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HIGHLIGHTS

« Developed a novel Al-based hybrid method combining H-co control and neural networks for precise flicker prediction for the first time.
» A novel voltage fluctuation model was proposed, integrating both harmonic and flicker components to improve signal accuracy for the first time.
« Introduced a new fast-converging algorithm that separates carrier and flicker frequencies without relying on traditional filtering.
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Keywords: This paper introduces a novel hybrid method combining H-co filtering and an adaptive linear neuron
Flicker (ADALINE) network for flicker component estimation in power distribution systems. The proposed method
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leverages the robustness of the H-oo filter to extract the voltage envelope under uncertain and noisy conditions,
followed by the use of ADALINE to accurately identify the relative amplitudes of flicker components (4V;/V,)
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at standard IEC-defined frequencies embedded in the envelope. This synergy enables efficient time-domain
estimation with rapid convergence and noise resilience, addressing key limitations of existing frequency-

domain approaches. Unlike conventional techniques, this hybrid model handles complex power disturbances
without prior knowledge of noise characteristics or extensive training. To validate the method’s performance,
we conduct simulation studies based on IEC Standard 61000-4-15, supported by statistical analysis, Monte
Carlo simulations, and real-world data. Results demonstrate superior accuracy, robustness, and reduced
computational load compared to Fast Fourier Transform (FFT) and Discrete Wavelet Transform (DWT)-based

estimators.

1. Introduction

Voltage fluctuation refers to a series of changes or continuous
variations in the root mean square (RMS) or peak value of the voltage.
According to power quality standards, the magnitude of these fluc-
tuations typically remains within 10% of the nominal voltage [1,2].
Voltage fluctuations can cause light flicker, which is perceived as
unsteady luminance or variations in the spectral distribution of light
sources. These issues are particularly relevant in renewable energy
systems, where the variability of wind and solar generation often
introduces dynamic and unpredictable voltage changes that contribute
to flicker phenomena [3,4]. It should be noted that while voltage
fluctuations are the primary source of flicker phenomena in power
systems, the perceptibility of flicker also depends strongly on the char-
acteristics of the lighting technology. Incandescent lamps, due to their
thermal inertia, attenuate high-frequency voltage fluctuations, whereas
fluorescent and LED lamps — particularly those with low-quality driver
circuits — may translate even small disturbances into visible luminance
variations [5,6]. Furthermore, built-in electronic buffers or power fac-
tor correction mechanisms in modern lamps can mitigate or exacerbate
flicker sensitivity. Thus, voltage fluctuation is a necessary but not
sufficient condition for light flicker; the overall effect results from
the interaction of the electrical disturbance with lamp dynamics and
human visual response, as formalized in the IEC 61000-4-15 standard.
To assess this flicker, the IEC flicker meter incorporates the human
eye-brain response to characterize light variations. The key output of
the IEC flicker meter is the instantaneous flicker sensation (S). The IEC
61000-4-15 standard defines four analytical blocks to calculate flicker
sensation [5,7-9]. The first block normalizes the input voltage wave-
form relative to an internal reference level. In the second block, the
output is squared. Block 3 then applies demodulation filters, including
a high-pass filter (cut-off at 0.05 Hz) and a low-pass filter (cut-off at
35 Hz), along with a weighting filter. Finally, Block 4 computes the S
parameter by squaring the signal and using a divider to normalize the
results based on the mean value.

While the IEC approach involves continuous voltage input for flicker
calculation, the filtering process introduces a high computational bur-
den in real-world applications. As a result, several alternative meth-
ods using discretized waveforms have been proposed. Many of these
rely on the discrete Fourier transform (DFT), a frequency-domain ap-
proach [10-12]. However, DFT-based methods face challenges such
as aliasing, picket fence effects, and leakage phenomena, all of which
can significantly reduce accuracy in the presence of noise and distur-
bances [13]. To mitigate these issues, some researchers have proposed
frequency-domain approaches using the Z-transform to compensate
for leakage errors [14,15]. In addition to Z-transform approaches,
advanced techniques like Dynamic Voltage Restorers (DVR) with Multi-
Level Inverters (MLI) have been used to mitigate voltage sags, swells,
and flickers. Novel configurations, such as a 33-level Asymmetrical
MLI, enhance Low and High Voltage Ride Through (LVRT, HVRT) ca-
pabilities, showing improved performance in compensating for flicker
and harmonic issues [16]. Despite acceptable performance in certain
conditions, these methods still struggle with poor accuracy in presence
of noise and harmonics.

To address these limitations, a combination of Z-transform and the
Teager energy operator has been suggested [17,18], offering improved
accuracy but only at high sampling rates, which increases compu-
tational complexity. Moreover, these methods often consider only a
limited number of harmonics and flicker components in simulations.
Given the shortcomings of frequency-domain processors, extensive re-
search has been conducted on time-domain processing techniques [19,
20], which are generally used to estimate harmonic components in
power systems [21-24]. Since flicker components manifest as frequency
components near the fundamental frequency, the applied methods
must be robust against close-frequency interactions to accurately detect
flicker components.

In [25-28], amplitude modulation (AM) is studied for its ability
to estimate flicker components in distributed generation (DG) systems
using multiple filters. While this approach offers simplicity, its accuracy
heavily depends on the number of filters used, and practical appli-
cations may be hindered by high computational time when detailed
flicker waveforms are required. Analytical evaluations of flicker meter
performance based on IEC 61000-4-15 are documented in [29-32].
These studies use RMS voltage inputs in offline mode, which is suit-
able for planning but limited in real-time applications. Although the
results are validated through both simulations and field tests, flicker
meters tend to be accurate for low-frequency inputs but unreliable for
higher-frequency fluctuations [30].

Artificial neural networks (ANNs) are powerful tools for optimiza-
tion and estimation tasks and have been applied to flicker detection in
power systems [33,34]. However, the number of network inputs tends
to increase when ANNs are directly used for flicker index extraction,
leading to higher computational complexity. To mitigate this, multi-
stage networks with pre-processing stages have been introduced [35].
Although these approaches yield acceptable results in certain scenarios,
they are mostly limited to offline applications.

The Kalman filter (KF) and its variants have been widely used
as fundamental tools for analyzing and solving various estimation
problems [26,27]. Several studies have utilized state variable repre-
sentations of nonlinear flicker waveforms to extract flicker components
using different types of KFs [36—-39]. While KF-based methods provide
reliable outputs when targeting a limited number of flicker frequencies,
their accuracy diminishes as the frequency range broadens. Addition-
ally, simple KF algorithms are prone to instability when noise and
fluctuations are present in the reference signal.

In this paper, we propose a novel time-domain hybrid method
called the Hybrid Envelope Flicker System (HEFS) to estimate flicker
components from modulated voltage waveforms in power systems [40].
The algorithm operates in two stages: first, the envelope of the wave-
form is extracted using a robust H-co filter [41]; second, an online
neural network (such as ADALINE) is applied to estimate the flicker
components [42-44]. This method benefits from a simple formulation
and robust performance. The main contributions of this work are
summarized as follows:

Despite extensive research on flicker estimation, most methods
struggle to adapt reliably under non-sinusoidal disturbances where har-
monics, noise, and complex modulation distort the voltage waveform.
Existing ANN-based models often demand high input dimensionality
and extensive training datasets, while Kalman filters degrade under
model uncertainty or require restrictive assumptions. These limitations
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motivate the development of a method that is both robust to uncer-
tainty and computationally efficient for real-time applications. In this
work, we specifically address disturbances arising from voltage flicker,
harmonic distortion, and additive white noise, which frequently coexist
in real-world power systems. The main contributions of this paper are
summarized below:

1. Employs a robust H-co estimator with a simple formulation,
capable of detecting flicker in modulated voltage waveforms,
even in the presence of unknown noise disturbances.

2. Utilizes the ADALINE neural network [45], a fast estimator ca-
pable of handling multiple envelopes without requiring a train-
ing phase, providing an efficient method for estimating voltage
fluctuations in the presence of power harmonics.

3. Introduces a novel voltage fluctuation model that incorporates
both harmonic and flicker components, offering a more accurate
representation of power signals.

4. Extracts multiple flicker frequencies from a fluctuating volt-
age waveform, capturing all critical frequency components as
defined by the IEC 61000-4-15 standard.

5. Proposes a hybrid algorithm that separates carrier and flicker
frequencies with differing amplitudes, achieving fast conver-
gence without the need for traditional filtering methods.

In summary, the proposed hybridization of H-o filtering with ADA-
LINE provides a novel two-stage approach that enables accurate, real-
time estimation of both harmonic and flicker components in compli-
ance with IEC 61000-4-15.

2. Methods

In the IEC standard, voltage waveforms with flicker components
are represented by applying an AM signal, where the power system
frequency (50 or 60 Hz) serves as the carrier frequency, and the flicker
frequency (envelope) acts as the message frequency. This relationship
is expressed in discrete form [2]:

F
av,
ZK =V, cosQa fkz,) {1 + ; Sy CosQuFk, + 9,.)} €))

where V, is the carrier amplitude (nominal voltage amplitude), f is
the power system frequency, and the index i = 1,2, ..., F refers to each
flicker component. F; and 6, represent the frequency and phase angle of
the ith flicker component, respectively, while % denotes the relative
voltage fluctuation. The sampling period z, is used to implement the
model in discrete form. The goal of the proposed algorithm is to
estimate the relative voltage amplitude % for each flicker component.
It should be noted that in all equations, the superscript k represents the
time point in discrete form.

Due to the presence of non-linear loads, the voltage waveform in
power systems becomes distorted. The previously used model Eq. (1)
does not fully capture the complexities of real power signals. Therefore,
this paper introduces a novel voltage fluctuation model that accounts
for both harmonic and flicker components. Additionally, to model the
noise properties more accurately, a high-frequency noise component is
incorporated into the signal model as follows:

t

N F
av,
Zk =YV, cosanfke, + ) { 1+y Sy Cos@rFke + 9,.)}
i=1

n=1

+ o - randn, 2)

where n = 1,2,..., N denotes the order of harmonics. V, represents
the amplitude of each harmonic, and ¢, is the corresponding phase.
o - randn, represents Gaussian noise, where the standard deviation o

defines the noise power. The value V, = \/ny\,: | V;2 serves as the base
value for normalizing the voltage fluctuations.
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Given the large number of states with varying amplitude mag-
nitudes in the model, improved performance in flicker estimation is
achieved through the use of hybrid algorithms. The proposed hybrid
algorithm operates in two sequential stages. First, the envelope of
the fluctuating voltage waveform is extracted using the H-co filter
at each time step k. The extracted envelope is then passed to the
ADALINE network, which estimates the % values corresponding to
each frequency at that time. '

2.1. Envelope estimation using H-co method

The H-oo filter is a widely-used analytical estimator that minimizes
the worst-case estimation error [46]. It performs efficiently in the
estimation of time-varying signals, even in the presence of unknown
noise, contrasting with KF-based methods, which minimize the ex-
pected variance of the estimation error. To estimate the envelopes
using the H-oo filter, the modulated signal in Eq. (2) is reformulated
as follows:

Z* = A, (Envelope, } + A, {Envelope, } + - + Ay {Envelopey } + o -randn*
3

where:

F
V.4V,
Envelope, =V, + Z 17 cos(2r Fikty + 6;) 4)
i=1 !
The power frequency components, i.e., A, = cosQznfkz, + ¢,), are
expanded using trigonometric identities:

A, =cosQnnfktg)cos(¢,) — sinrnfkzg)sin(p,) (5)

To capture the true power frequency, particularly in cases of fre-
quency deviation issues, a Phase-Locked Loop (PLL) from the MATLAB
toolbox is applied. Based on Eq. (3), a linear model for the H-co
estimator is derived:

7k = H*x + o 6)

where w, is the measurement noise matrix, and the state vector x is
defined as:
x = [cos(¢,)Envelope, sin(¢,)Envelope, ... o
cos(¢y )Envelope sin(¢y )Envelope y ]
The state vector x contains information of the envelopes. The struc-
ture matrix HF is:

H* = [cosn fkt,) — sin(Ra fkzy)...cosQaN fkz,) —sin(2zN fkry)] (8)

The state vector x is estimated in the time domain using the mea-
surement Z*, following the time-update equation:

2k = @Rk 4 KR(ZF — HF 35 1) ©

where K* and & represent the gain and state transition matrices,
respectively. Since the time-varying characteristics of the states are
unknown, @ is assumed to be a constant identity matrix. The covariance
matrix of the estimation error is updated recursively by minimizing the
worst-case estimation error:

Pk = @P* (1 —aP*! 4 H¥ RV HF P T (10)

where the factor a controls the influence of previous errors in the esti-
mation process and is chosen by the filter designer based on the specific
problem. R represents the covariance matrix of the measurement noise.
The gain matrix K* is computed using the covariance matrix of the
estimation error:

K = P*(I — aPF + H¥T RV HK PRy~ g*T R an

At each time step k, the envelopes can be obtained using informa-
tion from the states:

Envelope, = \/x% + x%, ..., Envelope, = x?v_l + xi, 12)
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Table 1 Table 2
Flicker frequencies F; in Hz based on IEC standard 61000-4-15. Parameters for H-co filter — ADALINE neural network simulations.
Flicker frequencies F, (Hz) H,, method ADALINE method Simulation
0.5 35 6.5 10 14 20 PO 10° - I3y o w® 1, 7, 1/1200
1 4 7 10.5 15 21 % 1, 9 5 - 0.02
1.5 4.5 7.5 11 16 22 « 8 2 0.0001
2 5 8 11.5 17 23 r 50 ] 1000
2.5 5.5 8.8 12 18 24 R 0.007
3 6 9.5 13 19 25

To summarize, the H-co is a robust state estimator designed to
minimize the worst-case estimation error over all possible disturbances,
rather than minimizing the expected error covariance as in the Kalman
filter. Its optimization objective is to guarantee that the ratio between
the estimation error energy and the disturbance energy remains below
a prescribed threshold y, i.e.,

llexll3
2 < 72

13
llogl2

where ¢, is the estimation error and w is the measurement noise. This
formulation ensures robustness even when the exact noise statistics
are unknown. In practice, the filter recursively updates the state es-
timate by incorporating measurement innovations while bounding the
amplification of disturbances. The optimization problem is solved by
computing a gain matrix K, (see above) which ensures convergence
under uncertain and noisy environments. This makes the H-co frame-
work especially suitable for power quality estimation problems, where
voltage signals often contain unmodeled disturbances and stochastic
noise.

The H-co estimator involves simple steps with low computational
complexity, making it well-suited for practical implementation. At each
time step, the estimated envelopes are fed into the ADALINE network
to estimate the flicker components. This process is detailed in the
following subsection.

2.2. Flicker components estimation using ADALINE

The envelopes, as time-varying amplitudes, are extracted using Eq.
(12) at each time step. These envelopes are then fed into an online
ADALINE neural network for spectral decomposition. The ADALINE
network offers the advantage of a simple structure without requiring a
learning phase, making it ideal for fast estimation processes. Moreover,
the developed algorithm relies on a minimal number of tuning pa-
rameters, further simplifying its implementation. The schematic of the
ADALINE network is illustrated in Fig. 1. The target states for ADALINE
are the flicker amplitudes at frequencies within the range f + F; Hz,
where f is the power frequency, and F; is specified by IEC standard
61000-4-15, as detailed in Table 1.

To estimate the flicker amplitudes, the extracted envelope from the
H-oo filter is modeled, with the flicker frequencies selected from Table
1. The network consists of 74 inputs representing DC values.

The 74 frequencies in Table 1 are selected based on IEC Standard
61000-4-15, which defines the flicker frequency range most relevant to
human visual perception (0.5-25 Hz). These form a fixed grid of basis
functions used by the ADALINE network to estimate flicker amplitudes
efficiently. Although the grid is discrete, the adaptive nature of the
algorithm allows it to approximate off-grid components through spec-
tral leakage into adjacent frequencies. This offers a practical balance
between resolution and computational simplicity without requiring
dynamic reconfiguration.

xk = 1[1,0,c08(220.5kz,) — sin(270.5kz,) ... cos(2x25kz,) — sin(2x25kz,)|”
14

The weight vector for the nth envelope at time step k is given by:
wln‘ = [wllcn’ w/2{n’ e w/7(3n’ w/7(4n] (15)

These weights are updated using the Widrow-Hoff rule.

T
ok ek xk
witl = k4 — 1 ad (16)
n n kT _k
A+xt x
ad " ad

where ¢f is the tracking error and 4 is a small quantity to avoid
the denominator from being zero. The adaptive learning factor 6% is
calculated as follows:

ot = &

- k
1+ﬂ

In Eq. (17), B is a constant that determines the decay rate of the
initial learning rate 6. In this form, the final weights encapsulate the
flicker information. Finally, the harmonic and flicker amplitudes are
extracted using the following formula:

a7

2 2
AV, Waisnn T Waira
2 and _’:M’ i=12,...,F
2n 2[/, V.

n

- 2
Vi=yjwi, tw

18

The final outputs of the ADALINE network are the relative flicker
amplitudes AV;/V, corresponding to the standard flicker frequencies F;.
These represent the physical quantities of flicker defined in IEC 61000-
4-15 and are directly used to compute the instantaneous flicker sensa-
tion (S) and other standardized indices. Thus, the proposed method
does not only track frequency content but explicitly estimates the
relative amplitude of flicker components that have a direct physical and
perceptual interpretation.

3. Results

A series of simulations were performed to assess the effectiveness
of the proposed method in estimating flicker components. For this
purpose, the waveform model depicted in Eq. (2) was used. The wave-
form’s frequency content aligns with the bus voltage of industrial loads,
which typically includes a combination of the 1st to 11th harmonics.
Additionally, significant flicker components based on the IEC Standard
61000-4-15 were incorporated into the waveform. To highlight the
robustness of the proposed approach, the flicker estimation problem
was applied to a highly distorted waveform containing five harmonic
components and additive high-frequency noise.

Appropriate parameter values for the proposed method were cho-
sen. The selected parameters for the H-oo filter and the ADALINE neural
network are presented in Table 2.

I* represents the identity matrix, and 1** is a vector of ones. The
selected parameters remain constant throughout all simulations. The
key software simulations considered in this study are as follows:

1. Simulated waveform with one power harmonic and one flicker
component.

2. Distorted waveform with 5 power harmonics and 36 flicker com-
ponents. This test examines the proposed method’s capability to
track flicker in the presence of multiple harmonics.
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1
0
Cos(2n0.5kt:)
-Sin(2m0.5kts)
Output
* >
.
L
Cos(2n25kts)
-Sin(2m25kts)
Hoo Output
Adaptive (envelope)

Algorithm

Fig. 1. Block diagram of the ADALINE neural network used for flicker frequency estimation. The input consists of sinusoidal basis functions covering a predefined
flicker frequency range. Each input is weighted by a corresponding coefficient W;, and the weighted sum forms the ADALINE output. The output is compared
against the reference envelope obtained from the H-co filter. The resulting error e is used in the Least Mean Squares (LMS) adaptive algorithm to update the
weights W in real time, minimizing the squared error and allowing the network to track multiple flicker components.

3. Monte Carlo (MC) simulation for analyzing the proposed
method. This test demonstrates the method’s generalization abil-
ity, as harmonics and flicker amplitudes are randomly selected
in the signal model.

3.1. Estimation of a waveform with power frequency and one flicker com-
ponent

As a representative case study, a waveform containing a power
frequency and a single flicker component is simulated. The power
frequency is 50 Hz, and it is estimated using a PLL from the MATLAB
toolbox. To evaluate the performance of the proposed method, Gaussian
noise is added to the signal as follows:

AV;
Zk = 1.5 cos(2x50kt, +80°) x { 1+ 2_V’ cos2r F;kty + 9,~)} +0.02-randn®
t

19

Several simulations are conducted, with one of the flicker frequen-
cies from Table 1 injected into the waveform. The relative voltage
amplitude of the flicker component, %, is randomly selected within
the range [0.001, 0.02]. Additionally, '9i values are randomly gener-
ated within the [0, 90°] boundary. The proposed method estimates
the relative amplitude of the flicker components. The final estimated
parameters are compared with the corresponding true values, and
the absolute error is calculated. The results of the error analysis for
different simulations are presented in Fig. 2. Although the absolute
error of the estimation increases with amplitude and frequency, the
algorithm consistently estimates the amplitudes with less than 1% error
across all frequency values. The convergence trend is also examined,
as shown in Fig. 3, where acceptable results are achieved for all flicker
frequencies within 0.3 s.

3.2. Estimation of distorted waveform with 5 power harmonics and 36
flicker components

Due to non-sinusoidal current anomalies present across the power
lines, the actual bus voltages exhibit a distorted nature, which can

1 - <1% error across all frequency values

0.8 4

04 +

Error of A\’i/\" (%)

0.2 4
0.01

0.005

10 15 20
Relative amplitude (pu)

Frequency (Hz)
Fig. 2. Absolute error of (4V})/V, estimation, waveform with power frequency
and one flicker component.

be represented as a waveform comprised of a series of harmonics.
In this section, the flicker estimation problem is addressed by em-
ploying a modulated waveform containing multiple power harmonics.
Additionally, to assess the performance of the proposed method under
the influence of numerous flicker frequencies, the fluctuating voltage
waveform encompasses all frequencies defined in the IEC 61000-4-
15 standard. Thus, the fluctuating signal in Eq. (2) is formulated as
follows [19,23,47,48]:

Z* = [1.5cos (2750kz, +80°) + 0.5 cos (27150kz, + 60°)
+0.2 cos (27250kt, + 45°)

+0.15 cos (27350kt, +36°) +0.1 cos (27550kt, +30°)]

F AV, }

{ 1+ ; > 08 (22 Fikr, + 6;) } +0.02 - randn

1

(20)
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0.0220

I True
H B N Estimated

0.0215

0.0210

0.0205

0.0200

AV/V (pu)

0.0195

0.0190

0.0185

0.0180

0 0.1 0.2 0.3 0.4 0.5
Time (s)

Fig. 3. Trend of convergence of the proposed method. The blue line represents
the true relative flicker amplitude AV /V = 0.02 pu. The red lines show the
estimated flicker amplitude computed by the ADALINE neural network over
time, across multiple Monte Carlo runs. The plot illustrates the convergence
behavior of the estimator under a waveform and one flicker component.

The flicker frequencies f; and their corresponding amplitudes 471?
are presented in Table 3. The chosen amplitudes ensure a unity instan-
taneous flicker sensation in 230 V/50 Hz systems [38]. At each moment
k, the H, filter extracts the signal envelopes. In the case under study, 5
harmonics are introduced into the simulation signal, necessitating the
estimation of five envelopes by the H_, filter. The estimation results
for envelope 1 are illustrated in Fig. 4, where the proposed algorithm
converges to the true value in less than one power cycle (0.02 s).
The remaining estimated envelopes display a similar tracking behavior.
According to Eq. (12), the phases of the power harmonic components
are also determined by the H_, filter. The results of the phase estimation
for the power harmonics are shown in Fig. 5. Due to the PLL error
in detecting the exact frequency, the convergence of the harmonic
phases to the reference value is slightly slower compared to that of
the envelopes. Nonetheless, all phases converge within 0.03 s. Despite
these challenges, the H-o filtering approach maintains stable estimates
due to its inherent robustness against measurement and modeling un-
certainties. Nevertheless, careful tuning of PLL parameters or inclusion
of advanced PLL structures could further minimize such effects.

In the second stage at each time step k, the envelopes estimated
by the H, filter are used as inputs to the ADALINE neural network to
estimate the flicker components %. Fig. 6 shows the tracking behavior
of flicker amplitudes using the ADALINE network. Given that the initial
weights of the network are selected randomly, the estimation results
exhibit initial overshoots. The proposed hybrid algorithm estimates
harmonic and flicker components through separate processes, allowing
the extraction of parameters with varying scales independently. This
approach reduces the number of iterations required for convergence,
with the data processing of the distorted signal completed within
0.6 s. Using the estimated amplitudes, the envelopes are reconstructed.
Specifically, the reconstructed envelopes closely match their actual
values once the estimated flicker components converge to their true val-
ues. Fig. 7 illustrates the quality of the envelope 1 reconstruction based
on the ADALINE estimator results, and this trend can be generalized to
the other envelopes.

Table 4 summarizes the estimation errors of the first envelope due
to phase-locked loop (PLL) inaccuracies, under conditions with and
without fundamental frequency deviations.

Energy and AI 22 (2025) 100614

Table 3
Flicker frequencies F, and corresponding relative amplitudes for distorted
waveform estimation.

AV AV AV
F v F ¥ F 7[
0.5 0.0234 6.5 0.003 14 0.00388
1 0.01432 7 0.0028 15 0.00432
1.5 0.0108 7.5 0.00266 16 0.0048
2 0.00882 8 0.00256 17 0.0053
2.5 0.00754 8.8 0.0025 18 0.00584
3 0.00654 9.5 0.00254 19 0.0064
3.5 0.00568 10 0.0026 20 0.007
4 0.005 10.5 0.0027 21 0.0076
4.5 0.00446 11 0.00282 22 0.00824
5 0.00398 11.5 0.00296 23 0.0089
5.5 0.0036 12 0.00312 24 0.00962
6 0.00328 13 0.00348 25 0.01042
) ) i I True
B B N Estimated
s
&
-
v
Qo
[}
°
>
c
o
1.35 0 0.02 00 1
0 1 2 3 4 5 6
Time (s)
Fig. 4. Estimation of envelope 1 using H-infinity filter.
Ll Ll L) L]
100 X 0.249167 4
Y 79.9999
80 X 0.189167 o
Y 59.9965
X 0.248333
60 ®va50037
a -
b 40 .
S R
St X 0.195833
@ 20 v3so021 | X025 1
a : Y 30.0025
g0 T
.20 4
-40 -
-60 h
'l A L e
0 0.05 0.1 0.15 0.2 0.25
Time (s)

Fig. 5. Estimation of power harmonic phases using H-infinity filter. In blue
the main components, in red the 3rd component, in orange the 5th component,
in purple the 7th component and in green the 11th component.
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Fig. 7. Envelope 1 reconstruction using estimated flicker amplitudes.

Table 4
Error of envelope 1 estimation due to PLL errors.

Without frequency deviation With frequency deviation of +0.5 Hz

Mean Variance Mean Variance

5.352¢76 4.183¢76 7.266¢73 8.419¢73

As shown in Table 4, the estimation error is negligible in the absence
of frequency deviations, with a mean error of 5.352x 1076 and variance
of 4.183 x 107%. However, introducing a +0.5 Hz frequency deviation
significantly increases both the mean and variance of the error, by more
than an order of magnitude. This highlights the sensitivity of PLL-based
approaches to frequency variations, reinforcing the advantage of the
proposed H-oo filter framework, which remains robust under similar
conditions.

3.3. Impact of PLL errors and optimization strategies

As shown in Table 4, PLL inaccuracies can introduce estimation
errors, particularly under frequency deviation conditions. While the
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Table 5
Numerical analysis of MC output.

Error of S (%)

Mean 0.1832
STD* 0.0021

Error of envelope 1 (%)

0.1114
0.0038

a Standard deviation

proposed H-co—ADALINE framework demonstrates robustness, its ac-
curacy ultimately depends on the ability of the PLL to track the fun-
damental frequency. To further mitigate this source of error, adaptive
PLL strategies may be employed. For instance, second-order general-
ized integrator PLLs (SOGI-PLLs) and adaptive notch filter PLLs offer
faster convergence and enhanced tracking under dynamic frequency
deviations [49].

Additionally, the tradeoff between PLL bandwidth and noise sen-
sitivity must be carefully tuned to balance tracking precision and
robustness. Integrating such advanced PLL structures with the proposed
method is expected to further improve reliability under non-stationary
conditions, and will be explored in future work.

3.4. Monte Carlo (MC) analysis and results discussion

MC-based analyses encompass a variety of problem-solving tech-
niques that utilize random numbers as inputs to generate output statis-
tics [6,19,50-53]. One of the primary applications of MC methods is
to validate the performance of estimation algorithms in the presence of
uncertainties. In this study, the MC method consists of a series of sim-
ulations, where each simulation employs random values for harmonics
and flicker amplitudes in the waveform defined by Eq. (2). These
random values are uniformly sampled from the intervals [0.8, 1.2]
and [0, 0.02] for harmonic and flicker amplitudes, respectively. The
proposed estimation approach is then applied to estimate the flicker
amplitudes. The instantaneous flicker sensation (S), which serves as the
evaluation index for flicker, is computed using the estimated flicker
amplitudes to assess the estimation quality [54,55]. The contribution
of each flicker frequency to S can be expressed as follows:

(3)
Vi

S, = W (21)
Vi J1EC
where (%)IEG is derived from Table 3 for the flicker frequency F;.
1

The total estimated sensation S is obtained by summing the contri-
butions of the individual flicker frequencies ;. Finally, the estimated
sensation is compared with the true sensation, and the error percentage
is calculated as the output of the MC simulation. Fig. 8 depicts the
distribution of the error in S with respect to the root of the sum of

>N ¥2 and the root of the sum of

2
VEL ()

As shown in Fig. 8, the error in S remains below 0.25% for all
random combinations of harmonic and flicker amplitudes. Additionally,
the convergence behavior of the algorithm in both the frequency and
time domains is evaluated through multiple MC runs. In this context, a
2D statistical distribution of the error in .S and the error in envelope 1 is
examined. The results, illustrated in Fig. 9 and summarized in Table 5,
not only highlight the accuracy of the proposed algorithm in extracting
the frequency-domain characteristics of the studied waveform (i.e., S
values) but also demonstrate its precision in estimating time-domain
features (such as the envelope values).

squared harmonic amplitudes

squared flicker amplitudes

4. Discussion
4.1. Theoretical and practical insights

The theoretical performance of the proposed method has been
previously validated through various simulation tests. In this section,
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the algorithm’s applicability in real-world scenarios is examined. Addi-
tionally, conventional Fast Fourier Transform (FFT) and state-of-the-art
Discrete Wavelet Transform (DWT) methods, provided by MATLAB
toolboxes, are utilized for flicker component estimation under the same
experimental conditions, and their results are compared. A hardware
setup was designed to log real data from a fluctuating voltage source.
The voltage waveform is derived from a 400 V infinite bus voltage
powering die-casting machines with operational forces ranging from
160 to 1000 tons, electrostatic painting machines, and oil pumps at
Mazinoor Lighting Industries Inc. Due to the sudden load changes of the
die-casting machines, the input electrical current experiences abrupt
variations, leading to fluctuations in the supply voltage. Die-casting
machines were selected due to their frequent and significant tran-
sient load changes, effectively illustrating the robustness and real-time
capability of the proposed method. To demonstrate broader applicabil-
ity, further testing on inverter-based loads, such as variable-frequency
drives (VFDs), or induction motors — common sources of harmonics
and flicker in industrial environments — is recommended in future
studies. The machine’s input voltage is measured using a fast-response
voltage transducer (LV 25-P), and the data is logged via an analog-
to-digital NI USB-6009 DAQ card at a sampling rate of 1200 Hz for
a duration of 6 s. The experimental setup is shown in Fig. 10(a),
while the data logging configuration is presented in Fig. 10(b). The
data is then processed offline using the proposed algorithm, as well as

Energy and AI 22 (2025) 100614

the FFT and DWT methods, within MATLAB. The computations were
performed on a computer equipped with a Core i5, 3.1 GHz processor,
and 8 GB of RAM. Fig. 11 presents the graphical results for envelope
1 across the three methods. Due to abrupt load changes, the measured
signal contains significant notches, but the estimated envelope 1 closely
follows the measured signal’s envelope. For more detailed analysis, the
undervoltage section of the test waveform is magnified, highlighting
the superior performance of the proposed algorithm and DWT method
over FFT in both steady-state and transient conditions. The estimated
signal, reconstructed by applying the estimated flicker components and
harmonic parameters, is compared with the measured signal. The error
statistics for the final two seconds (4 s to 6 s) of data for the FFT, DWT,
and proposed methods are presented in Table 6. Despite the favorable
graphical results, the numerical indices reveal that the DWT method
exhibits lower accuracy in practical situations. The primary reason for
the reduced accuracy of the DWT time-frequency domain method lies
in the presence of high-frequency noise elements in real data, which
cause aliasing effects.

For the second test, the stable feeder was disconnected, and the load
was powered by a diesel emergency generator. Real-time measurements
indicate a frequency deviation of +0.25 Hz during die-casting machine
operation. In such conditions, the PLL results for power frequency
estimation are biased due to interference (noise or narrowband inter-
ference), affecting the proposed method’s accuracy. While all methods
demonstrate reduced accuracy under these conditions, the proposed
method remains stable by decomposing the voltage fluctuations and
harmonic components, thereby mitigating frequency interference ef-
fects. As a result, the impact of PLL errors is reduced in the outputs.
However, the combination of aliasing and the picket-fence effect de-
grades the performance of the FFT and DWT methods. The numerical
results are shown in Table 6, which also includes an analysis of the
computational burden of the three methods during the final two sec-
onds of processed data. The proposed method demonstrates the best
computational performance under normal conditions (stable feeder).
Nevertheless, in the presence of frequency deviation, the required
processing time is slightly higher than that of the FFT method, as
additional iterations are needed to achieve acceptable results. Despite
the accurate results, the DWT method incurs a significant computa-
tional burden, which limits its feasibility for real-time applications. The
parameters in Table 6 underscore the proposed hybrid method’s ability
to provide both accurate and efficient flicker component estimation in
practical situations.

While this study focuses primarily on flicker estimation, the hybrid
method’s underlying adaptive structure — combining H-co filtering and
ADALINE networks — could potentially be adapted to estimate other
power disturbances such as voltage sags, swells, and interharmonics.
Future research should verify this generalization explicitly, potentially
adjusting the model formulation to account for additional frequency
and amplitude variations characteristic of these disturbances.

4.2. Parameter selection and optimization

The performance of the proposed H-co—ADALINE method depends
on several key parameters. For the H-oo filter, the weighting matrices
and regularization parameter A were selected to balance robustness
against measurement noise with stability guarantees, following the
standard design procedure. The chosen values ensure bounded esti-
mation error while maintaining responsiveness under dynamic distur-
bances.

For the ADALINE network, the initial learning factor 6° and decay
constant f (Eq. (17)) were tuned through sensitivity analysis. Larger
values of #° improve convergence speed but risk instability, while
smaller values enhance stability at the cost of slower adaptation. In our
study, the selected parameters provided a practical tradeoff, validated
through Monte Carlo simulations based on IEC 61000-4-15 test cases.
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Table 6
Numerical analysis of practical data.
Method Feature MSE Variance Computational time
Proposed method 7.776e6 5.911e7¢ 0.3812 s
Infinite feeder FFT 4.367e73 1.019¢™* 0.4182 s
DWT 7.8115¢76 7.381e7 0.8338 s
Proposed method 1.912¢74 4.54¢7* 0.4290 s
Emergency diesel FFT 3.007¢73 5.672¢74 0.4194 s
DWT 2.716e™ 4.705¢~ 0.8627 s
Although manual tuning yielded satisfactory results, systematic op-
IR A R I Step-down timization methods such as Bayesian optimization, genetic algorithms,
transformer or adaptive gain scheduling could further enhance parameter robust-
': ness, especially for large-scale or highly dynamic systems. Incorpo-
13 rating such automated tuning methods will be considered in future
H Voltage DAQ work.
transducer card
DAQ 4.3. Scalability and feasibility considerations
software
b | While the proposed hybrid H-co-ADALINE approach has been val-
Die-casting machines idated within th defined flicker f 0.5-2 .
voltage bus - o idated within the IEC-defined flicker frequency range (0.5-25 Hz), its

(a) Testbench schematic

(b) Real-world components

Fig. 10. Data logger setup dedicated to the experimental test.

650

Voltage (v)

Measured
== Proposed method
—FFT

DWT

-650

Time (s)

Fig. 11. Experimental signal analysis using different methods for validation.

computationally efficient recursive structure suggests promising scala-
bility to larger-scale distribution systems. The H-o filter requires only
matrix updates at each iteration, and the ADALINE network relies on
a single-layer architecture without offline training, both of which are
compatible with real-time deployment in power quality monitoring
devices.

Nevertheless, large interconnected power systems introduce addi-
tional challenges such as complex harmonic interactions, interharmon-
ics, and asynchronous disturbances that may affect estimation accuracy.
Moreover, extending the analysis beyond the 25 Hz range (e.g., into the
supraharmonic domain) may require modifications to the ADALINE ba-
sis functions or the inclusion of multi-resolution processing to capture
higher-frequency dynamics.

Therefore, while the proposed method is theoretically well-suited
for extension to large-scale systems and higher frequency bands, fu-
ture work will focus on empirical validation through field data and
adaptation of the algorithm for enhanced robustness in complex grid
scenarios.

5. Conclusion

This paper introduces a novel algorithm for the estimation of flicker
frequency components in voltage waveforms, addressing the inher-
ent complexity arising from the multitude of frequencies involved.
The proposed method effectively decomposes the voltage waveform
into envelope and harmonic components, significantly simplifying the
estimation process. Envelopes are accurately extracted using a ro-
bust H — oo filter, after which an online ADALINE neural network
efficiently estimates the flicker content within these envelopes. Ad-
ditionally, the study presents a new voltage waveform model that
incorporates flicker, harmonics, and white noise to comprehensively
assess algorithm performance.

Graphical and numerical results demonstrate the effectiveness of
the proposed method in accurately tracking power system flickers.
Monte Carlo simulations further confirm its robustness against various
harmonic and flicker scenarios aligned with IEC Standard 61000-4-15.
Practical applicability has been validated using real-world fluctuating
voltage data, showing that the proposed method outperforms conven-
tional FFT and DWT methods in terms of Mean Square Error (MSE),
variance, and computational efficiency.

The key strengths of this method include robustness against mea-
surement noise, rapid convergence suitable for real-time implementa-
tions, and computational efficiency ideal for hardware-constrained en-
vironments. Collectively, these attributes render the proposed method
highly suitable for industrial power quality monitoring.
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Despite its advantages, the method exhibits certain limitations. The
fixed frequency grid, although compliant with standards, may constrain
accuracy for off-grid frequencies. Additionally, the validation primarily
focuses on die-casting machine loads, which limits the generalizability
to other industrial scenarios. The absence of modeling for modern
lighting technologies, particularly LEDs, also represents a gap.

Future work could explore the impact of higher-order harmonics,
flickers, and interharmonics. Testing other robust online neural net-
works, such as Online Recurrent Neural Networks (RNNs) or Echo State
Networks, could further enhance prediction accuracy and computa-
tional speed. Additionally, extending the model to accurately capture
flicker characteristics of modern LED lighting systems represents an
important avenue for continued research.
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