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Abstract 19 

Responses to hormones acting through nuclear receptors are controlled by modulation of hormone 20 

concentrations not only in the circulation but also within target tissues. In recent decades, the role of 21 

enzymes that amplify or reduce local hormone concentrations has become well-established for 22 

glucocorticoid and other lipophilic hormones. Moreover, transmembrane transporters have proven 23 

critical in determining tissue responses to thyroid hormones, but there has been less consideration of 24 

the role of transmembrane transport for steroid hormones. ATP-binding cassette (ABC) proteins were 25 

first shown to influence accumulation of glucocorticoids in cells almost three decades ago. More 26 

recent observations suggest that differential transport of both exogenous and endogenous 27 

glucocorticoids by ABCB1 and ABCC1 transporters provides a mechanism whereby different tissues 28 

are preferentially sensitive to different steroids. This Review summarises this evidence, and the new 29 

insights that it provides for the physiology and pharmacology of glucocorticoid action, including in new 30 

approaches to glucocorticoid replacement. 31 
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Introduction 42 

Glucocorticoid hormones are vital for life, with diverse effects on multiple processes and 43 

systems. Adverse effects of glucocorticoid excess are well-recognised in Cushing’s syndrome, and even 44 

subtle dysregulation has implications, for example in causing cardiovascular disease.1 Over the last 45 

thirty years it has been appreciated that the concentration of glucocorticoid in blood does not 46 

necessarily reflect that within tissues, with additional pre-receptor control from enzymes (e.g. 11β-47 

hydroxysteroid dehydrogenase) and binding proteins.2,3  48 

As lipophilic molecules, glucocorticoids diffuse across cell membranes to interact with 49 

intracellular targets, but they can also undergo active transmembrane transport. This was first 50 

described for the ABCB1 transporter (of the ATP-Binding Cassette [ABC] protein family), which exports 51 

cortisol and a variety of synthetic glucocorticoids from “sanctuary sites” including the brain.4,5 52 

Intriguingly, corticosterone, the other endogenous human glucocorticoid, is not readily exported by 53 

ABCB1, but we have recently discovered that the ABCC1 transporter, found in tissues including 54 

adipose, exports corticosterone but not cortisol.6 55 

Here we will explore the implications of this tissue-specific glucocorticoid transport in central 56 

control of the hypothalamic-pituitary-adrenal (HPA) axis, adipose tissue metabolism, and pregnancy. 57 

We will also consider whether the steroid-specificity of ABCB1 and ABCC1 transport offers insights 58 

into the different roles of corticosterone and cortisol in humans, and the opportunity for developing 59 

glucocorticoid therapies which are better targeted to maximise efficacy and minimise toxicity. 60 

 61 

Lipophilic hormone movement 62 

The “free hormone hypothesis” determines that unbound lipophilic hormones move passively 63 

down a concentration gradient,7 and indeed cells without relevant membrane transporters take up 64 

steroids freely.8  Differences in tissue uptake were previously attributed to physicochemical 65 
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properties, e.g. lipophilicity, until discovery of specific thyroid hormone transporters challenged 66 

traditional assumptions. The level of hormone (triiodothyronine, T3) available to receptors not only 67 

depends on hormone synthesis and activation, but also on transport into and out of cells, notably by 68 

the monocarboxylate 8 (MCT8) transporter.9 Neuronal T3 uptake is critically impaired without MCT8, 69 

as occurs in the X-linked “Allan-Herndon-Dudley Syndrome” of neurodevelopmental anomalies with 70 

abnormal thyroid function.10 71 

Cellular uptake of glucocorticoids by membrane transporters has been demonstrated in 72 

Drosophila, where loss of the ‘Ecdysone Importer’ (EcI) produces a steroid-deficient phenotype.11 73 

Organic anion transporting polypeptide (OATP) transporters mediate the uptake of glucocorticoids in 74 

rat liver ex vivo, however this has not been reproducible in humans.12,13 A saturable glucocorticoid 75 

uptake mechanism across the blood-brain and blood-CSF (cerebrospinal fluid) barriers in mice was 76 

only discernible at supraphysiological concentrations, so may not be physiologically relevant.14        77 

Our increasing understanding of the importance of transporters for thyroid hormone function 78 

sets a biological precedent for other lipophilic hormones, however, whilst similar active import of 79 

glucocorticoids in humans has not been shown, there is mounting evidence supporting facilitated 80 

export of glucocorticoids from cells, particularly by two members of the ABC transporter family. 81 

 82 

ABCB1 and ABCC1 are steroid exporters 83 

The ABC protein family 84 

One of the most highly conserved protein superfamilies, ABC proteins shuttle toxins, 85 

xenobiotics, and signalling molecules across eukaryotic and prokaryotic cell membranes. Classified 86 

into seven subfamilies according to their structural similarity and sequence homology, they have been 87 

actively researched for decades, particularly in relation to multidrug resistance. The evolution and 88 

relevance of this transporter superfamily in cancer drug efflux has been well-reviewed,15,16 yet of the 89 
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over fifty human ABC proteins that have been identified, only ABCB1 and ABCC1 have recognised roles 90 

in glucocorticoid transport.17  91 

The typical ABC transporter is a homodimer characterised by two transmembrane domains 92 

(TMDs) and two cytoplasmic nucleotide-binding domains (NBDs) (FIG. 1).18  Each TMD domain has 93 

between six and ten transmembrane α-helices depending on the specific transporter, and is involved 94 

in substrate recognition. The cytoplasmic NBDs contain conserved motifs for ATP binding and 95 

hydrolysis, including the ABC signature motif (or C-loop motif), Walker A motif (P-loop)  and Walker B 96 

motif.17 Together, these dimeric NBDs act to hydrolyse ATP and provide energy to drive transport 97 

against concentration gradients. 98 

Several models have been proposed to explain the relationship between ATP hydrolysis and 99 

TMD-mediated transport,19 with most purporting that energy from ATP hydrolysis enables switching 100 

between inward and outward facing configurations (FIG. 1A).  Individual transporters are 101 

unidirectional: almost exclusively exporters in eukaryotic cells, but importers (of nutrients) or 102 

exporters (of toxins and cell wall substrates) in bacteria.20 Consistent with this export function, 103 

transporters are typically found at luminal surfaces to limit xenobiotic exposure.17 Substrates range 104 

from ions to large proteins and while there is a high degree of overlap between transporters, the 105 

molecular basis of this remains poorly documented. 106 

 107 

ABCB1 and steroid export  108 

Initially named P-glycoprotein (P-gp) and later MDR-1 (multiple drug resistance protein 1), 109 

ABCB1 has been extensively studied as the archetypal multidrug transporter, exporting a broad array 110 

of xenobiotics including antineoplastics, antimicrobials and antidepressants (see reviews by Juan-111 

Carlos, Sissung and Hodges).15,21,22 112 

Encoded by the human ABCB1 gene located on chromosome 7q21.12, the resultant protein is 113 

1280 amino acids (141.5 kDa) in size with 12 membrane spanning helices.23 The polyspecificity of ABC 114 
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transporters is often purported to result from plasticity of the drug-binding pocket, both in terms of 115 

side chain and backbone arrangements. Numerous attempts have been made over the years to 116 

determine the 3D structure of ABC proteins in efforts to understand their transport mechanisms and 117 

substrate specificity, however their size and hydrophobicity provide significant challenges.24 Recent 118 

advances in the use of cryo-electron microscopy have enabled structural insights into substrate 119 

binding.25-27 Alam et al reconstituted the structure of human ABCB1 in complex to chemotherapeutic 120 

drugs and revealed the drug-binding cavity is globular in shape, with interactions from all 12 TMDs 121 

(FIG. 1B).25 Moreover they propose that substrate-induced structural changes in NBD2 confer changes 122 

in ATPase activity, which determines transport action.  123 

While a putative steroid-binding site has been identified in human ABCB1, this was based upon 124 

a homology model of just the NBDs28 and is not definitive. However, physiological data does support 125 

selective ABCB1-mediated transport of steroids. In the 1960s, murine fibroblasts were observed 126 

exporting steroids in an energy- and temperature-dependent manner, consistent with active 127 

transport.29 Cortisol export was later demonstrated in a porcine renal tubular cell line (LLC-PK1) 128 

overexpressing human ABCB1.30 In the intervening period, several endogenous and synthetic steroids 129 

have been confirmed as ABCB1 substrates. Gruol and Bourgeois stratified steroids into three 130 

categories depending on the presence of hydroxyl groups at positions 11 and 17;31 ABCB1-mediated 131 

efflux was highest for steroids with both hydroxyl groups (including dexamethasone, cortisol and 132 

prednisolone), lowest for those with neither (deoxycorticosterone and progesterone), and 133 

intermediate in those with one group (including corticosterone and aldosterone). Yates further 134 

illustrated that A-ring planarity and 6α- and 16α- methyl substitution enhanced transport, in keeping 135 

with a critical hydrophobic pocket in the steroid-binding region.32 Methylprednisolone is the 136 

glucocorticoid most effectively exported by ABCB1, followed by prednisolone, betamethasone, 137 

prednisone, dexamethasone, cortisol and cortisone.31-33 Aldosterone appears to be weakly 138 

transported, but there is no evidence that sex steroids, 11-deoxycorticosterone and progesterone 139 

undergo ABCB1-mediated export,31 although progesterone does bind avidly to ABCB1 with inhibitory 140 
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effect.34 Corticosterone - the predominant glucocorticoid in rats and mice - was initially shown to be 141 

an ABCB1 substrate on the basis of efflux from murine macrophage-like cells.35  Indeed recent in vitro 142 

work in murine adrenocortical cells has demonstrated that the ability of these cells to secrete 143 

corticosterone is blocked by pharmacological ABCB1 inhibition.36 This is in contrast to previous in vitro 144 

work showing no corticosterone export in the murine LMCAT fibroblast line.31,37-39  Importantly, in 145 

studies of murine thymoma cells overexpressing Abcb1 where corticosterone and cortisol transport 146 

was compared, there was lower efflux of corticosterone compared to cortisol,31 indicating a 147 

preference of this transporter for cortisol. Studies of the human transporter have not shown 148 

corticosterone to be transported by ABCB1, so affinity may be species specific.4,40      149 

 150 

ABCC1 and steroid export 151 

First identified and cloned as multidrug resistance protein1 (MRP1), ABCC1 was also 152 

discovered in multidrug resistance studies where high levels of expression are poor prognostic 153 

indicators in certain malignancies.41-43  Since then, ABCC1 has been shown to efflux a diverse range of 154 

conjugated xenobiotics and physiological organic anions.44 Like ABCB1, ABCC1 demonstrates polarity 155 

in epithelial cells, but is located on the basolateral rather than apical membrane.45  156 

Encoded by the human ABCC1 gene on the short arm of chromosome 16 (16p13.11), strikingly, 157 

ABCC1 and ABCB1 share only 23% sequence identity, and differ substantially in their structural and 158 

physiological functions. To date, only the structure of bovine ABCC1 has been determined by cryo-159 

electron microscopy.45 The 190kDa ABCC1 protein has 17 transmembrane α-helices, distributed 160 

among three TMDs, rather than the two TMDs observed in ABCB1 (FIG 1C) 45 161 

The binding site within the transmembrane domain is “bipartite” – having a positively charged 162 

“P pocket” which forms hydrogen bonds with glutathione (GSH) residues, and a second “H pocket” 163 

which interacts with hydrophobic moieties. This explains why GSH coupling facilitates transport of a 164 
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wide range of compounds. ABCC1 substrates tend to be organic anions, whereas those for ABCB1 tend 165 

to be weak cations,45 and whilst ABCB1 is thought to transport substrates partitioning through the 166 

bilipid cell membrane (the “hydrophobic vacuum”),46 ABCC1 extracts them directly from the 167 

cytoplasm.45 168 

ABCC1 uniquely exhibits affinity for organic anions and phase II hepatic metabolites 169 

(endogenous and xenobiotic compounds conjugated with GSH, glucuronide and sulphate to facilitate 170 

excretion). There are differences between human and other mammalian isoforms, e.g. the 171 

glucuronide conjugate of 17β-oestradiol is a substrate only in humans.47 It has been shown in vitro, 172 

both in virally transfected mouse fibroblast LMCAT cells, and subsequently in human adipocytes, that 173 

ABCC1 can export corticosterone and 11-deoxycorticosterone, but not cortisol, prednisolone or 174 

dexamethasone.6,39 175 

 176 

ABCB1 and ABCC1 in tissues 177 

The mRNA expression profiles of human ABCB1 and ABCC1 in various tissues are summarised 178 

in FIG. 2. Highly expressed in the adrenal gland, ABCB1 is also found at absorptive surfaces (e.g. of the 179 

intestines), protective barriers (e.g. testis, blood-brain barrier and placenta) and secretory tissues (e.g. 180 

biliary canaliculi and renal tubule).23 ABCC1 is widely expressed in almost all cell types, with highest 181 

levels in thymus, parathyroid and skeletal muscle. It appears poorly expressed in the liver48 and 182 

nervous system, but notably is found in greater quantities than ABCB1 in adipose tissue, and skeletal 183 

muscle.23,49,50 184 

A model for the consequences of this tissue-specific transporter expression on intracellular 185 

concentrations of different glucocorticoids is outlined in FIG. 3. Combining the in vitro works of 186 

Bourgeois, Webster, and Nixon, glucocorticoids can be separated into three groups depending on 187 

relative susceptibility to export by ABCB1 and ABCC1.6,31,39 This model predicts that intracellular 188 
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concentrations of cortisol will be lower in tissues predominantly expressing ABCB1 (including central 189 

HPA axis negative feedback sites) and corticosterone will be lower in tissues predominantly expressing 190 

ABCC1, such as adipose. 191 

 192 

ABCB1 and ABCC1 modulate the HPA axis 193 

Central control of the HPA axis depends on feedback from circulating glucocorticoids to the 194 

hypothalamus and pituitary, but to reach the brain they must traverse the tightly packed endothelium 195 

of the “blood-brain barrier”, where ABCB1 is found.51 Murine models have been used extensively to 196 

assess ABCB1-dependent modulation of steroid concentrations within tissues, including the brain. 197 

Importantly, rodents have two ABCB1 isoforms – ABCB1A (aka MDR1A or MDR3) and ABCB1B (aka 198 

MDR1B or MDR1),52,53 which broadly share the characteristics of the human protein.53 Indeed, Abcb1a 199 

knockout mice accumulate 87x more of the ABCB1 substrate ivermectin in brain than wild-type 200 

animals,54 while ABCB1 inhibition with tariquidar increases cerebral uptake of labelled verapamil 201 

during positron-emission tomography (PET) imaging and demonstrates the role of ABCB1 at the 202 

human blood-brain barrier.55 203 

Abcb1a knockout mice exhibit enhanced retention of cortisol and dexamethasone in the 204 

brain.4,5,54,56 As seen in vitro, results for corticosterone export in vivo are varied, perhaps reflecting 205 

redundancy between the murine isoforms. Karssen et al. reported no difference in brain 206 

corticosterone in adrenalectomised Abcb1a knockout versus wild-type mice infused with radio-207 

labelled corticosterone,4 however the double knockout mouse (Abcb1ab-/-) retains an excess of both 208 

glucocorticoids in the brain.57 This was greater for cortisol, suggesting that overall ABCB1 activity in 209 

mice favours cortisol over corticosterone transport. The opposite was found in studies by the Pariante 210 

group where there was retention of both glucocorticoids in Abcb1a knockout mice, and cortisol 211 

retention alone in Abcb1ab double knockouts.58-60 The authors highlight methodological differences 212 

between the studies which limit comparisons; for instance, in one study isotope radioactivity rather 213 
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than intact steroid concentration was measured, and use of labelled corticosterone in adrenally intact 214 

animals may have resulted in isotope dilution.  215 

From these findings we might predict that the HPA axis would be relatively suppressed by 216 

accumulation of glucocorticoids in brain when ABCB1 activity is reduced. Abcb1a knockout mice do 217 

have evidence of HPA axis suppression, with lower basal and stress-stimulated levels of 218 

corticosterone, ACTH and corticotrophin-releasing hormone than controls, with effect localised to 219 

hypothalamic level.61 Furthermore, mice treated with the ABCB1 inhibitor tariquidar have an 220 

attenuated corticosterone response to stressful stimulus.62 221 

In larger, cortisol-dominant species the ABCB1 protein is well conserved, with a notable 222 

exception being in Collie-derived dogs. Like Schinkel’s Abcb1a knockout mice,54 these animals are 223 

exquisitely sensitive to ivermectin, owing to a 4-bp deletion mutation (termed Mdr1-1△) for which 224 

40-50% of this breed are homozygotes.63,64 This mutation results in a severely truncated protein (<10% 225 

of normal length) which is predicted to be non-functional. Anecdotally, Collies have been viewed by 226 

veterinarians to have a relatively slow illness recovery,65 and Mealey demonstrated chronic 227 

suppression of the HPA axis in animals with the MDR1−/− genotype, with lower basal cortisol levels and 228 

greater ACTH suppression in response to dexamethasone than the wild type. It is hypothesised that  229 

enhanced brain penetration of cortisol (the dominant canine glucocorticoid) leads to HPA axis 230 

suppression, and predisposes the animals to a form of relative corticosteroid insufficiency.65 This has 231 

been supported by a recent metabolomics study demonstrating lower urinary cortisol metabolites in 232 

MDR1−/− dogs than controls [reaching significance for Allo-tetrahydro-cortisol (11.2 ± 3.4 ng/L vs 20.7 233 

± 14.9 ng/L, p=0.006) and β-cortol (105.5 ± 63.3 ng/L vs 221.0 ± 225.5 ng/L, p=0.025)].66 234 

In a human study, the corticosterone:cortisol ratio in brain autopsy specimens was 5x greater 235 

than the plasma ratio in age- and sex-matched healthy controls.4 The ratio of corticosterone:cortisol 236 

in live subjects is similarly 5-6x higher in CSF than plasma.67 Many drugs inhibit ABCB1, including 237 
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verapamil and cyclosporin A, but their experimental use to test ABCB1 physiology in humans is 238 

hampered by toxicity at levels too low for meaningful ABCB1 inhibition.68 239 

This is all consistent with the hypothesis that ABCB1 on the blood-brain barrier exports cortisol 240 

and thereby modulates HPA axis negative feedback in multiple species. The absence of ABCC1 from 241 

the brain and blood-brain barrier is consistent with corticosterone being retained more so than 242 

cortisol in brain. One additional complexity, however, is that the pituitary gland (which expresses both 243 

transporters)69 lies outside the blood-brain barrier and yet also contributes to HPA axis control.  We 244 

have demonstrated that administration of probenecid, an inhibitor of ABCC1, reveals greater tonic 245 

negative feedback of the HPA axis in healthy subjects as judged by elevations in ACTH and cortisol 246 

during combined mineralocorticoid and glucocorticoid receptor antagonism.70 This finding is 247 

consistent with ABCC1 also contributing to export of corticosterone from the pituitary or other central 248 

feedback areas, and warrants further investigation in animal models. 249 

 250 

ABCC1 transporter in adipose tissue 251 

In contrast with the blood-brain barrier where ABCB1 is more abundant than ABCC1, the 252 

reverse is true in adipose. Glucocorticoids within adipose tissue induce lipogenesis, particularly 253 

stimulating central fat accumulation and adipokine production.71 Global Abcc1 knockout mice infused 254 

with both glucocorticoids showed enhanced corticosterone but not cortisol accumulation in adipose 255 

tissue, and upregulation of both glucocorticoid-responsive and adipogenic genes.6 256 

We have also demonstrated that human adipocytes preferentially accumulate cortisol over 257 

corticosterone, and that this was reversed in vitro after treatment with the ABCC1 inhibitors 258 

probenecid or MK-571.6 This was also accompanied by activation of glucocorticoid-responsive and 259 

adipogenic genes (PER1, ADIPOQ, ATGL, HSL) and resulted in increased fatty acid accumulation in lipid 260 

droplets.6 Moreover, during infusion of cortisol or corticosterone in vivo in patients with primary 261 
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adrenal insufficiency, there was greater adipose induction of glucocorticoid-responsive gene 262 

expression (PER1, LPL) in response to cortisol than corticosterone, achieved at plasma glucocorticoid 263 

levels which were equipotent for ACTH suppression.6 264 

 265 

ABCB1 and ABCC1 in the placenta 266 

As the interface between mother and fetus in pregnancy, the placenta functions both as a 267 

nutritive source and barrier, including to glucocorticoid transport. The fetus (unable to synthesise 268 

cortisol until the third trimester) depends on maternal cortisol, however whilst maternal cortisol levels 269 

increase several-fold during pregnancy, this is not transferred to the fetus indiscriminately.72 The 270 

placenta provides a glucocorticoid barrier in early pregnancy when excessive glucocorticoids are 271 

detrimental,73  but has a more facilitative role towards term for fetal organ maturation.74 272 

The enzyme 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2) is viewed as the main 273 

component of the placental glucocorticoid barrier, converting active cortisol to inactive cortisone.75 A 274 

study inhibiting the 11β-HSD2 enzyme during ex vivo perfusion of recently delivered human placentas 275 

suggested that 11β-HSD2 may only contribute part of the glucocorticoid barrier, as cortisol transfer 276 

was restricted even at maximal inhibition.76 The role of other mechanisms at the placental barrier, 277 

such as transmembrane transport, warrants further consideration.       278 

ABCB1 is located within syncytiotrophoblasts at the apical border, in direct contact with 279 

maternal blood.77 It is highly expressed in early pregnancy and decreases towards term in keeping with 280 

the physiological role suggested above.78 Glucocorticoids, as in other tissues, have been shown to 281 

upregulate ABCB1 in the first trimester placenta which may enhance the barrier effect.79 Studies 282 

demonstrating low concentrations of ABCB1 substrates (e.g. antiretrovirals) in the fetal circulation 283 

both at birth, and in the ex vivo perfused placenta indicate this process is active in vivo.80 284 
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ABCC1 is located on the fetal-facing placental surface and has been identified in 285 

cytotrophoblasts, syncytiotrophoblasts and fetal endothelium.81 This may be consistent with a role in 286 

transferring substrates (e.g. folic acid) to the fetus and, in contrast to ABCB1, ABCC1 is upregulated 287 

towards term.81,82 Studies of other ABCC1 substrates with the inhibitors probenecid and MK-571 have 288 

not demonstrated a clear effect on cross-placental transfer, so cannot be extrapolated to 289 

corticosterone transport.83 It has been shown that the ratio of cortisol:corticosterone is higher in the 290 

maternal circulation (15:1) than in the umbilical vein (7:1) at term,84 which may be accounted for by 291 

fetal adrenal cortisol:corticosterone secretion rates, or by facilitated transport of maternal 292 

corticosterone by ABCC1 into the fetal circulation. 293 

 294 

Regulation and dysregulation 295 

Regulation of ABCB1 296 

Mechanisms underpinning regulation of ABCB1 expression are reviewed thoroughly 297 

elsewhere.85-87 The ABCB1 promoter contains a number of areas of interest, including binding sites for 298 

the tumour suppressor p53, heat shock proteins and “adopted orphan receptors” including the 299 

Pregnane-X Receptor (PXR) and Constitutive Androstane Receptor (CAR) which bind a number of 300 

xenobiotic ligands.88 Xenobiotics, inflammatory mediators and cellular stress (such as irradiation, heat 301 

shock, hypoxia) typically upregulate ABCB1 expression through common pathways involving nuclear 302 

factor kappa B (NF-κB) and Y-box binding protein.89,90 This appears to be a protective response – 303 

polymorphisms in NF-κB are linked with increasing colon cancer risk potentially related to enhanced 304 

cellular exposure to toxins.91  305 

Glucocorticoids modulate expression of ABCB1 mRNA and protein in rodents and humans. 306 

This has been demonstrated across multiple tissues with dexamethasone, prednisolone, cortisol, 307 

methylprednisolone and some inhaled glucocorticoids.33,79,92-97 Glucocorticoids predominantly induce 308 
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ABCB1 expression, however this effect may be specific to some species or cell types as there are also 309 

instances of ABCB1 downregulation 98 This glucocorticoid effect is inhibited in the presence of the 310 

glucocorticoid receptor (GR) blocker RU486, indicating this is at least partly mediated via the GR, but 311 

since no consensus glucocorticoid response element (GRE) has been found in the human ABCB1 312 

promoter, this is assumed to be an indirect genomic effect. Zhang et al showed that dexamethasone-313 

mediated upregulation of ABCB1 in retinal pigment epithelium was abolished when the PXR receptor 314 

was silenced, implying that PXR (which does contain a consensus GRE) is either a co-regulator or target 315 

of GR.97,99,100 This raises concerns about increasing drug efflux when glucocorticoids are used in 316 

combination with other ABCB1 substrates (as in chemotherapy protocols), and is theorised to be a 317 

cause of glucocorticoid resistance in conditions such as asthma,33 but this effect has also been 318 

exploited clinically e.g. in the treatment of paraquat toxicity with methylprednisolone to increase drug 319 

excretion.101   320 

Taken together this evidence suggests that in times of increased physiological stress (e.g. in 321 

response to illness or injury), ABCB1 is upregulated both by stress-activated glucocorticoids, and by 322 

signals released by cellular damage. This upregulation may result in positive feedback on cortisol 323 

production by further restricting access to higher negative feedback sites. However, regulation of 324 

ABCB1 in inflammation is complex and potentially biphasic: there is evidence from rodent studies that 325 

in the very early stages of inflammation ABCB1 is functionally inhibited by lipopolysaccharide and 326 

inflammatory cytokines despite maintained mRNA expression, perhaps due to trafficking of ABCB1 327 

away from the cell membrane; later in the evolution of inflammation there is upregulation of mRNA 328 

and protein by the cytokines tumour necrosis factor-alpha (TNF-α) and Endothelin 1 (ET-1) converging 329 

on the NF-κB pathway.89 Protein turnover at the cell surface under normal conditions is relatively slow 330 

(ABCB1 half-life estimated at just over 24hrs)102 and there may be a role for post-translational and 331 

other mechanisms in modulating this. 332 

 333 
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Regulation of ABCC1 334 

As with ABCB1, most research on factors affecting ABCC1 expression levels and activity relates 335 

to cancer biology and chemotherapeutics, whilst physiological regulation has been poorly studied to 336 

date. Basal transcription of ABCC1 is stimulated by the SP-1 (Specificity protein 1) transcription 337 

factor103 which is in turn inhibited by the tumour suppressor protein p53.104 It has not been clearly 338 

established whether PXR affects ABCC1 transcription,105,106 and whilst early mapping of the ABCC1  339 

promoter in a human leukaemic cell line did reveal a putative GRE site, dexamethasone has not been 340 

shown to alter ABCC1 expression in the human placenta or in lymphocytes.94,107-109 Furthermore, we 341 

cannot clearly conclude whether ABCC1 is affected by acute inflammation as is the case with ABCB1: 342 

both unchanged and increased mRNA expression has been reported in response to mediators such as 343 

lipopolysaccharide, TNF-α, IL-1 and IL-6.110-112  344 

In vitro studies investigating metabolic regulation of ABCC1 have focused on endothelium, 345 

demonstrating downregulation of transcript expression in a hyperglycaemic environment.113 346 

Metformin, a drug commonly used in treatment of type 2 diabetes, is known to reduce ABCC1 347 

expression in a human hepatocellular carcinoma cell line through the AMPK (5’ AMP-activated protein 348 

kinase) - HIF-1α (Hypoxia-inducible factor 1 alpha) pathway.114 349 

Whilst limited, overall this evidence suggests that ABCC1 is regulated differently from ABCB1 350 

and is predominantly responsive to metabolic and immunomodulatory signals rather than to 351 

mediators of acute stress or inflammation.  352 

 353 

Pathological dysregulation 354 

There have been few studies of variations in ABC transporter expression beyond the extensive 355 

descriptions in various cancers described above. A recent transcriptomic analysis utilising single-cell 356 

RNA sequencing showed upregulation of ABCB1 in the adrenal cortex of patients with ACTH-357 
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dependent Cushing’s disease.36 This likely reflects the effects of glucocorticoids on ABCB1 expression, 358 

but may contribute to pathogenicity by further enhancing cortisol export from the gland. Expecting 359 

that steroid retention in adipocytes would be higher in obese individuals, we found that ABCC1 mRNA 360 

levels are upregulated in adipose tissue (subcutaneous and visceral) of obese versus lean subjects, 361 

which may paradoxically reduce glucocorticoid concentrations in adipocytes, although this may only 362 

be true for corticosterone.6 363 

 364 

Lessons from human genetics 365 

Human germline mutations in ABCB1 and ABCC1 are rare. To our knowledge, there are just 366 

two publications of ABCB1 mutations: twin girls with toxic encephalopathy during febrile illness,115 367 

and a thirteen year old boy with ivermectin sensitivity.116 In both cases the mutations were identified 368 

by whole exome sequencing and showed compound heterozygosity. The twin girls were found to have 369 

a nonsense mutation (p.Pro1182X) combined with a splicing variant (c.2786 + 1 G>T) and showed 370 

markedly enhanced CNS penetration of 11C-verapamil on PET (positron emission tomography) 371 

imaging, in comparison to their parents. Their symptoms were suspected to be caused by retention of 372 

inflammatory mediators within the brain during intercurrent illness. The investigators estimated from 373 

lymphocyte studies that only ~10% of functional ABCB1 protein was expressed. In the other case,  the 374 

affected boy presented with severe neurological side effects after a single oral dose of ivermectin and 375 

was found to have inherited a nonsense mutation in ABCB1 from each parent (c.2380 C>T and 376 

c.3053_3056delTTGA), both of which are predicted to result in loss of the C-terminal nucleotide 377 

binding domain. The children were otherwise healthy and growing normally in each case.       378 

Similarly, there is only one published mutation of ABCC1 of clinical significance: a 379 

heterozygous missense mutation (c.1769 A>G) recently identified as causing familial sensorineural 380 

deafness.117 ABCC1 has been found within the rodent cochlea where it could be protective against 381 

neurotoxins.118 This mutation is thought to disrupt hydrogen bonds and thus stability between the 382 
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helices of the transmembrane domains, and analysis of lymphoblastoid cell lines from affected family 383 

members showed loss of around 40-45% of ABCC1 mRNA expression when compared to those 384 

unaffected, suggesting additional impairment of mRNA stability. Transport of SNARF-1 (an ABCC1 385 

substrate) from affected cells was subsequently shown to be slower.  386 

With nonsense and frameshift mutations being rare, there have been attempts to correlate 387 

common polymorphisms with clinically relevant outcomes, as reviewed by Leschziner and 388 

colleagues.119 Three ABCB1 variants are common in humans – c.2677 G>A/T, c.3435 C>T and c.1236 389 

C>T. The c.3435 C>T allele is synonymous but may affect mRNA stability;120 c.1236 C>T is silent; but 390 

c.2677 G>A/T does result in amino acid substitution (alanine to serine or threonine), and therefore 391 

potentially to substrate changes. Plasma levels of the ABCB1 substrate digoxin have been found to be 392 

increased, decreased and unchanged in individuals with these polymorphisms. There is marked 393 

variation in frequency across different races, e.g. c.3435 C>T is much less common in African 394 

populations (~80% of people from West Africa are homozygous for the C allele versus ~20% of subjects 395 

from western Europe).120,121 However, attempts to correlate polymorphisms with response to 396 

chemotherapeutics, drug side effects, and resistance to anti-retroviral and anti-epileptic therapies 397 

have all been inconclusive.122-124 398 

Studies of the HPA axis in individuals with ABCB1 variants have been undertaken but have 399 

been inadequately powered. Suzuki et al. found no differences in evening cortisol and ACTH in 30 400 

Japanese men with differing c.3435 genotypes; however, Nakamura reported lower levels of 6pm 401 

plasma cortisol in those with one or two copies of the T allele (i.e. that associated with potentially 402 

reduced transporter mRNA stability) in a study of 51 women, reaching significance only in the follicular 403 

menstrual phase.125,126 The variant c.2677 G>A/T in one candidate gene study of over 5000 Japanese 404 

individuals was highly associated with increased body mass index, which could potentially reflect 405 

greater HPA axis activity, whilst in a study of 154 depressed individuals, cortisol (but not ACTH) 406 

response to corticotrophin-releasing hormone was lower in TT homozygotes, which was taken to 407 
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reflect reduced adrenal cortisol release.36,127 However, neither plasma cortisol levels nor body mass 408 

index have been associated with any ABCB1 polymorphisms in larger cohorts.  409 

Genetic studies have also been undertaken in patients taking exogenous steroids. In a cohort 410 

of 171 patients requiring long-term glucocorticoid replacement for adrenal insufficiency, those with 411 

the c.3435 TT genotype had lower bone density, suggesting greater steroid absorption or enhanced 412 

bone penetration.128 There have been attempts to correlate glucocorticoid treatment outcomes in 413 

patients with rheumatoid arthritis, inflammatory bowel disease, immune thrombocytopenic purpura 414 

and nephrotic syndrome with genotype.129-132 Most, but not all, indicate higher steroid response with 415 

the minor allele but are limited by sample size and failure to control for multiple testing. 416 

For ABCC1, documented polymorphisms are mostly rare and non-coding, and have not been 417 

tested against measures of HPA axis activity or metabolism.133 Three polymorphisms may predict 418 

outcome from acute myeloid leukaemia but any effect on transporter expression or function has not 419 

been established.134 420 

 421 

Implications and research agenda  422 

 The observation that two ABC transporters influence tissue glucocorticoid retention allows us 423 

to add membrane transporters to the list of factors involved in pre-receptor glucocorticoid 424 

metabolism (FIG. 4). These observations provide insights into HPA axis physiology, and how 425 

corticosterone and cortisol may serve different functions in species which produce both steroids. They 426 

also provide therapeutic opportunities for anti-inflammatory and physiological replacement steroid 427 

therapies which might better target tissues mediating efficacy, and avoid those mediating toxicity.  428 

   429 

Revised glucocorticoid physiology 430 
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In rodents, the lack of steroid 17-hydroxylation means that corticosterone is the sole 431 

endogenous glucocorticoid.135 In humans and other species where both glucocorticoids circulate, it is 432 

common to consider them interchangeable. Indeed, cortisol and corticosterone share similar 433 

metabolic pathways (e.g. susceptibility to metabolism by 11β-HSD enzymes) and affinities for the 434 

glucocorticoid and mineralocorticoid receptors.136-139 However corticosterone does exhibit differences 435 

to cortisol, including more rapid clearance from the circulation, and a greater fold response to ACTH 436 

such that the corticosterone/cortisol ratio rises under stress.140-142  437 

The findings outlined here further illustrate that cortisol and corticosterone are not 438 

interchangeable with respect to glucocorticoid action. Specifically, in tissues where ABCB1 but not 439 

ABCC1 is present, such as the brain, cortisol concentrations are constrained by export back into the 440 

circulation and corticosterone can play a disproportionate role. Conversely, in tissues such as adipose 441 

where ABCC1 but not ABCB1 is expressed, corticosterone is exported and the response to cortisol can 442 

be disproportionate (FIG. 5). 443 

This raises the concept of a distinctive role for corticosterone in mediating HPA axis negative 444 

feedback. In the stressed state, the ability to restrict high levels of cortisol from higher centres may 445 

prevent axis suppression after a stressful event and facilitate recovery, as demonstrated by the Mdr1-446 

1△ Collie dogs.65 It is recognised in other species that the ratio of cortisol:corticosterone and peak 447 

circulating glucocorticoid levels vary seasonally,143 possibly in response to photoperiod length. If 448 

corticosterone is more accessible to negative feedback sites, and less peripherally anabolic than 449 

cortisol, then this may both restrain the energy-expending stress response, and improve access to vital 450 

adipose energy stores when food is scarce.  451 

 Conversely, with slower turnover than corticosterone in the circulation and adipose tissue in 452 

comparison to other tissues like brain and liver,144 cortisol may provide the option for medium term 453 

adjustments, in comparison with the acute changes in corticosterone.  454 
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Understanding the implications of differential control and actions of cortisol and 455 

corticosterone in glucocorticoid physiology will require detailed dissection of the dynamics of ligand 456 

availability for receptors within human target tissues in vivo. The increasing use of exome-wide 457 

sequencing in clinical as well as research settings may well identify further individuals or families with 458 

significant ABCB1 and ABCC1 mutations, and offer new routes to addressing these key physiological 459 

questions. 460 

 461 

Novel glucocorticoid treatment approach 462 

A major limitation of glucocorticoid therapies is their narrow therapeutic index. Despite 463 

extensive efforts, it has proved difficult to develop selective glucocorticoid receptor modulators with 464 

pharmacodynamic interactions which discriminate efficacious and toxic gene transcription.145 An 465 

alternative approach depends on the premise that efficacy and toxicity are often mediated in different 466 

tissues, so that the therapeutic index could be improved by modifying the pharmacokinetics of steroid 467 

drugs to ‘target’ them to the tissues where efficacy is mediated while avoiding tissues where toxicity 468 

is mediated. Could this be achieved using steroids with different affinity for the ABCB1 and ABCC1 469 

transporters? 470 

When considering physiological replacement in patients with adrenal insufficiency, the 471 

challenges of this narrow therapeutic index are well documented, with adverse outcomes including, 472 

but not limited to, obesity, osteopenia and insulin resistance attributable to their steroid regime.146,147 473 

This is particularly difficult in Congenital Adrenal Hyperplasia (CAH),  where doses of glucocorticoid 474 

which achieve adequate adrenal androgen suppression are invariably associated with morbidity. All 475 

glucocorticoids used for hormone replacement (cortisol, i.e. hydrocortisone; prednisolone; 476 

dexamethasone; and the active metabolites of pre-drugs cortisone and prednisone) are substrates for 477 

ABCB1 and not ABCC1. Although there may be some benefits from pharmacokinetic adjustments,148,149 478 

this cannot overcome the closeness of the dose-response relationship between efficacy and toxicity.  479 
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Corticosterone is not currently available in oral form, but our recent experimental work using 480 

intravenous corticosterone has provided proof-of-concept evidence of its potential advantages. As 481 

described earlier, there was greater glucocorticoid-responsive gene expression in response to cortisol 482 

over corticosterone in adipose of patients with Addison’s disease.6 In a similar study, 14 individuals 483 

with CAH also underwent ramped cortisol and corticosterone infusions. Despite higher plasma levels 484 

of corticosterone being achieved, there was greater insulin release in response to cortisol – a marker 485 

of glucocorticoid effect on adipose to induce insulin resistance.150 486 

The potential for glucocorticoid therapies which avoid toxicity in metabolic tissues deserves 487 

further investigation, and would require generation of an oral corticosterone preparation.  488 

 489 

Conclusions 490 

 We have collated evidence from cell, animal and human studies that the ATP-binding cassette 491 

transporters ABCB1 and ABCC1 differentially export cortisol, corticosterone and synthetic 492 

glucocorticoids from tissues and contribute to pre-receptor glucocorticoid regulation. Differing 493 

transporter expression profiles in the brain, placenta and adipose confer different tissue sensitivities 494 

to these steroids, which may be important for optimising the responsiveness of the HPA axis, 495 

controlling fetal steroid exposure across gestation, and optimising adipose fuel metabolism. Whilst 496 

much is known about these transporters when it comes to multidrug resistance, their physiological 497 

roles and regulation remain largely unexplored. The prospect of developing steroid therapies with 498 

transporter affinities tailored to give improved efficacy, without deleterious peripheral toxicity, gives 499 

new avenues for management of inflammatory and endocrine diseases. 500 

 501 

 502 

 503 
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Figure legends  985 

Figure 1: Action and structure of ABCB1 and ABCC1. (A) In general, most ABC transporters are 986 

comprised of 2 transmembrane domains (TMD) and 2 nucleotide binding domains (NBD). In this 987 

proposed model of action, binding of ATP dimerises the NBDs and induces conformational change 988 

within the TMDs, resulting in the switch between “inward” and “outward” facing configurations.17,18 989 

Subsequent hydrolysis of ATP returns the transporter to baseline. (B) Ribbon diagram of human ABCB1 990 

(Protein Data Bank ID 6QEX) and (C) Ribbon diagram of bovine ABCC1 (Protein Data Bank ID 5UJA). 991 

The N- and C- terminal halves are coloured magenta and blue respectively. NBD1 and NBD2 are 992 

coloured green and yellow respectively, with drug-binding pocket highlighted. 993 

 994 

Figure 2: Tissue-specific expression of ABCB1 and ABCC1. Human expression of ABCB1 and ABCC1 is 995 

shown as derived from data from the Human Protein Atlas. Expression is normalised to an Nx 996 

(Normalised expression) value based on outputs from the Human Protein Atlas, GTEX and FANTOM5 997 

transcriptomic analyses (data available online from v21.proteinatlas.org).23 Tissues are ranked in order 998 

of ABCB1:ABCC1 ratio, such that those towards the top of the y axis have greater ABCB1 expression, 999 

and those at the bottom higher ABCC1.  1000 

 1001 

Figure 3: Tissue ABC transporter expression determines glucocorticoid sensitivity. The influence of 1002 

ABCB1 and ABCC1 on retention of common glucocorticoids within human target tissues depending on 1003 

transporter affinity is depicted. Steroids in red are predominantly substrates for ABCB1, those in dark 1004 

blue predominantly substrates for ABCC1 and those in light green for neither transporter. Diffusion 1005 

indicated by double-headed arrow.  1006 

 1007 

Figure 4: Intracellular glucocorticoid regulatory pathways. After diffusing into cells (double-headed 1008 

arrow), glucocorticoids cortisol and corticosterone: may be exported by membrane-bound ATP 1009 

transporters ABCB1 and ABCC1 (1); may undergo enzymatic metabolism by 11β-HSD (11β-1010 

hydroxysteroid dehydrogenase), 5α reductase or carbonyl reductase enzymes (2,3) or may become 1011 

incorporated in the intracellular lipid pool (4). These processes restrict access to the nuclear 1012 

glucocorticoid +/– mineralocorticoid receptors (GR and MR), which mediate the cellular response (5). 1013 

 1014 

Figure 5: Modulation of the HPA axis by ABCB1 and ABCC1. Glucocorticoids are secreted from the 1015 

adrenal cortex upon stimulation from hypothalamic and pituitary signals. They act peripherally on sites 1016 

throughout the body, and feed back to hypothalamus, pituitary and higher centres to maintain 1017 

homeostasis. ABCB1 present at the blood–brain barrier may act to restrict access of cortisol to 1018 

feedback sites. Conversely ABCC1, which is found without ABCB1 in adipose and skeletal muscle, 1019 

exports corticosterone but not cortisol. Activity of the adrenal enzyme CYP17 determines the secreted 1020 

ratio of cortisol:corticosterone.  1021 

 1022 

 1023 

 1024 

 1025 



 

 33 

Key points 1026 

- Humans have two circulating glucocorticoid hormones - cortisol and corticosterone – which 1027 

diffuse into cells to become transcription factors when bound to their intracellular receptors. 1028 

- The availability of glucocorticoids to interact with their receptors depends not only on their 1029 

plasma concentration but also on their intracellular concentration which is modulated by 1030 

intracellular enzymes and by transmembrane transporters. 1031 

- Glucocorticoids are susceptible to cellular export by membrane transporters from the ABC 1032 

(ATP-binding cassette) transporter family: cortisol is a substrate for the ABCB1 transporter, 1033 

and corticosterone for ABCC1. 1034 

- Tissues expressing ABCB1 (such as the brain) may be relatively sensitive to corticosterone over 1035 

cortisol; those expressing ABCC1, such as adipose, may be more sensitive to cortisol.  1036 

- In future, therapeutic glucocorticoids may be selected on the basis of lower susceptibility to 1037 

transport from sites of efficacy and higher transport from sites where harmful side effects 1038 

occur. 1039 

 1040 

 1041 
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