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A deep learning system for detecting silent 
brain infarction and predicting stroke risk

 

Current brain imaging to detect silent brain infarctions (SBIs) is not feasible 
for the general population. Here, to overcome this challenge, we developed 
a retinal image-based deep learning system, DeepRETStroke, to detect SBI 
and refine stroke risk. We use 895,640 retinal photographs to pretrain the 
DeepRETStroke system, which encodes a domain-specific foundation model 
for representing eye–brain connections. Then, we validated the downstream 
clinical tasks of DeepRETStroke using 213,762 retinal photographs from 
diverse datasets across China, Singapore, Malaysia, the USA, the UK 
and Denmark to detect SBI and predict stroke events. DeepRETStroke 
performed well in internal validation datasets, with areas under the curve 
of 0.901 for predicting incident stroke and 0.769 for predicting recurrent 
stroke. External validations demonstrated consistent performances across 
diverse datasets. Finally, in a prospective study comprising 218 participants 
with stroke, we assessed the performance of DeepRETStroke compared 
with clinical traits in guiding strategies for stroke recurrence prevention. 
Altogether, the retinal image-based deep learning system, DeepRETStroke, 
is superior to clinical traits in predicting stroke events, especially by 
incorporating the detection of SBI, without the need for brain imaging.

Stroke is one of the leading causes of death and long-term disability 
worldwide1. Conventional stroke risk assessments rely on using informa-
tion about clinical risk factors, mostly from self-reported data such as 
smoking and history of ischaemic stroke2–5, and fall short in accurately 
identifying those at risk. Prior studies demonstrated that the accuracy 
of conventional stroke risk prediction models was just modest (concord-
ance index (C-index) 0.58–0.73), especially in multiethnic populations2,6.

Brain imaging such as magnetic resonance imaging (MRI) scans 
may detect the presence or absence of subclinical cerebrovascular 
disease7, and incorporating these brain imaging features into risk 
assessment may be helpful to more precisely identify individuals at high 
risk of stroke7,8. For example, silent brain infarctions (SBIs), which affect 
nearly 20% of the general population9–12, indicate underlying ischaemic 
cerebrovascular disease and are associated with an increased risk of 
future stroke12,13. Thus, detection of SBI even in asymptomatic patients 
could potentially allow physicians to refine stroke risk classification 
and allow patients to be better managed. Scientific statements from the 
American Heart Association and American Stroke Association suggest 

that patients with SBI should follow primary prevention guidelines 
to prevent symptomatic stroke5,14,15 (Fig. 1a). However, identification 
of SBIs relies primarily on brain imaging such as MRI and computed 
tomography (CT), which is impractical and not cost-effective for gen-
eral stroke screening. Thus, the American Heart Association and Ameri-
can Stroke Association do not recommend screening asymptomatic 
general population with MRI to detect SBI14. This underscores a key 
clinical gap—how to detect SBI in a simple and cost-effective manner in 
the general population without the need for brain imaging scans5,14,16.

Recent advances in medical imaging and deep learning (DL) have 
highlighted the retina as a unique window to the brain17. The retinal 
vasculature shares embryological, anatomical and physiological 
similarities with the cerebral vasculature, offering a non-invasive sur-
rogate to detect and predict early cerebrovascular changes18. Retinal 
photography as a non-invasive retinal imaging approach is now widely 
used across various clinical and community settings for screening eye 
diseases such as diabetic retinopathy19, but has also been used with DL 
techniques to detect various systemic and neurological conditions20–22.
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Fig. 1 | Study design of the DeepRETStroke system. a, The established primary 
care workflow: either high-risk patients or those with SBI were recommended to 
follow guideline-based primary prevention strategies. b, A schematic overview 
of the DeepRETStroke system. The DeepRETStroke system encodes a domain-
specific foundation model representing eye–brain connections, which can be 

applied to several downstream tasks such as SBI detection and future stroke 
prediction. EHR, electronic health record. c, Multicentre datasets used to 
develop and validate the DeepRETStroke system. d, The design of the real-world 
prospective observational study to evaluate patient outcomes. pys, person-
years. Created with BioRender.com.
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We introduce DeepRETStroke, a DL system that encodes a domain- 
specific foundation model for representing eye–brain connections. It 
utilizes retinal photographs for downstream clinical tasks of detecting 
SBI and predicting future stroke events, demonstrating the capability 
of this retinal image-based system to enhance stroke risk assessment 
in the community. In multiethnic and multicountry datasets, we con-
ducted our study by three stages. First, we used DeepRETStroke to 
detect SBI from retinal images. We then used SBI features detected 
from retina to improve incident stroke risk prediction and fine-tune 
models to predict recurrent stroke. Finally, we conducted a real-world 
proof-of-concept study to demonstrate the effectiveness of DeepRET-
Stroke in guiding stroke prevention strategies compared with clinical 
risk prediction models.

Results
Study sample and modelling strategy
The DeepRETStroke system was pretrained using 895,640 retinal 
photographs from the Shanghai Integrated Diabetes Prevention and 
Care System (Shanghai Integration Model) and the China National 
Diabetic Complications Study. The main aim of this study was twofold: 
(1) to output participant-level SBI detection results (that is, SBI or no 

SBI) and (2) to output participant-level incident stroke risk results 
(that is, 5-year stroke risk), by recognizing SBI features from fundus 
images through knowledge transfer during the joint training. We also 
fine-tuned the model to enable the prediction of recurrent stroke. 
Therefore, we trained, validated and tested the DeepRETStroke sys-
tem for detecting SBI and predicting incident or recurrent stroke from 
retrospectively collected retinal photographs and clinical traits from 
diverse datasets from China, Singapore, Malaysia, the USA, the UK 
and Denmark. Figure 1b gives an overview of the construction and 
validation of DeepRETStroke (that is, fundus model). To evaluate 
the performance, we then developed the metadata model and the 
combined model for comparing with the DeepRETStroke system. For 
the SBI detection, the metadata model was a logistic-regression clas-
sifier with a series of cardiovascular risk factors that were available 
in these datasets at baseline (more details provided in Methods). For 
the incident/recurrent stroke prediction, the metadata model was a 
Cox-proportional hazards model with the same risk factors as those 
used in the SBI detection task. The combined model was based on both 
the fundus model and the metadata model. Figure 1c shows the entire 
validation design of DeepRETStroke in multicountry datasets. Finally, 
we conducted a prospective real-world study to test the effectiveness 

Table 1 | Characteristics of the developmental, internal and external validation datasets for the detection of SBI

Developmental Internal External-1 External-2 External-3 External-4 External-5

SDPP WTHM PRECISE MeLODY UKB I-OPTA

Fundus images 1,080 484 876 5,576 76 312 254

Participants 540 242 438 2788 38 156 127

Race, n (%)

Chinese 540 (100.0) 242 (100.0) 438 (100.0) 2,788 (100.0) 15 (39.5) – –

Indian – – – – 8 (21.0) – –

Malay – – – – 15 (39.5) – –

Asian – – – – – 4 (2.6) –

White – – – – – 137 (87.8) 127 (100.0)

Black – – – – – 1 (0.6) –

Other – – – – – 14 (9.0) –

Age (years) 50.1 ± 8.7 51.1 ± 7.9 61.4 ± 12.6 61.0 ± 6.6 65.6 ± 8.9 58.2 ± 9.2 71.1 ± 8.1

Male, n (%) 377 (69.8) 200 (82.6) 323 (73.7) 1,461 (52.4) 21 (55.3) 76 (48.7) 79 (62.2)

Smoking, n (%) 137 (25.4) 81 (33.5) 109 (24.9) 950 (34.1) – 71 (45.5) 53 (41.7)

BMI (kg m−2) 24.5 ± 3.0 25.2 ± 2.9 25.3 ± 2.5 23.8 ± 3.0 26.4 ± 1.9 26.6 ± 4.1 27.0 ± 4.6

Systolic BP (mmHg) 120.9 ± 15.2 123.1 ± 14.8 130.2 ± 17.3 129.2 ± 3.0 145.8 ± 19.2 137.2 ± 19.9 145.1 ± 6.2

Diastolic BP (mmHg) 74.2 ± 10.9 76.2 ± 10.2 78.9 ± 11.0 75.2 ± 9.0 76.4 ± 8.1 81.2 ± 10.6 84.8 ± 13.8

FPG (mmol l−1) 5.3 ± 0.9 5.4 ± 1.0 6.8 ± 2.7 5.9 ± 1.6 10.5 ± 7.9 5.1 ± 1.4 –

HbA1c (%) 5.7 ± 0.6 5.8 ± 0.7 6.9 ± 1.6 5.9 ± 0.9 8.0 ± 2.2 5.4 ± 0.7 6.5 ± 1.5

TC (mmol l−1) 4.9 ± 1.1 5.0 ± 0.9 4.2 ± 1.0 5.3 ± 1.0 4.5 ± 0.7 5.8 ± 1.2 4.8 ± 0.8

TG (mmol l−1) 1.6 ± 1.2 1.8 ± 1.6 1.9 ± 1.8 1.8 ± 1.2 1.6 ± 0.9 1.7 ± 1.0 1.4 ± 0.7

HDL-C (mmol l−1) 1.3 ± 0.3 1.3 ± 0.3 1.1 ± 0.3 2.8 ± 0.8 1.2 ± 0.3 1.5 ± 0.4 1.6 ± 0.3

LDL-C (mmol l−1) 3.0 ± 0.7 3.2 ± 0.8 2.5 ± 0.9 1.4 ± 0.3 2.5 ± 0.7 3.6 ± 0.9 2.5 ± 0.9

Hypertension, n (%) 182 (33.7) 104 (43.0) 127 (29.0) 1,196 (42.9) 11 (28.9) 77 (49.4) 39 (30.7)

Antihypertensives, 
n (%)

109 (20.2) 68 (28.1) 87 (19.9) 2,043 (73.3) 12 (31.6) 27 (17.3) 49 (38.6)

Diabetes, n (%) 50 (9.3) 30 (12.4) 39 (8.9) 269 (9.6) 38 (100.0) 6 (3.8) 9 (7.1)

SBI, n (%) 11 (2.0) 5 (2.1) 40 (9.1) 295 (10.6) 4 (10.5) 18 (11.5) 1 (0.8)

Data are presented as mean ± s.d. or n (%) as appropriate. The en dash means not available or not applicable. PRECISE, Polyvascular Evaluation for Cognitive Impairment and Vascular Events; 
MeLODY, the Multiethnic Lifestyle, Obesity, and Diabetes Registry in Malaysia Diabetes Registry in Malaysia cohort; UKB, UK Biobank; I-OPTA, Identification of patient-reported barriers to 
treatment with anti-VEGF for neovascular AMD; FPG, fasting plasma glucose; BP, blood pressure; TC, total cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein cholesterol;  
LDL, low-density lipoprotein cholesterol.
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of the DeepRETStroke system in predicting recurrent stroke (Fig. 1d). 
For all participants, we used two macular-centred retinal photographs 
(that is, one for each eye). More details on image quality control and 
retinal photograph enhancement can be found in Methods.

SBI detection
For the detection of SBI, we developed and internally validated the 
DeepRETStroke system based on the participants with MRI scans from 
the Shanghai Diabetes Prevention Program (SDPP) cross-sectional 
study and externally validated it on five multiethnic datasets. The clini-
cal characteristics of participants are summarized in Table 1. As shown 
in Fig. 2 and Extended Data Table 1, the fundus model performed well 
in the internal datasets with an area under the curve (AUC) of 0.797 
(95% confidence interval (CI) 0.500 to 0.995), higher than that of the 
metadata model (0.633, 95% CI 0.533 to 0.748). The sensitivity of the 
fundus model was 0.800 (0.333 to 1.000) and the specificity was 0.781 
(0.730 to 0.830). In independent external datasets, the fundus model 
achieved AUCs ranging from 0.751 to 0.792, demonstrating the accurate 
detection performance of DeepRETStroke.

Incident stroke prediction
For the prediction of incident stroke, the DeepRETStroke system was 
developed and internally validated based on the participants without 
MRI scans from the SDPP cohort (that is, internal dataset), using the 
soft labels obtained in the recognition of SBI features, allowing the 
incorporation of SBI features to augment stroke risk prediction. Then, 
DeepRETStroke was validated on 11 external multiethnic datasets. The 
clinical characteristics of the cohort participants are summarized in 
Table 2. Figure 3 and Extended Data Table 2 show the model perfor-
mance of DeepRETStroke in predicting incident stroke over a 5-year 
period. On the internal validation dataset, the fundus model achieved 
an AUC of 0.901 (95% CI 0.846 to 0.940) and C-index of 0.910 (95% CI 
0.853 to 0.950). On the external validation datasets, the AUCs ranged 
from 0.728 to 0.895. Of note, the AUCs of the fundus model outper-
formed the metadata model, indicating the possibility of inputting 
only fundus images to make an accurate prediction of incident stroke 
via the DeepRETStroke system.

In addition, we used time-dependent analysis at 1–5 years to assess 
the prognostic accuracy of the three models for stroke prediction. The 
results of all validation cohorts are shown in Extended Data Fig. 1. Most 
AUCs of the fundus model were higher than those of the metadata 
model (that is, clinical traits). In the results of external validation, the 
performance of the metadata model in the first two years was inconsist-
ent with the fundus model across multiple external datasets, but in the 
last three years, most AUCs of the fundus model were better than those 
of the metadata model, which reflects the high concordance and strong 
calibration of DeepRETStroke system in the long run.

Furthermore, we conducted subgroup analyses for incident stroke 
prediction according to the baseline health status of the cohort partici-
pants (diabetes, hypertension and carotid atherosclerosis). As shown 
in Extended Data Table 3, the ability of the model to predict incident 
stroke was consistent among participants with and without diabetes, 
hypertension and carotid atherosclerosis in the internal cohort and 
most external validation cohorts. These results demonstrated robust 
performances of our DeepRETStroke system in predicting incident 
stroke.

Recurrent stroke prediction
To broaden the application scope and enhance the versatility of the 
system, the model is further fine-tuned to enable the prediction of 
recurrent stroke. Extended Data Table 4 presents the clinical charac-
teristics of the cohort participants in developing and validating the 
system. Extended Data Table 5 shows the model performance of predict-
ing recurrent stroke in 5 years. The fundus model achieved an AUC of 
0.769 (95% CI 0.375 to 1.000) and the combined model achieved 0.833 
(95% CI 0.500 to 1.000), on the internal dataset. Likewise, the AUCs of 
the fundus model on the external dataset are higher than those of the 
metadata model (0.727 versus 0.705).

Real-world prospective exploratory study
To further evaluate the outcome of the integration with clinical work-
flows, we additionally conducted a real-world study within a prospec-
tive cohort, where 218 patients with prior stroke or SBI received either 
integrated management (IM; integrated hospital-community manage-
ment programme) or not, according to participant preference and clini-
cal considerations (Fig. 1d). There were 56 participants in the IM group 
and 162 participants in the non-IM group (Supplementary Table 1). 
Participants in the IM group were provided with regular clinical and 
metabolic measurements, advised by specialists in comprehensive hos-
pitals and received lifestyle guidance and peer support at community 
health service centres. Participants in this programme were followed 
up for stroke event over a 1-year period. Both the fundus model and 
the metadata model for recurrent stroke divided the IM group and the 
non-IM group into low-risk and high-risk groups according to cohort 
median risk23. We calculated the adjusted relative reduction (aRR) of 
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incidence between the DeepRETStroke fundus model and the metadata 
model (Table 3). After adjustment for covariates including demograph-
ics, anthropometric indices and biochemical measurements, in the IM 
group, the difference in the incident stroke events between the fundus 
model and metadata model was not statistically significant in both 
the low-risk group (aRR −38.86%, 95% CI −91.5% to 297.93%) and the 
high-risk group (aRR 48.09%, 95% CI −62.42% to 598.57%). However, 
patients from the fundus high-risk group of the non-IM group had 
more incident stroke events compared with the metadata high-risk 
group (202.17 versus 53.93 per 1,000 person-years, aRR 543.61%, 95% 
CI 53.68% to 2,572.37%), while the fundus low-risk group had fewer inci-
dent stroke events compared with the metadata low-risk group (27.14 
versus 136.94 per 1,000 person-years, aRR −97.14%, 95% CI −99.49% 

to −90.81%). Under comprehensive interventions (that is, intensive 
intervention for the high-risk group and non-intensive intervention 
for the low-risk group, stratified by median risk), compared with the 
metadata model based on clinical traits, the fundus model was asso-
ciated with 82.44% (95% CI 1.58% to 324.47%) fewer recurrent stroke 
events (Table 3).

Explainability analysis
We then visualized the interpretability of the DeepRETStroke system. 
We utilized GradientShap24 and the occlusion method25 for visualiz-
ing the interpretability of the output prediction. The interpretability 
summary plot of fundus images for SBI detection and incident stroke 
prediction are shown in Extended Data Figs. 2 and 3, respectively, high-
lighting the key anatomical structures associated with SBI lesions and 
stroke, such as retinal vasculature.

Discussion
Improved precision in stroke risk prediction with simpler, practical and 
cost-effective methods will lead to reduced morbidity, disability and 
mortality related to stroke in the general population. To address this 
important public health and clinical question, we developed a retinal 
image-based DL system—DeepRETStroke—to detect SBI, a subclinical 
cerebrovascular disease phenotype, and to use this information to 
augment stroke risk prediction. Using a large diverse multicountry, 
multiethnic dataset from China, Singapore, Malaysia, the USA, the 
UK and Denmark, we trained, validated and externally tested Deep-
RETStroke. Our main findings are, first, that DeepRETStroke was able 
to precisely detect the presence of SBI with an AUC of 0.797. Second, 
by incorporating SBI detection, DeepRETStroke could predict up to 
5-year risk of stroke, with an AUC of 0.901 for incident stroke and an 
AUC of 0.769 for recurrent stroke. We showed largely consistent results 
in external validation cohorts, in which DeepRETStroke was also able 
to effectively detect SBI and predict stroke with improved discrimina-
tion compared with clinical traits (that is, metadata). Finally, compared 
with the current assessment based on clinical traits, we showed in a 
prospective proof-of-concept study that information from DeepRET-
Stroke was able to stratify stroke risk, which was associated with 82.44% 
(95% CI 1.58% to 324.47%) less recurrent stroke events with appropriate 
comprehensive interventions.

While some previous studies have investigated the potential of 
using retinal imaging and artificial intelligence (AI) techniques to 
assess conventional risk factors and to predict vascular risk including 
stroke26–30, our study was unique in at least four important aspects. 
First, we focused on detecting preclinical and subclinical cerebro-
vascular disease in the form of SBI, which may affect up to 20% of the 
population. Detection of SBI and the information from its detection 
allow DeepRETStroke to more directly and precisely predict future 
clinical stroke events. This contrasts with other studies using tradi-
tional DL algorithms to use relatively simplistic binary outcome labels 
(presence versus absence of stroke), which may lead to an underu-
tilization of relevant subclinical cerebrovascular phenotypes and 
imaging characteristics. As a result, the effectiveness of some of these 
algorithms in predicting stroke outcomes has been, at best, moder-
ate31. By leveraging information from brain imaging features such as 
SBI, our DeepRETStroke showed superior performance in stroke risk 
prediction. Second, our study incorporated large-scale, international 
representative multiethnic cohorts and had notably longer follow-up 
of up to 5 years to predict incident stroke. Third, DeepRETStroke could 
also predict recurrent stroke in patients with prior stroke, a clinical gap 
that is useful to stroke neurologists. Finally, we validated findings in an 
independent prospective cohort, showing that using DeepRETStroke 
algorithms may help to identify high-risk populations for implement-
ing preventive strategies that may lead to lower risk of future stroke.

Growing evidence suggests compelling biological connections 
between the brain and the eye that warrant consideration in our study. 

Evaluation of incident stroke prediction by time-dependent AUROCa

b Evaluation of incident stroke prediction by C-index
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Fig. 3 | Performance of the DeepRETStroke system for the prediction 
of incident stroke. a, The time-dependent AUROC for the fifth year of the 
DeepRETStroke system for the prediction of incident stroke. b, The C-index 
of the DeepRETStroke system for prediction of incident stroke. The error bars 
represent bootstrapped (n = 1,000) 95% CIs. CUHK-STDR, The Chinese University 
of Hong Kong-Sight-Threatening Diabetic Retinopathy; SEED, the Singapore 
Epidemiology of Eye Diseases study; MeLODY, the Multiethnic Lifestyle, Obesity, 
and Diabetes Registry in Malaysia Diabetes Registry in Malaysia cohort; UKB, 
UK Biobank; NICOLA, The Northern Ireland Cohort for the Longitudinal study 
of Ageing; I-OPTA, Identification of patient-reported barriers to treatment with 
anti-VEGF for neovascular AMD.
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First, the retina, as an extension of the central nervous system, offers 
a unique opportunity for non-invasive assessment of cerebrovascular 
health32–34. Second, retinal imaging provides valuable insights into 
microvascular pathology35, reflecting systemic vascular conditions 
such as hypertension36, diabetes37 and atherosclerosis36,38. Third, SBIs 
and strokes share common underlying vascular aetiologies, including 
small vessel disease and cerebral microinfarcts39. Therefore, given the 
anatomical and physiological similarities between retinal and cerebral 
vasculature, alterations observed in retinal microvasculature, such as 
arteriolar narrowing, venular dilation and microaneurysms, may serve 
as biomarkers for the early detection of SBI and stroke40–44.

SBI, in particular, which has been reported to affect nearly 20% 
of individuals in the community9–12, frequently remains unidentified 
until an incidental brain MRI discovery10. Because of its prevalence, it 
is common to misclassify individuals with undetected SBIs as ‘healthy’ 
and ‘low risk’, which could underestimate their stroke risk45–47. How-
ever, given the high cost and limited availability of MRI, screening the 
large-scale asymptomatic general population with MRI to detect SBI 
is prohibitively expensive and impractical48. Therefore, our DeepRET-
Stroke system, which uses a non-invasive retinal imaging modality35, 
may serve as an assistive and initial screening tool for SBI detection to 
augment stroke risk prediction in the community without the need 
for brain imaging.

Strengths of our study include the following. Our study had one 
of the largest pretrained dataset of retinal photographs and used mul-
tiethnic, international cohorts for external validation. Moreover, our 
algorithm, by learning from small-scale imaging data and using knowl-
edge transfer enhances stroke risk prediction through the recognition 
of SBI features. However, there are also several limitations that may 
merit further considerations. First, although we have tested its gen-
eralizability in multiple datasets, the dataset used for model develop-
ment was a solely Chinese cohort, due to difficulties in data sharing 
of primary retina and MRI imaging data between countries. Second, 
some inherent biases, including selection bias, unbalanced training 
data, bias in human labelling, racial and ethnic bias, and unknown 
confounders, cannot be eliminated and evaluated in our data. Third, as 
the labelling of our training dataset was based on clinician-derived diag-
nosis, potential variability in labelling definitions and protocols across 
cohorts exists, which may have the adverse effect on the development 
and validation of the DL algorithm. Nevertheless, the semi-supervised 
learning strategy adopted in DeepRETStroke development can enhance 
the training set with more easily diagnosable samples, which to some 

extent mitigate this concern. Fourth, our prospective cohort may be 
limited by its sample size. Further prospective studies are needed to 
validate the outcome of the integration with the DeepRETStroke system 
into clinical practice.

In conclusion, we trained, validated and externally tested a reti-
nal image-based DeepRETStroke system to detect SBI, a common 
subclinical cerebrovascular disease phenotype, and used this infor-
mation to augment a prediction algorithm of incident stroke as well 
as recurrent stroke. We showed the potential of DeepRETStroke in 
a proof-of-concept prospective cohort study to enhance stroke risk 
stratification that could be used to guide stroke prevention strategy, 
without the need for brain imaging.

Methods
Ethical approval
The study received approval from the Ethics Committee of Shang-
hai Sixth People’s Hospital (approval no. 2023-KY-023 [K]). For the 
development and validation of the DeepRETStroke system, deidenti-
fied retrospective data were used, without the active involvement of 
participants. For the real-world prospective study, all participants 
provided informed consent before their involvement. All included 
studies adhered to the tenets of the Declaration of Helsinki and had 
respective local ethical committee approval.

Study sample
The primary objective of this DeepRETStroke system is to utilize retinal 
images for both the detection of prevalent SBI and the prediction of 
incident stroke. The model is further fine-tuned to enable the predic-
tion of recurrent stroke. For SBI detection, we used retinal photographs 
from six independent datasets for model development and validation. 
We included participants who underwent retinal photography, brain 
MRI or CT and had no history of overt stroke. Similarly, for incident 
stroke prediction, we used retinal photographs from 12 independ-
ent datasets for model development and validation. For this task, we 
included participants who underwent retinal photography, had no 
history of stroke and had been followed for certain period of time. Fur-
thermore, for recurrent stroke prediction, we used retinal photographs 
from two independent datasets for model development and validation. 
For this task, we included participants who underwent retinal pho-
tography and had prior stroke history. Image-level data were further 
filtered via image quality control, and there is no participant-level or 
image-level overlap between the developmental and validation sets. 

Table 3 | Associations between risk identification model and recurrent stoke events

Stroke events 
Incidence per 1,000 person-years, number of cases/number of people

aRR(95% CI)

Integrated
community management
programme

IM group
(n = 56)

DeepRETStroke low risk
(AI-Low)

Metadata-low risk
(Meta-Low) −38.86

(−91.5 to 297.93)
73.95 (2/28) 82.05 (2/26)

DeepRETStroke high risk
(AI-High)

Metadata-high risk
(Meta-High) 48.09

(−62.42 to 598.57)
324.12 (8/28) 292.47 (8/30)

Non-IM group
(n = 162)

DeepRETStroke low risk
(AI-Low)

Metadata-low risk
(Meta-Low) −97.14

(−99.49 to −90.81)
27.14 (3/112) 136.94 (6/48)

DeepRETStroke high risk
(AI-High)

Metadata-high risk
(Meta-High) 543.61

(53.68 to 2,572.37)
202.17 (9/50) 53.93 (6/114)

Comprehensive interventions: [(AI-High + AI-Low) − (Meta-High + Meta-Low)] in IM group − 
[(AI-High + AI-Low) − (Meta-High + Meta-Low)] in Non-IM group

82.44
(1.58 to 324.47)

Intensive intervention for the high-risk group and non-intensive intervention for the low-risk group, stratified by median risk. IM group were provided regular clinical and metabolic 
measurements, were advised by specialists in comprehensive hospitals and received lifestyle guidance and peer support at community health service centres. Details of biochemical 
measurements and anthropometric data collection included body weight, waist circumference, blood pressure, lipid profile and related factors of cardiometabolic diseases.
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Details of these datasets are demonstrated in Supplementary Methods 
and Supplementary Table 2.

Image quality control
The retinal images were captured using a variety of standard fundus 
cameras, including Topcon TRC-NW6 (Topcon) and Canon CR1–Mark II 
(Canon). Following the exclusion criteria proposed by Carol et al.21, we 
selected the fundus images as follows: if more than 25% of the periph-
eral area of the retina was unobservable or the central region of the 
retina had substantial artefacts that would affect analysis, the photo-
graph was excluded from the dataset. After the image quality control, 
fundus images were transferred to the AI team to develop and validate 
our DeepRETStroke system.

Fundus image enhancement
To extract non-specific vascular features that are highly related to our 
target vascular-related systemic diseases on the fundus photo, a series 
of image enhancements were proposed to improve the performance 
of our deep model. In the first step, contrast-limited adaptive histogram 
equalization was used to enhance the contrast of the image while sup-
pressing noise49. We first transformed the input fundus photos from 
RGB (red, green, blue) to LAB (lightness, green–red, blue–yellow) 
colour space and divided the images into fixed-size pieces. Then, 
contrast-limited adaptive histogram equalization was applied on the 
lightness channel of each piece with its own unique distribution, 
respectively. After that, the processed images were converted back to 
RGB space. In the second step, colour normalization was utilized to 
reduce the colour changes between fundus images caused by different 
conditions, including the models of the fundus camera, the photogra-
phy settings, the exposure changes and so on. Following the method 
proposed by the Kaggle Diabetic Retinopathy Detection Competition 
Report50, each fundus image was processed with a Gaussian filter 
(Pc = α × P + β × Gauss(P, s) + δ), where P  represents the fundus image, 
Gauss(P, s) represents applying a Gaussian filter with a standard devia-
tion of s  on P, and α, β and δ represent the parameters. We used 
α = 4,β = −4, s = 5  and δ = 128. After that, every enhanced fundus  
image was resized to 512 × 512 for the following training and validation.

Definition and criteria for disease diagnosis
In our study, diagnoses of SBI were made on the basis of clinical diag-
nostic criteria as follows: physician-diagnosed cerebral infarcts based 
on brain CT or MRI without any corresponding stroke episode (that is, 
self-reported history of stroke)51 (Supplementary Table 3). Diagnoses of 
stroke were made on the basis of American Heart Association and Amer-
ican Stroke Association criteria52 and were ascertained as follows: any 
physician-diagnosed fatal or non-fatal stroke reported by self-report or 
documented in hospital records during the follow-up period, provided 
there was no history of overt stroke at baseline. Diagnoses of recurrent 
stroke were defined as follows: any physician-diagnosed stroke occur-
ring during the follow-up period in individuals with a history of stroke 
diagnosed at baseline.

Development of the DeepRETStroke system
The DeepRETStroke system encodes a domain-specific foundation 
model representing eye–brain connections, which was built on a 
three-stage pretraining strategy. The development of the system was 
completed according to steps shown in Extended Data Fig. 4. The 
network architecture is shown in Supplementary Fig. 1. For the first 
stage, RETFound31 was used as the primitive encoder of our system, 
and Masked AutoEncoder53—an unsupervised learning algorithm—was 
used to improve the model’s generalizability across different racial 
groups with two large Chinese datasets—the Shanghai Integration 
Model cohort (173,346 participants with 693,384 images) and the China 
National Diabetic Complications Study cohort (50,564 participants 
with 202,256 images)54.

For the second stage, we adopted a model initialization step to 
address the cold start challenge in the next phase of semi-supervised 
learning. Here, the SDPP dataset (specifically refered to the participants 
without MRI scans from the SDPP cohort) was used to train the encoder 
and Stroke Predictor for incident stroke prediction by predicting the 
risk of onset for the next 5 years. This allows the model to acquire prior 
knowledge about eye–brain connections before progressing to the 
subsequent stage.

Based on this foundation, we initiated the third stage to further 
enhance the representation capabilities of our domain-specific founda-
tion model. Specifically, there existed training iterations to continu-
ously optimize the Encoder of the system, with each iteration consisting 
of two steps: ‘semi-supervised learning’ and ‘knowledge transfer’. 
At the same time, the ‘semi-supervised learning’ step in an iteration 
consists of several rounds, with each round consisting of two steps: 
‘update of labelled database’ and ‘update of SBI Detector’. For a train-
ing iteration, the first step was to perform semi-supervised learning 
with several training rounds. We adopted the collaborative training 
strategy in semi-supervised learning55 by treating the left and right 
eye images of all participants as two sufficiently redundant and con-
ditionally independent views. Before the start of the semi-supervised 
learning step, the labelled database contained only samples from 
the SDPP-MRI dataset (specifically refered to the participants with 
MRI scans from the SDPP cross-sectional study), while the unlabelled 
database contained all samples from the SDPP dataset. After the start of 
the semi-supervised learning step, for one training round, we first used 
the labelled database to update SBI Detector and then used this model 
to make predictions on the unlabelled database. After prediction, we 
selected samples with high prediction confidence from the results and 
labelled them with ‘pseudo-labels’. Here, based on our internal valida-
tion database, we chose the minimum predictive probability score that 
can maintain the predictive precision of positive samples (the propor-
tion of true positive samples in the samples predicted as positive) above 
0.75 as the high prediction confidence standard for positive samples, 
and the maximum predictive probability score that could maintain 
the prediction precision of negative samples (the proportion of true 
negative samples in the samples predicted as negative) above 0.75 as 
the high prediction confidence standard for negative samples. These 
samples were removed from the unlabelled database and added to the 
labelled database. Then, we used this expanded labelled database to 
further update SBI Detector. Therefore, along with the training rounds, 
samples from the unlabelled database were continuously added to the 
labelled database until there are no samples in the unlabelled database 
or no samples that could be assigned pseudo-labels, which also indi-
cates the end of the semi-supervised learning step. Afterwards, the 
updated SBI Detector made predictions for the entire SDPP dataset, 
directly assigning the predicted ‘disease probability distribution’ as a 
‘soft label’ to serve as the information on possible SBI at baseline for 
each sample, and starting the ‘knowledge transfer’ step. In this step, 
we once again used the SDPP dataset for incident stroke prediction. 
But, unlike the model initialization step, here we used the soft labels 
to construct a new auxiliary task along with the primary prediction 
task for joint training. To be specific, SBI Learner was trained to fit the 
probability distribution of SBI at baseline indicated by the soft label, 
while Stroke Predictor was trained to predict the future incident stroke. 
Through this approach, the encoder could simultaneously learn the 
cerebrovascular conditions of a certain participant both at baseline 
and during the follow-up period, thereby improving the prediction of 
incident stroke. Afterwards, the encoder optimized in this knowledge 
transfer step could be regarded as an improved feature extractor for 
the next training iteration before the entire system development was 
ended. It is worth noting that we did not directly let the encoder learn 
labelled data in SBI detection but instead used the soft labels output 
by SBI Predictor to update the encoder in stroke risk prediction. This is 
because, in the early stage of semi-supervised learning in SBI detection, 
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only a small amount of labelled data can be used as training samples, 
and updating the encoder at this time poses a substantial risk of overfit-
ting. For incident stroke risk prediction, the synchronized prediction 
task of incident stroke could be regarded as a constraint for soft label 
learning, thus reducing the possibility of overfitting of the encoder.

After this three-stage pretraining, the domain-specific foundation 
model that represents eye–brain connections has been successfully 
developed. Therefore, for the other cerebrovascular related diseases, 
the encoder of our system can also be used as a pretrained encoder with 
strong prior knowledge, thereby playing a certain gain role in the train-
ing of other detection or prediction tasks. On this basis, when it comes 
to recurrent stroke prediction, we selected the developed encoder and 
Stroke Predictor as a pretrained model to perform fine-tuning on the 
participants from Nicheng Diabetes Screening Project (NDSP) who 
had stroke history at baseline, thus developing a specific model for 
recurrent stroke prediction.

Development of the metadata model and combined model
To evaluate the performance of the DeepRETStroke system, two other 
models with different sets of input data were developed, the metadata 
model and the combined model. For the SBI detection, the metadata 
model was a logistic-regression classifier with a series of conventional 
cardiovascular risk factors at baseline, including age, gender, smoking 
status (yes/no), body mass index (BMI), systolic blood pressure, total 
cholesterol, high-density lipoprotein cholesterol, baseline hyperten-
sion (yes/no) and baseline diabetes (yes/no). For the incident/recurrent 
stroke prediction, the metadata model was a Cox-proportional hazards 
model with the same risk factors as those used in the SBI detection 
task. The metadata features were normalized and standardized before 
model training.

For the development of combined models, we first froze the devel-
oped encoder and used it to extract high-dimensional retinal features. 
Then, the extracted features were concatenated to the risk factors used 
in the metadata model to form new combined features. After that, 
classifiers (with more input dimensions for the addition of the risk 
factors) of SBI Detector and Stroke Predictor were used and trained 
as the combined model of SBI detection and incident/recurrent stroke 
prediction, respectively.

Implementation details of DeepRETStroke system 
developmental process
We adopted the retinal feature encoder of RETFound31 as the proto-
type of our encoder for subsequent pretraining and fine-tuning. It 
is a large vision transformer56 (ViT-large) with 24 transformer blocks 
and an embedding vector size of 1,024. Each transformer block is 
composed of multiheaded self-attention and multilayer perceptrons 
(MLPs), taking feature vectors as input and generating high-level 
features. For SBI Detector, we used two logistic-regression models 
with L2 regularization. SBI Learner was composed of a two-layer MLP 
with a two-dimensional output while Stroke Predictor used the same 
two-layer MLP with a five-dimensional output instead. For the first 
stage of pretraining, the objective is the classical MAE algorithm to 
reconstruct retinal images from the highly masked version, with a 
mask ratio of 0.75. For the second stage of pretraining, the objective 
function was as follows:

Lossstage2 =
1
N

1
NT

∑
i,t
− [yi,t log [pθ,t (xi)] + (1 − yi,t) log [1 − pθ,t (xi)]] ,

where t = 1, 2, 3,4, 5  represents years; NT = 5  is for participants with 
stroke occurring within 5 years or without stroke over 5 years, while 
NT < 5 is for participants censored within 5 years; i = 1, 2, 3,… ,N  is the 
index of each participant; xi is the input fundus image of ith participant; 
pθ,t (⋅) is the estimated probability of occurring the incident stroke 
before the timepoint t; yi,t = 1 is for incident stroke occurrence before 

timepoint t; and yi,t = 0 is for no incident stroke within a t-year time 
window. For the third stage of pretraining, the objective function of 
SBI detection was the classical cross-entropy loss for binary classifica-
tion. The objective function of incident stroke prediction was just the 
loss function in the second stage plus a Kullback–Leibler divergence 
loss by the soft label:

Lossstage3 = Lossstage2 + α × 1
N ∑

i
− [sTi,0 log [q

T
i,0 (xi)] + sTi,1 log [q

T
i,1 (xi)]] ,

where i = 1, 2, 3,… ,N  is the index of each participant; xi  is the input 
fundus image of the ith participant; sTi, j (⋅) is the value of soft label output 
by SBI Detector on class j; qT

i, j (⋅) is the value of softmax output by SBI 
Learner on class j; and α  is the parameter to control the effects of the 
soft label on the learning of this stage. For the fine-tuning of recurrent 
stroke prediction, the objective function was the loss function in the 
second stage with the replacement of the predicted event from incident 
stroke to recurrent stroke.

For the developmental details of the system, we first trained the 
encoder and the Stroke Predictor for 30 epochs in model initialization 
step and selected the model with the best C-index on the validation 
set of incident stroke prediction to be used in the SBI detection. Then, 
we trained SBI Detector with semi-supervised learning strategy until 
there were no unlabelled samples remained or SBI Detector could 
not find any samples with results of high confidence. After that, we 
trained the encoder, SBI Learner and Stroke Predictor with knowledge 
transfer strategy for 30 epochs. In this step, if the validation result 
of incident stroke prediction had surpassed the best result from the 
previous iterations, we would select the corresponding best model 
to repeat the training process of the third stage; otherwise, the entire 
system development would be ended. In recurrent stroke prediction, 
we performed the fine-tuning on the copy of the encoder and Stroke 
Predictor for recurrent stroke prediction. The total training epoch is 30, 
and the model with the best C-index on its validation set was selected.

The entire system was implemented using PyTorch. During the 
developmental process, training was performed in batches of 128 
images after data augmentation, including random horizontal and 
vertical flips, random rotation and random Gaussian noise addition. 
We used the Adam optimizer with a learning rate warming up (from 0 
to a learning rate of 1 × 10−3) for ten epochs. The parameter α  of the 
objective function of the third stage was set to 0.3. No samples were 
overlapping at the patient level in training and validation sets.

Data from UK Biobank and Age-Related Eye Disease Study (AREDS) 
were accessed under application numbers 104443 and 26125 by Shang-
hai Jiao Tong University and the Ohio State University, respectively. 
For domestic datasets from Shanghai (SDPP, NDSP), Beijing (Peking 
Union Diabetes Management, PUDM), Wuhan (Wuhan Tongji Health 
Management, WTHM) and Wuxi (The Eastern China Health Manage-
ment, ECHM), the principal investigator of each study provided data 
and supervised the data analyses, ensuring the data were appropriately 
analysed within research team, ensuring that no external entities had 
access to the data. For other datasets, we delivered a docker program 
and an instruction guide to principal investigators and researchers 
at each study site, who conducted the external validation and the 
related analyses within each cohort and locally following the same 
instruction guide (https://docs.docker.com/get-started/overview/). 
After this, the analyses were performed, and the summary statistics 
and performance matrices (for example, AUC) were then sent back to 
the requesting team at Shanghai Sixth People’s Hospital. No raw data 
transfer occurred across countries.

Real-world study of the DeepRETStroke system
For the real-world study within a community-based prospective cohort 
study of Chinese adults, 215 participants with prior stroke and 3 partici-
pants with SBI were screened in November 2022 (Extended Data Fig. 5). 
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Among these patients, 56 received IM, while 162 did not. IM group were 
provided regular clinical and metabolic measurements, advised by 
specialists in comprehensive hospitals, received lifestyle guidance and 
peer support at community health service centres. Details of biochemi-
cal measurements and anthropometric data collection included body 
weight, waist circumference, blood pressure, lipid profile and related 
factors of cardiometabolic diseases.

Explainability analysis of the DeepRETStroke system
We utilized GradientShap24 and the occlusion method25 for visualizing 
the interpretability of the output predictions from the DeepRETStroke 
system. GradientShap approximates SHapley Additive exPlanations 
values by computing the expectations of gradients by randomly sam-
pling from the distribution of baselines or references. It adds white 
noise to each input sample n times, selects a random baseline from 
baselines’ distribution and a random point along the path between the 
baseline and the input, and computes the gradient of outputs with 
respect to those selected random points. The occlusion method is a 
perturbation-based approach to compute attribution, involving replac-
ing each contiguous rectangular region with a given baseline or refer-
ence and computing the difference in output. For features located in 
multiple regions (hyperrectangles), the corresponding output differ-
ences are averaged to compute the attribution for that feature. For the 
output results of GradientShap and occlusion method, we selected 
green and red colour to show the region where the models pay more 
attention, respectively.

Statistical analysis
To evaluate the performance of DeepRETStroke system, for SBI detec-
tion, we used ROC curves of sensitivity versus 1 − specificity. The area 
under the receiver operating characteristic (AUROC) was calculated 
with 95% CIs by the non-parametric bootstrap method (1,000 ran-
dom resampling with replacement). Sensitivity and specificity were 
estimated by the best cut-off value of the output scores (Youden 
index for this evaluation) on the validation set. The significant differ-
ences between AUROC were computed using Delong methods57. For 
incident/recurrent stroke prediction, we used Harrell’s C-index and 
time-dependent AUROC58. Each method was adjusted for censoring by 
weighing with the inverse probability of censoring and calculated for 
data before a given cut-off time τ with 95% CIs by the non-parametric 
bootstrap method. A two-sided significance level of 5% was considered 
as statistically significant.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The main data supporting the results in this study are available within 
the article and its Supplementary Information. Individual-level patient 
data are protected because of patient privacy; they are accessible with 
the consent of the data management committee from institutions and 
are not publicly available. Requests for the non-profit use of the retinal 
fundus images and related clinical information should be sent to T.Y.W. 
(wongtienyin@tsinghua.edu.cn). The data management committee 
will then review all the requests and grant permission (if successful). 
A formal data transfer agreement will be required upon approval. 
Generally, all these requests for access to the data will be responded 
to within 1 month. All data shared will be deidentified. Source data are 
provided with this paper.

Code availability
The code being used in the current study for developing the algorithm 
is available via GitHub at https://github.com/njiang2024/DeepRET 
Stroke (ref. 59).
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Extended Data Fig. 1 | Time-Dependent Analysis for Predicting Incident Stroke 
Event by Validation Cohorts. Shaded areas represent bootstrapped (n = 1,000) 
95% confidence intervals. SDPP: Shanghai Diabetes Prevention Program; ECHM, 
The Eastern China Health Management; NDSP, Nicheng Diabetes Screening 
Project; WTHM, Wuhan Tongji Health Management; PUDM: Peking  
Union Diabetes Management; CUHK-STDR, The Chinese University of 

Hong Kong-Sight-Threatening Diabetic Retinopathy; SEED, the Singapore 
Epidemiology of Eye Diseases study; MeLODY, the Multiethnic Lifestyle, Obesity, 
and Diabetes Registry in Malaysia Diabetes Registry in Malaysia cohort; UKB, UK 
biobank; I-OPTA, Identification of patient-reported barriers to treatment with 
anti-VEGF for neovascular AMD; AREDS, Age-Related Eye Disease Study; AUC: 
area under the curve. CI: confidence interval.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Explainability Analysis of DeepRETStroke System in 
Detecting Silent Brain Infarction. Left Panel: Original color fundus images of 
participants. Middle Panel: SHAP (Shapley Additive Explanations) summary plot 
of fundus images. The pixel color from green to blue indicates the increasing 
expectation of gradients for SBI detection. Right Panel: Occlusion-based 

attribution plot of fundus images. Red pixels reveal the areas with positive 
attribution highlighting possible pathological changes. For the detection of 
SBI (silent brain infarct), some anatomical structures associated with specific 
diseases, for example retinal vasculature, are highlighted. MRI Image: MRI lesion 
of SBI was highlighted.
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Explainability Analysis of DeepRETStroke System 
in Predicting Future Stroke. Left Panel: Original color fundus images of 
participants. Middle Panel: SHAP (Shapley Additive Explanations) summary plot 
of fundus images. The pixel color from green to blue indicates the increasing 
expectation of gradients for stroke prediction. Right Panel: Occlusion-based 

attribution plot of fundus images. Red pixels reveal the areas with positive 
attribution highlighting possible pathological changes. For the prediction of new 
onset stroke, some anatomical structures associated with specific diseases, for 
example retinal vasculature, are highlighted.
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Extended Data Fig. 4 | The Workflow of the Development of DeepRETStroke 
System. The DeepRETStroke system, which was built with a three-stage 
pretraining strategy, includes an encoder, an SBI Detector, an SBI Learner and 
a Stroke Predictor. For the first stage, a retinal feature encoder from RETFound 
were employed to perform self-supervised pretraining on SIM and CNDCS 
dataset. For the second stage, SDPP dataset was employed to roughly train 
the encoder and Stroke Predictor. For the third stage, SDPP-MRI dataset was 
employed along with SDPP dataset to train SBI Detector by semi-supervised 
learning strategy. The developed SBI Detector was then used to generate the  

‘soft label’ for each sample in SDPP dataset. Then, the encoder, SBI Learner and 
Stroke Predictor were jointly trained on samples in SDPP dataset with their 
‘soft label’ of SBI and ground truth label of future stroke. Finally, the developed 
encoder and Stroke Predictor were fine-tuned on population of NDSP dataset 
with stroke history to develop a specific model for recurrent stroke prediction.  
Of note, SBI detection and incident stroke prediction can be iteratively  
repeated for further optimization of the entire system. Here we highlighted 
the modules trained in each stage to provide a clearer explanation of the 
development process.
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Extended Data Fig. 5 | Study Design of the Prospective Real-world Study. For 
the real-world study within a community-based prospective cohort study of 
Chinese adults, 215 participants with prior stroke and 3 participants with SBI 
were screened in November 2022. Among these patients, 56 received integrated 

management (IM), while 162 did not. IM group were provided regular clinical and 
metabolic measurements, advised by specialists in comprehensive hospitals, 
received lifestyle guidance and peer support at community health service 
centers.
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Extended Data Table 1 | Performance of DeepRETStroke System for Detection of Silent Brain Infarction
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Extended Data Table 2 | Performance of DeepRETStroke System for Prediction of Incident Stroke
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Extended Data Table 3 | Internal and External Validation of the DeepRETStroke system in the Prediction of Incident Stroke in 
Diabetes cohort, in Hypertension cohort, and Carotid Atherosclerosis cohort
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Extended Data Table 4 | Characteristics of the Developmental, Internal and External Validation Datasets for the Prediction 
of Recurrent Stroke
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Extended Data Table 5 | Performance of DeepRETStroke system for Predicting Recurrent Stroke
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