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Abstract 

 

Diabetic retinopathy (DR) is a leading cause of preventable blindness and has emerged 

as a global health challenge, necessitating the development of robust management 

strategies. As DR prevalence continues to rise, advancements in screening methods 

have become increasingly critical for timely detection and intervention. This review 

examines three key advancements in DR screening: a shift from specialist to generalist 

approach, the adoption of telemedicine strategies for expanded access and enhanced 

efficiency, and the integration of artificial intelligence (AI). In particular, AI offers 

unprecedented benefits in the form of sustainability and scalability for not only DR 

screening but other aspects of eye health and the medical field as a whole. Though 

there remain barriers to address, AI holds vast potential for reshaping DR screening and 

significantly improving patient outcomes globally. 

  



Introduction: The Diabetic Retinopathy Pandemic  

 

Diabetes has rapidly become a global health crisis, labelled as a ‘pandemic of 

unprecedented magnitude’ by the International Diabetes Federation (IDF)1. Data from 

the latest 2021 IDF report shows that one in ten (10.5%) of the world’s adult population 

is currently living with diabetes, a rise of 16% from the previous 2019 estimates2. This 

proportion is projected to surge by 46% to one in eight adults or 800 million individuals 

across the globe, by 2045. Contrary to previous belief, diabetes is no longer 

predominantly a disease of the affluent West. Developing and populous nations such as 

China and India are seeing high rates of increase in diabetes prevalence, linked partly to 

their rapid urbanisation and economic growth3. More than four-fifths of the total global 

diabetes burden now affects individuals residing in low- and middle- income countries 

(LMICs), cementing its status as a worldwide pandemic2. 

 

Diabetic retinopathy (DR) is the major ophthalmic complication of diabetes, 

characterized by damage to the retina. DR is the leading cause of blindness and vision 

impairment in working-age adults, and is linked to poorer quality of life, elevated 

depressive symptoms and an increased risk of overall mortality4-6. Global data show 

that just over one-third of individuals with diabetes suffer from DR, with 1 in 10 

experiencing forms of vision-threatening diabetic retinopathy (VTDR) such as 

proliferative diabetic retinopathy (PDR) and diabetic macular oedema (DME)7. There are 

promising trends of declines in blindness due to DR in Europe and North America, 

reflecting the efforts of concentrated public health efforts, effective screening and 



increased availability of novel therapies such as anti-VEGF agents8, 9. In contrast, low- 

and middle- income countries are expected to see a 20-45% increase in DR rates. This 

is double the rate projected for the high-income regions of Europe and North America10, 

11. These regions are unlikely to see such declining trends due to limited healthcare 

resources for DR diagnosis, screening and treatment. Moreover, due to the growing and 

ageing global population, the increase in the global burden of DR is projected to echo 

the rising prevalence of diabetes with a 55% rise from 2020 levels, affecting an 

estimated 160 million individuals in 204511. 

 

The scale of the problem is thus immense. In just over half a decade, it is projected that 

4 million individuals will suffer from visual impairment due to severe vision-threatening 

DR7, 12. Early identification allows patients at risk of VTDR to receive treatment that can 

significantly reduce their risk of visual impairment and blindness13. However, though DR 

evolves in a predictable sequence of steps – from no or subclinical disease to mild DR 

to VTDR with PDR or DME, culminating in visual impairment and blindness – we still lack 

effective reliable measures to identify which individuals will develop the most severe 

vision-threatening forms of the disease14. The Early Treatment of Diabetic Retinopathy 

Study (ETDRS) severity scale, developed in the 1980s from analyses of retinal vascular 

lesions on film-based colour fundus photographs (CFPs), could accurately predict 

progression to PDR15, 16. Subsequently simplified into the International Clinical Diabetic 

Retinopathy (ICDR) severity scale as a prognostic biomarker, it has been the gold-

standard for clinical DR management and research since17, 18. The advent of new retinal 

imaging modalities has sparked renewed interest in the search for new and more 



powerful prognostic biomarkers. Though these early results show promise19-22, they 

have also produced inconsistent data and require optimisation, standardisation and 

validation before they can be routinely implemented23-25.  

 

Given our current limits on prediction and stratification of DR patients at risk of visual 

impairment with existing biomarkers, comprehensive regular screening emerges as the 

most invaluable tool for early detection and intervention of severe DR. Moreover, even 

as new biomarkers are refined and validated, these will necessitate systematic 

screening of patients with diabetes at the population-level in order to be applied 

efficiently. Such screening approaches will need to be capable of keeping pace with the 

growing and ageing population. Achieving these goals in DR screening will require three 

major transformations (Figure): (1) a shift from specialist to generalist approaches, (2) 

the adoption of teleophthalmology and (3) the integration of human expertise and 

artificial intelligence (AI). 

 

The First Evolution in DR Screening: Specialists to Generalists  

 

DR screening put in the hands of primary care providers (PCPs) allows for monitoring of 

a larger population of patients with diabetes at risk of developing retinopathy, with 

appropriate lifestyle interventions to ameliorate risk of progression alongside escalation 

to tertiary ophthalmic centres in cases of severe disease (Figure).  

 



The evidence base for the benefits of DR screening is unanimous. One of the earliest 

demonstrations of this benefit was by Bäcklund et al. who showed a 47% reduction in 

diabetes-related blindness rates in Stockholm Country, Sweden in the five years after 

the implementation of a screening program in 199026. Thirteen years later, in England 

and Wales, the rollout of the 2003 national DR screening programme resulted in a 18.6% 

reduction in the proportion of DR-related blindness by 2009-201027. Indeed, this was the 

first time in fifty years that DR was no longer the leading cause of certifiable blindness in 

working-age adults in the country. DR screening has been shown to be cost-effective28, 29 

and is universally recommended by many international guidelines18, 30. Despite this, 

there are only a few truly effective national DR screening programs around the world – 

including the United Kingdom, Iceland and Singapore (Table 1). Notably, large high-

income countries such as the US and LMICs do not have national screening programs. 

Considering the global patterns of epidemiology of the DR pandemic away from high-

income countries towards developing economies, this is of particular concern.  

 

Whilst the benefits of nationwide DR screening are undisputed, there clearly exist 

multiple barriers to their implementation across the world. These include the significant 

infrastructure investment required, lack of trained manpower and consequent extra 

pressure on PCPs and tertiary ophthalmic services, the design of suitable guidelines for 

referral, follow-up and intervention at each stage, legislative barriers and long-term 

concerns around sustainability and cost-effectiveness. To address these, further 

transformations in the screening set-up are vital. 

 



The Second Evolution in DR Screening: Film to Telemedicine  

 

In 2018, the Global Diabetic Retinopathy Advocacy Initiative identified four key areas for 

strengthening the development of an integrated approach between PCPs and eye 

specialists for the secondary prevention of DR. These areas focused on integrating 

routine eye and diabetes care in both PCP and primary eye care settings through tools 

such as screening, while establishing systems for improving patient recall, follow-up 

and treatment31. Crucially, this compendium highlighted one of the major challenges 

facing DR screening – its integration into routine care by PCPs. As frontline generalists, 

PCPs manage numerous aspects of a patient’s health, and adding DR screening to their 

list of tasks imposes an additional burden on an often already stressed system. 

Moreover, interpretation of CFPs requires specialised knowledge and expertise in DR, 

an investment that is not practical for PCPs who already balance multiple competing 

demands on their time. While teleretinal services that utilise ophthalmologists for 

image interpretation offer a potential solution, they also exhibit significant flaws. Firstly, 

the same principles of competing demands on the time of eye specialists combined 

with the already existing inadequate numbers of these specialists pose problems32. 

Secondly, data reveal low rates of patient uptake of follow-up care likely due to the long 

times between assessment and diagnosis and consequent lack of face-to-face 

counselling, reducing the effectiveness of this strategy33-35. Telemedicine, utilising non-

physician graders, emerges as an ideal solution to these challenges, providing a rapid, 

efficient and specialised remote platform through which PCPs can submit CFPs and 

receive eye care reports that can be actioned easily in a standardised manner (Figure). 



 

Singapore’s Integrated DR Program (SiDRP) lends itself for discussion as a case study of 

a successful screening paradigm utilising telemedicine. Previously, DR screening in 

Singapore was carried out on an ad hoc basis by PCPs and endocrinologists with PCPs 

interpreting CFPs. In 2010, following the recommendations of the Singapore Ministry of 

Health for regular nationwide DR screening for all patients with diabetes, the SiDRP was 

established. Under the SiDRP, CFP images were captured by nurses at primary care 

clinics and securely transferred to centralised remote reading centres via a cloud-based 

teleophthalmology system. Trained CFP graders would review the images in real-time 

and return screening reports with referral recommendations based on standardised 

criteria to primary care clinics within an hour36.  

 

Starting with just over 2000 patients and expanding over a decade to >120,000 patients 

across all primary care clinics in the country, the SiDRP exemplifies a model that 

addresses the key areas identified by the Global Diabetic Retinopathy Advocacy 

Initiative. The teleophthalmology system reduces the burden on PCPs by investing in, 

and outsourcing to trained graders, consequently improving diagnostic accuracy37. Its 

significantly faster turnaround times of less than an hour, compared to days or weeks, 

and use of standardised referral criteria improve patient follow-up care uptake. Indeed, 

multiple trials of smaller-scale telemedicine systems in different regions globally have 

demonstrated clear benefits of increased uptake, higher patient satisfaction and 

reduced vision loss38-41. Finally, whilst maintaining health outcomes on par with the 



previous system, the SiDRP has proven to be extremely cost-effective, with a predicted 

lifetime cost savings of almost SGD $30 million36. 

  



Table 1: Features and key outcomes of established national screening programs for 

diabetic retinopathy around the world. 

Country Population 
(million) 

National 
Level of 
Income 

Year  Screening 
Location 

Screening 
Method 

Reported 
DR 
Prevalence 

Reported DR 
Screening 
Uptake 

Botswana 2.63 Higher 
middle-
income  

2009 Hospital-
based 
screening 

Fundus 
photography 

17.7%42 Not reported. 

Denmark 5.90  High-
income 

2013 Ophthal-
mology 
clinic 

Fundus 
photography 

16.5%43 Attendance 
(timely and 
delayed) at 
~88.5%.43 

Iceland 0.38 High-
income 

1980 Ophthal-
mology 
clinic 

Fundus 
photography 
& clinical 
examination 

4-year 
incidence of 
retinopathy 
recorded as 
38.1%.44 

Not reported. 

Ireland 5.12 High-
income 

2013 Screening 
centres 

Fundus 
photography 

31.8% 
(mean) 
detectable 
retinopathy 
over 5 
rounds of 
screening45. 

Uptake in 
2021 
recorded at 
67.2%45. 

 

Malta46, 47 0.53 High-
income 

2015 Diabetes 
clinic or 
health 
centres 

Clinical 
examination 

Not 
reported. 

Not reported.  

Singapore 5.63 High-
income 

2010 Primary care Fundus 
photography, 
telemedicine 

15.8%48 Not reported. 

Slovenia 2.11 High-
income 

2016 Community 
screening 
centres 

Fundus 
photography, 
telemedicine 

25.8%49 Not reported. 

United 
Kingdom 

66.97 High-
income 

2003 Primary care Fundus 
photography, 
telemedicine 

36.6% from 
a regional 
study50. 

Uptake in 
2015 
recorded at 
82.8%51. 

 

 



Despite the clear success of this nationwide teleophthalmology program, a key 

question persists: how can this service be sustained and scaled to perform to high 

standards in the face of ever-increasing demand? This brings us to the third key 

advancement in screening processes – the integration of AI. 

 

The Third Evolution in DR Screening: Humans to AI  

 

Deep learning (DL) and AI, a major focus of technological innovation in recent years, 

provide an ideal source of the computational power needed to enhance screening 

processes.  When incorporated into the existing teleophthalmology system, AI has the 

potential to significantly enhance screening efficiency with faster turnaround times and 

streamlined workflows (Figure). Most importantly, the incorporation of AI promises a 

viable route to scaling and sustaining enhanced workflows, even in the face of 

increased demand. 

 

The first algorithm to employ DL components for the automated detection of referable 

DR and VTDR was developed by Abràmoff and colleagues in 2016 using a dataset of 

~1750 retinal images52. The DL-enhanced system outperformed a previous algorithm 

that had relied purely on traditional machine learning methods53. The system, IDx-DR, 

has been validated on data collected prospectively from primary care clinics within the 

US and abroad54-56 and is the first autonomous AI to receive regulatory approval from the 

US Food and Drug Administration (FDA) for detecting severe DR in adults with 



diabetes57. A further major step was a large study by Google Healthcare that used over 

120 000 retinal images to develop a DL system for detecting referable DR. This system 

achieved extremely high levels of sensitivity (>87%), specificity (>90%) and area under 

the receiver operating characteristic curve (AUC) (99.1%) in its external validation with 

two public datasets58. These results attracted considerable publicity within both the 

ophthalmology world and the mainstream media59-62. A number of groups have since 

reported similar results with their own DL algorithms developed and validated in 

different datasets around the globe63-65. 

 

In Singapore, the DL algorithm SELENA+ was developed and validated using retinal 

images collected from the SiDRP as well as ten additional multiethnic cohorts 

representing diverse populations with diabetes from different countries. In the primary 

dataset (>71 000 images), the system demonstrated an AUC of 93.6% for detecting 

referable DR with high sensitivity (90.5%) and specificity (91.6%). In the secondary 

validation datasets (>40 000 images), AUCs ranged between 88.9% and 98.3%66. 

Moreover, SELENA+ maintained this consistently accurate performance even in an 

‘extreme’ population in Zambia, where the algorithm had not been previously trained67. 

Whilst diagnostic accuracy of these DL systems is undisputed, the question remains as 

to the most effective route to implementation. Xie et al.68 examined exactly this 

question, modelling the economic costs of two approaches to AI integration in the 

existing system. In one, SELENA+ fully replaced primary human graders and in the other, 

SELENA+ was used as a ‘triage’ tool to screen out low-risk cases and refer on a subset 

of cases to human graders for secondary confirmatory grading. Interestingly, the triage 



approach showed the highest cost savings at $62/patient compared to $66/patient in 

the replacement approach and $77/patient in the existing system.  

 

Following its success, SELENA+ has been licensed to a commercial start-up company 

(EyRIS Pte Ltd., Singapore) to manage the technical, operational and commercial 

aspects of its implementation into clinical practice69. While digital technologies such as 

telemedicine and AI are lauded as disruptive innovations, they also generate concerns 

about potential negative impacts on human jobs. Thus, an important point to draw from 

Singapore’s AI-based DR screening program is the way in which AI has been utilised 

most effectively when implemented in a specialised narrow part of the clinical 

workflow, complementing, rather than replacing, human roles. By automating specific 

tasks such as image analysis, AI enhances the efficiency of healthcare professionals, 

enabling them to focus on higher-level tasks that require human expertise. This 

approach ensures that AI serves as a tool to augment, rather than diminish human 

capability and ultimately both safeguard human roles whilst producing the best 

screening outcomes. 

 

The age of AI has only just begun to dawn. The field is expanding rapidly with multiple 

types of models showing massive burgeoning potential. Generative AI has marked a 

significant shift, with models able to generate new data based on existing datasets. 

Large language models (LLMs), a form of generative AI trained with massive amounts of 

linguistic data, have taken the world by storm. ChatGPT, an LLM developed by OpenAI, 

has drawn global headlines with its ability to engage in human-like conversation and 



answer questions on different topics70, 71. The potential of such LLMs in healthcare is 

vast. While DL algorithms have performed well in detecting eye disease, LLMs show 

promise in transforming clinical workflows, from streamlining triage and appointment 

scheduling to personalising patient visits, boosting healthcare adherence with patient 

education, automating medical record documentation and serving as a resource for 

medical training72. 

 

Healthcare is a complex field with varied forms of data, activities and tasks. Though AI 

has been developed to fit into narrow specialist domains, a novel challenge presents 

itself: can AI models be built to fulfil multiple different healthcare functions? 

Foundational AI models, pre-trained on broad data and able to adapt to a wide range of 

tasks, are a prime research focus for this question73. In ophthalmology, a key example is 

the development of RETFound, a foundational model trained via self-supervised 

learning on 1.6 million retinal images. Through subsequent fine-tuned supervised 

learning with annotated images, RETFound was adapted for disease detection, 

consistently outperforming other models in the diagnosis and prognosis of sight-

threatening eye diseases74. A further striking innovation includes combining AI models. 

An integrated DL-LLM, merging an LLM module with a DL module based on retinal 

images, was developed to give individualised recommendations for patients in primary 

diabetes care. In a single-centre prospective study, it was shown that the quality and 

empathy of level of diabetes management recommendations were highest when PCPs 

were assisted by the AI. This translated through to better self-management by patients 

with newly diagnosed diabetes and greater adherence to DR referrals75.  



 

Despite the widespread benefits these systems may offer, there is equal concern about 

their limitations (Table 2). Nevertheless, we can anticipate a growing evolution in the 

development and use of medical AI, from specialized tasks to universally applicable 

models capable of broader abstract functions such as emulating physician empathy 

and intuition and integrating non-clinical data for wider public health maintenance and 

disease prevention76.    



Table 2: Advantages and limitations of medical AI models. 

 

 

Advantages of Medical AI Limitations of Medical AI 

Enhanced diagnostic accuracy: AI 
systems are able to detect rates of 
disease such as DR extremely accurately, 
allowing for earlier intervention and 
management66. 

Dependence on quality data: AI is ‘data-
hungry’ usually requiring vast amounts of 
datapoints to reach an adequate 
performance level. Training from a single 
dataset is prone to bias and exaggerates 
health inequity but acquiring diverse 
datasets can be difficult and costly77.  

Enhanced efficiency: AI has immense 
multi-functional capacity and has been 
shown to be able to detect multiple 
conditions from a single dataset66, 78, 79. 
This shows potential for further 
enhancing the efficiency of future 
screening initiatives.  

Lack of interpretability: AI can function as a 
‘black box’ and this lack of transparency 
into the mechanisms of performance 
hinder easy justification of diagnosis, 
treatment or outcomes that are predicted 
to patients and other users. It also does not 
allow us to monitor potential bias that may 
arise63. 

Sustainability and scalability: AI has 
immense processing power and is thus 
able to screen large volumes of data 
rapidly. This has the advantage of 
streamlining workflows such as in the DR 
screening program and being able to 
meet future demand. 

Potential job displacement: Concerns exist 
related to the possibility of AI replacing 
human jobs – though this is somewhat 
mitigated by recent evidence suggesting AI 
produces the highest quality and most 
cost-effective outcomes in conjunction 
with human roles68. 

Cost-effectiveness: AI integration has 
been shown to lower costs associated 
with human grading in DR screening when 
effectively deployed as a triage tool68. 

Integration into medical practice: Though 
AI has been shown to work well in narrow 
specialist domains of healthcare, 
difficulties are likely to arise in attempts to 
integrate more universal models into 
existing clinical workflows76. 

Personalised medicine: AI is able to 
individualise patient recommendations 
based on provided information to tailor 
follow-up and treatment75. 

Regulatory and legal challenges: Defining 
responsibility, medico-legal ethics 
frameworks and other important aspects of 
implementation are crucial for safe 
deployment of these systems in clinical 
practice – such conversations are still in 
their infancy80. 



Future Directions and Research  

 

As DR screening evolves, new opportunities for innovation and improvement continue 

to emerge. Three key areas discussed here include the development of portable 

handheld retinal cameras to widen access, more intelligent AI algorithms capable of 

detecting a multitude of conditions and the incorporation of optical coherence 

tomography (OCT) for DME detection.  

 

Firstly, current DR screening systems leave many patients undiagnosed and under-

referred, often due to low adherence to screening appointments81. In LMICs, restricted 

access to retinal cameras exacerbates this issue. To address this, low-cost handheld 

mobile devices have been developed, demonstrating high sensitivity and specificity for 

DR detection82. Smartphone-based applications also show promise in supporting DR 

screening efforts and early integration with AI algorithms further strengthens the 

potential of these routes83-86. Secondly, the role and capabilities of AI in screening 

continue to rapidly expand. DL systems can now detect not only the presence and 

severity of DR, but also prospectively predict its incidence and progression, potentially 

paving the way to personalised screening intervals87, 88. The development of the DL 

system in Singapore from retinal images was notable for its ability to detect not only 

referable DR but also other sight-threatening diseases, such as glaucoma and age-

related macular degeneration (AMD) with high sensitivity (>90%), specificity (>73%) and 

AUC (>89%)66. Other novel studies have taken this even further and developed 

algorithms capable of detecting non-ophthalmic conditions, such as chronic kidney 



disease and Alzheimer’s disease, from retinal photos78, 79. This has given rise to the field 

of ‘oculomics’, which leverages AI-enhanced retinal imaging to predict a range of 

systemic conditions, including cardiovascular disease, cerebrovascular disease, stroke, 

schizophrenia, metabolic disease, hepatobiliary disease and even overall morbidity and 

mortality89-94. Further work is needed to better understand the underlying mechanisms 

of these associations and expand this exciting emerging field. Finally, while 2D fundus 

photography has been the primary screening tool for PDR and DME, it has limitations in 

DME detection, leading to both missed diagnoses and unnecessary referrals95, 96. 

Optical coherence tomography (OCT), with its higher sensitivity, has been proposed as 

complementary screening tool for DME and when integrated with existing methods, has 

shown increased cost-effectiveness with comparable health outcomes97, 98. DL 

algorithms for automated OCT-based detection of DME have demonstrated high 

accuracy in real-world applications99, 100. Further work is needed to examine the most 

effective ways of including, improving and automating OCT detection of DME in existing 

DR screening pathways.  

 

Conclusions  

 

Addressing the DR pandemic requires a comprehensive, multi-pronged approach. A 

clear shift from specialist to generalist is essential for effective screening while 

telemedicine expands the reach and ease of implementation of this approach. 

However, the potential of AI stands out as a game-changer. With its ability to enhance 

efficiency and scalability, AI has massive potential to upscale DR screening and 



management, broader aspects of eye health and indeed clinical practice as a whole. As 

these innovations continue to evolve, they offer a powerful path towards combating the 

global DR crisis and improving the lives of millions. 
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Figure Legend 

 

Figure: Diagram illustrating the major transformations in DR screening that are needed 

to ensure effective, scalable population-level screening of patients with diabetes. 1: 

PCPs organize DR screening and staff upload digital retinal photos to server; 2: DR 

grading is carried out at centres, triaged with AI and confirmed by humans; 3: A report is 

generated based on DR grading; 4: The report is transmitted back to PCPs with 

standardized referral criteria; 5: If mild DR (non-referable), then PCPs manage risk 

factors and continue screening; 6: If severe DR (referable), then patients are referred to 

eye specialists for treatment. DR, diabetic retinopathy; VTDR, vision-threatening 

diabetic retinopathy; DME, diabetic macular oedema; VI, visual impairment; M, million; 

AI, artificial intelligence. 

 


