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Abstract—This article presents a suboptimal joint trajectory
replanning (SJTR) method for Mars ascent vehicle (MAV) launch
missions under propulsion system faults. Conventional step-by-
step trajectory replanning may fail to make timely decisions,
risking mission failure. The SJTR method formulates a joint
convex optimization problem of target orbit and flight trajectory
after a fault. By applying penalty coefficients for terminal
constraints, it adheres to the orbit redecision principles, enabling
a concise and rapid solution. To further enhance the convergence
and the accuracy of orbit-type determination, a learning-based
warm-start scheme is proposed. Offline, a deep neural network
(DNN) is trained with data generated by various trajectory
replanning methods following the redecision principles. Online,
the DNN provides initial guesses for the time optimization
variables based on the fault scenario. Numerical simulations
on mass flow rate and specific impulse drops validate the
reliability of the proposed method, demonstrating at least 49.5%
higher computational efficiency compared with the upgrading
and downgrading replanning methods.

Index Terms—Deep neural network (DNN), Mars ascent vehi-
cle (MAV), propulsion system faults, trajectory replanning.

I. INTRODUCTION

OR future Mars sample return and crewed return mis-

sions, the design of the Mars ascent vehicle (MAV) is
a crucial and challenging aspect. On one hand, the Martian
environment has significant uncertainties, such as the impact
of Martian winds and solar storms [1]. On the other hand,
the temperature conditions on Mars are harsh, and unexpected
engine and propellant issues may arise after ignition. Recent
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experiences indicate that rocket faults occur frequently, even
without considering adverse environmental conditions, with
propulsion system faults being the most common issue [2].
When the system fault is minor, the MAV can reach the
target orbit using classical closed-loop guidance methods.
However, when the fault is so severe that the original target
orbit cannot be reached, traditional guidance methods alone
are far from sufficient. In such cases, if the MAV lacks
redundancy and contingency plans, there is a risk of mission
failure.

Regardless of whether faults occur, the ultimate objective
is to optimize flight trajectories to the target orbit. After
significant development in recent years, convex optimization
can be widely applied to solve many trajectory optimiza-
tion problems [3], [4], [5], [6], [7]. It can find the optimal
solution within a finite time, effectively meeting the high
real-time requirements in some scenarios. Currently, methods
such as lossless convexification and successive convexifica-
tion are used to transform nonconvex and nonlinear terms
into convex forms [8], [9]. Moreover, there is a growing
number of methods to improve the performance of solv-
ing convex optimization problems combined with sequential
convex programming (SCP) frameworks. Hong et al. [10]
proposed a novel model predictive convex programming for
a class of nonlinear systems with state and input constraints,
addressing optimal guidance problems with terrain constraints.
A combination of modified Chebyshev—Picard iteration
(MCPI) and SCP is proposed to approximate dynamic
equations, eliminating state variables in finite-dimensional
subproblems and improving convergence performance [11],
[12]. To ensure that linearized subproblems approximate the
original problem well and prevent potential infeasibility, trust-
region constraints and virtual control terms were introduced
in [13] and validated in a Falcon 9 launch vehicle simulation
scenario.

When typical propulsion system faults such as mass flow
rate drop and specific impulse drop occur, if the flight still
follows the reference commands and trajectory, the fuel may
be consumed prematurely. Therefore, it is necessary to rede-
cide the target orbit and optimize the flight trajectory after
detecting a fault using fault diagnosis methods [14], [15],
[16]. Even if the original target orbit cannot be reached,
entering an appropriate rescue orbit for potential rescue oper-
ations helps minimize losses. For example, Song et al. [17]
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studied an autonomous mission reconstruction technology that
simulates various failure scenarios occurring during missions.
The algorithm evaluates the remaining performance of the
rocket and plans new objectives and corresponding flight
paths through iterative guidance mode or segmented state
triggered method, enabling the rocket to enter the target orbit
as expected or deploy the payload in other degraded orbits.
This effectively avoids the risk of total loss in the face of
such failures [17]. Ma et al. [18] proposed an improved
parallel-structured Newton-type guidance algorithm, which
can be applied to problems with free-time and path constraints,
effectively solving the problem that the thrust drop may lead
to the failure of the launch vehicles during endoatmospheric
flight. Trajectory replanning after fault essentially involves
two parts: redecision of the target orbit and optimization of
the flight trajectory. State-triggered indicator (STI) method
correlates different rescue orbits with transition states defined
by three indicators, addressing the online optimization problem
of target orbit and flight trajectory after thrust drop faults [19].
Miao et al. [20] introduced an auxiliary phases’ method that
avoids linearization of the objective function and terminal con-
straints, enhancing the convergence performance of trajectory
replanning.

In recent years, deep neural networks (DNNs) have made
significant strides in solving trajectory planning problems [21],
[22], [23]. Chali et al. [24] proposed a comprehensive trajectory
planning approach for solving the reentry flight of hypersonic
vehicles with six degrees of freedom, adopting a two-layer
structure that combines desensitized trajectory optimization
and DNN. Hua and Fang [25] proposed a learning-based
trajectory generation framework for a quadrotor, which com-
bines reinforcement learning and imitation learning to make
human-like decisions online, ensuring real-time and practically
reliable solution. Scholars have also conducted some research
on using DNN to assist in trajectory replanning after failures.
He et al. [26] proposed a DNN-based adaptive collocation
method by establishing mappings between offline fault situa-
tions and optimal rescue orbits and terminal control variables,
which improves the efficiency of online trajectory replanning.
Moreover, the concept of dynamic multiobjective optimization
may inspire new approaches to solving the MAV trajectory
replanning problem [27], [28].

Ensuring feasibility and convergence in each optimization
during trajectory replanning is crucial [29]. A well-set initial
guess can reduce infeasible situations and improve solution
efficiency. To address complex ascent problems, a three-step
continuation scheme is devised to enhance the solution success
rate using the solutions from simplified problems as initial
guesses for the real problems [13]. Banerjee et al. [30] intro-
duced a novel approach of using outputs from trained models
to warm-start nonlinear solvers, reducing computational time
while obtaining feasible and locally optimal solutions of
trajectory optimization problems.

To the best of the authors’ knowledge, very few studies
are currently available on MAV trajectory replanning after
faults. This is a multiphase, highly nonlinear, free-terminal
time optimization problem that is inherently difficult to solve,
requiring algorithms with high real-time capability. Unlike
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typical ascent trajectory optimization problems where the tar-
get orbit is usually predetermined, in this case, the target orbit
needs to be optimized. Although the existing joint optimiza-
tion methods can solve this problem, they still cannot avoid
multistep judgment and optimization [19], [20]. Moreover,
the search space for solutions is large, placing high demands
on convergence of optimization algorithms. Directly using
neural network mappings to derive trajectories toward the
target may also encounter several issues. For example, neural
networks rely on training data, and deviations from expected
trajectories or uncertainties in the actual model may lead to
significant deviations. Another limitation is that this approach
is only applicable to a limited number of fault modes, and
for unforeseen severe faults, infeasible situations may occur.
In addition, it is challenging to provide reasonable initial
guesses, which hinders the convergence of the algorithm and
computational efficiency [31], [32].

The main contributions of this article are summarized as
follows.

1) A concise, fast, and reliable suboptimal joint trajectory
replanning (SJTR) method is proposed to solve the MAV
trajectory replanning problem after faults. It eliminates
the need for separate decision-making on target orbits
and trajectory optimization during flight. The solution to
this joint trajectory replanning problem can be obtained
directly instead of using STIs for step-by-step judgment
and optimization.

2) A learning-based warm-start method is designed, which
provides a reasonable initial guess for the SJTR method
through an offline trained neural network, avoiding
infeasible situations and improving solution efficiency.
In addition, it addresses the issue of inaccurate orbit type
determination that can occur in some edge-case faults of
the SITR method, thereby enhancing reliability.

The rest of this article will be organized as follows.
Section II introduces the dynamics, establishing the trajectory
optimization problem and target orbit redecision principles.
Section III analyzes the general trajectory replanning method,
the SJTR method, and the learning-based warm-start scheme.
Detailed simulation results and comparative studies are pre-
sented in Section I'V. Finally, Section V concludes this article.

II. PROBLEM FORMULATION
A. Symbols’ Appointment

Adopted symbols in this article are summarized in Table I.

B. Dynamics Under Faults

The whole flight process can be divided into three phases
which are the ascending phase, the coasting phase, and the
orbiting phase. The characteristics of each phase are as
follows.

1) Ascending Phase: The MAV takes off with thrust pro-
vided by the first-stage engines, and this phase stops
when the first-stage propellant is completely consumed.

2) Coasting Phase: No thrust is applied throughout the
phase, and the end time of this phase is flexible.
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TABLE 1
SUMMARY OF ADOPTED SYMBOLS

Symbol Description Unit
D Aerodynamic drag N
Cy Drag coefficient -

S Reference area of the MAV m?
p Atmospheric density kg/m>
Vrel Velocity vector relative to Mars m/s
() Position and velocity vectors m and m/s
w Angular velocity of Mars rad/s
h Altitude from the surface of Mars m
ho Martian density scale height m
o Atmospheric density at sea level kg/m3
L Variable distinguishing the fault mode -
o Martian gravitational parameter m3/s?
g0 Standard gravity m/s?
Isp Specific impulse of the engine s
m Mass of the MAV kg
thail Time of fault occurrence S
T Thrust magnitude N
u Thrust direction vector -
n,K Variables determined by the fault mode -
x State vector (position, velocity, mass) -
a*, e*, i*, Q* Target orbital elements (semi-major -
axis, eccentricity, inclination, longitude
of ascending node)
1y Unit direction vector of the orbital an- -
gular momentum
J Cost function -
af Semi-major axis at the final time m
Qsafe Minimum safe orbital altitude m

Ais AQ Weight coefficients -
Ay Slack variable -
we Penalty parameter -
A Vector of optimization variables -

[ Trust-region radius -
o, B Input and output vectors for the DNN -
L fail State vector at the time of fault -
Ry Radius of Mars m

3) Orbiting Phase: The first stage separates, and propulsion
is provided by the second stage engine. This phase ends
when the target orbit constraints are satisfied.

Since aerodynamic lift is negligible compared with thrust,
aerodynamic drag is considered the primary form of aerody-
namic force. The definition of aerodynamic drag is as follows:

D = CqSplvrelll’/2 (M

where v,; = v —w X r is the velocity vector relative to Mars,
C, is the drag coefficient, S is the MAV’s reference area,
w is the angular velocity of the Mars, and r = [ry,ry,r;]"
and v = [v,, vy,vz]T denote the inertial position and the
velocity vectors of the MAYV, respectively. The atmosphere
density is considered only within an altitude of 120 km,
which is modeled as p(#) = po exp(—h(t)/ho), where h denotes
the altitude from the surface of Mars, hg is the Martian
density scale height, and pg is the atmospheric density at sea
level.

We focus on the problem of thrust drop faults occurring
during the ascending phase, which is the most common type
of propulsion system faults. Thrust drop faults can be mainly
divided into two cases: mass flow rate drop (L = 0) and
specific impulse drop (L = 1), where L is the variable
that distinguishes the fault mode. The essential difference
between these two fault modes lies in whether the propellant
consumption changes while the thrust drops [33]. When a
blockage fault occurs, it usually corresponds to the mass
flow rate drop fault. In this case, the fuel consumption rate
decreases accordingly. In the Mars ascent problem with a thin
atmosphere, the impact of this type of fault is generally not
fatal. When a leakage fault occurs, it usually corresponds to
the specific impulse drop fault. In this situation, the propellant
consumption rate remains unchanged, but the thrust magnitude
decreases and not all the propellant is converted to thrust,
which represents a worse scenario.

Considering the standard flight dynamics model of the MAV,
in the Martian centered inertial (MCI) coordinate system, we
establish a unified three-degree-of-freedom dynamics equation
that takes thrust drop faults into account

F=v 2)
T
V= —L3r T]_u - Vrel (3)
Il m m|[Veell
T
= —=X 4)
L 80

where p is the Martian gravitational parameter, go is the
standard gravity, I, is the specific impulse of the engine,
and m denotes the mass of the MAV. In addition, the thrust
magnitude T of the MAV is fixed, with the only adjustable con-
trol variable being the thrust direction vector u = [uy, uy, u]".
The variables n and « are determined by the following
piecewise function:

(LD, 1 < tril
(n,x)=13@,1), t>ty)and L=1 5)
m*,n"), 1>ty and L=0

where 0 < " < 1 is the percentage of remaining thrust, and
t and g, are the flight time and the time of fault occurrence,
respectively.

Dealing with the situation after faults is a complex issue
that involves processes such as fault prediction, fault diagnosis,
and fault-tolerant control [34], [35]. These are not within the
scope of discussion in this article. For the sake of simplicity
in analysis, we make the following assumptions.

Assumption 1: The fault occurs only once, and once the fault
happens, its magnitude will not change during the process.

Assumption 2: The system can accurately and in real-time
detect the occurrence time and situations of the fault.

C. Trajectory Optimization Problem

In this section, we provide the mathematical description of
the basic fuel-optimal trajectory optimization problem.

To handle the multiphase problems in a unified manner, we
connect each phase with the linkage constraints

Tp0 =Tpolfs Vpo = Vpi,f, M3 = Mo p — M dry (6)
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where p(p = 2,3) is the phase number, m, 4 denotes the dry
mass of first stage, and (-),0 and (-), s represent the state at
the initial and final times of phase p, respectively.

The initial state constraint is as follows:

X10 = Xg @)

where x = [r7,v7,m]" represents the state vector consisting
of position, velocity, and mass.

The terminal constraints ¢(x3 ) can be expressed by
referring to the five-constraint problem in [36] as

lIrs gl —a* =0 )
sl = Vu/ar =0 )
r3fvip=0 (10)
r3,fT1h =0 (11D

V3,fT1h =0. (12)

The unit direction vector of the orbital angular momentum
is represented by 1M = [sin Q" sini*, — cos Q" sini*, cos i*]7,
and 1, is the representation of thCI in the inertial launch
plumbline system. Using (8)—(12), we can constrain the semi-
major axis a, eccentricity e*, orbital inclination i*, and
longitude of ascending node Q* of the target orbit.

The final mass mj3 ; must be greater than the dry mass of
the second stage my 4ry and the mass of the payload mpayioad

m3 f = My dry + Mpayload- (13)

The magnitude of the thrust direction vector is equal to one
during the ascending and orbiting phases. This constraint is
often transformed through lossless convexification [37]

el < 1, flusl| < 1. (14)

The performance index is the final mass of the MAV and
since the thrust magnitude is constant, the performance index
can be equivalently expressed as

J] :l‘3,f—l2’f (15)

where #, r and t3 f are the final time of the coasting and orbiting
phases, respectively.

In summary, the basic optimization problem can be
described as P1.

P1:

Minimize: Equation (15).

Subject to: Equations (2)—(14).

D. Target Orbit Redecision Principles

Without considering faults, the target orbit is usually pre-
determined; however, when a thrust drop fault occurs, if
the MAV still follows the original trajectory, there is a risk
that the target orbit cannot be reached or result in mission
failure. It is necessary not only to design an optimal flight
trajectory but also to evaluate the capability to achieve the
orbit according to the fault situation and the actual state of the
MAV in advance, so as to complete the redecision of the target
orbit.

The propellant consumption for adjusting the orbital plane
is much larger than that for adjusting the orbital altitude.
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Referring to the definition of the STI, to ensure safety, we
should prioritize the orbit altitude when redeciding the target
orbit, and the adjustment of the orbital plane will be considered
only when the remaining capacity is greater than a certain
threshold. The target and rescue orbits studied in this article
are circular orbits, and the specific types of entry into orbit
corresponding to the redecision principles can be categorized
into four types.

1) Original Target Orbit: Small fault condition, even if a
thrust drop fault occurs, the remaining propellant is able
to support the MAV into the original target orbit.

2) Rescue Orbit Type I: Medium fault condition, cannot
enter the original target orbit, but can reach the same
altitude as the target orbit. While maintaining its orbital
altitude and further reducing the deviation of the orbital
plane to make the rescue orbit as close as possible to
the target orbit.

3) Rescue Orbit Type II: Large fault condition, cannot enter
the original target orbit or reach the same altitude as the
target orbit. At this time, only the deviation of the orbit
altitude from the original target orbit altitude is reduced,
without considering the orbital plane deviation.

4) Mission Failure: Severe fault condition, the MAV cannot
reach the minimum safe orbit altitude.

III. TRAJECTORY REPLANNING AFTER FAULTS

Trajectory replanning after thrust drop fault is an optimal
joint optimization problem of rescue orbit and flight trajectory.
However, it is tough to solve these two coupled problems
directly. This is because different fault scenarios correspond
to different types of rescue orbits, making it challenging to
represent the problem in a unified form. This may lead to
nonconvergence of the optimization algorithm or low compu-
tational efficiency. Since the rescue orbit serves as the target
orbit for flight trajectory optimization and is unknown, this
greatly expands the search space for the optimal solution and
makes it difficult to provide an idea initial guess.

A. General Trajectory Replanning Method

Drawing on the multistep optimization framework based on
STI, this section uses the general trajectory replanning method
to construct the procedure that follows the principle mentioned
in Section II for solving the problem.

First, without considering the semi-major axis, orbital incli-
nation, and longitude of ascending node constraints at the final
time, (9) is changed to

s ll = ulay =0

where ay = ||r3 f|| is the magnitude of the semi-major axis at
the final time. The optimization problem is then transformed
into P2, which optimizes the highest circular orbit.

P2:

Minimize: J, = —ay.

Subject to: Equations (2)—(6), (10), (13), (14), and (16).

When ay is less than the safe orbit altitude agre, it indicates
mission failure. When ag¢. < ay < a*, the optimized result

(16)

is considered the highest circular rescue orbit, classified as
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Fig. 1. General trajectory replanning method.

rescue orbit type II. If ay > a*, it means that the MAV can
reach the original target orbit altitude while further reducing
the deviation of the orbital inclination iy and longitude of
ascending node Q. In this case, a new problem P3 needs to
be solved, where it is necessary to ensure ay = a*. P3 is used
to determine the rescue orbit that minimizes the orbital plane
difference at the same altitude as the original target orbit.

P3:

Minimize: J3 = Ajliy — i*| + AalQf — Q7.

Subject to: Equations (2)—-(10) and (13) and (14).

In P3, 4; and Aq are the weights. This problem can simul-
taneously correspond to entering the original target orbit and
the rescue orbit type I. When the performance index is small
enough, it implies that the semi-major axis and the orbital
plane elements both meet the requirements of the target orbit.
Otherwise, it belongs to the rescue orbit type I.

Now, P2 and P3 have been formulated for the scenarios
corresponding to the four types of orbit. The process of
solving this issue involves initially considering the worst case
scenario and then gradually “upgrade” the mission. In contrast,
a method of “downgrading” is proposed to first consider the
best-case scenario [20], [38]. Unlike the upgrading scheme,
this downgrading method initially does not constrain the final
mass of the MAV and its aim is to first obtain a set of solutions
that satisfy all the target orbital constraints. The steps for the
downgrading scheme are as follows. We define a new problem.

P4:

Minimize: J4 = —m3 .

Subject to: Equations (2)—(12) and (14).

By solving P4, if the obtained solution satisfies (13), it
indicates that the MAV has sufficient fuel to enter the original
target orbit. Conversely, it means the MAV needs to consume
more fuel than available, thus necessitating entry into a rescue
orbit or resulting in mission failure. If entering a rescue orbit
is required, the next step is to solve P3. If the problem is
feasible, the resulting trajectory is for entering the rescue orbit
type L. If the problem is infeasible, then determine whether it
is possible to enter the rescue orbit type II by solving P2
to obtain the highest rescue orbit. If this highest rescue orbit
exceeds the altitude of the safe orbit, then this is the solution
for the rescue orbit type II. Otherwise, the mission is deemed a
failure.

The general trajectory replanning method is shown in Fig. 1.
It should be noted that the upgrading scheme that involves
two optimization problems is not necessarily more time-saving
than the downgrading scheme that involves three optimization
problems. For example, when a minor fault occurs and it is
possible to enter the original target orbit, the downgrading
scheme only requires one judgment, while the upgrading
scheme needs to run through all the steps. Therefore, the
solving speed is affected by the fault situation and the order
of judgment. In practical applications, the upgrading or down-
grading strategies can be flexibly chosen based on the specific
requirements.

B. SJTR Method

Due to the unknown rescue orbit, the search space for
the optimal solution is enormous. Consequently, the general
trajectory replanning method requires solving the optimization
problem step-by-step, which may lead to time-consuming and
infeasible solution propagation. In addition, the divergence in
search directions caused by conflicts between the orbital plane
and shape elements significantly reduces solution efficiency or
rendering infeasible.

For typical trajectory optimization problems, precision and
optimality are crucial. However, for the problem of trajectory
replanning after faults studied in this article, convergence
and computational efficiency are more important. MCPI is a
method known for its good convergence and computational
efficiency [39], [40]. Although the convergence of MCPI can-
not be strictly proven when solving general nonlinear problems
[41], many studies have shown that for ascent problems, the
convergence bound of this method is quite large even without
an ideal initial guess [12], [42]. In this section, we developed
the SJTR method within the MCPI framework.

For solving an initial value problem of a nonlinear differen-
tial equation, we usually use the integral form for calculation

x(t):x(t0)+/ fls,x(s)ds, 1€ ][to,17]. (17)

In contrast, MCPI offers a new way of solving the problem.
The state trajectories are approximated by Picard iteration,
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and then continuously iterated to ensure their computational
accuracy. The formula for Picard iteration is as follows:
1
x* (1) = x (1) +/ f(s, XN ())ds, k=1,2,... (18)
fo

where x* denotes the solution of the k™ iteration in the succes-
sive solution process. We perform t = (t7 +10)/2+ (ty —10)7/2
to transform the time domain from ¢ € [#g,#] to 7 € [-1,1]
and obtain the new Picard iteration formula

xk(‘r):xo—l—/Tg(s,xk_l(s))ds, k=1,2,... (19
-1

Use N Chebyshev—Gauss—Lobatto nodes for discretization

7;=-cos(jn/N), j=0,1,2,...,N (20)

We can get the approximated force function using
orthogonal Chebyshev polynomials

N-1
g(rnx' (@)= F'Ti(x) @21)

i=0
where T;(t) = cos(iarccos(r)) represents the basis func-

tion. Based on the discrete orthogonality of the Chebyshev
polynomials, we can compute the coefficient vector F¥~! =
(1/ci) Z?]:Ong(Tj,xk_l(Tj))T,'(Tj), co = N; ¢, =NJ/2, fori =
1,2,...,N;zo=zn=1/2; zj=1for j=1,2,...,N - 1.

The Picard iteration formulas for velocity and position are
as follows:

™ (t,r—t
W (1)) ~ vp0 + / | oy ~tp0) . )y () s

ks _
rﬁ“ (Tp) =rpo+ /lp —(tp’f > lp,o) v’,‘flds

(22)

(23)

where 1, and 1,y are the initial and final times of phase p,
respectively. f, , is the velocity parts of the function f, xf,‘, is
the reference state trajectory of the kth iteration and u,, is the
control history.

Using (22) and (23) to compute the state, we do not need
to integrate the state variables. This means that when solving
the optimization problem, there is no need to set complex
dynamics constraints and the states at each step are not coupled
with each other. Instead, we can recover it based on the result
of the previous iteration and the control history using Picard
iteration. This changes the optimization variables from X;
(X1, X2, X3,U1,u3, 12 7,13 1) t0 By (w1,u3,12, 7,13 ). It simplifies
the optimal control problem, improves the convergence per-
formance of the algorithm, and expands the feasible domain.

The discrete form of (22) and (23) can be expressed as

v, [n] =v,[0] + (tp’f+p’0)[R[n+1,~] Y-G (XI;’ Up)]T 24
r,[n] =1, [0] + M (r, [n] + 1) v, [0]
2
t,r—1t T
+ M[R[m-l;] Y-R-Y-G (X]; Up)]
(25)

where the discrete nodes n = 1,2,...,N, the coeflicient
matrices R and Y are constants when the number of discrete
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nodes is fixed, and their computation method can be seen in
[41]. Ry,+1,) denotes the (n + 1)th row of R.
The force function matrix is given by

U,)=[f,, (x5 01,1, [01)..... f,, (x& [N],u, [N])] .
(26)

G (x,

Since the terminal constraints are functions with respect to
the state quantities, we need to convert them into functions of
the control quantities and time after using the MCPI method.
To solve the problem in the SCP framework, we linearize
the nonconvex terminal constraints ¢(x3 ) with the first-order
Taylor expansion, which yields

¢’ (x3[N])
~ ¢ (x4 [N]) + Vo (x5 [N])

ox3 [N] oxs3 [ N] =
Oous ; %ips " _t];’f) ”
(27)
where O (x3 [N])
Vip (x5 [N]) = L0 29
¢( 3 ) 0x3 [N] x3[N1=x[N]

However, it is difficult to satisfy this terminal equality
constraint (8)—(12), and it can encounter artificially infeasible
situations. To address this issue, a 5-D slack variable Ay is
introduced to relax the terminal constraints

" (x3 [ND| < Ag.

To limit the size of Ay, the objective function of the original
trajectory optimization problem becomes

(29)

Js=Ji 4+ Jy (30)

where Jg = w;A¢ is the part related to the terminal constraint
penalty term in the objective function, and wg is a positive
penalty parameter.

The application of slack variables not only relaxes the origi-
nal strict equality constraints but also reveals that the objective
function Jy here is structurally similar to the objective function
in P3. Therefore, the SJTR method discovers and uses this
characteristic, adjusting penalty coefficients to preferentially
optimize different orbital parameters.

Specifically, according to the target orbit redecision princi-
ple, we should set the penalty coeflicients in wg corresponding
to the semi-major axis and eccentricity to larger values. This
ensures that the requirement for the semi-major axis of the
circular orbit is prioritized when solving the problem. Usually,
wy is an empirical parameter. As long as it is selected based on
the above principle, it is easy to find a parameter suitable for
this problem. This way, we can achieve the joint optimization
of target orbit that satisfies the redecision principle and flight
trajectory directly, without the need to trigger step-by-step
optimization. Since the original constraints have been relaxed
and the weight of J; in the objective function is small, this
essentially represents a suboptimal method. Such suboptimal
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methods are permissible in this article, as it has been men-
tioned earlier that ensuring convergence and efficiency are
more important than optimality.

Let A = [u;",u3", 125,13 ¢]". Trust-region constraints are
imposed to ensure the feasibility of linearization

A —Af| <6 31)

where A} is the solution of the previous optimization iteration
and ¢ defines the radius of trust-region. To further improve the
convergence performance, we adopt the adaptive trust-region
strategy mentioned in [42], which adjusts the size of the trust-
region radius at different iteration stages.

The nonconvex constraints have been transformed into a
convex optimization problem that can be solved within the
SCP framework by means of lossless convexification and suc-
cessive linearization. In summary, the optimal control problem
constructed using the SJTR method is as follows.

Ps:

Minimize: Equation (30).

Subject to: Equations (14), (29), and (31).

Using the SITR method may lead to the following scenarios
and corresponding types of orbits.

1) Original Target Orbit: The slack variable Ay converges
to a value that can be considered equal to zero, meaning
the actual terminal conditions deviate negligibly from
the target orbit.

2) Rescue Orbit Type I: Due to the large penalty coefficients
associated with the semi-major axis and eccentricity
errors, the corresponding slack variables can converge
to negligible values. However, the errors in the orbital
inclination and longitude of ascending node are non-
negligible and are considered primary performance
indicators in the optimization problem.

3) Rescue Orbit Type II: All the slack variables ultimately
converge to nonnegligible values, but the minimum safe
altitude requirement can be satisfied, and the optimiza-
tion is still dominated by adjusting the altitude.

4) Mission Failure: The obtained slack variables are so
large that the maximum altitude is less than dgf, Or
the optimization results are infeasible.

C. Learning-Based Warm-Start

An accurate guess of the terminal time is crucial for opti-
mization. Since the fault occurrence time and fault conditions
are generally unknown, it is also difficult to estimate the
moment when the propellant is depleted. This will affect the
solution difficulty of the optimization problem. Although SJTR
has exhibited good convergence performance, an accurate ini-
tial guess can effectively improve the reliability and efficiency
of the solution and prevent infeasible situations in extreme
cases. Therefore, we designed the learning-based warm-start
method for SJTR to avoid using random initial time guesses.
The overall scheme is shown in Fig. 2.

This learning-based warm-start method can be divided into
offline and online components. In the offline part, the dataset
is split into training data and validation data, which are used to
train the neural network model and evaluate the effectiveness

Offline Training Online Trajectory Replanning
Different fault| |Different fault Current fault | [ Current fault

. . Current state . .
times situations time situation

FZZIZZ% | ' '

v
» Trained DNN
SITR SCP {
3 | Initial guesses |
. ! !
State-Action | by | | oy !
samples L !

Learning-based
warm-start

SJTR

!

Replanned flight trajectory

Fig. 2. Learning-based warm-start SITR method.

of the trained model, respectively. To ensure the generalization
ability of the neural network, the solutions obtained using the
SJTR and the SCP methods to solve optimization problems
under various fault scenarios are used as the dataset to train the
neural network, and only the results of successful optimization
are regarded as valid data. Thus, a mapping relationship is
established among the current state, the fault scenarios, and the
final times of the coasting and orbiting phases. In the online
part, the pretrained mapping allows for rapid determination of
flight time for these two phases, providing a more accurate
initial guess for subsequent trajectory replanning. The DNN’s
input @ and output B are as follows:

(32)
(33)

@ = [xfzi]’tfail’n*]-r
B=[npts]

where xg,; is the state vector of the MAV at the time of fault.

To train effectively and achieve rapid convergence, the
Z-score normalization method is used to standardize both the
input and output [43]. The process is as follows:

_¢-¢
=25

o

(34)

where  and o denote the mean and standard deviation of the
training dataset ¢, respectively.

The designed DNN is a fully connected feedforward neural
network with an input layer, multiple hidden layers, and an
output layer. The number of hidden layers and the number of
neurons in each hidden layer are hyperparameters that need
to be optimized. Too many hidden layers or neurons will
increase the training time and may lead to overfitting, while too
few hidden layers or neurons will result in underfitting. After
verification and analysis, the neural network in this article
is structured with three hidden layers. The first and second
hidden layers each have 128 neurons, while the third hidden
layer has 64 neurons. The output layer has two neurons for
the final prediction.
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TABLE I
MAV PARAMETERS

Parameters Value Parameters Value

mlydry, kg 27.6 mgydry, kg 70.4

™M1 props Kg 196 M2 prop, Kg 51
I1 p. s 293 Io . s 315
T, N 9000 T5, N 800
1 std> S 64.17 t2 stds S 196.93

We choose the sigmoid function as the activation function
and the mean absolute error (MAE) to evaluate the deviation
between predicted optimization values and outputs, as shown
in (35). Moreover, the adaptive momentum (Adam) algorithm
is used to minimize the loss function

1 ny d )
MAE = n xd Z Z |:3ij - Bij

i=1 j=1

(35)

where n; represents the number of samples, and d is the
dimension of the output. 3;; and ;; are the neural network
predicted value and the true value for the jth dimension of the
ith sample, respectively.

In this way, when a fault occurs, we can predict the flight
time of the coasting and orbiting phases for the current state
based on the time of the fault and the fault situation. The
computational time for this process is often negligible. We
do not require highly accurate predictions; as long as they
are in the vicinity of the optimal value, they can provide a
good warm-start for the SJTR algorithm. This ensures the
convergence performance of the algorithm and improves the
accuracy of the solution results.

IV. SIMULATIONS AND ANALYSIS

In this section, the simulation results of applying the
learning-based warm-start SJTR method to the trajectory
replanning problem of the MAV after two typical thrust drop
faults, namely, the mass flow rate drop and the specific impulse
drop, are presented. The simulations are implemented on a
desktop with an Intel Core i5-11600KF at 3.90 GHz. The
assignment of MAV parameters is displayed in Table II, where
My drys M) props 1)sps Ty, and ) qq correspond to the dry
mass, the propulsion mass, the specific impulse, the thrust
magnitude, and the burning time without faults, respectively.
The payload mass of the MAV mpay10aa = 5 kg, and the total
mass my at takeoff is 350 kg.

The number of Chebyshev nodes is N = 100, and the
initial radius of trust-region constraint is 6 = [0.5,0.5,6,6]".
During optimization iterations, if the results of two con-
secutive iterations are less than the convergence tolerance
€ = [Im, Im, 1m, 0.1m/s, 0.1m/s, 0.1m/s, 0.1kg]", €, =
€, = [0.001, 0.001, 0.001]7, and €,,=€&,, = 0.0ls, the
optimization process is considered to have successfully con-
cluded. The penalty coefficients for terminal constraints are
set to wy = [107,107,107,6 x 10°,6 x 10°]". The selection
of this parameter is based on the target orbit redecision
principles and then determined empirically. Therefore, the
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Fig. 3. Error histograms of the DNN in the test set. Errors of (a) >y and
(b) 131

penalty coefficients corresponding to the semi-major axis and
eccentricity are set to relatively large values.

The initial position of the MAV in the MCI coordinate
system is ri o = [-303.103, -3374.249,238.074]" km. We set
the parameters of the target orbit as a* = (300 + Rjys) km,
e* =0, i" =29.5° and Q" = 253.2°, where Ry = 3396.19 km
represents the radius of Mars, and the minimum safe orbital
altitude is agure = 250 km.

A. Mass Flow Rate Drop Faults (L =0)

1) Analysis of the Results for Learning-Based Warm-Start
SJTR Method: To initiate the algorithm, we set the initial
trajectory guess as a linear interpolation from the starting point
to the ending point. We conducted 100000 sets of Monte
Carlo simulations using the SJTR method (70%) and the
SCP method (30%) to generate an offline DNN dataset. In
each set, the data come from random fault occurrence time
trail € [0, #1 4] and remaining thrust percentage n* € [0.2,0.55],
both of which follow a uniform distribution. The data are
divided into a training set consisting of 90 000 trajectories and
a validation set consisting of 10000 trajectories. There are a
total of 50 batches in training, and the number of samples per
batch is set to 128. The learning rate is set as 0.01.

The estimation error distributions of # ; and t3f in the
validation set are shown in Fig. 3. It can be seen that the
estimation error is mainly concentrated and distributed in a
range around O s, so this DNN can establish a good mapping
relationship from the fault state to the time of coasting and
orbiting phases.

To verify the effectiveness of the learning-based warm-
start SJTR method, we conducted 5000 sets of Monte Carlo
simulations with the same fault conditions distribution as
previously mentioned. When the MAV detects a fault, the
initial time guesses are obtained using the trained network.
Subsequently, the SJTR is executed and the corresponding
flight trajectory and orbit type are optimized at the same time.
The results of the solution using the SJTR method and the
learning-based warm-start SJITR method are shown in Fig. 4.

In this result, each point represents a fault condition char-
acterized by the combination of fault occurrence time and
remaining thrust percentage. The four colors A, B, C, and D
correspond to four orbit types: original target orbit, rescue orbit
type I, rescue orbit type II, and mission failure, respectively.
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Fig. 4. Orbit type statistical graph (a) SJTR and (b) learning-based warm-start
SJTR.

TABLE III
CASES FOR FOUR ORBIT TYPES

Case 1 Case 2 Case 3 Case 4 Unit
Orbit type A B C D -
T fail -288.64 -283.16 -300.17 -295.04 km
Ty, fail -3380.76  -3384.03  -3374.99 -3377.26  km
T2, fail 245.32 249.15 238.75 241.28 km
Vg, fail 748.27 886.07 383.60 565.85 m/s
Vy fail -432.83 -545.33 -137.37 -284.58 m/s
U fail 504.53 638.88 144.53 325.30 m/s
TMfail 255.84 234.81 320.38 286.46 kg
teail 30.06 36.78 9.46 20.29 S
n* 46.84 24.12 34.34 20.81 %

The average runtime of the learning-based warm-start SJTR
is 0.447 s, and the average number of iterations is 24.38.
Compared with the SJTR, the efficiency is improved by
5.2%, and the number of iterations is reduced by 1.2. The
improvement in computational performance is limited because
the SJITR already has an excellent convergence performance.
As shown in Fig. 4(a), the SITR without using the warm-
start approach can result in some unsmooth boundaries and
inaccurate orbit-type determinations. This is because, in some
fault situations corresponding to ambiguous orbit types, poor
initial guesses prevent the SJTR from finding a better solution
or lead to convergence difficulties. Thus, the learning-based
warm-start improves the performance of the algorithm by
providing a better initial guess for SJTR.

2) Comparison of Trajectory Replanning Methods: To
demonstrate the effectiveness of the learning-based warm-start
SJTR, we compare it with the mainstream downgrading [20]
and upgrading [19] methods for solving the fault replanning
problem through four different fault cases shown in Table III.
According to Fig. 1, the downgrading method can be divided
into Steps 1-3, which, respectively, correspond to solving
P4, P3, and P2. The upgrading method can be divided into
Steps 1-2, which, respectively,correspond to solving P2 and
P3. The comparison results of these methods are shown in
Table IV.

For Case 1, it corresponds to entering the original target
orbit. All the methods show that the deviations in altitude
Ahy, orbital inclination Aiy, and longitude of ascending node
AQ; from the original target orbit are all zero. Based on
the optimized final mass of the MAYV, it can be seen that
compared with the downgrading method, the proposed method
sacrifices some optimality. This characteristic facilitates the
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Fig. 5. Error histograms of the DNN in the test set. Errors of (a) 2y and
(b) 131

joint trajectory replanning method designed in this article.
The reason why the upgrading method results in a lower final
mass compared with the other two methods is that the term
related to fuel optimality is not introduced into its performance
index.

For Case 2, it corresponds to entering the rescue orbit
type I. The time required for the downgrading and upgrading
methods from detecting the fault occurrence to planning a new
trajectory is 1.555 and 1.236 s, respectively, while the time
required for the proposed method is only 0.605 s, which is an
improvement of approximately 50%. Moreover, the parameters
of the final rescue orbit are not much different.

For Case 3, it corresponds to entering the rescue orbit
type II. The final altitude from the target orbit obtained by
the downgrading and upgrading methods is both —29.40 km,
and the result of the proposed method is —33.36 km. All
of them meet the minimum safety orbit requirements. In the
downgrading method, although no feasible solution is found in
Step 2, the calculation is still necessary, rendering its runtime
statistics meaningless. Therefore, it takes at least 1.521 s
(denoted as 1.5217) to solve this situation. The calculation
efficiency of the upgrading method is good, but it is still
inferior to our proposed method.

For Case 4, the situation corresponds to a mission failure.
In this case, the maximum orbital altitude that the MAV can
reach is less than the safe orbital altitude. The downgrading
method and the upgrading method take 1.556% and 0.711 s,
respectively, to determine this situation, while the proposed
method only takes 0.617 s.

B. Specific Impulse Drop Faults (L = 1)

1) Analysis of the Results for Learning-Based Warm-Start
SJTR Method: We generate and train a dataset in the same
way and with the same neural network architecture as in
Section III within the ranges of the random fault occurrence
time fi; € [0,#14q] and the remaining thrust percentage
" € [0.8,1). The prediction accuracies of the trained neural
network for the end times of the two flight phases are shown
in Fig. 5.

The results of 5000 sets of Monte Carlo simulations using
the SJITR method and the learning-based warm-start SJTR
method are shown in Fig. 6. The average runtime of the
learning-based warm-start SJTR is 0.454 s, and the average
number of iterations is 18.69. Compared with the SJTR,
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TABLE IV
COMPARISON OF TRAJECTORY REPLANNING RESULTS FOR MASS FLOW RATE DROP FAULTS

Downgrading Method Upgrading Method
Case Index Step 1 Step 2 Step 3 | Step 1 Step 2 Ours
ma, s (kg) 75.75 - - 75.46 75.45 75.69
Ahy (km) 0 - - 0 0 0
Aiy (deg) 0 - - -0.321 0 0
AQy (deg) 0 - - 3.248 0 0
Total Runtime (s) 0.755 1.193 0.547
ma, 5 (kg) 74.60 75.40 - 75.42 75.40 75.40
Ahy (km) 0 0 - 0 0 -0.029
Aiy (deg) 0 -0.489 - 2.041 -0.489 -0.476
AQy (deg) 0 1.685 - 4.776 1.685 1.633
Total Runtime (s) 1.555 1.236 0.605
ma, s (kg) 72.22  Infeasible 75.40 75.40 - 75.40
Ahy (km) 0 Infeasible -29.40 | -29.40 - -33.36
3 Aiy (deg) 0 Infeasible  -9.591 | -9.591 - -1.076
AQy (deg) 0 Infeasible  0.631 0.631 - 4.175
Total Runtime (s) 1.521+ 0.779 0.621
ma, s (kg) 68.60  Infeasible  75.40 75.40 - 75.40
Ahy (km) 0 Infeasible -70.81 | -70.81 - -78.78
4 Aiy (deg) 0 Infeasible  -2.099 | -2.099 - -0.942
AQy (deg) 0 Infeasible  3.916 3916 - 3.809
Total Runtime (s) 1.5567 0.711 0.617
. Rt o TABLE V
gov%i 4 ‘%% 5" CASES FOR FOUR ORBIT TYPES
C 1y St e, 2 Y
é 098 e B, 5 ;j E § Case 5 Case 6 Case 7 Case 8 Unit
£ 065 S AN D ey ? E Orbit type A B C D -
I ’i,,,f."_\ REINeT  D E T fail -257.02 -294.69 -281.73 -301.17 km
08 e o t t W, ‘ : ; Ty, fail -3401.44  -3377.45 -3384.94  -3374.66 km
60 0 20 40 60 T2, fail 269.67 241.50 250.25 238.41 km
Fault occurrence time (s) Fault occurrence time (s) Vg fail 147065 57604 919 16 33941 lTl/S
@ (b) Oy fail -1027.30  -293.85  -57394  -102.19  mJs
Uy fail 1206.95 337.57 675.10 101.14 m/s
Fig. 6. Orbit type statistical graph (a) SJTR and (b) learning-based warm-start Mfail 163.99 284.46 229.74 329.08 kg
SJITR. tail 59.39 20.92 38.40 6.68 S
n* 92.99 97.09 92.62 92.41 %

the efficiency is improved by 11.3%, and the number of
iterations is reduced by 3.4. In comparison with the mass
flow rate drop fault shown in Fig. 4, when a specific impulse
drop fault represented by fuel leakage occurs, the proportion
of allowable thrust loss is very small. This is because the
flight time will be correspondingly extended when L = 0,
which can be understood as the fuel not being wasted. How-
ever, not all the consumed fuel is used to provide thrust
when L = 1.

The proposed SJITR method can effectively handle the
replanning problem after such a fault. However, due to inac-
curate initial guesses, the solution may occasionally fail.
Therefore, the learning-based warm-start SJTR method effec-
tively overcomes this drawback and makes the replanning
results more reliable.

2) Comparison of Trajectory Replanning Methods: We set
up four scenarios for the specific impulse drop fault, namely,
Cases 5-8 as shown in Table V, to compare the differences
in solution results and efficiency between the learning-based
warm-start SJTR method and other fault replanning methods.

As can be seen from Table VI, the results obtained by the
proposed method are not optimal solutions. Moreover, when
the MAV cannot enter the original target orbit after a fault
occurs, the altitude error is larger than that of the other two
methods, while the orbital inclination error is smaller. This is
related to the penalty coefficients of the terminal constraints
we set, which are chosen empirically. To correctly determine
the type of orbit to enter after a fault, we have found that as
long as we follow the target orbit redecision principles, the
selection of penalty coefficients is not difficult, even though
different penalty coefficients may affect the final orbit entry
accuracy.

It is difficult to directly assess the superiority of the down-
grading method and the upgrading method from the simulation
results. When various fault scenarios occur, the decision-
making sequences of these methods have a significant impact
on the replanning efficiency. For example, in the case of a
minor fault, the downgrading method can perform planning
at a relatively fast speed. However, in the event of a more
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Downgrading Method Upgrading Method .
Case Index Step 1 Step 2 Step 3 | Step 1 Step 2 Ours
ms, s (kg) 75.80 - - 75.48 75.48 75.79
Ahy (km) 0 - - 0 0 0
5 Aiy (deg) 0 - - 5.216 0 0
AQy (deg) 0 - - 5.159 0 0
Total Runtime (s) 0.729 1.275 0.617
ms, s (kg) 74.45 75.40 - 75.43 75.40 75.40
Ahy (km) 0 0 - 0 0 -0.103
6 Aiy (deg) 0 -0.479 - -2.087 -0.479 -0.403
AQy (deg) 0 1.651 - 3.829 1.651 1.341
Total Runtime (s) 1.527 1.239 0.588
ms, s (kg) 73.37  Infeasible 75.40 | 75.40 - 75.40
Ahy (km) 0 Infeasible -18.19 | -18.19 - -23.54
7 Aiy (deg) 0 Infeasible  3.837 | 3.837 - -0.751
AQy (deg) 0 Infeasible  5.610 | 5.610 - 2.560
Total Runtime (s) 1.3667" 0.769 0.606
ms, s (kg) 70.98  Infeasible 75.40 | 75.40 - 75.40
Ahy (km) 0 Infeasible  -78.55 | -78.55 - -103.85
8 Aiy (deg) 0 Infeasible -14.03 | -14.03 - -1.257
AQy (deg) 0 Infeasible -2.978 | -2.978 - 4.347
Total Runtime (s) 17587 1.023 0.644

severe fault, multiple steps of judgment are necessitated, and
there is a possibility of encountering infeasible solutions
during this process. The upgrading method behaves in the
opposite way in this situation. If the longest time taken by
each method to solve all the cases is regarded as the calcu-
lation time for that method, the proposed method is at least
49.5% more efficient than the other two trajectory replanning
schemes.

In addition to its computational efficiency advantage, the
most significant aspect of the proposed method is that it
enables replanning without the need for complex step-by-
step judgments. Moreover, the general trajectory replanning
method may encounter the issue of infeasible solution propa-
gation, while the proposed method rarely encounters infea-
sible solutions, thereby significantly enhances the system’s
reliability.

V. CONCLUSION

This article proposes the SJTR method for optimizing the
target orbit and flight trajectory of a MAV after encoun-
tering a mass flow rate drop fault and a specific impulse
drop fault in the propulsion system during the flight. The
method integrates the MCPI framework, known for its good
convergence performance, and reveals the feature that the
optimization problem can adhere to the orbit redecision princi-
ple by designing penalty coefficients for terminal constraints.
In addition, by establishing a DNN that maps fault situ-
ations to time optimization variables, the SJTR method is
equipped with the learning-based warm-start strategy that
overcomes the problem of inaccurate orbit type determination.
The simulation results show that compared with other tra-
jectory replanning methods after faults, the proposed method

eliminates the need for step-by-step decision-making, offer-
ing higher computational efficiency and solution feasibility.
It provides a nonoptimal but highly reliable solution for
hazardous Mars ascent missions. In future work, we will
further consider the impact of DNN structures on the learning
scheme proposed in this article, including the design of
basic architectures and other more advanced neural network
models.
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