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Formation of the placental membranes and
pathophysiological origin of associated great
obstetrical syndromes

Graham J. Burton, MD, DSc, FMedSci, FRS; Eric Jauniaux, MD, PhD, FRCOG;

Ashley Moffett, MD, FRCOG, FMedSci

Introduction

The great obstetrical syndromes (GOS)
comprise common complications of
pregnancy that share epidemiological,
genetic, and histological links to defective
placentation.'* They display a spectrum
of clinical presentations, ranging in
severity from miscarriage through
abruption to early onset preeclampsia,
fetal growth restriction, unexplained
stillbirth, late-onset preeclampsia, pre-
term premature rupture of the mem-
branes (PPROM), and preterm labor
(PTL). This spectrum reflects a corre-
sponding range of developmental defects
within the placental bed, the area of the
decidua abutting the placenta. A histo-
pathologic feature common to all
the GOS is deficient remodeling of the
maternal spiral arteries that supply the
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Formation of the smooth membranes is an essential phase of human placentation to
allow safe rupture of the chorionic sac and birth of the fetus without damaging the
placenta. The membranes form through regression of two-thirds of the villi that cover the
early gestational sac shortly after implantation. Regression is associated with locally high
levels of oxidative stress secondary to partial onset of the maternal arterial circulation to
the placenta. Onset starts preferentially in the peripheral zone from ~6 to 8 weeks of
gestation, reflecting the lesser extent of plugging of maternal spiral arteries by endo-
vascular trophoblast in this region. Plugging is part of the arterial remodeling essential to
control adequate and even perfusion of the placenta. As the chorionic sac expands,
extensive necrosis occurs in the overlying decidua capsularis, which consequently makes
no contribution to the mature membranes. Once the sac fuses with the decidua parietalis
lining the opposite wall of the uterus, at around 16 weeks of gestation, the cyto-
trophoblast cells of the chorionic epithelium proliferate and form a stratified epithelium
with features reminiscent of the skin barrier. A sharp demarcation exists between this
epithelium and the cells of the decidua parietalis in the mature membranes, with no
evidence of trophoblast migration. Preterm premature rupture of the membranes and
preterm labor are associated with deficient remodeling of the spiral arteries that is
mediated by extravillous trophoblasts derived from the cytotrophoblastic shell. The
resultant placental malperfusion causes maternal and placental oxidative stress, as in the
other great obstetrical syndromes, causing release of proinflammatory cytokines and
stimulating uterine contractility. Deficient remodeling is also likely a proxy marker for poor
development of the cytotrophoblastic shell. The shell anchors the gestational sac at the
maternal—placental interface postimplantation, and weakness of this interface pre-
disposes to subchorionic hemorrhage. Hemorrhages that abut the membranes may
induce local inflammation, senescence, and weakening. Ensuring normal development
of the cytotrophoblastic shell is therefore essential to prevent the great obstetrical
syndromes. At this stage of pregnancy, placental development is supported by histo-
trophic nutrition from the decidua. Hence, optimizing endometrial function prior to
conception should become a healthcare priority.

Key words: amnion, chorion laeve, decidualization, placental development, premature
delivery, prematurity, preterm labor, preterm premature rupture membranes, smooth
membranes, threatened miscarriage

placenta.”” Remodeling is mediated by
extravillous trophoblast cells that migrate
from the tips of the placental anchoring
villi into the decidua during the first and
early second trimesters”’ and is an
essential process that ensures adequate
and even perfusion of the placenta.”
While mechanistic links can be drawn
among deficient spiral artery remodeling,
fetal growth restriction, and preeclampsia

based on placental malperfusion and
oxidative stress,”” " it is less easy to see
causal connections with conditions such
as PPROM and PTL that have no direct
vascular basis. The fact that adverse events
at the maternal—placental interface dur-
ing early pregnancy, such as threatened
miscarriage and subchorionic hematoma,
are risk factors for these later complica-
tions suggests their pathophysiology also
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originates during the first trimester.'”
Indeed, in our view, insufficient develop-
ment of the cytotrophoblastic shell that
forms the utero-placental interface shortly
after implantation provides a more com-
plete unifying hypothesis for the origin of
the GOS than deficient arterial remodel-
ing alone."” The latter may act as a proxy
marker for formation of the shell, which is
a transient structure and inaccessible for

study.
Although the histology of the
mature smooth membranes is well

documented,"* "7 few accounts describe
their development in detail. This is

largely due to the limited availability of
suitable tissue samples. Here, we illustrate
their formation with examples from an
archival collection of placenta-in-situ
hysterectomy specimens and isolated
placentas from 6 weeks of pregnancy
through to 32.5 weeks. We consider how
aberrations in early placentation may
contribute to the pathophysiology of
PPROM and PTL, and link these condi-
tions with the other GOS.

Formation of the smooth membranes
By day 11 postfertilization, the conceptus
is fully implanted in the uterine wall and

enclosed by the maternal decidua. The
original outer wall of the blastocyst, the
trophoblast, becomes lined on its inner
surface by extraembryonic mesoderm to
form the chorionic sac. Initially, the sac is
surrounded by the rapidly expanding
primary syncytium but villi soon bud
through this layer and develop over its
entire surface, forming the chorion
frondosum (Figure 1A). These wvilli
consist of a stromal core and a 2-layered
covering of trophoblast, the outer multi-
nucleated syncytiotrophoblast and an
underlying layer of uninucleate progeni-
tor cytotrophoblast cells. Anchoring villi

FIGURE 1

Formation of the cytotrophoblastic shell

£

(A) Photomicrograph of a human implantation site at stage 7 (approximately 15—17 days postfertilization), showing early villi developing over the entire

surface of the gestational sac. At the distal ends of the villi cytotrophoblast cells merge with neighbors to create the shell, indicated by the dashed line,
that forms the utero-placental interface. Specimen from the Carnegie Collection and image by courtesy of the late Allen Enders. (B) Placenta-in-situ
specimen at 8 weeks postfertilization showing the cytotrophoblastic shell (CS) apposed to the decidua (D). At the interface, matrix-type fibrinoid is
laid down by the trophoblast cells, forming Nitabuch'’s stria (arrowed and staining red). Fibrillar material from the stria intermingles with the decidual cells,
aiding adherence of the conceptus. V, placental villus. Stain, Masson’s trichrome. (C) Photomicrograph from the same specimen showing a cyto-
trophoblast cell column (CC) attached to the decidua (D). Extracellular matrix secreted by the cells in the column (asterisks) merges with that of Nitabuch’s
stria (NS), which in turn intermingles with that of the decidua (arrowed). This blending of the matrices aids anchorage of the placenta to the decidua. Stain,
hematoxylin and eosin. (D) Photomicrograph from the same specimen showing a spiral artery (SA) undergoing remodeling mediated by extravillous
trophoblast migrating down the lumen (asterisk). Fibrinoid deposited in the vessel wall (double arrow) as part of remodeling can be seen to be continuous
with that of Nitabuch’s stria (single arrows). This continuity ‘welds’ the artery to the developing basal plate of the placenta and ensures a blood-tight
union. Stain, hematoxylin and eosin

CC, cytotrophoblast cell column; DG, decidual gland; V, placental villus.
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contact the decidua and at these points
cytotrophoblast cells break through the
syncytiotrophoblast and form a column
of cells, the cytotrophoblastic cell col-
umns. At their distal ends, the columns
merge laterally with neighbors, creating
the cytotrophoblastic shell that encapsu-
lates the gestational sac at the
maternal—placental interface.

The cytotrophoblastic shell is of crit-
ical importance and serves several
functions. It anchors the sac into the
superficial decidua by means of an
extracellular matrix. As cytotrophoblast
cells progress along the cell columns,
they differentiate into extravillous tro-
phoblasts, a subpopulation of tropho-
blasts that migrates beyond the confines
of the placental disc and has both a
secretory and migratory phenotype.
Extravillous trophoblasts secrete several
products, including collagen IV, lami-
nin, heparin sulfate, and onco-fetal fi-
bronectins,'>'®'”  that appear as
amorphous red material on hematoxy-
lin and eosin staining. This is referred to
as matrix-type fibrinoid to distinguish it
from fibrin deposits in the placenta that
originate from serum fibrinogen.”’
Secretion starts toward the distal end
of a column but is most extensive in the
outer layers of the shell.'” There, fibrillar
strands of this matrix intermingle with
decidual cells and their extracellular
matrix (Figure 1B and C), contributing
to a band of fibrinoid referred to epon-
ymously as Nitabuch’s stria.”* Ghosts of
dead extravillous trophoblasts and
polymorphonuclear neutrophils are also
seen within the stria. The matrix
proteins secreted by extravillous
trophoblasts have been referred to as
‘trophoblastic glue’,”” and undoubtedly
play an important role in adherence of
the conceptus to the decidua and in
strengthening  the  utero-placental
interface.

The cytotrophoblastic shell also plays
a key role in supplying the extravillous
trophoblast that will mediate spiral ar-
tery remodeling. Establishing an arterial
supply to the human placenta poses
unique hemodynamic challenges. First,
the high pressure and velocity inherent
in the maternal circulation must be
reduced to avoid damage to the delicate

villous trees.” Second, a firm seal must
be formed between the spiral arteries
and the developing basal plate of the
placenta to prevent hemorrhage and
subchorionic hematomas at the utero-
placental interface. Third, the smooth
muscle medial cells in the hyper-
contactile segment in the junctional
zone that limits blood loss during
menstruation must be removed to
ensure constancy of blood flow to the
placenta.” Remodeling of the spiral ar-
teries meets all these requirements. The
process is mediated by extravillous
trophoblast cells that migrate toward the
arteries and surround them externally,
and then by endovascular trophoblasts
that subsequently migrate down the
arterial lumens.*”>** The smooth muscle
cells within the walls of the arteries are
replaced by vaso-inert matrix-type fi-
brinoids secreted by the extravillous
trophoblast.”” This fibrinoid merges
with Nitabuch’s layer in the basal plate,
ensuring that the mouths of the arteries
are effectively ‘welded’ watertight to the
deep surface of the developing placenta
(Figure 1D). Consequently, the distal
parts of the arteries break away with the
placenta during delivery and can be
observed attached to the maternal sur-
face of the basal plate.”* Loss of the
contractile smooth muscle media causes
the terminal portions of the arteries to
dilate,”” reducing the pressure and ve-
locity of the inflowing maternal blood.”

During much of the first trimester,
the endovascular extravillous tropho-
blast that migrates from the shell down
the arterial lumens forms loose aggre-
gates that effectively ‘plug’ the
vessels.”” *’  These plugs severely
restrict maternal blood perfusing the
placenta so that the intervillous space is
filled with a clear fluid comprising
maternal plasma and secretions from
the decidual glands.””** Consequently,
the oxygen concentration within the
developing placenta is low during this
stage of gestation, at approximately 20
mmHg.””*" This level equates approxi-
mately to that in adult resting muscle
and should therefore not be considered
hypoxic. By limiting aerobic respiration,
it does, however, probably minimize the
risk of free-radical teratogenesis’">** and

maintains stem cells in a pluripotent
state.””

Once organogenesis is complete, a
higher concentration of oxygen to sup-
port fetal growth can be tolerated. Onset
of the maternal arterial circulation to the
placenta starts in the periphery of the
implantation site toward the end of the
first trimester at 8 to 10 weeks of gesta-
tion and extends into the central regions
over the next few weeks.’® This pattern
mirrors inversely the extent of extra-
villous trophoblast migration into the
decidua, and hence of arterial plugging,
across the implantation site.”” The
associated 3-fold rise in oxygen con-
centration poses an oxidative challenge
for the early placental tissues that have
low levels of antioxidant defenses.” Villi
sampled from the peripheral regions
toward the end of the first trimester
display increased markers of oxidative
stress (Figure 2A), activation of the
apoptotic cascade within endothelial
and stromal cells (Figure 2B), and
degeneration of the syncytiotrophoblast
compared to those taken from the cen-
tral region.””*'

Consequently, villi in the periphery
and over the superficial pole of the
chorionic sac undergo regression and
the intervillous space  narrows
(Figures 2C and 3). Clumps of
shrunken, darkly staining syncytio-
trophoblastic nuclei are shed from the
villi (Figure 3B), whereas the cyto-
trophoblast appears healthy
(Figure 3D). Cytotrophoblast cells that
morphologically resemble extravillous
trophoblasts appear to migrate into the
fibrinous mass that enmeshes the villi
(Figure 3C). At the ultrastructural level,
degeneration of the syncytiotrophoblast
and of stromal and endothelial cells is
apparent (Figure 3D). As a result, all that
remains of the villi are the avascular
collagenous cores, referred to as ‘villous
ghosts’. This regression transforms the
chorion frondosum into the smooth
chorion, or chorion laeve, and the
developing discoid placenta. There is no
clear boundary between the regressing
villi and the decidua capsularis, and no
remnants of the cytotrophoblastic shell.
The decidua capsularis appears largely
degenerate with a massive infiltration of
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FIGURE 2

Oxidative stress and apoptosis in peripheral villi during villous regression
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(A) Immunohistochemical staining for hydroxynonenal, a marker of oxidative stress, is more inetense in villi sampled from the periphery of a 10-week
gestational age placenta compared to those from the central region. (B) Immunofluorescence for active caspase 3, the mediator of apoptosis, is more
intense in peripheral villi, in particular within the stromal core, than in central villi. (C) Diagram of the gestational sac at 8 to 9 weeks showing how inflow of
maternal arterial blood (arrows) starts in the peripheral (P) regions of the placenta where plugging of the spiral arteries is least extensive. Localized
oxidative stress induces apoptosis and degeneration that are thought to contribute to villous regression and formation of the placental membranes. A and
B modified from Burton G.J. et al*® and C modified from Jauniaux E. et al.*°

AC, amniotic cavity; C, central region under the cord insertion; D, decidua; M, myometrium; SYS, secondary yolk sac.

maternal polymorphonuclear neutro-
phils, characteristic = of necrosis
(Figure 3B).

Early in the second trimester, the
uterine cavity is obliterated when what
remains of the decidua capsularis comes
into extensive contact with the decidua
parietalis lining the opposite wall of the
uterus (Figure 4A). The membranes are
extremely attenuated where they are not
yet apposed to the decidua parietalis
(Figure 4B and C), consisting of a thin
layer of extraembryonic mesoderm, a
single layer of chorionic epithelial cells,
scanty villous ghosts embedded in
fibrinoid, and a thin layer of residual
degenerating decidual cells on the outer
surface (Figure 4C). The uterine
epithelium cannot be identified. By
comparison, where the membranes are
in contact with the decidua parietalis,
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the chorionic epithelium appears
healthier, is several cell layers thicker,
and is separated from the decidual cells
by a thin band of fibrinoid (Figure 4D).
The margins of the placental disc are
clearly defined by this stage through
fusion of the chorionic and basal plates
(Figures 4A and B).

By 20 weeks of gestation, the mem-
branes have taken on their mature form
(Figure 5A and B). The chorionic
epithelium consists of a compact layer of
cytotrophoblast cells 5 to 10 cells thick
supported by a basement membrane,
under which is a layer of extraembry-
onic mesoderm. The cytotrophoblast
cells show no evidence of migration into
the decidua parietalis. Villous ghosts are
embedded in the epithelium especially
near the margin of the placental disc.
The amnion is closely approximated to

MONTH 2025

the inner layer of the chorionic epithe-
lium, but has not yet fused.

Unresolved questions

The periphery-center pattern of onset of
the maternal arterial circulation to the
placenta and subsequent locally high
levels of oxidative stress, apoptosis, and
necrosis provides a mechanistic expla-
nation  for  villous  regression
(Figure 2C).>*! Identical features to
those of villous regression are observed
in villous tissue from cases of missed
miscarriage that have been retained in
utero for several days after fetal demise,
reinforcing this observation.”” Onset of
the maternal circulation is both preco-
cious and spatially disorganized in these
cases,”' due to deficient development of
both the cytotrophoblastic shell and
plugging of the spiral arteries.”” The
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FIGURE 3

Villous regression toward the end of the first trimester
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(A) Low-power photommrograph at 8 weeks gestational age (CRL 15 mm). The mtervnlous space stlll extends up the Iateral aspect of the chorlonlc sac but
is virtually obliterated over the superficial pole. (B) Higher-power view of villi over the superficial pole. Regressing villi are enmeshed in maternal
erythrocytes and a mass of fibrin-type fibrinoid. The syncytiotrophoblast layer is degenerate, with clumps of pyknotic nuclei being shed (arrow). The
cytotrophoblast shell is no longer present and the fibrinoid is in direct contact with the decidua capsularis (DC) which shows extensive necrotic changes
and polymorphonuclear neutrophil infiltration. The chorionic epithelium (CE) is a single layer of trophoblast cells supported by a layer of extraembryonic
mesoderm. (C) Villous remnants enmeshed in the fibrinoid (F) are devoid of a syncytiotrophoblastic covering and only the collagenous stromal cores
remain. Cells resembling extravillous trophoblast (arrow) appear to be migrating away from the cores. The chorionic epithelium (CE) is 1 to 2 cells thick.
(D) Transmission electron micrograph showing degeneration of the syncytiotrophoblast (STB) and cells of the stromal core (SC). By contrast, the

cytotrophoblast cells (CTB) appear healthy. Stain A—C, hematoxylin and eosin.

AC, amniotic cavity; CAL, crown rump length; £, maternal erythrocytes.

villous regression that occurs during the
formation of the membranes and in
early pregnancy failure are therefore 2
aspects of the same oxidative-induced
phenomenon, the former physiological
and the latter pathological.

An intermediate state exists in cases
of fetal growth restriction associated
with deficient spiral artery remodeling.
The placenta often takes on a globular
shape, characterized by only a small
attachment to the uterine wall and an
increased thickness.”* *° The normal
tapering margins of the placental disc
are lost, which is thought to reflect

excessive villous regression secondary to
precocious onset of maternal blood flow
in the periphery of the early
placenta.”””*” This concept is difficult
to test, and further prospective imaging
studies at the time of onset of the
maternal circulation are required. Cir-
cumstantial support comes, however,
from the finding of twice the number of
villous ghosts at a standardized distance
from the placental margin in early-onset
preeclampsia associated with fetal
growth restriction compared to age-
matched samples from normotensive
preterm deliveries."® We interpret this

finding as reflecting excessive regression
rather than increased proliferation, as
suggested by the authors.

Despite this advancement in our un-
derstanding of the mechanism of villous
regression, several aspects of the for-
mation of the membranes remain
unresolved:

What is the cause of the necrotic changes
in the decidua capsularis toward the end
of the first trimester?

Previous classical studies have described
how the decidua capsularis becomes
stretched and thinned during the second
trimester.”>” The maternal blood
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FIGURE 4

The membranes during the early second trimester
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(A) Low-power photomicrograph at 13.5 weeks of gestational age (CRL 73 mm). The intervillous space is sealed at the margin of the placental disc
through fusion of the chorionic and basal plates (arrowed). The membranes are extensively, but not completely, apposed to the decidua parietalis (DP). (B)
Higher power view of the margin of the placental disc, illustrating the union of the decidua parietalis (DP) and decidua capsularis (DC). At their union, both
are covered by an epithelium, confirming the space between the 2 is the uterine cavity (UC) and not a processing artefact. (G) Higher-power view of the
area denoted by the box labeled C in A. The decidua capsularis is extremely thin and necrotic, and there is no uterine epithelium. The chorionic epithelium
is a single layer of cells and the collagenous cores of regressing villi (arrows) are enmeshed in fibrinoid. The amnion (Am) has not fused with the chorion.
(D) Higher-power view of the area denoted by the box labeled D in A where the decidua capsularis has fused with the decidua parietalis (DP). The
chorionic epithelium (CE) is here several cell layers thick, and separated from the decidua parietalis by remaining fibrinoid (arrow). The decidua parietalis
shows no sign of neutrophil infiltration. The amnion (Am) is closely apposed to the chorionic epithelium, separated by a layer of extraembryonic

mesoderm (M). Stain A—D, hematoxylin and eosin.

AC, amniotic cavity.

supply to the decidua capsularis is
thought to be compromised as the ves-
sels become compressed as they pass
over the enlarging gestational sac.”’ The
capsularis has been described as taking
on a mottled appearance with variable
degrees of congestion, hemorrhage, and
tissue necrosis.”’ Our observation of
an extensive infiltration of poly-
morphonuclear neutrophils is also
consistent with ischemic necrosis,” but
further studies are needed for confir-
mation. The uterine epithelium appears
to be invarijably lost and at some points
the focal necrosis may be so extensive

that the outer surface of the smooth
chorion is exposed to the uterine cav-
ity."””” The necrotic changes mean that
the decidua capsularis does not
contribute significantly to the formation
of the definitive membranes, nor can it
provide support to retain the gestational
sac in situ, which is largely dependent on
the tensile strength of the amnion."”
What is the source of the cytotrophoblast
layer in the definitive membranes?

The mature membranes consist of a
layer of cytotrophoblast cells 5 or more
cells thick, yet these cells cannot arise
from the cytotrophoblastic shell as this

6 American Journal of Obstetrics & Gynecology MONTH 2025

disappears during the first trimester
(Figure 3).”° Instead, they must origi-
nate from the chorionic epithelium
along with cytotrophoblast cells that
have migrated from the regressing villi.
This is supported by recent single-cell
RNA sequencing comparing cyto-
trophoblast cells isolated from villi and
the smooth chorion during the second
trimester. A progenitor common to
both locations was identified, although
their respective locations are not yet
known.” In the smooth chorion, there
is no differentiation toward syncytiali-
zation but upregulation of transcription
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FIGURE 5
The membranes mid-pregnancy
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(A) Low-power view of a separated placenta at around 20 weeks of gestational age (CRL 140 mm)

. The membranes have become folded under the basal

plate, and consequently the normal order of the amnion (Am) and decidua parietalis (DP) is reversed. (B) Higher-power view of the area denoted by the
box labeled B in A. The cytotrophoblast (CTB) of the chorionic epithelium is now multilayered and surrounds the collagenous remnants of former villi
(arrowed). The fibrinoid present earlier has organized into bundles of collagen fibers lying against the decidua parietalis (DP).

Am, amnion; CP, chorionic plate.

factors (KLF4 and YAPI1) consistent
with a stratified epithelial fate with fea-
tures reminiscent of the skin barrier.”
Cytotrophoblast cells of the smooth
chorion contain higher levels of HIFl-a
response genes and are more resistant
to oxidative stress and hypoxia than
other placental cell types.”® This may
account for their resistance to the ne-
crosis that affects other cell types in the
decidua capsularis. However, it appears
that contact with the decidua parietalis
is necessary to stimulate proliferation of
the cells within the chorionic epithe-
lium; the signals are likely to be the
better supply of oxygen, nutrients, and
growth factors, including insulin-like
growth factor 1"° and epidermal
growth factor,” that apposition pro-
vides. This means that the development
of the chorionic epithelium may be
responsive to levels of pregnancy-
associated plasma protein A, which
regulates availability of insulin-like
growth factor 1. Levels of pregnancy-
associated plasma protein A are lower
in all the GOS,” including PPROM.””
What mechanisms underlie the hetero-
geneity of cytotrophoblast cells within the
smooth chorion?

Increasing evidence, including single-
cell RNA sequencing, indicates that the
cytotrophoblast cells within the mem-
branes are transcriptionally and

functionally different from those within
the placental villi.”® Some display an
extravillous phenotype because they
express its characteristic marker human
leukocyte antigen-G, yet all merely abut
the decidua parietalis and show minimal
or no migratory tendency.53 Approxi-
mately, 20% of the cytotrophoblast cells
in the smooth chorion are cycling,
confirming earlier reports based on
incorporation of *H-thymidine.” These
are located principally in the basal layer,
close to the amnion, but exit from the
cell cycle with differentiation equivalent
to villous cytotrophoblast and extra-
villous trophoblast is not seen. Increased
expression of interferon-induced trans-
membrane proteins important for de-
fense against pathogens, and in addition
reported to inhibit syncytialization, is
also seen.”* There is a further distinct
resident population more prominent in
the upper layers near the decidua pari-
etalis that uniquely express the keratin
KRT6, not found in villi. In addition, the
cytotrophoblast cells in the smooth
chorion express genes that encode
extracellular matrix proteins, COL5A1
and LAMA3, that might provide
structural integrity and help prevent
rupture. Intriguingly, spatial tran-
scriptomics have revealed that in
PPROM and PTL, the cytotrophoblast
and amniotic epithelial cells show

increased expression of genes associated
with cellular reorganization-associated
signals, characteristic of cells attempt-
ing to maintain membrane homeostasis
under strain.®’

Whether these differences warrant
classification of chorionic cytotropho-
blast cells as a separate subpopulation of
trophoblasts distinct from villous cyto-
trophoblast cells remains to be decided.
To date, only one single-cell RNA
sequencing study comparing the 2 has
been performed early in gestation when
the membranes are forming. Further
studies are required, along with spatial
transcriptomic analyses to shed light on
the regional heterogeneity in the phys-
ical properties that exist over the surface
of the membranes.”'

Rupture of membranes

Biomechanical studies reveal that the
strength of the membranes is principally
derived from the amnion and associated
collagen fibers, primarily collagens I and
III. By comparison, the choriodecidual
layer is weak and the first to rupture in
either term deliveries or cases of
PPROM. A process of collagenolytic
remodeling of the extracellular matrix
mediated by matrix metalloproteinase
enzymes is therefore a key antecedent to
normal rupture, and may be stimulated
by increases in uterine pressure and
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stretching of the membranes as gesta-
tion advances.’*®” The proin-
flammatory cytokines tumor necrosis
factor alpha and interleukin (IL) 1f
cause equivalent activation of matrix
metalloproteinase-9 and suppression of
its tissue inhibitors.”" These cytokines
may mediate the remodeling in cases of
PPROM, as they are induced by oxida-
tive stress, infection, and many of the
other conditions implicated in the
causation of PPROM.****

Relationship of preterm premature
rupture of the membranes to spiral
artery remodeling

Deficient spiral artery remodeling has
been associated with both PPROM and
PTL,°> and although the causality is

harder to determine than for other GOS,
such as fetal growth restriction, we
propose there are at least 2 possible
mechanisms.

First, deficient spiral arterial remod-
eling could be a proxy for poor devel-
opment of the cytotrophoblastic shell,
and hence weakening of the utero-
placental interface during early preg-
nancy. Incomplete remodeling will lead
to less fibrinoid being deposited in the
arterial walls and hence a weaker seal
with Nitabuch’s stria and the developing
basal plate, increasing the risk of hem-
orrhage. Around 15% of pregnant pa-
tients present with a ‘threatened
miscarriage’ in early pregnancy, which
may include vaginal bleeding, a closed
cervix, and a live fetus.”” The outcome

depends on the gestational age of
bleeding; if less than 7 weeks, the risk of
further complications is small,®®
whereas after 7 weeks, threatened
miscarriage is associated with poor ob-
stetric outcomes and ~10% risk of
complete pregnancy loss.””*>"" The
most common ultrasound finding is a
subchorionic hematoma detaching the
membranes from the uterine wall close
to the edge of the placenta (Figure 6).
The echogenicity of the hematoma var-
ies according to the timing of the
bleeding; a recent lesion shows
increased echogenicity that decreases
with time to become sonolucent after 10
days (Figure 6B and C).

There is no direct link between the
size of a subchorionic hematoma and

FIGURE 6
Ultrasound views of subchorionic hematomas at different gestational ages and different stages of evolution

(*). (B) Transabdominal scan showing large old sub-

chorionic hematoma (*) and small recent one (+) at 12 weeks of gestation. (C) Transabdominal scan at 12 weeks of gestation showing a large old
hematoma (*) 3 weeks after the bleeding episode. (D) Transabdominal scan at 14 weeks of gestation showing a small recent hematoma (*) 48 hours after

the bleeding episode.

AC, amniotic cavity; GS, gestational sac; P, placenta.
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pregnancy outcomes, but if the hema-
toma extends to the utero-placental
interface at 7 to 9 weeks of gestation
and ruptures the anchoring villi
securing the gestational sac to the
decidua, a complete miscarriage re-
sults.”” Overall, patients with a first-
trimester threatened miscarriage have
~2x increased risk of further compli-
cations  including ~PPROM.'*"""
Conversely, 43% of placentas delivered
prematurely display hemosiderin de-
posits characteristic of previous hem-
orrhage in the decidua basalis or
membranes, compared to <1% of term
deliveries.”” The presence of a sub-
chorionic hematoma between the uter-
ine wall and the membranes will induce
local oxidative stress with secondary
tissue damage (Figure 7). High levels of
oxidative stress could induce cell death
through apoptosis, and disruption of

iron metabolism also stimulates ferrop-
tosis.”* There are many risk factors
associated with preterm birth,”” all
possibly operating through a final
common pathway by inducing chronic
oxidative stress, weakening the mem-
branes, and releasing inflammatory
factors.16,63,76,77

Second, failure to fully remodel the
arteries may contribute to an overall
increase in placental oxidative stress by
increasing placental malperfusion.®”
As in cases of PTL with intact mem-
branes, the placental villi display histo-
logic evidence of maternal vascular
malperfusion.”” Circulating markers of
oxidative stress are elevated,” and
immunohistochemical and biochemical
markers of senescence are often
increased in the membranes and am-
niotic fluid.*" Oxidative stress activates
a number of signaling pathways within

the villous syncytiotrophoblast, culmi-
nating in the secretion of proin-
flammatory factors, such as tumor
necrosis factor alpha, IL-1q, IL-1£3, IL-6,
IL-8, and cell-free fetal DNA.%*%
Additional proinflammatory cytokines
may be released through the induction
of cell senescence, including IL-183, IL-
6, and IL-8.°" These factors may
trigger sterile inflammation within the
myometrium, stimulating contractions
and PTL (Figure 6). Stress also
promotes secretion of corticotrophin-
releasing hormone by the syncytio-
trophoblast ~ into  the  maternal
circulation, and levels are increased in
various of the GOS.***> Corticotrophin-
releasing hormone has been implicated
in the timing of parturition® and pro-
vides another pathway by which
placental malperfusion could lead to
PTL.”

FIGURE 7

pregnancy may lead to the GOS

Diagrammatic representation of how failure of impoverished formation of the cytotrophoblastic shell during early
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In both scenarios, differences in
antioxidant defenses due to genetic
variations, dietary insufficiencies, ciga-
rette smoking, obesity, and environ-
mental pollutants may exacerbate the
situation and render individuals at a
greater risk of PPROM and PTL.'
These concepts are difficult to test,
however. As imaging techniques
continue to improve, it may become
possible to visualize aspects of onset of
the maternal circulation, villous regres-
sion, and formation of the membranes
in greater detail. If so, prospective
studies of the importance of sub-
chorionic hematomas and other aber-
rations of the utero-placental interface
for obstetric outcome might be
informative.

Contribution of endometrium to
preterm premature rupture of the
membranes

Formation of the cytotrophoblastic shell
occurs early in the first trimester, when
placental development is stimulated by
histotrophic nutrition derived from the
decidua prior to onset of the maternal
placental circulation.®” This realization
has emphasized the importance of the
dialog between the placenta and the
endometrium/decidua during the peri-
conceptional period, yet little is known
about what constitutes a healthy func-
tional endometrium or the composition
of histotroph during early pregnancy. In
domestic species, there is strong evi-
dence that the placenta stimulates its
own development through a signaling
loop with the endometrium and uterine
glands, upregulating the expression of
growth factors and nutrients.*” "’ Data
from endometrial organoids suggest
that the same is likely to be true in
humans.”" Prolactin appears to play a
particularly important role, and in
humans is secreted by the decidua rather
than the trophoblast.”

Increasing evidence associates poor
decidualization with the development of
preeclampsia and other adverse
outcomes.” °°  This association is
highlighted by comparison of endome-
trial preparation during in vitro fertil-
ization procedures; replacement of
frozen embryos in natural cycles is

associated with better outcomes,
including less preterm birth, than in
hormone replacement cycles.”””® The
effect may operate through various
pathways including the absence of the
corpus luteum and its additional
secreted products apart from proges-
terone. Failure of normal decidualiza-
tion could also result in deficient
histotrophic ~ stimulation of early
trophoblast proliferation, and aberrant
recruitment and differentiation of the
decidual immune cells, particularly the
distinctive uterine Natural Killer cells
that recognize extravillous trophoblasts
and alter their functions.””'"’ The abil-
ity to derive endometrial organoids
responsive to early pregnancy hormones
and endometrial stromal cells non-
invasively from menstrual fluid presents
opportunities to assess endometrial
function preconceptionally.'”’ The ca-
pacity for decidualization, the respon-
siveness of the glands to hormonal cues
from the decidua and trophoblast, the
composition and bioactivity of the his-
totroph, and the uterine Natural Killer
profile could all be tested. Data could be
correlated prospectively with pregnancy
outcome, aiding the development of
new therapeutic interventions. Ensuring
endometrial function is optimal prior to
conception through lifestyle or thera-
peutic interventions may thus improve
obstetric outcomes.

Clinical implications

The importance of both the cyto-
trophoblastic shell and the smooth
membranes for successful pregnancy is
greatly underestimated. However, the
shell is a transient structure that exists
only for the first few weeks after im-
plantation and is inaccessible for study.
An incomplete and discontinuous shell
is observed in 70% of spontaneous
miscarriages, independent of the fetal
karyotype, and is associated with pre-
cocious and spatially disorganized onset
of the maternal placental circula-
tion.”>* We suggest that less severe
deficiencies might weaken the utero-
placental interface, increasing the risk
of subchorionic hematoma, and also
lead to incomplete plugging and
remodeling of the spiral arteries.
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Consequently, onset of the maternal
circulation and villous regression is
likely to be abnormal, and associated
with  placental malperfusion and
PPROM later in pregnancy.

Monitoring villous regression in vivo
and testing this concept is currently not
possible. Apart from subchorionic he-
matomas, events taking place during
formation of the membranes occur at
too fine a scale to be resolved by current
imaging techniques. Even if it becomes
possible to visualize temporo-spatial
variations in onset of the maternal cir-
culation in the future, repeated scans
would be needed to test associations
with villous regression, which would
require ethical permission and resource
implications in a clinical setting. Circu-
lating biomarkers offer a potentially
attractive alternative, but a recent sys-
tematic review that evaluated more than
50 biomarkers arising from 14 studies
that sampled maternal blood between 6
and 14 weeks of gestation showed only
weak and inconsistent associations with
PPROM.'?” Further studies of C-reac-
tive protein, placental growth factor,
and soluble fms-like tyrosine kinase 1
are recommended.'*” Placental-specific
microRNAs may be another potential
marker given the volume of trophoblast
degeneration associated with villous
regression.

Biomarkers are likely to be more
successful later in pregnancy once the
pathophysiology in the membranes be-
comes established. The soluble fms-like
tyrosine kinase 1/placental growth fac-
tor ratio is well established as an indi-
cator of trophoblastic stress induced by
maternal vascular malperfusion. Classi-
fiying the GOS depending on the pres-
ence or absence of placental histological
changes at delivery indicative of mal-
perfusion may enable the ratio to be
more informative of the pathophysi-
ology earlier in gestation.'’” In addition,
placental exosomes hold much promise
as a liquid biopsy for diagnosis of
placental pathologies.'”*'”” More spe-
cifically, exosomes released from amni-
otic epithelial cells display a unique
protein signature in cases of PPROM
compared to PTL and term deliveries.'°
The exosomes are capable of crossing to


http://www.AJOG.org

ajog.org

Expert Review

GLOSSARY

Chorionic cytotrophoblast cells: the subpopulation of cytotrophoblast cells that form
the amniochorion

Cytotrophoblast cells: a progenitor population of trophoblast cells that can differentiate
along different lines

Cytotrophoblastic shell: a transient multilayered aggregation of cytotrophoblast cells
that forms the maternal—fetal interface in the first weeks after implantation and gives
rise to the extravillous trophoblasts and the trophoblastic plugs that occlude the spiral
arteries during the first trimester

Extravillous trophoblast: a subpopulation of cytotrophoblast cells that migrate beyond
the confines of the placenta into the decidua where they are involved in remodeling of
the maternal spiral arteries

Human Leukocyte Antigen-G: a nonclassical class | histocompatibility antigen that is
expressed by, and a marker of, extravillous trophoblasts

Maternal vascular malperfusion: abnormal maternal arterial bloodflow to the placenta
resulting from deficient remodeling of the uterine spiral arteries during early pregnancy
and causative of placental oxidative stress

Oxidative stress: an imbalance between the production of pro-oxidant species and the
antioxidant defenses that can lead to indiscriminate damage to biomolecules and

induce apoptosis and cell death

Subchorionic hematoma: a collection of blood between the chorion (free placental

membranes) and the uterine wall

Syncytiotrophoblast: the outer epithelial covering of the placental villi formed by fusion

of villous cytotrophoblast cells

the maternal side where their inflam-
matory cargo may contribute to the
onset of parturition,'”” but potentially
could also be isolated for diagnostic
purposes. Equally, exosomes derived
from the chorionic trophoblast may be
informative of stress and senescence if
unique markers can be identified, and
further studies are required. [ ]
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