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G R A P H I C A L  A B S T R A C T

H I G H L I G H T S

Developed a novel AI-based hybrid method combining H-∞ control and neural networks for precise flicker prediction for the first time.
A novel voltage fluctuation model was proposed, integrating both harmonic and flicker components to improve signal accuracy for the first time.
Introduced a new fast-converging algorithm that separates carrier and flicker frequencies without relying on traditional filtering.
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 A B S T R A C T

This paper introduces a novel hybrid method combining H-∞ filtering and an adaptive linear neuron 
(ADALINE) network for flicker component estimation in power distribution systems. The proposed method 
leverages the robustness of the H-∞ filter to extract the voltage envelope under uncertain and noisy conditions, 
followed by the use of ADALINE to accurately identify the relative amplitudes of flicker components (𝛥𝑉𝑖∕𝑉𝑡) 
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at standard IEC-defined frequencies embedded in the envelope. This synergy enables efficient time-domain 
estimation with rapid convergence and noise resilience, addressing key limitations of existing frequency-
domain approaches. Unlike conventional techniques, this hybrid model handles complex power disturbances 
without prior knowledge of noise characteristics or extensive training. To validate the method’s performance, 
we conduct simulation studies based on IEC Standard 61000-4-15, supported by statistical analysis, Monte 
Carlo simulations, and real-world data. Results demonstrate superior accuracy, robustness, and reduced 
computational load compared to Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT)-based 
estimators.
1. Introduction

Voltage fluctuation refers to a series of changes or continuous 
variations in the root mean square (RMS) or peak value of the voltage. 
According to power quality standards, the magnitude of these fluc-
tuations typically remains within 10% of the nominal voltage [1,2]. 
Voltage fluctuations can cause light flicker, which is perceived as 
unsteady luminance or variations in the spectral distribution of light 
sources. These issues are particularly relevant in renewable energy 
systems, where the variability of wind and solar generation often 
introduces dynamic and unpredictable voltage changes that contribute 
to flicker phenomena [3,4]. It should be noted that while voltage 
fluctuations are the primary source of flicker phenomena in power 
systems, the perceptibility of flicker also depends strongly on the char-
acteristics of the lighting technology. Incandescent lamps, due to their 
thermal inertia, attenuate high-frequency voltage fluctuations, whereas 
fluorescent and LED lamps — particularly those with low-quality driver 
circuits — may translate even small disturbances into visible luminance 
variations [5,6]. Furthermore, built-in electronic buffers or power fac-
tor correction mechanisms in modern lamps can mitigate or exacerbate 
flicker sensitivity. Thus, voltage fluctuation is a necessary but not 
sufficient condition for light flicker; the overall effect results from 
the interaction of the electrical disturbance with lamp dynamics and 
human visual response, as formalized in the IEC 61000-4-15 standard. 
To assess this flicker, the IEC flicker meter incorporates the human 
eye-brain response to characterize light variations. The key output of 
the IEC flicker meter is the instantaneous flicker sensation (S). The IEC 
61000-4-15 standard defines four analytical blocks to calculate flicker 
sensation [5,7–9]. The first block normalizes the input voltage wave-
form relative to an internal reference level. In the second block, the 
output is squared. Block 3 then applies demodulation filters, including 
a high-pass filter (cut-off at 0.05 Hz) and a low-pass filter (cut-off at 
35 Hz), along with a weighting filter. Finally, Block 4 computes the S 
parameter by squaring the signal and using a divider to normalize the 
results based on the mean value.

While the IEC approach involves continuous voltage input for flicker 
calculation, the filtering process introduces a high computational bur-
den in real-world applications. As a result, several alternative meth-
ods using discretized waveforms have been proposed. Many of these 
rely on the discrete Fourier transform (DFT), a frequency-domain ap-
proach [10–12]. However, DFT-based methods face challenges such 
as aliasing, picket fence effects, and leakage phenomena, all of which 
can significantly reduce accuracy in the presence of noise and distur-
bances [13]. To mitigate these issues, some researchers have proposed 
frequency-domain approaches using the Z-transform to compensate 
for leakage errors [14,15]. In addition to Z-transform approaches, 
advanced techniques like Dynamic Voltage Restorers (DVR) with Multi-
Level Inverters (MLI) have been used to mitigate voltage sags, swells, 
and flickers. Novel configurations, such as a 33-level Asymmetrical 
MLI, enhance Low and High Voltage Ride Through (LVRT, HVRT) ca-
pabilities, showing improved performance in compensating for flicker 
and harmonic issues [16]. Despite acceptable performance in certain 
conditions, these methods still struggle with poor accuracy in presence 
of noise and harmonics. 
2 
To address these limitations, a combination of Z-transform and the 
Teager energy operator has been suggested [17,18], offering improved 
accuracy but only at high sampling rates, which increases compu-
tational complexity. Moreover, these methods often consider only a 
limited number of harmonics and flicker components in simulations. 
Given the shortcomings of frequency-domain processors, extensive re-
search has been conducted on time-domain processing techniques [19,
20], which are generally used to estimate harmonic components in 
power systems [21–24]. Since flicker components manifest as frequency 
components near the fundamental frequency, the applied methods 
must be robust against close-frequency interactions to accurately detect 
flicker components.

In [25–28], amplitude modulation (AM) is studied for its ability 
to estimate flicker components in distributed generation (DG) systems 
using multiple filters. While this approach offers simplicity, its accuracy 
heavily depends on the number of filters used, and practical appli-
cations may be hindered by high computational time when detailed 
flicker waveforms are required. Analytical evaluations of flicker meter 
performance based on IEC 61000-4-15 are documented in [29–32]. 
These studies use RMS voltage inputs in offline mode, which is suit-
able for planning but limited in real-time applications. Although the 
results are validated through both simulations and field tests, flicker 
meters tend to be accurate for low-frequency inputs but unreliable for 
higher-frequency fluctuations [30].

Artificial neural networks (ANNs) are powerful tools for optimiza-
tion and estimation tasks and have been applied to flicker detection in 
power systems [33,34]. However, the number of network inputs tends 
to increase when ANNs are directly used for flicker index extraction, 
leading to higher computational complexity. To mitigate this, multi-
stage networks with pre-processing stages have been introduced [35]. 
Although these approaches yield acceptable results in certain scenarios, 
they are mostly limited to offline applications.

The Kalman filter (KF) and its variants have been widely used 
as fundamental tools for analyzing and solving various estimation 
problems [26,27]. Several studies have utilized state variable repre-
sentations of nonlinear flicker waveforms to extract flicker components 
using different types of KFs [36–39]. While KF-based methods provide 
reliable outputs when targeting a limited number of flicker frequencies, 
their accuracy diminishes as the frequency range broadens. Addition-
ally, simple KF algorithms are prone to instability when noise and 
fluctuations are present in the reference signal.

In this paper, we propose a novel time-domain hybrid method 
called the Hybrid Envelope Flicker System (HEFS) to estimate flicker 
components from modulated voltage waveforms in power systems [40]. 
The algorithm operates in two stages: first, the envelope of the wave-
form is extracted using a robust H-∞ filter [41]; second, an online 
neural network (such as ADALINE) is applied to estimate the flicker 
components [42–44]. This method benefits from a simple formulation 
and robust performance. The main contributions of this work are 
summarized as follows:

Despite extensive research on flicker estimation, most methods 
struggle to adapt reliably under non-sinusoidal disturbances where har-
monics, noise, and complex modulation distort the voltage waveform. 
Existing ANN-based models often demand high input dimensionality 
and extensive training datasets, while Kalman filters degrade under 
model uncertainty or require restrictive assumptions. These limitations 
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motivate the development of a method that is both robust to uncer-
tainty and computationally efficient for real-time applications. In this 
work, we specifically address disturbances arising from voltage flicker, 
harmonic distortion, and additive white noise, which frequently coexist 
in real-world power systems. The main contributions of this paper are 
summarized below:

1. Employs a robust H-∞ estimator with a simple formulation, 
capable of detecting flicker in modulated voltage waveforms, 
even in the presence of unknown noise disturbances.

2. Utilizes the ADALINE neural network [45], a fast estimator ca-
pable of handling multiple envelopes without requiring a train-
ing phase, providing an efficient method for estimating voltage 
fluctuations in the presence of power harmonics.

3. Introduces a novel voltage fluctuation model that incorporates 
both harmonic and flicker components, offering a more accurate 
representation of power signals.

4. Extracts multiple flicker frequencies from a fluctuating volt-
age waveform, capturing all critical frequency components as 
defined by the IEC 61000-4-15 standard.

5. Proposes a hybrid algorithm that separates carrier and flicker 
frequencies with differing amplitudes, achieving fast conver-
gence without the need for traditional filtering methods.

In summary, the proposed hybridization of H-∞ filtering with ADA-
LINE provides a novel two-stage approach that enables accurate, real-
time estimation of both harmonic and flicker components in compli-
ance with IEC 61000-4-15.

2. Methods

In the IEC standard, voltage waveforms with flicker components 
are represented by applying an AM signal, where the power system 
frequency (50 or 60 Hz) serves as the carrier frequency, and the flicker 
frequency (envelope) acts as the message frequency. This relationship 
is expressed in discrete form [2]: 

𝑍𝑘 = 𝑉𝑐 cos(2𝜋𝑓𝑘𝜏𝑠)

{

1 +
𝐹
∑

𝑖=1

𝛥𝑉𝑖
2𝑉

cos(2𝜋𝐹𝑖𝑘𝜏𝑠 + 𝜃𝑖)

}

(1)

where 𝑉𝑐 is the carrier amplitude (nominal voltage amplitude), 𝑓 is 
the power system frequency, and the index 𝑖 = 1, 2,… , 𝐹  refers to each 
flicker component. 𝐹𝑖 and 𝜃𝑖 represent the frequency and phase angle of 
the 𝑖th flicker component, respectively, while 𝛥𝑉𝑖2𝑉  denotes the relative 
voltage fluctuation. The sampling period 𝜏𝑠 is used to implement the 
model in discrete form. The goal of the proposed algorithm is to 
estimate the relative voltage amplitude 𝛥𝑉𝑖2𝑉  for each flicker component. 
It should be noted that in all equations, the superscript 𝑘 represents the 
time point in discrete form.

Due to the presence of non-linear loads, the voltage waveform in 
power systems becomes distorted. The previously used model Eq.  (1) 
does not fully capture the complexities of real power signals. Therefore, 
this paper introduces a novel voltage fluctuation model that accounts 
for both harmonic and flicker components. Additionally, to model the 
noise properties more accurately, a high-frequency noise component is 
incorporated into the signal model as follows:

𝑍𝑘 =
𝑁
∑

𝑛=1
𝑉𝑛 cos(2𝜋𝑛𝑓𝑘𝜏𝑠 + 𝜙𝑛)

{

1 +
𝐹
∑

𝑖=1

𝛥𝑉𝑖
2𝑉𝑡

cos(2𝜋𝐹𝑖𝑘𝜏𝑠 + 𝜃𝑖)

}

+ 𝜎 ⋅ randn𝑘 (2)

where 𝑛 = 1, 2,… , 𝑁 denotes the order of harmonics. 𝑉𝑛 represents 
the amplitude of each harmonic, and 𝜙𝑛 is the corresponding phase. 
𝜎 ⋅ randn𝑘 represents Gaussian noise, where the standard deviation 𝜎
defines the noise power. The value 𝑉𝑡 =

√

∑𝑁
𝑛=1 𝑉 2

𝑛  serves as the base 
value for normalizing the voltage fluctuations.
3 
Given the large number of states with varying amplitude mag-
nitudes in the model, improved performance in flicker estimation is 
achieved through the use of hybrid algorithms. The proposed hybrid 
algorithm operates in two sequential stages. First, the envelope of 
the fluctuating voltage waveform is extracted using the H-∞ filter 
at each time step 𝑘. The extracted envelope is then passed to the 
ADALINE network, which estimates the 𝛥𝑉𝑖

𝑉𝑡
 values corresponding to 

each frequency at that time.

2.1. Envelope estimation using H-∞ method

The H-∞ filter is a widely-used analytical estimator that minimizes 
the worst-case estimation error [46]. It performs efficiently in the 
estimation of time-varying signals, even in the presence of unknown 
noise, contrasting with KF-based methods, which minimize the ex-
pected variance of the estimation error. To estimate the envelopes 
using the H-∞ filter, the modulated signal in Eq.  (2) is reformulated 
as follows: 

𝑍𝑘 = 𝐴1{Envelope1}+𝐴2{Envelope2}+⋯+𝐴𝑁{Envelope𝑁}+𝜎 ⋅randn𝑘

(3)

where: 

Envelope𝑛 = 𝑉𝑛 +
𝐹
∑

𝑖=1

𝑉𝑛𝛥𝑉𝑖
2𝑉𝑡

cos(2𝜋𝐹𝑖𝑘𝜏𝑠 + 𝜃𝑖) (4)

The power frequency components, i.e., 𝐴𝑛 = cos(2𝜋𝑛𝑓𝑘𝜏𝑠 + 𝜙𝑛), are 
expanded using trigonometric identities: 
𝐴𝑛 = cos(2𝜋𝑛𝑓𝑘𝜏𝑠) cos(𝜙𝑛) − sin(2𝜋𝑛𝑓𝑘𝜏𝑠) sin(𝜙𝑛) (5)

To capture the true power frequency, particularly in cases of fre-
quency deviation issues, a Phase-Locked Loop (PLL) from the MATLAB 
toolbox is applied. Based on Eq.  (3), a linear model for the H-∞
estimator is derived: 
𝑍𝑘 = 𝐻𝑘𝑥 + 𝜔𝑘 (6)

where 𝜔𝑘 is the measurement noise matrix, and the state vector 𝑥 is 
defined as: 
𝑥 = [cos(𝜙1)Envelope1 sin(𝜙1)Envelope1 …

cos(𝜙𝑁 )Envelope𝑁 sin(𝜙𝑁 )Envelope𝑁 ]
(7)

The state vector 𝑥 contains information of the envelopes. The struc-
ture matrix 𝐻𝑘 is: 
𝐻𝑘 = [cos(2𝜋𝑓𝑘𝜏𝑠) − sin(2𝜋𝑓𝑘𝜏𝑠)… cos(2𝜋𝑁𝑓𝑘𝜏𝑠) − sin(2𝜋𝑁𝑓𝑘𝜏𝑠)] (8)

The state vector 𝑥 is estimated in the time domain using the mea-
surement 𝑍𝑘, following the time-update equation: 
𝑥̂𝑘 = 𝛷(𝑥̂𝑘−1 +𝐾𝑘(𝑍𝑘 −𝐻𝑘𝑥̂𝑘−1)) (9)

where 𝐾𝑘 and 𝛷 represent the gain and state transition matrices, 
respectively. Since the time-varying characteristics of the states are 
unknown, 𝛷 is assumed to be a constant identity matrix. The covariance 
matrix of the estimation error is updated recursively by minimizing the 
worst-case estimation error: 
𝑃 𝑘 = 𝛷𝑃 𝑘−1(𝐼 − 𝛼𝑃 𝑘−1 +𝐻𝑘𝑇𝑅−1𝐻𝑘𝑃 𝑘−1)−1𝛷𝑇 (10)

where the factor 𝛼 controls the influence of previous errors in the esti-
mation process and is chosen by the filter designer based on the specific 
problem. 𝑅 represents the covariance matrix of the measurement noise. 
The gain matrix 𝐾𝑘 is computed using the covariance matrix of the 
estimation error: 
𝐾𝑘 = 𝑃 𝑘(𝐼 − 𝛼𝑃 𝑘 +𝐻𝑘𝑇𝑅−1𝐻𝑘𝑃 𝑘)−1𝐻𝑘𝑇𝑅−1 (11)

At each time step 𝑘, the envelopes can be obtained using informa-
tion from the states: 

√

2 2
√

2 2
Envelope1 = 𝑥1 + 𝑥2,… ,Envelope𝑛 = 𝑥𝑁−1 + 𝑥𝑁 (12)
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Table 1
Flicker frequencies 𝐹𝑖 in Hz based on IEC standard 61000-4-15.
 Flicker frequencies 𝐹𝑖 (Hz)
 0.5 3.5 6.5 10 14 20 
 1 4 7 10.5 15 21 
 1.5 4.5 7.5 11 16 22 
 2 5 8 11.5 17 23 
 2.5 5.5 8.8 12 18 24 
 3 6 9.5 13 19 25 

To summarize, the H-∞ is a robust state estimator designed to 
minimize the worst-case estimation error over all possible disturbances, 
rather than minimizing the expected error covariance as in the Kalman 
filter. Its optimization objective is to guarantee that the ratio between 
the estimation error energy and the disturbance energy remains below 
a prescribed threshold 𝛾, i.e., 
‖𝑒𝑘‖22
‖𝜔𝑘‖

2
2

< 𝛾2 (13)

where 𝑒𝑘 is the estimation error and 𝜔𝑘 is the measurement noise. This 
formulation ensures robustness even when the exact noise statistics 
are unknown. In practice, the filter recursively updates the state es-
timate by incorporating measurement innovations while bounding the 
amplification of disturbances. The optimization problem is solved by 
computing a gain matrix 𝐾𝑘 (see above) which ensures convergence 
under uncertain and noisy environments. This makes the H-∞ frame-
work especially suitable for power quality estimation problems, where 
voltage signals often contain unmodeled disturbances and stochastic 
noise.

The H-∞ estimator involves simple steps with low computational 
complexity, making it well-suited for practical implementation. At each 
time step, the estimated envelopes are fed into the ADALINE network 
to estimate the flicker components. This process is detailed in the 
following subsection.

2.2. Flicker components estimation using ADALINE

The envelopes, as time-varying amplitudes, are extracted using Eq. 
(12) at each time step. These envelopes are then fed into an online 
ADALINE neural network for spectral decomposition. The ADALINE 
network offers the advantage of a simple structure without requiring a 
learning phase, making it ideal for fast estimation processes. Moreover, 
the developed algorithm relies on a minimal number of tuning pa-
rameters, further simplifying its implementation. The schematic of the 
ADALINE network is illustrated in Fig.  1. The target states for ADALINE 
are the flicker amplitudes at frequencies within the range 𝑓 ± 𝐹𝑖 Hz, 
where 𝑓 is the power frequency, and 𝐹𝑖 is specified by IEC standard 
61000-4-15, as detailed in Table  1.

To estimate the flicker amplitudes, the extracted envelope from the 
H-∞ filter is modeled, with the flicker frequencies selected from Table 
1. The network consists of 74 inputs representing DC values.

The 74 frequencies in Table  1 are selected based on IEC Standard 
61000-4-15, which defines the flicker frequency range most relevant to 
human visual perception (0.5–25 Hz). These form a fixed grid of basis 
functions used by the ADALINE network to estimate flicker amplitudes 
efficiently. Although the grid is discrete, the adaptive nature of the 
algorithm allows it to approximate off-grid components through spec-
tral leakage into adjacent frequencies. This offers a practical balance 
between resolution and computational simplicity without requiring 
dynamic reconfiguration. 

𝑥𝑘𝑎𝑑 = [1, 0, cos(2𝜋0.5𝑘𝜏𝑠) − sin(2𝜋0.5𝑘𝜏𝑠)… cos(2𝜋25𝑘𝜏𝑠) − sin(2𝜋25𝑘𝜏𝑠)]𝑇

(14)
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Table 2
Parameters for H-∞ filter — ADALINE neural network simulations.
 H∞ method ADALINE method Simulation

 𝑃 0 103 ⋅ 𝐼∗
2𝑁×2𝑁 𝑤0 1∗∗2𝑖+2 𝜏𝑠 1∕1200  

 𝑥̂0 1∗∗2𝑁 𝜃0 5 𝜎 0.02  
 𝛼 8 𝜆 0.0001  
 𝑓 50 𝛽 1000  
 𝑅 0.007  

The weight vector for the 𝑛th envelope at time step 𝑘 is given by: 
𝑤𝑘

𝑛 = [𝑤𝑘
1𝑛, 𝑤

𝑘
2𝑛,… , 𝑤𝑘

73𝑛, 𝑤
𝑘
74𝑛] (15)

These weights are updated using the Widrow–Hoff rule. 

𝑤𝑘+1
𝑛 = 𝑤𝑘

𝑛 +
𝜃𝑘𝑒𝑘𝑛𝑥

𝑘𝑇
𝑎𝑑

𝜆 + 𝑥𝑘𝑇𝑎𝑑 𝑥
𝑘
𝑎𝑑

(16)

where 𝑒𝑘𝑛 is the tracking error and 𝜆 is a small quantity to avoid 
the denominator from being zero. The adaptive learning factor 𝜃𝑘 is 
calculated as follows: 

𝜃𝑘 = 𝜃0

1 + 𝑘
𝛽

(17)

In Eq.  (17), 𝛽 is a constant that determines the decay rate of the 
initial learning rate 𝜃0. In this form, the final weights encapsulate the 
flicker information. Finally, the harmonic and flicker amplitudes are 
extracted using the following formula: 

𝑉𝑛 =
√

𝑤2
1𝑛 +𝑤2

2𝑛 and
𝛥𝑉𝑖
2𝑉𝑡

=

√

𝑤2
(2𝑖+1)𝑛 +𝑤2

(2𝑖+2)𝑛

𝑉𝑛
, 𝑖 = 1, 2,… , 𝐹

(18)

The final outputs of the ADALINE network are the relative flicker 
amplitudes 𝛥𝑉𝑖∕𝑉𝑡 corresponding to the standard flicker frequencies 𝐹𝑖. 
These represent the physical quantities of flicker defined in IEC 61000-
4-15 and are directly used to compute the instantaneous flicker sensa-
tion (𝑆) and other standardized indices. Thus, the proposed method 
does not only track frequency content but explicitly estimates the 
relative amplitude of flicker components that have a direct physical and 
perceptual interpretation.

3. Results

A series of simulations were performed to assess the effectiveness 
of the proposed method in estimating flicker components. For this 
purpose, the waveform model depicted in Eq.  (2) was used. The wave-
form’s frequency content aligns with the bus voltage of industrial loads, 
which typically includes a combination of the 1st to 11th harmonics. 
Additionally, significant flicker components based on the IEC Standard 
61000-4-15 were incorporated into the waveform. To highlight the 
robustness of the proposed approach, the flicker estimation problem 
was applied to a highly distorted waveform containing five harmonic 
components and additive high-frequency noise.

Appropriate parameter values for the proposed method were cho-
sen. The selected parameters for the H-∞ filter and the ADALINE neural 
network are presented in Table  2.

𝐼∗ represents the identity matrix, and 1∗∗ is a vector of ones. The 
selected parameters remain constant throughout all simulations. The 
key software simulations considered in this study are as follows:

1. Simulated waveform with one power harmonic and one flicker 
component.

2. Distorted waveform with 5 power harmonics and 36 flicker com-
ponents. This test examines the proposed method’s capability to 
track flicker in the presence of multiple harmonics.
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Fig. 1. Block diagram of the ADALINE neural network used for flicker frequency estimation. The input consists of sinusoidal basis functions covering a predefined 
flicker frequency range. Each input is weighted by a corresponding coefficient 𝑊𝑖, and the weighted sum forms the ADALINE output. The output is compared 
against the reference envelope obtained from the H-∞ filter. The resulting error 𝑒 is used in the Least Mean Squares (LMS) adaptive algorithm to update the 
weights 𝑊⃗  in real time, minimizing the squared error and allowing the network to track multiple flicker components.
3. Monte Carlo (MC) simulation for analyzing the proposed
method. This test demonstrates the method’s generalization abil-
ity, as harmonics and flicker amplitudes are randomly selected 
in the signal model.

3.1. Estimation of a waveform with power frequency and one flicker com-
ponent

As a representative case study, a waveform containing a power 
frequency and a single flicker component is simulated. The power 
frequency is 50 Hz, and it is estimated using a PLL from the MATLAB 
toolbox. To evaluate the performance of the proposed method, Gaussian 
noise is added to the signal as follows: 

𝑍𝑘 = 1.5 cos(2𝜋50𝑘𝜏𝑠+80◦)×
{

1 +
𝛥𝑉𝑖
2𝑉𝑡

cos(2𝜋𝐹𝑖𝑘𝜏𝑠 + 𝜃𝑖)
}

+0.02 ⋅randn𝑘

(19)

Several simulations are conducted, with one of the flicker frequen-
cies from Table  1 injected into the waveform. The relative voltage 
amplitude of the flicker component, 𝛥𝑉𝑖𝑉𝑡

, is randomly selected within 
the range [0.001, 0.02]. Additionally, 𝜃𝑖 values are randomly gener-
ated within the [0, 90◦] boundary. The proposed method estimates 
the relative amplitude of the flicker components. The final estimated 
parameters are compared with the corresponding true values, and 
the absolute error is calculated. The results of the error analysis for 
different simulations are presented in Fig.  2. Although the absolute 
error of the estimation increases with amplitude and frequency, the 
algorithm consistently estimates the amplitudes with less than 1% error 
across all frequency values. The convergence trend is also examined, 
as shown in Fig.  3, where acceptable results are achieved for all flicker 
frequencies within 0.3 s.

3.2. Estimation of distorted waveform with 5 power harmonics and 36 
flicker components

Due to non-sinusoidal current anomalies present across the power 
lines, the actual bus voltages exhibit a distorted nature, which can 
5 
Fig. 2. Absolute error of (𝛥𝑉𝑖)∕𝑉𝑡 estimation, waveform with power frequency 
and one flicker component.

be represented as a waveform comprised of a series of harmonics. 
In this section, the flicker estimation problem is addressed by em-
ploying a modulated waveform containing multiple power harmonics. 
Additionally, to assess the performance of the proposed method under 
the influence of numerous flicker frequencies, the fluctuating voltage 
waveform encompasses all frequencies defined in the IEC 61000-4-
15 standard. Thus, the fluctuating signal in Eq.  (2) is formulated as 
follows [19,23,47,48]: 
𝑍𝑘 =

[

1.5 cos
(

2𝜋50𝑘𝜏𝑠 + 80◦
)

+ 0.5 cos
(

2𝜋150𝑘𝜏𝑠 + 60◦
)

+0.2 cos
(

2𝜋250𝑘𝜏𝑠 + 45◦
)

+0.15 cos
(

2𝜋350𝑘𝜏𝑠 + 36◦
)

+0.1 cos
(

2𝜋550𝑘𝜏𝑠 + 30◦
)]

{

1 +
𝐹
∑

𝑖=1

𝛥𝑉𝑖
2𝑉𝑡

cos
(

2𝜋𝐹𝑖𝑘𝜏𝑠 + 𝜃𝑖
)

}

+ 0.02 ⋅ randn𝑘

(20)
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Fig. 3. Trend of convergence of the proposed method. The blue line represents 
the true relative flicker amplitude 𝛥𝑉 ∕𝑉 = 0.02 pu. The red lines show the 
estimated flicker amplitude computed by the ADALINE neural network over 
time, across multiple Monte Carlo runs. The plot illustrates the convergence 
behavior of the estimator under a waveform and one flicker component.

The flicker frequencies 𝑓𝑖 and their corresponding amplitudes 𝛥𝑉𝑖𝑉𝑡
are presented in Table  3. The chosen amplitudes ensure a unity instan-
taneous flicker sensation in 230 V/50 Hz systems [38]. At each moment 
𝑘, the H∞ filter extracts the signal envelopes. In the case under study, 5 
harmonics are introduced into the simulation signal, necessitating the 
estimation of five envelopes by the H∞ filter. The estimation results 
for envelope 1 are illustrated in Fig.  4, where the proposed algorithm 
converges to the true value in less than one power cycle (0.02 s). 
The remaining estimated envelopes display a similar tracking behavior. 
According to Eq.  (12), the phases of the power harmonic components 
are also determined by the H∞ filter. The results of the phase estimation 
for the power harmonics are shown in Fig.  5. Due to the PLL error 
in detecting the exact frequency, the convergence of the harmonic 
phases to the reference value is slightly slower compared to that of 
the envelopes. Nonetheless, all phases converge within 0.03 s. Despite 
these challenges, the H-∞ filtering approach maintains stable estimates 
due to its inherent robustness against measurement and modeling un-
certainties. Nevertheless, careful tuning of PLL parameters or inclusion 
of advanced PLL structures could further minimize such effects.

In the second stage at each time step 𝑘, the envelopes estimated 
by the H∞ filter are used as inputs to the ADALINE neural network to 
estimate the flicker components 𝛥𝑉𝑖𝑉𝑡

. Fig.  6 shows the tracking behavior 
of flicker amplitudes using the ADALINE network. Given that the initial 
weights of the network are selected randomly, the estimation results 
exhibit initial overshoots. The proposed hybrid algorithm estimates 
harmonic and flicker components through separate processes, allowing 
the extraction of parameters with varying scales independently. This 
approach reduces the number of iterations required for convergence, 
with the data processing of the distorted signal completed within 
0.6 s. Using the estimated amplitudes, the envelopes are reconstructed. 
Specifically, the reconstructed envelopes closely match their actual 
values once the estimated flicker components converge to their true val-
ues. Fig.  7 illustrates the quality of the envelope 1 reconstruction based 
on the ADALINE estimator results, and this trend can be generalized to 
the other envelopes.

Table  4 summarizes the estimation errors of the first envelope due 
to phase-locked loop (PLL) inaccuracies, under conditions with and 
without fundamental frequency deviations.
6 
Table 3
Flicker frequencies 𝐹𝑖 and corresponding relative amplitudes for distorted 
waveform estimation.
 𝐹 𝛥𝑉

𝑉𝑡
𝐹 𝛥𝑉

𝑉𝑡
𝐹 𝛥𝑉

𝑉𝑡
 

 0.5 0.0234 6.5 0.003 14 0.00388 
 1 0.01432 7 0.0028 15 0.00432 
 1.5 0.0108 7.5 0.00266 16 0.0048  
 2 0.00882 8 0.00256 17 0.0053  
 2.5 0.00754 8.8 0.0025 18 0.00584 
 3 0.00654 9.5 0.00254 19 0.0064  
 3.5 0.00568 10 0.0026 20 0.007  
 4 0.005 10.5 0.0027 21 0.0076  
 4.5 0.00446 11 0.00282 22 0.00824 
 5 0.00398 11.5 0.00296 23 0.0089  
 5.5 0.0036 12 0.00312 24 0.00962 
 6 0.00328 13 0.00348 25 0.01042 

Fig. 4. Estimation of envelope 1 using H-infinity filter.

Fig. 5. Estimation of power harmonic phases using H-infinity filter. In blue 
the main components, in red the 3rd component, in orange the 5th component, 
in purple the 7th component and in green the 11th component.
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Fig. 6. Estimation of flicker amplitudes 𝛥𝑉𝑖

𝑉𝑡
 using ADALINE.

Fig. 7. Envelope 1 reconstruction using estimated flicker amplitudes.

Table 4
Error of envelope 1 estimation due to PLL errors.
 Without frequency deviation With frequency deviation of ±0.5 Hz
 Mean Variance Mean Variance  
 5.352𝑒−6 4.183𝑒−6 7.266𝑒−5 8.419𝑒−5  

As shown in Table  4, the estimation error is negligible in the absence
of frequency deviations, with a mean error of 5.352×10−6 and variance
of 4.183 × 10−6. However, introducing a ±0.5 Hz frequency deviation
significantly increases both the mean and variance of the error, by more
than an order of magnitude. This highlights the sensitivity of PLL-based
approaches to frequency variations, reinforcing the advantage of the
proposed H-∞ filter framework, which remains robust under similar
conditions.

3.3. Impact of PLL errors and optimization strategies

As shown in Table  4, PLL inaccuracies can introduce estimation
errors, particularly under frequency deviation conditions. While the
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Table 5
Numerical analysis of MC output.
 Error of S (%) Error of envelope 1 (%) 
 Mean 0.1832 0.1114  
 STDa 0.0021 0.0038  
a Standard deviation

proposed H-∞–ADALINE framework demonstrates robustness, its ac-
curacy ultimately depends on the ability of the PLL to track the fun-
damental frequency. To further mitigate this source of error, adaptive 
PLL strategies may be employed. For instance, second-order general-
ized integrator PLLs (SOGI-PLLs) and adaptive notch filter PLLs offer 
faster convergence and enhanced tracking under dynamic frequency 
deviations [49].

Additionally, the tradeoff between PLL bandwidth and noise sen-
sitivity must be carefully tuned to balance tracking precision and 
robustness. Integrating such advanced PLL structures with the proposed 
method is expected to further improve reliability under non-stationary 
conditions, and will be explored in future work.

3.4. Monte Carlo (MC) analysis and results discussion

MC-based analyses encompass a variety of problem-solving tech-
niques that utilize random numbers as inputs to generate output statis-
tics [6,19,50–53]. One of the primary applications of MC methods is 
to validate the performance of estimation algorithms in the presence of 
uncertainties. In this study, the MC method consists of a series of sim-
ulations, where each simulation employs random values for harmonics 
and flicker amplitudes in the waveform defined by Eq.  (2). These 
random values are uniformly sampled from the intervals [0.8, 1.2] 
and [0, 0.02] for harmonic and flicker amplitudes, respectively. The 
proposed estimation approach is then applied to estimate the flicker 
amplitudes. The instantaneous flicker sensation (S), which serves as the 
evaluation index for flicker, is computed using the estimated flicker 
amplitudes to assess the estimation quality [54,55]. The contribution 
of each flicker frequency to 𝑆 can be expressed as follows: 

𝑆𝑖 =

(

𝛥𝑉𝑖
𝑉𝑡

)

(

𝛥𝑉𝑖
𝑉𝑡

)

IEC

(21)

where 
(

𝛥𝑉𝑖
𝑉𝑡

)

IEC
 is derived from Table  3 for the flicker frequency 𝐹𝑖. 

The total estimated sensation 𝑆 is obtained by summing the contri-
butions of the individual flicker frequencies 𝑆𝑖. Finally, the estimated 
sensation is compared with the true sensation, and the error percentage 
is calculated as the output of the MC simulation. Fig.  8 depicts the 
distribution of the error in 𝑆 with respect to the root of the sum of 
squared harmonic amplitudes 

√

∑𝑁
𝑛=1 𝑉 2

𝑛  and the root of the sum of 

squared flicker amplitudes 
√

∑𝐹
𝑖=1

(

𝛥𝑉𝑖
𝑉𝑡

)2
.

As shown in Fig.  8, the error in 𝑆 remains below 0.25% for all 
random combinations of harmonic and flicker amplitudes. Additionally, 
the convergence behavior of the algorithm in both the frequency and 
time domains is evaluated through multiple MC runs. In this context, a 
2D statistical distribution of the error in 𝑆 and the error in envelope 1 is 
examined. The results, illustrated in Fig.  9 and summarized in Table  5, 
not only highlight the accuracy of the proposed algorithm in extracting 
the frequency-domain characteristics of the studied waveform (i.e., 𝑆
values) but also demonstrate its precision in estimating time-domain 
features (such as the envelope values).

4. Discussion

4.1. Theoretical and practical insights

The theoretical performance of the proposed method has been 
previously validated through various simulation tests. In this section, 
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Fig. 8. Results of MC analysis for S level estimation.

Fig. 9. MC statistical analysis for frequency and time domains.

the algorithm’s applicability in real-world scenarios is examined. Addi-
tionally, conventional Fast Fourier Transform (FFT) and state-of-the-art 
Discrete Wavelet Transform (DWT) methods, provided by MATLAB 
toolboxes, are utilized for flicker component estimation under the same 
experimental conditions, and their results are compared. A hardware 
setup was designed to log real data from a fluctuating voltage source. 
The voltage waveform is derived from a 400 V infinite bus voltage 
powering die-casting machines with operational forces ranging from 
160 to 1000 tons, electrostatic painting machines, and oil pumps at 
Mazinoor Lighting Industries Inc. Due to the sudden load changes of the 
die-casting machines, the input electrical current experiences abrupt 
variations, leading to fluctuations in the supply voltage. Die-casting 
machines were selected due to their frequent and significant tran-
sient load changes, effectively illustrating the robustness and real-time 
capability of the proposed method. To demonstrate broader applicabil-
ity, further testing on inverter-based loads, such as variable-frequency 
drives (VFDs), or induction motors — common sources of harmonics 
and flicker in industrial environments — is recommended in future 
studies. The machine’s input voltage is measured using a fast-response 
voltage transducer (LV 25-P), and the data is logged via an analog-
to-digital NI USB-6009 DAQ card at a sampling rate of 1200 Hz for 
a duration of 6 s. The experimental setup is shown in Fig.  10(a), 
while the data logging configuration is presented in Fig.  10(b). The 
data is then processed offline using the proposed algorithm, as well as 
8 
the FFT and DWT methods, within MATLAB. The computations were 
performed on a computer equipped with a Core i5, 3.1 GHz processor, 
and 8 GB of RAM. Fig.  11 presents the graphical results for envelope 
1 across the three methods. Due to abrupt load changes, the measured 
signal contains significant notches, but the estimated envelope 1 closely 
follows the measured signal’s envelope. For more detailed analysis, the 
undervoltage section of the test waveform is magnified, highlighting 
the superior performance of the proposed algorithm and DWT method 
over FFT in both steady-state and transient conditions. The estimated 
signal, reconstructed by applying the estimated flicker components and 
harmonic parameters, is compared with the measured signal. The error 
statistics for the final two seconds (4 s to 6 s) of data for the FFT, DWT, 
and proposed methods are presented in Table  6. Despite the favorable 
graphical results, the numerical indices reveal that the DWT method 
exhibits lower accuracy in practical situations. The primary reason for 
the reduced accuracy of the DWT time-frequency domain method lies 
in the presence of high-frequency noise elements in real data, which 
cause aliasing effects.

For the second test, the stable feeder was disconnected, and the load 
was powered by a diesel emergency generator. Real-time measurements 
indicate a frequency deviation of ±0.25 Hz during die-casting machine 
operation. In such conditions, the PLL results for power frequency 
estimation are biased due to interference (noise or narrowband inter-
ference), affecting the proposed method’s accuracy. While all methods 
demonstrate reduced accuracy under these conditions, the proposed 
method remains stable by decomposing the voltage fluctuations and 
harmonic components, thereby mitigating frequency interference ef-
fects. As a result, the impact of PLL errors is reduced in the outputs. 
However, the combination of aliasing and the picket-fence effect de-
grades the performance of the FFT and DWT methods. The numerical 
results are shown in Table  6, which also includes an analysis of the 
computational burden of the three methods during the final two sec-
onds of processed data. The proposed method demonstrates the best 
computational performance under normal conditions (stable feeder). 
Nevertheless, in the presence of frequency deviation, the required 
processing time is slightly higher than that of the FFT method, as 
additional iterations are needed to achieve acceptable results. Despite 
the accurate results, the DWT method incurs a significant computa-
tional burden, which limits its feasibility for real-time applications. The 
parameters in Table  6 underscore the proposed hybrid method’s ability 
to provide both accurate and efficient flicker component estimation in 
practical situations.

While this study focuses primarily on flicker estimation, the hybrid 
method’s underlying adaptive structure — combining H-∞ filtering and 
ADALINE networks — could potentially be adapted to estimate other 
power disturbances such as voltage sags, swells, and interharmonics. 
Future research should verify this generalization explicitly, potentially 
adjusting the model formulation to account for additional frequency 
and amplitude variations characteristic of these disturbances.

4.2. Parameter selection and optimization

The performance of the proposed H-∞–ADALINE method depends 
on several key parameters. For the H-∞ filter, the weighting matrices 
and regularization parameter 𝜆 were selected to balance robustness 
against measurement noise with stability guarantees, following the 
standard design procedure. The chosen values ensure bounded esti-
mation error while maintaining responsiveness under dynamic distur-
bances.

For the ADALINE network, the initial learning factor 𝜃0 and decay 
constant 𝛽 (Eq.  (17)) were tuned through sensitivity analysis. Larger 
values of 𝜃0 improve convergence speed but risk instability, while 
smaller values enhance stability at the cost of slower adaptation. In our 
study, the selected parameters provided a practical tradeoff, validated 
through Monte Carlo simulations based on IEC 61000-4-15 test cases.
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Table 6
Numerical analysis of practical data.
 Method Feature MSE Variance Computational time 
 
Infinite feeder

Proposed method 7.776𝑒−6 5.911𝑒−6 0.3812 s  
 FFT 4.367𝑒−5 1.019𝑒−4 0.4182 s  
 DWT 7.8115𝑒−6 7.381𝑒−5 0.8338 s  
 
Emergency diesel

Proposed method 1.912𝑒−4 4.54𝑒−4 0.4290 s  
 FFT 3.007𝑒−3 5.672𝑒−4 0.4194 s  
 DWT 2.716𝑒−4 4.705𝑒−4 0.8627 s  
Fig. 10. Data logger setup dedicated to the experimental test.

Fig. 11. Experimental signal analysis using different methods for validation.
9 
Although manual tuning yielded satisfactory results, systematic op-
timization methods such as Bayesian optimization, genetic algorithms, 
or adaptive gain scheduling could further enhance parameter robust-
ness, especially for large-scale or highly dynamic systems. Incorpo-
rating such automated tuning methods will be considered in future 
work.

4.3. Scalability and feasibility considerations

While the proposed hybrid H-∞–ADALINE approach has been val-
idated within the IEC-defined flicker frequency range (0.5–25 Hz), its 
computationally efficient recursive structure suggests promising scala-
bility to larger-scale distribution systems. The H-∞ filter requires only 
matrix updates at each iteration, and the ADALINE network relies on 
a single-layer architecture without offline training, both of which are 
compatible with real-time deployment in power quality monitoring 
devices.

Nevertheless, large interconnected power systems introduce addi-
tional challenges such as complex harmonic interactions, interharmon-
ics, and asynchronous disturbances that may affect estimation accuracy. 
Moreover, extending the analysis beyond the 25 Hz range (e.g., into the 
supraharmonic domain) may require modifications to the ADALINE ba-
sis functions or the inclusion of multi-resolution processing to capture 
higher-frequency dynamics.

Therefore, while the proposed method is theoretically well-suited 
for extension to large-scale systems and higher frequency bands, fu-
ture work will focus on empirical validation through field data and 
adaptation of the algorithm for enhanced robustness in complex grid 
scenarios.

5. Conclusion

This paper introduces a novel algorithm for the estimation of flicker 
frequency components in voltage waveforms, addressing the inher-
ent complexity arising from the multitude of frequencies involved. 
The proposed method effectively decomposes the voltage waveform 
into envelope and harmonic components, significantly simplifying the 
estimation process. Envelopes are accurately extracted using a ro-
bust 𝐻 − ∞ filter, after which an online ADALINE neural network 
efficiently estimates the flicker content within these envelopes. Ad-
ditionally, the study presents a new voltage waveform model that 
incorporates flicker, harmonics, and white noise to comprehensively 
assess algorithm performance.

Graphical and numerical results demonstrate the effectiveness of 
the proposed method in accurately tracking power system flickers. 
Monte Carlo simulations further confirm its robustness against various 
harmonic and flicker scenarios aligned with IEC Standard 61000-4-15. 
Practical applicability has been validated using real-world fluctuating 
voltage data, showing that the proposed method outperforms conven-
tional FFT and DWT methods in terms of Mean Square Error (MSE), 
variance, and computational efficiency.

The key strengths of this method include robustness against mea-
surement noise, rapid convergence suitable for real-time implementa-
tions, and computational efficiency ideal for hardware-constrained en-
vironments. Collectively, these attributes render the proposed method 
highly suitable for industrial power quality monitoring.
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Despite its advantages, the method exhibits certain limitations. The 
fixed frequency grid, although compliant with standards, may constrain 
accuracy for off-grid frequencies. Additionally, the validation primarily 
focuses on die-casting machine loads, which limits the generalizability 
to other industrial scenarios. The absence of modeling for modern 
lighting technologies, particularly LEDs, also represents a gap.

Future work could explore the impact of higher-order harmonics, 
flickers, and interharmonics. Testing other robust online neural net-
works, such as Online Recurrent Neural Networks (RNNs) or Echo State 
Networks, could further enhance prediction accuracy and computa-
tional speed. Additionally, extending the model to accurately capture 
flicker characteristics of modern LED lighting systems represents an 
important avenue for continued research.
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