is available at https://
drac22.grand-challenge.org. On the challenge website, the par-
ticipants could have access to the dataset after they registered
on the website and signed the challenge rule agreement. In addi-
tion, participants could browse the challenge rules and news,
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Figure 1. Examples of UW-OCTA images in three tasks of the challenge
IRMA, intraretinal microvascular abnormality; NPA, nonperfusion area; NV, neovascularization; non-DR, non-diabetic retinopatnon; NPDR, non-proliferative

Q16 giabetic retinopatnon; PDR, proliferative diabetic retinopatnon.

submit results, and find their rankings on the challenge website.
In the case of multiple submissions, only the most recent run was
counted for the final challenge result. We also provided submis-
sion guidelines for the participants. The challenge was launched
in July 2022 by releasing the training dataset. The test set was
released on August 8th, 2022, and the challenge submission
was opened between August 8th, 2022, and September 12th,
2022. Each participating team was required to submit a method
description paper with a minimum of 4 pages before October
8th, 2022. When participating in multiple tasks, each team could
either submit several papers or a single paper reporting all
methods. The details of the evaluation method can be seen in
the supplemental information: evaluation metrics.

Finally, a total of 91 teams and individuals from more than 25
different countries or regions signed the challenge rule agree-
ment consent form and downloaded the dataset throughout
the challenge. Out of them, 17 teams submitted a total of 18
method description papers before the deadline, where 11, 12,
and 13 different methods were reported for the three tasks,
respectively. Some teams participated in two or more tasks
and chose to report their methods in one single paper. During
the satellite event at MICCAI 2022 on September 18th, 2022,
we summarized the challenge results and invited the top-ranked
teams to present their algorithms. The summary of the top three
algorithms for each task is shown in Note S1. For a more in-depth
description of a particular approach, please refer to MICCAI
Challenge Proceedings.*”

RESULTS

The final rankings of the three tasks are shown in Figure 2. To
facilitate clarity, we adopt the labels A, B, and C to denote the al-
gorithms corresponding to task 1 (DR lesion segmentation), task
2 (image quality assessment), and task 3 (DR grading), respec-
tively, followed by a number indicating the ranking of the algo-
rithm in this task. For example, A1, B1, and C1 represent the
first-ranked algorithms in task 1, task 2, and task 3, respectively.
We first present the results obtained by the participating teams
and then analyze the ranking stability of these algorithms. We
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also present the ensemble of the results of the top three algo-
rithms in each task and report the statistical significance analysis
of the algorithms.

Task 1: Segmentation of DR lesions

In the task of DR lesion segmentation, out of the total 24 teams
that submitted the results on the test set, 11 teams submitted
method description papers. The average dice similarity coeffi-
cient (DSC) of the top ten teams ranged from 40.95% to
60.67%. The DSC distribution of each class of lesion is shown
in Figure S1. Among these three lesions, IRMA has the lowest
segmentation performance, with DSCs ranging from 29.53% to
47.04% for the top ten algorithms. NPA has the highest segmen-
tation performance, with DSCs ranging from 46.59% to 69.26%
for the top ten algorithms, and NV ranks second, with DSCs
ranging from 46.73% to 65.71% for the top ten algorithms. The
complex lesion features could explain the low segmentation per-
formance of IRMA because IRMAs are usually thin vessels that
spread throughout the image. In addition to the DSC used in
the challenge, we also use sensitivity (SEN), precision (PRE)
and specificity (SPE) to evaluate the segmentation performance
of each method. The quantitative results of the top three
methods are shown in Table S1.

Task 2: Image quality assessment

In the task of image quality assessment, a total of 45 teams sub-
mitted results, and 12 teams submitted method description pa-
pers, where the quadratic weighted kappa of the top ten teams
ranged from 0.7246 to 0.8090. Table S2 shows the quantitative
results of the top three algorithms for the metrics of sensitivity,
specificity, and F1 score. Combined with the confusion matrices
of the top three methods in Figure 3, there are two notable obser-
vations. Firstly, there is a tendency to misclassify some images
as having excellent quality regardless of whether their actual
quality is good or poor. This phenomenon can be attributed to
the data imbalance of the dataset, where 80% of the images
have an excellent quality level, while the remaining 20% have
poor and good quality levels. This imbalance tends to bias the
training toward the majority class, as the models strive to
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Figure 2. Bar charts of the final rankings for three tasks

The colored bars show the ensemble and the top three scores in each task. Ensemble represents the ensemble results of the top three algorithms.

minimize the loss function. Although techniques like resampling
can improve the classification performance of the minority class,
they cannot fully compensate for the performance gap between
the minority and majority classes caused by the data imbalance.
Secondly, another noticeable trend is the misclassification of im-
ages between the adjacent classes, where some images with a
poor quality level are misclassified as good quality level while
some images with a good quality level are misclassified as excel-
lent quality level. This can be explained by subtle feature distinc-
tions between adjacent image quality levels, making it difficult for
the network to classify correctly. Combined with the data imbal-
ance issue, we observe that, for example, in ensemble results,
30% of the images with good image quality are misclassified
as excellent image quality.

Task 3: DR grading

In the task of DR grading, a total of 45 teams submitted results,
and 13 teams submitted method description papers, where the
quadratic weighted kappa of the top ten teams ranged from
0.7157 to 0.8910. Table S3 shows the quantitative results of
the top three algorithms for the metrics of sensitivity, specificity,
and F1 score. Combined with the confusion matrices of the top
three methods in Figure 3, we can see that the non-DR class
achieves the highest accuracy, while the misclassifications
mainly occur between the NPDR and PDR classes. Apart from
the influence of the data imbalance, where the non-DR, NPDR,
and PDR account for approximately 55%, 35%, and 10% of
the dataset images, respectively, another possible factor is
that the NV regions, which are a representative indicator of
PDR, are usually small in size, posing a challenge for the classi-
fication network to accurately detect these areas, thereby lead-
ing to misclassifications between NPDR and PDR.

Ranking stability

Inspired by the challengeR toolki we performed bootstrap-
ping (1,000 bootstrap samples) to assess the stability of rankings
with respect to sampling variability. To quantitatively assess the
ranking stability, the agreement of the challenge ranking and the
ranking of each bootstrap on the test set was determined via
Kendall’s 7, which is a rank correlation coefficient with a value
between —1 (reverse ranking order) and 1 (identical ranking or-
der). The violin plots shown in Figure S3 illustrate the bootstrap
results for each task. We obtained Kendall’s v of 0.9313,
0.7697, and 0.8802 for the tasks of DR lesion segmentation, im-

t31

age quality assessment, and DR grading, respectively. Figure S4
shows a blob plot of the bootstrap rankings for each task.

Ensemble of top three algorithms

The ensemble of networks has shown great power in improving
model performance.>>=®* Thus, it is interesting to explore the
ensemble of the top three methods in each task. For the segmen-
tation task, we use three forms of ensemble to generate the final
segmentation output, including logical AND, logical OR, and ma-
jority voting. The DSCs of the three forms of ensemble results are
47.10%, 45.36%, and 49.95% for IRMA, 67.91%, 66.83%, and
68.78% for NPA, and 63.33%, 60.23%, and 67.55% for NV.
For each of the three classes, the highest DSC is achieved by
the majority voting strategy, of which the averaged DSC is
62.09% —which is 1.42% higher than the best result of the
participating algorithms. The detailed performance of the
ensemble result with a majority voting is shown in Table S1.
For the two classification tasks, we use a majority voting strategy
from the top three results to generate the ensemble result. For
image quality assessment, the quadratic weighted kappa of
the ensemble result is 0.8090, which is equal to the best score
of participating algorithms. The detailed performance of the
ensemble result is shown in Table S2. For DR grading, the
quadratic weighted kappa of the ensemble result is 0.9044,
which is 1.4% higher than the best score of participating algo-
rithms. The detailed performance of the ensemble result is
shown in Table S3. From the ensemble results in both the seg-
mentation task and the classification task, we can see that the
ensemble of the model has great power in improving the perfor-
mance of deep learning methods.

Statistical significance analysis of the algorithms

For each task of the challenge, the statistical comparison of the
score of each team is done with the one-tailed Wilcoxon signed
rank test at a 5% significance level. The challengeR toolkit®' is
used to perform the significance analysis and generate the sig-
nificance map. For the task of DR lesion segmentation, the sig-
nificance maps in Figure S2 show the results of the statistical
significance analysis for the three lesions. In conclusion, there
is a significant difference between multiple algorithm pairs for
IRMA segmentation, but for the segmentation of NPA and NV,
only a few pairs of algorithms show significant differences. For
the two classification tasks, the statistical comparison of the
score of each team is shown in Figure S5. In the task of image
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Figure 3. Confusion matrix for image quality assessment task and DR-grading task
The top row is the image quality assessment task and the bottom row is the DR-grading task. From left to right are the ensemble and first-, second-, and third-
ranked results, respectively. Ensemble represents the ensemble results of the top three algorithms.

quality assessment, there are no significant differences between
the algorithms B1, ensemble model, and B2. In the task of DR
grading, the ensemble model is significantly superior to the algo-
rithms C1, C2, and C3, but there is no significant difference be-
tween C1 and C2.

DISCUSSION

Clinical value of the dataset for future users

UW-OCTA imaging offers significant advantages in the moni-
toring and management of DR. First, compared to OCTA images,
UW-OCTA can provide a wider field of view, allowing ophthal-
mologists to detect more abnormal lesions and microvascular
changes. Second, compared to fundus photography and FA,
OCTA can provide more comprehensive and detailed informa-
tion about the retinal vascular structure in a non-invasive
manner. OCTA does not require the use of contrast agents,
which is an important advantage for patients who are allergic
or intolerant to contrast agents. In contrast, FA involves injecting
contrast agents into the patient’s body, which can lead to allergic
reactions or other discomfort. Moreover, OCTA can capture tiny
blood vessels, allowing ophthalmologists to detect microvas-
cular lesions and microvascular occlusions earlier, facilitating
timely intervention.

We have released the largest UW-OCTA dataset with corre-
sponding annotations for three DR-related tasks: image quality
assessment, DR lesion segmentation, and DR grading. Firstly,
the image quality assessment task helps ensure the reliability
of retinal images obtained from OCTA devices. This is crucial
for accurate disease diagnosis, as diagnoses based on poor-
quality images can lead to erroneous judgments. Through this
task, we can raise the standards of medical image acquisition
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and ensure that healthcare professionals and researchers have
high-quality data for further analysis and diagnosis. Secondly,
the DR lesion segmentation task provides automated segmenta-
tion tools for different types of DR lesions, including IRMA, NPA,
and NV. This means that ophthalmologists and researchers can
identify lesion areas more quickly and accurately, enabling
earlier intervention and treatment. This is vital for reducing the
risk of blindness and improving the quality of life for patients.
Finally, the DR-grading task helps to classify the severity of DR
in patients, with particular emphasis on the detection of PDR,
given the high detection rate achieved using OCTA images.
This will help ophthalmologists to develop more accurate treat-
ment plans and monitor the progression. We believe that this da-
taset can provide valuable resources for the research community
and pave the way for the development of artificial intelligence
algorithms.

Strategies to improve the model performance

We summarize the characteristics of the top three competing so-
lutions, as shown in Tables 2 and S4, and then recognize a selec-
tion of frequently employed strategies with the potential to
improve algorithmic performance.

For the data preprocessing and data augmentation, when
considering input image resolution, most teams choose to main-
tain the original image size to prevent any loss of features.
Regarding image normalization, the leading teams often opt for
scaling pixel values within the 0-1 range or implementing zero-
mean unit variance normalization. Such normalization of input
image pixel values can help accelerate the convergence speed
of the model, mitigating issues like vanishing and exploding gra-
dients to enhance training efficiency. Additionally, it can maintain
stable numerical computations and enhance overall model
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Table 2. Summary of model architecture, loss function, and optimizer from top three algorithms in each task of the challenge

Algorithm Model architecture Loss function Optimizer Score
Task 1 Al U2Net WDL + FL/CE AdamW 0.6067
A2 ConvNext + SegFormer + Swin Transformer DL + FL/CE AdamW 0.6046
A3 nnUNet DL + CE SGD 0.5756
Task 2 B1 EfficientNet Smooth L1 AdamW 0.8090
B2 BEIT + NFNet CE AdamW 0.8075
B3 Inception-V3 + SE-ResNeXt + ViT CE SGD 0.7896
Task 3 C1 EfficientNet Smooth L1 AdamW 0.8910
Cc2 BEIT CE AdamW 0.8902
C3 DenseNet121 + Efficientnet CE Adam 0.8761

In the score column, task 1 utilizes the DSC score, while tasks 2 and 3 employ QWK scores. DL, dice loss; WDL, weighted dice loss; FL, focal loss; CE:

cross-entropy; SGD, stochastic gradient descent.

performance. All teams used some form of data augmentation to
enhance their models. The most popular image transformation is
flipping, which was adopted by all top three teams. Other
commonly used image transformations include rotation, scaling,
brightness modification, contrast modification, etc. In addition,
more complex multi-image data augmentation techniques are
also effective for improving model performance, including
MixUp and CutMix.

For the network architecture, despite numerous segmentation
networks having been proposed in recent years, the classical
U-Net-like architectures, such as U2Net and nnUNet, remain
highly competitive in segmentation tasks. This finding is in accor-
dance with the winning methods in other recent segmentation
challenges.®*" In the classification task, EfficientNet has been
used by many teams and exhibited remarkable performance.
Additionally, ensemble methods were widely adopted by the
leading teams, although with varying ensembling strategies.
One method involves integrating predictions from distinct
network architectures, while another incorporates predictions
generated by the identical network architecture but fed with mul-
tiple transformed versions of the same inference image as input.
In terms of accuracy, both ensemble strategies have the poten-
tial to achieve SOTA performance.

For the loss function, the dice coefficient is used as the evalu-
ation metric in the segmentation task, with all three leading
teams using the dice loss to supervise learning. This is consistent
with the previous research, which demonstrated the effective-
ness of the metric-sensitive loss functions in improving the cor-
responding metric scores.®® In addition, a combination of
different loss functions is effective in improving model perfor-
mance, with the dominant combinations including dice loss
paired with either cross-entropy loss or focal loss. In terms of
the optimizer, AdamW, which performs L2 regularization for
larger weights to further improve the training of the model, was
the most commonly used by these teams in both segmentation
and classification tasks.

For the post-processing, in disease-grading tasks, segmenta-
tion of the lesion area can help improve the performance of dis-
ease grading. For instance, in DR grading, the presence of NV
corresponds to the PDR grade. However, in certain images,
NV regions are often small and are difficult to detect, potentially
leading the model to misclassify the image as NPDR. In such
cases, if a lesion segmentation model has detected the NV re-

gion, the image can be corrected to PDR grade. The top two
methods in the DR-grading task both leveraged the lesion seg-
mentation results to correct the predicted DR grade made by
the classification model, resulting in an improvement in classifi-
cation performance.

Limitations of the study

In the domain of DR diagnosis, PDR stands as the most severe
grade, carrying a high risk of causing severe vision impairment
and even blindness. The employment of UW-OCTA imaging
has demonstrated a superior PDR detection rate in comparison
to clinical examination.’® Consequently, a substantial pool of
PDR images for training becomes essential for deep learning
methods to extract generalized features of PDR lesions. Howev-
er, within this challenge dataset, only about 11% (70 images) fall
into the PDR category in the training set, hindering the ability of
the methods to extract effective PDR features and achieve
generalization in clinical practice. In addition, the performance
of the NPA segmentation still lags behind that reported in
some existing studies. This performance gap needs to be further
investigated from three primary angles. First, larger datasets, as
used in some studies,***° may improve model performance.
Second, including FAZ in NPA segmentation, as seen in these
works,>**! is crucial. The fixed position and distinct patterns
of FAZ in the image simplify its segmentation, thereby improving
the overall segmentation performance. Finally, incorporating a
variety of retinal layers into the network,**™*" particularly by inte-
grating data from multiple retinal layers such as the superficial
vascular complex, intermediate capillary plexus, and deep capil-
lary plexus, allows the network to extract richer features, further
improving the accuracy of NPA segmentation.

Moreover, our dataset does not contain meta-information
about the images, such as age, gender, height, and medical his-
tory. This lack prevents us from providing statistics on the num-
ber of eyes and patients within the dataset. In addition, the Grand
Challenge platform deployed in this challenge offers two submis-
sion options: one is algorithm submission and another is result
submission. In comparison, result submission boasts the advan-
tage of being free for organizers, consuming fewer computa-
tional resources of the platform, and presenting a simple online
evaluation process for participants. Thus, we have opted for
result submission as the avenue for our challenge submission.
Nonetheless, a notable drawback lies in the fact that participants
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could have access to the test images without annotations. This
opens the door for participants to optimize network parameters
using the test images, potentially introducing biases into the
output of the algorithm.

Future work

In our future efforts for the DRAC challenge, we intend to expand
the dataset, providing more images for model training and valida-
tion. Additionally, we expect to include meta-information that can
facilitate subgroup analysis, enabling us to assess model biases
across different populations, such as gender and age. Moreover,
we will make the DRAC dataset accessible to the community
through the DRAC website, with the hope that it will prove highly
valuable for researchers addressing various topics in this field.
Beyond the end of this challenge, we will also maintain an open
post-challenge submission system, see in https://drac22.grand-
challenge.org/post-challenge-submission, encouraging the eval-
uation of innovative solutions and driving progress in the domain
of automated DR analysis.

Conclusion

The DRAC challenge held at MICCAI 2022 provides a benchmark
and evaluation framework for automatic DR analysis from UW-
OCTA images, including the tasks of DR lesion segmentation,
image quality assessment, and DR grading. With numerous par-
ticipants from academia and industry worldwide, the challenge
offers diverse solutions and comparable diagnostic results to
benefit ophthalmologists engaged in DR analysis. These solu-
tions are described in detail in the MICCAI Challenge Proceed-
ings, and many teams, including the top three teams in each
task, have open-sourced their code, which can significantly
accelerate methodological developments in the research com-
munity. We thoroughly summarized and discussed the algo-
rithms and results from participating teams in this paper. These
algorithms hold the potential to be integrated into future com-
puter-assisted automatic diagnostic systems for DR, which
can help reduce the burden on healthcare workers and improve
the accuracy of DR diagnosis. Nevertheless, ongoing research
efforts are still needed to improve the model and realize a clini-
cally applicable diagnostic system for DR. To date, the challenge
website remains open for post-challenge submissions, with the
aim of providing a sustainable benchmarking and evaluation
platform for the research community.

EXPERIMENTAL PROCEDURES

Resource availability
Lead contact

Q12 Bin Sheng (shengbin@sjtu.edu.cn).

Materials availability

This study did not generate any new materials.

Data and code availability

The DRAC dataset has been deposited to the Zenodo data repository under
https://doi.org/10.5281/zenodo.10280358.“° The code for methods A1, B1,
and C1 has been archived at Zenodo under https://doi.org/10.5281/zenodo.
10254200." The code for methods A2, B2, and C2 has been archived at Zen-
odo under https://doi.org/10.5281/zenodo.10212156.%° The code for method
A3 has been archived at Zenodo under https://doi.org/10.5281/zenodo.
10254707.%° The code for method B3 has been archived at Zenodo under
https://doi.org/10.5281/zenodo.10210181.*” The code for method C3 has
been archived at Zenodo under https://doi.org/10.5281/zenodo.10209637.4°
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Ethics statement

The study adhered to the guidelines of the Helsinki Declaration and had the
approval of the Ethics Committee of Shanghai Sixth People’s Hospital(2019-
KY-052(K)-(3)), Shanghai, China. All patients signed written informed consent
for participation. According to the Common Rule by the Department of Health
and Human Services, this informed consent includes that eight elements of in-
formation about the research study be provided to the patient or his or her le-
gally authorized representative.’” These elements include a statement that the
study is investigational along with a description of the research and its objec-
tives, a description of foreseeable risks, a description of foreseeable benefits
to participants as well as to others, information about reasonable alternatives,
a statement clarifying the implications of research participation for the sub-
ject’s confidentiality, a statement about compensation if injury occurs (for in-
vestigations involving more than minimal risk), information about how the sub-
ject can obtain answers to pertinent research questions, and a statement
about the voluntary nature of study participation and the subject’s right to
withdraw.

Evaluation metrics

There are three leaderboards in the challenge website, and each task corre-
sponds to a leaderboard. In the task of DR lesion segmentation, DSC is
used for the algorithm evaluation and ranking in segmentation task. In case
of a tie, Intersection of Union (loU) is used as an auxiliary ranking metric. The
DSC and loU are calculated as follows.

2|GNP) .
DSC = (Equation 1)
IGI+|P|
_lanp| .
loU = GUP| (Equation 2)

where G and P are the ground-truth mask and predicted mask, respectively.
The metric is calculated for each class independently, and the results are
then averaged.

For the tasks of image quality assessment and DR grading, quadratic
weighted kappa is used for the algorithm evaluation and ranking. In case of
a tie, area under ROC curve (AUC) is used as an auxiliary ranking metric.
Considering that this is a multi-class task, the macro averaging”® and one-
vs.-one (OVO) strategybO are used to calculate the AUC value. Macro aver-
aging calculates the AUC value for each label and finds their unweighted
mean. The OVO strategy computes the average AUC of all possible pairwise
combinations of classes. The quadratic weighted kappa K, is calculated as
follows.

W0y

Ky, =1
" >oiWiiEi

(Equation 3)

where O and E are the histogram matrix and expected matrix, respectively,
(=)
(N=1)®
i and j denote the actual value and the predicted value, respectively. N is the
number of classes.

with the size of N x N. The weighted matrix w is defined by w;; = where

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.
patter.2024.100929.
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