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Abstract

Humans and other animals must continuously decide how to allocate their cognitive resources.
A key aspect of this involves controlling effort throughout the learning of new tasks, known
as cognitive control of learning. In machine learning, this is referred to as meta-learning
and focuses on scheduling hyperparameters to improve the learning processes. Determining
the optimal allocation of control requires complex computations, such as estimating future
utility while accounting for uncertainties, learning capacity, task difficulty, and other resource
demands. Although previous research has proposed computational mechanisms for control
allocation in learning, these methods often lack interpretability, resist mathematical analysis,
and rely on models that are difficult to scale. This thesis adopts a parsimonious approach to
identify principles of learning control. It introduces a normative framework based on cumulative
reward maximization for optimally allocating control throughout the learning process. This
framework unifies and instantiates existing theories in machine learning, such as Model-Agnostic
Meta-Learning, and in cognitive neuroscience, specifically the Expected Value of Control theory
applied to learning systems. The thesis further explores the application of this framework to
neural networks, revealing key features of optimal learning control, including inter-temporal
control allocation and curriculum learning. Additionally, it provides mathematical analyses
for optimal learning control, approximating time-dependent control allocation using methods
from control theory. Another aspect of meta-learning is identifying learnable task components.
To achieve this, the thesis introduces a novel method for estimating epistemic uncertainty to
prioritize replay on the most useful experiences. The primary contribution of this thesis is
a formal normative framework for understanding learning control in machine learning and
cognitive neuroscience. It provides methods for optimal control and epistemic uncertainty
computation, suggesting directions for further mathematical analysis. This work could establish
a robust framework for understanding animal learning across lifespans and enable more efficient
learning in artificial systems.
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Impact Statement

The work presented in this thesis is primarily abstract and theoretical, with some practical

applications in modern machine learning models and insights into observed phenomena in

cognitive science. In the near future, it may contribute to the development of mathematical

methods for analyzing learning agents and controlling learning processes. More broadly,

the formal framework presented unifies various methods from control theory, meta-

learning, and cognitive science, offering insights into optimal solutions to these problems

through a common perspective. The proposed epistemic uncertainty estimator for replay

could further enhance artificial learning agents and provide a framework for studying

replay in biological agents. The study of learning control is inherently linked to learning

itself, implying that a complete understanding of learning requires elucidating its control

counterpart. This thesis presents an approach to exploring that avenue.
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Chapter 1

Introduction

1.1 What is Intelligence?

Before addressing the central topics of this thesis, meta-learning and cognitive control,

it is necessary to establish several foundational concepts. This discussion progresses

from general to specific, beginning with an examination of intelligence. It then explores

how intelligence is acquired over a lifespan and across evolutionary time scales (learning)

and, finally, how the control of learning processes and executive functions can enhance

the adaptability of intelligent agents. The discussion begins with a brief exploration of

intelligence as a natural phenomenon observed in living beings and machines.

What defines an intelligent agent? A common perspective is that an intelligent entity is

one that can solve problems, comprehend various concepts, learn, and perhaps behave as

if driven by a purpose. In nature, intelligent agents, such as humans and other animals,

exhibit these characteristics. However, the precise meaning of an intelligent being remains

complex. Intelligence is a concept that is difficult to define, yet it is widely understood

in general contexts. Despite this intuitive grasp, the search for a formal definition has a

long history.
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The qualities that an intelligent agent must satisfy have been widely debated. A broad

definition, such as the one provided by Wechsler (1958), describes it as the aggregate

or global capacity of the individual to act purposefully, to think rationally, and to deal

effectively with its environment. Later definitions incorporate additional aspects, such as

multiple intelligences (Gardner, 1983), meta-cognitive capabilities (e.g., knowing what

it knows, Carroll 1997), and the capacity for learning and adaptability (Sternberg and

Kagan, 1986). For a historical review of the definitions and measurement of human

intelligence, see Hindes et al. (2011). Most of these definitions are anthropocentric.

However, discussions of intelligence in animals were also taking place, often with a focus

on evolution and its influence on branching skills, which resulted in diverse intelligence

capabilities among species (Vonk, 2021). While human intelligence exhibits unique features

compared to the rest of the animal kingdom (Cantlon and Piantadosi, 2024), the need for

a non-anthropocentric definition of intelligence that encompasses humans, other animals,

and artificial agents has been recognized (Holm and Banerjee, 2024).

Following the previous discussion on definitions that include animal intelligence and in

light of advances in machine learning, the debate on what intelligence is has expanded

to account for observed capabilities in artificial agents. One could argue that modern

artificial intelligent agents are capable of purposefully acting as designed, aiming to

minimize a loss function or maximize a reward. With sufficient capacity, they can solve

complex problems (Silver et al., 2021), and some have even passed a form of the Turing

test (Mei et al., 2024). This raises the question of whether AI can be considered intelligent,

prompting a shift toward a more general concept of intelligence. This concept is not

exclusive to humans or animals but instead moves toward a more parsimonious definition

applicable to complex systems capable of processing information and acting accordingly

to achieve a goal. Some examples of definitions of intelligence with this broader scope

include: The intelligence of a system is a measure of its skill-acquisition efficiency over a

scope of tasks, with respect to priors, experience, and generalization difficulty (Chollet,
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2019); intelligent agents are systems that show purposeful behavior (Palanca-Castan et al.,

2021); a functional definition of intelligence that can be measured Sritriratanarak and

Garcia (2023); or the capacity for completing novel goals successfully through respective

perceptual-cognitive and computational processes (Gignac and Szodorai, 2024).

There are several other definitions in the literature, but perhaps the broadest definition

of intelligence, is the one provided by Legg and Hutter (2007). The authors surveyed

several definitions of intelligence in the literature, and condensed them into: Intelligence

measures an agent’s ability to achieve goals in a wide range of environments.

1.2 The study of intelligence in brains and machines

There are numerous theories on how the brain may perform specific complex computa-

tions required for intelligent behavior. Some of these theories take the form of formal

mathematical frameworks that map variables of the theoretical system to actual quanti-

ties measurable in experiments, such as neural activity or behavioral data. Successful

examples include the activity of dopaminergic neurons as a reward prediction error and its

evolution during learning (Schultz et al., 1997), sound localization in the medial superior

olive (Grothe, 2000), spatial location encoded by place cells and grid cells (Moser et al.,

2008), Gabor-shaped filters in retinal ganglion cells for efficient encoding of visual stimuli

(Okajima, 1998), or the navigation mechanism of a fly implemented as a ring attractor

(Angelaki and Laurens, 2020).

In general, theories of brain computation study different aspects, such as specific ways of

connecting neurons in the form of neural architectures (Ocko et al., 2018; Schrimpf et al.,

2020), plasticity rules governing the evolution of synaptic weights throughout learning

(Citri and Malenka, 2008; Stampanoni Bassi et al., 2019), the algorithms underlying

decision-making (Bogacz et al., 2006; Garcia et al., 2023), biological constraints and

optimization objectives (Pulvermüller et al., 2021), and biologically plausible memory
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systems (Nadel and Hardt, 2011; Krotov and Hopfield, 2021; Krotov, 2023), among others.

For decades, the way researchers design experiments and analyze data in cognitive

neuroscience have been influenced from mathematical concepts developed in engineering

and physics (Gershman, 2021; Gershman et al., 2024). However, in recent years, neural

networks and reinforcement learning frameworks have become the leading mathematical

approaches for describing brain activity and behavioral experiments, perhaps due to their

success in learning how to solve complex problems and exhibit sophisticated behavior

(Richards et al., 2019; Botvinick et al., 2020; Saxe et al., 2021). Examples of the use of

these frameworks are ubiquitous in computational neuroscience. Notable cases include

grid cell patterns emerging in the activity of recurrent networks, usually trained to perform

path integration (Burak and Fiete, 2009; Whittington et al., 2020) (although this can

be achieved without forcing the network to path integrate as in Weber and Sprekeler

2018); modeling the visual system as a deep convolutional neural network (Schrimpf et al.,

2020; Lindsay, 2021); further characterizing dopaminergic activity distribution to encode

uncertainty or feature-specific rewards (Dabney et al., 2017; Lee et al., 2024a); replay

in the hippocampus as a value-based process used to update agent parameters (Mattar

and Daw, 2018; Jensen et al., 2024); and a theory of semantic learning described through

neural network dynamics (Saxe et al., 2019).

While these theories borrow concepts from the machine learning literature, there are

also clear cases where machine learning models have been inspired by neuroscience

experiments (Hassabis et al., 2017). A key example is the work of Hubel and Wiesel

(1959), which mapped the activity of retinal ganglion cells to specific locations and

orientations in the visual field. These results were later distilled and represented in

the Neo-cognitron proposed by Fukushima (1988), which eventually led to modern

convolutional neural networks trained via gradient descent (Lecun et al., 1998). Further

examples of neuroscience-inspired machine learning concepts include attention mechanisms

(Lindsay, 2020), episodic memory (Lengyel and Dayan, 2007; Pritzel et al., 2017; Giallanza
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et al., 2024), and planning mechanisms (Sutton, 1991; Tomov et al., 2023).

The kinds of questions that cognitive neuroscience and machine learning seek to answer

are generally different. From a neuroscience perspective, the focus is on questions such

as: What kind of algorithm is the brain running, and how is it implemented? In contrast,

machine learning asks: What is the best algorithm for each scenario? How can we

control and predict a model’s behavior? Despite these differences, both fields converge

on a common question: Why do these algorithms work, and what are the limits of these

models? As mentioned earlier, the overlap between cognitive neuroscience and machine

learning is substantial, raising the question of whether it is beneficial to blur the lines

between these fields given the current state of research. Some researchers have referred

to this interdisciplinary approach as NeuroAI (Zador et al., 2023), describing research

that explores the intersection and commonalities between neuroscience and artificial

intelligence.

Given the complexity of the brain and modern machine learning systems, answering

questions about what is implemented in the brain and why it even works is challenging. One

common approach is to propose models, such as specific neural networks and reinforcement

learning agents, as previously mentioned, and compare them to observed data from

experiments. Then, by exploring the space of design choices for these agents and then

simulating the functioning of the agent, researchers can identify the configuration that best

explains the observed data. This approach has been named a deep learning framework

for neuroscience (Lillicrap and Kording, 2019; Richards et al., 2019). A promising

search space is that of objective functions, as it could provide insights into the purpose

of biological systems, and search space such as learning rules, and architectures may offer

clues about algorithmic implementations of learning and circuit-level implementations.

Most research in computational neuroscience follows this methodology, as demonstrated

by the previously discussed examples. However, relying purely on simulations and ablation

studies in these systems is constrained by circumstantial confounders due to the large search
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space of design choices, making it difficult to distill generalizable principles of intelligence.

Beyond this approach, it has been proposed to analyze these systems mathematically, in

a manner closer to physics. This consists of finding relationships between the system’s

variables under well-defined assumptions, thereby providing guarantees and generality to

some of the conclusions drawn from the analysis (Saxe et al., 2021). This is challenging,

as both biological learning agents and machine learning systems resist mathematical

analysis due to their intrinsic complexity. However, there are notable successes where

important phenomena observed experimentally and in simulations can be described

through mathematical relationships. Examples include the explanation of the double

descent phenomenon in the loss function of overparameterized networks (Liu et al.,

2022), analytical learning dynamics and asymptotic behavior of neural networks and

reinforcement learning agents as a function of data statistics (Saxe et al., 2019; Goldt

et al., 2019; Lee et al., 2022; Bordelon et al., 2023), intrinsically firing neurons as a

mechanism for stability (Latham et al., 2000), or storage capacity in Hopfield networks

(Folli et al., 2017).

Both approaches offer promising avenues for gaining insight into the mechanisms of

intelligence. However, it is important to distinguish the types of questions each approach

can address and the corresponding answers they can provide. For instance, the simulation-

based approach can help identify relevant or prominent behaviors of intelligent systems

that may be explained through mathematical analysis. Conversely, mathematical results

can be tested beyond their usual restrictive assumptions in real-world scenarios with

larger and more complex intelligent systems, potentially validating the generality of

the analysis. This thesis adopts both approaches, drawing conclusions from extensive

computational simulations as well as mathematical analysis to uncover meta-learning

principles in artificial and biological learning systems. Having broadly outlined the study

of intelligent systems, the discussion now turns to a specific and perhaps essential feature

of intelligence: learning.
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1.3 Learning

Similarly to the concept of intelligence, most people have an intuitive grasp of what

learning means. It can involve adapting to new environments, acquiring information that

may be useful in the future, or changing behavior based on experience. Once again, we

observe intelligent beings demonstrating the ability to learn. For instance, children learn

how to speak and improve their reasoning skills during development (Feldman, 2019),

people learn to play musical instruments (Hille and Schupp, 2015), dogs learning how to

behave among humans (Hiby et al., 2004), and neural network models learn to detect

supernova explosions and other astronomical events in images (Carrasco-Davis et al.,

2021). These examples illustrate that learning has many facets and may exist in different

forms. As with intelligence, learning is not straightforward to define, and researchers have

debated its definition in the past.

Historically, most early discussions about the nature of learning came from psychology, as it

is closely associated with human development and education (Spurlock, 2023; Renshaw and

Power, 2003). According to Bruner (2004), whose ideas we briefly summarize here, theories

of learning, at least in psychology, were split from the beginning into two main paradigms:

Associative learning, which conceptualizes learning as the formation of bonds between

ideas based on proximity (whether conceptual, spatial, or temporal) (Ebbinghaus , 1885;

Pavlov, 1906), and Configurationism, which proposes that learning involves organizing

information in such a way that the overall structure enables learning, rather than each

individual piece of information on its own (Tolman, 1948; Krechevsky, 1975). Hence,

configurationism stands in opposition to associativity in terms of the specific mechanisms

of information acquisition that constitute learning.

The discussion between the two groups of researchers in each paradigm had rivalry

undertones. For example, Skinner (1950, 1985) argued that a formal theory of learning

might not be necessary, as associativism alone was sufficient. In contrast, Hull (1943)
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advocated for a theory of associative learning by proposing mathematical expressions

describing relevant learning variables. On the configurationist side, Tolman (1948)

introduced the concept of a cognitive map organized based on its utility, while Krechevsky

(1975) emphasized that learning was hypothesis-driven rather than a passive process,

as in associativism, which relies merely on proximity. Over time, the emphasis on

distinguishing between the two paradigms diminished as researchers began to consider

information processing systems and language acquisition in a broader sense (Miller et al.,

1960; Newell and Simon, 1972). This shift was followed by a decline in theories focusing

on the basic components of learning that the earlier paradigms had attempted to capture,

since language learning and other complex cognitive processes were highly abstract.

Theories of learning were instead developed at the level of language itself (Chomsky,

2020), this shift perhaps revived some aspects of the earlier paradigms (Chomsky, 2013),

at least within the field of psychology. See Bruner (2004); Bélanger (2011) for an extended

discussion on the history of learning in psychology.

As one of the AI winters ended with the resurgence of neural network applications for

solving complex problems (Toosi et al., 2021), some researchers leveraged computational

models capable of adapting to solve problems, essentially, learning. From this foundation,

numerous theories of learning have been proposed, including those based on neural

networks and reinforcement learning, as discussed in the previous section.

Following this approach, learning in this thesis is broadly defined as the process by which

a dynamical system evolves to improve on a task or a set of tasks, with neural networks

and reinforcement learning agents serving as specific instances of this definition.

1.4 Learning to Learn

Throughout life, individuals not only learn but also learn how to learn. For example,

at the end of a university term, students must begin preparing for exams. How should
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they decide how much time and effort to allocate to studying for each course? Many

factors influence this decision, including prior knowledge in each subject, the relevance

of each course to their degree and future plans, the level of difficulty, and even personal

engagement with the material. Humans and other animals make similar decisions daily,

where the effort invested in the present influences future outcomes. This ability to manage

learning is crucial for long-term planning, as it requires estimating the potential outcome

of knowledge not yet acquired, an ability distinct from the direct act of studying.

Numerous empirical observations indicate that humans can effectively schedule their own

learning. For instance, spontaneous matching of stimulus difficulty with skill, even among

children, may facilitate learning (Kidd et al., 2012); intrinsic valuation of new information

can promote exploration (Bromberg-Martin et al., 2024); and self-directed management

of learning curricula has been documented (Ten et al., 2021). Additionally, evidence

suggests the existence of an optimal difficulty level for rapid learning (Wilson et al., 2019),

active stimulus selection based on information content in children (Raz and Saxe, 2020),

and the relative benefits of mental rest and periods of boredom throughout the learning

process (Agrawal et al., 2022).

More specifically, two recent empirical studies, one in rats (Masís et al., 2023) and another

in humans (Masis et al., 2024), have directly investigated the role of cognitive control in

learning. Although substantial evidence supports the role of cognitive control in learning

management, theoretical work has largely addressed this process in a problem-specific

manner (e.g., examining how control governs the development of shared or distinct

representations across different environments (Sagiv et al., 2020; Ravi et al., 2021))

and has relied on normative but simplified models for tractability reasons (Masís et al.,

2021). There remains a need for a comprehensive, normative, and, importantly, scalable

framework to guide optimal control over an agent’s learning repertoire.

In addition to psychological experiments, researchers have directly examined the brain
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during tasks requiring cognitive control allocation, with evidence suggesting that specific

brain regions are dedicated to computing key aspects of learning control. For example,

activity in the dorsal anterior cingulate cortex (dACC) has been shown to correlate with

the expected payoff associated with a task, the level of cognitive control required to achieve

a goal, and the cost of engaging in the process (Shenhav et al., 2013; Klein-Flügge et al.,

2016). Meanwhile, the locus coeruleus (LC), the brain’s primary source of norepinephrine

and a recipient of signals from the ACC, has been linked to attentional states during task

learning, modulating exploration and exploitation (engagement or disengagement) while

performing a task (Aston-Jones and Cohen, 2005; Breton-Provencher et al., 2021; Zhang

et al., 2023; Fan et al., 2023).

While these studies provide important insights into how the brain may act optimally

in certain situations, less is known about how such processes operate over extended

learning timescales. Additionally, several other phenomena influence learning processes.

Theories that aim to maximize cumulative reward have attempted to unify control over

learning, such as the expected value of control (EVC) theory (Shenhav et al., 2013; Masís

et al., 2021), and the role of neuromodulators as meta-learners (Doya, 2002; Lee et al.,

2024b), which assign specific roles to neurotransmitters in the regulation of learning

processes (Iigaya et al., 2018; Chantranupong et al., 2023).

Controlling learning processes is also a critical topic in machine learning (Vettoruzzo

et al., 2024). The challenge of controlling learning is framed as identifying the optimal

parameters for a learning agent to enhance its ability to acquire new tasks. This can

take several forms, such as determining optimal initial parameters (Finn et al., 2017),

developing methods for representing new data (also known as domain adaptation Li

et al. 2018), maintaining long-term learning while preventing the forgetting of previously

acquired tasks (Son et al., 2024; Lee et al., 2024b), and, more recently, enabling in-context

learning in large language models (LLMs, Coda-Forno et al. 2023).
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Most applications of these methods are numerical, and there is a lack of analytical

frameworks through which such systems can be examined mathematically. However,

recent advances in learning theory (Saxe et al., 2019; Goldt et al., 2020; Lee et al.,

2022) and control theory (Atangana et al., 2014; Zucchet et al., 2022) are expanding

the frontiers of mathematically tractable meta-learning systems. Additionally, relevant

analogies between meta-learning and animal behavior have been proposed, such as the

role of neurotransmitters as hyperparameters of a reinforcement learning agent (Doya,

2002; Lee et al., 2024b), the prefrontal and orbitofrontal cortex as meta-learners (Wang

et al., 2018; Wang, 2021; Hattori et al., 2023), and human-like generalization capabilities

in meta-learning models (Lake et al., 2017; Lake and Baroni, 2023; Binz et al., 2023).

Besides keeping track of the agent’s performance, which is required for optimal cognitive

control, it is necessary to estimate which aspects of the environment are useful to consider

for learning. When an agent has the choice to focus on different pieces of information

from the environment, and assuming there is limited capacity to focus on many things at

the same time, it is beneficial to focus on aspects that can be learned and that are reward-

related, as opposed to information that is random, unpredictable, and unlearnable. Such

information does not promote an increase in performance or collected reward when trying

to learn it (Burda et al., 2018; Mavor-Parker et al., 2022). Identifying learnable parts

of the environment can be framed as an uncertainty decomposition problem, separating

uncertainty into epistemic and aleatoric uncertainty, the learnable and unlearnable parts,

respectively. This problem has been widely studied in machine learning, specifically

when estimating posterior distributions of a model (Lahlou et al., 2022), or to promote

exploration in reinforcement learning agents (Clements et al., 2020; Lobel et al., 2023).

Being able to find epistemic knowledge in an environment while learning is necessary to

improve learning performance, in a different way than simply looking at the trajectory. In

a way, epistemic uncertainty prioritization is a proxy that works well to improve learning,

without necessarily dealing with the complexities of considering the learning trajectory
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itself, which requires further meta-knowledge from the agent, learning dynamics, and task

statistics. This makes it suitable as a surrogate heuristic to control learning that can be

applied to more complex models.

These connections suggest that the meta-learning framework from machine

learning and the cognitive control of learning in biological agents are funda-

mentally related and should be explainable within a unified framework.

1.5 Thesis Structure

After the introduction and background in chapter 1 and chapter 2, respectively, the

novelty of this thesis is presented concretely in three parts. chapter 3 presents a formal

mathematical framework that relates the expected value of control in cognitive neuroscience

with meta-learning in machine learning. This framework considers the optimal learning

trajectory as the one that maximizes cumulative reward over the available time to interact

with an environment, and it allows for the computation of numerical solutions of the

optimal control for learning. This normative objective is highly expressive (Abel et al.,

2021), and thus manages to instantiate many problems that require the adjustment of

parameters or control variables outside the defined learning dynamics. The framework

is applied to multiple learning settings, including curriculum learning as attention to

multiple tasks while learning, and task switching for simple neural networks through

weight modulation. In addition, this framework provides an alternative explanation to

experimental data (Masís et al., 2023).

chapter 4 simplifies the assumptions of the meta-learning framework to obtain an approx-

imation of the optimal control of learning. The effort of pushing the theory to obtain a

mathematical expression of the optimal control relies on the need for insight beyond the

experimental setting, which is the common scenario in most neural network applications.

Usually, models have many design choices and parameters, which can be optimized using
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the framework proposed in chapter 3. The numerical solution for the optimal control

could change depending on these parameters. Having a mathematical expression provides

explicit dependency of the optimal control for learning on every parameter without the

need for numerical simulation, yielding a parsimonious expression to compute the control

of learning and highlighting the parameters that are relevant versus the ones that are

not. The analysis presented in chapter 4 is a novel approach that utilizes control theory

perturbation methods (Atangana et al., 2014; Ganjefar and Rezaei, 2016) to approximate

the normative objective: cumulative reward throughout the learning period and the

optimal learning rate scheduling under an assumed cost.

In chapter 5, we move to the study of uncertainty decomposition, which, as discussed before,

corresponds to a proxy or heuristic of reward-optimal control for learning. Similar to the

methods in Chapters 3 and 4, this approach requires meta-cognitive information about

the agent’s uncertainty. The proposed uncertainty decomposition is a novel mathematical

expression that relies on ensembles (Osband et al., 2016) and value distribution estimation

(Dabney et al., 2017) as meta-cognitive knowledge of the agent. It is used specifically in the

context of prioritized experience replay (Schaul et al., 2016), where an uncertainty-based

priority scheme is implemented to select memories from the replay buffer that are high

in epistemic uncertainty and low in aleatoric uncertainty. The meta-learning framework

presented in chapter 3 computes the epistemic content implicitly. This point is further

developed in the discussion presented in chapter 6.
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Background

In this chapter, a formal overview of the mathematical background utilized in this work

is provided, from which the proposed meta-learning strategies framework and other

control mechanisms to assist learning are derived. This work spans the use of deep neural

networks (DNN) and reinforcement learning agents as dynamical systems. In general,

DNN and RL-agents are used for different purposes, DNNs are usually utilized as function

approximations, while RL-agents to learn policies to control a system or optimally behave

within an environment. These two types of agents are integrated to create the proposed

meta-learning framework, in short, a neural network (or an RL-agent) is a learning system

that needs to be controlled to maximize cumulated reward through training as in an

RL problem, and this controller needs to solve the optimization problem considering the

learning dynamics of the DNN. The details will be presented in chapter 3.

Examining various components that enable learning, such as learning curricula, inter-

temporal control allocation, and theories of their neural implementation, and revealing

how to control these components to improve learning, constitutes meta-learning. In this

work, it is generally assumed an underlying learning algorithm that governs the learning

dynamics and trajectory of the agent, while meta-learning modifies adjacent components
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to enhance this learning. One of the learning components that is further explored is the

prioritize experience replay methods used in DRL, here modified to account for uncertainty

of memories.

Then a formal description of cognitive control theories linked to managing learning is

presented. It is followed by a review of several mechanisms from the meta-learning

literature in machine learning. Using this formalization of cognitive control and meta-

learning, a unified mathematical normative framework is proposed, that can instantiate

multiple algorithms used in cognitive neuroscience and meta-learning in machine learning.

2.1 Learning systems

This section starts by revisiting the basic definitions of Deep Neural Networks and

Reinforcement Learning Agents. These learning systems will later be described in a

unified manner as dynamical systems, allowing their incorporation into the meta-learning

strategies framework. This approach abstracts away the specific learning algorithms,

which can then be controlled to improve learning. Although this description is quite

general, it is arguably more suitable for neural networks than for RL agents. While

it is possible to describe RL agent learning as a dynamical system, this perspective is

less explored and more challenging because the data observed by the agents is non-i.i.d.

and policy-dependent (Bordelon et al., 2023). On the other hand, neural networks are

naturally translated into a dynamical system under some assumptions (Saxe et al., 2019;

Goldt et al., 2019; Bordelon and Pehlevan, 2022), where the system state corresponds to

the weights of the network, and the dynamical equations are defined by its learning rule

(e.g., backpropagation, Hebbian rules, etc.).
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2.1.1 Deep Neural Networks

DNN models are considered as functions that map an input X ∈ RI to an output Ŷ ∈ RO.

This function Ŷ = f(X; θ) is described as a function of its parameters θ, and it is usually

the result of a composition of functions called layers, denoted here as Hl = fl(Hl−1; θl),

where Hl represents the representation at layer l, and fl is the transformation from Hl−1

to Hl parameterized by θl. Hence, a neural network with L layers can be expressed as

Ŷ = fL ◦ fL−1 ◦ · · · ◦ f1(X) (2.1)

where ◦ denotes the composition of functions, and the dependency on θ is omitted for

simplicity. There are several ways to construct the layers in a neural network, such as

fully connected, convolutional, or residual layers. For time-dependent data, recurrent

layers and, more recently, attentional layers have been utilized (Alzubaidi et al., 2021).

The reason these models are called neural networks is that their building blocks are

neurons, and a common way of characterizing each layer function is by its pre-synaptic

neuron activity Hl−1 ∈ RNl−1 and post-synaptic neuron activity Hl ∈ RNl , with the

number of neurons in each layer given by Nl−1 and Nl respectively. The neuron activity

is then transformed by a (fully connected) layer according to

Hl = fl(Hl−1) = σl (Wl−1Hl−1 + bl) (2.2)

where σl(·) is an element-wise function, Wl ∈ RNl×Nl−1 are called synaptic weights or

simply the weights of layer l, and bl is the bias of layer l, both of which constitute the

parameters of the layer, θl = {Wl, bl}. In this work, most neural networks presented have

fully connected layers unless specified.

These DNNs are universal approximators when σ is a non-linear function (Hornik et al.,

1989), and they can be used to learn mappings from X to Y directly from data. To
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achieve this, it is necessary to define how close the network’s estimation or output Ŷ

is to the actual target Y . This is typically referred to as the loss function, denoted as

L(Y, Ŷ ), which takes lower values when the target and the estimation are close to each

other. Examples of loss functions include Mean Squared Error (MSE), which is commonly

used for regression problems, and Cross-Entropy (CE) loss, which is frequently applied

to discrete outputs, such as in classification problems. In these cases, finding the set of

parameters θ that adjusts the network functions to match the given dataset (xi, yi)i=1...N

with N pairs of data is known as supervised learning, as the target output Y is explicitly

provided to the model.

Other types of DNNs operate in an unsupervised setting, where no target output is given.

A notable example is autoencoders, in which a neural network maps X̂ = f(X; θ) to

reconstruct the input. An important consideration here is that if f and θ have sufficient

capacity, they could simply learn an identity function, resulting in L(X, X̂) = 0. However,

introducing a bottleneck in the autoencoder forces the model to learn a compressed

representation of the data (Chen and Guo, 2023). This type of unsupervised loss can

serve as an auxiliary task to improve generalization (Le et al., 2018) and assist DRL

agents when rewards are sparse (Prakash et al., 2019).

Given a dataset, e.g., (xi, yi)i=1...N , how can the network learn a mapping from X to Y ?

As mentioned earlier, a network output Ŷ that is closer to the target Y results in a lower

loss L(Y, Ŷ ). It is possible to adjust the network parameters θ by taking steps such that

the loss function decreases for the given data. To achieve this, it is necessary to determine

the direction in which θ should be moved to minimize the loss function. The standard

approach for this is to update the parameters θ iteratively using gradient descent (GD),

which follows the direction of the steepest decrease in L as a function of θ, given by its

gradient with respect to the parameters. The gradient step updates from iteration k to

17



University College London

iteration k + 1 are given by:

θk+1 = θk − α
〈
dL
dθ

〉

XY

= θk − α
〈
dL(Y, Ŷ )

dŶ

dŶ

dθ

〉

XY

, (2.3)

where α denotes the hyperparameter known as the learning rate. To compute the update,

it is necessary to evaluate these gradients using elements in the dataset (xi, yi)i=1...N .

However, computing the gradient for the entire dataset is often infeasible. A common

solution is to subsample (xi, yi) pairs (also called a batch) to estimate the gradient at each

time step. This variation is known as stochastic gradient descent (SGD) and is given by:

θk+1 = θk − α

B

B∑

i=1

dL(yi, ŷ(xi; θ))
dθ

(2.4)

where B represents the batch size. When the parameters correspond to the weights of two

or more layers in a neural network, the process is referred to as backpropagation (Werbos,

1982; Rumelhart and McClelland, 1987), which consists of applying the chain rule to

compute the loss gradient for the weights of each layer.

The specific expression utilized to iteratively update the parameters θ by using the loss

gradient, as in the previous equation, is usually called an optimizer in machine learning

(SGD being just an example of an optimizer) and a learning rule or plasticity rule in

computational neuroscience. In machine learning, most optimizers rely on computing

the first-order gradient of the loss function with respect to its parameters (Ruder, 2017;

Schmidt et al., 2021). These methods often use adaptive learning rates to avoid getting

stuck in local minima, incorporating techniques such as momentum (Nesterov, 1983) or

tracking higher-order moments of the gradient, e.g., RMSProp (Graves, 2014), ADAM

as the default option in most applications (Kingma and Ba, 2017) or AMSGrad (Reddi

et al., 2019). Because the majority of these optimizations are non-convex, convexity of the

landscape is useful in gradient-based optimization. Some methods rely on computing the
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second-order derivative of the loss with respect to the parameters (Tan and Lim, 2019; Anil

et al., 2021). Although these methods generally perform better than first-order methods,

they are expensive to compute and do not scale well with the number of parameters in

the model, making them prohibitively expensive given the current size of neural network

models.

Synaptic weight changes in the brain throughout learning have been widely studied

through experiments and simulations (Citri and Malenka, 2008; Magee and Grienberger,

2020; Piette et al., 2023). However, a general plasticity rule (or rules) that enables the

brain to learn complex tasks has yet to be identified (Bell et al., 2024; Confavreux et al.,

2024). Learning rules in the brain are subject to biological constraints; therefore, not

all possible update rules for synaptic weights are suitable candidates for learning in the

brain (Shervani-Tabar and Rosenbaum, 2023). For instance, researchers have argued

that backpropagation, and consequently, gradient descent on synaptic weights, cannot be

implemented in biological networks. The main reason is that backpropagation requires

a highly specific set of computations, such as propagating the error signal backward

through all layers and having access to the transposed version of weight matrices, which

implies knowledge of the backward propagation of neuron activations. It is believed that

this information is not accessible at the synaptic connections that need to be modified.

However, some argue that even if backpropagation cannot be computed at the level of

individual synaptic connections, gradient descent may still be implemented through other

rules that could approximate backpropagation (Whittington and Bogacz, 2019; Lillicrap

et al., 2020).

Several bioplausible alternatives to backpropagation have been proposed, with some

experimentally validated. The most well-known among them are the family of Hebbian

plasticity rules. The principle of “neurons that fire together wire together ” suggests that

synaptic weights generally increase when pre- and post-synaptic activity rises simulta-

neously. Unlike backpropagation, this process does not rely on external signals beyond
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what is available on the corresponding synapse (Morris, 1999; Johansen et al., 2014;

Fox and Stryker, 2017). A broader category of learning rules considered biologically

plausible are local learning rules, which only require information that is local to the

synapse undergoing modification (Bell et al., 2024; Confavreux et al., 2024). One example

of such a rule is predictive coding, which states that synaptic weights are adjusted to

predict upcoming information and generate an appropriate neural response. This is

computed by first inferring the neural activity in the network necessary to generate the

correct input and output, and then adjusting synaptic weights to produce that activity.

This process requires only local variables: pre- and post-synaptic neural activity and

the corresponding synaptic weight (Millidge et al., 2022; Song et al., 2024). Other rules

that are non-local but still arguably biologically plausible exist. For instance, feedback

alignment has been proposed as a biologically plausible rule. It involves backpropagating

the error signal using random matrices instead of the exact transposed or reversed weight

matrices required in traditional backpropagation (Lillicrap et al., 2016). Another example

is the class of three-factor rules, which combine local learning mechanisms such as Hebbian

learning with a rough error signal conveyed through neuromodulation, such as dopamine

or norepinephrine signals (Kuśmierz et al., 2017). Most biologically plausible learning

rules have performance shortcomings compared to backpropagation. Hebbian rules and

feedback alignment do not achieve the same level of performance when training networks

(Shervani-Tabar and Rosenbaum, 2023). On the other hand, predictive coding can perform

as well as, or sometimes better than, backpropagation (Song et al., 2024), though it is

more computationally expensive when training artificial networks.

Backpropagation has been highly successful in training DNN models to solve various

problems, such as protein folding (Jumper et al., 2021) and design (Watson et al., 2023),

text processing with LLMs (Raiaan et al., 2024), classification of astronomical data

(Förster et al., 2021), and control of fusion reactions using Deep-RL (Degrave et al., 2022),

among others. An important caveat of these methods is the difficulty in understanding
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the logic implemented during the inference process (from input to output) to explain

the network’s behavior. This is why these models are often referred to as black boxes.

Even more challenging is predicting their evolution throughout training, specifically, the

path the loss function will follow, also known as the learning trajectory, and the precise

weights during training. This makes designing training processes challenging and largely

reliant on heuristics and brute force hyperparameter search, which have been effective

in practice (Ahmed et al., 2023). In this thesis, we focus on studying simpler models

where mathematical analysis is feasible, which we then support with simulations on more

complex models. Further mathematical characterization of neural networks as dynamical

systems will be presented in subsection 2.1.3.

2.1.2 Reinforcement Learning Agents

Reinforcement Learning (RL) is a mathematical framework to model an agent interacting

with its environment, and provides methods to describe learning agents that improve

their behaviour by taking actions and experiencing the consequences of their actions in

this environment. In a way, RL gives both ways to pose the problem and ways to solve

it. In this section a standard description of an RL framework is provided, for a more

in-depth overview of RL methods see (Sutton and Barto, 2018).

Consider an environment modelled by a Markov Decision Process (MDP). In short, an

MDP describes a process where the next state distribution is fully determined by the

current state s ∈ S and an action taken a ∈ A. The dynamics of this process are defined

by P (s′, r|s, a) which characterizes the probability of moving to state s′ and observe the

scalar signal r (called reward) given that the system is on state s and action a is taken,

and it is called the state-transition function. In an environment modeled by an MDP, the

entity that takes the actions is called an Agent, and its behavior is defined by a mapping

from states to actions called policy π(a|s) : S × A → ∆(A) where ∆(A) denotes the

probability simplex over A.
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2.1.2.1 Value-Based RL

The agent interacting with an environment could be setup to achieve a goal, and many

goals can be indicated using the reward signal. The limits of the use of the reward signal

to express tasks have been studied in Abel et al. (2021), and it has been argued that it

can be used to specify preferences for artificial agents in general, and potential objectives

in biological agents (Silver et al., 2021). Once the reward distribution is defined as a

function of the task at hand in the environment, the optimal policy that describes the ideal

agent behavior for that task π∗(a|s) is the one that maximizes the expected discounted

cumulative reward, also known as expected return, starting from any state s denoted

Vπ(s) = Eπ [Gt|s] (2.5)

with

Gt = rt+1 + γrt+2 + γ2rt+3 + ... (2.6)

where t indexes time, and γ denotes the discount factor, increasing the importance of

future rewards when γ is increased. Assuming the agent does not have access to π∗

when learning a new task, how can it find the optimal policy that gives the best possible

outcome V ∗(s), how can the agent improve its initial policy to maximize the expected

return?

One way of learning an optimal policy, among many others that will be described later, is

by estimating the expected return from a state s for all available actions a, then select

the action that maximizes the expected return. This form of learning is called Q-learning

(Mnih et al., 2015), and it is posed formally as follows. The action-value function is
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defined as

Q(s, a) = Eπ [Gt|s, a] , (2.7)

which is similar to the value function Vπ except now it is conditioned to an action as well.

Then, the optimal policy given Q(s, a) is simply

π∗(a|s) = argmax
a

Q(s, a), and V ∗(s) = Q(s, argmax
a

Q(s, a)). (2.8)

As mentioned before, an agent does not necessarily comes with the knowledge of the value

function given its current policy, hence it needs to learn it. Learning Q would allow the

agent to define its policy based on the estimate action-value function. First, Q needs to be

parameterized, which parameters θ, and initialize it from a prior distribution to start with

a guess of this function. An easy way to learn Qθ is simply by collecting trajectories of

the agent exploring the environment, Te = (s0, a0, r0, s1, a1, r1, ...sNe , aNe , rNe) throughout

episodes, with Ne the number of steps it takes to terminate an episode, and use the

observed cumulated discounted reward to estimate θ. This approach, however, comes

with some drawbacks, e.g. storing entire trajectories can be very costly depending on the

length of the episode (not practical for open-ended environments), and the trajectories

can have a large variance, as the space of possible state-action-reward observation can

be very large, requiring multiple instances of trajectories to stabilize learning. A more

practical approach is to take advantage of the recursive nature of the value function, and

the action value function to approximate Q with Qθ. The action-value function satisfies
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the following recursive equation

Q(st, at) = Eπ [Gt|st, at] (2.9)

= Eπ
[
rt+1 + γrt+2 + γ2rt+3 + ...

]
(2.10)

= Eπ [rt+1 + γGt+1|st, at] (2.11)

= Eπ [rt+1|st, at] + γEπ [Gt+1|st, at] (2.12)

= Eπ [rt+1|st, at] + γ
∑

s′,a′

P (s′|st, at)π(a′|s′)Q(s′, a′) (2.13)

taking π(a|s) = argmaxQ(s, a) gives

Q(st, at) =
∑

r

P (r|st, a) · r + γ
∑

s′

P (s′|s, a)max
a′

Q(s′, a′). (2.14)

This relation is called Bellman Equation for the action-value function, and there are similar

Bellman Equations for the value function, and their optimal versions of it (Chapter 3 in

Sutton and Barto 2018). From here, a method to estimate Qθ is by enforcing this equation

in the estimation. Given a transition within a trajectory denoted by (st+1, rt, st, at), a

loss function that can be used to learn the parameters θ is

L(θ) = 1

2

(
r + γmax

a′
Qθ(s

′, a)−Qθ(s, a)
)2
, (2.15)

and it is called squared temporal difference error. Then, a simple way of estimating θ

iteratively is by taking gradient steps that minimize this loss

θk+1 = θk − αdL
dQ

dQ

dθ
(2.16)

= θk + α
(
r + γmax

a′
Qθ(s

′, a)−Qθ(s, a)
)

︸ ︷︷ ︸
δ

dQ

dθ
(2.17)

with δ called the temporal difference error (TD-error). RL algorithms that rely on
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TD-error are varied, and it has direct connections to dopamine being a TD-error signal

(Schultz et al., 1997; Dabney et al., 2020; Lee et al., 2024a), and to other neurotransmitters

(Doya, 2002; Shenhav et al., 2013; Lee et al., 2024b).

There are many RL algorithms that can learn how to solve a task by gradually improving

their policy, and in each of them, the learning algorithm and the structure of the agent

can change dramatically. In addition to this, there are many heuristics and factors to

consider in order to make these agents work in practice (see subsubsection 2.1.2.2).

2.1.2.2 Deep Reinforcement Learning

Adjusting the parameters of the action-value function θ to minimize the squared temporal

difference error loss is essentially a function approximation method, making it well-suited

for using DNNs. Using a neural network as a function approximator in the context of

RL, e.g., to approximate Qθ(s, a), is called Deep Reinforcement Learning (DRL). Most

modern applications of RL agents incorporate neural networks to approximate functions

in one form or another, as discussed in the previous section.

There are several practical considerations and heuristics to improve training. A major

aspect of RL training is the exploration-exploitation trade-off. Exploring may require

sacrificing some immediate performance but could provide access to better reward sources

for exploitation later. As an agent collects experiences from the environment, it might get

stuck in suboptimal strategies. For instance, following π(a|s) = argmaxaQ(s, a) early on

may lead to poor decisions since the initial estimates of the action-value function may not

accurately represent the true value function in the environment. One way to mitigate this

issue is by using an ϵ-greedy policy, where the selected action from any state s is drawn

as argmaxa∈AQψ(s, a) with probability 1− ϵ and uniformly over A otherwise. There are

many other approaches to addressing this trade-off, such as rewarding curiosity-driven

exploration by estimating occupancy (Lobel et al., 2023) or assessing the uncertainty of

visited states (Mavor-Parker et al., 2022).
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Another important aspect of training is the coupling between temporally nearby experi-

ences and value estimation. If the agent is trained primarily on its most recent experiences,

the value function approximation could overfit to the current policy, locking the estimation

into a local minimum. To alleviate this issue, a common technique is to use a replay

buffer, which stores experiences and later samples them randomly to decorrelate them

temporally (Lin, 1992). This also improves gradient estimation, as a batch of transitions

is sampled to compute an average update in equation 2.17.

Additionally, since the target that Qθ is trying to estimate depends on itself, a copy of

the network θ̄ is often maintained, such that

δ = r + γmax
a′

Qθ̄(s
′, a)−Qθ(s, a) (2.18)

which stabilizes training by keeping the target fixed. This target network is then peri-

odically updated with the current one, θ̄ = θ, every few iterations (Watkins and Dayan,

1992; Mnih et al., 2015).

Many other techniques and heuristics are applied to DRL agent training, such as prioritized

experience replay (Schaul et al., 2016), explained in subsection 2.1.4 and further improved

in subsection 5.2.1 as a contribution of this thesis, double Q-learning (van Hasselt

et al., 2015), and multi-step learning instead of the single-step TD error (Sutton, 1988).

Additionally, various training considerations specific to DNN models play a role in DRL.

All these components interact and are typically optimized jointly, often through a grid

search over all options, which is computationally expensive as it requires training multiple

models (Hessel et al., 2017; Eimer et al., 2023). For a comprehensive overview of RL

methods, see (Sutton and Barto, 2018).
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2.1.3 Learning Dynamics

For a learning system like the ones described in the previous section, their corresponding

Learning Dynamics describes the evolution of performance and the parameters that define

the system throughout the training of a task (or tasks). Many aspects of learning affect

the learning dynamics of a system, such as the loss function being optimized (Tachet et al.,

2020), the initial parameters (Saxe et al., 2019; Braun et al., 2022), or task similarities in

continual learning (Lee et al., 2022), among many others.

Most knowledge about the effect of each component on the learning dynamics in neural

networks and RL agents is based on experience while training these systems to solve

specific tasks, such as in Kanervisto et al. (2021); Ahmed et al. (2023) for deep neural

networks or Hessel et al. (2017); Schwarzer et al. (2023) for DRL. Understanding the

learning dynamics of learning systems is usually done experimentally by testing different

design choices and reporting the resulting changes in learning trajectories. The main

reason for this approach is that learning systems resist mathematical analysis in most

cases making it challenging to derive learning principles, as relevant models become

increasingly complex and data distributions cannot be described in simple terms to allow

for mathematical analysis.

Why does learning dynamics in neural networks resist mathematical analysis? The

description of performance and parameters throughout learning can be represented, for

instance, by a loss function applied to the entire data distribution, ⟨L(t)⟩D, over training

time t, and by the evolution of its parameters θ(t), which are necessary to compute the

system’s performance. For a simple system trained using gradient descent, the change in

parameters over training time is governed by

θ(t+∆t) = θ(t)− α
〈
dL
dθ

〉

D

, (2.19)

where α is the learning rate, D denotes the expectation with respect to the dataset used to
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train the learning system, and ∆t is an arbitrarily small time increment. Taking α ≈ ∆t

and dividing both sides by the learning rate, then letting α = ∆t → 0, the equation

becomes

dθ

dt
= −

〈
dL
dθ

〉

D

, s.t. θ(t = 0) = θ0, (2.20)

where θ0 represents the initial parameters before training. This description of learning

dynamics is called Gradient Flow, which can be thought of as the continuous counterpart

to the discrete updates of gradient descent (Elkabetz and Cohen, 2021). Solving this

differential equation would allow for a description of the evolution of the parameters

θ(t) and the generalization error ⟨L(t)⟩ over training time. However, in general, this

differential equation cannot be solved due to two specific challenges. First, computing

the expectation on the right-hand side requires evaluating a highly complex integral that

depends on factors such as the model architecture, activation function, data distribution,

and more. It also depends on how the training data is presented to the network, e.g.,

one sample at a time, in batches, and whether data points are repeated during learning,

commonly referred to as online learning vs. batch training. Second, even if the expectation

can be computed, the resulting expression must be in a form that allows the equation to

be integrated to obtain θ(t), which is not possible in most cases.

Developing a mathematical theory of learning dynamics could help identify principles of

learning that depend on different aspects of the learning system. To achieve this, theorists

have simplified learning agents into models that allow for mathematical analysis while

retaining some (but not all) features of the learning trajectories observed in complex

models. In this thesis, Deep Linear Networks are used for this purpose, as their dynamics

can be expressed in closed form while preserving certain properties observed in more

complex models
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2.1.3.1 Deep Linear Networks

Deep Linear Networks allow for mathematical analysis, and in the particular case of

two-layer networks, they even admit a closed-form solution of their generalization error

under certain assumptions (Saxe et al., 2019; Braun et al., 2022). For a two-layer linear

neural network, the input-output mapping defined by the network is

Ŷ = W2(t)W1(t)X, (2.21)

where X ∈ RI , Ŷ ∈ RO, W1(t) ∈ RH×I , and W2(t) ∈ RO×H are the weights of the first

and second layers, respectively, I, H, O being the dimensions of the input, hidden layer

and output. In addition to minimizing the mean squared error, neural networks are

often trained with weight regularization. This means that the loss function includes the

Frobenius norm, which penalizes the magnitude of the weights in each layer. Thus, the

loss function to be minimized in this case is

L =
1

2
∥Y − Ŷ ∥2 + λ

2

(
∥W2∥2F + ∥W1∥2F

)
. (2.22)

Taking the gradient with respect to the weights in each layer yields

dL
dW1

= −W T
2 Y X

T +W T
2 W2W1XX

T + λW1, (2.23)

dL
dW2

= −Y XTW T
1 +W2W1XX

TW T
1 + λW2. (2.24)

This gradient is evaluated for an arbitrary set of points X and Y in the dataset, which

could correspond to a single point, a batch, or the entire dataset. From here, it is possible

to take the gradient flow limit, described by equation 2.20, which requires computing

the expectation over the dataset distribution. This is where linear networks become

convenient for mathematical analysis, as the expectation of the derivatives remains linear
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in the data, resulting in the following set of differential equations:

τw
dW1

dt
= W T

2

(
ΣT
xy −W2W1Σx

)
− λW1, (2.25)

τw
dW2

dt
=
(
ΣT
xy −W2W1Σx

)
W T

1 − λW2, (2.26)

subject to the initial conditions W1(t = 0) and W2(t = 0). Here, ΣT
xy =

〈
XY T

〉
D

and

ΣTx =
〈
XXT

〉
D

are the input-output correlations and input-input correlation respectively,

τw is a learning time scale for the weights that can be set arbitrarily to convert from

iteration k to units of time t, and λ controls the weight regularization (see section A.2 for

a complete derivation).

Even though these equations describe a linear network, which can only perform linear

transformations from X to Y , the learning dynamics are governed by a set of

nonlinear and coupled differential equations due to weight multiplication and the

presence of weights from both layers in each equation. Because of this, training a neural

network with two (or more) layers exhibits complex step-like dynamics that depend on

the data structure. These dynamics are also present in more complex learning systems,

making linear networks an appropriate surrogate model for mathematically analyzing

neural network learning dynamics. These similarities have been studied analytically, as

the differential equations can be solved in closed form for the generalization error (but not

for the weights Wi(t)) in certain cases. In Saxe et al. (2019), the authors further assumed

that the inputs are decorrelated, i.e., Σx = I, and that the initial weights are small. They

then proceeded to solve for the time evolution of the weight product W2(t)W1(t) in terms

of the singular values of the input-output correlation matrix Σxy in closed form. This

solution explains step-like transitions due to depth and knowledge acquisition time scales,

among other phenomena observed experimentally in network training. This theory was

further developed by Braun et al. (2022), who found a closed-form solution for the weight

product while relaxing the small-weights assumption.
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2.1.3.2 Beyond Linear Networks

As the work presented in this thesis focuses on describing learning agents as dynamical

systems, the relevant models are those that can be expressed in such a form. These

models will then be used for meta-learning in chapter 3 and approximate its optimal

control in subsection 4.3.3. To achieve this, having a closed-form solution for the learning

dynamics is not necessary; it is sufficient to have the differential equations that describe

learning over time. Therefore, other approaches, though not yet explored in this work,

could apply the methods proposed in this thesis, extending the capacity of networks to

incorporate more layers and, in some cases, perform nonlinear input-output mappings.

We briefly discuss these methods here:

Gated Networks: The expectation in the gradient flow limit can be computed in some

cases, such as when the transformation induced by the network is linear, as in the case

of linear networks discussed earlier. One way to introduce non-linear transformations

while preserving the tractability afforded by linearity of the expectation in the gradient

flow differential equation is by incorporating the non-linearity into the data itself. This

approach is used in Gated Deep Linear Networks, where a different gating pattern is

activated for each input. As a result, the network parameters can be factored out of

the expectation due to linearity, yielding a differential equation similar to those found

in linear networks. The non-linearity arises from the gating pattern activated for each

example while maintaining tractable dynamics (Saxe et al., 2022). This framework allows

the authors to study modularity and compositionality based on these expressions.

Teacher-Student Setup: In some cases, the expectation on the right-hand side of

equation 2.20 can be computed in closed form for non-linear networks. One of the

main challenges in doing so is describing the data generation process to then take the

expectation, particularly the distribution of (xi, yi) pairs in the dataset. A convenient

way to model this distribution is through the teacher-student framework, where the data

31



University College London

is generated by a neural network, referred to as the teacher network, with parameters,

e.g., WT , VT , such that the dataset is defined by y = VTg(WTx). A student network with

a similar architecture, characterized by parameters WS and VS, then predicts a target ŷ

such that ŷ = VSg(WSx), minimizing the error L = 1
2
(y − ŷ)2. Assuming x ∼ N (0, I), a

two-layer network, like the teacher, can capture complex relationships between x and y

while still allowing the expectation for the gradient flow limit to be computed in closed

form. This is achieved using certain sigmoidal activation functions (e.g., tanh and ReLU)

in terms of the network’s order parameters, which summarize the system’s state and

enable closed-form generalization error expressions (Saad and Solla, 1995; Goldt et al.,

2019). These methods provide a theoretical foundation for analyzing the impact of task

similarities on generalization error, as the teacher network parameterizes the space of

tasks through its network parameters (Lee et al., 2022), as well as for studying curriculum

learning (Saglietti et al., 2022). It is important to note, however, that the teacher network

provides a convenient mathematical formulation of the data generation process rather

than supporting the idea that it can successfully describe all complex environments. For

a gentle introduction to these methods, see Carrasco-Davis and Grant (2025).

Other Field Theories: The teacher-student setup belongs to a broader family of

methods classified as field theories, where complex systems are described through the time

evolution of summarized variables called order parameters. This is achieved in various

ways, primarily by taking the width of networks to infinity, as in the Neural Tangent

Kernel approach (Golikov et al., 2022), or through other dynamical mean-field theories

(Castellani and Cavagna, 2005; Bordelon and Pehlevan, 2022). These theories are not only

applied to neural networks but have also been recently extended to RL agents (Bordelon

et al., 2023). A key challenge in applying these methods to the work proposed in this

thesis is the mathematical complexity involved in describing their time evolution, making

control even more difficult. However, these methods could be used in combination with

control theory approaches, as demonstrated in Mori et al. (2025). Nonetheless, they
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remain primarily within the domain of numerical simulations, and tractability is lost when

attempting to control the learning system.

2.1.4 Prioritized Experience Replay

Reinforcement learning algorithms are notoriously sample inefficient. A widely adopted

practice to mitigate this issue is the use of an experience replay buffer, which stores

transitions in the form of (st, at, rt, st+1) for later learning (Mnih et al., 2015). Loosely

inspired by hippocampal replay to the cortex in mammalian brains (Foster and Wilson,

2006; McNamara et al., 2014), its primary conceptual motivation is to reduce the variance

of gradient-based optimization by temporally de-correlating updates, thereby improving

sample efficiency. It can also serve to prevent catastrophic forgetting by maintaining

transitions from different time scales. The effectiveness of this buffer can often be improved

further by prioritising some transitions at the point of sampling rather than selecting

uniformly. Formally, when transition i is placed into replay, it is given a priority pi. The

probability of sampling this transition during training is given by:

P (i) =
pαi∑
k p

α
k

, (2.27)

where α is a hyper-parameter called prioritisation exponent (α = 0 corresponds to uniform

sampling). Schaul et al. (2016) introduced prioritized experience replay, which most often

uses the absolute TD-error |δi| of transition i, as pi = |δi|+ ϵ where a small ϵ constant

ensures transitions with zero error still have a chance of being sampled. Another form of

prioritization, known as rank-based prioritisation, is to use pi = 1/rank(i) where rank(i)

is the rank of the experience in the buffer when ordered by |δi|. Sampling transitions

non-uniformly from the replay buffer will change the observed distribution of transitions,

biasing the solution of value estimates. To correct this bias, the error used for each update

is re-weighted by an importance weight of the form wi ∝ (NP (i))−β, where N is the size
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of the buffer and β controls the correction of bias introduced by important sampling

(β = 1 corresponds to a full correction).

The key intuition behind PER is that transitions on which the agent previously made

inaccurate predictions should be replayed more often than transitions on which the agent

already has low error. While this heuristic is reasonable and has enjoyed empirical

success, TD-errors can be insufficiently distinct from the irreducible aleatoric uncertainty;

considering instead uncertainty measures more explicitly, this form of prioritisation can

be significantly improved.

2.2 Expected Value of Control Theory

In a natural environment, possible actions may incur a cost to be executed. This cost

could involve resources such as energy, the difficulty of overriding default or automatic

behavior, or simply the opportunity cost of doing something else. In any case, these costs

must be considered when making decisions.

The Expected Value of Control (EVC) theory (Shenhav et al., 2013) provides a compu-

tational framework in which the cost of taking actions, here understood as control, is

explicitly formulated, extending the commonly used RL framework, which may instead

discount costs from the reward. It is hypothesized that the quantities necessary for action

selection, based on both value and cost, are tracked by the dorsal anterior cingulate cortex

(dACC) and lateral prefrontal cortex (LPFC). The following is a summary of key aspects

relevant to this thesis.

2.2.1 Computational Framework

Formally, the EVC theory extends the commonly used RL framework described in

subsection 2.1.2 by separating the perceived reward into the cost of taking an action and

the reward from the environment. Here, we illustrate this theory by decomposing the
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perceived reward r̄ and deriving the Bellman optimality equation for the action-value

function Qπ(s, a). The Bellman equation for the action-value function, considering the

perceived reward r̄ (following the notation introduced in subsection 2.1.2), is:

Qπ(s, a) =
∑

s′,r̄

p(s′, r̄|s, a)
[
r̄ + γ

∑

a′

π(a′|s′)Qπ(s
′, a′)

]
. (2.28)

Here, the perceived reward is defined as the actual reward collected from the environment,

r, minus the cost of executing an action or control, C(a). Thus, we have r̄ = r−C(a). We

assume that the cost of each action is deterministic, meaning that the randomness in the

perceived reward arises solely from the actual reward r. Consequently, the expectation is

taken over r through p(s′, r | s, a), yielding:

Qπ(s, a) =
∑

s′,r

p(s′, r|s, a)
[
r − C(a) + γ

∑

a′

π(a′|s′)Qπ(s
′, a′)

]
(2.29)

=
∑

s′,r

p(s′, r|s, a)
[
r + γ

∑

a′

π(a′|s′)Qπ(s
′, a′)

]
− C(a). (2.30)

Finally, taking the optimal policy (Bellman optimality equation for Q∗) gives the expected

value of control

EV C(s, a) = Q∗(s, a) =
∑

s′,r

p(s′, r|s, a)
[
r + γmax

a′
Q∗(s

′, a′)
]
− C(a). (2.31)

Then, the optimal control a∗ for a given state s is a∗(s) = argmaxaEV C(s, a) as in

standard Q-learning. This same formulation is converted to a continuous time version

and control of dynamical (learning) systems in chapter 3, formally derived in section 3.4.
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Figure 2.1: Stroop Model, taken from Musslick et al. (2020).

2.2.2 Cognitive Functions and Neural Implementation

The EVC theory provides a normative framework for describing optimal decision-making

and control under specific costs. To solve this problem, certain processes can be identified

as necessary. These processes are Regulation, Specification, and Monitoring. Each of these

processes has been mapped to different brain regions through experimental observations.

To illustrate the role of each process, the Stroop task is used as an example in which

cognitive control is required.

The Stroop model is a classic setup consisting of a task and an agent, designed to reflect

the challenges associated with cognitive control (Cohen et al., 1990). The task involves

reporting the cued feature of a given stimulus. In one instance of the task, words with

colored fonts are presented as inputs, and the agent must respond by identifying either

the written word or the color of the font. When the written word corresponds to a color,

human subjects exhibit longer response times when asked to name the font color and

shorter response times when asked to read the word. This discrepancy is exacerbated

when the written word and the font color are incongruent (e.g., the word “Red” written

in blue font, Stroop 1935; MacLeod 1991).
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The effects observed in the Stroop task can be reproduced by a neural network model (see

figure 2.1). The network’s input consists of the word identity and the font color, which

are processed through a shared hidden representation, followed by an output layer that

specifies the estimated response. One assumption is that the pathway from the stimulus

to reading the word is stronger than the pathway required to report the font color, as

individuals spend significantly more time reading words than naming colors over their

lifespan. As a result, when the model is tasked with naming the font color, the color

pathway competes with the stronger word pathway, interfering with the correct response.

However, as observed in experiments, humans are capable of naming the colors, implying

that they must be able to regulate the strength of these pathways to resolve interference.

In the neural network model, this regulation is achieved by modulating the activity of the

hidden neurons, amplifying the signal of the relevant pathway based on the cued task

(naming the word or the color). This mechanism enables the model to override the default

tendency to read the word and instead engage in the controlled behavior of reporting the

font color.

Using this model and task, the processes of Monitoring, Specification, and Regulation can

be instantiated. Next, each process is defined, and matched to a component of the Stroop

model, and existing evidence for its neural implementation in the brain is presented.

Specification: The decision of whether control should be allocated to a task and to

what extent, defining both the identity (which tasks) and intensity (how much effort)

assigned to each task. The EVC theory attributes this process specifically to the dACC.

For example, in the Stroop model, specification involves determining whether any control

should be applied to the task, which depends on the cued task (word or color), and how

much control is required.

Regulation: This refers to the implemented control signal at a lower level compared

to specification. It is similar in that both the identity and intensity need to be defined,
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but regulation involves the actual control signal that affects information processing

of the system at hand. In the Stroop model, regulation corresponds to the control

implementation from the IPFC to the hidden layer, modulating each neural pathway

depending on the current task. The regulation from the IPFC depends on the executive

function of specification from the dACC.

Monitoring: Specification and regulation depend on how well the task at hand is being

performed. In the Stroop model, for example, long reaction times or incorrect responses

when cued to report the color could indicate a lack of control. This may signal the need for

increased control, which would be conveyed to the dACC for later use in the specification

process and subsequent application through regulation.

Jointly: The specification process determines the optimal control signal. The identity and

intensity of control are modulated based on monitored task performance while the control

signal is implemented through the regulation system. These processes must account for

intrinsic features of the information processing system, such as the agent’s capacity to

solve the task. Examples include speed-accuracy trade-offs (Bogacz et al., 2006), task

uncertainty (Yu and Dayan, 2005; Yu et al., 2009), default behavior override (Piray

and Daw, 2021), and exploration-exploitation trade-offs (Li et al., 2012), among others

(Botvinick et al., 2001; Holmes and Cohen, 2014). For a comprehensive review of EVC

theory, its relationship to brain architectures, and supporting experimental evidence, see

Shenhav et al. (2013).

2.3 Meta-Learning

As mentioned in the introduction, meta-learning is also referred to as learning to learn and

is a fundamental concept in machine learning. In this field, meta-learning techniques are

typically employed to optimize components of the learning system that are traditionally

hand-selected during model design (also known as meta-parameters). One approach to
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achieving this involves formulating the meta-learning problem as a bilevel optimization

problem (Franceschi et al., 2018; Hospedales et al., 2020), which separates the standard

optimization of a model (inner loop) from the optimization of the meta-parameter (outer

loop). This can be formally defined as follows:

Consider the parameters of a learning model, W (e.g., the weights of a neural network),

and a meta-parameter g, which could represent hyperparameters such as the learning

rate (Franceschi et al., 2018; Baik et al., 2020), initial weights (Finn et al., 2017), a

parameterization of learning rules (Metz et al., 2019), a loss function (Bechtle et al., 2021;

Raymond et al., 2023), or even the learning curriculum (Stergiadis et al., 2021; Zhang

et al., 2022). Typically, the parameters of the learning model are found by minimizing an

objective function L:

W ∗ = argmin
W

L(W, g,Dtrain), (2.32)

where Dtrain represents the training data distribution. This equation is solved through an

optimization process, such as gradient descent, and is referred to as the inner loop. Given

the solution of the inner loop, W ∗, the outer loop is defined as

g∗ = argmin
g
Lmeta(W

∗, g,Dmeta), (2.33)

where Lmeta is a meta-objective, and Dmeta is the data distribution used to evaluate the

meta-loss. The outer loop is dependent on the solution of the inner loop and can take

various forms. For example, the inner loop may produce a set of optimal parameters

for different tasks, while the outer loop optimizes the meta-parameter to achieve high

performance across all tasks, considering the specific solutions obtained for each task.

Not all meta-learning is formulated in this manner, and multiple perspectives exist on

how to conceptualize it. For instance, the term meta-learning is also applied in cases
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where solutions emerge from models trained on large distributions of tasks. If an agent is

capable of discovering general strategies across a distribution of tasks, thereby enabling

the resolution of each task individually, the agent is said to have meta-learned the task

distribution (see subsection 3.3.2 for a detailed discussion on emergent meta-learning). For

a comprehensive review of meta-learning methods, see (Hospedales et al., 2020; Vettoruzzo

et al., 2024).

2.3.1 Model Agnostic Meta-Learning

A specific algorithm closely related to the proposed method presented in this thesis is

Model-Agnostic Meta-Learning (MAML, Finn et al. 2017). MAML can be understood as

a bilevel optimization problem, where the meta-parameters to be optimized are the initial

parameters of the inner loop. These initial parameters are learned such that, when the

model is presented with a new task, adaptation occurs rapidly.

Consider a model parameterized by a function f(W ), trained on a task Ti from a family

of tasks T . The training process is typically performed using gradient updates, defined as

follows:

W ′ = W − αdL (f(W, Ti))
dW

, (2.34)

which constitutes the inner loop. To find the optimal initial parameters that enhance

adaptation across tasks in T , the meta-objective (solved in the outer loop) is defined as:

min
W

∑

Ti∼T
L (f(W ′, Ti)) =

∑

Ti∼T
L
(
f

(
W − αdL (f(W, Ti))

dW
, Ti
))

. (2.35)

In other words, the goal is to find the initial parameters W that minimize the loss after

one update on each of the available tasks. This results in initial conditions W that

enable rapid improvement of task-specific losses with subsequent updates. In practice,

40



University College London

this meta-parameter is optimized in the outer loop using gradient descent updates:

W ∗ = W − β
∑

Ti∼T
L (f(W ′, Ti)) . (2.36)

MAML is one of the most widely used meta-learning algorithms in machine learning,

as it can be generalized to probabilistic settings (Yoon et al., 2018), has convergence

guarantees (Nichol et al., 2018; Fallah et al., 2020), and has been applied in various

domains (Griva et al., 2023).

2.4 Uncertainty Estimation

Uncertainty is a fundamental concept in statistics. Within machine learning, it has

predominately been studied in supervised learning, particularly with Bayesian meth-

ods (Lahlou et al., 2022; Narimatsu et al., 2023). Various aspects of the task setting such

as bootstrapping and non-stationarity make uncertainty estimation a significantly more

challenging problem in RL compared to neural networks; nevertheless, it has featured

more prominently in recent work, including for use in generalization (Jiang et al., 2023),

as reward bonuses in exploration (Nikolov et al., 2019), and to guide safe actions (Lütjens

et al., 2019; Kahn et al., 2017). This section presents key concepts related to uncertainty

that are relevant to this work, particularly those concerning the distinction between

aleatoric and epistemic uncertainty.

2.4.1 Bootstrapped DQN

The concept behind bootstrapping is to approximate a posterior distribution by sampling

a prediction from an ensemble of estimators, where each estimator is initialized randomly

and observes a distinct subset of the data (Tibshirani, 1994; Bickel and Freedman, 1981).

In RL, Osband et al. (2016) introduced a protocol known as bootstrapped DQN for
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deep exploration, whereby bootstrapping is used to approximate the posterior of the

action-value function, from which samples can be drawn. Each agent within an effective

ensemble, parameterized by ψ, is randomly initialized and trained using a different subset

of experiences via random masking. A sample estimate of the posterior distribution,

denoted as ψ ∼ P (ψ|D) (D being training data), is obtained by randomly selecting one

of the agents from the ensemble. This work utilizes extensions of the bootstrapped DQN

approach for epistemic uncertainty measurements, particularly ensemble disagreement.

2.4.2 Distributional RL

Learning quantities beyond the mean return has been a long-standing programme of RL

research, with particular focus on the return variance (Sobel, 1982). A yet richer represen-

tation of the return is sought by more recent methods known collectively as distributional

RL (Bellemare et al., 2023), which aims to learn not just the mean and variance, but

the entire return distribution. This section examines a specific class of distributional RL

methods: those that model the quantiles of the distribution, specifically QR-DQN (Dabney

et al., 2017). A more comprehensive discussion of the distributional RL literature can be

found in Bellemare et al. (2023).

In QR-DQN, the distribution of returns, for example from taking action a in state s and

subsequently following policy π, ηπ(s, a) is approximated as a quantile representation

(Bellemare et al., 2023), that is, as a uniform mixture of Diracs, and trained through

quantile regression (Koenker and Hallock, 2001). For such a distribution, ν̂ = 1
m

∑m
i=1 δθτi ,

with learnable quantile values θτi and corresponding quantile targets τi = 2i−1
2m

, the quantile

regression loss for target distribution ν is given by

LQR =
m∑

i=1

EZ∼ν [ρτi(Z − θτi)], (2.37)

where ρτ (u) = u(τ − 1u<0) and 1 is the indicator function. By leveraging the so-called
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distributional Bellman operator and the standard apparatus of a DQN model, QR-DQN

prescribes a temporal difference deep learning method for minimising the above loss

function and learning an approximate return distribution function via quantile regression.

Distributional RL in itself does not (so far) permit a natural decomposition of uncertainties

into epistemic and aleatoric (Clements et al., 2020; Chua et al., 2018; Charpentier et al.,

2022); rather the variance of the learned distribution will converge on what can reasonably

be thought of as the aleatoric uncertainty. In subsection 5.2.1, previous techniques that

combine distributions with ensembles are extended to construct estimates of both epistemic

and aleatoric uncertainties. Both approaches for characterizing epistemic uncertainty can

be understood within an excess risk framework, which is outlined below.

2.4.3 Direct Epistemic Uncertainty Prediction

A clear and formal representation of uncertainty is used to describe uncertainty, where

total uncertainty is defined as the sum of epistemic and aleatoric components, with

epistemic uncertainty interpreted as excess risk. This notion was introduced by Xu and

Raginsky (2022) and later extended by Lahlou et al. (2022); their framing is adapted to

the present setting. Consider the total uncertainty U(s, a) of an action-value predictor

Qψ(s, a), for a given state s and action a as:

U(Qψ, s, a) =

ˆ
(Θ(s′, r)−Qψ(s, a))

2
P (s′, r|s, a)ds′dr, (2.38)

where Θ(s′, r) is the Q-learning target as in equation 2.15. Then, the aleatoric uncer-

tainty A(s, a), is given by the total uncertainty (as defined above) of a Bayes-optimal

predictor Q∗
ψ (see Lahlou et al. (2022)):

A(s, a) = U(Q∗
ψ, s, a). (2.39)
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Note that this quantity is independent of any learned predictor and is a function of the data

only. The epistemic uncertainty E(Qψ, s, a), which is computed for a given predictor,

is defined as the total uncertainty of the predictor minus the aleatoric uncertainty:

E(Qψ, s, a) = U(Qψ, s, a)−A(s, a), (2.40)

where E(Qψ, s, a) is the squared distance between the true mean and estimate mean. The

proof goes as follows:

U(Qψ, s, a) =

ˆ
(Θ(s′, r)−Qψ(s, a))

2
P (s′, r|s, a)ds′dr (2.41)

= Es′,r
[
(Θ(s′, r)−Qψ(s, a))

2
]

(2.42)

= Es′,r
[
Θ(s′, r)2

]
− 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2 (2.43)

= Vs′,r [Θ(s′, r)] + Es′,r [Θ(s′, r)]
2 − 2Qψ(s, a)Es′,r [Θ(s′, r)] +Qψ(s, a)

2

(2.44)

= Vs′,r [Θ(s′, r)]︸ ︷︷ ︸
aleatoric A(s,a)

+(Qψ(s, a)− Es′,r [Θ(s′, r)])
2

︸ ︷︷ ︸
epistemic E(Qψ ,s,a)

(2.45)

Concretely, this decomposition can be useful in instances where you want to estimate

epistemic uncertainty, but doing so directly is significantly more difficult than estimating

total and aleatoric uncertainty, which is often the case. In subsection 5.2.1, a method is

provided to estimate quantities in this manner, which is later used to prioritize transitions

in the replay buffer.

2.4.4 Ensembles of Distributions

Using an ensemble of distributional RL agents gives us a concrete prescription for com-

puting epistemic uncertainty as well as aleatoric uncertainty. This approach was first
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formalised by Clements et al. (2020), who define learned aleatoric and epistemic uncer-

tainty quantities as a decomposition of the variance of the estimation from the ensemble

(here defined as total uncertainty Û) of distributional RL agents:

Û(s, a) = Vτ,ψ [θτ (s, a;ψ)] = Ê(s, a) + Â(s, a) (2.46)

where

Â(s, a) = Vτ [Eψ(θτ (s, a;ψ))], Ê(s, a) = Eτ [Vψ(θτ (s, a;ψ))], (2.47)

and s, a are state and action, ψ ∼ P (ψ|D) are the model parameters of each agent in the

ensemble, D denotes the data distribution, and θτ is the value of the τ th quantile. V and

E are variance and expectation operators respectively. Intuitively, Ê measures epistemic

uncertainty as the expected disagreement (variance) in quantile estimations across the

ensemble, while Â takes the average estimation across the ensemble for each quantile

of the distribution, and computes the variance of this averaged distribution. Clements

et al. (2020) stop short of using a bona fide ensemble to estimate these quantities, opting

instead for a two-sample approximation in the agent they present. However Jiang et al.

(2023) go on to use ensemble methods more explicitly, as we do in this work.

2.4.5 Other methods

Direct Variance Estimation

Distributional RL provides a framework for computing statistics of the return beyond

the mean. Efforts to compute such quantities in RL date back to Sobel (1982), who

derived Bellman-like operators for higher order moments of the return in MDPs that can

be used to indirectly estimate variance. This has since been extended to a greater set of
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problem settings and models (Prashanth and Ghavamzadeh, 2016; Tamar et al., 2016;

White and White, 2016). More recently methods have also been developed to directly

estimate variance (Tamar et al., 2012); arguably the simplest such scheme for TD(0)

learning is the following update rule for the action-value variance Â(s, a) at state s, a

(re-estated from Sherstan et al. (2018) for state and action):

Ât+1(s, a)← Ât(s, a) + ᾱδ̄t, (2.48)

where

δ̄t ← r̄t+1 + γ̄t+1Ât(s′, a′)− Ât(s, a), (2.49)

r̄t+1 ← δ2t , (2.50)

γ̄t+1 ← γ2t+1; (2.51)

δt is the temporal difference error of on the mean value estimate, and ᾱ is the variance

learning rate. r̄ can be thought of as a ‘meta’ reward for the variance estimate. This

update corresponds to simply regressing on the square of the mean estimate error in a

standard regression problem (single state, no concept of discounting) like in the bandit

experiments shown in section 5.3.

Bayesian methods

A more comphrehensive Bayesian approach to the reinforcement learning problem can be

formulated via so-called Bayes-adaptive Markov decision processes (BAMDPs) (White,

1969), where an agent continuously updates a belief distribution over underlying Markov

decision processes. Solutions to BAMDPs are Bayes’ optimal in the sense that they

optimally trade off exploration and exploitation to maximise expected return. However, in

all but the smallest environments and settings, learning over this entire belief distribution

is intractable (Brunskill, 2012; Asmuth et al., 2012).
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Posterior sampling, which can be viewed as the analogue of Thompson sampling for

MDPs, has been a popular method to approximate the full Bayesian posterior e.g. via

ensembles (Osband et al., 2016) or dropout (Gal and Ghahramani, 2016); extensions

include provision of pseudo priors (Osband et al., 2018, 2023). While these approaches

have been successful in some settings, they have few guarantees. A different line of work

includes using methods such as meta-learning to reason on and train the approximate

posterior (Humplik et al., 2019; Zintgraf et al., 2020).

With regards to the discussions on epistemic and aleatoric uncertainty, the above methods

can give the model access to a distribution over parameters that can be sampled and

operated on (e.g. to calculate variance). They do not however, Bayes optimal or not,

lead per se to a decomposition into epistemic and aleatoric uncertainty.

State Counts

Another category of methods that are frequently used in reinforcement learning and related

paradigms like bandits is based around notions of counts e.g. of state visitation. Such

counts can be used to construct intervals/bounds on confidence of learned quantities. This

is the foundation of well established exploration methods in tabular settings called upper

confidence bounds (Auer, 2002). In function approximation settings, much of the focus has

been on constructing accurate pseudo counts that incorporate state similarities (Bellemare

et al., 2016; Ostrovski et al., 2017; Tang et al., 2017). Despite the well demarcated

distinction between count-based methods and those that address the Bayesian posterior

above, with access to any mean-zero unit-variance distribution, an ensemble of mean-

predictors of that distribution can be used to estimate pseudo-counts (Lobel et al., 2023).

As a result, it is generally possible to convert a Bayesian posterior into pseudo-counts.

Model-Based Estimation

A set of methods that is further removed from those used in our work, but are often

motivated by similar questions consists of learning a model of the environment. Down-
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stream quantities like the prediction error of the environment model can be used as

proxies for uncertainty or novelty e.g. for exploration bonuses. Much of this work falls

under the domain of intrinsic motivation (Barto, 2013). Some of the methods in this area

e.g. curiosity (Pathak et al., 2017) attempt implicitly to make the distinction between

epistemic uncertainty and aleatoric uncertainty to avoid the noisy TV problem.

Beyond the prioritisation variable

Altering the prioritized experience replay is not confined to changing the prioritization

variable. In Zha et al. (2019), the replay policy is adapted through gradient optimization.

Balaji et al. (2020) introduces a regularization technique, enhancing continual learning by

storing a compressed network activity version for replay. Additional methods encompass

the utilization of sub-buffers storing transitions at multiple time scales (Kaplanis et al.,

2020), replay for sparse rewards (Andrychowicz et al., 2017; Nair et al., 2018), and

employing diverse sampling strategies (Pan et al., 2022). Further endeavors are aiming to

understand the effects of PER in RL (Liu and Zou, 2017; Fedus et al., 2020).
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Chapter 3

Meta-Learning Strategies through Value

Maximization

The work presented in this chapter is primarily based on Meta-Learning Strategies

through Value Maximization in Neural Networks, posted in October 2023. Available at

http://arxiv.org/abs/2310.19919 (arXiv:2310.19919 [cs, q-bio]) by Rodrigo Carrasco-

Davis, Javier Masís, and Andrew M. Saxe. The text has been modified to conform to the

thesis format and includes additional results in section 3.7.

3.1 Introduction

Deploying a learning system requires making many considered decisions about hyperparam-

eters, architectures, and dataset properties. As learning systems have grown more complex,

so have these decisions about how to learn. One approach to managing this complexity is

to place these decisions under the control of the agent and meta-learn them. Building on

this strategy, a range of meta-learning algorithms have been developed that are capable of

fast adaptation to new tasks within a distribution (Finn et al., 2017; Nichol et al., 2018),
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continual learning (Parisi et al., 2019), and multitasking (Crawshaw, 2020). Meta-learning

methods target diverse aspects of a learning system: they can adapt hyperparameters

(Franceschi et al., 2018; Baik et al., 2020; Zucchet and Sacramento, 2022); learn weight

initializations well-suited to a task distribution (Finn et al., 2017; Baik et al., 2020);

manage different modules or architectural components (Andreas et al., 2017); enhance

exploration (Gupta et al., 2018; Liu et al., 2021); and order tasks into a suitable curriculum

(Stergiadis et al., 2021; Zhang et al., 2022). While this prior work has shown that meta-

learning can bring important performance benefits, algorithms are often hand-designed

for a specific intervention and a large gap remains in our theoretical understanding of

how meta-learning operates (see section A.1 for an extended discussion on related work).

The aim of this chapter is to develop a normative framework for investigating optimal

meta-strategies in neural networks, implemented in biological and artificial agents. A core

difficulty in computing optimal strategies is the complexity of optimizing through the

learning process. To tackle this problem, the inner-loop learning dynamics are simplified

using simpler tractable network models. Specifically, meta-learning dynamics in deep

linear networks are studied, as these exhibit complex non-linear dynamics that share

properties with observed non-linear network dynamics (Saxe et al., 2019; Braun et al.,

2022). By examining this problem in a reduced setting, optimal meta-learning strategies

are derived under various control designs and meta-learning scenarios. The focus is on

questions pertinent to the cognitive control literature, such as learning effort allocation,

task switching, and attention to multiple tasks. The Expected Value of Control Theory

(EVC Shenhav et al. (2013, 2017); Musslick et al. (2020); Masís et al. (2021)) has proposed

answers to these questions. It posits that higher-level areas in the brain perform executive

functions (cognitive control) over lower-level areas to maximize the cumulative return. The

framework presented serves as a formal and computationally tractable example of the EVC

theory, taking into account the impact of the control signal on future learning dynamics.
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Main contributions

• A computationally tractable learning effort framework1 is developed to study diverse

and complex meta-learning interventions that normatively maximize value throughout

learning.

• Learning dynamics are fully solved as a function of control variables for simple mod-

els, and this solution is used to derive efficient optimization procedures that maximize

discounted performance throughout learning.

• Meta-learning algorithms such as Model Agnostic Meta-Learning (Finn et al., 2017)

and Bilevel Programming (Franceschi et al., 2018) are expressed within this framework,

allowing for the study of the impact of approximations on their performance.

• Optimized control strategies are computed for a range of settings spanning continual

learning, multi-tasking, and curriculum learning, then these normative strategies are

examined.

• Due to the framework’s normative goal of maximizing expected return, qualitative

connections are drawn to phenomena in cognitive neuroscience such as task engagement,

mental effort, and cognitive control (Shenhav et al., 2013, 2017; Lieder et al., 2018; Masís

et al., 2021). More specifically, behavioral observation in rats are qualitatively reproduced

(Masis et al., 2024).

3.2 Learning Effort Framework

The framework is first defined in a general manner before introducing a simple example in

subsection 3.2.1. The generality of this description allows the framework to be applicable

to a variety of different settings of interest, spanning machine learning (section 3.3) and
1Python package at https://github.com/rodrigcd/neuromod

for reproducibility.
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Figure 3.1: Learning effort framework. A neural network is under the influence of a
control signal g(t). This control signal is optimized iteratively by initializing g(t), then:
(1) Solving learning dynamics in equation 3.1; (2) Computing the performance P(t); (3)
Integrating performance and control cost to compute the exact cumulative return V in
equation 3.3; (4) Taking the gradient of V with respect to the control signal g(t) and
update as in equation 3.4, then go back to (1).

cognitive control (section 3.5, section 3.6 and section 3.7).

Consider a learning model trained on a task T for a period of time T . Two equations

define the learning model. The input-output mapping f and learning dynamics h are

defined as

Ŷ = f(X;w(t), g(t)), τw
dw(t)

dt
= h(w(t), g(t), T ) (3.1)

respectively. In the first equation, f is a continuously differentiable function, X represents

the input, and Ŷ the output. Here, w(t) denotes the parameters of the learning model

(e.g., weights in a neural network) during training, with T ≥ t ≥ 0. The term g(t) is

introduced as an effort signal (or control signal), which is chosen by the meta-learning

optimization. This vector of control signals can model a number of interventions in

the learning system and is selected to maximize cumulative learning performance. The
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learning dynamics equation describes the evolution of the parameters during training and

is given by a differential equation over the parameters of the learning model. The function

h is a continuously differentiable function, and the evolution of the learned parameters

w(t) (starting at w(0)) may depend on the control signal g(t) and task parameters T .

Given this setup, the control signal g(t) can be understood as a meta parameter that can

be chosen in different ways and influences the network’s input-output map and learning

behavior. In the context of cognitive neuroscience literature, this could take the form of

controlled attention or neural activity modulation. To determine the selection of g(t), a

task performance metric is defined during the learning period, P(t) (e.g., mean squared

error during regression). Furthermore, it is assumed that using the control signal g(t)

incurs a cost, represented by a cost function C(g(t)). This formulation is commonly used

in control theory to describe factors such as the energy resources required to exert control

or the mental effort allocated to sustain engagement in a task. At any time during the

learning of the task T , an instant reward rate is considered, defined as R(t) = ηP(t),
where η is a constant that converts task performance P(t) into reward per unit time. The

instant net reward rate is then defined as the difference between scaled performance and

the cost of control:

v(t) = R(t)− C(g(t)). (3.2)

The expected return or value function at the start of training can then be written as the

cumulative discounted reward from learning and performing the task from time t = 0 to

t = T , with a discount factor 1 ≥ γ > 0,

V =

ˆ T

0

dtγtv(t) =

ˆ T

0

dtγt [ηP(t)− C(g(t))] . (3.3)

This value function measures performance across the entire learning period. Finally, it is

posited that the objective of meta-learning is to select g(t) to maximize the value function

53



University College London

in equation 3.3. To approximate an optimal g(t), gradient steps are taken as

gk+1(t) = gk(t) + αg
dV

dg(t)
, (3.4)

for every 0 ≥ t ≥ T , where k denotes the iteration index. The optimal g(t) thus depends

on a complex interplay of past and future values of the control signal and their interaction

with the entire trajectory of learning. Computing the gradient in equation 3.4 is, in

general, computationally intractable. In the remainder of this paper, learning models

and settings are carefully selected to exhibit rich dynamics while maintaining partial

analytical tractability of the learning dynamics, enabling efficient computation of the full

control signal over time. Further details on the implemented algorithm and estimation of

involved quantities can be found in Algorithm 1 and section 4.1.

By appropriate choice of how g(t) influences the network and learning dynamics, this

general framework can accommodate a variety of possible interventions on a learning

system. Some interventions correspond to other meta-learning algorithms such as Multi-

Step MAML and Bilevel Programming (section 3.3), also providing a formal mathematical

connection (subsection 3.3.1). The results in subsequent sections investigate several

scenarios, where the experiments are variations on the influence of the control signal over

the learning dynamics, keeping the rest of the framework as is.

3.2.1 Single Neuron Example

After describing the general framework, attention is now turned to a simple case to

illustrate it, while still exhibiting complex emergent solutions. A single neuron learning

model trained on a two-Gaussians regression task is considered, where the control signal

functions as a weight gain modulation. This case provides insights into the dependence of

the optimal control signal on task parameters and learning model hyperparameters.

Two Gaussians regression task: A dataset of examples i = 1, · · · , P is drawn as
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Algorithm 1 Learning Effort Optimization
Input: A learning system (a input-output mapping equation, and a learning dynamics
equation as in equation 3.1), a task T , learning period T , initialize g0(ti) for every
i = 0, ..., N (with t0 = 0 and tN = T ), reward conversion η, control cost C(g(t)),
parameters w(t0), number of gradient updates on the control signal Nk, control learning
rate αg.
for k = 0 to Nk do

set V = 0
for i = 0 to N do

Compute w(ti) for every i using the parameters updates in equation 4.4.
Compute Yi = f(X;w(ti), gk(ti))
Compute P(ti), and R(ti) = ηP(ti) (e.g P(ti) = −⟨L(ti)⟩XY )
Compute v(ti) = R(ti)− C(gk(ti))
V ← V + v(ti) · δt

end for
for i = 0 to N do

gk+1(ti) = gk(ti) + αg
dV

dgk(ti)

end for
end for
Output: Optimized control signal gNk .

follows: A label yi is first sampled as either +1 or −1 with probability 1/2. The input

xi is then sampled from a Gaussian xi ∼ N (yi · µx, σ2
x). The task is to predict yi from the

value of xi. The intrinsic difficulty of the task is controlled by how much the Gaussians

overlap, controlled by the relative value of µx and σx.

Single neuron learning model: The input-output mapping of the single neuron model

is ŷi = xi · w(t) [1 + g(t)], w(t) is the learned weight parameter, and g(t) is the control

signal which acts as a multiplicative gain. The learning dynamics of w(t) are given by

gradient descent on the loss function L = 1
2
(yi − ŷi)2 + λ

2
w(t)2. Taking the gradient flow

limit (small learning rate as in Saxe et al. 2019; Elkabetz and Cohen 2021), the average

learning dynamics for the weight is described by

τw
dw

dt
= −

〈
∂L
∂w

〉
= µxg̃(t)− w(t)

(〈
x2
〉
g̃2(t) + λ

)
(3.5)
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Figure 3.2: Results in single neuron model throughout the learning period 0 ≥ t ≥ T .
(a) Instant net reward v(t). (b) Loss ⟨L(t)⟩ for theoretical predictions (solid) and
simulations using SGD (shaded). (c) Optimal control signal decreases through learning
(Baseline g(t) = 0). (d) Weight w(t) through learning for control and baseline case,
w̃(t) = w(t) · (1+ g(t)). Dependence of optimal control signal on task parameters. (e) and
(g): optimal g(t) when varying discount factor γ and noise level σx respectively. (f) and
(h): Difference between instant net rewards v(t) between control and baseline when varying
γ and σx respectively. Longer time horizons and less noisy tasks recruit more control.

where g̃(t) = 1 + g(t), ⟨·⟩ denotes expectation over the data distribution, and τw is the

learning time scale of the weight. This gradient depends on g(t), making the learning

dynamics of w(t) dependent on the control signal. This tractability allows us to compute

average dynamics and the necessary gradient efficiently.

Control signal optimization: The performance and control measure for this model

were defined as P(t) = −⟨L(t)⟩, C(g(t)) = βg(t)2, meaning smaller loss leads to better

performance and exerting control has a cost that is monotonic in the control signal

magnitude, with cost per unit of control β. Note that if g(t) = 0 for all T ≥ t ≥ 0,

then C(g(t)) = 0, and ŷi = xi · w(t), which means that the weight is learned purely by

gradient descent with no influence from the control signal, this is called the Baseline

model. Having P(t) and C(g(t)), the value function in equation 3.3 is computed to find

the optimal g(t) by gradient ascent following equation 3.4 (Algorithm 1). In essence, this

setting considers a simple learning scenario in which an agent can adjust the gain of the

weights in a neural network that otherwise learns via gradient descent.
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Results: In figure 3.2a, the difference in instant net reward v(t) is shown for the baseline

case (g(t) = 0 for every t) and the control case (optimizing g(t)). The optimal meta-

learning strategy that maximizes expected return in equation 3.3 allocates more control at

the beginning of the learning period (figure 3.2b) at the cost of some instant reward, result-

ing in faster learning. This is demonstrated by the lower loss observed in the control case in

figure 3.2c. The control signal g(t) influences the instant net reward rate both at the present

time t and at future times t′ > t. The instant change in net reward rate v(t) is driven by

both the immediate effect on the effective weight w̃(t) = w(t)·(1+g(t)) (figure 3.2d) and the

cost function C(g(t)), making the effective weight w̃(t) closer to the solution at early stages.

As expected, increasing the discount factor γ leads to higher levels of control, since future

net reward will contribute more to the cumulative expected return, compensating the

cost of increasing g(t) (figure 3.2e,f). Increasing the intrinsic noise of the task σx reduces

the overall optimal control (figure 3.2g,h). Because it is not possible to overcome this

noise, the use of control will generate a cost that cannot be compensated by boosting

learning. This inter-temporal choice of allocating effort based on the prospect of future

reward has been widely studied in psychology and neuroscience (Masís et al., 2021; Keidel

et al., 2021; Frömer et al., 2021; Masís et al., 2023) (section A.1), and it is specifically

applied to the experiment presented in (Masís et al., 2023) in section 3.7, and naturally

arises from maximizing the discounted cumulative performance in equation 3.3. For more

parameter variations see subsection A.9.1.

3.3 Instantiating Meta-Learning

The normative objective in equation 3.3 and its maximization through gradient steps

on the control signal g(t) can describe various meta-learning algorithms. This section

highlights connections to two well-established approaches: Model-Agnostic Meta-Learning

(MAML; Finn et al. 2017) and Bilevel Programming (Franceschi et al., 2018).
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Figure 3.3: (a): Multi-step MAML. (b): Learning rate optimization as in Bilevel
Programming.

MAML is a specific instance of this framework in which the initial weights W1(0) and W2(0)

in the deep linear network serve as the control signal g(t). Defining performance as the

average loss per task indexed by τ , P(t) =∑τ ⟨Lτ (t)⟩, leads to a meta-objective in MAML

when considering only a single step ahead in the value function, i.e., VMAML = P(δt),
where δt represents the time after one gradient update on g(t) (see subsection 3.3.1). This

framework also supports optimization over multiple gradient steps, thereby enabling a

computationally tractable version of Multi-Step MAML by simplifying the neural network

model (figure 3.1b).

To simulate Multi-Step MAML, a two-layer linear network (as in section A.2) was trained

on five binary regression tasks, each involving different pairs of digits from MNIST

(subsection A.9.2). Results in figure 3.4a,b indicate that the standard MAML loss, VMAML,

varies depending on the number of steps considered during the optimization of initial

weights. Specifically, VMAML decreases when a few steps ahead are included, enhancing

the ability to optimize the learning dynamics. However, beyond a certain number of

steps, VMAML begins to increase, suggesting a trade-off where immediate performance is

sacrificed to optimize longer-term dynamics, as depicted in figure 3.4b. These multi-step

results are made possible by the tractability of this setting. Notably, one-step MAML

can substantially underperform compared to Multi-Step MAML.

Additionally, hyperparameters of the network were optimized throughout training. Bilevel

Programming provides a means to compute this, with the primary distinction being
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the reverse-hypergradient method used to update the meta-parameters (control signal)

(Franceschi et al., 2017, 2018). This framework provides a similar application of hyperpa-

rameter optimization using gradient descent algorithm in equation 3.4, also incorporating

features with intuitive interpretations within a normative framework, such as the discount

factor γ and control cost C (subsection A.9.4). The learning rate was optimized over time

to maximize cumulative reward in equation 3.3, while γ and β were varied, similar to

the single-neuron example, to illustrate their normative significance in hyperparameter

optimization (figure 3.1c). The results revealed qualitatively similar behavior to the

single-neuron model: longer time horizons and lower costs for increasing the learning rate

led to greater control recruitment.

This work provides additional utility to meta-learning algorithms by interpreting them

within a normative value-based framework. However, it is important to note that a

subset of meta-learning phenomena falls outside the explicit scope of this framework.

Specifically, emergent meta-learning agents, in which no outer loop or explicit meta-

variable is optimized, are not directly described here (Wang et al. 2017). This topic is

further discussed in subsection 3.3.2. For further results in meta-learning simulations for

MAML and Bilevel-Programming see subsection A.9.2.

3.3.1 Formal Connection with MAML

The formal description of MAML is as follows. Consider a set of tasks Ti and a function

fθ parametrized by θ. Each task Ti has an associated loss function, denoted as Lτi(fθ).
The parameters after a single gradient step on the loss for a specific task are given by

θ′i = θ − α∇θLτi(fθ), (3.6)
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Figure 3.4: (a): Single step MAML loss V = P(δt) when considering more steps in the
learning dynamics. (b): Resulting learning dynamics from initial parameters found with
Multi-Step MAML. (c) and (d): Optimal learning rate when varying discount factor γ
and cost coefficient β.

where α is the learning rate of the inner loop. The meta-objective is then formulated as

min
θ

∑

Ti∼p(T )

LTi
(
fθ′i
)
= min

θ
LMAML, (3.7)

which is minimized via stochastic gradient descent on the model parameters:

θ = θ − αM∇θ

∑

Ti∼p(T )

Lτi(fθ′i), (3.8)

where αM is the learning rate of the outer loop or meta-iteration. This optimization

minimizes the loss function of future update steps across all available tasks, yielding

a parameter set θ that can be rapidly adapted to solve specific tasks within the task

distribution.

To align this framework with MAML, the control signal is set as g = θ, which, in the two-

layer linear network, corresponds to the initial weights: g = θ = (W1(t = 0),W2(t = 0)).
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The network’s performance is then defined as

P(ti) = −
∑

Ti∼p(T )

⟨LTi(ti)⟩ , (3.9)

where ⟨LTi(ti)⟩ represents the loss function at time ti after training the initial parameters

under task Ti. The cumulative reward can then be expressed as

V ≈
N∑

i=1

δtγti [ηP(ti)− C(g)] . (3.10)

Setting η = 1, γ = 1, and C = 0 for all g, recovers Multi-Step MAML (Ji et al., 2020).

When N = 1 (i.e., considering only one step), the formulation reduces to standard MAML

optimization:

max
g
V = −P(t1) = −

∑

Ti∼p(T )

⟨LTi(t1)⟩ = −LMAML, (3.11)

where at t1, only one update step is considered from the initial parameters g = (W1(t =

0),W2(t = 0)). Finally, maximizing the value in the previous equation using Algorithm 1

is equivalent to optimizing standard MAML. Extending this to multiple time steps, as in

Eq. (3.10), recovers Multi-Step MAML.

3.3.2 Meta-learning beyond control

The framework is based on the premise that at least one free parameter does not evolve

according to a predefined learning rule, as described by the learning dynamics in equa-

tion 3.23. This framework can be adapted to learn any free parameters not governed by

the learning dynamics, such as control signals or hyperparameters, to maximize value.

However, a significant portion of the meta-learning literature focuses on scenarios where no

parameters are explicitly trained to optimize an outer-loop loss or meta-learning objective.

Instead, meta-learning emerges naturally from training on a large distribution of tasks or
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a diverse set of tasks (Wang et al., 2017; Team et al., 2021). In these cases, no distinct

control signal or set of parameters is explicitly optimized in an outer loop. Instead, all

parameters are trained across all tasks, leading to solutions capable of one-shot learning in

previously unseen tasks. The underlying intuition is that solving a broad task distribution

with a fixed set of parameters forces the model to develop strategies that generalize across

tasks. This results in “meta-solutions” that either generalize well or can be learned within

a few trials.

Another class of meta-learning algorithms follows a “memory-based” approach (Ritter

et al., 2018; Genewein et al., 2023). These models utilize stored memory of past experiences

to improve task performance, as exemplified by “Neural Episodic Control” (Pritzel et al.,

2017). In this paradigm, meta-learning emerges through the use of memory rather than

being explicitly controlled, as in the current framework.

Additionally, the learning dynamics of neural networks trained on action-value or value

functions are often more complex and difficult to describe (Bordelon et al., 2023; Patel

et al., 2024) than those of the regression problem examined in this study. The framework

could be extended in future work to account for these types of models. However, it is

likely that the framework will be most insightful in cases where a subset of parameters is

optimized toward a distinct meta-learning objective within an outer loop.

3.4 Expected Value of Control

In EVC theory (Shenhav et al., 2013), a model is proposed to account for cognitive

control allocation by estimating the action-value function (or signal-value in this case) for

each possible control signal, explicitly incorporating the cost of taking an action. It also

suggests that the dorsal anterior cingulate cortex (dACC) is responsible for integrating

and computing most of the quantities required in EVC theory, including the expected

payoff of a controlled process, the amount of control needed, and the cost associated with
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executing control.

The EVC is posed in a reinforcement learning setting where the control cost is made

explicit, and the EVC quantity is the action-value (Q-value function). Starting from the

bellman equation for qπ as

qπ(s, a) =
∑

s′,r

p(s′, r|s, a)
[
r̄ + γ

∑

a′

π(a′|s′)qπ(s′, a′)
]
, (3.12)

where s denotes the current state, a the action taken r̄ = r − C(a) with C(a) the control

cost (a being the control signal), r the reward received from the environment (see equation

1 and 2 in Shenhav et al. (2013)), and π a given policy (which will end up being the

control signal g(t) later on), then

qπ(s, a) =
∑

s′,r

p(s′, r|s, a)
[
r − C(a) + γ

∑

a′

π(a′|s′)qπ(s′, a′)
]
, (3.13)

EV C(s, a) = qπ(s, a) =
∑

s′,r

p(s′, r|s, a)
[
r + γ

∑

a′

π(a′|s′)qπ(s′, a′)
]
− C(a). (3.14)

The expected value of control (EVC) is the action-value function where the cost of

taking actions (control) is explicitly incorporated. It is now shown that this quantity is

equivalent to the cumulative reward presented in equation 3.3 in the main text under

certain conditions. First, the state s = w(t) is indexed with time learning time, assuming

a non-stochastic policy for the control signal at each state, a = g(t), for that particular

state. From one step to the next, a small change in time δt is considered (making the

state transition deterministic, p(s′ = w(t+ δt)|s = w(t)) = 1). Additionally, reward and
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cost are redefined in terms of reward per time unit, yielding

EV C(s = w(t), a = g(t)) =
∑

r

p(r|w(t), g(t)) [rδt (3.15)

+ γδtEV C(s = w(t+ δt), a = g(t+ δt))
]
− C(g(t))δt

(3.16)

= δt (E [r|w(t), g(t)]− C(g(t))) (3.17)

+ γδtEV C(s = w(t+ δt), a = g(t+ δt)) (3.18)

= δt (E [r|w(t), g(t)]− C(g(t))) (3.19)

+ γδtδt (E [r|w(t+ δt), g(t+ δt)− C(g(t+ δt))])

+ γ2δtEV C(s = w(t+ 2δt), a = g(t+ 2δt)). (3.20)

The EV C term in the previous equation can be unrolled until the termination of the task

at time T , where r = 0 for any t > T , indexing time as t0 = 0, tN = T , and ti+1 = ti + δt.

This gives

EV C =
N∑

i=0

δtγti [E [r|t, g(t)]− C(g(ti))] (3.21)

which is equation equation 4.3. Taking the limit δt → 0 recovers the integral form in

equation 3.3.

3.4.1 Purpose of the control cost

Adding a control cost term to the optimization is standard in the control theory literature

to describe, for example, energy consumption or depletion of some resource when applying

control. In general, this cost is minimized. In this work, however, the control cost serves

additional purposes.

First, it limits the space of control signals to avoid trivial solutions. For example, taking
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C = 0 when optimizing the learning rate in the single neuron case results in the trivial

solution of choosing a value such that the weight reaches the solution after one step. In

the case of MAML, C = 0 is required to demonstrate the equivalence to the learning effort

framework. Another example of C = 0 giving useful control signals occurs in the gain

modulation case. Intuitively, because the gain modulation speeds up learning, the optimal

action would be to use an extremely large gain to reach the solution weights quickly.

However, the value of the control signal also affects the prediction in Y = f(X;w(t), g(t)),

potentially increasing the loss. Simulations were conducted to verify this (not included)

in the same setting as the one in effort allocation in section 3.6, except that C = 0 and

with no restrictions on the size of G. The resultant gain modulation was qualitatively

similar to the case when C ̸= 0, but was much more concentrated and less smooth (figure

not included). In this case, the cost does not benefit performance, but the goal is to study

the nature of these solutions under different cost assumptions. For example, as in the

task engagement case in section 3.5, where the cost function has a significant impact on

the optimal control signal.

The second function of the cost is to describe mental effort when performing cognitively

demanding tasks. The control cost introduced in the framework is intended to account

for limited attention or a sense of fatigue. While the specific meaning of the control cost

is not assumed yet, some theories of effort feeling include metabolic resource depletion (a

controversial hypothesis Hagger et al. 2016; Randles et al. 2017), the opportunity cost of

performing another task in the environment (Agrawal et al., 2022), reflecting a bottleneck

in information processing in the brain (Musslick et al., 2020), or computation time in

the presence of uncertainty (Gershman and Burke, 2023). Links to these theories can be

directly tested using the framework.
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3.5 Engagement Modulation

Next, the focus shifts to the question of which tasks, among many, should be engaged with

over time. The model is provided with control over its engagement in a set of available

tasks or classes in a classification problem during learning.

Selecting the optimal control signal in this setting involves improving multi-task capabilities

and estimating optimal curriculum. Consider a set of Nτ datasets, and a loss function

L(Ŷτ , Yτ ), where Ŷτ is the estimation of a model and Yτ is the required target for dataset

τ . The average loss for a set of datasets is L =
∑Nτ

τ=1 L(Ŷτ , Yτ ) +R(W ) which is used to

measure the performance P(t) = −⟨L(t)⟩ only, and assuming that weights are updated via

gradient descent on the auxiliary loss Laux =
∑Nτ

τ=1 ψτ (t)L(Ŷτ , Yτ ) +R(W ), where ψτ (t)

are control signals, called engagement coefficients, and R(W ) is a weight decay regularizer.

This auxiliary loss is used solely to obtain learning dynamics equations that explicitly

depend on the engagement coefficients ψτ (t). Assuming that the network receives inputs

from all datasets simultaneously (concatenated in X) and has specific outputs allocated

to each dataset (concatenated in Y ), as schematized in figure 3.5a, the learning dynamics

equations for the weights can be derived as a function of ψτ (t), yielding

τw
dW1

dt
=
∑

τ

ψτ (t)W
T
2τ

(
ΣT
xyτ −W2τW1Σx

)
− λW1,

τw
dW2

dt
=
∑

τ

ψτ (t)
(
ΣT
xyτ −W2τW1Σx

)
W T

1 − λW2, (3.22)

where W2τ denotes the weights of the neurons for the output to dataset τ and Σxyτ is
〈
XY T

τ

〉
, both padded with zeros to preserve dimension (see section A.4).

Each of the ψτ (t) modulates the amount of learning of each dataset. The auxiliary loss

to get a learning dynamics is to avoid the trivial solution of ψτ = 0 to minimize the

loss. The optimal ψτ (t) can be found throughout learning by computing P(t), using

C(ψ(t)) = β∥µψ − ψ̄(t)∥2 (ψ̄ = (ψ1(t), ψ2(t), ...)), then taking gradient steps on ψτ (t) to
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Figure 3.5: (a): Task engagement, where the control signal determines the optimal amount
of engagement through time to multiple regression tasks. (b): Category assimilation,
where a model is trained to learn a classification task and can control the engagement on
each class c throughout training.

maximize V . Taking µψ = 0 means that to learn a dataset τ (ψτ (t) > 0) the agent must

pay a cost, here named as active engagement. For µψ = 1, the agent must pay a cost

to increase or suppress the learning signal from a specific dataset relative to a baseline,

here named as attentive engagement. In these cases, each of the elements in ψ̄(t) are

forced to stay in a certain range independently. Finally, it is possible to force ψ̄(t) to

be of a fixed norm by making the cost C(ψ̄(t)) = β
(
∥ψ̄(t)∥2 −Ψ

)2, such that there is

a fixed overall amount of engagement to distribute, here named as vector engagement.

For category engagement, which is focusing on particular subclasses in a classification

problem, a similar set of equations can be derived (see section A.5), where the engagement

on class c through learning is denoted by ϕc(t) (figure 3.1b). The meta-learning tasks

used to train this model are the following:

Task engagement: Given a set of Nτ datasets and a total training period of T , the

engagement modulation model described in section 3.5 was trained. The idea of this task

is to estimate the optimal learning curriculum (order of datasets presented in the neural

network training) that maximizes expected return V during the time period T . In this

task, three binary MNIST classification datasets were used, specifically the digits (0, 1),
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(7, 1) and (8, 9) ordered by difficulty (easier to harder according to linear separability, see

section A.4).

Category engagement: For a classification task, there might be a better set of classes to

learn during different stages of training. The category engagement modulation model was

trained (described in section 3.5 and section A.5) to estimate the optimal engagement or

attention to each of the categories in a classification task (Semantic and MNIST datasets)

through learning. In addition, the gain modulation model (next Section) was trained in

this same setting using a neuron basis (see section A.3).

3.5.1 Results

Task engagement: The neural network has access to all inputs and targets for three

datasets simultaneously, as described in section 3.5, each of them a different binary

regression problem from MNIST. Each dataset used was chosen to vary on the level of

difficulty to learn: the pair of numbers (0, 1) is easier to classify than (7, 1) and (8,

9) (based on the lowest loss achievable with linear regression in subsection A.9.7). An

engagement coefficients ψτ (t) was assigned to each dataset, that maximizes the expected

return in equation 3.3. Learning curves and the evolution of engagement coefficients are

depicted in figure 3.6; the baseline case corresponds to simultaneous training on all datasets

at the same time (ψτ (t) = 1 and C(ψ(t)) = 0). In the attentive engagement agent, where

µψ(t) = 1 (shown in figure 3.6a and b), the agent just needs to pay a cost to either amplify

or suppress engagement on a dataset. In this setting, the agents amplify the engagement

of all of the datasets, effectively increasing the learning rate per dataset, and achieving a

lower LC(t) compared to LB(t). The order of learning each of the datasets goes from easier

to harder, it is in the same order as in the active engagement and vector engagement, and

none of the datasets are engaged with ψτ (t) < 1, avoiding forgetting of early amplified

datasets. In the case of active engagement, where µψ = 0 in C(ψ(t)) = β∥µψ − ψ̄(t)∥2

(shown in figure 3.6c and d), the agent must pay a cost to learn any of the tasks (ψτ (t) > 0).

68



University College London

0 10000

0.5

1.0

1.5

L(
t)

(a) Attentive

Baseline

Controlled

0 10000

0.5

1.0

1.5
(c) Active

0 10000

0.5

1.0

1.5
(e) Vector

0 10000

0.0

0.5

1.0

L B
(t

)
−
L C

(t
)

(i)

Semantic

0 2000

0.00

0.01

0.02

(h) MNIST

0 1000
0.40

0.45

L(
t)

(m)

Uniform

Balanced

Curriculum

0 10000
Task time

1.0

1.5

2.0

ψ
τ
(t

)

(b)
Digits: (0, 1)

Digits: (7, 1)

Digits: (8, 9)

0 10000
Task time

0.6

0.8

1.0

(d)

0 10000
Task time

0.5

1.0

1.5

(f)

0 10000
Task time

1

2

φ
c(
t)

(k)

0 2000
Task time

0.75

1.00

1.25

(j)

01234
56789

0 2000
Task time

0.05

0.08

0.10

L c
(t

)

(l)

Figure 3.6: Results for task engagement experiment. (a), (c) and (e): L(t) for baseline and
control case for Attentive, Active and Vector engagement. (b), (d) and (f): Engagement
coefficients ψτ (t) for each of the binary classification tasks Attentive, Active and Vector
engagement. Mean and standard deviations from 5 independent trainings. (h) and
(j): Results for category engagement task, improvement in the loss function when
using control for MNIST and Semantic dataset respectively. (i) and (k): Optimal
category engagement coefficients for MNIST and Semantic datasets. (l): Class proportion
experiment. Uniform: Loss when using uniform distribution for the abundance of classes
in each batch. Balanced: Loss on a balanced batch, but using the inferred curriculum of
classes in the batch to train. Curriculum: Loss on curriculum batch when using the
curriculum. (m): Loss per class using control (solid lines) and baseline (dashed lines).

By distributing the learning between the tasks, the agent is capable of reaching LC(t)
close to LB(t) as shown in the top panel of figure 3.6, without the need of fully engaging

on all of the datasets at every time step. None of these datasets are fully disengaged at any

point, possibly as a mechanisms to avoid catastrophic forgetting (Kirkpatrick et al. 2017)

of datasets previously engaged during training. The engagement coefficients in the vector

case behave similarly. Since the control signal in this case is forced to keep a constant size of

Ψ, the agent is not able to fully engage in all of the datasets, and distributes this attention

resource on each dataset from easier to harder, as in the active case. The meta-learning

strategy found in our setting of keep re-visiting previous tasks to keep performance is

well studied in psychology (Ericsson and Harwell, 2019; Eglington and Pavlik Jr, 2020),

and it is also related to memory replay theories as a value-based mechanism that avoids

catastrophic forgetting (Mattar and Daw, 2018; Agrawal et al., 2022).

Category engagement: In some classification tasks, it might be better to learn some
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categories first and others later during training. The engagement modulation model to

control engagement and attention was trained on categories of a classification dataset.

In figure 3.6, the results of this model trained on the Semantic dataset, and MNIST

dataset classifying all digits are shown. The engagement coefficients ϕc(t) describe the

focus on class c in the classification problem, which basically scales the error signal

for that specific class through training (see section A.5). figure 3.6h and j show the

improvement in the loss when optimizing for categoric assimilation coefficients for both

datasets. figure 3.6i and k depict the engagement coefficients per class ϕc(t). In the

Semantic task, the engagement coefficients are clustered depending on the level of the

hierarchy for the respective output. Higher coefficients are spent on categories in higher

levels of the hierarchy, as well as earlier during learning. Because β is high for this

experiment (β = 5.0), the cost of deviating from a control vector of size C is high (where

C is the number of classes); therefore the amplification of engagement in some categories

goes along with suppression for other categories to keep the control with constant size.

For the MNIST dataset, each ϕc(t) corresponds to a specific digit, and the order of

assimilation that maximizes value shows a consistent order of digits among different runs,

being ordered as (0, 1, 7, 6, 4, 2, 3, 9, 8, 5), which is roughly the same as the average linear

separation per digit (see subsection A.9.7). As in the task engagement results, results

show that it is optimal to assimilate easier elements first, allocating higher ϕc(t) and more

concentrated in the early stages of learning. More difficult categories are assimilated later,

allocating a smaller maximum ϕc(t) compared to easier classes, but with sustained engage

over time. The benefits of learning from easier to harder aspects of tasks have been shown

in cognitive science (Krueger and Dayan, 2009; Wilson et al., 2019) and machine learning

(Parisi et al., 2019; Saglietti et al., 2022; Zhang et al., 2022), the engagement and category

engagement experiments within our normative framework resemble these findings on

task difficulty curriculum. The engagement level per class amplifies the error signal of

learning a particular class through time, which can be roughly controlled by modifying
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the proportion of classes in the batch through training. To show this, a baseline agent

(no control, only backpropagation) was trained on MNIST, and used ϕc(t) to modify the

proportion of classes in the batch throughout the training (section A.5). This gives a

better curriculum than sampling each class uniformly to populate the batch, as shown in

figure 3.6l and m.

3.6 Gain Modulation

Motivated by studies of neuromodulation (Lindsay and Miller, 2018; Ferguson and

Cardin, 2020), this section presents a model with a learning effort control signals as

gain modulation G1(t) ∈ RH×I and G2(t) ∈ RO×H modulate the gain of each layers

weights as W̃i(t) = (1+Gi(t)) ◦Wi(t) = G̃i(t) ◦Wi(t) where ◦ denotes element-wise mul-

tiplication. This control signal will modify the input-output mapping of the network

to Ŷ = W̃2(t)W̃1(t)X. Given the control signals, the weights are learned using gradient

descent, yielding the learning dynamics equations

τw
dW1

dt
=
(
W̃ T

2 Σ
T
xy

)
◦ G̃1 −

(
W̃ T

2 W̃2W̃1Σx

)
◦ G̃1 − λW1,

τw
dW2

dt
=
(
ΣT
xyW̃

T
1

)
◦ G̃2 −

(
W̃2W̃1ΣxW̃

T
1

)
◦ G̃2 − λW2. (3.23)

The control signal Gi(t) effect is similar to a time-varying learning rate, except (1) it

is weight specific (i.e. with coupling between the elements of the control matrix), (2) it

does not change the weight decay rate which is originally controlled by λ and τw, and

(3) Gi(t) also changes the input-output mapping. Solving the learning dynamics gives

P(t) = −⟨L(t)⟩, using C(G(t)) = exp (β (∥G1(t)∥2F + ∥G2(t)∥2F )) − 1, to then estimate

dV/dGi(t) as in section 4.1, and find the control trajectory that maximizes cumulative

reward in equation 3.3 (derivation of learning dynamics in a two-layer linear network

given a control signal G(t) is provided in section A.3). In addition, a non-linear network
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Figure 3.7: (a): Effort allocation, where the control signal (gain modulation of weights) is
computed to maximize value throughout the learning of a single task. (b): Task switching,
where the gain modulation model is trained to switch tasks repeatedly and the control
signal is computed throughout the switches.

was simulated using approximations (see section A.6). The meta-learning tasks used to

train this model are the following:

Effort Allocation: The gain modulation model was trained separately on each of the

three datasets for a time period of T , and estimate the control signal that maximizes the

expected return V in equation 3.3.

Task Switch: Two different Gaussian datasets are defined (section A.10). The network

was sequentially trained on each dataset for a time period Ts. The expected reward V

is computed for the whole training period T > Ts of the gain modulation model, and

maximized through gradient updates on Gi(t).

3.6.1 Results

Effort Allocation: This setting is similar to the single neuron setting of subsection 3.2.1,

but with a two layers network instead of just one neuron, where every weight in the network

has its own gain signal as described in equation 3.23 and schematized in figure 3.7a. The

results of the baseline training and controlled training using gain modulation are presented
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in figure 3.8. In the gain modulation model, the results show the same qualitative behavior

as in the single-neuron model when varying parameters of the learning model and control

optimization. The control signal that maximizes expected return reduces the instant net

reward rate by the use of control in the early stages of learning, to get better performance

later as shown in the lower loss for the controlled case (figure 3.8a and b). Through both

optimizing the learning and minimizing C(G(t)) at the same time, the gain modulation is

not only more efficient by getting a more sparse solution (L1 norm in figure 3.8b), using

fewer weights than when no control is used, it also learns faster (figure 3.8c, more details

in subsection A.9.5). There are times during learning when it is more effective to apply

control. As can be seen in the L2 norm of the control matrices G1(t) and G2(t), and

the absolute value of the time derivative of the loss dtL(t) = |dL(t)/dt| for the baseline

and control case (figure 3.8d), the control signal is larger early in training and near the

stages of learning when the increase in performance (dtL(t)) is larger (figure 3.8a). The

control signal shifts the peaks in dtL(t) earlier in learning, leading to better performance

and higher reward earlier, compensating for the momentarily increased cost of control.

Similar results are obtained when training on the other two datasets (see figure A.7 and

figure A.8 in subsection A.9.5). Neuromodulators are known to be involved in high-level

executive tasks such as engagement in learning (Shenhav et al., 2013, 2017; Lieder et al.,

2018; Grossman et al., 2022), and some of them are believed to act as gain modulation

(Lindsay et al., 2020; Ferguson and Cardin, 2020) (see section A.1). This model provides

a testable and tractable setting in which different control influences over the learning

system can be evaluated against neuromodulator signals from experiments, where the

subject performs and learns tasks to maximize cumulative reward.

Task Switch: The task is schematized in Fig. figure 3.7b. In figure 3.8e, each peak in

the loss is a task switch (every 1800 time steps), and as expected, the baseline loss LB(t)
is higher than the loss with control LC(t) almost at every point throughout learning.

After each switch, the control signal manages to iteratively drive the learning dynamics to
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Figure 3.8: Results of the gain modulation model trained on an MNIST classification
task. (a): Instant net reward v(t), baseline vs controlled. (b): L1 and L2 norms of the
weights. (c): Loss L(t) throughout learning. (d): normalized dtL(t), and normalized L2
norm of the control signal G1(t) and G2(t). (e): Results on the task switch meta-task.
Comparison of L(t) for the baseline and control case. (f): Values of L(t) at switch times,
along with the normalized cost of control C(t) at switch times (green line). (g): Zoom of
L(t) in the top panel, along with the normalized cost of control.

places in parameter space W where each switch is less costly (figure 3.8f). Since the linear

network is over-parametrized, the drive to adjust for the next task can be done without

meaningfully changing the solution for the current task. The control signal starts acting

before the switch (figure 3.8g) to amortize the loss peak at the time of the switch, and to

speed up the approach of the weight to the solution, skipping the plateau in the loss. In

addition, the sparsity of the weights is higher compared to the baseline case, the cost of

using control to switch is transferred to the size of the weights, making it easier to move

the effective weight W̃ (t) by a large amount when changing G(t) (See subsection A.9.6).

This setting poses meta-learning and gain modulation as a neural implementation of

task/context switching, which could be compared with behaviors in real scenarios where

the switch is cued or periodic (Puigbò et al. 2020; Ben-Iwhiwhu et al. 2022).
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3.7 Direct Comparison with Behavioral Data

In this section, the learning effort framework is applied to a behavioral experiment in

which a trade-off between control and learning speed has been proposed (Masís et al.,

2023). First, a description of the behavioral task and main findings is provided, along

with the learning model proposed by the authors. Then, a model adapted to the learning

effort framework is presented, named epistemic noise control model. While retaining

some features of the model in Masís et al. (2023), the adapted model does not necessarily

describe an implementation, such as the recurrent neural network and drift-diffusion

model as in the original work. Instead, it characterizes the temporal trade-off of applying

control while sacrificing some instantaneous reward rate.

To account for key findings in the behavioral task, the adapted model includes the capacity

to control the epistemic noise (meaning the noise that can be reduced by learning),

which is done by increasing the exposure time to the stimulus on each trial reducing the

instantaneous reward rates, the noise in the error signal, and increaasing learning speed.

The ability to reproduce many of the findings from the behavioral experiment using a

simpler model suggests a fundamental trade-off in controlling learning.

3.7.1 Managing Learning during Decision Making in Rats

In the work presented by Masís et al. (2023), rats were exposed to a binary classification

task (figure 3.9). In each trial, the animal was presented with one of two possible stimuli,

each corresponding to a different abstract image. The rat could collect a reward by

licking a port depending on the image presented, one image corresponded to the left port,

and the other to the right port. After the rat achieved a certain level of proficiency in

performance, a randomly transformed version of the stimulus (effectively a new stimulus)

was introduced, and training continued for 10 additional sessions from that point.

Main Findings: Upon the presentation of the new pair of images (after achieving
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Figure 3.9: Schematics of the binary classification task in rats. Figure from Masís et al.
(2023).

proficiency with the previous pair), rats were conditioned to exhibit a specific reaction

time, forming two groups: high RT and low RT at the beginning of learning. Accuracy,

inferred SNR (using the RNN and LDDM model explained later), instantaneous reward,

and cumulative reward were measured on average for each group throughout the entire

session. Rats in the high RT group exhibited faster learning compared to those in the

low RT group, improving their accuracy and inferred SNR more rapidly during learning

(figure 3.12a and b). However, because the reaction times were longer at the start of

learning the new stimulus for the high RT group, their instantaneous reward rate was

lower compared to the low RT group. Despite this, the group with faster learning, while

initially sacrificing some reward rate, was ultimately able to obtain higher cumulative

rewards than the low RT group (figure 3.12c and d). These results were also reproduced

when grouping rats by their natural initial reaction time, without the need for conditioning

(Figure 7 in (Masís et al., 2023)).

Transparent Stimulus Experiment: A variation of the experiment is also presented, in

which the learnability of the task is modified. To achieve this, the authors introduced a pair

of completely transparent stimuli to a subset of proficient rats from the base experiment
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Figure 3.10: Schematics of the RNN generating the decision variable signal. Once the
decision variable ŷ reaches a threshold z(trial), the model decides right or left depending
on the sign of ŷ. A consequence of increasing the threshold z(trial) can be seen graphically:
as the threshold increases, the time it takes to reach the threshold increases (longer RTs),
while collecting more evidence from the stimulus, improving the accuracy and speeding
up learning. Figure from Masís et al. (2023).

with visible stimulus. In other words, the rats could not see the images, making the task

impossible to learn. These rats followed an optimal strategy, which involved minimizing

reaction time as much as possible. Since the stimulus could not be learned, the probability

of choosing correctly remained fixed and could not improve. Therefore, reacting as soon as

the stimulus was presented maximized both the instantaneous reward rate and cumulative

reward. This behavior contrasts with that of rats in the non-transparent condition, whose

reaction times started high and gradually decreased back to proficiency levels (figure 3.13a

and b).

Original Model: To explain these behavioral findings, the authors proposed a model

combining a Recurrent Neural Network (RNN) and a Linear Drift Diffusion Model (LDDM)
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(Bogacz et al., 2006). The model is able to make binary decisions through a drift diffusion

process. Within each trial, the model receives an image input corresponding to one of

the two images, modeled as a Gaussian input x(t) ∼ N (µydt, σ2
xdt), where y is the image

identity, µ regulates the signal of y carried in x, and σx is the irreducible overlap between

the stimuli (aleatoric uncertainty). This is very similar to the data generation process

used in the single neuron example in subsection 3.2.1, with the notation matched to this

work. The decision variable ŷ(t) within one trial time t is governed by

ŷ(t+ dt) = ŷ(t) + w(trial)x(t) + η(t), (3.24)

where η(t) ∼ N (0, σ2
0dt) is the output noise (epistemic uncertainty, as this can be overcome

by learning), and w is a scalar gain parameter that is trained through gradient descent

from trial to trial as

w(trial + 1) = w(trial)− λ∂L
∂w

, with L(w, y) = max(0, 1− ŷy). (3.25)

The decision variable described in equation 3.24 can be viewed as the output of a recurrent

neural network, where the forward weight is w, and the recurrent weight feeds the previous

output ŷ(t) to the next one ŷ(t+ dt). The DDM aspect of this model is that the decision

on the image identity (licking left or right) is made once ŷ(t) reaches a threshold z (See

figure 3.10).

Given the network is linear and the data is Gaussian, the authors are able to provide

closed-form dynamics of the agent, for instance, showing the trade-off between learning

speed and instantaneous reward rate. The hypothesis in this experiment is that rats

“approximately maximize total reward over the full learning epoch”, and that they can

control their own learning process by scheduling the decision threshold z(trial), as it

influences the trial accuracy, reaction time, and learning speed. Using the RNN and

LDDM formulation, it is possible to provide a globally optimal threshold scheduling z∗(t)
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that maximizes

z∗(t) = argmax
z(t)

ˆ T

0

RR(t)dt (3.26)

with RR(t) denoting the reward rate, and T the amount of time available within an

epoch to learn. Note that this integral follows a similar rationale to the optimization goal

described in chapter 3. An optimal policy for the threshold can be optimized through

gradient descent, which gives an exponential-like solution. Heuristics for surrogate optimal

threshold scheduling are also provided. Optimized threshold scheduling compared with a

baseline threshold reproduces many of the behavioral observations, analogous to the ones

shown in figure 3.12 and figure 3.13. In the next section, an alternative model controlling

epistemic uncertainty is provided.

3.7.2 Epistemic Noise Control

The reason to provide an alternative model that can reproduce the data is to suggest that

the problem of immediate reward vs. costly control and better future rewards

is a fundamental problem when controlling learning. What this means exactly is

that controlling aspects of learning can create a trade-off between learning progress and

immediate reward, and that the optimal control will behave similarly in many instances

of learning and control, exerting more control at the start of learning and reducing control

later. This is further argued in chapter 4. Support for this hypothesis is given, in this

particular application, by the simplified nature of the following model, as the DDM is

removed, and there are no within-trial dynamics. The main aspect that presents this

trade-off is the capacity to improve learning speed by paying a cost (in this case, instant

reward rate). In the following model, this control is simply done by being able to reduce

epistemic noise (hence, improving learning updates) while reducing the instantaneous

reward rate due to longer times taken on each learning update. As an extra advantage,
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the simplicity of the model might allow for mathematical analysis of the optimal control,

perhaps utilizing the methods developed in section 4.3.

Formally, the model can be presented as follows: A single-weight network is trained to

solve a similar task as the original model. The model needs to report the target sign

y = ±1 with P (y = 1) = P (y = −1) = 1/2 given an input x(t) ∼ N (µxy, σ
2
x). The

decision variable is defined by ŷ = sign(w(t)x + η
(1+g(t))

), where η ∼ N (0, σ2
0), and the

control signal g(t) is introduced. Increasing g(t) will decrease the output noise, hence

increasing the carried signal from y to ŷ. This can be quantified by the signal-to-noise

ratio

SNR(t) =
µ2
xw

2(t)

w2(t)σ2
x +

σ2
0

(1+g(t))2

g large−−−→ µ2
x

σ2
x

. (3.27)

Therefore, learning is necessary as long as there is output noise η that needs to be

overcome. This can be understood as reducing epistemic uncertainty since it can be

reduced by learning, and σx being aleatoric uncertainty, which is intrinsic to the data

generation process. Given the decision variable ŷ and the data distribution, the accuracy

a(t) is

a(t) =
1

2


1 + erf


 µxw(t)√

2(w2(t)σ2
x +

σ2

(1+g(t))2
)




 . (3.28)

The weight w(t) is trained to maximize this accuracy

dw

dt
= α

da(t)

dw
− λw (3.29)

where α is the learning rate, and λ controls a square norm regularizer. It can be shown

that the accuracy derivative da(t)/dw is always larger than 0 under some conditions,
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Figure 3.11: Accuracy a(t) and accuracy gradient da(t)/dw as functions of the weight
w(t) and control signal g(t). (a): Accuracy improves through two mechanisms: increasing
the signal of x via the weight w(t) to overcome epistemic noise η, and directly reducing
epistemic noise η. (b): The gradient of accuracy increases with g(t) for small w(t), as it
enhances the SNR of the gradient update (see green line in (b) and (c)). For large w(t),
where a(t) saturates, the effect of control diminishes (see pink line in (b) and (d)).

e.g. σ2
0 > 0 (Shown numerically in figure 3.11 and proven in section A.7). The control

signal influences the weight dynamics. As both the weight w(t) and control g(t) increase,

accuracy improves because w(t) helps overcome output noise, while g(t) reduce the noise

(figure 3.11a). The control signal can increase the accuracy gradient da(t)/dw when

w(t) is small enough that accuracy has not yet saturated. By reducing the epistemic

error η, control increases the signal-to-noise ratio (SNR), thereby accelerating learning

(figure 3.11b, c). When w(t) is sufficiently large, increasing g(t) decreases the always

positive da(t)/dw, because reducing noise further does not contribute to the accuracy a(t)

when it is already saturated (figure 3.11b, d).

The instantaneous reward rate can be defined as

iRR(t) = a(t) · ξ

1 + βg(t)
, (3.30)

making the reward proportional to accuracy (obtaining a reward of ξ with probability

a(t), otherwise 0). The rate at which rewards are obtained is weighted by 1/(1 + βg(t)),

meaning that an increase in control extends the time required to make a decision and

collect a reward at each step, while simultaneously reducing epistemic noise, as described

earlier. The trade-off between the time invested in each training step to reduce noise and
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the acceleration of learning creates an inter-temporal choice of control allocation,

where learning speed can be increased at the cost of reducing the iRR. Notably, increasing

control g(t) can be interpreted as an explicit cost within the learning effort framework

defined in equation 3.3, by considering the first-order effect of increasing g(t), giving

iRR(t) ≈ a(t)ξ − a(t)ξβg(t) = P(t)− C(t). (3.31)

where P(t) and C(t) are performance and cost as defined in section 3.2. This is similar to

an opportunity cost of the reward lost by waiting the extra amount of time βg(t) to make

a decision. Finally, to find the optimal noise control scheduling g∗ throughout learning,

g∗(t) = argmax
g(t)

ˆ T

0

iRR(t)dt (3.32)

which can be solved using gradient ascent as explained in the learning effort framework in

section 3.2.

3.7.3 Simulation Results

By optimizing the noise control schedule g(t) through gradient ascent, it is possible to

qualitatively reproduce some behavioral findings in Masís et al. (2023). The optimized

agent is referred to as the high-control agent, while the baseline agent with no control

(g(t) = 0) is called the low-control agent, corresponding to a baseline level of control

(Figure 3.12).

The high-control agent exhibits a control profile that starts high at the beginning of

training (figure 3.13d). This is explained by the effect of control on the accuracy gradient,

which accelerates learning. Control then decreases as its impact becomes less useful once

the task is learned through w(t). This leads to a faster improvement in accuracy and

signal-to-noise ratio (SNR) compared to the low-control case (figure 3.12e and f).
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Figure 3.12: (a) to (d): Original behavioral results observed in the rat experiment,
adapted from Masís et al. (2023). (e) to (h): Results from optimizing control (high
control) with respect to a baseline (low control).

Since high control results in longer reaction times (here, longer stimulus exposures reduce

epistemic noise η), the instantaneous reward rate of the high-control agent is lower at the

start of training. However, the total collected reward throughout training is larger for the

high-control agent, as maximizing total reward is the objective of the control signal g(t),

as expressed in equation 3.32 (figure 3.12g and h).

This cumulative reward is maximized over a fixed number of trials. However, because

increased control affects reaction time, each trial in the integral takes slightly longer

for the high-control agent than for the low-control agent. As a result, the total task

engagement time is longer for the high-control agents. These simulations qualitatively

match the behavioral observations (first row of plots in figure 3.12).

The optimal control of epistemic noise can also be simulated for a transparent stimulus

by simply increasing the value of σ2
x and then computing the optimal control using

gradient ascent. For a transparent stimulus (not fully transparent, as µx > 0), since

the error rate cannot be decreased, the optimal way to maximize reward (through task

time, not trials) is to answer as quickly as possible on each trial, thereby minimizing

control (figure 3.13). The control exerted, in the base task with a visible stimulus, will
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Figure 3.13: (a) and (b): Behavioral results from rat experiments adapted from Masís
et al. (2023). (a): Normalized decision time vs. error rate for rats. For transparent
stimuli, rats reduce their decision time more than for visible stimuli, without decreasing
their error rate, as they cannot discriminate the stimulus. (b): When presented with a
new stimulus, rats’ reaction times start high as they learn the task and return to the
same reaction times once proficient with a visible pair of stimuli. When faced with a
transparent stimulus, reaction times decrease further.(c) and (d): Simulated optimal
control exhibits similar reaction time behavior to the experimental results for the visible
and transparent stimulus tasks.

start high to boost learning (leading to high initial RTs in the case of rats, lowering their

initial instantaneous reward rate) and will then decrease to levels comparable to proficient

performance, which in the simulation corresponds to g(t) = 0 (figure 3.13b and d). In the

transparent stimulus condition, control is minimized to the extent that is perceptually

and mechanically possible for the rat. In the model, this was enforced simply by including

a lower bound on control. Note that the optimal control for the transparent stimulus

is not minimized at all training steps (figure 3.13c and d). This is because the initial

control signal for starting the gradient ascent iterations to maximize cumulative reward is

the optimal control in the base task with visible stimulus, which starts with high control.

This initial condition simulates a control prior over the optimal control in the base task
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with a visible stimulus before performing the task with a transparent stimulus, as in the

case of rats.

3.7.4 Interpretation of Cognitive Control

Cognitive control is generally defined as a mechanism that overrides habitual or default

behavior to pursue context-dependent goals (Shenhav et al., 2013; Cohen, 2017). Consider-

ing this definition, the optimal cognitive control allocation will depend on the task at hand,

and it will have an impact on behavioral variables, e.g., reaction times. In addition, the

amount of cognitive control is not directly measured but inferred by observing surrogate

behavioral or neural signals, such as reaction times, pupil size, or activity in related brain

regions.

In the epistemic noise control model, we have assumed that the amount of cognitive

control increases reaction times while reducing the amount of noise in the response,

thereby increasing accuracy. This is the same interpretation as in the original work (Masís

et al., 2023; Masis et al., 2024). This interpretation diverges from observations in other

experiments, where a higher level of cognitive control is associated with lower RTs but also

lower accuracy. Both instances of cognitive control are consistent with the speed-accuracy

trade-off (Heitz, 2014), which has been modeled in the past, e.g., using DDMs (Bogacz

et al., 2006). Below we argue why, in our model, more control leads to higher RTs, and

how this relates to decision noise.

There are multiple experiments in the literature where cognitive control is associated with

lower reaction times, intuitively understood as the subject putting more effort into the

task (higher levels of attention), thereby being able to solve each trial faster. Some of

these experiments are related to the Gratton effect, where stimulus-conflicting trials show

higher RTs, and two conflicting or hard trials in a row produce lower RTs and improved

performance on the second trial. This can be explained as using the first trial to properly
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adjust cognitive control or attention to the current difficulty of the set of trials (Gratton

et al., 1992; Botvinick et al., 2001; Ullsperger et al., 2005; Kool et al., 2010). Note that

this reduction in RTs is compared with conflictive trials, and in most cases, in easier

non-conflictive stimulus trials, the reaction times are even lower.

Another set of experiments is related to time-constrained tasks, where cognitive control

is associated with faster reaction times (sacrificing performance as well), as responding

quickly is required to obtain reward (Forstmann et al., 2008; Ulrich et al., 2015; Miletić

and van Maanen, 2019; Stone et al., 2025). In both of these examples (and perhaps other

instances), cognitive control is associated with lower RTs.

One way to understand the conflict between the standard interpretation in the literature

(e.g., the Gratton Effect) and the epistemic noise model is by noticing that RTs increase

in conflicting trials not only due to the conflict itself, but also because it is often reward-

optimal, which is the goal of cognitive control according to the EVC theory. In principle,

the subject could answer very quickly regardless of the conflict on a given trial, but it is

better to operate in a regime of higher RTs and higher accuracy within the speed–accuracy

trade-off (SAT). This reflects a direct trade-off between effort and reward, as in some

cases the subject could choose to respond randomly instead of taking the time to resolve

the conflict. Evidence for this comes from (Kool et al., 2010) (experiment 6), where

subjects reduced their reaction times on harder trials but adopted a slower (higher RT)

strategy when higher rewards were offered. Similarly, (Alfers et al., 2025) showed that

manipulating reward and time constraints can elicit a range of speed–accuracy behaviors

within the same subject, depending on their current goals.

It is speculated that there is an intrinsic operating point in the SAT for every subject on

a given task, and deviations from this operating point require cognitive control. These

trade-offs translate directly into a reward–time cost trade-off, and depending on the task

and the intrinsic urgency of a subject, as measured in (Yau et al., 2021) and observed

86



University College London

in (Masis et al., 2024), individuals may settle at different operating points. This view

aligns with the more general definition of cognitive control, which involves operating

beyond or overriding default behavior, in this case, the default operating point in the

SAT (Piray and Daw, 2021). In the context of the Gratton effect, the observation that

reaction times can be further reduced for a second consecutive conflictive trial suggests

that cognitive control can be further adjusted, perhaps starting from a state closer to the

default operating point on the first trial.

Finally, the epistemic noise modeling is discussed in relation to decision noise in a DDM,

as in the original model. In the proposed framework, epistemic noise is reduced by the

control signal, but it is not equivalent to the decision noise of a DDM. Epistemic noise

models the probabilistic overlap between stimuli, which can be reduced through training

(increasing the SNR via the weights). This differs from the standard decision noise in the

drift-diffusion process, which is integrated over time (Bogacz et al., 2006; Ulrich et al.,

2015). The two concepts are related: epistemic noise in the proposed model defines the

final expected SNR when making a decision, while decision noise is integrated throughout

the decision process. Moreover, the SNR in a DDM is not solely determined by noise but

also by the threshold and the drift rate. In this sense, epistemic noise can be seen as

a collapsed representation of the resulting SNR given the drift, threshold, and decision

noise. This creates a degeneracy in the model, since similar behavioral effects can be

obtained by modulating decision noise, threshold, or drift rate, making the influence of

control ambiguous. However, this is by design: the goal of the model is to capture the

relation between control and learning, where the latter improves as epistemic noise is

reduced through control. Disentangling the influence of control on a trial-by-trial basis in

standard DDM modeling remains an open question requiring further research (Lee and

Sewell, 2024; Stone et al., 2025).

In summary, the epistemic noise model proposed in this section diverges from the standard

literature in three main aspects. First, the notion of epistemic noise differs from decision
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noise during evidence accumulation; instead, it represents the separation of stimuli at

decision time, as determined by the collapsed DDM dynamics. Second, higher cognitive

control is assumed to be associated with longer reaction times, an assumption that requires

further study, in addition to acknowledging the degeneracy of control effects resulting from

abstracting away from the full DDM model. Third, the goal of the model is not to describe

within-trial dynamics, but rather the intertemporal allocation of control, where control

signals influence both the learning trajectory and trial-by-trial performance (accuracy).

Consequently, the expected value of control must incorporate the future effects of control

through improved learning in order to compute an optimal control signal, which is the

effect the proposed model is capturing.

3.8 Discussion

This work presents a flexible and computationally tractable learning effort framework

for studying optimal meta-learning with neural network dynamics across various set-

tings, where control signals influence both learning and performance. The framework

optimizes control signals based on a fully normative objective: the discounted cumulative

performance throughout learning. The primary goal of this framework is to facilitate the

evaluation of potential interventions in engineered systems and provide formal foundations

for cognitive control theories in neuroscience. While a limitation of this approach is

the reliance on linear network models, approximations of non-linear network dynamics

are explored in section A.6. This work aims to contribute to a deeper understanding of

how agents should act to maximize their learning abilities based on their own learning

prospects.

The learning effort framework is sufficiently flexible to address various questions about

meta-learning strategies by making slight modifications to the original setting while

maintaining the underlying conceptual structure. The primary connection is through
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the expected value of control (EVC) theory (Shenhav et al., 2013; Keidel et al., 2021;

Frömer et al., 2021; Masís et al., 2021; Musslick and Cohen, 2021), formally explained in

section 3.4, but applied specifically to learning agents as dynamical systems. Additionally,

it has been proposed that the dorsal anterior cingulate cortex (dACC) plays a role

in the integration and computation of most of the quantities required in EVC theory.

This claim is supported by neuroimaging experiments (Botvinick et al., 2001) and is

consistent with other theoretical frameworks (Botvinick and Cohen, 2014). Using this

framework, optimal solutions to the EVC problem can be efficiently computed,

with the added capability of accounting for the impact of control on complex

learning dynamics throughout training. This approach has the potential to

facilitate comparisons with experimental data, including behavioral studies as

exemplified in section 3.7 and neural recordings.

One of the emergent solutions identified in this work is that it is generally advantageous

to allocate resources during the early stages of learning to achieve higher

rewards later. This intertemporal choice of allocating effort based on the prospect of

future reward has been widely studied in psychology and neuroscience (Masís et al., 2021;

Keidel et al., 2021; Frömer et al., 2021) (section A.1). An example studied within the

scope of the learning effort framework is presented in (Masís et al., 2023) and explained

in section 3.7, where it is hypothesized that rats regulate their reaction times to enhance

learning speed in a classification task. Longer reaction times in the early stages of learning

result in a lower instantaneous reward rate but accelerate performance improvements

across sessions, ultimately leading to a higher cumulative reward throughout the learning

process. This work provides an alternative model within the learning effort framework

that qualitatively reproduces some of these findings, specifically the epistemic noise

control mechanism described in subsection 3.7.2. This phenomenon resembles a learning

dynamic version of the marshmallow test experiment (Mischel, 2014), in which children

decide between consuming one marshmallow immediately or waiting 20 minutes to receive
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a second marshmallow, a decision requiring self-control. A key feature of this setting

is the influence of the control signal on decision-making and its impact on learning

dynamics throughout the task. This introduces an additional level of abstraction related

to metacognition and the agents’ understanding of their own learning capabilities (Son

and Sethi, 2006, 2010; Musslick et al., 2020). The concept of allocating resources at the

beginning of learning to achieve higher rewards later is further discussed in subsection 4.2.3.

Another emergent solution is that easier tasks/categories should receive more

resources in the early stages of learning compared to the harder ones, which

require sustained effort throughout training. As mentioned in the main text, this

strategy has been observed in cognitive science (Krueger and Dayan, 2009; Wilson et al.,

2019) and machine learning (Parisi et al., 2019; Saglietti et al., 2022; Zhang et al., 2022).

One possible reason for not disengaging in a task or category at any point could be to

avoid catastrophic forgetting or interference between tasks/categories, since they all share

the hidden layer, perhaps having a stronger interference effect in harder categories. It

is hypothesized that this phenomenon can be posed as a memory replay system, and a

framework is provided where this is a value-based mechanism, as indicated by other work

(Mattar and Daw, 2018; Agrawal et al., 2022).

In addition, the fact that increasing the cost of control reduces control allocation

has also been observed in cognitive science and is denoted as avoidance of cognitive

demand (Kool et al., 2010; Kool and Botvinick, 2014; Westbrook and Braver, 2015). For

instance, strategies that require high cognitive demand (the cost term C in the framework)

will be naturally avoided even if this strategy is optimal to solve the task. However, as

shown in Experiment number 6 in (Kool et al., 2010), subjects will engage in the optimal

high cognitive demand strategy if they are paid to solve the task efficiently. This, in an

abstract way, increases the reward in the framework (described by η in equation 3.3),

which is equivalent to decreasing β. Higher engagement in control is observed when β is

decreased as shown in this experiment, and it has been described in (Kool and Botvinick,
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2014) as a labor-leisure trade-off. The learning effort framework presented in this

thesis has already been applied to explain cognitive fatigue, where the cost

of control is not explicitly stated, but it emerges as an opportunity cost of

overriding previous knowledge (Li et al., 2024), which has been proposed as a

normative framework to explain cognitive fatigue and boredom in Agrawal et al. (2022).

In this work, specific instances of neural implementations of a control signal have been used,

gain modulation (section 3.6) and error modulation (named engagement modulation in

this work, section 3.5). Neuromodulators are known to be involved in high-level executive

tasks such as engagement in learning (Shenhav et al., 2013, 2017; Lieder et al., 2018;

Grossman et al., 2022), and some of them act as gain modulation (Lindsay et al., 2020;

Ferguson and Cardin, 2020) (section A.1). Previous work has attempted to improve the

learning of artificial agents using gain modulation, such as the Stroop model (Cohen et al.,

1990, 2004) or attention mechanisms (Lindsay et al., 2020). Another prominent approach

to neuromodulators and cognitive control is Kenji Doya’s theory of neuromodulation as a

meta-learning mechanism (Doya, 2002; Lee et al., 2024b), where each neuromodulator is

assigned to a specific function in a reinforcement learning setting. Dopamine (Westbrook

and Braver, 2016) is proposed to be the error signal in reward prediction (perhaps tasks

engagement modulation ψτ (t)), serotonin is the time scale of reward prediction (the

discount factor γ in the setting), noradrenaline (Cohen et al., 1990; Aston-Jones and

Cohen, 2005; Shenhav et al., 2013) controls randomness in action selection (also believed

to activate different neural paths as in (Cohen et al., 2004), as the gain modulation

setting), and acetylcholine (Yu and Dayan, 2005; Ren et al., 2022) controls the speed of

updates (as the learning rate, which is optimized later in analytical form in section 4.3).

In summary, different instances of the learning effort framework could be tested against

neural recordings to validate normative theories of neuromodulators such as the one

described here (Doya, 2002; Shenhav et al., 2013).

All of the work has been simulated in linear networks. While these models induce a linear
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mapping from the input to the prediction, the learning dynamics are non-linear, showing

behavior that resembles those from more complex non-linear networks, while providing a

simpler surrogate to perform the optimization. A first approach to non-linear network

control is provided (section A.6) by approximating the gradient flow of a non-linear

network using a first-order Taylor expansion around the mean of the data distribution,

then maximizing reward using the gain modulation model. Since the network dynamics of

the non-linear network are approximately linear for small weights (and tanh(·) non-linear

activation function), the control obtained when optimizing expected return still speeds

up learning in the non-linear network. Given the necessary equations from the learning

model, further analysis can be done on, for example, linear recurrent networks, which can

be used for complex decoding depending on the properties of the recurrent connections

(Bondanelli and Ostojic, 2020). Closed-form non-linear network dynamics approaches such

as the teacher-student settings (Goldt et al., 2019; Ye and Bors, 2022; Lee et al., 2022),

and mean-field theory (Mignacco et al., 2020; Bordelon and Pehlevan, 2022; Bordelon

et al., 2023) are promising directions to extend the framework to non-linear networks and

reinforcement learning dynamics.
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Chapter 4

Fundamentals of Optimal Control of

Learning

In this chapter, the problem of controlling learning is formulated in its most fundamental

terms to facilitate mathematical analysis. The discussion begins with a discrete decision-

making problem characterized by well-defined learning trajectories and progresses toward

a continuous control problem, where learning is modeled as a dynamical system. This

approach is motivated by the significant challenge of mathematically characterizing

learning dynamics in neural networks and reinforcement learning, as previously mentioned.

To date, such characterization has been achieved only for a limited subset of cases, as

discussed in subsection 2.1.3. Moreover, effective control of learning requires not only

an understanding of learning dynamics but also an analysis of how control interventions

influence the learning process, adding to the complexity of the problem.

The next section formally outlines the difficulties associated with controlling learning.

These challenges arise from the need to regulate learning through its dynamical description,

where control applied at each time step influences the learning trajectory at all future

points. A more tractable alternative involves assuming a predefined learning curve and
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subsequently adjusting the hyperparameters that shape its trajectory. An example of

this approach is found in the Expected Value of Control for Learning (LEVC) framework

proposed by Masís et al. (2021). In that study, a simple model is simulated to investigate

the properties of optimal control, and this thesis provides mathematical explanation for

the observed simulation results.

Subsequently, an extension of the LEVC model is introduced, where the effects of

controlling learning are examined in the context of a single task. This scenario represents

a trade-off between maximizing immediate rewards and incurring a cost to enhance future

performance. This trade-off gives rise to a fundamental control strategy, described as

learn first, do later. This principle is presented as a conjecture in section 3.2, where

a mathematical justification is provided for this widely observed strategy, alongside an

analysis of the challenges in determining the optimal policy even in this simplified setting.

The proposed system can be viewed as a discrete counterpart of the continuous problem

initially described in the learning effort framework in chapter 3.

Finally, in section 4.3, the time-continuous learning system is analyzed to explore the

possibility of controlling learning dynamics, a problem that is challenging to solve in closed

form. To address this, the homotopy perturbation method is implemented to solve the

Hamilton-Jacobi-Bellman (HJB) equation governing the learning process. This method

enables the approximation of the optimal value function and control over time, yielding a

mathematical expression that facilitates analysis. Additionally, it provides a formulation

for online control that maximizes value during learning. This approach introduces

a novel analytical framework applicable to a broad range of problems involving control

and meta-learning, including those described in chapter 3.
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4.1 The Challenge of Controlling Learning

A general formulation of the problem of controlling learning was introduced in section 3.2

and is restated here in a slightly modified form for convenience, facilitating subsequent

mathematical analysis (refer to section 3.2 for notation). The model’s input-output

mapping and the learning dynamics equation, governed by parameters w(t), are given as

follows:

Ŷ = f(X;w(t), g(t)),
dw(t)

dt
= h(w(t), g(t), T ). (4.1)

where the time scale τw is omitted for simplicity. Given the model inference process and

its associated learning dynamics, the problem of controlling learning at each time step t

can be reduced to maximizing the following integral:

V (t) =

ˆ T

0

dtγtv(t) =

ˆ T

t

dtγt [η(t)P(t)− C(g(t))] . (4.2)

Here, η(t) is time-dependent, as the problem may specify that task performance is

evaluated at a particular learning stage, typically at the end of the learning process.

However, the subject can also be queried at any point during learning, meaning η(t) ̸= 0

for 0 ≤ t ≤ T .

A naive approach to solving this problem would involve computing the derivative of

the value function in equation 4.2 with respect to the control signal, dV/dg(t), which

is used to compute gradient steps in equation 3.4. The optimal control could then be

determined by setting this derivative to zero. Before computing the derivative, the integral

is converted into a Riemann sum for simplicity, primarily to circumvent formalities related

to differentiating an integral, yielding:

V ≈
NT∑

i=0

δtγti [ηP(ti)− C(g(ti))] (4.3)
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such that t0 = 0 and tNT = T , where δt is a small time constant (in practice, equal to the

learning rate of the weights trained using SGD in the deep linear network). In this case,

performance is a function of the loss ⟨L(t)⟩, which depends on the parameters at each time

step, w(t), and the control signal, g(t), from the input-output relation in equation 3.1.

The parameters evolve according to the learning dynamics in equation 4.1, which depends

on the control signal. By discretizing this differential equation, it can be rewritten as:

w(ti) = w(ti−1) + δt
dw(ti−1)

dt
(4.4)

where the last term in the rhs depends on the control signal g(ti) as well. Given these

equations, the dependencies of the parameters and loss function can be written explicitly

as

w(ti) = w(g(ti−1), g(ti−2), ..., g(t0), w(t0)) (4.5)

⟨L(ti)⟩ = L(w(ti), g(ti)). (4.6)

Making these dependencies explicit in equation 4.3 and replacing P(ti) = −L(w(ti), g(ti)),
the gradient of the approximated integral with respect to g(tj) is given by

dV

dg(tj)
=

N∑

i=1

δtγti
d

dg(tj)
[−ηL(w(ti), g(ti))− C(g(ti))] , (4.7)

= −δtγtj
[
η
∂L(w(tj), g(tj))

∂g(tj)
+
∂C(g(tj))

∂g(tj)

]

︸ ︷︷ ︸
instant variation

−
N∑

i=j+1

δtγtiη
∂L(w(ti), g(ti))

∂w(ti)

∂w(ti)

∂g(tj)
︸ ︷︷ ︸

future variation

.

(4.8)

Finally, the optimal control signal is the one that satisfies

dV/dg(ti) = 0 (4.9)
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for every 0 ≤ ti ≤ T . Note that the optimal g∗(tj) such that dV/dg(tj) = 0 depends on

every other g∗(ti ̸=j). Because the entire control signal g(t) is planned at time step t = 0,

then for γ = 0 the integral only considers the term v(0)dt, leading to no control. This

is different from what is expected from an agent in common settings of reinforcement

learning, where the agent makes a decision at each time step, and γ = 0 is equivalent to

maximizing each v(t) independently. In this setting, γ > 0 small is virtually equivalent to

maximizing instantaneous net reward. From equation 4.8, it is direct that γ → 0 makes

the sum (future variations ti with i ≥ j + 1) vanish, therefore leaving the gradient only

as a function of the loss and control cost at time tj (meaning maximizing instantaneous

reward rate v(t)). In general, the learning dynamics of w still depends on g, therefore

the optimal g∗(tj) will depend on g∗(ti) with i < j, which can be solved using dynamic

programming (Bertsekas, 2012), and can be solved in closed form under some linearity

assumptions such as in the Linear Quadratic Regulator (LQR, Chacko et al. 2024).

The instantaneous variation in equation 4.8 shows the immediate effect of varying control,

showing the change instantly in performance and cost of control. This instantaneous

variation competes with the future variation term, which describes how the control signal

is going to change the performance at all future times. This is generally a complicated

problem, as it requires integration of the learning dynamics, which in most learning systems

is challenging as discussed in subsection 2.1.3, while keeping track of the effect of control on

these dynamics. As shown later, even if the learning dynamics are linear, interesting control

signals of learning will have a non-linear relationship with the parameters/state of the

system w(t). One way to avoid this issue is by simply assuming learning curves here denoted

as a(t), which are closed-form time signals that give performance throughout training,

without the assumption of learning dynamics on their parameters, hence bypassing the

complex dependency on the control signal, and replacing it with simpler surrogates.
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4.2 A Principle of Optimal Control of Learning

As mentioned in the previous section, complex learning dynamics and the effect of control

on it resists mathematical analysis. A way to alleviate this problem is by assuming a

performance curve a(t) with t indexing learning time, in the optimization objective. This

would be describing a(t) = ηP(t). This approach has been taken by other researchers,

such as in optimal allocation of time to different learning tasks (Son and Sethi, 2006,

2010) and the expected value of control of learning theory (Masís et al., 2021). From this

work, two key ideas are taken:

• The authors Son and Sethi (2006, 2010) argue that well-behaved learning curves

a(t) are shaped by sigmoid or exponential functions (or a mix of these), based

on the assumption that learning curves are monotonic (learning always improves

with allocated time) and bounded (there is a maximum achievable performance).

The authors are able to solve for optimal time allocation on tasks with different

learnabilities based on these assumptions.

• In the expected value of control of learning by Masís et al. (2021), a simple example

of two tasks is simulated as an instance of a problem of control allocation for learning.

In the simulations, the authors found that there are mainly two optimal learning

strategies: either stick with a learnable task for all the available time, or simply

harvest available reward without learning.

By mixing these two contributions and assumptions, it is possible to explain the simulation

findings by Masís et al. (2021), and in addition, show a subset of general control strategies

observed in most numerical simulations in the learning effort framework applications from

chapter 3, which reflects an intertemporal choice of control allocation given the

assumptions of monotonicity of learning curves.
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Figure 4.1: (a) At each time step, the agent could choose between the static task and
the learnable task by comparing the EVC value, the trajectories made by the decisions
form a tree. (b) EVC as a function of the control signal for different trajectories. Figure
taken from Masís et al. (2021)

4.2.1 EVC for Learning

In this extension of the EVC theory, it is proposed to account for an evolving level of

competence (learning) of an agent executing a task. A specific instance of a learning

paradigm is used to explain the features of this extension. At each time step, an agent is

able to choose the execution between two tasks. One of them is static (task S), meaning

this task cannot be improved upon when being executed, and the other task is learnable

(task L). The performance on task L can be improved with experience, and the learning

is described as increasing the automaticity (equation 6 in Masís et al. (2021), here named

u) on performing the task, which is written as

uL = αLntrials L + u0L , (4.10)
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Figure 4.2: LEVC for different values of task horizon, learning rates αL and γ. Figure
taken from Masís et al. (2021)

where u0L is the initial ability, ntrials L is the number of trials already taken on task L,

and αL is the learning rate on task L. Then, the accuracy on task L, aL, is defined as a

sigmoid function

aL =
1

1 + exp
(
−rL

(
g − b

rL

)) , rL =
uL
Df

(4.11)

with rL being the ratio between the automaticity on task uL and the task difficulty Df , g

the control signal, and b a fixed bias term. Increasing automaticity on the task reduces

the amount of control needed to achieve the same accuracy.

In this simple setup, the control of choosing either task L or S must now include the

learning trajectory of L. This could help to explain the effort paradox observed in

experiments, where subjects decide to take on tasks that are more cognitively demanding

despite having equal rewards (Cacioppo and Petty, 1982; Inzlicht et al., 2018). The

specific influence of learning on future values removes the need for an intrinsic value of

control or learning, instead being explicitly about future improved rewards due to control

and learning.

To obtain the optimal control policy that maximizes value while considering learning, the

authors simulated all possible paths at each time step, then chose the task S or L that

had better accumulated rewards from the simulated paths. The authors found through
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numerical simulations that the optimal strategies in this setting were either to

only execute the learnable task L or to only execute the static task S. In

addition, the authors show how the decision of choosing either the learnable task or the

static task depends on the discount factor and learning rates. For higher learning rates,

the value of choosing the learnable task increases as rewards from better performance can

be collected earlier. Similarly, the value of the learnable task increases with higher γ as

future rewards are more relevant. A similar effect can be found when increasing the time

horizon to learn the task (see figure 4.2).

4.2.2 Optimal Control Identity of EVC for Learning

In this section, a theoretical explanation is provided that shows why the optimal strategies

for the EVC model for learning presented by (Masís et al., 2021) are either sticking with

the learnable task L or the static task S. Based on this derivation, a similar setup is

presented to show that it is generally optimal to exert effort at the start of learning to

harvest the reward coming from the improved performance later.

For the static task S, its accuracy aS(t) is described as in equation 4.11, except that the

automaticity uS of the static task is constant as it does not change with the number of

trials when task S is chosen. The accuracy aS(t) is also subject to the control signal g.

Hence, the control decision is twofold: the identity of the task to solve, here denoted as

decision d = L or d = S, and the intensity of the control g for the task chosen.

For the learning task L, since the learning curve is defined as a sigmoid, it is easy to show

101



University College London

that

aL(n, g) =
1

1 + exp
(
−uL(n)

Df
g + b

) , (4.12)

>
1

1 + exp
(
−uL(n−1)

Df
g + b

) , (4.13)

= aL(n− 1, g), (4.14)

meaning that for the same amount of control g, the accuracy, and therefore the reward

from the learnable task after engaging from one step, will be larger. In a similar way, it

can be shown that

aL(n, gn) = aL(n− 1, gn−1) =⇒ gn < gn−1, (4.15)

this is, to achieve the same accuracy one step later compared to the previous step, the

control needed is smaller. This is the role of automaticity, as increasing automaticity

through learning reduces the amount of control needed to perform the task. In this

formulation, the amount of steps left to pick tasks is denoted by N .

The optimal agent should decide either d = S or d = L based on its value function which

here written as

Q(d = S, n,N) and Q(d = L, n,N), (4.16)

where n is the number of trials in the learnable task, and N is the number of steps left to

pick tasks. Now each of the choices is assumed at the last step N = 1, and studied the

consequences for the previous choice in backwards manner. First, note that at the last
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decision step

Q(d = S, n,N = 1) = aS(gS)− C(gS) and (4.17)

Q(d = L, n,N = 1) = aL(n, gL,n)− C(gL,n). (4.18)

Choosing d = S implies that Q(d = S, n,N = 1) > Q(d = L, n,N = 1), then the previous

choice at N = 2 is governed by

Q(d = S, n,N = 2) = aS(gS)− C(gS) + γQ(d = S, n,N = 1), (4.19)

Q(d = L, n− 1, N = 2) = aL(n− 1, gL,n−1)− C(gL,n−1) + γQ(d = S, n,N = 1). (4.20)

Then in step N = 2, the optimal decision is d = L if

aS(gS)− C(gS) ≤ aL(n− 1, gL,n−1)− C(gL,n−1), (4.21)

but this is a contradiction as it is assumed in the next decision N = 1 that d = S and

Q(d = S, n,N = 1) > Q(d = L, n,N = 1), meaning

aL(n, gL,n)− C(gL,n) ≤ aS(gS)− C(gS) ≤ aL(n− 1, gL,n−1)− C(gL,n−1), (4.22)

which is not possible since

aL(n, gL,n)− C(gL,n) ≥ aL(n− 1, gL,n−1)− C(gL,n−1) (4.23)

as previously noted in equations 4.14 showing that accuracy increases for larger n and

equation 4.15 showing that the optimal g decreases therefore the cost decreases as well.

This means choosing d = L a step before d = S is a contradiction. A symmetric argument

can be done show it is suboptimal to choose d = S and then switch to d = L in the next

step. Hence, the optimal strategy is either sticking with the learnable task L
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or sticking with the static task S. Note that this contradiction applies recursively

to any time step before in step left for learning N = 1, then it applies generally for any

other step.

Given the optimal strategies, it is possible to write, for instance, the value of the static

task

Q(d = S, n,N) =
N∑

k=0

γk (aS(gS)− C(gS)) (4.24)

= (aS(gS)− C(gS))
1− γN+1

1− γ (4.25)

meaning the optimal signal g∗ can be computed greedily by solving

daS(g)

dg
=
dC(g)

dg
. (4.26)

This means that the intensity or the use of control does not affect the trajectory of learning.

This is also true even for the learning task, since the learning curve aL improves depending

on n and not on g. Hence for a given trajectory for aL(n = k1, gk1), aL(n = k2, gk2) ...,

the optimal g at each step only depends on the current accuracy and cost as in previous

equation 4.26, as g does not change the trajectory.

4.2.3 Conjecture: Learn First, Do Later

When the control signal does affect future trajectories, the calculation for the optimal

control is no longer greedy, as in the previous case, but rather resembles the problem

expressed in section 4.1, more specifically in the decomposition of the gradient of the value

function in equation 4.8, separating the instantaneous effect of control versus the future

effect on dynamics. As noted in the numerical simulations in chapter 3, solving the control

signal in closed form when the control affects the entire future trajectory is challenging,

and this can be solved numerically using gradient methods like in the proposed learning
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effort framework, or later using perturbation methods shown in subsection 4.3.3. However,

in simple settings, it is possible to recognize general features of the optimal control

of learning, simply by studying the optimality of trajectories, aided also by numerical

optimization.

Next, the abstract model to depict the EVC for learning theory is extended to a case

where the control affects the learning dynamics of an agent. In the EVC for learning

described in subsection 4.2.2, the number of trials executing the learning task would modify

the performance on that task, while keeping the unlearnable task constant, therefore

producing the two strategies found: only engaging in the learning task L or the static

task S, but with no influence by the control signal.

In this extended model, the agent faces a single task, and the decision is either to engage in

Active Learning, which accelerates the progress in performance (learning) in the single

task by incurring a cost, or to disengage and incur a Passive Engagement strategy,

where task performance improves slower (or not at all) with no cost. The amount of

control then is how much of the available time is allocated to Active versus Passive

engagement. This approach makes the control signal affect the future performance of

both options, which is fundamentally different from Son and Sethi (2006, 2010); Masís

et al. (2021) calculations because in their case, the control changes the value of the chosen

task and keeps the rest of the tasks with the same performance as those have not been

engaged, allowing for extended mathematical analysis.

The phenomena this extended model attempts to describe is the situation where an agent

faces a new task and needs to decide if it is worth engaging in learning, and how much

effort throughout learning needs to be put into this task. It might be the case that, when

the available time is not enough, or the cost of engaging in learning is too high, it might

not be worth even learning the task. Perhaps collecting a reward passively (or perhaps

collecting no reward at all) could be the optimal strategy. If it is worth engaging in
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learning, then it would make sense to put effort at the start to have more time to collect

reward without the cost of actively engaging in learning. This has been observed in many

of the simulations in chapter 3. It has been hinted at by Son and Sethi (2006, 2010) in

their own simplified setting, and it is aligned with the idea of controlled to automatic

behavior when learning a task (Bogacz et al., 2006; Foroughi et al., 2017; Masís et al.,

2023; Masis et al., 2024).

Figure 4.3: Active vs Passive learning problem. At each time step, the agents picks either
to actively learn vs passively learn. When learning actively, learning rate is higher but
incurs in a cost, when learning passively, learning rate with no cost (α > β).

Formally, the active versus passive learning model can be stated as follows: An agent is

facing a learning task described by a learning curve a(τ), where τ specifies how much

progress in the task has been made. At the start of learning, the performance of the agent

is denoted by a(τ0). From the start, at each time step t, the agent can either engage in

active learning or passive learning. Both forms of learning improve performance, but at

different rates. When engaging in active learning, the argument of the learning curves is

increased by α ·∆τ , and β ·∆τ for passive learning, where the learning rate is higher for

active learning than passive learning α > β, and ∆τ denotes a small amount of learning

progress. In addition, at each step the agent collects a reward of v(t) = a(τ)− C(τ) if

active learning is selected, where C(τ) denotes the cost of engaging in active learning.

On the other hand, the reward for passive learning is simply the current performance
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a(τ) with no cost. The agent then needs to plan when to engage in active learning (See

figure 4.3), such that it maximizes the cumulative reward throughout learning, denoted by

V =
N−1∑

i=0

v(ti). (4.27)

To study the optimal policy, consider first a large constant cost CP such that the optimal

policy is simply engaging in passive learning throughout the entire time. Then,

V ∗ =
N−1∑

i=0

a(τ0 + i · β∆τ). (4.28)

Now, consider decreasing CP until only one step of active learning is worth performing

CA. Assuming that the learning curve is a monotonically increasing function (which is

an abstract ideal feature of learning as indicated by Ritter and Schooler 2001; Son and

Sethi 2006, 2010), meaning a(τ1) ≤ a(τ2) if τ1 ≤ τ2, then it is easy to see that the active

learning step must be executed at the start of learning, obtaining the following optimal

value function:

V ∗ = a(τ0)− C +
N−1∑

i=1

a(τ0 + α∆τ + (i− 1) · β∆τ). (4.29)

This is because, if the active learning step is applied at any other point in time TA

V = a(τ0)− C +

TA−1∑

i=1

a(τ0 + i · β∆τ) +
N−1∑

i=TA

a(τ0 + (i · β + α)∆τ). (4.30)
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Splitting the sum in V ∗ at the same time point

V ∗ = a(τ0)− C +

TA−1∑

i=1

a(τ0 + (α + (i− 1) · β)∆τ) +
N−1∑

i=TA

a(τ0 + (α + i · β)∆τ) (4.31)

> a(τ0)− C +

TA−1∑

i=1

a(τ0 + i · β∆τ) +
N−1∑

i=TA

a(τ0 + (i · β + α)∆τ) (4.32)

= V (4.33)

where the inequality is given by the monotonicity of a(τ) and that α > β in the first sum,

showing that V ∗ > V , hence the optimal policy is engaging in active learning as

early as possible. Consider decreasing CA further such that two steps of active learning

are now worth it, a similar argument applies concentrating the second active learning step

after the first one. For a given number of optimal active learning steps NA, the optimal

policy becomes

V ∗ = −C ·NA +

NA−1∑

i=0

a(τ0 + i · α∆τ) +
N∑

i=NA

a(τ0 +NAα∆τ + i · β∆τ). (4.34)

For a given cost C, the problem becomes finding the optimal NA, that is, the amount of

time spent engaging in active learning. From this value function, it is easy to see how the

amount of time on active learning influences the reward collected during passive learning,

expressing the same problem of control allocation described in section 4.1. This problem

is simpler to study in the continuous limit of learning, then maximizing the value by

taking its derivative with respect to the point in time to switch from active to passive

learning, here named δ. The continuous-time version of the same problem can be written

as

V (δ) =

ˆ δ

0

a(αt+ τ0)dt− δC +

ˆ T

δ

a(βt+ δα + τ0)dt. (4.35)
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Using the Leibniz Integral Rule, the derivative of the value function with respect to δ is

dV

dδ
= 0 = a(αt+ τ0)− a(δ(a+ β) + τ0)− C

+
α

β
[a(βT + δα+ τ0)− a(δ(α + β) + τ0)] . (4.36)

For non-linear learning curves or further including other aspects such as the time discount

factor γ or control dependent cost C(δ), this equation becomes quite challenging and

perhaps unsolvable1. The Learn First, Do Later conjecture is numerically verified with

numerical simulations in subsection 4.2.4.

The proposed model is simple enough that it allows for a basic understanding of the

rough shape of optimal learning control. To move to a continuous-time control setting,

with a continuous amount of control, consider now NT possible engagement levels. At

each step, the agent needs to pick a learning rate corresponding to each strategy; it is no

longer only α and β from active and passive learning, but rather a set of strategies with a

continuous level of learning rate g(t). If at each time step t a different engagement level

g(t) is assigned, then the original problem presented in equation 4.35 becomes

Vg =

ˆ T

0

[
a

(
τ0 +

ˆ t

0

g(t′)dt′
)
− C(g(t))

]
dt, (4.37)

which resembles closely the problem of optimal learning rate scheduling presented in

section 4.3, as the learning rate affects the entire learning dynamics when integrated

to compute the value function. It is not possible to verify the conjecture for the last

expression, but from numerical simulations in chapter 3 and further analytical methods

presented in section 4.3, the empirical optimal control seems to hold generally. This

connects the discrete binary decision problem to the more complex continuous control

problem further studied in the next sections.
1I believe for some simple learning functions, e.g. a(t) = r

(
1− 1

t

)
this equation might be solvable.
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4.2.4 Numerical Verifications
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Figure 4.4: Numerical Verification of Learning First conjecture. (a) and (c): Instant
reward rate v(t) for exponential and sigmoid learning curve for the optimal policy with
increasing cost of control C (low to high cost from blue to yellow). (b) and (d): Brute
force search optimal policy of active vs passive learning. All of them engage in active
learning first, then switch to passive learning, or simply not engage at all in the task.

To numerically verify the conjecture, a model with 20 steps to choose between active

and passive learning was simulated for two learning trajectories that are monotonically

increasing functions of learning time, as suggested by Son and Sethi (2006, 2010). These

two learning curves are an exponential improvement and a sigmoid (see figure 4.4). To

verify the conjecture numerically, all possible combinations of decisions of active and

passive learning were simulated for the 20 steps (meaning 220 possible trajectories). Then,

gradually decreasing the cost C (higher cost from blue to yellow in figure 4.4) would

also gradually increase the amount of control. Without constraining the structure of the

optimal policy, all of them were fully engaged in active learning at the start and then

switched to passive learning until C was large enough so that it disengaged from active
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learning completely.
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Figure 4.5: Optimal Switch time between Active and Passive Learning. (a) and (c):
Instant reward rate v(t) for varying strategy switch time δ, for exponential and sigmoid
learning curve respectively. (b) and (d): Cumulative reward

´
v(t)dt for every value of

strategy switch time δ.

For a fixed control cost C, it is possible to look for the strategy switch time, from active

learning to passive learning, within the trajectories that satisfy the conjecture. The results

for both types of learning curves show that finding the switching time δ is a concave

maximization problem (or convex minimization), where there is an unequivocal optimal

switch time. Too early of a switch will not allow the agent to learn enough, and too late

of a switch will not improve performance enough to pay off the cost of investing in active

learning.
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4.3 Analytical Approximation of Optimal Control

The work presented in this section is primarily based on An Analytical Theory of Cognitive

Control of Learning, presented as a contributed talk at COSYNE 2025 2, by Valentina

Njaradi∗, Rodrigo Carrasco-Davis∗ and Andrew Saxe, (Thanks to Javier Masís and Peter

Latham for their useful input). Results have been extended from the abstract to conform

to the thesis.

The problem of optimal control that maximizes cumulative reward, solved numerically in

chapter 3, is restated here and approached in a simplified manner to find an analytical

solution to the optimal control, previously only achievable through numerical simulations.

In this section, the assumption of a learning curve used in section 4.2 is dropped; now, the

focus is to work directly with the learning model as a dynamical system, which parameters

evolve through backpropagation and are influenced by the control signal. The target

is also changed to minimizing cumulative risk through learning, which is equivalent to

maximizing reward (simply by a change of sign). Here, the formal optimization problem

is stated.

Given a learning system that faces a new task T that can be learned within a period of

time 0 ≤ t ≤ T , with parameters W that evolve according to some dynamical system

characterized by h and with initial parameters W0, where performance is measured based

on a loss function L (e.g., mean square error). The instantaneous risk is discounted by γ,

the control signal is denoted as g(t), and deviations from a default value of control will

incur a cost C(g). Then, the optimal control signal g∗(t) is the one that minimizes the

following cumulative risk R(g):

min
g
R(g) =

ˆ T

0

dtγt [L(W (t), g(t)) + C(g(t))] , (4.38)

s.t.
W (t)

dt
= h(g(t),W (t), t), and W (0) = W0. (4.39)

2https://www.world-wide.org/cosyne-25/analytical-theory-cognitive-control-a57c6e06/
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This is analogous to the problem stated in the learning effort framework introduced in

section 3.2. Most of the methods to solve this problem rely on numerical simulations,

and methods that allow for mathematical analysis need linearity assumptions, e.g. LQR

(Chacko et al., 2024).

To approximate this solution, a relatively standard process (at least in control theory) is

applied to the control of a learning system. First, the Hamilton-Jacobi-Bellman equation

is derived from the optimization problem, which is a partial differential equation (PDE)

describing the evolution of cumulative risk throughout time, denoted by R(W, t), under the

optimal control g∗(t). An expression of the optimal control as a function of the cumulative

risk is also provided. This PDE is non-linear, and for interesting non-linear cases, it does

not allow for an analytical solution. To solve this equation, the solution is approximated

using the Homotopy Perturbation Method (Atangana et al., 2014), described in the

following sections. This solution allows for an approximation of the optimal control g∗(t)

as a function of the state parameters W (t), in principle allowing for a closed-loop online

control.

4.3.1 Hamilton-Jacobi-Bellman Equation of Learning

The optimal cumulated risk function R(W, t) is defined as

R(W, t) = min
g

{ˆ T

t

dτγτ−t [L(W (τ), g(τ)) + C(g(τ))]

}
(4.40)

where the weights change according the dynamics defined in equation 4.39. This expression

can be defined recursively, similar to a standard Bellman equation in RL, as follows:

R(W, t) = min
g

{ˆ t+∆t

t

...dτ +

ˆ T

t+∆t

...dτ

}
, (4.41)

= min
g

{ˆ t+∆t

t

...dτ + γ∆tR(W (t+∆t), t+∆t)

}
. (4.42)
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From here, assuming ∆t small, it is possible to Taylor expand the last term giving

R(W (t+∆t), t+∆t) = R(W, t) +
∂R

∂W

dW

dt
∆t+

∂R

∂t
∆t. (4.43)

Replacing this in the equation above

R(W, t) = min
g

{ˆ t+∆t

t

...dτ + γ∆t
(
R(W, t) +

∂R

∂W

dW

dt
∆t+

∂R

∂t
∆t

)}
,

(4.44)

R(W, t)− γ∆tR(W, t)
∆t

= min
g

{ˆ t+∆t

t

...dτ +
∂R

∂W

dW

dt
+
∂R

∂t

}
, (4.45)

then taking the limit of ∆t → 0, the limit on the left side of the equation becomes

− log(γ), the integral on the right side with the infinitesimal limits becomes the argument

evaluated at t, and taking the time derivative of the cumulated risk out of the min as it

does not depend on the control, gives

−∂R
∂t

= log(γ)R(W, t) + min
g

{
L(W (t), g(t)) + C(g(t)) +

∂R

∂W

dW

dt

}
(4.46)

s.t. R(w, T ) = 0. (4.47)

This equation is called the Hamilton-Jacobi-Bellman equation, which is a partial

differential equation in time and state parameters. To proceed from this equation,

the argument of the min(·) operator, which is called the Hamiltonian, needs to be

minimized by solving for the optimal control that minimizes this Hamiltonian. The

boundary condition R(w, T ) = 0 is imposed as it is the time limit to learn the task, and

no risk is collected after time T . Depending on the loss L, cost function C, and learning

dynamics dW/dt, the control that minimizes the Hamiltonian might be solvable in closed

form, and replacing this value back into the equation gives a PDE purely in terms of the

cumulative risk, which could be solved in some cases. For instance, the Riccati equation
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used in the LQR controller is the resulting HJB equation when assuming a quadratic

cumulative risk and linear influence of control over the learning dynamics (Chacko et al.,

2024). In the next sections, the dynamics, loss function, and control cost are instantiated

with a few examples to solve for the optimal control and obtain a PDE explicitly in terms

of the cumulative risk, to then solve it using the Homotopy Perturbation Method.

4.3.2 Optimal Learning Rate Scheduling

Here, the task to be solved by the learning system, the loss function, the learning dynamics,

and the cost of control are instantiated to proceed with the mathematical analysis. In

this case, the control will describe the optimal learning rate as a function of time.

The task is simply a gaussian discrimination task as the one used in the single neuron

example described in subsection 3.2.1, here re-stated for convenience. A dataset of

examples i = 1, · · · , P is drawn as follows: A label yi is first sampled as either +1 or −1
with probability 1/2. The input xi is then sampled from a Gaussian xi ∼ N (yi · µx, σ2

x).

The task is to predict yi from the value of xi. The intrinsic difficulty of the task is

controlled by how much the Gaussians overlap, controlled by the relative value of µx and

σx.

For simplicity, the learning agent used here will be a single-neuron network; however, the

results presented here apply to a multi-dimensional input and output of a single-layer

network. The prediction from this single neuron model is defined by ŷ = wx, with w

being the neuron weight, in this case, the state parameter of the dynamical system. The

loss function is simply the MSE between the target and prediction, and the dynamics of

the weight are defined by gradient descent. The updates are regulated by the learning

rate, which in this setup is the control signal, and the control cost is a square penalty of
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non-zero control values. Next, the learning model is stated formally,

min
g
R(g) =

ˆ T

0

dtγt [L(w(t)) + C(g(t))] , (4.48)

s.t.
w(t)

dt
= −(α + g(t))

〈
dL

dw

〉

xy

,W (0) = W0, (4.49)

L(w(t)) =
1

2

〈
(y − ŷ)2

〉
xy
, and C(g(t)) =

β

2
g2(t). (4.50)

where α is a baseline learning rate, and β is a coefficient regulating the cost of increasing

control. Note that while the learning dynamics are linear in the state space, the effect of

the control signal (learning rate) has a non-linear effect on the learning dynamics, making

LQR not applicable in this setup. This non-linearity is given by the product of the control

signal over the state variable in the gradient flow dynamics,

dw

dt
= −(α + g)

〈
dL

dw

〉

xy

, (4.51)

= (α + g)
(
µx − w(µ2

x + σ2
x)
)
, (4.52)

= (α + g)
(
µx − wξ2

)
. (4.53)

The loss function in this case does not depend on the control signal, so it can be removed

from the min(·) operator in the HJB-equation, and replacing dW/dt with this specific

learning dynamics and cost function the equation (dropping the time dependency for

simplicity) becomes

−∂R
∂t

= log(γ)R(w, t) + L(w) + min
g

{
β

2
g2(t)− (α + g)

∂R

∂w

〈
dL

dw

〉

xy

}

︸ ︷︷ ︸
H

. (4.54)

In this particular form of the Hamiltonian H, it is possible to find the control that
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minimizes the Hamiltonian by

0 =
dH

dg
, (4.55)

0 = βg − ∂R

∂w

〈
dL

dw

〉

xy

, (4.56)

g∗ =
1

β

∂R

∂w

〈
dL

dw

〉

xy

. (4.57)

This control signal is a minimum (hence the problem being convex on the control signal)

due to

d2H

dg2
= β > 0. (4.58)

This convexity might be related to the optimal strategy switch discussed in subsection 4.2.4,

specifically connected through equation 4.37, but it requires further analysis. Replacing

the optimal control signal in the HJB-equation

log(γ)R(w, t) +
∂R

∂t
+ L(w)− α∂R

∂w

〈
dL

dw

〉
− 1

2β

(
∂R

∂w

〈
dL

dw

〉)2

= 0 (4.59)

This is a non-linear PDE on the cumulative risk R(w, t). Solving this equation would

allow for a solution to the optimal control problem through equation 4.57.

4.3.3 Homotopy Perturbation Method

The solution to the HJB equation for optimal learning rate scheduling can be solved using

the homotopy perturbation method (HPM) (He, 1999; Liao, 2003; Roy and Maiti, 2023),

which was previously applied to HJB equations in Atangana et al. (2014), although not

applied to learning systems yet. Here, a simplified version of the HPM is described as

used to solve the HJB equation.

A homotopy G is a continuous function that describes a continuous deformation or
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interpolation between two functions f and h. For instance, a linear homotopy is given by

G : (x, p)→ (1− p)f(x) + ph(x). (4.60)

The parameter p is called the embedding parameter, and it controls how far the interpolation

is from each of the functions. To solve complex equations using a homotopy, first, a

homotopy is constructed between the equation that needs to be solved and a simple

equation or initial guess of the solution. Then, the solution to the problem is defined as an

infinite polynomial over the embedding parameter p, and the coefficients of this polynomial

that describe the solution are solved for. More concretely, assuming a non-linear partial

differential equation

df

dt
= F (f, x, t, df/dx), (4.61)

a homotopy is constructed, interpolating between the equation that needs to be solved

and an initial guess function fg

(1− p)
(
df

dt
− dfg

dt

)
+ p

(
df

dt
− F (f, x, t, df/dx)

)
= 0. (4.62)

Next, the solution to this equation is defined as a polynomial over the embedding parameter

f(x, t, p) =
∞∑

i=0

pifi(x, t). (4.63)

where the functions fi are called modes. Traversing the homotopy from p = 0 to p = 1

moves the solution between the guess function and the actual equation. As p → 1,

higher-order modes start to become relevant to the sum in the solution f(x, t), increasing

the complexity of the polynomial as f approaches the solution to the equation. In general,

the infinite sum cannot be written in closed form, and a finite number of modes are

computed to approximate a solution. To find each mode, the polynomial is replaced in the
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homotopy equation, and the coefficients are solved recursively by equating coefficients of

each power of p, starting from mode p0, obtaining f0 = fg, then solving for the coefficient

p1, and so on for the rest of the coefficients (shown concretely later in subsection 4.3.4

when solving for the optimal learning rate). Naturally, adding more modes to the sum

increases the quality of the approximation, and some convergence guarantees have been

provided analytically in some cases (Turkyilmazoglu, 2010; Ayati and Biazar, 2015);

however, the applicability of this method to PDEs in general is mostly based on trial

and error. Using this method, it is possible to approximate the solution to the optimal

learning rate scheduling described in equation 4.59, where the modes are functions of the

statistics of the task and hyperparameters of the model, such as the discount factor γ or

cost of control β.

4.3.3.1 Padé Approximation of Homotopy Modes

To further improve the approximation capabilities of the HPM, an extra step is included to

express the sum over the modes as a Padé Approximation. This converts the polynomial

over the embedding parameter p (which resembles a Taylor expansion) and converts it

to a ratio of polynomials. It has been argued that the Padé Approximation is overall

better than a Taylor expansion for highly non-linear functions and can maintain the

approximation beyond the convergence radius of the Taylor series (Apresyan, 1979), and

it has recently been shown effective when solving HJB equations (Ganjefar and Rezaei,

2016). Here is how the approximation is computed.

Given a function f(x), a Padé approximation is a fraction of polynomials of the form

Pade[M/N ] =
a0 + a1x+ a2x

2 + ...+ aNx
N

1 + b0 + b1x+ b2x2 + ...+ bMxM
, (4.64)
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and the coefficients ai and bi computed by enforcing the derivative condition

dnf(p)

dpn
=
dnPade[M/N ]

dpn
0 ≤ n ≤M +N + 1, (4.65)

giving an approximation such that

f(p)− Pade[M/N ] = O(pM+N+1). (4.66)

In the particular case of applying it to solve the HJB equation, the modes resulting from

the HPM are approximated using the Padé approximation around p = 0, hence from the

value of the first guess to the true solution to the non-linear PDE. In the next section,

the HPM and the Padé approximation are applied to solve for the optimal learning rate

scheduling described by equation 4.59.

4.3.4 Approximated Solution to the HJB-equation

To solve the HJB-equation that describe the cumulative risk under optimal learning rate

scheduling, first a homotopy is constructed similarly to equation 4.62 assuming a guess

function fg = 0, obtaining

(1− p)∂R
∂t

+ p

(
∂R

∂t
+ log(γ)R(w, t) + L(w)− α∂R

∂w

〈
dL

dw

〉
− 1

2β

(
∂R

∂w

〈
dL

dw

〉)2
)

= 0.

(4.67)

Now writing the solution as a polynomial over the embedding parameter

R(w, t, p) =
∞∑

i=0

piRi(w, t) (4.68)

Because the optimal control depends linearly on a partial derivative of R(w, t) as described

in equation 4.57, the optimal control signal will also be described by a sum of modes of
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the form

g(t) =
∞∑

i=0

pigi(t), where gi =
1

β

∂Ri

∂w

〈
dL

dw

〉

xy

. (4.69)

Replacing the sum of modes R(w, t, p) in the HJB-equation, the coefficients for each power

of p is collected and equated to 0 such that the sum of modes solves the equation. For

instance, solving for a few modes:

Coefficient of p0:

∂R0

∂t
= 0. (4.70)

Then, the first control mode g0 = 0.

Coefficient of p1:

∂R1

∂t
− ∂R0

∂t
+
∂R0

∂w
+ log(γ)R0 + L(w)− α∂R0

∂t

〈
dL

dw

〉
− 1

2β

(
∂R0

∂t

〈
dL

dw

〉)
= 0.

(4.71)

Replacing R0 = 0

∂R1

∂t
+ L(w) = 0, (4.72)

then integrating through time (partially integrating as R depends explicitly on w and t),

enforcing R1(w, T ) = 0, and computing the optimal control for mode g1

R1(w, t) = (T − t)L(w)→ g1(t) =
1

β

∂R1

∂w

〈
dL

dw

〉
=
T − t
β

〈
dL

dW

〉2

(4.73)
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Coefficient of p2: The non-zero terms are

∂R2

∂t
+ log(γ)R1 − α

∂R1

∂w

〈
dL

dw

〉
= 0, (4.74)

∂R2

∂t
= (T − t)

[
α

〈
dL

dw

〉2

− log(γ)L(w)

]
. (4.75)

Time integrating (s.t R2(w, T ) = 0), then expanding the gradient in terms of the task

statistics µx and ξ2

R2(w, t) =
(T − t)2

2

[
log(γ)L(w)− α

〈
dL

dw

〉2
]
, (4.76)

=
(T − t)2

2

[
log(γ)L(w)− α

(
ξ2w − µx

)2]
. (4.77)

Then the second mode of control can be computed

g2(t) =
1

β

∂R2

∂w

〈
dL

dw

〉
=

(T − t)2
β

〈
dL

dw

〉2(
log(γ)

2
− αξ2

)
. (4.78)

This can continue recursively for the rest of the modes. Writing the truncated version of

the optimal control signal in terms of the first 4 modes and p = 1 gives

g∗(t) =
(T − t)
β

〈
∂L

∂w

〉2

+
(T − t)2

β

〈
dL

dw

〉2(
log(γ)

2
− αξ2

)

+
(T − t)3
6β2

〈
∂L

∂w

〉2
(
4ξ2α2β − 4ξ2αβ ln(γ)− 4ξ2

(
∂L

∂w

)2

+ β ln2(γ)

)

+... (4.79)

Before moving on to the Padé Approximation, it is important to note that from this

expression it is already possible to obtain some insight into the behavior of control with
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respect to some of the parameters of the task, which corroborates the correctness of the

solution. For instance, the control signal is reduced as time t approaches the time limit

T to learn a task. Also, it is proportional to the expected gradient squared, meaning

that control is less necessary when the gradient approaches 0, because the task is close

to being learned. Finally, the control intensity will decrease with the size of the control

cost coefficient β. The rest of the parameters are challenging to interpret. Fortunately,

the Padé approximation under a few modes gives a better approximation and a still

interpretable solution, where the effect of γ and α can be analyzed. It is important to note

that the solution with the first few modes does not necessarily behave optimally in all

domains of parameters, and it can easily diverge in cases where the available time to learn

is enough for the agent to converge. However, there are other cases where the homotopy

method (with no Padé approximation) follows the simulation closely (non-convergent

learning of the agent) and follows a sweep of values as well (see subsection C.1.2). Further

modes are provided in subsection C.1.1.

This solution in equation 4.79 is an online controller, meaning that in principle, it should

be possible to apply it online while learning. However, some of the quantities needed to

compute the optimal control are statistics of the task, such as µx and ξ2, which, in the

case of having access to them, allow the optimal weight to be computed in closed form.

Regardless of this, it might be possible to apply it online by estimating each statistic

µx ≈ µ̂x and ξ ≈ ξ̂, e.g., using batches to estimate these online.

Next, an example of Padé computation is given for M = 1 and N = 1. First, the control
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signal is written as a polynomial of p,

g∗(t) =
∞∑

i=0

pigi (4.80)

=p
(T − t)
β

〈
∂L

∂w

〉2

︸ ︷︷ ︸
g1

+p2
(T − t)2

β

〈
dL

dw

〉2(
log(γ)

2
− αξ2

)

︸ ︷︷ ︸
g2

+p3
(T − t)3
6β2

〈
∂L

∂w

〉2
(
4ξ2α2β − 4ξ2αβ ln(γ)− 4ξ2

(
∂L

∂w

)2

+ β ln2(γ)

)

+... (4.81)

then approximating up to mode p2, using Pade[M=1,N=1],

pg1 + p2g2 −
ap

1 + bp
= O(p3). (4.82)

Solving for a and b,

(pg1 + p2g2)(1 + bp)− ap = 0 (4.83)

pg1 + p2g2 + p2g1b+ p3bg2 − ap = 0 (4.84)

=⇒ g1 = a, and b =
−g2
g1

. (4.85)

By equation coefficients of powers of p. The Pade approximation is then

g(t) = Pade[M=1,N=1] =
1

β

〈
dL
dW

〉2
1

T−t −
log(γ)

2
+ αξ2

=
1

β

(µx − wξ2)2
1

T−t −
log(γ)

2
+ αξ2

. (4.86)

In general, the Padé approximation requires that the number of homotopy modes K ≤
M + N + 1 (K starting from 0). Importantly, this simplified expression exhibits well-
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Figure 4.6: Padé approximation of learning rate control problem. (a): Loss function under
different levels of Padé approximation. (b): Weight evolution. (c): Instant reward rate
r(t), and cumulative reward R =

´
rdt, being improved with number of modes considered

in the Padé approximation. (d): Optimal control signal approximation.

behaved characteristics compared to higher-order Padé approximations (see figure 4.6), as

a satisfactory approximation of the control signal is achieved with only a few homotopy

modes. Using the same number of modes without Padé approximation results in a

divergent solution (see subsection C.1.2). While the first-order approximation provided

in equation 4.86 is sufficiently simple for inspection, higher-order Padé approximation

modes are highly complex and were computed automatically using a symbolic library

called SymPy 3. A higher-order Padé approximation is provided in section C.2, which is

considerably more challenging to interpret.

The expression from equation 4.86 provides expected relationships between the task

variables and the amount of control exerted. Similarly to the homotopy modes, control
3https://www.sympy.org/en/index.html
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will decrease with a decrease in the performance gradient
〈
dL
dW

〉2, and with the amount

of time available to learn the task T − t. As 0 ≤ γ ≤ 1, a decrease in the discount

factor will also decrease the amount of control. A higher base learning rate α (that is,

learning that does not require effort, similar to the passive learning strategy proposed

in subsection 4.2.3) will decrease the amount of control needed, as the improvement in

performance will occur automatically through the baseline (no control) dynamics (see

figure 4.7). These trade-offs are expected from a normative perspective and can be

connected back to cognitive neuroscience literature through the connections made in

chapter 3. To confirm that these relationships are correct, the first-order approximation

and a higher-order approximation Pade[M=3,N=3] were compared against the optimal

control computed numerically using gradient steps as in the learning effort framework

(see Algorithm 1). The comparison is performed in the space of cumulative risk, as it is

the solution of the HJB equation, and the integrated amount of control exerted during

the learning period.

As expected, including more modes in the Padé approximation improves the match with

numerical simulation. However, the first-order approximation Pade[M=1,N=1] follows similar

trends when varying the hyperparameters of the learning system, providing a reasonable

trade-off between the quality of the approximation and interpretability. Additionally,

more complex models also follow the same relationships of hyperparameters of the learning

system optimized numerically using the gradient descent method of the learning effort

framework (see figure C.5 in subsection C.1.2).

4.4 Discussion

This chapter provides a thorough process to study the control of learning. Starting from a

very simple setup proposed by others, as in (Son and Sethi, 2006, 2010), it gradually adds

complexity to transition to a more complex, continuous-time control optimization problem.
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Figure 4.7: Homotopy Pade approximation parameter sweep for gradient descent based
solution, first order pade approximation ([M = 1, N = 1]) and higher order Pade
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Second row: Integrated amount of control

´
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learning system and task hyperparameter. Discount factor γ, base learning rate α, task
difficulty or aleatoric noise σx and cost of control β.

It explores potential avenues for further analysis and provides a mathematical explanation

of observations made in simulations. One of the main insights from these simple models

is the conjecture discussed in subsection 4.2.3, learn first, do later. The description

of this conjecture is rather simple, but it has the potential to describe phenomena in

cognitive neuroscience, as previously discussed in chapter 3, through the connection to

the expected value of control theory (EVC, Shenhav et al. 2013; Masís et al. 2021) or the

role of neurotransmitters in meta-learning (Doya, 2002; Lee et al., 2024b). In addition, it

relates to other kinds of relations in machine learning, such as the exploration-exploitation

trade-off (further discussed in chapter 5) or annealing strategies Nakamura et al. (2021).

While the models presented are rather simple, the optimal solution describing control

over learning is not trivial. Even for simple settings, e.g., controlling the learning rate,

the influence of control over state variables, in this case, the weights of a network, is

non-linear, hence making it challenging for mathematical analysis. In addition to the

homotopy perturbation method, other tools from control theory, such as the extended
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Kalman filter (Urrea and Agramonte, 2021) and non-linear system identification (Nelles,

2001), might offer further analytical tools to manipulate the problem of optimal control

over learning. However, not many of these methods dedicate their efforts to optimize over

a complete period of time, as in equation 4.39; rather, the performance evaluation is done

at a fixed time step, or in a greedy manner.

Further systems that are being explored at the moment are two-layer linear networks

with optimal learning rate scheduling and multi-task attention control, where the optimal

control must choose how to allocate its attention to each task, similar to some of the

experiments presented in section 3.5. However, for the two-layer linear network, the

analytical approximations are not close to what is observed in simulation, diverging

most of the time. For the multi-task setting, adding non-linear constraints to the space

of possible control vectors as attention is challenging, as it makes the HJB equation

unsolvable in most cases. Other alternatives to tackle these technical issues are, for

instance, describing the learning dynamics of the two-layer linear network in terms of

its order parameters, so the differential equation describing the evolution of the weights

only changes for a few variables that summarize the system, instead of keeping track

of all the weights of the network. While these two system descriptions are equivalent

in expectation, the dynamical system in order parameters is smoother and usually less

complex. Additionally, for the multi-task approach, one interesting constraint that could

be added to the control signal (now a vector where each entry is attention to each of the

tasks) is to force it to live on a sphere, so that paying attention to one task necessarily

incurs an opportunity cost of not attending another task. Imposing this constraint could

be possible by splitting the HJB equation into different conditions that project the control

back to the permitted control space. These ideas are currently being tested, but as

indicated throughout section 4.3, trying these avenues requires extensive algebra and

math tricks, both done manually and through automatic symbolic computation, which

in some cases can limit the quality of the approximation. Beyond applying this method
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to control of learning, further efforts could be made to study convergence guarantees of

the homotopy perturbation methods in machine learning problems. Nevertheless, the

potential gain of having a mathematical theory of control of learning is important, as it

could shed light on fundamental trade-offs and formal principles of control of learning.
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Chapter 5

Uncertainty Prioritized Experience

Replay

The work presented in this chapter is primarily based on Uncertainty Prioritized Experience

Replay, Accepted to RLC 2025. Available at ICLR 2025 OpenReview1, by Rodrigo

Carrasco-Davis∗, Sebastian Lee∗, Claudia Clopath, Will Dabney (∗ equal contribution).

The text has been modified to conform to the thesis format.

5.1 Introduction

DRL has proven highly effective across a diverse array of problems, consistently yielding

state-of-the-art results in control of dynamical systems (Nian et al., 2020; Degrave et al.,

2022; Weinberg et al., 2023), abstract strategy games (Mnih et al., 2015; Silver et al.,

2016), continual learning (Khetarpal et al., 2022; Team et al., 2021), and multi-agent

learning (OpenAI et al., 2019; Baker et al., 2020). It has also been established as a

foundational theory for explaining phenomena in cognitive neuroscience (Botvinick et al.,
1https://openreview.net/forum?id=aAxzDb0nlO
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2020; Subramanian et al., 2022). Nonetheless, a significant drawback of these methods

pertains to their inherent sample inefficiency whereby accurate estimations of value and

policy necessitate a substantial demand for interactions with the environment.

Sample inefficiency has been mitigated through the use of, among other methods, pri-

oritized experience replay (PER, Schaul et al. 2016, see subsection 2.1.4). PER is an

extension of Experience Replay (Lin, 1992), which uses a memory buffer populated with

past agent transitions to improve training stability through the temporal de-correlation of

data used in parameter updates. Subsequently, PER extends this approach by sampling

transitions from the buffer with probabilities proportional to their absolute TD-error,

thereby allowing agents to prioritize learning from pertinent data. PER has been widely

adopted as a standard technique in DRL; however, despite significantly better performance

over uniform sampling in most cases, it is worth noting that PER can encounter limitations

under specific task conditions and agent designs. The most prominent example of such a

limitation is related to the so-called noisy TV problem (Burda et al., 2018), a thought

experiment at the heart of the literature around exploration in RL. Just as novelty-based

exploration bonuses can trap agents in noisy states, PER is susceptible to frequently

replaying transitions involving high levels of randomness (e.g. in reward or transition

dynamics) even if they do not translate to meaningful learning and thus are not useful for

solving the task.

To combat this issue, a combination of epistemic and aleatoric uncertainty measures

is proposed (Clements et al., 2020; Alverio et al., 2022; Lahlou et al., 2022; Liu et al.,

2023; Jiang et al., 2023), originally used to promote exploration, under an information

gain criterion for use in replay prioritization. Epistemic uncertainty, the uncertainty

reducible through learning, is the key quantity of interest. However, this needs to be

appropriately “calibrated”, which, it is shown, both empirically and with justification from

Bayesian inference, can be done effectively by dividing the epistemic uncertainty estimate

by an aleatoric uncertainty estimate. Intuitively, the need for this kind of calibration
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can be seen by considering the following game: the aim is to estimate the mean of two

distributions; the ground truth is that both distributions have identical means but different

variances, and the current estimates for both distributions are the same, i.e., the epistemic

uncertainty on the mean is the same for both distributions. However, if a new sample

from either distribution is offered to refine the estimate, one would choose to sample the

distribution with lower variance since this is more likely to be informative. In addition to

arguing for this novel prioritization variable, candidate methods involving distributions

of ensembles (in the vein of Clements et al. 2020) to estimate these quantities are also

provided. A comprehensive background of the used methods is provided in section 2.4

and its relation to PER and exploration methods is discussed in subsection 5.5.1.

The primary contributions are as follows:

1. In section 5.2, a novel approach for estimating epistemic uncertainty is presented,

building upon an existing uncertainty formalization introduced by Clements et al.

(2020) & Jiang et al. (2023). This extension incorporates information about the

target value that the model aims to estimate, thereby accounting for bias in the

estimator.

2. A prioritization variable is derived using estimated uncertainty quantities, finding a

specific functional form derived from a concept called information gain, showing

that both epistemic and aleatoric uncertainty should be considered for prioritization.

3. In section 5.3, the advantages of the proposed epistemic uncertainty prioritization

scheme are illustrated through two interpretable toy models—a bandit task and a

grid world.

4. In section 5.4, the effectiveness of this method is demonstrated on the Atari-57

benchmark (Bellemare et al., 2013), where it significantly outperforms baseline

models based on a combination of PER, QR-DQN, and ensemble agents.
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5.2 Proposed Method: Uncertainty Prioritized Experi-

ence Replay

In this section, a new method for estimating epistemic uncertainty is introduced, which

arises from a decomposition of the total uncertainty as defined by the average error

over both the ensemble and quantiles (subsection 2.4.4). This decomposition is in the

vein of Clements et al. (2020); however, the proposed estimator considers distance from

the target in addition to the disagreement within the ensemble, thereby allowing us to

handle—among others—model bias. An expression for prioritization variables based

on the concept of information gain is derived, which trades off epistemic and aleatoric

uncertainty with a view to maximizing learnability from each sampled transition. This

method is named Uncertainty Prioritized Experience Replay (UPER). Importantly, the

prioritized replay algorithm itself is not changed (subsection 2.1.4), but just the variable

pi used to prioritize in equation 2.27, replacing the TD-error by the information gain.

5.2.1 Uncertainty from Distributional Ensembles

The definitions given in equation 2.46 arise from a decomposition of Vψ,τ [θτ (s, a;ψ)],

where ψ and τ index the quantile and ensemble, respectively (see Clements et al. (2020)

for details). This quantity does not explicitly consider how far estimates are from targets,

but rather how consistent the estimates are among the quantiles and members of the

ensemble. A modified concept of total uncertainty Ûδ, named target total uncertainty, is

proposed, simply defined as the average squared error to the target Θ over the quantiles

and ensemble, which can be decomposed as:

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a)︸ ︷︷ ︸
Êδ(s,a)

+Â(s, a); (5.1)
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where δ2Θ(s, a) = (Θ(s′, r) − Eτ,ψ[θτ (s, a;ψ)])2, and the target epistemic uncertainty

Êδ(s, a) = δ2Θ(s, a) + Ê(s, a) is introduced. The proof is as follows. Dropping the de-

pendency on the transition (s′, r, s, a) in the target total uncertainty for simplicity, it can

be decomposed into:

Eτ,ψ[(Θ− θτ (ψ))2] =
ˆ
ψ

1

N

N∑

τ

(Θ− θτ (ψ))2P (ψ|D)dψ, (5.2)

=

ˆ
ψ

1

N

N∑

τ

[Θ− θτ (ψ)± Eψ(θτ (ψ))]2 P (ψ|D)dψ, (5.3)

=

ˆ
ψ

1

N

N∑

τ

[
(Θ− Eψ(θτ (ψ)))2 + (Eψ(θτ (ψ))− θτ (ψ))2 (5.4)

+2 (Θ− Eψ(θτ (ψ))) (Eψ(θτ (ψ))− θτ (ψ))]P (ψ|D)dψ,

(5.5)

=

ˆ
ψ

1

N

N∑

τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ (5.6)

+
1

N

N∑

τ

ˆ
ψ

(Eψ(θτ (ψ))− θτ (ψ))2 P (ψ|D)dψ

︸ ︷︷ ︸
Ê in equation 2.47

, (5.7)

the term in equation 5.5 is zero when integrating over ψ. Finally, the term in equation 5.6

is

ˆ
ψ

1

N

N∑

τ

(Θ− Eψ(θτ (ψ)))2 P (ψ|D)dψ = Θ2 − 2Eψ,τ (θτ (ψ)) + Eτ
(
Eψ [θτ (ψ)]2

)
(5.8)

= (Θ− Eψ,τ [θτ (ψ)])2︸ ︷︷ ︸
Distance to the target δ2Θ

+Vτ (Eψ [θτ (ψ)])︸ ︷︷ ︸
Â in equation 2.46

, (5.9)

obtaining the proposed uncertainty decomposition

Ûδ = Eτ,ψ[(Θ(s′, r)− θτ (s, a;ψ))2] = δ2Θ(s, a) + Ê(s, a) + Â(s, a); (5.10)
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Note that in order to construct ensemble disagreement estimates or estimates of the

total uncertainty Ûδ, independence among the ensemble is assumed, which is facilitated

by masking and random initialization akin to bootstrapped DQN. Through the lens of

the DEUP formulation from subsection 2.4.3, this decomposition suggests a modified

definition of epistemic uncertainty that considers the distance to the target δ2Θ as well

as the disagreement in estimation within the ensemble Ê from Clements et al. (2020)

and Jiang et al. (2023). To see why this extra term can be useful, consider the following

pathological example: all members of an ensemble are initialized equally; the variance

among the ensemble, and the resulting epistemic uncertainty estimate without this

additional error term, will be zero. A more subtle generalization of this would be if

inductive biases from other parts of the learning setup (architecture, learning rule, etc.)

lead to characteristic learning trajectories in which individual members of the ensemble

effectively collapse with no variance. In essence, Ê assesses ensemble disagreement without

including the estimation offset. The use of pseudo-counts (Lobel et al., 2023) presents

a similar problem: while epistemic uncertainty does scale with the number of visits to

a state, it does not necessarily encode the true distance between the estimation and

target values. Pseudo-counts bear the additional disadvantage of being task-agnostic, i.e.,

ignoring context, which makes them brittle under any change in the underlying MDP.

A simulation is provided in section 5.3 where the advantage of using Êδ instead of Ê to

prioritize replay is shown.

5.2.2 Prioritising using Information Gain

Having arrived at suitable methods for estimating both epistemic and aleatoric uncer-

tainty, it remains to establish a functional form for the prioritization variable, denoted

pi = h(E(si, ai),A(si, ai)). The most straightforward approach is to directly use pi = Êδ;
however, in practical applications, this does not yield satisfactory results. One intuition

for this, which will be made more concrete in later passages, is that the magnitude of
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Ê

(d)

Ensemble variance/disagreement Ê
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Figure 5.1: Variances in the information gain can be approximated by epistemic
and aleatoric uncertainty in the information gain: (a) and (b) Evolution during
training of the posterior of the mean using an ensemble (gaussian fitted to members of
the ensemble at each step) and an ideal Gaussian respectively. Training progresses from
purple to yellow. (c): Fitted ensemble quantiles to true data distribution. (d): Ensemble
disagreement (equivalent to variance of the posterior estimated with ensemble as Ê in
equation 2.47) and true posterior variance σ2

ν from ideal Gaussian. (e): Distance to
the target true value δΘ. (f): Data variance σ2

x approximated with A in equation 2.47.
Training time was scaled to show a match between Gaussian posterior and uncertainty
measures.

epistemic uncertainty does not in itself determine how easily reducible that uncertainty is.

It is informative therefore to also consider the aleatoric uncertainty, since this indicates

the fidelity of the data, and hence how readily it can be used to reduce the epistemic

uncertainty (this is demonstrated experimentally in subsection 5.3.1 and section B.3, and

expounded upon in section B.2).

We take inspiration from the idea of information gain to determine h. For the purpose of

this explanation, consider a hypothetical dataset of points xi ∼ N (µx, σ
2
x). The objective

is to estimate the posterior distribution P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution

ν ∼ N (µ, σ2). Following the observation of a single sample xi, the posterior distribution
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becomes a Gaussian with variance σ2
ν =

σ2σ2
x

σ2
x+σ

2 . To quantify the information gained by

incorporating the sample xi when computing the posterior, the difference in entropy

between the prior distribution and the posterior is measured as

∆H = H (P (ν))−H (P (ν|xi)) , (5.11)

From here, σ2 = Êδ is considered as a form of epistemic uncertainty, since the ensemble

disagreement is reduced by sampling more points, and σ2
x = Â is considered as aleatoric

uncertainty corresponding to the variance of the ensemble average distribution, giving

the irreducible noise of the data, obtaining a prioritization variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (5.12)

For a detailed derivation of the information gain see subsection B.2.1, and a comprehensive

exploration of other functional forms of prioritization variables based on uncertainty,

please refer to section 2.4.

5.3 Motivating Examples

In this section, the epistemic uncertainty estimators and the information gain criterion is

employed in simple and interpretable toy models to highlight their potential as experience

replay prioritization variables.

5.3.1 Conal Bandit

A multi-armed bandit task is devised in which each arm has the same expected reward

but with increasing noise level per arm, forming a cone as shown from left to right

in figure 5.2a. The memory buffer in this experiment has one transition per arm, and

after sampling one arm, the observed reward is replaced in the buffer for the respective
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transition (as done in the toy example in the original PER paper (Schaul et al., 2016)).

Specifically, let na denote the number of arms; then the reward distribution r for arm a is

defined as:

r(a) = r̄ + η · σ(a), σ(a) = a · σmax/(na − 1) + σmin; (5.13)

where r̄ represents the expected reward, σ(a) is the reward standard deviation associated

with arm a, σmax and σmin are constant, and η is sampled from a centred, unit-variance

Gaussian.

The choice of employing noisy arms serves the purpose of demonstrating that the TD-errors

will inherently include the sample noise, regardless of whether the reward estimation for

each arm Q(a) = Ej[θj(a)] approximates the target value r̄. Results for the bandit task

using different variables to prioritize learning are depicted in figure 5.2b for na = 5, r̄ = 2,

σmax = 2, and σmin = 0.1 (details in section B.3).

Four relevant prioritisation schemes are shown in this section (see section B.3 for other

prioritisation schemes): TD-error (standard PER): pi = 1
Ne

∑
ψ |ri − Q(ai;ψ)|; Inverse

count: pi = 1/
√
1 + C, where C denotes the number of times an arm has been sampled

to update the reward estimate; Information gain (UPER): pi = ∆Hδ; True distance to

target: pi = E∗ = |r̄ −Q(ai)|.

Prioritizing with epistemic uncertainty measures, such as UPER or inverse counts (a proxy

for epistemic uncertainty), leads to improved training speed and final true Mean Squared

Error (true MSE, averaged across all arms, between the estimated reward and the true

mean reward), compared to pi = |δi| (PER), as illustrated in figure 5.2b. Throughout the

paper, we highlight that the TD-error includes aleatoric uncertainty, corresponding to the

arm variance in this scenario, which is irreducible through learning (see section B.1 for more

details). Therefore, the TD-error tends to over-sample arms with high variance compared

with UPER, to the cost of not sampling the low variance arm. This is demonstrated

in figure 5.2c.
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Figure 5.2: Conal Bandit. (a) multi-armed bandit task constructed such that each arm
has identical mean payoff but increasing variance. (b) true MSE (average error across
arms, between estimated reward and the true reward mean) over 200 iterations (each
of 1000 steps) using different quantities to prioritise transitions from the replay buffer:
absolute value of the TD error |δ| (PER), inverse counts (C being the number of visits to
the respective arm), information gain ∆Hδ (UPER), and an oracle epistemic uncertainty
E∗ measured as the distance from the estimated mean to the true mean. (c) arm replaying
selection probabilities for the stablest (dashed) and noisiest (solid) arms in the conal
bandit; the key intuition is that prioritising by TD-error over-samples noisier arms, while
prioritising using UPER places importance on learn-ability and leads to greater selection
of stable arms. Results averaged across 10 seeds. Noisy Gridworld. (d) 300 seeds return
on a test episode throughout training of an agent on the noisy gridworld, with the shaded
region being stared error on the mean. (e) in the Map, blue denotes the starting state,
green is the goal state, and yellow are the non-zero variance immediate rewards. Below,
sampling heatmaps where yellows are highly sampled and blues are scarcely sampled:
uniform experience replay (ER) leads to sampling more from early parts of a trajectory
since these fill the buffer first; replay based on TD error (PER) leads to a pathological
sampling of the noisy part of the gridworld; replay using UPER leads to greater sampling
of later parts of the trajectory.

Using inverse counts as the prioritization variable (similar to Lobel et al. (2023)) outper-

forms TD-error (as designed in the task) but not UPER. The reason is that, although

each initial estimated Q-value per arm is equidistant from the true mean, the learning

speed for each arm diminishes with the variance of the respective arm. Inverse counts do

not account for this variance-dependent decay in learning speed, so the number of updates
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per arm will not reflect the distance of the estimation to the true target, whereas UPER

(prioritizing by Êδ and inverse Â) tends to sample arms with high aleatoric uncertainty

less frequently and is also based on the distance to the targets as defined in equation 5.10.

The distance between the estimated mean and the true mean, denoted as E∗ (accessible due

to the task design), is equivalent to the epistemic uncertainty in the DEUP formulation, as

derived in subsection 2.4.3. This distance is the ideal prioritization variable to which there

is not access in general. Notably, using UPER, which prioritizes based on information

gain, yields results comparable to prioritizing directly based on the true distance. These

results show UPER as a promising modification to TD-error-based prioritized replay.

To emphasize the significance of incorporating the target value when utilizing the target

epistemic uncertainty Êδ for replay prioritization, modifications to the conal bandit task

were introduced by assigning distinct mean rewards per arm, denoted as r̄ → r̄(a) (see

simulation details in section B.3, figure B.3). In the original conal bandit task, all arms

shared the same mean reward r̄, resulting in an equal initial distance expectation from Q(a)

to each arm. This uniformity dampened the performance improvement when considering

the target distance δΘ in Êδ with respect to Ê . By introducing varying mean rewards

per arm, denoted as r(a), the relevance of information about the target value becomes

important. This adjustment highlights the advantage of employing the proposed target

epistemic uncertainty Êδ over merely considering ensemble disagreement Ê .

5.3.2 Noisy Gridworld

To move toward the full reinforcement learning (RL) problem, this section considers

a tabular gridworld. Inspired by ideas from planning within dynamic programming

methods (Moore and Atkeson, 1993), the goal is to explore uncertainty-guided prioritized

replay. Under this framework, “direct” reinforcement learning through interactions with

the environment (sometimes referred to as control) is typically supplemented by “indirect”
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learning of a model from stored experiences (sometimes referred to as planning). In this

case, learning is purely model-free, yet it retains the distinction between offline and online

learning. In many ways, these methods serve as a precursor to the use of experience

replay buffers in deep reinforcement learning.

When making updates on stored data offline (whether for planning or other purposes),

similar questions arise regarding criteria for prioritization. Notably, prioritized sweeping,

which favors high-error samples in memory, was an early extension to the Dyna models

that exemplify this learning protocol (Sutton, 1991).

In figure 5.2e (Map), a gridworld is constructed where the agent encounters highly noisy

states with random rewards early in the episode, while a single deterministic state with

a much larger reward is located at the end of the maze. figure 5.2d demonstrates that

this simple task can be solved without additional planning steps. However, experience

replay (ER), which samples uniformly, improves sample efficiency. This improvement

is further enhanced by prioritized experience replay (PER), which prioritizes transi-

tions based on temporal-difference (TD) error. The best performance is achieved by

uncertainty-prioritized experience replay (UPER), which prioritizes transitions based on

the information gain criterion and the inverse of state visitation counts, a reliable proxy

for epistemic uncertainty in this tabular setting.

As shown by the heatmaps in figure 5.2e, PER tends to over-sample noisy states, whereas

UPER prioritizes novel states toward the end of the trajectory. Full details of the

experimental setup and hyperparameters can be found in section B.4.

5.4 Deep RL: Atari

In the final set of experiments, the proposed method is applied in a deep reinforcement

learning setting, specifically using the Atari benchmark (Bellemare et al., 2013). The agent

is an ensemble of QR-DQN distributional predictors (N = 10), where experience replay is
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Figure 5.3: (Left) Comparing Uncertainty Prioritized Experience Replay (UPER) with
Prioritized Experience Replay (PER) and QR-DQN on the full Atari-57 benchmark.
Median human normalized score for UPER is significantly higher than baselines throughout
the learning trajectory. (Right) Example of per-game performance, with vastly superior
performance on e.g. Asterix and Chopper Command; cases in which UPER is worse are
far less extreme, for instance Breakout and Krull (this is shown graphically in figure B.11
and figure B.12). All results are averages over 3 seeds.

prioritized using the information gain criterion (UPER, as described in subsection 5.2.2).

This method is compared against a vanilla QR-DQN agent (Dabney et al., 2017) with

uniform prioritization and the original PER agent (Schaul et al., 2016).

To demonstrate that the performance improvement is not solely due to the quantile

regression method or the ensemble, additional comparisons are conducted. Specifically, a

QR-DQN agent with TD-error prioritization (QR-PER) and an ensemble of QR agents

with TD-error prioritization (QR-ENS-PER) are trained. A summary of the empirical

results is presented in figure 5.3, with further ablations and details provided in section B.5.

Except for the additional hyperparameters associated with the ensemble of distributional

prediction heads and a commonly used configuration for the Adam optimizer (ϵ =

0.01/(batch_size)2), the network architecture and all hyperparameters in UPER remain

identical to those in QR-DQN (Dabney et al., 2017). Similarly, the PER, QR-DQN, and

QR-PER baselines follow the implementations of Dabney et al. (2017) and Schaul et al.

(2016), respectively, while QR-ENS-PER is identical to UPER except for the prioritization
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variable, which is based on TD-error.

Concretely for the UPER agent, the target epistemic uncertainty is computed using

Êδ(s, a) = Ûδ(s, a)− Â(s, a). Then for a given transition i the total uncertainty is given

by

Ûδ = Eτ,τ ′,ψ
[(
ri + γθτ ′(s

′
i, a

′
i; ψ̄)− θτ (si, ai;ψ)

)2]
, (5.14)

where τ (τ ′) are the quantiles of the online (target) network ψ (ψ̄). The aleatoric uncer-

tainty estimate is given by Â(s, a) in equation 2.47. Based on these estimates, the UPER

priority variable is constructed using the uncertainty ratio discussed in subsection 5.2.2,

i.e., equation 5.12. Since both UPER and QR-ENS-PER are ensemble-based agents, a

random mask m ∈ RN is stored for each transition in the replay buffer, where each element

is sampled as mi ∼ B(0.5). When a transition is sampled for learning, gradients are

propagated only for heads whose corresponding mask element is equal to 1. This follows

the approach proposed by (Osband et al., 2016) and serves to decorrelate the learning

trajectories of the ensemble members, which is essential for obtaining valid uncertainty

estimates.

As shown in figure 5.3, the median performance of UPER across games is significantly

better than that of other prioritization schemes, demonstrating that the observed perfor-

mance improvement is not solely due to the quantile regression technique or the ensemble.

Notably, UPER outperforms its closest comparison, QR-ENS-PER, which differs from

UPER only in its use of TD-error for prioritization (see figure B.11). In most games where

UPER does not yield a performance improvement, such as Krull, Q∗bert, or H.E.R.O.,

the performance difference is not statistically significant. This is further illustrated in

the per-game panels in figure B.12 and the asymmetry of the bar plots in section B.5.
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Table 5.1: Computational Cost (seconds per iteration)

Architecture CPU GPU
QR-DQN-ENS 28.40 ± 0.26 20.74 ± 0.43

QR-DQN 17.80 ± 0.13 18.49 ± 0.68
DQN 18.34 ± 0.09 18.39 ± 0.56

5.5 Discussion

In this study, epistemic uncertainty measures are proposed to guide the prioritization of

transitions from the replay buffer. Through both mathematical analysis and carefully de-

signed experiments, it is demonstrated that the commonly applied TD-error criterion can

incorporate aleatoric uncertainty, leading to the over-sampling of noisy transitions. Pri-

oritizing transitions based on a principled function of epistemic and aleatoric uncertainty,

formulated as information gain, mitigates these effects.

To construct this function, the concept of epistemic uncertainty from Clements et al. (2020)

is extended to incorporate the distance to the target, resulting in performance advantages

in both toy settings and complex problems, such as the Atari 57 benchmark. A potential

concern when estimating these auxiliary quantities is the increased computational cost in

deep learning settings. However, sharing lower-level representations across multiple heads,

combined with efficient implementations, can significantly reduce this overhead.

To illustrate this, an experiment was conducted on a lower-capacity GPU to compare

the training times of DQN, QR-DQN, and QR-DQN + ensemble networks in the Pong

environment. The time per iteration is reported in Table 5.1.

The comparable training times can be attributed to effective batch processing facilitated

by GPU parallelization. In the proposed implementation, each agent in the ensemble is

represented by a distinct output head within the network architecture. By extending the

batch dimension to (batch, action, quantiles, ensemble), the parallelization capacity of the

GPU is leveraged while remaining within its operational limits for the QR-DQN ensemble
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network. Further details of this experiment, as well as the computer architecture used,

are provided in subsection B.5.2. It is important to note that this analysis does not aim

to compare the computational cost of sampling with a priority variable versus uniform

sampling, as this aspect has already been addressed in the original PER paper and is

known to have a negligible impact.

While this implementation focuses on distributional reinforcement learning, a widely

used class of methods, exploring alternative forms of uncertainty estimation, such as

pseudo-counts (Lobel et al., 2023), in combination with different functional forms beyond

information gain presents a promising research direction. These approaches could ben-

efit not only prioritization schemes but also other aspects of the reinforcement learning

problem, such as exploration (see section B.2 and section B.3).

The framework introduced in this work, which combines epistemic and aleatoric uncertain-

ties through information gain, is not limited to reinforcement learning. In principle, these

concepts can be extended to other learning systems. A substantial body of literature

explores efficient data selection to improve learning in paradigms such as supervised learn-

ing (Hüllermeier and Waegeman, 2021; Zhou et al., 2022), continual learning (Henning

et al., 2021; Li et al., 2021), and active learning (Nguyen et al., 2022). Additionally,

this work has the potential to provide alternative insights into replay events in biological

agents (Daw et al., 2005; Mattar and Daw, 2018; Liu et al., 2019; Antonov et al., 2022).

5.5.1 Replay and Exploration Alternatives

Exploration. While UPER does not explicitly promote exploration through a reward

bonus for unexplored or uncertain states, it leverages methods from this field to estimate

epistemic and aleatoric uncertainty (Clements et al., 2020) and prioritize transitions in

the replay buffer based on information gain.

A fundamental challenge faced by reinforcement learning agents is the exploration-
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exploitation trade-off (Osband et al., 2016; O’Donoghue, 2023), wherein agents must

balance two competing objectives when selecting actions: acquiring new information

about the environment (exploration) and maximizing immediate reward based on current

knowledge (exploitation). Both replay sampling and exploration strategies influence

the data used to refine value function estimation. The former determines which past

experiences contribute to value updates, while the latter governs the experiences that

populate the replay buffer.

Many exploration strategies have been developed around the concepts of intrinsic re-

ward (Oudeyer and Kaplan, 2007) and episodic memory (Savinov et al., 2019; Badia

et al., 2020). However, these approaches are vulnerable to pathological behaviors, such

as the noisy TV problem. Later variants have been designed to mitigate these issues

and often emphasize obtaining reliable and meaningful estimates of counts and nov-

elty (Ostrovski et al., 2017; Bellemare et al., 2016; Burda et al., 2018; Lobel et al., 2023),

dynamics (Stadie et al., 2015; Pathak et al., 2017), uncertainty (Mavor-Parker et al.,

2022), and related quantities. Many of these considerations are directly relevant to the

challenge of constructing effective measures for replay prioritization.

PER. Since its introduction by Schaul et al. (2016), various efforts have been made to

understand and improve prioritized experience replay. The integration of uncertainty-

related information has often been explored in conjunction with strategies for managing

the exploration-exploitation trade-off. For instance, Sun et al. (2020) propose sampling

frequently visited states more often to reduce uncertainty in well-explored regions. Con-

versely, Alverio et al. (2022) prioritize uncertain states to encourage exploration, using

epistemic uncertainty estimated as the standard deviation across an ensemble of next-state

predictors. This approach is combined with other techniques to enhance sample efficiency.

Another method, presented by Lobel et al. (2023), employs a pseudo-count approximation

to estimate state visit frequencies, fostering exploration through an intrinsic reward
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mechanism. During training, transitions are prioritized based on these counts. However,

this approach does not extend prioritization to learning the actual value network, which

is the primary focus of this study. The method proposed by Lobel et al. (2023) enables

the estimation of epistemic uncertainty independently of the reward signal’s sparsity or

density, making it particularly appealing in sparse-reward environments. However, using

pseudo-counts to estimate epistemic uncertainty may not always align well with the true

uncertainty in value estimation (Osband et al., 2018). As discussed in subsection 5.3.1, the

frequency of visits to a given state-action pair does not necessarily reflect the error between

the estimated and true value. Moreover, as explained in subsection 5.2.2 and demonstrated

through simulations in subsection 5.3.1, both epistemic and aleatoric uncertainty should

be considered when constructing an effective prioritization scheme.
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General Discussion

In this thesis, the learning effort framework is presented (see chapter 3). This formal

framework provides a way to formulate the problem of controlling the learning process

of a system by considering the influence of a control signal on a dynamical system that

describes learning. The framework is general enough to instantiate other machine learning

algorithms, such as MAML (Finn et al., 2017), and solves the expected value of control

in the regulation of a learning system (Shenhav et al., 2013; Masís et al., 2021).

The framework is applied to a variety of settings, where control assumes different forms and

the agent is exposed to various tasks, all governed by the same optimization process using

gradient descent on the control signal. One of the applications of the learning effort frame-

work involves a simulation of rats solving a binary classification task (Masís et al., 2023).

In this context, an alternative model is proposed, incorporating highly abstract variables

that impose trade-offs between immediate rewards and improved learning at the cost of

early rewards. The optimal control for this model aligns with the reaction times observed

in rats, suggesting that control can be understood as the inhibition of default or impulsive

behavior. Rats that exerted greater control (demonstrated by longer reaction times during

early learning) learned faster and accumulated higher cumulative rewards on the task.
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The proposed epistemic noise control model described in subsection 3.7.2, developed

within the learning effort framework, conceptualizes control as a reduction of epistemic

uncertainty, achieved by incurring a cost in terms of reduced instantaneous reward rate.

This model collapses the evidence collection process and it is analogous to extending the

duration of stimulus observation in each trial (see section 3.7). The ability of this proposed

model, in addition to the original model introduced by the authors of the experiment, to

replicate behavioral data suggests a fundamental dilemma in controlling learning: early

rewards versus improved learning at a cost. It is important to note that the relation

between control, reaction time, and noise in this model differs from the more widely

accepted view in the literature, where higher cognitive control is generally associated with

shorter reaction times and, depending on the experimental design, may also be linked to

increased accuracy (Gratton et al., 1992; Ullsperger et al., 2005; Ulrich et al., 2015). The

connection between this mainstream interpretation of cognitive control and the epistemic

noise control model is discussed further in subsection 3.7.4.

Most models discussed in chapter 3, exhibit an optimal control signal that is stronger

early in learning and gradually diminishes as the model acquires proficiency in the task,

thereby requiring less control. In chapter 4, the thesis focuses on examining simplified

instances of learning control, starting from previously proposed models for this problem.

An analysis based on policy optimality in a reinforcement learning framework reveals

the underlying reasons for the numerically observed optimal strategy. Specifically, most

strategies allocate more control at the beginning of learning, a pattern encapsulated in

the conjecture referred to as learn first, do later (subsection 4.2.3). While this idea is

intuitive, it can be analytically justified through optimality arguments and fundamental

properties of learning trajectories, such as monotonicity, i.e., the more time allocated to a

task, the greater the improvement in performance (Ritter and Schooler, 2001; Son and

Sethi, 2006, 2010; Masís et al., 2021).

The learn first, do later conjecture is tightly related to the concept of automaticity,
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which corresponds to the transition of an agent from a more controlled, effortful behavior

when learning, to a more automatic, efficient performance that is minimally affected

by task-unrelated information (Hélie and Cousineau, 2014). Automaticity effects can

be found in many aspects of learning, e.g., classical conflict in automatic response for

the Stroop task (Cohen et al., 1990; Musslick et al., 2020), automaticity as memory

retrieval (Logan, 1988; Rickard, 1997; Hélie et al., 2010), or motor skill automaticity

(Wulf et al., 2001; Poldrack et al., 2005; Christiansen et al., 2020). Common hallmarks

of the automaticity phenomenon in learning can be found across applications, such as

a reduction in mean RTs and stability of RTs, saturated performance on the task (for

different RTs), and less susceptibility to distractions (Moors and De Houwer, 2006). The

presented conjecture uses a normative objective to show that it is optimal to exert highly

controlled engagement on a task when the agent can improve on the task and collect

more reward with practice. However, as this conjecture is still highly abstract to allow

for a proof of the optimal learning policy, other aspects of the learning process regarding

experimental setups, such as trial dynamics, performance, and agents’ reaction times, are

not yet described by this setup.

Although the discrete models used for the conjecture are relatively simple, they can

be interpreted as discrete approximations of a fully time-continuous model, where the

control signal takes a range of continuous values, as in the learning effort framework.

While the optimality arguments may not directly apply to the continuous and more

complex formulation of the control problem, they could serve as useful approximations

for analyzing more intricate control problems and learning systems.

The optimality argument used to support the conjecture does not apply to the time-

continuous version of the problem. However, it is still possible to extend the formal

analysis. To achieve this, subsection 4.3.3 introduces the homotopy perturbation method

(He, 1999; Liao, 2003) to approximate an optimal control signal, particularly in the context

of learning rate scheduling. This method relies on deriving the Hamilton-Jacobi-Bellman
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equation (Atangana et al., 2014) for the optimization problem and provides optimality

guarantees along with an expression for the control signal as a function of the value. The

resulting formulation leads to a partial differential equation that, in general, cannot be

solved in closed form.

To address this, a homotopy is constructed, meaning that a new equation is formulated

to interpolate between the full Hamilton-Jacobi-Bellman equation and a simpler, solvable

approximation. The value function and control signal are then derived in terms of

modes, where higher-order modes yield increasingly accurate approximations in a Taylor

expansion-like manner. However, these modes tend to diverge rapidly, as they form

polynomials in the embedding parameter of the homotopy. To mitigate this issue, a final

step involves applying a Padé approximation to the resulting control, which enhances the

quality of the estimation (Ganjefar and Rezaei, 2016).

The Padé approximation provides a concise analytical expression for the control signal,

offering insight into how control depends on model parameters and task statistics. Ad-

ditionally, this control is computed online, meaning that it functions as a closed-loop

feedback mechanism that can be applied to the dynamical system during learning. The

dependence on model parameters, such as time discount and task difficulty, follows ex-

pected relationships, supporting the approximation method as a valuable analytical tool

for studying optimal control of learning.

If theoretical models are too abstract to match experimental settings, why is it still

necessary to perform mathematical analysis of simplified abstract models? Many numerical

models describing an agent performing a task can serve as surrogate systems for biological

agents. These models allow researchers to test different setups through simulations by

varying architecture, optimization objectives, learning rules, and other design parameters.

The results can then be compared with experimental measurements to validate the model

and provide a mechanistic explanation of the agent’s internal processing in an experiment,
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which is arguably a powerful approach to understanding how agents work (Lillicrap and

Kording, 2019; Richards et al., 2019; Botvinick et al., 2020; Niu et al., 2024).

However, the simulation approach alone is not sufficient; mathematical analysis is also

necessary for several reasons, a view that has been supported in the literature (Eliasmith

and Trujillo, 2014; Saxe et al., 2021). One advantage of mathematical analysis is the

potential access to guaranteed gold-standard solutions, which is often not the case with

numerical methods. Although simulated agents and biological agents in experiments may

not reach this theoretical optimality, it is valuable to understand why this occurs and what

alternative methods or heuristics could approximate the gold standard. Another advantage

of mathematical analysis is the availability of transparent expressions that make it possible

to identify the variables most relevant for optimal control without running simulations.

Such expressions also allow researchers to systematically explore the space of relevant

variables and their effects on the optimal solution, providing guarantees of functionality

and strengthening the conclusions drawn. In contrast, attributing changes in simulations

can be difficult, even when controlling for a single variable, because the model may be

operating in a special regime determined by other, unaltered variables. As noted earlier,

theoretical models often differ substantially even from simple computational models,

which themselves can be far removed from the behavior of biological agents. Bridging the

gap between theoretical, computational, and real agents remains an important research

objective, and it is essential to acknowledge that each approach operates at a different

level of abstraction in explaining and describing intelligent systems (Levenstein et al.,

2023; Shankar et al., 2025).

In summary, both grounded simulations validated through experimental data and math-

ematical analysis in simplified, tractable models are needed. These complementary

approaches provide best-case scenarios for understanding and advancing theories of

learning and control.

152



University College London

Finally, in chapter 5, the thesis develops a new method to estimate epistemic uncertainty

in environmental transitions. This concept is closely related to the epistemic control

model presented in section 3.7, and more generally to the overall meta-learning framework

in chapter 3. In this context, epistemic uncertainty refers to the error that can be

reduced through learning (Lahlou et al., 2022), thereby providing a proxy for prioritizing

replay based on this uncertainty. The proposed method, termed Uncertainty Prioritized

Experience Replay (UPER, chapter 5), leverages this idea by using epistemic uncertainty

as a guiding signal. Rather than relying on detailed representations of the learning

trajectory, which would demand additional meta-knowledge about the agent, its learning

dynamics, and the statistics of the task, this approach offers a simpler heuristic to guide

learning. In practice, prioritizing replay through epistemic uncertainty serves as a practical

surrogate for controlling learning in more complex models, improving performance without

requiring explicit modeling of the entire trajectory.

The uncertainty estimator is based on distributed reinforcement learning (Dabney et al.,

2017), which approximates the underlying data distribution, and ensembles (Osband et al.,

2016; Dwaracherla et al., 2022), which offer a practical means of sampling a posterior

distribution of estimators. Compared to previous approaches, this estimation method

accounts for the bias toward the target value that needs to be estimated, rather than solely

considering uncertainty. More importantly, the experiments conducted aim to isolate the

effect of the prioritization variable. In contrast, prior work using uncertainty estimators

has often included confounding factors in the agent design, preventing the isolation of

uncertainty’s effect. Results from multiple experiments, including the Atari-57 benchmark,

indicate that prioritizing replay based on information gain enhances the agent’s overall

learning performance.
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6.1 Future Ideas

Learning effort framework

After thoroughly examining the capacity of the formal framework to represent different

control setups, a natural direction for future research is to apply it to specific systems

in the brain. One clear example is an adaptation of the Stroop task, where control not

only resolves interference between task representations but also accounts for its impact

on learning (Cohen et al., 1990; Musslick et al., 2020). Similarly, this framework could be

applied to prioritized replay, potentially in a system consolidation setting, as explored in

Sun et al. (2023), to further investigate the types of content that are stored or consolidated.

Computing the optimal control is challenging and not biologically plausible, yet humans

and other animals appear capable of estimating these quantities (Ten et al., 2021; Masís

et al., 2023; Masis et al., 2024), suggesting that heuristics may be employed to allocate

control for learning. Prototypes of episodic memory-based control estimation have been

tested, in which control is estimated based on prior learning experiences, similar to other

approaches like Pritzel et al. (2017) and Ritter et al. (2018). However, this approach is

not included in the thesis, as it requires further analysis.

Another potential direction is leveraging the general properties of learning trajectories, as

indicated by Ritter and Schooler (2001); Son and Sethi (2006, 2010); Masís et al. (2021),

to develop a model-based control of learning estimator. Given the common characteristics

of learning trajectories, it may be possible to constrain the space of potential optimal

control signals, thereby simplifying the problem.

Beyond extending the applications of the meta-learning framework to find optimal control

policies under different scenarios, this framework also has the potential to be applied

to phenomena in cognitive neuroscience, as discussed throughout the thesis. Examples

include the concept of automaticity in learning (Hélie and Cousineau, 2014), engagement
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based on learning difficulty (Wilson et al., 2019), curriculum learning (Kidd et al., 2012;

Raz and Saxe, 2020; Ten et al., 2021), exploration heuristics such as intrinsic motivation

(Bromberg-Martin et al., 2024), and speed–accuracy trade-offs, as described in section 3.7.

Further work is necessary to use the framework to understand psychological phenomena,

but concrete predictions can already be derived from the framework and its mathematical

analysis. First, the amount of control or effort in learning is predicted to decrease with

more delayed rewards or with higher future reward discounting. Previous experiments have

accounted for reward time discounting (Frederick et al., 2002; Kable and Glimcher, 2007;

Shadmehr et al., 2010), but in most of this work, discounting is studied in environments

where improvement or learning on a task is not explicitly involved. Other research has

controlled for delayed reward and feedback (a manipulation similar to changing the

discount rate when the delay is fixed), showing that such delays impair learning (Yin

et al., 2018). Furthermore, delaying reward has been shown to reduce goal-directed

actions (Perez and Urcelay, 2025), suggesting a reduction of control with delayed rewards,

although not specifically referring to control of learning. Further experimentation is

required to account for the interaction between controlled learning, delayed rewards, and

time discounting.

Another prediction from the meta-learning framework, derived from its connection with

the EVC theory, is the reduced amount of control over learning when the cost of control

increases. Regardless of how control is defined in the framework (as discussed in subsec-

tion 3.4.1), the specific form of the control cost function will affect the optimal control

signal and, consequently, its impact on learning.

It has been shown that exerting effort (e.g., through attentional state) can improve learning

(Yu and Dayan, 2005; Eldar et al., 2013; Gottlieb, 2012). Perhaps the phenomenon most

closely relating attentional states and learning is the flow state, in which subjects report

full absorption in a task along with a sense of control and enjoyment. Studies have
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shown that enhanced feedback on learning progress helps maintain task engagement and

cognitive control, thereby improving learning outcomes (Biasutti, 2017; Lu et al., 2025).

Interestingly, the analytical results from section 4.3 for the optimal control derived using

the homotopy perturbation method are proportional to the squared gradient of the loss

function with respect to the weights, and are therefore larger when learning progress is

greater.

In some cases, optimal engagement in learning a task can be regulated by its difficulty, i.e.,

by adapting the task’s difficulty to keep the subject engaged. So far, the meta-learning

framework has modeled task difficulty as irreducible noise, which reduces the bound

on maximum potential performance and slows down learning. As shown in simulations,

increasing this notion of difficulty reduces the amount of control, as it is not worth

investing effort in a task that cannot be learned. This is in contrast to what has been

reported in human subjects, where there appears to be a sweet spot in difficulty that

promotes task engagement, hence it is necesary to find an appropiate definition of task

difficulty within the learning effort (Wilson et al., 2019).

Some evidence suggests that the exertion of effort itself may improve learning, as in (Jarvis

et al., 2022). However, in that case the effort was physical and did not necessarily alter

the information-processing mechanisms relevant to the task. Instead, effort placed the

subject in a state that indirectly enhanced learning. Additionally, it has been shown that

the perception of physical effort correlates with the perception of mental labor, suggesting

that effort in general may influence information processing and learning (Bustamante

et al., 2023).

In the meta-learning framework, the cost of control is additive to the reward obtained

from the environment, which is also a feature of the EVC theory. Interestingly, it has

been suggested that reward delay can be functionally equivalent to an increase in the

effort required to obtain a reward, leading to similar behavioral outcomes despite being
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encoded in different brain regions: reward delay in the ventral striatum and ventromedial

prefrontal cortex, and effort in the anterior cingulate cortex (Prévost et al., 2010).

An appropriate experimental setting to test the meta-learning framework should account

for the effect of control on learning dynamics while decoupling the motivation to exert

control for immediate trial-by-trial improvements. For instance, applying cognitive control

to reduce reaction time (RT) or improve accuracy on a single trial may incidentally improve

learning, but this does not imply that control is exerted because of its contribution to

learning improvement. In such cases, control is applied merely to optimize performance

on an individual trial.

Along these lines, recent experimental setups appear promising for testing the meta-

learning effort framework and examining the effect of cognitive control on learning. In a

pre-registered experiment (Sandbrink et al., 2024), subjects could either observe (check

whether the hidden state of the trial is favorable) or bet (collect the reward if the hidden

state of the trial is favorable without observing it). This experiment was designed to

measure exploration–exploitation trade-offs in humans when the environment is volatile.

To adapt this paradigm for testing the proposed meta-learning framework, it would be

necessary to introduce a form of reward improvement on each trial instead of volatility.

For example, the action of bet could be replaced with collect (receive a reward), and a new

action improve could be added (increase the eventual reward from the collect action, or

increase the improvement rate; no immediate reward, or even a negative reward, is given).

This modified setup closely resembles the framework used for mathematical analysis in

subsection 4.2.3. For a fixed number of trials, the cost of control would be the opportunity

cost of choosing the improve action, since no reward is collected in contrast to the collect

action. In this way, the process of learning is abstracted and replaced by improvement.

This experimental design could manipulate the number of available trials in a session (time

available for improvement), improvement dynamics, cost of improvement, improvement
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monitoring, and reward volatility. Each of these factors would influence the optimal

control signal, defined as the number of times a subject chooses to improve instead of

collect. Importantly, while this setting could, in principle, provide all the meta-cognitive

information necessary to compute the optimal control signal, it remains to be tested

whether humans and animals can actually gather and utilize such information in natural

learning scenarios. In real-world tasks, the estimation of improvement must be based

on their own learning dynamics, rather than a monotonic, externally defined reward

improvement detached from the learning process.

An example of a direct measure of control allocation for learning is provided in (Masis

et al., 2024), where it is shown that human subjects choose to deliberate longer on each

trial (a costly action due to opportunity cost) when the task is perceived as learnable, and

deliberate for a shorter time when the task is not learnable. The author proposed a model

based on a drift–diffusion model (DDM), similar to the one described in subsection 3.7.1.

A comparable approach can be taken to test the proposed framework, now by modifying

the model in subsection 3.7.2 with the considerations discussed in subsection 3.7.4.

Analytical Methods

The extent to which the homotopy perturbation method can be applied depends on

the complexity of the Hamilton-Jacobi-Bellman equation, which varies across different

learning systems and control implementations. Some explored approaches (not included in

this thesis) involve describing control as a vector of scalars, where each entry corresponds

to a learning rate specific to the output of a single-layer network. Another extension

that has been investigated is the learning rate scheduling of a two-layer linear network,

although no positive results have been obtained thus far.

An alternative to the standard gradient flow description of the two-layer network is to use

the order parameters formulation, as in a teacher–student setup (Goldt et al., 2019; Lee

et al., 2022; Carrasco-Davis and Grant, 2025). Since the results from the approximation
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using the homotopy method approach is weight dependent, it is difficult to interpret. By

incorporating order parameters, which summarize the state of the learning system, it may

be possible to explain optimal control as a function of summary statistics of the initial

conditions of the system. This perspective could also provide insights into better strategies

for setting hyperparameters in neural networks. Additionally, incorporating nonlinear

constraints on the control signal could lead to interesting applications, though these

constraints are mathematically challenging to analyze. For instance, enforcing the control

signal to lie on a sphere, where each axis projection represents attention to a specific task,

could model a scenario in which attending to one task comes at the expense of learning

others. This setting is conceptually similar to one of the cases discussed in section 3.5.

While this approach shows promise, it involves intensive algebraic computations and

requires further study.

Uncertainty Prioritized Experience Replay

A key contribution of this work is the proposed estimator for epistemic and aleatoric

uncertainty (see section 5.2). Most methods for uncertainty estimation in reinforcement

learning are applied in exploration-exploitation trade-off scenarios (Pathak et al., 2017;

Boldt et al., 2019; Clements et al., 2020; Lobel et al., 2023). Consequently, a natural next

step is to evaluate this estimator, for example, as an intrinsic motivation mechanism in

tasks that require extensive exploration.

A well-established theory of prioritized replay suggests that events are replayed based

on their value following a temporal difference (TD) update (Mattar and Daw, 2018).

This theory could be tested using the learning effort framework, as it follows the same

fundamental premise, but in this case, the learning system is a neural network. Further-

more, the theory of prioritized replay could be extended to account for the uncertainty

associated with the value obtained from updates. This extension could broaden the set

of predictions derived from the theory, incorporating aspects such as risk aversion and
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confidence estimation in replay content.

UPER is not limited to RL applications. Evidence from neuroscience suggests that

dopaminergic neurons encode a distribution of value functions (Dabney et al., 2017; Lee

et al., 2024a). Additionally, probabilistic approaches have proposed mechanisms by which

the brain may compute posterior distributions (Pouget et al., 2013; De Martino et al., 2013;

Sohn and Narain, 2021), which are necessary for uncertainty estimation. A promising

direction is then studying potential mechanisms of biological neural networks to estimate

uncertainty, specifically how the separation between epistemic and aleatoric uncertainty

could be computed.

A broader follow-up question to the work presented in this thesis is how the brain develops

tools for meta-cognitive abilities. For example, part of the information required to compute

optimal control within the learning effort framework includes the learning dynamics of

the agent, an integration of learning over time, and noise estimations of the data. In the

uncertainty-prioritized replay application, the separation between epistemic and aleatoric

uncertainty requires computing ensemble disagreement. These quantities are properties

of the learning system itself and thus represent a form of meta-cognition.

Meta-cognition is the ability of an agent to be aware of it’s own cognitive processes and to

use that information to regulate them (Fleur et al., 2021). It is required to appropriately

control learning and to estimate epistemic uncertainty, as previously discussed. Meta-

cognition has been broadly studied in cognitive neuroscience. In a review by Fleming

(2024), the author seeks to unify the concept of confidence in neuroscience, mostly focused

on the visual or motor systems at a subpersonal-level representation of uncertainty, with

the concept of meta-cognition in cognitive science, which corresponds to beliefs and the

agent’s knowledge about its own performance, at a personal-level, also called propositional

confidence (Pouget et al., 2016).

This propositional confidence can be constructed through an inferential process: first,
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computing a posterior distribution of possible stimuli based on a measurement (sensory

uncertainty), then computing the probability of each scenario and set of actions given that

sensory uncertainty. Hence, propositional confidence corresponds to the probability that

each scenario, or a specific action, is the correct one to achieve a goal. This propositional

confidence is not fully determined by sensory uncertainty, as it can also be corrected by a

self-model, which provides knowledge of the inner workings of the agent’s own perceptions

and mental processes (Nelson, 1990; Olop et al., 2024).

This work provides a useful framework to understand how an agent could decompose

epistemic and aleatoric uncertainty. For instance, sensory uncertainty could correspond

to an estimate of aleatoric uncertainty. Knowledge about how learning works, i.e., a

self-model, such as improvement with practice, and the existence of noisy distractions,

such as a noisy TV, could provide knowledge of epistemic uncertainty. This information

is then integrated to generate propositional confidence, in the form of an appropriate

policy for exploring a noisy environment.

Similar mechanisms could be applied to the meta-learning framework when inferring

optimal control over learning. Some of the required information is available at the sensory

level, e.g., stimulus noise or task features, while other information is at the self-model

level, such as the effect of control over learning dynamics, presumably learned through

multiple learning opportunities or by instruction (Olop et al., 2024), understanding

the opportunity costs of engaging in a task (Agrawal et al., 2022), weighting against

aversion to cognitive load (Kool and Botvinick, 2018), or even considering the opportunity

cost of the time required to compute an optimal policy for a given trial or overall task

(Gershman and Burke, 2023). Further testing of both the meta-learning framework and

the uncertainty decomposition of experiences requires considering the agent’s access to its

own meta-cognitive information.

While it is reasonable to assume that complex intelligence models might achieve meta-
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cognition due to their large capacity and the pressure of solving problems that require

knowledge of itself, it remains unclear how such abilities emerge from training or what

computational principles underlie meta-cognition. Models of the allocation of control

in learning have been proposed, such as a hierarchical RL model where higher levels in

the hierarchy correspond to more abstract meta-cognitive information (Silvetti et al.,

2023), learning control based on episodic memory generalization (Giallanza et al., 2024),

or rule-based control guided by instructions or imitation (Fleur et al., 2021; Olop et al.,

2024).

Broader Speculations

The learning effort framework provides a means to compute optimal control that maximizes

cumulative reward throughout learning. This control is presumably exerted by high-level

executive functions, which is reasonable given that it requires more complex computations

compared to the simpler process of learning. This suggests that, since higher-level

executive functions develop later, both in developmental and evolutionary time scales, any

form of control implemented in the brain may be tightly constrained by the pre-existing

dynamics of neural networks.

This hypothesis is further supported by the use of control to resolve ambiguities, as

seen in the Stroop task, and to mitigate intrinsic computational challenges in neural

networks, such as interference between task representations (Musslick and Masís, 2023)

or stability vs flexibility trade-offs in attentional stated (Dreisbach et al., 2024). Under

this perspective, control may generally exist to overcome the limitations of

the neural substrate in implementing computations, an idea previously explored

by Musslick et al. (2020); Musslick and Masís (2023).

The primary discussion has focused on the control of learning, specifically the optimization

problem presented in chapter 3. This can be further generalized or framed as the effect

of a relevant variable on a dynamical system, meaning that control is not necessarily
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restricted to learning. Alternative formulations could include optimizing an architecture

that remains advantageous throughout an agent’s lifespan or meta-optimizing inputs

to a network such that the induced activity remains useful over a relevant time frame,

an approach directly related to replay. In other words, aspects beyond control could

be examined within a meta-learning framework, where the dynamical system resembles

a brain-like structure with its respective time scales. For instance, shorter time scales,

perhaps within decision-making, could correspond to the control of decision-making as

discussed in this work. Longer time scales in the meta-objective could help elucidate

advantages in development occurring throughout an organism’s lifespan, and even longer

time scales could be considered to study emergent evolutionary advantages. Complex

brain functions, such as replay (Mattar and Daw, 2018; Thompson et al., 2024), specific

architectures or modularity (Russo et al., 2014; Saxe et al., 2022), or preparatory periods

in the motor cortex (Churchland et al., 2010), may simply emerge as by-products of

developmental or evolutionary solutions. These solutions are constrained by the fact that

computations are implemented in a neural network, which is subject to a given dynamics

defined by its physical constraints. Notably, the objective function that maximizes reward

collected within a given time frame is highly expressive (Abel et al., 2021; Silver et al.,

2021). It can be leveraged to construct additional meta-objectives operating on longer

time scales or even fitness-like objectives akin to those in evolutionary computation.

The learning effort framework provides a tool for studying the control of learning and

could be applied to other phenomena in cognitive neuroscience and machine learning by

offering a naturalistic normative framework for analyzing features observed in biological

systems. The study of learning control is entangled with learning itself, meaning

that learning will never be fully understood without elucidating its control

counterpart.
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Appendix A

Meta-Learning Strategies through Value

Maximization in Neural Networks

A.1 Further related work

In recent years, several meta-learning algorithms have been proposed to solve a variety

of meta-learning tasks, such as fast-adaptation (Finn et al., 2017; Nichol et al., 2018),

continual-learning (Parisi et al., 2019), and multi-tasking (Crawshaw, 2020; Sagiv et al.,

2020; Ravi et al., 2021; Musslick et al., 2020). Because these tasks have different goals,

the specific design of the meta-learning algorithm used to solve each task differs.

One popular application for meta-learning algorithms is reinforcement learning (RL). RL

agents use a policy to choose actions to maximize the expected return. The policy is

usually based on a value function (or action-value), linking particular actions to values,

that agents learn to estimate through experience (Mnih et al., 2015; Wang et al., 2017). For

the agent to act optimally, the policy requires a good estimation of the value function. For

single tasks, this is typically not hard, but agents struggle when they must solve more than

one task. To aid this difficulty, researchers implement meta-learning strategies, such as
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enhancing exploration (Gupta et al., 2018; Liu et al., 2021), re-using experiences through

a memory buffer (Ritter et al., 2018), exposing the agent to a large number of tasks from

a task distribution (Wang et al., 2017; Team et al., 2021), and choosing the order of those

tasks carefully (Stergiadis et al., 2021; Zhang et al., 2022) with the hope that the agent

performs well on each of these tasks in the task distribution. Indeed, several techniques

improve the performance of reinforcement learning agents (Hessel et al., 2017; Obando-

Ceron and Castro, 2021; Kanervisto et al., 2021), but there are two main issues with

these approaches. First, these techniques are usually designed manually and specifically

for the tasks at hand. Second, how the learning dynamics depend on these techniques

remains unclear. The combined effects of the agent-environment interaction dynamics and

the value estimation during training make analyzing learning dynamics on these models

remarkably challenging. A technique that could autonomously generate a meta-learning

strategy a priori by leveraging analysis of the learning dynamics would address these

issues and potentially improve the understanding, performance, and flexibility of these

types of models.

Learning dynamics has been widely studied in the context of neural network training,

where the goal in these cases is to minimize a loss function. In particular, deep linear

networks (Saxe et al., 2019; Zenke et al., 2017; Li and Sompolinsky, 2021; Braun et al.,

2022), gated linear networks (Saxe et al., 2022; Li and Sompolinsky, 2022), have been useful

to analyze learning dynamics, due to their mathematical tractability and still complex

(non-linear) learning dynamics. Having access to the learning dynamics allows us to test

the learning system under different conditions (tasks, architectures, hyperparameters, etc)

and draw conclusions, either from mathematical analysis or simulations on how these

conditions affect learning during the training period. Further techniques to describe

learning dynamics exist, which have their drawbacks in terms of mathematical and

computational tractability, or required limits in input or hidden dimensionality to obtain

closed-form differential equations describing the dynamics. Some of these frameworks
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are the teacher-student settings (Goldt et al., 2019; Ye and Bors, 2022), and mean-field

theory for neural networks (Mignacco et al., 2020; Bordelon and Pehlevan, 2022), recently

applied to temporal difference learning (Bordelon et al., 2023). These methods present a

promising direction to extend our framework to non-linear networks and reinforcement

learning dynamics.

In this work, we propose a new framework called learning effort, where we combine

the goal of maximizing value, with neural network learning dynamics, by making the

regression loss during training proportional to the reward of the learning system (in

this case, a neural network). This has several advantages. First, in practice, this choice

makes the problem of estimating value equivalent to estimating the learning dynamics.

Because the loss function during training can be obtained from fully solving the learning

dynamics, then the reward throughout training is also solved (similar to Zenke et al. 2017).

Second, taking advantage of the partial tractability of linear networks, and approximating

non-linear network dynamical equations, we are able to draw conclusions on how some

parameters interact with the learning dynamics when maximizing the value. Using this

framework, we define a control signal, that at a cost, can modify the learning dynamics

to maximize value during training. Furthermore, any network parameter that is not

subject to the learning dynamics could be chosen as this control signal to maximize value.

Previous work has addressed these questions by assuming a learning trajectory, where the

functional form is fixed, hence not considering possible changes in the trajectory due to the

time-varying control (Son and Sethi, 2006, 2010). Other work along these lines improves

this by training complex learning systems and learning the value function to estimate the

optimal control signal (Musslick et al.; Lieder et al., 2018). Some meta-learning algorithms

such as MAML (Finn et al., 2017) and bilevel optimization methods (Franceschi et al.,

2018; Andreas et al., 2017) can be encapsulated under our framework as explained in

Section 3.3 in the main manuscript.

We used this framework to investigate different kinds of intervention of the control signal
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in the learning process, finding what are optimal strategies when facing a meta-learning

task, including when the use of the control signal is costly. Using this setting, we can ask

questions such as how to optimally allocate control to speed up learning while minimizing

the use of it, how to train the network to switch tasks quickly, or what is the optimal level

of attention to a set of tasks, or even if it is worth to learn a specific task given the cost of

engaging on learning it, all by maximizing value during learning. Related work has used

similar bi-level optimization, but with different loss functions on each optimization level

(Zucchet and Sacramento, 2022). We provide the implementation for the work presented

here in https://anonymous.4open.science/r/neuromod-6A3C.

We further suggest that this same framework could be useful to analyze phenomena in

cognitive neuroscience, and that there is a correspondence of our learning effort framework

and the Expected Value of Control Theory (Shenhav et al., 2013; Musslick et al., 2020;

Masís et al., 2021).

A.2 Two-Layer linear network dynamics

Taking Ŷ = W2W1X, where X ∈ RI , Ŷ ∈ RO, W1(t) ∈ RH×I and W2(t) ∈ RO×H are

the first and second layer weights (dropping time dependency of the weights to simplify

notation), the loss function is

L =
1

2
∥Y − Ŷ ∥2 + λ

2

(
∥W2∥2F + ∥W1∥2F

)
, (A.1)

=
1

2
Tr

((
Y − Ŷ

)(
Y − Ŷ

)T)
+
λ

2

(
∥W2∥2F + ∥W1∥2F

)
, (A.2)

=
1

2

[
Tr
(
Y Y T

)
− 2Tr

(
Y XTW T

1 W
T
2

)
+ Tr

(
W2W1XX

TW T
1 W

T
2

)]
+
λ

2

(
∥W2∥2F + ∥W1∥2F

)
.

(A.3)

Taking the derivative of L with respect to the weightsW2 andW1, in general ∂
∂W

Tr
(
AW TB

)
=
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BA and ∂
∂W

Tr
(
AWBW TC

)
= ATCTWBT + CAWB, then we get

∂L
∂W1

= −W T
2 Y X

T +W T
2 W2W1XX

T + λW1, (A.4)

∂L
∂W2

= −Y XTW T
1 +W2W1XX

TW T
1 + λW2. (A.5)

Updating the weights using gradients steps (layers i = {1, 2}, gradient step iteration index

k, and sample index b from a batch with size B) gives

Wi(tk+1) = Wi(tk+1)− α
1

B

B∑

b=1

∂L(Yb, Xb)

∂Wi

. (A.6)

Taking the gradient flow limit α→ 0, number of samples given to the model per unit of

time goes to infinity, converting the average to an expectation over samples (Saxe et al.,

2019; Elkabetz and Cohen, 2021),

τw
dWi

dt
= −

〈
∂L
∂Wi

〉
, (A.7)

obtaining

τw
dW1

dt
= W T

2

(
ΣT
xy −W2W1Σx

)
− λW1, (A.8)

τw
dW2

dt
=
(
ΣT
xy −W2W1Σx

)
W T

1 − λW2. (A.9)

Note that, both equations, the input-output mapping ant the learning dynamics are valid

simultaneously, then describing the learning system as forward and backward happening

at the same time.
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A.3 Gain modulation

In this model, all weights are multiplied by a gain term, which we will optimize to

maximize the expected return. The input-output equation of the neural network with

gain modulation is Ŷ =
(
W2 ◦ G̃2

)(
W1 ◦ G̃1

)
X = W̃2W̃1X and G̃i = (1i +Gi), where

1 is a matrix of ones, and 1i, Gi having the same shape as Wi (again dropping time

dependence for weights and gain for notation simplicity), then the loss is

L =
1

2

[
Tr
(
Y Y T

)
− 2Tr

(
Y XT W̃ T

1 W̃
T
2

)
+ Tr

(
W̃2W̃1XX

T W̃ T
1 W̃

T
2

)]
+

1

2

(
∥W2∥2F + ∥W1∥2F

)
.

(A.10)

In general

∂

∂W
Tr
(
AW̃ TB

)
= (BA) ◦G (A.11)

∂

∂W
Tr
(
AW̃BW̃ TC

)
=
(
ATCT W̃B + CAW̃BT

)
◦G. (A.12)

Following the same procedure as in section A.2, we can derive the learning dynamics

equations for the weights when using gain modulation:

τw
dW1

dt
=
(
W̃ T

2 Σ
T
xy

)
◦ G̃1 −

(
W̃ T

2 W̃2W̃1Σx

)
◦ G̃1 − λW1,

τw
dW2

dt
=
(
ΣT
xyW̃

T
1

)
◦ G̃2 −

(
W̃2W̃1ΣxW̃

T
1

)
◦ G̃2 − λW2. (A.13)

The G2 and G1 that optimize value can be computed iterating

Gk+1
i (ti) = Gk

i (ti) + αg
dV

dGi(ti)
(A.14)

using algorithm 1.
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A.3.1 Control basis

For a set of weights Wi() ∈ Rm×n, then Gi(t) ∈ Rm×n such that W̃i(t) = Wi(t)◦(1+Gi(t)),

we can write the control signal as a projection on a basis

Gi(t) =
∑

b

νbi (t)G
b
i . (A.15)

Note that the time dependency of Gi(t) comes from νbi which is the variable it is optimized,

instead of Gi(t) directly.

Neuron Basis: Take b indexing a row (or column) of a matrix ∈ Rm×n, then Gb
i has row

(or column) as 1s, and 0 everywhere else. For example, if b indexes the rows of Gb
i , then

Gb
i = row b→




0 0 · · · 0
...

...
...

...

0 0 · · · 0

1 1 · · · 1

0 0 · · · 0
...

...
...

...

0 0 · · · 0




. (A.16)

This is called neuron basis since νbi (t) will end up multiplying all of the weights connecting

a specific neuron b. For example, in the previous Gb
i where the rows are 1s, using this

gain modulation on the second layer W2, means that νbi (t) will multiply the output b of

the layer. Changing this by columns means modulation of the input weights per each

hidden unit. In this case, the iterations on the control signal to maximize the expected

return in equation 3.3, following algorithm 1 is

νk+1
i (ti) = νki (ti) + αg

dV

dνi(ti)
. (A.17)
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This procedure was used in the category assimilation task on MNIST and the Semantic

Datasetm but with the specific restriction of using a neuron basis for G2(t) as in equation

A.15, while keeping G1(t) = 0 (no gain modulation on the first layer). The neuron basis

on the output neurons allows the control signal to change the gain on specific output

neurons, therefore changing the gain of the learning signal from a specific category in a

classification task. See the results of this specific model in Appendix A.9.8.

A.4 Dataset Engagement modulation

In the engagement modulation, the auxiliary loss used to derive the learning dynamics

equation, in this case, is given by

Laux =
Nτ∑

τ=1

ψτ (t)L(Ŷτ , Yτ ) +
λ

2

(
∥W2∥2F + ∥W1∥2F

)
, (A.18)

where Nτ is the number of available datasets, ψτ (t) are the engagement coefficients

for dataset τ , Ŷτ and Yτ are the predictions and target for dataset τ . The network

can simultaneously try to solve all of the dataset at the same time since the inputs

and outputs per task are concatenated as XT = [XT
1 , ..., X

T
τ , ..., X

T
Nτ
] ∈ RI and Y T =

[Y T
1 , ..., Y

T
τ , ..., Y

T
Nτ
] ∈ RO. Then, taking the gradient with respect to the weights, and

taking the gradient flow limit we obtain equation 3.22. In this equation, Σx =
〈
XXT

〉

can be expressed as the statistics of each tasks following

Σx =




Σ1 . . . ⟨X1⟩ ⟨Xτ ⟩T . . . ⟨X1⟩ ⟨XNτ ⟩T
... . . .

⟨Xτ ⟩ ⟨X1⟩T Στ

... . . .

⟨XNτ ⟩ ⟨X1⟩T ΣNτ




, (A.19)
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with Στ =
〈
XτX

T
τ

〉
. Since the target Yτ is only correlated to the input Xτ , the input-

output correlation matrix Σxyτ ∈ RI×O is

Σxyτ =




0 . . . 0 . . . ⟨X1⟩ ⟨Yτ ⟩T . . . 0 . . . 0
...

...
...

0 . . . 0 . . . ⟨XτYτ ⟩T . . . 0 . . . 0
...

...
...

0 . . . 0 . . . ⟨XNτ ⟩ ⟨Yτ ⟩T . . . 0 . . . 0




︸ ︷︷ ︸
output size O

. (A.20)

The rows of W2τ ∈ RO×H are replaced with zeros for outputs not contributing to Ŷτ .

From here, the ψτ (t) that optimize value can be computed iterating

ψk+1
τ (ti) = ψkτ (ti) + αg

dV

dψτ (ti)
(A.21)

using algorithm 1.

A.5 Category engagement modulation

This derivation is similar to the engagement modulation, but the engagement coefficient

scales the error coming from each of the categories from a classification problem. The loss

function is just the mean square error between the labels and the output of the network.

The auxiliary loss used to derive the learning dynamics equations can be written as

Laux =
1

2

C∑

c=1

[ϕc(yc − ŷc)]2 +
λ

2

(
∥W2∥2F + ∥W1∥2F

)
, (A.22)

=
1

2

[
d (ϕ) (Y − Ŷ )

]2
+
λ

2

(
∥W2∥2F + ∥W1∥2F

)
(A.23)
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with d(ϕ) = diag(ϕ) and ϕ = [ϕ1, ..., ϕc, ..., ϕC ]
T . Then, deriving the learning dynamics

equation by learning the weights using backpropagation (as in Appendix 3.5) we obtain

τw
dW1

dt
= W T

2 d(ϕ)2ΣT
xy −W T

2 d(ϕ)2W2W1Σx − λW1,

τw
dW2

dt
= d(ϕ)2ΣT

xyW
T
1 − d(ϕ)2W2W1ΣxW

T
1 − λW1. (A.24)

The reason for this slight variation compared to the task engagement model, is because

for the category engage case, we assume we do not have access to
〈
XcX

T
c

〉
or
〈
XcY

T
c

〉

which are class-specific quantities of the dataset. From here, the ϕc(t) that optimize value

can be computed iterating

ϕk+1
c (ti) = ϕkc (ti) + αg

dV

dϕc(ti)
(A.25)

using algorithm 1.

Class proportion experiment: We trained a neural network (same architecture as in

this section), and modifying the proportion of classes through time using the category

engagement inferred from the optimization. The number of elements per class bc(ti) in a

batch of size B used in this experiment is

bc(ti) =
ϕc(ti)B

C
(A.26)

with i indexing the SGD iteration on training the weights W1 and W2.

A.6 Non-linear Two-layer Network

As a first approach to applying this same learning effort framework in non-linear networks,

we approximated the dynamics by Taylor expanding the non-linearities around the mean

to get equations depending on first and second moment of the data distribution. Consider
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a neural network of the form Ŷ = W2f(W1X) where f is a non-linear function (tanh(·)
used in simulations). Following the same setting and procedure as in Appendix section A.2,

the loss function can be written as

L =
1

2

[
Tr
(
Y Y T

)
− 2Tr

(
Y TW2f(W1X)

)
+ Tr

(
f(W1X)TW T

2 W2f(W1X)
)]

(A.27)

+
1

2

(
∥W2∥2F + ∥W1∥2F

)
. (A.28)

Taking the derivative of L with respect to Wi, updating by gradient descend and taking

the gradient flow limit as in equations A.6 and A.7, we obtain

τw
dW2

dt
=
〈
Y f(W1X)T −W2f(W1X)f(W1X)T

〉
XY
− λW2, (A.29)

τw
dW1

dt
=
〈
diag(f ′)W T

2 Y X
T − (W2diag(f ′))

T
(W2f(W1X))XT

〉
XY
− λW1, (A.30)

with f ′ = f ′(W1X) is the element-wise application of the non-linear function derivative

on W1X, and diag(f ′) a diagonal matrix with f ′ in the diagonal. Now we take the Taylor

expansion of f around the mean of the data distribution,

f (W1X) ≈ f (W1 ⟨X⟩) + J(W1 ⟨X⟩)(X − ⟨X⟩) with J = W1diag(f ′(W1 ⟨X⟩)). (A.31)

Replacing this expansion in equations A.29 and A.30, using f ′ = f ′(W1 ⟨X⟩) then taking

the expectation ⟨·⟩XY we obtain

τw
dW2

dt
≈⟨Y ⟩ f (W1X)T +

[
ΣT
xy + ⟨Y ⟩ ⟨X⟩J

]
JT

−W2

[
f (W1X) f (W1X)T + JΣxJ

T + J ⟨X⟩ ⟨X⟩T JT
]
− λW2

τw
dW1

dt
≈diag(f ′)

[
W T

2 Σ
T
xy −W T

2 W2f (W1X)XTW T
2 W2JΣxW

T
2 W2J ⟨X⟩ ⟨X⟩T

]
− λW1.

(A.32)
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In case of using gain modulation, Ŷ = W̃2f
(
W̃1X

)
as in Section A.3. Executing same

steps as for the case without control (see Appendix A.3), the approximated learning

dynamics for the gain modulation case is

τw
dW2

dt
≈
(
⟨Y ⟩ f

(
W̃1X

)T
+
[
ΣT
xy + ⟨Y ⟩ ⟨X⟩J

]
JT
)
◦ G̃2

−
(
W̃2

[
f
(
W̃1X

)
f
(
W̃1X

)T
+ JΣxJ

T + J ⟨X⟩ ⟨X⟩T JT
])
◦ G̃2 − λW2,

τw
dW1

dt
≈
(
diag(f ′)

[
W̃ T

2 Σ
T
xy − W̃ T

2 W̃2f
(
W̃1X

)
XT W̃ T

2 W̃2JΣxW̃
T
2 W̃2J ⟨X⟩ ⟨X⟩T

])
◦ G̃1 − λW1,

(A.33)

where f ′ = f ′(W̃1 ⟨X⟩) and J = W̃1diag(f ′(W̃1 ⟨X⟩)). The G2 and G1 that optimize value

can be computed iterating

Gk+1
i (ti) = Gk

i (ti) + αg
dV

dGi(ti)
(A.34)

using algorithm 1. The obtained Gi(t) from this optimization process are plugged into

Ŷ = W̃2f
(
W̃1X

)
, then trained using SGD to check how much of improvement we get

using the computed control signal inferred using the approximated dynamics. The results

for this model are depicted in Figure A.14.

A.7 Closed form Accuracy and Gradient

Here, the accuracy and gradient of the epistemic noise control model are derived in closed

form. Consider the decision variable ŷ = sign(w(t)x+ η), given that P (y = 1) = P (y =

−1) = 1/2, x ∼ N (µx, σ
2
x) and η ∼ N (0, σ2

0), the probability of the model answering
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correctly is given by

a(t) = P (y(xw +
η

(1 + g(t)2)
) > 0), (A.35)

= P ((xw +
η

(1 + g(t)2
)) > 0|y = 1)P (y = 1) (A.36)

+ P ((xw +
η

(1 + g(t)2)
) < 0|y = −1)P (y = −1), (A.37)

= P ((xw +
η

(1 + g(t)2)
) > 0|y = 1), (A.38)

=
1

2


1 + erf


 µxw(t)
√
2
√
w2(t)σ2

x +
σ2
0

(1+g)2




 , (A.39)

where the error function comes from a truncated integral of xw+η ∼ N (µxw(t), w
2(t)σ2

x+

σ2
0/(1 + g)2. The gradient of the accuracy with respect to the weight w gives

da(t)

dw
=

1√
π
e−

SNR
2 · d

dw


 µxw(t)
√
2
√
w2(t)σ2

x +
σ2
0

(1+g)2


 (A.40)

=
1√
π
e−

SNR
2


 µx
√
2
√
w2(t)σ2

x +
σ2
0

(1+g)2

− µxσ
2
xw

2(t)
√
2
(√

w2(t)σ2
x + σ2

0/(1 + g)2
)3


 . (A.41)

From here, it is easy to show that the difference on the right-hand side is larger than zero

for σ2
0 > 0, otherwise, the gradient is zero, therefore, there is no need for learning.

A.8 Dataset Details

Correlated gaussians: Toy dataset with correlated gaussian inputs. We sample y1

as ±1 with probability 1/2. Then sample y2 = y1(1 − 2ξ) with ξ ∼ Ber(p), if p = 1/2

then the labels are independent. We generate the input xi ∼ N (yiµi, σ
2
i ), then taking

X = [x1, x2]
T and Y = [y1, y2]

T . From this data distribution process, we can analytically
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compute Σx =
〈
XXT

〉
, Σxy =

〈
XY T

〉
as Σy =

〈
Y Y T

〉

Σx =


 µ2

1 + σ2
1 µ1µ2(1− 2p)

µ1µ2(1− 2p) µ2
1 + σ2

1


 , Σxy =


 µ1 µ1(1− 2p)

µ2(1− 2p) µ2


 and Σy =


 1 1− 2p

1− 2p 1


 .

(A.42)

⟨X⟩ = 0 and ⟨Y ⟩ = 0.

Hierarchical concepts: This is a semantic learning dataset used in (Saxe et al., 2019;

Braun et al., 2022) to study learning dynamics when learning a hierarchy of concepts.

This task allows linear neural networks to present rich learning (opposite to lazy learning,

see (Chizat et al., 2020; Flesch et al., 2022)) when using a small weight initialization. The

rich regime shows a step-like learning dynamics where each step represents a learning of

a different hierarchy level. In this dataset, Σx and Σxy have a close form, for example, for

a hierarchy of 3 levels,

Σx = I4, Σxy =




1 1 1 1

1 1 0 0

0 0 1 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




and Σy = ΣT
xyΣxy (A.43)

where In is the identity matrix of size n. ⟨X⟩j = 1
I

∑I
j=1 (Σx)ji and ⟨Y ⟩j = 1

I

∑I
j=1 (Σxy)ji.

Samples from this dataset are simply X as a random column from the identity matrix

and Y as the corresponding column from Σxy.

MNIST: This is a classification task of hand-written digits (Deng, 2012). Images from

this dataset were reduced to 5× 5 and flattened. We estimated the correlation matrices,

245



University College London

Σ̂x, Σ̂xy and Σ̂y by taking the expectation over the samples in the training set.

A.9 Additional results

Here we present extra Figures and discussion to some of the results from the main text.

A.9.1 Single Neuron Model

We did several runs varying some hyperparameters of the system to see the effect on the

optimal control signal and the improvement in the instant reward rate v(t).
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Figure A.1: Results of hyperparameter variations for the single neuron case. (a) and (d):
optimal control signal g(t) and difference between instant net reward using control vC(t)
and the baseline (no control) net reward vB(t), for the variations of the cost coefficient
β. Panels (b) and (e) and (c) and (f) are same results but varying regularization
coefficient λ and available time to learn T .

A.9.2 Extended results for Meta-Learning

Our optimization framework is related to other meta-learning algorithms in the machine

learning literature. Here we provide a formal description of the relation between our fram-

work and two well-established meta-learning algorithms, Model-Agnostic Meta-learning

for Fast Adaptation of Deep Networks (MAML, Finn et al. 2017) and Bilevel Programming
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for Hyperparameter Optimization and Meta-Learning (Franceschi et al., 2018), as well as

simulations details of the results shown in Figure 3.4 in Section 3.3.

We highlight that there are scalable meta-learning algorithm methods in the literature

(Rajeswaran et al., 2019; Deleu et al., 2022) which are able to meta-learn variables in

state-of-the-art architectures. However, these methods rely on simplifying the meta

objective, restricting the meta-variables (making them smaller for tractability), or using

extra iterative processes to approximate gradients. This is fundamentally different from

what we are able to achieve in our framework. In most experiments of our paper, each

step in our outer loop considers the entire inner loop learning trajectory and computes

the gradient of the meta-loss at all time steps to capture the effect of the meta-parameters

across the entire learning trajectory, not just the last step as in the referenced work.

In addition, our meta-parameters can be as complex as the (size of the network) times

(inner loop training iterations), in other words, our meta-variables also depend on time,

increasing the complexity of the optimization problem. We are solving the full complex

meta-learning problem (which is the desired target in both references), by considering a

simpler model, instead of approximating our computation. This will provide insight on

the ideal meta-objective in complex non-linear learning dynamics which is intractable in

large state-of-the-art learning architectures.

A.9.3 Model Agnostic Meta-Learning

Simulation results are shown in Figure A.2 and A.3 for the MAML equivalent with the

learning effort framework presented in subsection 3.3.1, and works as follows: We created

a set of tasks Ti with pairs of MNIST numbers, (0, 1), (7, 1), (8, 9), (3, 8) and (5, 3) (see

App. A.8). Then we picked a range of time-steps to consider during the optimization of

the initial weights g (control signal) made with a from a linspace starting from 1 to 340

(including) every 20 steps (except between 1 to 20 where there is a difference of 19), we

call these Optimized steps as in Figure A.2 and A.3. We evaluate how good is the loss
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dynamics starting from the optimized initial conditions g throughout 8000 updates steps

on each task as shown in Figure A.2 and A.3 as eval steps. We obtain the cumulative loss

eval steps in Figure A.3 by integrating these dynamics throughout the evaluation time

after optimizing initial conditions.
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Figure A.2: Simulating multi-step MAML with the learning effort framework: The
first row is the loss dynamics evaluated through 8000 updates steps, starting from the
optimized parameters found by MAML, the color code shows the number of optimized
steps considered in the meta-objective (1 step is standard MAML). The second row shows
the one step ahead when considering different number of optimized steps (same color
code), in other words, it is the first loss value from the curves in the first row. From (a)
to (e) columns, the results for the binary regression tasks for MNIST pairs (0, 1), (7, 1),
(8, 9), (3, 8) and (5, 3) is shown respectively, with the last column (f) being the average
across tasks LMAML.

In Figure A.2, it is shown that considering more time-steps in the optimization (Optimized

steps) is beneficial for the resulting dynamics. The more steps are considered, the faster

the learning after optimizing for initial parameters. Something important to note is

that there is a qualitative difference in the optimization when considering 1 steps, vs

considering multiple steps. As mentioned in section 3.3, considering only one step ahead is

a myopic optimization initial condition. Immediately after considering a few steps ahead,

the loss dynamics in the evaluation steps is improve very quickly (Figure A.3), and the

one step ahead loss (the one considered when optimizing only one step) is reduced even

more after considering a few more optimized steps, as shown in Figure A.2l, presumably

because the gradient over the initial parameters can see the dynamics after one step ahead,

perhaps finding better solutions through looking at more steps ahead. Then, there is a

248



University College London

0 100 200 300
Optimized steps

2.5

3.0

3.5

4.0

C
um

ul
at

iv
e

lo
ss

ev
al

st
ep

s

(a)

Training

Test

0 500 1000 1500 2000
Control iterations

0.0

0.1

0.2

0.3

0.4

0.5

C
um

ul
at

iv
e

op
t

lo
ss

(b)

steps 1

steps 340

0 500 1000 1500 2000
Control iterations

0.2

0.3

0.4

0.5

0.6

0.7

N
or

m
.

cu
m

ul
at

iv
e

op
t

lo
ss

(c)

Figure A.3: Optimization results on Multi-step MAML. (a): Cumulative loss eval steps
(integral of curves in Figure A.2) evaluated on training and test sets in MNIST pairs.
(b): Actual loss considered during the optimization vs control iterations (finding the best
initial conditions W1(0) and W2(0)). (c): Same as (b) but normalized by its maximum
for visualization purposes.

transition, where after considering around 180 steps ahead (Figure A.2l), the one-step

ahead loss increases while improving the loss dynamics in the evaluation steps even more,

sacrificing immediate loss for a better overall cumulative dynamics. This hypothesis is

supported by looking at Figure A.3c where optimizing one step ahead converges in a few

iterations over the initial parameters g. In contrast, when considering more steps, the

optimization goes beyond this plateau and the speed at which this plateau is skipped

increases with the number of optimized steps considered. The myopic solution is not able

to optimize further since it doesn’t have information of the learning dynamics, which is

provided when considering multiple steps as shown by these results. In Table A.2 we

summarize the parameters used for the simulation.

A.9.4 Bilevel Programming

In Bilevel Programming (Franceschi et al., 2018) which unifies gradient-based hyper-

parameter optimization and meta-learning algorithms. They show an approximated

bilevel programming method and the conditions to guarantee convergence to the exact

problem. The setting described in this work show meta-learning problems as an inner and
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outer objective Lλ and E(w, λ) respectively, where w are the parameters of the model

and λ are the hyperparameters (equations 3 and 4 in (Franceschi et al., 2018)), and

the approximated problem corresponds to doing a few update steps only in the inner

objective, meaning the loss of the inner loop is not fully minimized. The first difference

between our setting and Bilevel Programming is the method they use to optimize the

meta-parameters called reverse-hypergradient method (Franceschi et al., 2017). Another

difference, is that we extend the bilevel optimization setting to have a normative meaning

through the inclusion of a control cost, discount factor and we further simplify it by

using the average learning dynamics obtained from using the gradient flow limit in the

two-layer linear network. As an example of this, we find the optimal learning rate α(t)

throughout learning that maximizes the value function for the semantic task, to give more

intuition on the impact of learning rate changes for complex step-like learning curves. In

our implementation, we find the optimal learning rate using a surrogate variable ρ(t) that

facilitates the optimization. We use the learning effort framework to train a two layer

linear network on the semantic dataset, just by modifying the learning dynamics as

τw
dW1

dt
= (1 + ρ(t))

[
W T

2

(
ΣT
xy −W2W1Σx

)
− λW1

]
, (A.44)

τw
dW2

dt
= (1 + ρ(t))

[(
ΣT
xy −W2W1Σx

)
W T

1 − λW2

]
. (A.45)

We define ρ(t) = g(t) as our control signal (effort signal), therefore with ρ = 0 we recover

the baseline learning dynamics of a network trained with SGD, and the effective learning

rate is α(t) = (1 + ρ(t))α with α the baseline learning rate. We set η = 1 and the

cost C(ρ(t)) = β (ρ− offset)2. The optimal learning rates α(t) and average training loss

resulting from the control signal are depicted in Figure A.4.

As mentioned in Section 3.3, the control signal as the learning rate presents qualitatively

the same behavior as in the single neuron case as shown in FIgure A.4. More control is

allocated when γ increases due to pay off in the future, and more control is used when β
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Figure A.4: Learning rate optimization. Top row: Optimal learning rates α(t). Bottom
row: Resulting average dynamics. (a), (b), (c) and (d): results when varying γ, (a) and
(b) when the offset = 0 (baseline dynamics has 0 cost), (c) and (d) when the offset= -1
(any dynamics is costly). (e), (f), (g) and (h): Results for varying β.

is decreased. The step-like shape in these plots is from learning each step in the hierarchy

of the semantic task. Something important to notice is the results in the last column of

Figure A.4, where depending on the cost of using control, the optimal solution is to learn

some, but not all of the levels of the hierarchy. A higher cost of control leads to fewer

levels learned in the hierarchy, meaning that deeper and harder levels in the structure

might not be worth it if it is too costly for learning effort. The parameters used for this

simulation are shown in Table A.3.

In Figure A.1 we show the results for these runs varying the cost coefficient β (Figures

A.1a and A.1d), the regularization coefficient for the L2 norm of the weights λ (Figures

A.1b and A.1e), and different available time to learn the task T (Figures A.1c and A.1f).

Increasing β leads to less control. Note that for β = 0 the amount of control does not

explode, since changing g(t) after learning the task will alter the input-output mapping

function, leading to an increase in the loss. Increasing λ leads to an overall similar amount

of control, but the control is sustained longer for higher λ, this is due to the high cost of

increasing the size of the weight w(t), which is absorbed by g(t) to get closer the optimal
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solution w∗, by making w̃(t) = w(t)(1 + g(t)) closer to w∗. To allow comparison, we

normalized the time axis for the variations of available time, this parameter does not seem

to change the control signal or instant reward rate within the time span to learn the task.

A.9.5 Effort Allocation

Here we present results and analysis of the gain modulation model trained on single

datasets. Figures A.5 and A.6 depict the results of the effort allocation using gain

modulation trained on the gaussian and semantic datasets respectively. As mentioned

in Section 3.6, in all cases the learning of the dataset is speed up by the learning effort

control signal. Most of the control is exerted in early stages of learning (to compensate

with reward in later high reward stages of training), with peaks around times when the

improvement in the loss is higher due to the weight learning dynamics, decaying to zero

at the end of the given time frame. The L2 norm of the weights is roughly higher when

using control throughout the training, but it converges to the same value for the baseline

and control case. Different are the trajectories for the L1 norm (measuring sparsity),

where the set of weights gets more sparse when using control, to minimize the cost of

using the control signal while keeping the effect of it over the weights still high. This

can be explicitly seen when training in all of the dataset when inspecting the weights

and control evolution through time, shown in Figures A.7, A.8 and A.9 for the gaussian,

semantic and MNIST datasets respectively. There is a cluster of weights that move

closer to zero compared to the baseline training, and a few weights (near the number of

non-zero gain coefficients in Gi(t)) become larger with time. Given that the input-output

mapping is linear
(
Ŷ = W̃2(t)W̃1(t)X

)
, the solution for the linear regression problem

(taking λ = 0 for simplicity) is given by W ∗ = W̃2W̃1 = ΣT
xyΣ

−1
x for both the baseline

and the gain modulation case, and both cases reach the global solution for the linear

regression problem (Fig. 3.8c). In the controlled case, because the instant net reward

v(t) also considers the cost of having G(t) ̸= 0, the purpose of the control is to change
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the learning dynamics and reach a solution such that W ∗ = W̃2W̃1 and G(t) = 0. Since

regularization is considered in the backpropagation dynamics, the weights for the baseline

and controlled case reach the same L2 norm, but the weights when optimizing control are

in general more sparse, as shown in the L1 norms throughout learning in Fig. 3.8b. The

reason for this is the over-parametrized nature of the network, having more parameters

W than the ones needed to solve the linear regression.
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Figure A.5: Results of the gain modulation model trained on the gaussian dataset. (a):
Instant net reward v(t), baseline vs controlled. (b): Loss L(t) throughout learning. (c):
L1 and L2 norms of the weights. (d): normalized dtL(t), and normalized L2 norm of the
control signal G1(t) and G2(t).

In the particular case of the effort allocation model trained on the semantic dataset, we can

see two other extra features. First, because we initialized the network with small weights

(∼ 10−4), we can see step-like transitions in the loss through time L(t), a regime known

as rich learning (Chizat et al., 2020; Flesch et al., 2022), where each step corresponds

to learning one of the hierarchical concepts in the dataset, from highest to lowest. In

this regime, the control signal is able to skip the plateaus when learning each level on

the hierarchy. In addition, the control signal is the highest just the first step and decays

exponentially until the end of training. We infer that the effect on the dynamics by the

control signal is not merely scaling the learning rate, but since each neuron has its own

independent gain modulation, the control signal can guide the complex learning dynamics

to avoid facing step-like transitions in the loss function.
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Figure A.6: Results of the gain modulation model trained on the semantic dataset. (a):
Instant net reward v(t), baseline vs controlled. (b): Loss L(t) throughout learning. (c):
L1 and L2 norms of the weights. (d): normalized dtL(t), and normalized L2 norm of the
control signal G1(t) and G2(t).
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Figure A.7: Weight and control signal evolution through training in the gaussian dataset
using the effort allocation task from Section 3.6. (a): First layer weights W1(t) (baseline
and control training depicted with solid and dashed lines respectively). (b): Second layer
weights W2(t). (c): First layer gain modulation G1(t). (d): Second layer gain modulation
G2(t). Each color corresponds to a specific weight, and colors match between plots of
weights and the control signal.

A.9.6 Task Switch

In Figures A.10 and A.11, additional results for the gain modulation model trained on the

task switch are presented. In Figure A.10, note that the weight norm for the controlled

case through the switches are larger. The cost of switching is transferred to the weights

by making them larger, so the use of the control signal is less costly when switching.

This can also be seen in Figure A.11, where the control signal is large only for a few

weights, which in the long terms are the ones that become larger, reducing also the size

of control needed to change the effective input-output transformation Ŷ = W̃2W̃1X. In
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Figure A.8: Weight and control signal evolution through training in the smantic dataset
using the effort allocation task from Section 3.6. (a): First layer weights W1(t) (baseline
and control training depicted with solid and dashed lines respectively). (b): Second layer
weights W2(t). (c): First layer gain modulation G1(t). (d): Second layer gain modulation
G2(t). Each color corresponds to a specific weight, and colors match between plots of
weights and the control signal.

addition, the weights when using control are grouped in two clusters, the ones influenced

by the control signal which have larger absolute values, and the rest are pushed near zero

(opposite to what is seen in the baseline case, with weights spread around zero). The

gain modulation allocates resources for every switch in only a few weights, while the rest

of the weights are pushed closer to zero to avoid interfering with the inference process

through when switching.

A.9.7 Task Engagement

The set of datasets for the task engagement experiment was chosen based on how hard

is to solve them with linear regression. In Figure A.12a the best achievable loss when

classifying MNIST digits using linear regression is depicted for pairs of digits. The pairs

used in the task engagement experiments, (0, 1), (7, 1) and (8, 9) have corresponding 0.02,

0.036, and 0.055 optimal loss L∗ respectively, therefore ordered from easiest to harder

according to this metric.
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Figure A.9: Weight and control signal evolution through training in the MNIST dataset
using the effort allocation task from Section 3.6. (a): First layer weights W1(t) (baseline
and control training depicted with solid and dashed lines respectively). (b): Second layer
weights W2(t). (c): First layer gain modulation G1(t). (d): Second layer gain modulation
G2(t). Each color corresponds to a specific weight, and colors match between plots of
weights and the control signal.

A.9.8 Category Assimilation

By taking the average across columns of the matrix in Figure A.12a, we obtained the

average minimum loss per digit when compared to any other digit, shown in Figure

A.12b (color bar with normalized values). When training the engagement modulation on

the category assimilation task (Results in Section 3.5), the order of learning numbers is

roughly the same as the difficulty in terms of linear separability. The easiest digits are

focused on first, then harder ones. According to the linear separability metric, the order

from easier to hardest are 0, 6, 1, 4, 7, 9, 2, 3, 8, 5, similar to what is depicted in Figure

3.6.

In addition to the engagement modulation model trained on the category assimilation

task, we trained a restricted gain modulation model using the neuron base as described

in Appendix A.3.1. In this model, the gain modulation for the first layer is disabled, then

the only extra parameter adjusted to maximize expected return in equation 3.3 are the

coefficients of the base νb2. These coefficients scale the response of output neurons in the

second layer, scaling the error signal, but also the value of the error signal itself (since it

is changing the mapping as well). The results are similar in terms of order of the order

of digits engaged through learning as shown in Figure A.13, but the effect in the loss
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Figure A.10: Additional results of the gain modulation model trained on the Task Switch.
(a): Instant net reward v(t), baseline vs controlled. (b): Loss L(t) throughout learning.
(c): L1 and L2 norms of the weights. (d): normalized dtL(t), and normalized L2 norm of
the control signal G1(t) and G2(t).

function is smaller because of the influence on the error signal (the value itself, not the

scaling). This effect can be made explicit when deriving the learning dynamics equations

for the weights (taking G1(t) = 0) (for example for W2), giving

τw
dW2

dt
=
[(

ΣT
xy − W̃2W1Σx

)
W T

1

]
◦ G̃2(t) (A.46)

= ν





ΣT

xy − νW2W1Σx︸ ︷︷ ︸
error signal


W T

1


 (A.47)

where ν is a diagonal matrix with the coefficients νb2(t) in the diagonal. Both the learning

rate per output (the ν outside the square parenthesis) and the error signal are influenced
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Figure A.11: Weight and control signal evolution through training in Task Switches.
(a): First layer weights W1(t). (b): Second layer weights W2(t). (c): First layer gain
modulation G1(t). (d): Second layer gain modulation G2(t). Each color corresponds to a
specific weight, and colors match between plots of weights and the control signal.

by these coefficients. In the case of the engagement modulation explained in section A.5,

the coefficients just scale the error signal in equation A.23.

A.9.9 Non-linear network

We used the gain modulation model (Effort Allocation experiment) to train a non-linear

network on the gaussian dataset. We used a Taylor expansion around the mean to obtain

an approximated equation for the non-linear dynatmics as explained in Appendix A.6.

Because the non-linear function chosen is tanh(·), and we initialize the network using

small weights, the learning dynamics of the non-linear network are near linear at the

beginning of the training, so the estimated weights and the real ones from SGD training

258



University College London

0 1 2 3 4 5 6 7 8 9
Digits

0

1

2

3

4

5

6

7

8

9

D
ig

it
s

(a)

0 1 2 3 4 5 6 7 8 9
Digits

0.00

0.01

0.02

0.03

0.04

0.05

A
ve

ra
ge

op
ti

m
al

lo
ss

(b)

0.00

0.02

0.04

0.06

0.08

L∗

0.0

0.2

0.4

0.6

0.8

1.0
L̂∗

Figure A.12: (a): Minimum error achievable L∗ when classifying between 2 digits (rows
and columns) using a linear classifier. (b): Average of minimum error achievable per digit
across all digits (average per row), color bar shows this normalized quantity.

are close as shown in Figure A.14 (panels (c), (d), (g), (h)). This is useful to estimate

the control signal since most of the control is exerted in the early stages of learning, as

depicted in Figures A.14i and A.14j (and in all linear networks testes throughout this

work). The obtained control signal using the approximated dynamics is still able to

improve training of the real non-linear network using SGD and gain modulation as shown

in Figures A.14a and A.14b.
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Figure A.13: Results for category assimilation task using the neuron base when restricting
the gain modulation model. (a) and (b): Improvement in the loss function when using
control for MNIST and Semantic dataset respectively. (c) and (d): Optimal category
engagement coefficients for MNIST and Semantic respectively.
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Figure A.14: Results of the learning effort framework in a non-linear network using a
linear approximation. (a) and (b): L(t) and v(t) respectively. Solid lines are numerical
solutions to the approximated learning dynamic for the baseline case in equation A.32 and
the control case in equation A.33. Simulation training the real non-linear network using
SGD shown in shaded lines, using the inferred gain modulation in the real non-linear
network when using control. (c) and (d): W1(t) and W2(t) respectively. In the baseline
training, comparing the numerical solution of the approximated dynamics in equation
A.32 (solid lines) with the weights from the simulation in the real non-linear network
trained using SGD (dashed lines). (e) and (f): L1 and L2 norms of the weights through
training. Solid lines are numerical solutions to the approximated learning dynamic for the
baseline case in equation A.32 and the control case in equation A.33. Simulation training
the real non-linear network using SGD shown in dashed lines, using the inferred gain
modulation in the real non-linear network when using control. (g) and (h): W1(t) and
W2(t) respectively. In the control case training, comparing the numerical solution of the
approximated dynamics in equation A.33 (solid lines) with the weights from the simulation
in the real non-linear network trained using SGD and using the gain modulation computed
to maximize expected return (dashed lines). (i) and (j): Control signals for first and
second layer G1(t) and G2(t) respectively.
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A.10 Simulation Parameters

Table A.1: Optimization Parameters for the single neuron example in Section 3.2.1, shown
in Figures 3.2 and A.1. Every other variable is constant when varying each particular
value of the parameter sweep.

Parameters notation Value

Network learning rate α 0.001
Regularization coefficient λ 0.1
Control lower bound gmin 0
Control upper bound gmax 0.5
Discount factor γ 0.99
Reward conversion η 1.0
Control cost coefficient β 0.3
Control learning rate αg 10.0
Control gradient updates K 700
Weight time scale τw 1.0
Available time (A.U.) T 600
Mean of Gaussians µ 2.0
Intrinsic Noise σx 1.0
Batch Size B 128

γ values sweep 10 ** (np.linspace(-8, 0, num=30, endpoint=True))
β values sweep np.linspace(1e-5, 2, num=30, endpoint=True)
σx values sweep np.linspace(1e-5, 5, num=30, endpoint=True)
λ values sweep np.linspace(0, 5, num=30, endpoint=True)
T values sweep [200 + i*50 for i in range(21)]
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Table A.2: Parameters used for MAML simulation in App. A.9.2. The distribution of
tasks where 5 MNIST pairs, (0, 1), (7, 1), (8, 9), (3, 8) and (5, 3), see App. A.8. Weights
initialized from a gaussian distribution centered at 0 with standard deviation of 0.01

Parameters notation value

Network learning rate α 0.005
Hidden units H 40
Regularization coefficient λ 0
Control lower bound gmin not bounded
Control upper bound gmax not bounded
Discount factor γ 1.0
Reward conversion η 1.0
Control cost coefficient β 0
Control learning rate αg 0.005 with ADAM
Control gradient updates K 2000
Weight time scale τw 1.0
Optimized steps T from 1 to 340 every 20

Table A.3: Parameters used for learning rate α(t) optimization in App. A.9.4. γ and β
where varied independently, keeping the default values when varying the other.

Parameters notation value

Network learning rate α 0.005
Hidden units H 40
Regularization coefficient λ 0
Control lower bound gmin -1
Control upper bound gmax 1
Reward conversion η 1.0
Control learning rate αg 0.005 with ADAM
Control gradient updates K 800
Weight time scale τw 1.0
Available time (A.U.) T 18000
default discount factor γ 1.0
default cost coefficient β 1.0

γ values sweep np.linspace(0.6, 1.0, num=10, endpoint=True)
β values sweep np.linspace(1e-3, 2, num=10, endpoint=True)
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Table A.4: Optimization Parameters for results in Section 3.5. Dataset parameters are
the following: For the Attentive, Active and Vector models, the three datasets used
are MNIST digits, being (0, 1), (7, 1) and (8, 9), each a binary classification task with a
batch size of 256, images reshaped to (5×5) and flattened. Eng. MNIST: all digits were
used with a batch size of 256, images reshaped to (5× 5) and flattened. Eng. Semantic:
Batch size of 32 and 4 hierarchy levels described in A.8. For every dataset, an extra 1
was concatenated to the input to account for the bias when multiplying by the weights.

Parameters notation Attentive Active Vector Eng MNIST Eng Semantic

Network learning rate α 0.005 0.005 0.005 0.05 0.005
Hidden units H 20 20 20 50 30
Regularization coefficient λ 0.0 0.0 0.0 0.0 0.0
Eng. Coef. lower bound ψmin, ϕmin 0.0 0.0 0.0 0.0 0.0
Eng. Coef. upper bound ψmax, ϕmax 2.0 1.0 2.0 2.0 2.0
Discount factor γ 0.99 0.99 0.99 0.99 0.99
Reward conversion η 1.0 1.0 1.0 1.0 1.0
Control cost coefficient β 0.1 0.1 0.1 5.0 5.0
Control learning rate αg 1.0 1.0 1.0 1.0 1.0
Control gradient updates K 800 800 800 600 600
Weight time scale τw 1.0 1.0 1.0 1.0 1.0
Available time (A.U.) T 13000 13000 13000 30000 18000

Table A.5: Optimization Parameters for results in Section 3.6 and Appendix A.6. Dataset
parameters are the following: MNIST: Batch size, 32; reshape size, (5× 5); Digits, (1, 3).
Gaussian and Non-linear: Batch size, 32; µ1 = 3, µ2 = 1, σ1 = 1, σ2 = 1, p = 0.8.
Semantic: Batch size, 32; hierarchy levels, 4. Task Switch: Gaussian 1: µ1 = 3, µ2 = 1,
σ1 = 1, σ2 = 1, p = 0.8; Gaussian 2: µ1 = −2, µ2 = 2, σ1 = 1, σ2 = 1, p = 0.2, switch
every 1800 iterations. For every dataset, an extra 1 was concatenated to the input to
account for the bias when multiplying by the weights.

Parameters notation MNIST Gaussians Semantic Task Switch Non-linear

Network learning rate α 0.005 0.005 0.005 0.005 0.001
Hidden units H 50 6 30 8 8
Regularization coefficient λ 0.01 0.01 0.01 0.001 0.0
Control lower bound gmin -0.5 -0.5 -0.5 -0.5 -0.5
Control upper bound gmin 0.5 0.5 0.5 0.5 0.5
Discount factor γ 0.99 0.99 0.99 0.99 0.99
Reward conversion η 1.0 1.0 1.0 1.0 1.0
Control cost coefficient β 0.3 0.3 0.3 0.3 0.3
Control learning rate αg 10.0 10.0 10.0 1.0 10.0
Control gradient updates K 1000 1000 1000 1000 500
Weight time scale τw 1.0 1.0 1.0 1.0 1.0
Available time (A.U.) T 16000 16000 16000 23000 10000

Results Figure 3.8 Figure A.5 Figure A.6 Figure 3.8 Figure A.14
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Appendix B

Uncertainty Prioritized Experience

Replay

B.1 Uncertainty decomposition in quantile regression

Here we provide some extra intuition on the difference between MSE curves when

prioritising by total uncertainty U , td-error δ|, estimated epistemic uncertainty Êδ and

true epistemic uncertainty E∗. Let’s start by considering a single agent trained using

quantile regression as explained in subsection 2.4.2. Consider the expected squared error

of all quantiles indexed by τ and the target distribution Z, also defined in subsection 5.2.1

as U :

U2 = Eτ,r∼Z
[
(r − θτ )2

]
= Er

[
r2
]
− 2Er[r]Eτ [θτ ] + Eτ

[
θ2τ
]
, (B.1)

= Vr [r] + r̄2 − 2r̄Q(a) +Q(a)2 + Vτ [θτ ] , (B.2)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

+ Vτ [θτ ]︸ ︷︷ ︸
Estimation variance

. (B.3)
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The first term is the true epistemic uncertainty E∗, second term and third term are the

variance from the target, and the estimation variance. When using the total uncertainty

as priority variable pi = U , the target and estimation uncertainty will be considered in the

priority, therefore oversampling the noisiest arm as shown in the sampling probabilities

depicted in Figures B.4 and B.5. When using the TD-error pi = |δi|, consider the expected

squared TD-error

Er
[
δ2
]
=
[
(r − Eτ [θτ ])2

]
, (B.4)

= (r̄ −Q(a))2︸ ︷︷ ︸
(E∗)2

+ Vr [r]︸ ︷︷ ︸
Target variance

. (B.5)

Therefore, the TD-error does not prioritise by estimation variance, but it includes the

target variance. Eventually, the target variance will be equal to the estimation variance,

but from the start of the training, this is not true. Hence, the TD-error will also oversample

the noisiest arm, but less compared to prioritising by total uncertainty U . In practice,

we do not have direct to Vr [r], in fact this is a quantity we are trying to estimate by

using quantile regression. We have implicit access to the true distance E∗ (epistemic

uncertainty) through the decomposition U = E +A as explain in subsection 2.4.3, which

is used to estimate epistemic uncertainty as in section 5.2. Prioritising using information

gain achieve similar results compare to the direct use of E∗ to prioritise replay. For further

discussion about epistemic uncertainty ratios, refer to B.2.3.

B.2 Prioritisation Quantities based on Uncertainty

B.2.1 Information gain derivation

Given the setup in subsection 5.2.2, consider a hypothetical dataset of points xi ∼
N (µx, σ

2
x). Our objective is to estimate the posterior distribution of the mean after observ-

ing one sample P (ν|xi) ∝ P (xi|ν)P (ν) with a prior distribution of the mean ν ∼ N (µ, σ2).
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Following the observation of a single sample xi, the posterior distribution is Gaussian

with variance σ2
ν = σ2σ2

x

σ2
x+σ

2 . Knowing that the entropy of a Gaussian random variable

is H(P (ν)) = 1/2 log(2πeσ2), we proceed to compute the information gain (or entropy

reduction) of the posterior distribution as

∆H = H(P (ν))−H(P (ν|xi)) (B.6)

=
1

2
log
(
2πeσ2

)
− 1

2
log

(
2πe

(
σ2σ2

x

σ2
x + σ2

))
(B.7)

=
1

2
log

(
1 +

σ2

σ2
x

)
. (B.8)

We consider σ2 = Êδ as a form of epistemic uncertainty that can be reduced by sampling

more points, and σ2
x = Â as aleatoric uncertainty, which is the underlying irreducible

noise of the data, giving a prioritisation variable

pi = ∆Hδ =
1

2
log

(
1 +
Êδ(s, a)
Â(s, a)

)
. (B.9)

As discussed in the main text, other form of priority variables pi can be effective in some

settings. We extend the discussion about uncertainty ratios in the following sections, and

show empirical results in the arm bandit task in B.3.

B.2.2 Variance as Uncertainty Estimation

To justify our choice of σ2 = Ê and σ2
x = Ê in the information gain described in

equation 5.12, we train an ensemble of distribution regressors to learn the mean from

Gaussian samples (µx = 2, σx = 1). This ensemble is compared to the Bayesian

posterior distribution of the mean (Gaussian prior, likelihood, and posterior) as detailed

in subsection 5.2.2. The ensemble, composed of 50 distribution quantile regressors, is

initialized with the same prior as the Bayesian model – a unit variance Gaussian centered

at 0 – by sampling 50 values from this prior and setting the initial mean of each quantile
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regressor accordingly. Both the ensemble and Bayesian models are trained using samples

from the data distribution. The ensemble training process follows the method described

in the paper, and where each regressor is updated with a probability of 0.5 to introduce

ensemble variability. The updates are performed using quantile regression as outlined in

subsection 2.4.2. At each time step, the ensemble’s estimated posterior is computed by

averaging the means of all regressors and calculating the variance of these means.

figure 5.1 (a) and (b) illustrate the posterior evolution of both models from the same

starting prior, given more samples. Both posteriors exhibit similar trends (the Bayesian

model converges faster to the mean, due to the use of TD-updates with a smaller learning

rate in the ensemble). In the Bayesian model, posterior sharpness is quantified by its

variance, σ2
ν , whereas for the ensemble, it corresponds to the epistemic uncertainty Ê from

equation 2.47. Both measures converge to zero, but at different rates figure 5.1d. The

aleatoric uncertainty of the data, by definition the variance σ2
x, is well approximated by Â

from equation 2.47, and shown in figure 5.1f. The slight underestimation of the variance

is a known issue in quantile regression, as quantiles often fail to capture lower probability

regions (figure 5.1c), leading to an underestimation of the distribution’s variance. Our

contribution to prioritization involves incorporating the distance to the target δΘ from

equation 5.10 (figure 5.1e). This approach prioritizes transitions not only based on the

reduction in posterior variance but also on the regressor’s proximity to the target.

B.2.3 Uncertainty Ratios

Having arrived at various methods for estimating epistemic and aleatoric uncertainty using

distributional reinforcement learning, we now consider how to construct prioritisation

variables from these estimates. Naively, one might consider prioritising directly using the

epistemic uncertainty estimate; but neglecting the inherent noise or aleatoric uncertainty

entirely ignores the ‘learnability’ of the data. Many methods in related learning domains

can be interpreted as incorporating both uncertainties, including Kalman learning (Welch
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and Bishop, 1995; Gershman, 2017), active learning (Cohn et al., 1994), weighted least-

squares regression (Greene, 2000), and corresponding extensions in deep learning and

reinforcement learning (Mai et al., 2022). To gain an intuition on how the choice

of functional form might impact our particular use-case of prioritisation for various

magnitudes of epistemic and aleatoric uncertainty.

E/A has desirable properties. For instance under Bayesian learning of Gaussian distribu-

tions, log(1 + E/A) maximises information gain (see subsection 5.2.2), but discontinuities

around very low noise must be dealt with—for instance by adding small constants to

the denominator. Normalising instead with the total uncertainty is another way of

handling the discontinuities. E2/U in particular corresponds to maximising reduction in

variance under Bayesian learning in the same Gaussian setting. Both of these forms have

the advantage over e.g. E/A of preferring low epistemic uncertainty for equal ratios of

epistemic and aleatoric uncertainties, i.e. they are not constant along the diagonal of

the phase diagram. More generally, it is difficult to say a priori which functional form is

optimal. Many factors, including the data distributions, model and learning rule will play

a role. Further discussion on these considerations can be found in subsection B.2.4. These

trade-offs are also borne out empirically in the experimental section 5.3 & section 5.4

below.

B.2.4 Bias as Temperature

Lahlou et al. (2022) and others make an equivalence between excess risk and epistemic

uncertainty. Concretely, if f ∗(x) is the Bayes optimal predictor, the excess risk is defined

as:

ER(f, x) = R(f, x)−R(f ∗, x), (B.10)

where R is the risk and R(f ∗, x) can be thought of as the aleatoric uncertainty.

One possible issue arises in overstating the connection between excess risk and epistemic
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uncertainty. Consider the case where there is model mis-specification, and f ∗ is not in the

model class; then assuming the model class is fixed (as is standard), then the lower bound

of ER(f, x) is non-zero. Stated differently, it is not fully reducible, which is often viewed

as a central property of epistemic uncertainty. For some applications this distinction

may not be important; there is some non-zero lower bound to the epistemic uncertainty

but the ordering and correlations are intact under this equivalence. But it could also

play a significant role. For us in particular, adopting this equivalence has two related

consequences:

1. The model mis-specification acts as a temperature for our prioritisation distribution;

2. The ratio, or more generally the functional form of our prioritisation variable, can

offset this temperature.

To make the above equation fully reducible, we would need to further subtract a term

capturing the difference between the Bayes predictor, and the best predictor in the model

class i.e. the model bias or mis-specification term. Let us denote this term by C, and

assume it constant over the domain. And let us denote the fully reducible uncertainty by

η. In the case where we use the excess risk, the prioritisation of sample i is given by

[Vanilla] pi =
ηi + C∑
i(ηi + C)

=
ηi + C

NC +
∑

i ηi
. (B.11)

It is easy to see how C acts as a temperature. In the limit of large C we get a uniform

distribution over samples. Similarly if C = 0 we recover the ‘true’ distribution for reducible

uncertainty.

It is of course hard to measure this model mis-specification term. In large networks

we can assume the capacity is unlikely to be restrictive, but perhaps other parts of the

training regime could play a part. Importantly, the above holds true not just for model

mis-specification, but also if there is any systematic error in the epistemic uncertainty
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estimate (i.e. think of C as an error on the epistemic uncertainty estimate).

B.2.5 Prioritisation Distribution Entropy

Assuming the above effect is significant, might a different functional form (as discussed

in subsection B.2.3) for prioritisation alleviate the impact? Consider the following

additional options:

[E/U ] pi =

ηi+C
ηi+C+βi∑
i

ηi+C
ηi+C+βi

; (B.12)

[E2/U ] pi =

(ηi+C)2

ηi+C+βi∑
i

(ηi+C)2

ηi+C+βi

; (B.13)

and more generally,

[Em/U ] pi =

(ηi+C)m

ηi+C+βi∑
i
(ηi+C)m

ηi+C+βi

. (B.14)

In the limit of large C all of these forms tend to a uniform distribution. However, at what

rate? And is there anything else interesting we can say?

Consider the following toy problem:

• Populate “replay” buffer with N samples;

• Each sample’s reducible uncertainty is sampled from ρη;

• Each sample’s reducible uncertainty is sampled from ρβ;

• C is constant over the samples.

We can plot as a function of C the entropy of the prioritisation distribution for the

functional forms above. Such a plot is shown for various choices of ρη, ρβ in figure B.1.

Clearly, as C increases the entropy in the distribution increases and saturates at some

maximum entropy. There is some variation in the entropy ordering depending on the
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Figure B.1: Ratios can reduce entropy of distribution under bias.

exact ρη, ρβ distributions; in some instances the vanilla form is lower entropy than E/U ,

but in general the entropy remains lower for longer (as a function of C) when the exponent

in the nominator is higher. This is not a particularly surprising result, but lends support

to the idea that a higher order function of E in a ratio form is desirable for prioritisation.

B.2.6 Relation to E under 0 Bias

Now let us consider a more interesting measure. Ordinarily, or naively—in the sense

that this is the first order approach—we want our prioritisation variable to be the vanilla

prescription; and ideally we would want C to be 0. We can measure the difference, which

we denote δi to this ideal for each functional form as a function of C. This plot is show

for various choices of ρη, ρβ in figure B.2.

In general, the standard E/U ratio is poor, it has systematically higher mean and variance

of error. Beyond that, a clear trade-off emerges: as you increase the exponent m, then for

high C there is lower deviation from the ‘correct’ distribution for priority. This is related
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Figure B.2: E2/U closely approximates E for non-trivial bias.

to maintaining lower entropy and tending to a uniform distribution more slowly. However,

for lower C you are likely to be more wrong, catastrophically so. This trade-off for m = 3

is effectively crossed when the red line intersects with the blue in these plots. The point

at which this intersection happens will be a function of various things, primarily the

underlying distributions—in this case ρη, ρβ.

Interestingly however, for m = 2 there is very fast convergence of E2/U and E as a function

of C. So while m = 3 has a very stark trade-off, m = 2 is less extreme: For low C it

may make you more wrong but generally you will have very similar average error by this

metric to the vanilla case; all the while the entropy of the distribution will be much lower

and more informative (as shown in figure B.1). This toy model is clearly very simplistic,
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not least the lack of variation in C over the samples; but future work could be dedicated

to understanding these trade-offs more formally in the context of prioritized replay.

B.2.7 Off-setting Bias with TD Term

Leaving aside the ratio forms, the consequences of the temperature effect may differ

depending on the choice of epistemic uncertainty estimate we use. The methods we

discuss in section 2.4 all effectively use the equivalence of excess risk and epistemic

uncertainty, and so do not explicitly consider the possibility of model bias. The possible

exception is the method resulting from the expansion of the average error over the quantiles

and ensemble in subsection 5.2.1. The main difference between this decomposition and

that of Clements et al. (2020) is a term that encodes the distance from the target:

δ2Θ = (Θ− Eψ,i [θi(ψ)])2 . (B.15)

This term could guard against two possible shortcomings of the decomposition in Clements

et al. (2020):

1. Consider the pathological case in which each ensemble is initialised identically,

then each quantile will have zero variance and the epistemic uncertainty measure

from Clements et al. (2020) will be zero. Even if there is independence at initialisa-

tion, there may be characteristic learning trajectories or other systematic biases that

push the ensemble together and lead to an underestimate in epistemic uncertainty.

Here, the term above—if treated as part of the epistemic uncertainty—can continue

to drive learning in ways we want.

2. However, it could be that the ensemble behaves nicely and the metric over the

ensemble from Clements et al. (2020) is principally a good one, *but* that there is

significant model bias. This could also be captured by the term above but would

need to be subtracted from the total error in order to get a fully reducible measure
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for epistemic uncertainty (as per the argument discussed above).

Which of the two problems is more pronounced is difficult to know a priori, and could be

an avenue for future work. Empirically, the performance of the UPER agent in section 5.4

suggests that the former is the greater effect—at least on the atari benchmark with the

model architecture and learning setting used.
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B.3 Arm-Bandit Task

The hyperparameters used in the Arm-Bandit Task shown in section 5.3 are shown below:

• Number of train steps: 205

• Learning rate annealing: 0.005 · 2−iters/40000.

• Init variance estimation: uniformly sampled from to 0.1

• Number of agents in the ensemble: 30

• α = 0.7, β is annealing from 0.5 to 1 in 0.4 to 1 in proportional prioritisation as in

the original work by Schaul et al. (2016).

• n arms: na = 5, r̄ = 2, σmax = 2 and σmin = 0.1.

• Number of quantiles: 30.

• Quantiles initialized as uniform distribution between -1 and 1. For the main results

in figure 5.2, θτ are initialized randomly between -1 and 1, then sorted to describe a

cumulative distribution.

• Each agent in the ensemble is updated with probability 1/2 on each step.

• For the shifted arm experiment, the mean reward per arm r̄(a) = 3, 2.75, 2.5, 2.25, 2

for arms 1, 2, 3, 4 and 5.

figure B.3 show the mean squared error from the estimated Q(a) = Ej,ψ [θj(ψ)] to the

true mean, where ψ denotes agents in the ensemble case. figure B.5 and figure B.5 show

the probability of sampling each arm from the memory buffer throughout the training,

and the mean square error from the estimated arm value Q(a) to the true arm value r̄

(the same for every arm). In addition, we depict the evolution of uncertainty quantities

for all prioritisation variables for the arm bandit task in figure B.6.

276



University College London

0 50 100 150 200

Iterations (x1000)

10−2

10−1

T
ru

e
M

S
E

Û
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Figure B.3: Comparison of MSE for different prioritisation scheemes. Left panel, shows
ratios and information gain based on epistemic uncertainty Ê proposed by Clements et al.
(2020). Middle panel, shows ratios and information gain based on our proposed target
epistemic uncertianty Êδ. Right panel, different in MSE between curves in the left panel
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showing that our proposed Êδ is in general better for prioritisation in the arm-bandit task.
Averaged across 10 seeds.
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Figure B.4: Comparison of MSE for different prioritisation scheemes using Ê based
prioritisation. Total uncertainty U and TD-error prioritisation tend to oversample high
variance arms compared to epistemic uncertainty prioritisation.

B.4 Gridworld Experiments

The hyperparameters used in figure 5.2 are listed below:

• Learning rate: 0.1

• Discount factor, γ: 0.9

• Exploration co-efficient, ϵ: 0.95

• Buffer capacity: 10,000
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Figure B.5: Comparison of MSE for different prioritisation scheemes using Êδ based
prioritisation. Total uncertainty U and TD-error prioritisation tend to oversample high
variance arms compared to epistemic uncertainty prioritisation.

• Episode timeout: 1000 steps

• Random reward distribution: N (0, 2)

For every 10 steps of ‘direct’ interaction and learning from the environment, the agent

makes 5 updates with ‘indirect’ learning from the buffer replay. The data shown in the

plots consists of 100 repeats and is smoothed over a window of 10.

278



University College London

0 100 200

Steps

10−4

10−3

10−2

10−1

E
pi

st
em

ic
U

nc
Ê
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Figure B.6: Epistemic uncertainty Ê and target uncertainty δ2Θ decrease more rapidly for
lower noise arm (first column), for UPER compared to other methods. The inclusion
of aleatoric uncertainty in the prioritization variable, as utilized in the information gain
formula, aims to sample transitions with high epistemic uncertainty for its reduction,
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This rationale is reflected in the ratio presented in the derived ∆Hδ, and shown its effect
in the sampling probabilities plotted in figure B.5. The TD-error tends to oversample
noisier transitions, resulting in less frequent updates for the least noisy arm, consequently
leading to higher levels of epistemic and target uncertainty for that arm.
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B.5 Atari Experiments

Cumulated training improvement of UPER over PER, QRDQN, QR-PER and QR-ENS-

PER are shown in figure B.8 to figure B.11. The accumulate percent improvement

CUPER/PER, (same for CUPER/QRDQN and the rest), is computed as

CUPER/PER =

∑
t [UPERhuman(t)− PERhuman(t)]∑

t PERhuman(t)
· 100 (B.16)

where t indexes training time, and UPERhuman (same for PERhuman and QRDQNhuman)

denotes human normalized performance.

For the baseline experiments we use the same implementations as those of the original

papers, including hyperparemeter specifications. For our UPER method, we performed a

limited hyperparameter sweep over 3 key hyperparameters: learning rate and ϵ for the

optimizer, and the priority exponent. The sweep ranged 3 × 10−5 to 5 × 10−5 for the

learning rate, 6.1× 10−7 to 3.125× 10−4 for ϵ and 0.6 to 1 for the priority exponent. We

chose values for our final experiments based on average performance over 2 seeds across a

sub-selection of 5 Atari games (chopper command, asterix, gopher, space invaders, and

battlezone).

B.5.1 QR Models Ablation

To demonstrate the effectiveness of the information gain prioritization, and to confirm

that the performance improvement stems from our proposed prioritization variable, we

compared UPER to identical QR-DQN ensemble agents, maintaining the same architecture

but altering only the prioritization variable. The results are presented in figure B.7. UPER

outperforms alternative approaches such as QR-DQN-PER, which uses the TD-error to

prioritize (as previously shown in figure 5.3), QR-ENS-EPI, which directly prioritizes
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using epistemic uncertainty as defined in equation 5.14, and QR-ENS-UNI, which uses

uniform sampling. These findings highlight the significance of both epistemic uncertainty

and aleatoric uncertainty in prioritizing replay, as included in the information gain term.

Additionally, these results confirm that the performance improvement can be solely

attributed to the prioritization variable, as the QR-DQN ensemble architecture employed

in each agent remains constant.

B.5.2 Computational cost
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Figure B.7: Comparison of ablated prioriti-
zation variables. Median Human Normalized
Score for QR-DQN ensembles, where only
the prioritization variable is changed. UPER,
PER, EPI, and UNI use the information gain
in equation 5.12, the TD-error, target epis-
temic uncertainty in equation 5.14, and uni-
form sampling, respectively.

For the main Atari-57 benchmark results,

average clock time training for PER, QR-

DQN, and UPER (standard DQN, dis-

tributed RL agent, and ensemble of dis-

tributed RL agents) are ≈ 150 hours, ≈ 149

hours, and ≈ 162 hours respectively, all im-

plemented in JAX running in Tesla V100

NVIDIA Tensor Cores.

To generate Table 5.1, we conducted ex-

periments on a laptop equipped with an

i5-10500H CPU (2.50GHz) and a 6GB

NVIDIA GeForce RTX 3060 Mobile/Max-

Q (not the same architecture as the main

results in the paper, which uses Tesla V100

NVIDIA Tensor Cores). We ran 40 iter-

ations of Pong for each model, using the

last 20 iterations to avoid initialization and buffer filling times. The experiments were

conducted on both CPU and GPU using different network architectures. In each iteration,

the agent processed 1000 frames and performed one batch update of 64 transitions, with 4
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frames per iteration. For all these runs, we used the publicly available implementation of

DQN Zoo by DeepMind. Table 5.1 shows the time it takes for each iteration (1000 frames

and a batch update) in seconds, along with standard deviations. There are two main

conclusions from this experiment. First, most of the time consumed during each iteration

is spent running the game engine (the 1000 frames per iteration), which is typically run

on the CPU. This is evident from the small difference in time between QR-DQN and

DQN in both the CPU and GPU cases. This difference could be larger in favor of the

GPU if the batch size is increased and the frames per iteration are reduced. Second,

we are significantly leveraging the parallelization capabilities of GPUs, as shown by the

reduced times for the QR-DQN-ENS model (the architecture needed for UPER) when

comparing GPU to CPU performance. The 2-second gap per iteration when comparing

QR-DQN-ENS with QR-DQN and DQN is further reduced by utilizing V100 GPUs, as

demonstrated by the training times reported in the main Atari-57 experiment.
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Figure B.8: Cumulated training improvement of UPER over PER defined as CUPER/PER.
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Figure B.9: Cumulated training improvement of UPER over QR-DQN defined as
CUPER/QR-DQN.

B.6 C51

To help assess whether the UPER methodology would also work when used in conjunction

with other deep learning algorithms beyond QR-DQN, we performed a smaller scale set

of experiments using the C51 algorithm ?. We selected 5 Atari games in which ablations

from Hessel et al. (2017) suggested vanilla PER was ineffective or even detrimental.

Results on these 5 games comparing an ensemble C51 agent with PER vs an ensemble

C51 agent with UPER are shown in figure B.13. Our method is significantly better on 4

games and similar in the fifth.
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Figure B.10: Cumulated training improvement of UPER over QR-PER defined as
CUPER/QR-PER.
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Figure B.11: Cumulated training improvement of UPER over QR-ENS-PER defined as
CUPER/QR-ENS-PER.
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Figure B.12: Average performance and corresponding standard deviation for all games
across 3 seeds.
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Figure B.13: Performance of an ensemble C51 agent with PER vs ensemble C51 agent
with PER for 5 Atari games. Average across 2 seeds.
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Appendix C

Homotopy Method solutions

C.1 Homotopy method

C.1.1 Mode Expressions

g0 = 0,

g1 =
(T − t)(ξ2w − µx)2

β
,

g2 =
(T − t)2(ξ2w − µx)2(−ξ2α+ log(γ)/2)

β
,

g3 =
(T − t)3(ξ2w − µx)2(4ξ4α2β − 4ξ2αβ log(γ)− 4ξ2(ξ2w − µx)2 + β log(γ)2)

6β2
,

g4 =
(T − t)4(ξ2w − µx)2(−8ξ6α3β + 12ξ4α2β log(γ) + 40ξ4α(ξ2w − µx)2 − 6ξ2αβ log(γ)2 − 16ξ2(ξ2w − µx)2 log(γ) + β log(γ)3)

24β2
,

...

gi = (T − t)i(ξ2w − µx)
2 · coef(i, t, β, α, µx, ξ2, T, γ)

C.1.2 Mode stability and Parameter Sweep

In this section, additional results are presented for the homotopy approximation without

the Padé step, as explained in subsection 4.3.3. figure C.1 illustrates the divergence of
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the homotopy modes for the same setup described in subsection 4.3.3.

figure C.2 displays the base homotopy modes without Padé, exemplifying a regime where

the vanilla homotopy approximation is effective. This occurs specifically when base

learning does not have enough time to converge and the optimal learning trajectory does

not deviate significantly from the optimal one.

Convergence as modes are added is shown in figure C.3, and a hyperparameter sweep is

depicted in figure C.4. Finally, figure C.5 demonstrates that certain relationships between

the hyperparameters of the learning system and the task distribution influence the optimal

control in a manner similar to that observed in the toy models.
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Figure C.1: Divergence of base homotopy modes without Pade approximation (arcsinh
works as a log scale but including negative numbers).

288



University College London

0.0 0.5 1.0
Learning time t

0.3

0.4

0.5

L
(t

)

(a)
No Control

Theory

Num Opt

0.0 0.5 1.0
Learning time t

0.4

0.5

r(
t)

(b)
No Control

Num Opt

Theory

0.0 0.5 1.0
Learning time t

0.00

0.05

0.10

µ
(t

)

(c)

Figure C.2: Base Homotopy with no Pade Approximation for a simplified regime where
learning has no converged. (a): Loss function. (b): Instant reward rate. (c): Control
signal (control called µ instead of g)
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Figure C.3: Convergence of homotopy approximation as modes are included. (a): Differ-
ence between analytical approximation and numerical control. (control called µ instead
of g). (b): Approximation of optimal risk as modes are included.
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Figure C.4: Base Homotopy Parameter Sweep, similar to figure 4.7, except under a
working regime where base learning does not enough time to converge.
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Figure C.5: Non-linear network simulation parameter sweep of learning rate control.
Learning rate scheduling (here noted as µ) was optimized using the learning effort
framework. R(µ) denoting cumulated risk, and I(µ) cumulated control as in figure 4.7.
Task difficulty was controlled by randomly shuffling the labels in the training set, simulating
the type of aleatoric noise that cannot be overcome by learning.
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C.2 Padé Approximation

Padé[M=2/N=2]
1 \ f r a c {\ f r a c {4 \ l e f t (<x^{2}>\ r i gh t ) ^{2} \ alpha \ l e f t (− T + t\ r i gh t ) ^{2} \ l e f t (<x^{2}> w − <xy>\r i gh t )

^{4}}{\ beta \ l e f t (8 \ l e f t (<x^{2}>\ r i gh t ) ^{3} w^{2} − 16 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy> w + 4 \ l e f t

(<x^{2}>\ r i gh t ) ^{2} \ alpha^{2} \beta + 8 <x^{2}> <xy>^{2} − 4 <x^{2}> \alpha \beta \ log {\ l e f t (\

gamma \ r i gh t ) } + \beta \ log {\ l e f t (\gamma \ r i gh t ) }^{2}\ r i gh t ) } − \ f r a c {\ l e f t (− T + t\ r i gh t ) \ l e f t (<

x^{2}> w − <xy>\r i gh t ) ^{2}}{\ beta}}{− \ f r a c {\ l e f t (− T + t\ r i gh t ) \ l e f t (24 \ l e f t (<x^{2}>\ r i gh t ) ^{4}

\ alpha w^{2} − 48 \ l e f t (<x^{2}>\ r i gh t ) ^{3} <xy> \alpha w + 8 \ l e f t (<x^{2}>\ r i gh t ) ^{3} \ alpha^{3}

\beta − 8 \ l e f t (<x^{2}>\ r i gh t ) ^{3} w^{2} \ log {\ l e f t (\gamma \ r i gh t ) } + 24 \ l e f t (<x^{2}>\ r i gh t ) ^{2}

<xy>^{2} \alpha + 16 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy> w \ log {\ l e f t (\gamma \ r i gh t ) } − 12 \ l e f t (<x

^{2}>\ r i gh t ) ^{2} \ alpha^{2} \beta \ log {\ l e f t (\gamma \ r i gh t ) } − 8 <x^{2}> <xy>^{2} \ log {\ l e f t (\

gamma \ r i gh t ) } + 6 <x^{2}> \alpha \beta \ log {\ l e f t (\gamma \ r i gh t ) }^{2} − \beta \ log {\ l e f t (\gamma \

r i gh t ) }^{3}\ r i gh t ) }{2 \ l e f t (8 \ l e f t (<x^{2}>\ r i gh t ) ^{3} w^{2} − 16 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy> w

+ 4 \ l e f t (<x^{2}>\ r i gh t ) ^{2} \ alpha^{2} \beta + 8 <x^{2}> <xy>^{2} − 4 <x^{2}> \alpha \beta \ log {\

l e f t (\gamma \ r i gh t ) } + \beta \ log {\ l e f t (\gamma \ r i gh t ) }^{2}\ r i gh t ) } + 1 + \ f r a c {\ l e f t (− T + t\

r i gh t ) ^{2} \ l e f t (64 \ l e f t (<x^{2}>\ r i gh t ) ^{6} w^{4} − 256 \ l e f t (<x^{2}>\ r i gh t ) ^{5} <xy> w^{3} + 112

\ l e f t (<x^{2}>\ r i gh t ) ^{5} \ alpha^{2} \beta w^{2} + 384 \ l e f t (<x^{2}>\ r i gh t ) ^{4} <xy>^{2} w^{2} −

224 \ l e f t (<x^{2}>\ r i gh t ) ^{4} <xy> \alpha^{2} \beta w + 16 \ l e f t (<x^{2}>\ r i gh t ) ^{4} \ alpha^{4} \

beta^{2} − 88 \ l e f t (<x^{2}>\ r i gh t ) ^{4} \ alpha \beta w^{2} \ log {\ l e f t (\gamma \ r i gh t ) } − 256 \ l e f t (<

x^{2}>\ r i gh t ) ^{3} <xy>^{3} w + 112 \ l e f t (<x^{2}>\ r i gh t ) ^{3} <xy>^{2} \ alpha^{2} \beta + 176 \ l e f t

(<x^{2}>\ r i gh t ) ^{3} <xy> \alpha \beta w \ log {\ l e f t (\gamma \ r i gh t ) } − 32 \ l e f t (<x^{2}>\ r i gh t ) ^{3} \

alpha^{3} \beta^{2} \ log {\ l e f t (\gamma \ r i gh t ) } + 16 \ l e f t (<x^{2}>\ r i gh t ) ^{3} \beta w^{2} \ log {\

l e f t (\gamma \ r i gh t ) }^{2} + 64 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy>^{4} − 88 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy

>^{2} \ alpha \beta \ log {\ l e f t (\gamma \ r i gh t ) } − 32 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy> \beta w \ log {\

l e f t (\gamma \ r i gh t ) }^{2} + 24 \ l e f t (<x^{2}>\ r i gh t ) ^{2} \ alpha^{2} \beta^{2} \ log {\ l e f t (\gamma \

r i gh t ) }^{2} + 16 <x^{2}> <xy>^{2} \beta \ log {\ l e f t (\gamma \ r i gh t ) }^{2} − 8 <x^{2}> \alpha \beta

^{2} \ log {\ l e f t (\gamma \ r i gh t ) }^{3} + \beta^{2} \ log {\ l e f t (\gamma \ r i gh t ) }^{4}\ r i gh t ) }{12 \beta \

l e f t (8 \ l e f t (<x^{2}>\ r i gh t ) ^{3} w^{2} − 16 \ l e f t (<x^{2}>\ r i gh t ) ^{2} <xy> w + 4 \ l e f t (<x^{2}>\ r i gh t

) ^{2} \ alpha^{2} \beta + 8 <x^{2}> <xy>^{2} − 4 <x^{2}> \alpha \beta \ log {\ l e f t (\gamma \ r i gh t ) } +

\beta \ log {\ l e f t (\gamma \ r i gh t ) }^{2}\ r i gh t ) }}
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