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ABSTRACT 

Objective: To assess the association between glucagon-like peptide-1 receptor agonists (GLP-

1RA) use and risk of incident thyroid tumors. 

Research Design and Methods: Retrospective new user active comparator cohort study using 

international administrative claims and electronic health record databases. Participants included 

T2DM patients with prior metformin therapy initiating GLP-1RA versus new users of sodium-

glucose transport protein 2 inhibitors (SGLT2I), dipeptidyl peptidase IV inhibitors (DPP4I) and 

sulfonylureas (SU). The outcome was incident thyroid tumor and thyroid malignancy. Propensity 

score (PS) matching, and stratification were used for confounding adjustment with intention-to-

treat and on-treatment strategy. Cox regression was used to estimate hazard ratios (HR) pooled 

using random-effects meta-analysis. Unmeasured confounding was evaluated using negative 

outcomes, with calibration of the HR.  

Results: 460,032 users of GLP-1RA, 717,792 users of SGLT2I, 2,055,583 users of DPP4I and 

1,119,868 users of SU were included. Only US cohorts passed study diagnostics. Thyroid tumor 

incidence ranged from 0.88 to 1.03 per 1000 person years in GLP-1RA cohorts. GLP-1RA exposure 

was not associated with an increased risk of thyroid tumors compared with SGLT2I, DPP4Is or SUs 

(Meta-analysis: GLP-1RA vs SGLT2I range HR 0.83 (0.57-1.27) to HR 0.95 (0.85–1.06); GLP-1RA 

vs SU range HR 0.95 (0.75-1.20) to HR 1.03 (0.87-1.23); GLP-1RA vs DPP4I range HR 0.78 (0.60-

1.01) to HR 0.93 (0.83-1.04)). Analysis using thyroid malignancy, and including a 1-year lag 

period produced similar conclusions. 

Conclusion: In T2DM patients initiating second-line treatments, we observed no increased risk of 

thyroid tumors with GLP-1RA exposure. 

  



ARTICLE HIGHLIGHTS 

•       Why did we undertake this study? 

Safety concerns have been raised over the risk of thyroid tumors with GLP-1 receptor agonist 

therapy in pre-clinical models, with different international regulatory advice. 

 

•       What is the specific question(s) we wanted to answer? 

What is the risk of incident thyroid tumor in people with T2DM initiating GLP-1 receptor agonists 

compared to DPP4Is, SGLT2Is and SUs? 

 

•       What did we find? 

In this new user active comparator cohort design, no increased risk of thyroid tumors was observed 

with GLP-1 receptor agonist therapy in people with T2DM. 

 

•       What are the implications of our findings? 

The findings do not suggest that the increased risk of thyroid tumors observed in pre-clinical models 

translates to humans. 

 

  

 

 

 

 

 

 

 

 



INTRODUCTION 

Glucagon-like peptide-1 receptor agonists (GLP-1RA) are incretin hormone mimetics indicated for 

the treatment of type 2 diabetes mellitus (T2DM) and obesity (semaglutide and liraglutide) that      
stimulate glucose-dependent pancreatic insulin secretion and suppress glucagon secretion through 

direct activation of the GLP-1 receptor.[1] Evidence suggests that GLP-1RA reduce cardiovascular 

risk and reduce the progression of renal disease in patients with T2DM.[2-6] As a result, 

prescribing of GLP-1RA as second-line T2DM treatment has increased since their introduction, 

particularly in the US and are also used first-line in some patients.[7,8] 

Rodent studies have reported that GLP-1RA may cause thyroid C-cell hyperplasia, adenomas and 

carcinomas, such as medullary thyroid cancer, in a dose-dependent and time-dependent 

manner.[9-11] However, the level of GLP-1 receptor expression in thyroid tissue is species-specific 

with higher levels of receptor expression reported in rodents compared with humans.[9] GLP1-RA 

exposure in rodent studies are also administered at high dose. It therefore remains unclear 

whether such findings are relevant to humans as no risk has been reported in existing clinical 

trials. 

GLP-1RA including liraglutide, dulaglutide, exenatide and semaglutide have been      
contraindicated by the US Food and Drug Administration (FDA) in patients with a personal or 

family history of medullary thyroid cancer and multiple endocrine neoplasia type 2 (MEN2).[12-15] 

US GLP-1RA product information also contains warnings raising awareness about the symptoms of 

thyroid tumors. In contrast, no similar contraindications or warnings exist in product information in 

Europe where this potential risk is monitored as part of routine pharmacovigilance. 

A nested case-control study using French national health insurance data examined the association 

between GLP-1RA and thyroid cancer in people with T2DM treated with second-line therapy.[16] 

That study reported a 58% increased risk of thyroid cancer with exposure to GLP-1RA for one to 

three years, and a 36% increased risk with exposure longer than three years. However, several 

commentaries have raised concerns around the study design and the potential for residual 

unmeasured confounding, with a call to provide further information to confirm or refute these 

findings.[17-20] 

The Large-scale Evidence Generation and Evaluation across a Network of Databases for Type 2 

Diabetes Mellitus (LEGEND-T2DM) initiative aims to generate reliable evidence on the effects of 

second-line T2DM glucose-lowering agents using observational healthcare data by executing a 

series of comparative observational studies specifically aimed at minimizing bias and increasing 

reproducibility.[21] The aim of this analysis was to determine whether T2DM patients initiating 

GLP-1RA have a differential risk of incident thyroid tumors compared to patients initiating other 

second-line agents consisting of sodium-glucose transport protein 2 inhibitors (SGLT2I), dipeptidyl 

peptidase IV inhibitors (DPP4I) or sulfonylureas (SU). 

 



METHODS 

Study design and data sources 

We conducted an active comparator, new-user cohort design [22,23] in patients identified in 

routinely collected electronic health records (EHRs) and claims data from six national-level and 

four health-system datasets from the US (US Open Claims, Optum EHR, Optum DOD, CCAE, 

MDCD, MDCR, VA), Germany (IQVIA Germany), Spain (SIDIAP), and the United Kingdom (IMRD 

UK). All LEGEND-T2DM data sources were previously standardized to the Observational Health 

Data Sciences and Informatics (OHDSI)’s Observational Medical Outcomes Partnership (OMOP) 

common data model (CDM) version 5, which mapped international coding systems into standard 

vocabulary concepts. The use of the OMOP CDM allows a federated analysis of data and 

standardised analytics without patient-level data sharing. All data partners received institutional 

approval or exemption for their participation. Details of data sources are presented in 

Supplementary Table 1 and the study package is available at https://github.com/ohdsi-

studies/LegendT2dm.  This package provides end-to-end reproducible study code under our pre-

specified protocol [21] and is built upon the open-source Health Analytics Data-to-Evidence Suite 

(HADES) software library [24] using the R statistical programming language.   

Study population 

The study population included all patients in a data source who met the inclusion criteria for the 

second-line T2DM agent exposure cohorts. Three cohorts were created from the pairwise 

comparisons using people initiating GLP-1RA as the target cohort and those initiating DPP4I, SU 

and SGLT2I as the comparator cohorts, respectively. These cohorts consisted of patients with 

T2DM, and prior metformin monotherapy, who initiated treatment with one of four drug classes: 

GLP-1RA, sodium-glucose transport protein 2 inhibitors (SGLT2I), dipeptidyl peptidase IV inhibitors 

(DPP4I) and sulfonylureas (SU). The index date for each patient entering cohort was defined by 

the first exposure to any drug ingredient in the four drug classes. The inclusion criteria consisted 

of: 

• T2DM diagnosis and no type 1 or secondary diabetes mellitus diagnoses before the index 

date   

• At least 1 year of observation time before the index date 

•    No prior drug exposure to a comparator second-line or other antihyperglycemic agent (i.e. 

thiazolidinediones, acarbose, acetohexamide, bromocriptine, glibornuride, miglitol and 

nateglinide) 

• < 30 days of insulin exposure before the index date            

• > 90 days of continuous metformin exposure before the index date       

A schematic of the LEGEND-T2DM new-user cohort design is summarised in Figure 1. 

https://github.com/ohdsi-studies/LegendT2dm
https://github.com/ohdsi-studies/LegendT2dm
https://github.com/ohdsi-studies/LegendT2dm


Exposures 

Exposures consisted of the 22 drug ingredients that comprise several classes of T2DM second-line 

therapy:GLP-1RA, DPP4I, SGT2I and SU (Supplement Section 9.1 for included drug substances 

and codes). 

Outcome 

The outcome was thyroid tumors defined as an incident record for any type of neoplasm of the 

thyroid gland. This outcome definition included both malignant and benign thyroid tumors 

(Supplement Section 9.2). Patients who experienced the outcome before their index date were 

excluded from analysis. A post-hoc analysis was performed for malignant thyroid tumor. 

Analysis 

To adjust for measured confounding and to ensure balance between target and comparator 

cohorts, large-scale propensity score models were constructed for each comparison and data 

source using a consistent data-driven process through regularised regression.[25,26] This process 

engineers a large set of predefined baseline patient characteristics (>90,000 variables) that 

included demographics, comorbidities, concomitant medication use, and healthcare utilization to 

provide improved covariate balance between target and comparator cohorts and reduced residual 

systematic bias of effect estimates than smaller models.[26,27] We used L1 regularization through 

the high-performance Cyclops package [28] in HADES with 10-fold cross-validation to choose the 

appropriate strength of regularization across covariates. All covariates were identified within the 

365 days before and including the index date.  Given the subcutaneous route of administration of 

GLP-1RA compared with other drugs administered orally, device codes representing needles and 

associated health management encounters have been excluded from propensity score 

construction. We then used the resulting propensity score estimates for variable-ratio matching 

and 10-partition stratification of patients in the target and comparator cohorts. 

Cox proportional hazards models were used to estimate hazard ratios (HRs) for the risk of thyroid 

tumors in each data source, and estimates across non-overlapping data sources were meta-

analysed using a random-effects meta-analysis.[29] Potential residual bias from unmeasured 

confounding was evaluated by using approximately 100 negative outcome control experiments, 

where the null hypothesis of no effect was believed to be true. We first identified candidates for 

these control outcomes through a data-rich algorithm that identifies prevalent condition concept 
occurrences lacking evidence of association with exposures in published literature, drug-product 

labelling, and spontaneous reports. These candidates were then screened by clinical review to 

select the final set.[30] The empirical null distributions from these negative outcome control 

experiments were used to calibrate the HR estimate, 95% CI, and p-value for each study.[31,32] 

Blinded to the results, study diagnostics were first evaluated for all comparisons. These diagnostics 

consisted of: 



•       Minimum detectable risk ratio (MDRR) as a typical proxy for power, with event counts <5 

undisclosed for governance reasons, 

•       Propensity score distributions to evaluate empirical equipoise and population 

generalizability, 

•       Plots of standardised mean differences to evaluate cohort balance before and after PS-

adjustment across the extensive range of patient characteristics,   

•       Negative control calibration plots to assess residual bias, and 

•       Kaplan-Meier plots to assess proportional hazard assumptions. 

Comparisons were deemed acceptable if, after propensity score adjustment, they returned an 

MDRR <10, an absolute standardised mean differences between characteristics <0.15, an 

empirical equipoise >0.25[33,34, and no observed crossing of estimated survival probability 95% 

CI bands.  If the comparisons failed diagnostics related to covariate imbalance or systematic error 

(suggesting potential residual confounding) they were not included in the meta-analysis but are 

still reported for completeness. Patient follow-up was censored at the end of their time-at-risk 

(TAR) or of data source observation period. Each comparison was executed using two different TAR 

definitions reflecting different causal contrasts [35]: 

•       Intent-to-treat TAR where follow-up was censored at the end of observation. 

•       On-treatment TAR where follow-up was censored at treatment discontinuation or at      
escalation with other T2DM agents. 

Additional analysis 

We performed two post-hoc analyses in. First, we specifically examined malignant thyroid tumour 

as an outcome. Second, we incorporated a 1-year exposure lag period before outcomes could be 

counted to account for potential latency period in cancer development for the ITT analyses.  

Ethics 

All data partners received institutional review board approval or waiver in accordance with their 

institutional governance guidelines. 

  

RESULTS 

The cumulative number of T2DM patients included in each cohort varied by the analytical approach 

and therapeutic class. Unadjusted incidence rates and hazard ratio estimates for each individual 

data source are reported in Supplement Sections 5.1 to 5.3. Baseline patient characteristics for 

new users of GLP-1RA, SGLT2I, DPP4I and SU for each data source before and after propensity 

score matching and stratification are shown in Section 6 of the Supplement (Tables 14 to 42). For 

example, Table 1 summarise baseline patient characteristics for GLP1RA and SGLT2I new-users in 



the Open Claims data source and covariate balance after propensity score matching and 

stratification. The number of patients included in the meta-analysis across databases ranged from: 

316,587 to 460,032 initiating GLP-1RA; 713,801 to 717,792 initiating SGLT2I; 1,990,074 to 

2,055,583 initiating DPP4I; and 1,104,270 to 1,119,868 initiating SU. A total of 51 of 120 pairwise 

comparisons passed diagnostics and were considered acceptable for inclusion in the meta-analyses 

(a study diagnostic summary is reported in Supplement Section 7 and full details of covariate 

balance, systematic error and time at risk in Section 8). All data sources included in the meta-

analysis were from the US with the Open Claims database contributing approximately 85% of 

patients. 

GLP-1RA vs SGLT2I 

The aggregate crude incidence of thyroid tumors ranged from 0.88 (95%CI 0.82-0.94) to 1.00 

(95%CI 0.89-1.13) per 1000 person years (pys) in people initiating GLP-1RA and 0.82 (95%CI 

0.79-0.86) to 0.94 (95%CI 0.86-1.02) per 1000 pys in people initiating SGLT2I (Table 2). Cohort 

balance and systematic error diagnostics across data sources the GLP-1RA vs SGLT2I cohorts are 

shown in Supplement Section 8.1. There was no statistically significant increased risk of thyroid 

tumors for GLP-1RA exposure compared to SGLT2I exposure for any of the analyses (Table 3). 

GLP-1RA vs DPP4I 

The aggregate crude incidence of thyroid tumors ranged from 0.96 (95%CI 0.90-1.03) to 1.03 

(95%CI 0.91-1.15) per 1000 pys in people initiating GLP-1RA and 0.94 (95%CI 0.91-0.97) to 1.13 

(95%CI 1.06-1.20) per 1000 pys in people initiating DPP4I (Table 2). Cohort balance and 

systematic error diagnostics across data sources the GLP-1RA vs DPP4I cohorts are shown in 
Supplement Section 8.2. There was no statistically significant increased risk of thyroid tumors for 

GLP-1RA exposure compared to DPP4I exposure for any of the analyses (Table 3). 

GLP-1RA vs SU 

The aggregate crude incidence of thyroid tumors ranged from 0.88 (95%CI 0.82-0.94) to 0.95 

(95%CI 0.84-1.08) per 1000 pys in people initiating GLP-1RA and 0.72 (95%CI 0.70-0.73) to 0.81 

(95%CI 0.77-0.85) per 1000 pys in people initiating SU (Table 2). Cohort balance and systematic 

error diagnostics across data sources the GLP-1RA vs SU cohorts are shown in Supplement Section 

8.3. There was no statistically significant increased risk of thyroid tumors for GLP-1RA exposure 

compared to SU exposure for any of the analyses (Table 3). 

Additional analysis 

Post-hoc analysis specifically measuring hazard ratios for malignant thyroid tumor in databases 

available at the time did not alter the findings of the main analysis (Supplementary Tables 5-7). 

The same was observed when a one-year lag exposure period was included following cohort entry 

(Supplementary Tables 8-10). 

  



DISCUSSION 

Using a federated network of healthcare databases, we examined the association between GLP-

1RA exposure and incident thyroid tumors in a large number of T2DM patients initiating different 

second-line treatments. We observed no statistically significant increased risk of thyroid tumors 

among new users of GLP-1RA compared to new users of SGLT2I, DPP4I or SU therapy, with 

findings consistent across several analytical approaches. 

Evidence suggests that GLP-1 receptor expression in thyroid tissue is species-dependent.[9] 

Studies in mice and rats have suggested that the formation of medullary thyroid tumors is a 

potential safety concern of GLP-1RA use in humans. One rodent study investigating GLP-1 receptor 

proliferative action in thyroid C-cells reported that GLP-1RA caused receptor activation on rodent 

thyroid C-cells, and that long-term activation (up to 2 years) was associated with increased levels 

of C-cell proliferation and benign and malignant tumors formation in rats and mice.[9] Intriguingly, 

the incidence of thyroid adenomas and malignant carcinomas was different across rodent species 

treated with liraglutide, with rats having a higher incidence of both thyroid adenomas and 

carcinomas whilst in mice an increase of adenomas was observed.  However, no similar C-cell 

proliferative effects were observed in nonhuman primates.[9] Another study reported diffuse C-cell 

hyperplasia and an increase in the number of adenomas and carcinomas in rats treated with 

dulaglutide over 93 weeks whilst a further study of rats reported an increase in C-cell hyperplasia 

with exenatide.[10,11] However, those studies used doses that exceed equivalent doses in 

humans and may not be representative. A meta-analysis of 45 clinical trials including 52,600 

patients with GLP-1RA use also reported no statistically significant increased risk of thyroid cancer 

or thyroid masses.[36] However, the authors similarly acknowledged limitations in sample size and 

imprecise effect estimates. 

The nested case-control study by Bezin, et al. demonstrated a 46% increased risk of thyroid 

carcinoma with current GLP-1RA use and a 58% increased risk with one to three years of 

cumulative GLP-1RA use. This association remained elevated with cumulative use of longer than 

three years. That study examined exenatide, liraglutide, semaglutide, albiglutide, and dulaglutide, 

which were the GLP-1RA available in France during the study period. Whilst that study adjusted for 

important potential confounders, the extent of confounding adjustment was potentially limited with 

exclusion of patients if the number of dispensations were less than 3 (or 2 if at least one was 

described a large package) within a 1-year period between 2006 and 2018. The association was 

also compared with DPP4I use with a smaller association still observed seen with cumulative DPP4I 

use of longer than three years. Comparison with SGLT2I was not performed because SGLT2I were 

not marketed in France during the study period. Several commentaries raised caution over the 

interpretation of those results highlighting the potential for further unmeasured confounding, 

uncertainty around outcome validity, and not demonstrating further increasing risk with increasing 

cumulative exposure.[17-20] Our study differs in that we applied an active comparator new user 

cohort study design across multiple databases, and had more robust approaches to account for 

observed and unobserved confounding. We did not examine differences in dosing which remains a 

limitation of our study.  



A recent cohort study by Bea, et al. analysed claims data from the Korean National Health 

Insurance Service from 21,722 new users of GLP-1RA with T2DM compared to new users of 

SGLT2I.[37] That study adjusted for a larger number of potential confounding variables and 

observed no increased risk of incident thyroid cancer with GLP-1RA (primary analysis HR 0.98, 

95% CI 0.62-1.53). Whilst our results are more consistent to the findings of Bea, et al. our study 

differs in that our outcome include both benign and malignant thyroid tumors that could limit our 

study’s direct comparability. However, our outcome is relevant because safety concerns are based 

upon the potential extrapolation of effects in pre-clinical models, which show an increase in both 

benign and malignant thyroid tumors, with the former being more frequent.[9,10] 

Strengths of our study include using the LEGEND approach aimed at minimizing bias and 

increasing reproducibility and the use of an active comparator new user design across multiple 

data sources. The large network of databases increased precision and provided the ability to 

examine consistency of results. Large-scale propensity score models were used for improved 

confounding adjustment and implemented in a standardised way across each database. We 

examined propensity score diagnostics blinded to the treatment effect results to check model 

performance and thereby determine whether treatment effects were at risk of bias. 

There were several limitations to our study. Despite the use of large-scale propensity score 

adjustment, 69 of 120 cohort comparisons failed study diagnostics, predominantly relating to 

covariate imbalance and potential residual confounding, which affected all European databases. 

The results of these analyses are reported for completeness in the supplement but should be 

treated with caution. For this reason, only estimates from cohorts that did pass study diagnostics 

have been included in the meta-analysis that were all from US databases. However, a recently 

reported Scandinavian cohort study also found no evidence of an increased risk of thyroid cancer 

with GLP-1RA use.[38] Furthermore, in the cohorts that passed study diagnostics, residual 

unobserved confounding remains possible, although examination of negative control outcome 

experiment plots and their use in calibrating the effect estimates reduces this possibility. Our 

retrospective cohort study was not able to include tirzepatide within the class level exposure due 

to it being only recently available. We did not adjust for post-baseline risk factors for adherence in 

our on-treatment analysis due to the tightly defined cohorts using several active comparators 

producing consistent results. We did not condition on filling a second prescription to avoid 

immortal time bias. However, 30-days (the usual time of second prescriptions) typically fell lower 

than the 10th percentile of patients’ time-at-risk. DPP4Is also enhance levels of GLP1 but to a 

lower extent than GLP1-Ras.[39] Whilst using DPP4Is as a control may reduce the size of any 

potential risk difference, we observed similar and consistent results using SGLT2I and SU as 

comparators suggesting this had negligible impact 

We used a composite outcome for our primary analysis consisting of benign and malignant thyroid 

tumors given potential GLP-1RA effects on both seen in animal models. We also examined the 

association with malignant thyroid tumors We identified thyroid tumors using clinical codes and we 

do not have pathological confirmation of the diagnosis or include procedures in our definition. We 

excluded people with a prior history of thyroid tumors only and people with metastases to the 



thyroid may have been included. However, this presentation is rare.[40] Whilst the ITT analysis 

allows the observance of outcomes that occur after the patient has stopped taking the drug, a 

cumulative exposure analysis was not specifically performed to directly compare our results with 

those from Bezin et al. Cohort follow-up began at drug initiation and cases occurring shortly after 

initiation may not be causally related although this may be non-differential given the active 

comparator is also a second-line agent. Like other observational studies, drug exposure is based 

upon prescription and dispensing information only and that treatment was accurately 

characterised. The study assumes data are valid and that an individual does not have the condition 

if not recorded. We included only individuals whose baseline inclusion criteria could be 

characterised using all features, except for demographics, to indicate the presence or absence of 

health records in a given time-period. Death data was not comprehensively recorded in several 

included US databases precluding a competing risk analysis. However, this is unlikely to affect the 

findings due to robust assessment of cohort diagnostics, consistent findings and the lack of 

significant known mortality differences between the comparators. Bias may be introduced if 

differential screening for thyroid tumors prior to therapy occurred. However, this risk is minimised 

through the use of large-scale confounding adjustment and results using a one-year lag exposure 

period did not change our conclusion. 

Thyroid tumors have been identified as an important safety concern included in risk minimisation 

plans for GLP-1RA use following drug approval. The study by Bezin, et al. suggests an association 

may exist in humans, leading to a review of this potential safety concern in Europe. However, 

whilst acknowledging the differences between studies, we did not observe an association between 

GLP-1RA and thyroid tumors. Instead, our findings more closely align with the conclusions by Bea, 

et al., suggesting no further warnings are warranted. Despite these findings, the risk of thyroid 

tumors in people prescribed GLP-1RA is likely to remain as an important potential concern for the 

foreseeable future until further information can be generated through ongoing post-approval safety 

studies (EUPAS registration EUPAS45172, EUPAS32646, EUPAS11850) and routine 

pharmacovigilance monitoring. 

Conclusion 

In this federated network study involving patients with T2DM initiating different second-line 

antihyperglycemic treatments, GLP-1RA exposure was not associated with an increased risk of 

thyroid tumors compared with SGLT2I, DPP4I or SU therapy. 
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Table 1. Baseline patient characteristics for GLP-1RA (T) and SGLT2I (C) new-users in the 
Open Claims data source. We report proportion of initiators satisfying selected baseline 
characteristics and the standardized difference of population proportions (StdDiff) before and 
after propensity score adjustment. 

       
 Before adjustment  After matching  After stratification  

Characteristic T (%) C (%) StdDiff  T (%) C (%) StdDiff  T (%) C (%) StdDiff  
 

Age group  

15 - 19 0.2 0.1 0.03 0.2 0.1 0.01 0.2 0.1 0.01 
20 - 24 0.8 0.4 0.05 0.6 0.6 0.00 0.6 0.5 0.01 
25 - 29 1.4 0.7 0.07 1.1 1.1 0.00 1.1 1.0 0.01 
30 - 34 2.8 1.7 0.07 2.2 2.3 0.00 2.1 2.1 0.00 
35 - 39 5.1 3.5 0.08 4.3 4.4 0.00 4.1 4.1 0.00 
40 - 44 8.3 6.2 0.08 7.5 7.3 0.01 7.1 7.0 0.00 
45 - 49 11.9 9.9 0.06 11.3 11.0 0.01 10.8 10.5 0.01 
50 - 54 15.4 13.8 0.05 15.0 15.0 0.00 14.4 14.4 0.00 
55 - 59 16.4 16.6 0.00 16.9 16.8 0.00 16.9 16.8 0.00 
60 - 64 15.0 16.7 -0.05 15.8 15.8 0.00 15.9 16.1 0.00 
65 - 69 11.1 13.1 -0.06 12.0 12.1 0.00 12.4 12.3 0.00 
70 - 74 6.7 8.9 -0.08 7.5 7.7 -0.01 7.9 8.2 -0.01 
75 - 79 3.3 5.3 -0.10 3.7 3.9 -0.01 4.4 4.6 -0.01 
80 - 84 1.4 2.9 -0.10 1.7 1.9 -0.01 2.2 2.4 -0.01 
85 - 89 0.1 0.2 -0.03 0.1 0.2 -0.01 0.1 0.2 -0.02 
Gender: female 59.8 45.6 0.29 50.9 51.0 0.00 50.9 51.0 0.00 
Medical history: General          

Acute respiratory disease 14.6 13.4 0.03 13.5 13.9 -0.01 13.9 13.9 0.00 
Attention deficit hyperactivity disorder 1.2 0.6 0.06 0.8 0.8 0.00 0.8 0.8 0.00 
Chronic liver disease 0.8 1.0 -0.03 0.8 0.9 -0.01 0.8 0.9 -0.01 
Chronic obstructive lung disease 4.1 4.4 -0.01 4.0 4.2 -0.01 4.2 4.4 -0.01 
Crohn’s disease 0.2 0.2 0.00 0.1 0.2 -0.01 0.1 0.2 0.00 
Dementia 0.3 0.4 -0.02 0.3 0.4 -0.01 0.4 0.4 0.00 
Depressive disorder 10.3 7.0 0.12 8.5 8.8 -0.01 8.4 8.3 0.00 
Gastroesophageal reflux disease 9.6 8.2 0.05 8.7 9.0 -0.01 8.7 8.9 0.00 
Gastrointestinal hemorrhage 1.1 1.2 0.00 1.1 1.0 0.00 1.1 1.1 0.00 
Human immunodeficiency virus infection 0.3 0.3 0.01 0.3 0.3 0.00 0.3 0.3 0.00 
Hyperlipidemia 39.9 44.4 -0.09 40.7 40.8 0.00 42.7 42.8 0.00 
Hypertensive disorder 46.7 49.0 -0.05 46.6 46.7 0.00 48.3 48.2 0.00 
Lesion of liver 0.6 0.6 0.00 0.5 0.6 -0.01 0.6 0.6 0.00 
Obesity 20.3 12.8 0.20 15.9 16.3 -0.01 16.0 15.5 0.01 
Osteoarthritis 15.7 13.5 0.06 14.3 14.7 -0.01 14.3 14.4 0.00 
Pneumonia 2.2 2.0 0.01 2.0 2.1 -0.01 2.0 2.1 -0.01 
Psoriasis 1.3 1.0 0.03 1.2 1.1 0.01 1.2 1.1 0.01 
Renal impairment 4.3 5.2 -0.04 4.4 4.6 -0.01 4.9 5.0 0.00 
Rheumatoid arthritis 1.1 0.9 0.02 1.0 1.0 -0.01 1.0 1.0 0.00 
Schizophrenia 0.3 0.3 0.00 0.3 0.3 0.00 0.3 0.3 0.00 
Urinary tract infectious disease 4.7 3.9 0.04 4.1 4.4 -0.01 4.1 4.3 -0.01 
Viral hepatitis C 0.2 0.3 -0.01 0.2 0.3 -0.01 0.2 0.3 0.00 
Visual system disorder 16.1 16.8 -0.02 15.9 16.4 -0.01 16.4 16.7 -0.01 
Medical history: Cardiovascular disease          

Atrial fibrillation 2.5 3.7 -0.07 2.7 2.9 -0.01 3.1 3.3 -0.01 
Cerebrovascular disease 1.8 2.5 -0.04 2.0 2.0 0.00 2.2 2.3 0.00 
Coronary arteriosclerosis 5.5 9.1 -0.14 6.1 6.4 -0.01 7.5 7.8 -0.01 
Heart disease 13.4 18.3 -0.14 14.0 14.6 -0.02 16.0 16.7 -0.02 
Heart failure 2.6 4.7 -0.11 2.8 3.1 -0.02 3.4 4.0 -0.03 
Ischemic heart disease 2.6 4.5 -0.10 2.9 3.1 -0.01 3.6 3.8 -0.01 
Peripheral vascular disease 3.6 4.3 -0.04 3.6 3.9 -0.01 3.9 4.1 -0.01 
Pulmonary embolism 0.5 0.4 0.01 0.5 0.5 0.00 0.5 0.5 0.00 
Venous thrombosis 0.6 0.7 0.00 0.6 0.7 0.00 0.7 0.7 0.00 
Medical history: Neoplasms          

Hematologic neoplasm 0.5 0.5 -0.01 0.5 0.5 0.00 0.5 0.5 0.00 
Malignant lymphoma 0.3 0.3 -0.01 0.3 0.3 0.00 0.3 0.3 0.00 
Malignant neoplasm of anorectum 0.1 0.1 -0.01 0.1 0.1 -0.01 0.1 0.1 -0.01 
Malignant neoplastic disease 4.4 4.9 -0.02 4.4 4.6 -0.01 4.7 4.8 -0.01 
Malignant tumor of breast 1.0 0.9 0.01 1.0 1.0 0.00 1.0 1.0 -0.01 
Malignant tumor of colon 0.2 0.2 -0.01 0.2 0.2 0.00 0.2 0.2 0.00 
Malignant tumor of lung 0.1 0.2 -0.01 0.1 0.1 0.00 0.1 0.1 0.00 
Malignant tumor of urinary bladder 0.1 0.2 -0.01 0.2 0.1 0.00 0.2 0.2 0.01 
Primary malignant neoplasm of prostate 0.6 0.9 -0.04 0.8 0.8 0.00 0.8 0.8 0.00 
Medication use          
Agents acting on the renin-angiotensin system 62.0 68.4 -0.13 64.8 64.7 0.00 66.1 66.2 0.00 



Antibacterials for systemic use 58.0 54.4 0.07 55.9 56.7 -0.02 55.6 56.0 -0.01 
Antidepressants 39.2 28.9 0.22 34.8 35.5 -0.01 33.2 33.2 0.00 
Antiepileptics 22.8 17.9 0.12 20.6 20.9 -0.01 20.1 20.0 0.00 
Antiinflammatory and antirheumatic products 38.3 35.9 0.05 37.0 37.2 0.00 36.9 37.1 0.00 
Antineoplastic agents 5.6 4.5 0.05 5.0 5.1 0.00 5.0 5.1 0.00 
Antipsoriatics 1.4 0.9 0.04 1.2 1.2 0.00 1.2 1.1 0.00 
Antithrombotic agents 13.8 18.5 -0.13 14.7 15.2 -0.01 16.5 16.9 -0.01 
Beta blocking agents 28.6 33.6 -0.11 29.3 30.3 -0.02 31.3 32.0 -0.01 
Calcium channel blockers 22.6 24.6 -0.05 23.3 23.7 -0.01 23.8 24.0 0.00 
Diuretics 40.8 39.7 0.02 39.8 40.6 -0.02 39.9 40.3 -0.01 
Drugs for acid related disorders 33.8 31.5 0.05 32.4 33.0 -0.01 32.3 32.7 -0.01 
Drugs for acid related disorders 33.8 31.5 0.05 32.4 33.0 -0.01 32.3 32.7 -0.01 
Drugs for obstructive airway diseases 41.9 36.8 0.10 39.4 40.1 -0.01 38.9 39.0 0.00 
Immunosuppressants 3.3 2.7 0.04 3.0 3.0 0.00 3.0 2.9 0.00 
Lipid modifying agents 64.9 72.3 -0.16 68.3 68.8 -0.01 69.4 69.9 -0.01 
Opioids 24.9 23.1 0.04 23.6 24.1 -0.01 23.8 23.8 0.00 
Psycholeptics 26.1 21.6 0.11 23.6 24.4 -0.02 23.3 23.5 -0.01 
Psychostimulants 4.8 2.9 0.10 3.7 3.8 0.00 3.7 3.6 0.01 

Please refer to the supplementary material for tables of characteristics related to other databases and exposures.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 2. Number of patients, person time, outcomes and crude incidence of thyroid tumors in each cohort 
and type of analysis. 

  Patients Exposure (per 
1000 pys) 

Outcomes Incidence (per 1000 pys) 

  T C T C T C T (95%CI) C (95%CI) 

GLP-1RA vs SGLT2I                 

PS matching on-
treatment 

366,899 713,801 242.7 555.1 223 520 0.92 (0.80 - 
1.05) 

0.94 (0.86 - 
1.02) 

PS stratification on-
treatment 

446,146 713,873 279.8 555.2 280 520 1.00 (0.89 - 
1.13) 

0.94 (0.86 - 
1.02) 

PS matching ITT 369,051 717,707 855.1 2093.6 751 1,725 0.88 (0.82 - 
0.94) 

0.82 (0.79 - 
0.86) 

PS stratification ITT 448,528 717,792 958.5 2093.7 900 1,725 0.94 (0.88 - 
1.00) 

0.82 (0.79 - 
0.86) 

GLP-1RA vs DPP4I                 

PS matching on-
treatment 

316,587 1,104,270 224.4 968.6 218 1,091 0.97 (0.85 - 
1.11) 

1.13 (1.06 - 
1.20) 

PS stratification on-
treatment 

457,288 1,107,973 285.7 972.0 293 1,098 1.03 (0.91 - 
1.15) 

1.13 (1.06 - 
1.20) 

PS matching ITT 320,991 1,133,559 876.3 4767.9 845 4,514 0.96 (0.90 - 
1.03) 

0.95 (0.92 - 
0.97) 

PS stratification ITT 460,032 1,119,868 1011.0 4734.0 1,000 4,446 0.99 (0.93 - 
1.05) 

0.94 (0.91 - 
0.97) 

GLP-1RA vs SU                 

PS matching on-
treatment 

353,356 1,990,074 233.6 1936.6 206 1,571 0.88 (0.77 - 
1.01) 

0.81 (0.77 - 
0.85) 

PS stratification on-
treatment 

425,525 2,055,583 266.2 2001.5 253 1,627 0.95 (0.84 - 
1.08) 

0.81 (0.77 - 
0.85) 

PS matching ITT 357,988 2,042,127 873.7 8520.9 769 6,210 0.88 (0.82 - 
0.94) 

0.73 (0.71 - 
0.75) 

PS stratification ITT 425,525 2,055,583 939.5 8691.8 857 6,230 0.91 (0.85 - 
0.98) 

0.72 (0.70 - 
0.73) 

ITT=intention to treat. PS=propensity score. T=target cohort. C=comparator cohort. CI=confidence interval. Pys=person years. GLP-1RA = Albiglutide, 
Dulaglutide, Exenatide, Liraglutide, Lixisenatide, Semaglutide (Tirzepatide was not included due to it being only recently available and the cohort was 
retrospective). DPP4I = Alogliptin, Linagliptin, Saxagliptin, Sitagliptin, Vildagliptin. SGLT2I = Canagliflozin, Dapagliflozin, Empagliflozin, Ertugliflozin. SU = 
Chlorpropamide, Glimepiride, Glipizide, Gliquidone, Glyburide, Tolazamide, Tolbutamide. 

 

  

 

 

 



Table 3. Calibrated and uncalibrated meta-analysed hazard ratios for the association with GLP-1RA exposure 
and thyroid tumors across the databases passing study diagnostics. 

  Uncalibrated Calibrated 

  HR (95% CI) P-value HR (95% CI) P-value 

GLP-1RA vs SGLT2I         

   Unadjusted on-treatment 1.05 (0.96 - 1.14) 0.29 0.96 (0.60 - 1.52) 0.86 

PS matching on-treatment 0.86 (0.59 – 1.24) 0.41 0.83 (0.57 – 1.27) 0.33 

PS stratification on-treatment 0.90 (0.77 – 1.05) 0.18 0.88 (0.75 – 1.03) 0.13 

Unadjusted ITT 1.12 (1.07 - 1.17) <0.01   1.02 (0.77 - 1.36)  0.88 

PS matching ITT 0.92 (0.77 – 1.10) 0.37 0.89 (0.74 – 1.07) 0.22 

PS stratification ITT 0.97 (0.89 – 1.06) 0.55 0.95 (0.85 – 1.06) 0.35 

GLP-1RA vs DPP4I         

   Unadjusted on-treatment 0.95 (0.76 - 1.18) 0.63 0.98 (0.44 - 2.17) 0.93 

PS matching on-treatment 0.79 (0.65 - 0.97) 0.02 0.78 (0.60 - 1.01) 0.06 

PS stratification on-treatment 0.81 (0.70 - 0.95) <0.01 0.83 (0.67 - 1.03) 0.10 

Unadjusted ITT 1.09 (0.95 - 1.25) 0.21 1.08 (0.65 - 1.79) 0.79 

PS matching ITT 0.93 (0.85 - 1.02) 0.12 0.92 (0.79 - 1.06) 0.24 

PS stratification ITT 0.94 (0.87 - 1.01) 0.11 0.93 (0.83 - 1.04) 0.22 

GLP-1RA vs Sulfonylureas         

   Unadjusted on-treatment 0.49 (0.42 - 0.57) <0.01 0.48 (0.19 - 1.21) 0.12 

PS matching on-treatment 0.94 (0.78 - 1.15) 0.56 0.95 (0.75 - 1.20) 0.68 

PS stratification on-treatment 0.93 (0.80 - 1.09) 0.37 0.94 (0.73 - 1.21) 0.64 

Unadjusted ITT   0.56 (0.51 - 0.63)  <0.01 0.55 0.27 - 1.13) 0.11 

PS matching ITT 1.04 (0.95 - 1.14) 0.42 1.03 (0.87 - 1.23) 0.72 

PS stratification ITT 1.00 (0.92 - 1.09) 0.96 1.02 (0.84 - 1.24) 0.86 

ITT=intention to treat. PS=propensity score.HR=hazard ratio. CI=confidence interval. GLP-1RA = Albiglutide, Dulaglutide, Exenatide, Liraglutide, Lixisenatide, 
Semaglutide (Tirzepatide was not included due to it being only recently available and the cohort was retrospective). DPP4I = Alogliptin, Linagliptin, 
Saxagliptin, Sitagliptin, Vildagliptin. SGLT2I = Canagliflozin, Dapagliflozin, Empagliflozin, Ertugliflozin. SU = Chlorpropamide, Glimepiride, Glipizide, 
Gliquidone, Glyburide, Tolazamide, Tolbutamide. 

  

 

  

 

 

 

 

 



FIGURE LEGEND 

Figure 1. Schematic of new-user cohort design to study thyroid tumor with second-line treatments 
for T2DM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


