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Abstract

Abstract

To understand the three-dimensional structure of the world and guide behaviour, the
brain must infer depth from two-dimensional retinal images. Motion parallax is an impor-
tant visual cue for depth perception, relying on visual motion generated by movement of
the observer. However, the neural mechanisms underlying depth perception from motion
parallax remain poorly understood. Using mice as the model organism, I first established
the visual cliff as a robust behavioural assay to study depth perception in mice. Using
the visual cliff, I found that depth perception in mice does not depend on prior visual ex-
perience. Next, I investigated the neural mechanisms underlying depth perception from
motion parallax in the mouse primary visual cortex (V1). As V1 neurons are broadly
modulated by locomotion, I hypothesized that the integration of visual and locomotion-
related signals in V1 neurons enables depth estimation from motion parallax. Using
two-photon calcium imaging in mice navigating a three-dimensional virtual reality envi-
ronment, I identified a large fraction of V1 neurons tuned to virtual depth from motion
parallax. These depth-selective responses arose from conjunctive coding of visual motion
and self-motion speeds. Moreover, many of these neurons responded selectively to visual
stimuli presented at a specific retinotopic location and virtual depth, demonstrating that
V1 neuronal responses could be characterised by three-dimensional receptive fields during
active locomotion. These results demonstrate that V1 neurons create a depth map of
the three-dimensional visual space by representing a wide range of virtual depths across
retinotopic locations.
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Impact Statement

Depth perception is crucial for animals’ survival in this three-dimensional world. How-
ever, how the visual system parses the organisation of three-dimensional visual scenes to
infer depth remains poorly understood. Using mice as the model organism, this the-
sis significantly advances our understanding of the neural mechanisms underlying depth
perception.

First, using the visual cliff assay, it demonstrates that depth perception is innate in
mice and does not require prior visual experience. This discovery, along with evidence
of innate depth perception in many other species, suggests that the neural mechanisms
underlying depth perception are likely evolutionarily conserved across animals. Therefore,
this finding positions the mouse visual system and depth perception as ideal models for
future studies to investigate the link between gene expression and cortical function.

Next, this thesis focuses on investigating the neural mechanisms underlying depth
perception from motion parallax – one of the most important sources of depth informa-
tion for rodents and many other animals. Using two-photon calcium imaging to record
neuronal activity in mice navigating a three-dimensional virtual reality environment, it
reveals that neurons in the primary visual cortex (V1) encode a depth map of the three-
dimensional visual space during active locomotion of the animal. Traditionally, V1 was
thought to represent two-dimensional visual features from retinal images. However, this
study shows that V1 neurons explicitly encode three-dimensional locations of visual cues.
It reshapes our understanding of how the visual system parses the structure of real-world
three-dimensional environments, challenging the traditional view of V1 as a collection of
two-dimensional Gabor filters.

This study also shows that the representation of depth by V1 neurons arises from by
integrating visual motion and self-motion signals, which provides a functional explanation
for the widespread locomotion-related modulation in V1 neurons. Since the discovery
that locomotion determines the gain of responses of mouse V1 neurons, the functional
role of this modulation in visual processing has been debated. This study suggests that
locomotion-dependent modulation in V1 enables depth estimation from motion parallax.
Furthermore, the innate nature of depth perception in mice highlights their value as a
model to inform the neural mechanisms in other species.

The insights gained from this work have the potential to inform the development of
biologically inspired algorithms in computer vision and robotics. By elucidating how the
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brain estimates depth from motion parallax, this research can guide the development
of navigation and depth estimation systems for autonomous vehicles, drones, and other
artificial agents operating in complex environments.

In summary, this thesis has broad implications for both advancing basic neuroscience
and inspiring interdisciplinary innovations.
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1. Introduction

Chapter 1

Introduction

All animals live, navigate and forage in a three-dimensional environment. Understand-
ing the three-dimensional structure of the surrounding visual scene is vital for animals to
perform daily tasks. To guide behaviour in such environment using vision, the visual sys-
tem of the brain needs to infer the missing depth information from the two-dimensional
projections of the environment on the retinae. The significance of depth perception is
highlighted by the fact that many animals possess an innate ability to perceive depth
(Walk & Gibson, 1961). Nonetheless, how the visual system parses the structure of
three-dimensional scenes to estimate depth remains poorly understood. In particular, the
neural mechanisms underlying an important dynamic depth cue – motion parallax – is
largely unexplored (Kim et al., 2016). Therefore, this thesis aims to investigate the neural
mechanisms underlying the representation of depth from motion parallax by the visual
system. Specifically, I will use mice as the model organism. The mouse visual system has
emerged as a powerful model to study the neural mechanisms underlying visually-guided
behaviours (Niell, 2015; Niell & Scanziani, 2021). The mouse visual system has been
thoroughly characterised in terms of neuronal responses to visual and non-visual stimuli
(Niell & Scanziani, 2021; Niell & Stryker, 2008, 2010; Saleem et al., 2013). Studying
visual system via mice allows us to harness readily available genetic toolbox and invasive
recording techniques to manipulate and record activity of specific neuronal populations
in this well-characterised visual system (Luo et al., 2008; Niell, 2015; Niell & Scanziani,
2021; O’Connor et al., 2009). The rapid life cycles of mice (Dean & Nachman, 2009)
allows faster and larger quantity of data collection. Moreover, the pronounced resem-
blance in the fundamental properties and circuit motifs of the visual system between
mouse and primates (Lien & Scanziani, 2018; Liu et al., 2011; Niell & Scanziani, 2021;
Niell & Stryker, 2008; Priebe & Ferster, 2008; Van den Bergh et al., 2010) enables us to
extrapolate our findings in mice to other higher mammals.

In this chapter, I will first provide an overview of the importance of depth perception
and various visual cues that can facilitate depth perception. Then, I will outline the main
components of the visual system in mice and particularly focus on the neuronal properties
in the visual cortex. Lastly, I will review the existing studies on the neural mechanisms
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1.1. Depth perception

of depth perception.

1.1 Depth perception

The perception of depth is an essential computation that animals must perform to
live in this three-dimensional world. To guide behavioural tasks such as navigation, for-
aging, prey detection and avoiding predators using vision, animals must understand the
distances of themselves to target objects and construct an internal representation of the
three-dimensional structure of the environment. The ability to estimate depth has been
observed across many species in the animal kingdom, ranging from insects, crustaceans,
fish, amphibians, reptiles, birds to mammals (Howard, 2012c). How the perception of
depth is formed has been a long-standing subject of investigation and debate in neuro-
science. Helmholtz (1868) has pointed out how depth perception must be an important
computation performed by the brain in one of his lectures (Bishop & Pettigrew, 1986):
"We come now to the question: how is it possible for two flat images on the retina, each
from a different perspective and each representing only two dimensions, to combine so as
to present a single, solid image of three dimensions? ... The combination of these sensa-
tions into a single perceptual image of the external world ... must therefore be produced,
not by any anatomical mechanism of sensation, but by a mental act."

1.1.1 Visual and oculomotor cues for depth perception

Exactly as how Helmholtz (1868) pointed out, the visual system of the brain must
deduce the missing depth information based on various cues in the two-dimensional pro-
jections of the environment on the retinae. Depth perception is facilitated by various
visual and oculomotor cues that utilise binocular and monocular information (Howard &
Rogers, 2002). Binocular cues include two main types, binocular disparity and vergence
(Howard & Rogers, 1995). Humans, primates and carnivores with front-facing eyes have
extensive binocular overlap (120° in humans, Read, 2021; Spector, 1990), making binoc-
ular vision particularly important for depth perception in these species. Monocular cues
include accommodation, pictorial cues originated from static images, and motion paral-
lax and other motion-based cues created from relative motion between the observer and
the environment (Howard, 2012a, 2012b). Most animals do not possess frontal eyes or a
binocular overlap as wide as that of primates (Read, 2021). For example, mice only pos-
sess 40° of binocular vision with an extensive periphery vision (Heesy, 2004). Therefore,
monocular cues play an important role in the depth perception of these species.

Binocular disparity and vergence

Binocular vision requires integration of images from both eyes. The horizontal sep-
aration of the two eyes results in slight offsets between two monocular images, and two
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monocular views are integrated through binocular fusion, producing a single, coherent
visual percept of the environment (Ambrad Giovannetti & Rancz, 2024; Ding & Levi,
2021). In primates and humans, vergence eye movements (the coordinated convergence
or divergence of eyes) align the foveae to fixate eyes onto a specific target, contributing
to the motor aspect of binocular fusion (Harwerth et al., 1996; Miles, 1997; Schor et al.,
2002). The fixation point, along with all spatial locations that project to corresponding
retinal locations sharing single subjective locations in the visual field, define the horopter;
objects on the horopter produce zero disparity between two monocular images (Turski,
2023). Objects outside the horopter project to non-corresponding retinal points and hence
generate non-zero binocular disparity (Howard & Rogers, 1995; Howard & Rogers, 2002;
Qian, 1997). However, if objects are situated within a certain range to the horopter
(Panum’s fusional area), the visual system can still fuse the slight offset of monocular
objects into a single percept of the object (Poggio & Poggio, 1984; Turski, 2023). If dis-
parities exceed this range, sensory fusion fails and diplopia (double vision) occurs. Further
vergence movements are required to adjust the alignment between two eyes and bring the
object into Panum’s area to allow binocular fusion (Poggio & Poggio, 1984).

Both vergence and binocular disparity can serve as binocular cues for depth percep-
tion. When eyes fixate on an object at the middle plane between two eyes, the absolute
distance of the object to the observer can be calculated from the vergence angle θ and
the interocular distance I by I

2 tan θ/2 (Howard, 2012a). Convergent movements of two
eyes to fixate on a different object indicates a nearer depth, whereas divergence signifies
a farther depth. Vergence and binocular disparity can be combined to determine the ab-
solute distance of an object to an observer. If the observer focuses their eyes at a certain
point with a vergence angle of θ, another objects outside the horopter generate a binocu-
lar disparity of σ with respect to the fixation point, depth can be calculated by I

2 tan θ−σ
2

(Howard, 2012a). However, there is a limited range over which binocular cues effectively
supports depth perception. Various studies suggest that for humans, binocular disparity
is most effective for depth judgements up to several meters as disparity decreases with
distance (around 6 to 10 m, although some suggest that binocular cues can significantly
improve depth perception when monocular cues are weak up to 30 m, Blakemore, 1970;
Crannell and Peters, 1970; Hirsch and Weymouth, 1948; Howard, 1919; Sweet and Kaiser,
2011). Similarly, as vergence angles barely change beyond 2 m, it is unlikely that vergence
provides a primary cue for depth beyond that distance (Howard, 2012a).

Binocular depth perception does not necessarily require vergence or even binocular
fusion. For humans, Dove (1841) showed that stereoscopic vision still exists with a brief
flash of light, too brief for vergence to occur. Fine disparity arises within Panum’s fusional
area, enabling more precise depth estimation in the central visual field (Turski, 2023).
Outside fusible range and even with double vision, coarse disparity can still provide a
sense of stereoptic depth and is especially important for creating sense of immersion in
the ambient environment (Ogle, 1953; Turski, 2023). For other animals such as rodents,
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they do not fixate on specific objects in the same way as primates (Stahl, 2004). Mice, for
instance, have laterally oriented eyes that diverge at ∼103° with only ∼40° of binocular
overlap (Heesy, 2004). Their eye movements primarily serve as compensation to head
movements, such as tilt and rotation (Holmgren et al., 2021; Meyer et al., 2020; Michaiel
et al., 2020). Mice can discriminate depth based on binocular disparity cues even if their
vergence eye movements are not correlated with disparity (Choi & Priebe, 2020; Samonds
et al., 2019).

Binocular vision facilitates depth judgements in high precision and accuracy (Kim et
al., 2016; McKee & Taylor, 2010). Humans can make much more precise judgements about
the relative distance between two objects using binocular vision than using monocular
vision in both simple and enriched settings (McKee & Taylor, 2010). However, binocular
vision is not necessarily required for depth perception. Most animals do not possess frontal
eyes or a binocular overlap as wide as that of primates (Read, 2021). Human infants and
rodents with only one eye displayed unimpaired ability to perform depth perception tasks
(Ellard et al., 1984; Parker, Abe, Beatie, et al., 2022; Walk & Dodge, 1962; Walk &
Gibson, 1961), underscoring the crucial role of monocular visual information for animals’
depth perception.

Accommodation

There are rich monocular oculomotor and visual cues in the environment for depth
perception. Accommodation is an monocular oculomotor depth cue that signals depth
by changing the shape of the lens of the eyes or order to bring the target object in
focus (Berkeley, 1709; Descartes, 1664; Howard, 2012b). Nearby objects need higher
convexity of the lens while farther objects requires lower convexity. Humans can use
accommodation alone as a cue for perceiving depth. When presenting subjects with a
black silk thread or the edge of a black card, subjects were able to detect the changes
in depth of several centimeters based on changes in accommodation (Hillebrand, 1894;
Wundt, 1862). Regarding estimating absolute depth from accommodation, (Fisher &
Ciuffreda, 1988) found that although most people could give a decent estimation of depth
when viewing high-contrast stimuli at different distances, only a quarter of the participants
show strong correlation between the perceived depth and the accommodative response of
their eyes. This indicates that at least for some people, accommodation alone can be
a useful cue for depth. Blur of objects that are out of focus can also provide depth
information. When blur was isolated through a controlled optical setup as the only cue
for depth, subjects were able to report the depth a few centimetres from the actual depth
(Grant, 1942). Humans can also distinguish the image closer than the focal plane and
that beyond the focal plane (Wilson et al., 2002). Accommodation is most effectively
at distances from several centimetres up to around 2 m, due to optical power limits at
closer range and minimal accommodative changes at farther distances (Chen et al., 2000;
Howard, 2012a).
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Pictorial cues

Monocular depth cues include pictorial cues that indicate depth from single static
images, and motion-based cues that provides depth information based on the relative
movement between the observer and objects in the visual scene (Howard & Rogers, 1995;
Howard & Rogers, 2002; Kim et al., 2016; Reichelt et al., 2010; Tovée, 2008). There
are several types of pictorial cues for depth estimation (reviewed in Daw, 2012). (1)
Linear perspective: the famous artists, Leon Battista Alberti and Leonardo da Vinci,
described linear perspective as the phenomenon where parallel lines appear to meet at a
single vanishing point in the distance, creating the illusion of depth on a flat surface. (2)
Relative size: objects will appear smaller at a further distance, and the relative sizes of
objects can be used to estimate relative depth as well as absolute depth for objects with
known sizes. (3) Texture gradients: objects at various distances form texture gradients,
where the density and clarity of textures change with distance. (4) Aerial perspective:
the atmosphere in front of objects and the scattering of light makes objects further appear
hazy and bluer, creating aerial perspective. (5) Occlusion: occlusion and superposition
provide information about an object in front of another object. (6) Shading: the shading
of an object will change depending on its relative distance to the light source and its
shape.

Motion parallax

The sensation of depth can be also generated from the relative motion between the
observer and objects in the environment. One important and powerful motion-based cue
is motion parallax. First described by Helmholtz (1925) as a potential source of three-
dimensional information, motion parallax usually refers to the pattern of objects moving
across the retina due to translational movement of the observer’s viewpoint (observer-
produced parallax) or the objects (object-produced parallax, Gibson et al., 1959; Nawrot
and Joyce, 2006; Rogers and Graham, 1979. When an observer translates in the envi-
ronment relative to the objects, objects at different distances appear to move at different
velocities on the retina Gibson et al., 1959; Helmholtz, 1925; Rogers & Graham, 1979.
The translation of the observer in the environment creates optic flow emerging from a
focus of expansion and disappearing into a focus of contraction Miles, 1998. If the ob-
server fixates at optical infinity or do not fixate like rodents, all parts in the retinal image
will move in the direction opposite to the self-motion direction of the observer, and the
speed of visual motion on the retina is inversely proportional to the distance Miles, 1998;
Yoonessi & Baker, 2011. If the observer fixates at an intermediate distance, objects closer
than the fixation point will move in the direction opposite to the observer’s movement,
whereas objects farther than the fixation point will move in the same direction as the
observer’s movement Miles, 1998; Yoonessi & Baker, 2011. The visual motion speed is
inversely proportion to the distance between the object and the plane of fixation Miles,
1998. Pure eye rotation or pure head and body rotation along the vertical axis of the

21 of 207



1.1. Depth perception

body (if ignoring the translation caused by the offset between eye positions and the axis
of body rotation) creates optic flow patterns resembling the latitude of a sphere, yet the
changes in visual angle do not differ as a function of distance Miles, 1998.

Based on the rules of motion parallax, the absolute depth of a stationary object in an
environment can be computed if we know the visual motion speed of the image on the
retina and the speed of changes in gaze direction as a result of translation or rotation of
eye, head and body (Howard, 2012b). If an object is located at an angle α from the visual
axis of the observer, and the observer is translating at a speed of dr leading to the retinal
image of the objects moving at a speed of dθ, the distance of the object from the observer
is proportional to the ratio of running speed and optic flow speed (sin adr

dθ
). However

in practice, ambiguity in the perception of absolute depth could arise from incorrect
perception of the motion of the objects (whether the object is stationary or moving at a
certain speed and whether the motion is purely translational) or the inaccurate perception
of the motion of the observer’s eyes, head and body. This may cause visual illusions such
as stationary objects such as a printed face or a stereogram appear to move when we
observe them with lateral head movements (Howard, 2012b; Shimono et al., 2002). When
we incorrectly estimate the distance of a stationary objects, the actual visual motion is
different from our expectation, so we attribute the difference to object motion and create
an illusion of object moving.

Regarding the perception of relative depth from motion parallax, early work have
showed that humans can perceive slanting of a moving sloping surface from the velocity
gradients produced at different points of the surface, although the report of the degree
of relative depth or slant was inconsistent across subjects and the texture gradient of
the surface was not controlled (Braunstein, 1968; Gibson et al., 1959; Gibson & Carel,
1952). Rogers and Graham (1979) later established motion parallax as an independent
cue for reliable unambiguous perception of relative depth. Using random-dot stereograms,
he simulated three-dimensional surfaces of different shapes and degrees of slanting, and
asked subjects to report the shape and depth of the surfaces either from active translation
of the observer or from the translation of the visual stimuli. Most subjects were able to
report the shape and corrugation of the surfaces both under active translation or stimuli
translation, and were able to match the perceived depth from motion parallax to depth
from binocular disparity. The random-dot stereogram experiments eliminated all depth
cues other than motion parallax, and clearly demonstrated that motion parallax alone,
whether generated from self-motion or external motion, is sufficient for the perception of
relative depth. Notably, subjects did report a more pronounced perception of depth in the
observer-produced parallax condition, signifying the importance of self-motion signals in
depth perception. Similar to humans, non-human primates such as rhesus monkeys can
discriminate relative depth in random-dot stereograms from motion parallax cues created
by movement of dots or passive translation of the monkeys (Cao & Schiller, 2002; Kim
et al., 2015a).
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Most animals do not have a binocular overlap as extensive as primates (Read, 2021),
and animals such as rodents cannot fixate their eyes on objects in the same way as
primates (Stahl, 2004). Therefore, monocular depth cues can provide a major source of
depth information for these animals. For examples, Mongolian gerbils and mice were
found to display frequent head bobs (vertical head movements) before jumping across a
gap, which were proposed to create motion parallax cues to assist depth estimation (Ellard
et al., 1984; Parker, Abe, Beatie, et al., 2022). In gerbils, the number and frequency of
head bobbing were positively correlated with the gap distance the animal was required to
jump, and the accuracy of jumping measured by the variance of landing positions were
enhanced with more frequent large head bobs. Under the condition where looming cues
were limited using smaller platforms, head bobs were still correlated with the distance and
accuracy of jumping. Parker, Abe, Beatie, et al. (2022) further showed that monocular
mice were able to perform the jumping task as well as binocular mice, and they performed
more frequent head movements when binocular cues were unavailable. The variance of
landing locations was similar between binocular and monocular conditions. These results
suggest that mice can accurately estimate depth in absence of binocular cues, and motion
parallax is an important monocular cue for depth judgments.

In addition to terrestrial animals, there is some evidence that avian and aquatic ani-
mals may also be able to perceive depth from motion parallax cues. Insects such as bees
and flies cannot rely on binocular disparity or lens accommodation as primates due to
their small interocular distance, restricted binocular overlap, and the fixed focal length
of lenses in their compound eyes (Evangelista et al., 2010; Horridge, 1986; Kapustjansky
et al., 2010; Lehrer et al., 1988). Instead, they heavily rely on motion-related cues. Sim-
ilar to head bobs in rodents, translational head movements were found in locusts when
jumping towards a target (Sobel, 1990a). When presenting bees with artificial flowers
at randomised size and at various heights, bees could identify the flower at the height
of reward, indicating their ability of discriminating depth regardless of size (Lehrer et
al., 1988). During the depth discrimination tasks, bees primarily flew in straight lines,
creating translational motion parallax (Lehrer et al., 1988). When bees were trained to
fly through a gap between two grating stimuli, they would fly through the centre of two
stationary stimuli (Srinivasan, 1992). Yet, a moving stimulus on one side would bias the
bees to fly towards the moving side, as the moving stimuli creates an illusion of nearer
depth based on motion parallax, suggesting that motion parallax signals can bias the
depth judgements of bees during flight (Srinivasan, 1992). A similar phenomenon has
been found in flying birds (Bhagavatula et al., 2011). During landing, bees maintain
constant visual motion speed of the approaching surface to ensure deceleration of their
flying speed (Srinivasan et al., 2000). Flies use the same strategy to control their flying
speed (David, 1982).

For aquatic animals, water flow creates global motion and presents extra challenge to
estimating optic flow speed caused by self-motion. When training zebrafish to swim across
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a tunnel with two grating stimuli, unlike insects, zebrafish do not maintain a constant
visual flow speed by changing their swimming speed (Scholtyssek et al., 2014). Instead,
they may measure optic flow speed momentarily to constantly monitor their own speed.
Nevertheless, optic flow did bias the distance of zebrafish to the tunnel wall - stronger
optic flow attracted the zebrafish to swim closer to that side, which was opposite to the
direction of bias for bees (Scholtyssek et al., 2014). The bias in swimming towards objects
with stronger optic flow might be a strategy of staying closed to structures that provide
visual feedback about self-motion in low-lighting aquatic environment.

Other motion-based cues

Apart from motion parallax, the relative movements between the observer and the
target object can generate other visual patterns, providing additional information for
depth. For example, the image of a target object can be distorted from the perspective of
an observer in relative motion with the object (dynamic perspective cues, Buckthought
et al., 2017; Kim et al., 2015b; Rogers and Rogers, 1992). If the observer is translating
their head while making compensatory eye movements to fixate on a target object, a pure
eye translation creates perspective distortions in the retinal coordinates. On the contrary,
a pure eye rotation results in perspective distortions on a planar projection but not in
the retinal coordinates (Kim et al., 2015b). Therefore, the changes in perspective dur-
ing locomotion can provide information about the observer’s self-motion (translation and
rotation). Without any pictorial cues or extra-retinal locomotion signals (e.g. smooth
eye movement command signals), the perceived depth from vision motion alone can be
ambiguous (Hayashibe, 1991; Nawrot, 2003). However, dynamic perspective cues can be
used to disambiguate depth perception by the inference of the change of eye orientation
relative to the environment (Kim et al., 2015b; Rogers & Rogers, 1992). When showing
observers a three-dimensional corrugated surface constructed by random dots, changes in
perspective of the surface alone by rotating the display around its vertical axis (which
mimicked the dynamic perspective cues generated from eye rotation can disambiguate
the depth Rogers & Rogers, 1992. However, eye movements were not recorded in these
experiments, which might be an extra source of depth information. Kim et al., 2015b fur-
ther provided a clearer demonstration that dynamic perspective can disambiguate depth
for MT neurons in macaques. The stimuli consisted of a patch of random dots in the
receptive field of a neuron and at a specific distance to the animal. In the motion parallax
condition, the animal was translated along a frontoparallel plane while making compen-
satory eye movements to maintain fixation, In the retinal motion condition, the animal
remains stationary while the stimuli moved across to mimic the retinal motion of the mo-
tion parallax condition. In the dynamic perspective condition, the small stimulus patch
was surrounded by a larger cloud of random triangular dots outside the receptive field
of the neuron and at various distances to the observer. The animal remained stationary
while both the small stimulus patch and the larger cloud simulated the translation and
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rotation of eyes in the motion parallax condition. Pure retinal motion elicited symmetrical
tuning to near and far depths for MT neurons, whereas many neurons showed preferential
firing to either near or far depths in the dynamic perspective condition (65%) and motion
parallax condition (89%). This shows that MT neurons in macaques can disambiguate
depth from retinal motion with either eye movement signal or dynamic perspective cues.

When an observer moves laterally relative to a couple of stationary objects at different
distances, or when the observer remains stationary while objects at different distances are
moving relative to each other, the accretion/deletion of the farther objects (dynamic
occlusion) offers an unambiguous cue for relative depth (Andersen & Braunstein, 1983;
Ono et al., 1988; Royden et al., 1988). Absolute depth can only be inferred when the
observer is moving relative to stationary objects and the absolute distance between the
observer and one of the objects is available, and then depth can be estimated based on the
speed of the observer’s locomotion and the rate of accretion/deletion (Ono et al., 1988).
When conflicting dynamic occlusion and motion parallax cues were presented using two
surfaces constructed by random dots, dynamic occlusion cues dominated the perception
of depth signs in human subjects (Ono et al., 1988).

Another type of optic flow pattern is looming, referring to the increase or decrease
of size when the observer moves along the visual axis towards or away from the objects
(Howard, 2012b; Yoonessi & Baker, 2013). The expansion or compression of retinal images
of objects as well as the looming at distinct rates for objects at different distances provide
information of relative depth and motion in depth.

Cues for depth perception in mice

Mice can use a variety of binocular and monocular cues for depth estimation. Despite
the relatively small binocular overlap of mice (Heesy, 2004), mice are able to use binocular
disparity for depth judgements (Samonds et al., 2019). However, mice cannot fixate like
primates (Stahl, 2004) and their eye movements are mainly to compensate the head
movements (Holmgren et al., 2021; Meyer et al., 2020; Michaiel et al., 2020). Mice cannot
change the refractive power of their eyes either (Chalupa & Williams, 2008). Therefore,
vergence and accommodation are unlikely to provide main source of depth information
for mice. It was indeed shown in experiments that mice can discriminate depth with
binocular disparity cues whilst vergence plays little role. Samonds et al. (2019) trained
mice to discriminate pairs of near and far surfaces constructed by random dots with the
same magnitude of binocular disparity with respect to a monitor screen 22 cm away, and
mice could indicate their judgements by running or stopping. In theory, the preferred
viewing distance of mice is around 10 cm based on the optics of their eyes (Scholl et al.,
2013). Based on their interocular distance of around 1 cm and their preferred viewing
distance, the possible range of disparity that mice can experience is around ±5.7° (from
5 cm to infinity), which is much larger than cats (±2.5°, Packwood and Gordon, 1975) or
primates (±1.5°, Blakemore, 1970). In Samonds et al. (2019)’s experiments, mice could
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clearly differentiate surfaces within a range of ±0.83° to ±0.5° disparity with respect
to the screen. It is worth noting the difficulty of estimating the actual disparity that
mice experience, as their large depth of field complicates the estimation of their optimal
viewing distance (de la Cera et al., 2006; Geng et al., 2011). However, there were no
correlation between the changes in vergence angle and depth, suggesting that mice can
discriminate depth based on binocular disparity without relying on vergence (Samonds
et al., 2019). Boone et al. (2021) has also shown that mice were able to discriminate
depth on a visual cliff test (described in more detail in the section below) by avoiding the
side with a apparent visual drop, when predominantly using their upper visual field with
considerable binocular overlap.

As mice enjoy a large peripheral visual field compared to primates (Heesy, 2004),
monocular cues can provide a major source of depth information. As summarised in
Section 1.1.1, monocular mice were able to jump across gaps of variable distances as
accurately and as precisely as binocular mice, displaying more frequent head bobs to
generate motion parallax cues (Parker, Abe, Beatie, et al., 2022). This suggests that
motion-based monocular cues can be an important source of depth information for mice
in absence of binocular cues. Pictorial cues and other motion-based cues are less studied
in isolation for mice. However, many behavioural paradigms assessing depth perception
such as the visual cliff test (Boone et al., 2021; Fox, 1965) and the jumping task (Parker,
Abe, Beatie, et al., 2022) contain rich pictorial cues and other motion-based cues such
as relative size, perspective, shading, looming, dynamic perspective, etc. For example,
Ellard et al. (1984) showed that gerbils could use looming cues together with motion
parallax cues to ensure accurate jumping, and mice can clearly detect looming cues with
behavioural responses (Koehler et al., 2019; Yilmaz & Meister, 2013). Neurons in the
mouse visual cortex are also tuned to stimulus orientation, spatio-temporal frequencies,
changes in brightness (Andermann et al., 2011; Bonin et al., 2011; Dräger, 1975; Gao et al.,
2010; LeDue et al., 2012; Niell & Stryker, 2008) and size (Adesnik et al., 2012; Dipoppa et
al., 2018), which can serve as neural substrate for detecting relative size, perspective and
shading. Therefore in theory, mice should be able to use pictorial cues, motion parallax
and other motion-based cues to estimate depth, although further behavioural experiments
will be needed to confirm this statement.

1.1.2 Behavioural studies of depth perception

As animals cannot report their perception verbally, behavioural assays are required
to assess and quantify their ability to estimate depth. Earlier studies usually employed a
simple approach - by putting animals at various heights and observe their reactions due
to fear of heights. For example. baby pigs (Spalding, 1875) and newly hatched chicks
(Thorndike, 1899) were placed at platforms of various heights and their willingness to
jump down was observed. As heights increased, they displayed increased hesitation or
refusal to jump down. This assay shows that for pigs and chicken, the fear of heights and

26 of 207



1.1. Depth perception

the ability to perceive a visual drop is present at the very day of birth.
Another type of behavioural paradigm stemmed from the observations of animals mak-

ing horizontal or vertical head movements before jumping towards a target. Locusts make
lateral head movements to perform visual scanning ("peering") before jumping towards a
target, which has been proposed as a way of generating motion parallax cues from self-
motion to assist more accurate depth perception (Sobel, 1990b; Wallace, 1959). When
training animals to jump across a distance between two raised platforms, rats (Lashley &
Russell, 1934; Russell, 1932), mice (Parker, Abe, Beatie, et al., 2022), cats, kittens (Olson,
1980), and Mongolian gerbils (Ellard et al., 1984) make vertical head movements (head
bobs) prior to the jump. Their accuracy and precision of landing on the target platform
as well as the frequency of head bobs were were analysed as an indication of their depth
perception ability (see Section 1.1.1).

In 1960s, an extensive amount of studies started to employ a behavioural assay called
the visual cliff (Fox, 1965; Gibson & Walk, 1960; Walk & Gibson, 1961). This paradigm
examines the ability of depth discrimination using animals’ avoidance of a visual drop.
The apparatus usually consists of a large transparent panel bisected by a central platform,
with one side (the "shallow side") featuring a texture directly beneath the panel, whilst
the other side (the "deep side) displaying another texture several feet below, creating a
sensation of vertical depth. It was hypothesized that animals with a normal ability of
depth discrimination would prefer descending to the shallow side due to fear of height or
other possible reasons. Walk and Gibson (1961) comprehensively examined a wide range
of adult animals including mammals such as rats, mice, goats, pigs, dogs and monkeys as
well as birds (adult chickens). They consistently preferred to choose the shallow side or
avoided the deep side, indicating a universal ability of discriminating depth across many
animal species.

1.1.3 Nature and nurture of depth perception

The observations of the presence of depth perception in baby pigs and chicks at the
day of birth (Spalding, 1875; Thorndike, 1899) presented an interesting question regarding
the developmental origin of depth perception – is depth perception an innate ability for
all animals, or does it require any prior visual experience? The visual cliff became an ideal
method for assessing the innateness of depth perception due to several advantages. First,
the preference to the shallow side is robust across species (Walk & Gibson, 1961). Second,
unlike the jumping task (Ellard et al., 1984; Parker, Abe, Beatie, et al., 2022), it does
not require prior training and high-level motor coordination for animals to perform the
task. Third, depth perception can be easily quantified by measuring animals’ preferences
between two simple options.

To explore whether depth is innate for humans, researchers tested human infants aged
4 - 14 months on the visual cliff while the infant’s mother calling them from either the
deep side or the shallow side (Birch et al., 1982; Fox et al., 1980; Gibson & Walk, 1960;
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Tsuruhara et al., 2014). Strikingly, most infants refused to cross the deep side even when
they were encouraged by their mothers, indicating that the ability to perceive depth is
present for humans even from a very young age. However, since human infants usually
take several months to start crawling, it is impossible to test human infants on the visual
cliff as soon as they were born. Consequently, the possibility that visual experience within
the first few months helped the human infants to develop depth perception cannot be ruled
out.

Precocial animals that are mobile at birth thus serve as better proxies to study whether
depth perception requires prior visual experience. Chicks, lambs and kids were tested on
the visual cliff and all demonstrated innate avoidance to the deep side (Gibson & Walk,
1960). Another way of abolishing prior visual experience is to raise animals completely
in a dark environment. Rats born and reared in the dark for up to 4 months and then
immediately tested on the visual cliff displayed a strong preference to the shallow side
(Cheney & Crow, 1969; Walk et al., 1957; Walk et al., 1965). These results established
depth perception as an innate ability that does not require prior visual experience for
many birds and mammals.

On the other hand, for some mammals, visual experience seems important in develop-
ing or refining depth perception. For kittens, self-initiated movements accompanied with
visual flow feedback is required for depth perception (Hein et al., 1970). Compared to
kittens that could actively explore in an environment, kittens that could not control their
own movement and were only passively exposed to visual inputs did not develop paw plac-
ing reflexes or avoid the deep side on the visual cliff (Hein et al., 1970). Infant monkeys
reared in the dark for more than a month did not discriminate between the shallow and
deep sides on the visual cliff (Fantz, 1965). Even rats reared in the dark for more than
140 days did not immediately show depth discrimination on the visual cliff, but required
2-4 weeks of visual experience for them to restore depth perception (Walk et al., 1965).
It is possible that at least for some animals, the maturation of depth perception requires
certain degrees of exposure to visual experience during a critical period of development.

Overall, depth perception is proven innate for many animals including birds (chicken)
and mammals (sheep, goats and rats), whereas visual experience might be needed for
some species (especially higher mammals) to develop or refine their depth perception.
The innate nature of depth perception underscores its importance as a core visual func-
tion for animals to perform daily tasks. Moreover, depth perception is likely supported
by evolutionarily conserved neural circuits that are largely shaped by gene expression
patterns.
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1.2 The mouse visual system

1.2.1 Visual pathways in mice

In mouse visual system, visual stimuli are first processed by photoreceptors including
rods and cones, to convert light into electrical signals (Carter-Dawson & Lavail, 1979; Fu
& Yau, 2007). Rods which are specialised in vision under low-light conditions constitute
the majority of photoreceptors in the mouse retinae, and cones are specialised for vision
with colour and fine details (Carter-Dawson & Lavail, 1979). Through multiple retinal
interneurons including horizontal, bipolar and amacrine cells, the electrical signals were
then are transmitted to the retinal ganglion cells (RGCs) as an output to the rest of the
brain (reviewed in Masland, 2012; Seabrook et al., 2017). There are more than 32 types
of RGCs being identified with diverse functional specialisation, each extracting specific
features from the visual scene (Baden et al., 2016; Goetz et al., 2022). Different types
of RGCs selectively respond to either sustained or transient light intensity increases (ON
cells) or decreases (OFF cells), and specific directions, orientations or contrasts of the
stimuli (Baden et al., 2016).

In the brain, RGC subtypes project to over 40 subcortical targets in the basal fore-
brain, hypothalamus, thalamus, superior colliculus, pretectum, and other midbrain re-
gions (Morin & Studholme, 2014). These projections provide visual information for either
image-forming circuits directly leading to visual perception or non-image-forming circuits
for other types of perception or eye-related reflexes to support vision (Morin & Studholme,
2014). Areas in the image-forming visual pathway generally retain a spatially organised
representation of the retinal image, known as retinotopic maps, derived from RGC in-
puts. This means that individual neurons in these regions respond to specific locations
in the visual field and neighbouring neurons respond to adjacent areas in the visual field
(Seabrook et al., 2017). There are also RGCs, such as melanopsin-containing intrinsically
photosensitive RCGs (ipRGCs), that provide inputs to the non-image-forming pathway
(Beier et al., 2020; Ecker et al., 2010; Güler et al., 2008; Panda et al., 2002; Schmidt
& Kofuji, 2008). Projecting to suprachiasmatic nucleus (SCN) in the hypothalamus and
olivary pretectal nucleus (OPN) in the midbrain (Hattar et al., 2002), ipRGCs were found
to drive circadian clock resetting and pupillary light reflex through their responses to light
(Güler et al., 2008; Hatori et al., 2008; Lucas et al., 2003; Panda et al., 2002). A recent
study has also found that the projections from GABAergic ipRGCs to the ventral lateral
geniculate nucleus (vLGN) in the thalamus could also be involved in innate fear responses
to heights (Shang et al., 2024).

There are two main pathways that transfer retinal information to the visual cortex –
the primary site for conscious visual perception: first, the direct relay of visual information
from RGCs via the dorsal lateral geniculate nucleus (dLGN), or second, the indirect route
from RGCs via the superior colliculus (SC) and other intermediate stations including
dLGN, the lateral posterior nucleus (LP) and the lateral dorsal nucleus (LD) (Ellis et
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al., 2016; Liu et al., 2022; Martin, 1986; Román Rosón et al., 2019; Seabrook et al.,
2017). dLGN is a key relay station of retina information in the image-forming pathway,
with 30 - 40% of RGCs projecting to dLGN (Martin, 1986). The majority of RGC axons
cross at the optic chiasm to the contralateral side (Jaubert-Miazza et al., 2005). The small
amount of ipsilateral RGC axons are localised to the medial dLGN, while the contralateral
axons occupy a wider non-overlapping area of the dLGN (Reese, 1988; Reese & Jeffery,
1983). Axons from the nasal hemiretina cross to the contralateral side while axons from
the temporal hemiretina remain on the ipsilateral side, leading to the left dLGN receive
information from the right visual field and the right dLGN from the left visual field from
both eyes (Wurtz & Kandel, 2000). Axons from neighbouring RGCs project to adjacent
regions in the dLGN, creating retinotopic maps (McLaughlin & O’Leary, 2005; Reese,
1988; Reese & Jeffery, 1983; Sitko et al., 2018). dLGN then in turn projects to layer 4
(L4) of the primary visual cortex, providing the major source of bottom-up visual input
(Gilbert & Wiesel, 1983).

SC is another important midbrain structure that receives the majority of RGC pro-
jections and provides visual information for the non-image-forming pathway (Ellis et al.,
2016). SC is an evolutionarily-conserved, integrative sensorimotor structure receiving in-
puts from multiple sensory modalities, and is involved in controlling innate behaviours
such as eye movements, head movements and escaping from looming objects (Ito & Feld-
heim, 2018; Shang et al., 2015; Sparks et al., 1990; Wei et al., 2015). Organised in layers
with distinct innervation, its superficial layers receive input from over 85% of retinal
ganglion cells (Ellis et al., 2016), and its deeper layers receive projections from the super-
ficial layers as well as the primary motor, somatosensory and auditory cortices (Drager &
Hubel, 1976; Ito & Feldheim, 2018; Triplett et al., 2012; Zingg et al., 2017). It indirectly
conveys information to layer 1 (L1) of the visual cortex via its projections to thalamic
nuclei including dLGN and LP (Bickford et al., 2015; Gale & Murphy, 2014; Roth et al.,
2016; Seabrook et al., 2017; Tohmi et al., 2014). It has been well-established that the deep
layers of SC is involved in controlling saccadic eye movements for stabilisation of retinal
images (Straschill & Hoffman, 1969; Wang et al., 2015; Wurtz & Goldberg, 1972). The
superficial SC layers contain a map of the contralateral retina, with the dorsal-ventral and
temporal-nasal axes of retina mapping onto the lateralmedial and anteriorposterior (AP)
axes of the SC respectively (Cang & Feldheim, 2013; Drager & Hubel, 1976; Triplett,
2014). The small amount of ipsilateral RGC axons originating from the ventrotemporal
retina project to deeper SC layers (Dräger, 1975), and the deeper SC layers contain audi-
tory, somatosensory, and eye movement maps that are aligned with the retinotopy of the
superficial SC (Cang & Feldheim, 2013; Wang et al., 2015). The projections from SC to
LP and the outer shell of dLGN also maintain the retinotopic structure (Bickford et al.,
2015; Roth et al., 2016).
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1.2.2 Organisation and connectivity of the mouse visual cortex

The mouse visual cortex consists of V1 and several higher visual areas (HVAs), includ-
ing the lateromedial (LM), the anterolateral (AL), the rostrolateral (RL), the anterior (A),
the anteromedial (AM), the posteromedial (PM), the laterointermediate (LI), the poste-
rior (P) and the postrhinal (POR) (Garrett et al., 2014; Glickfeld & Olsen, 2017; Wang
& Burkhalter, 2007; Wang, Ding, et al., 2020). V1 and HVAs send strong feedforward
and feedback projections to each other (DSouza et al., 2022; Glickfeld & Olsen, 2017;
Morimoto et al., 2021; Nurminen et al., 2018; Olavarria & Montero, 1989; Vangeneug-
den et al., 2019; Wang & Burkhalter, 2007). HVAs are also interconnected, with each
HVA directly connecting to all other HVAs with diverse connection densities (Wang et al.,
2011, 2012). It is believed that while V1 is responsible for low-level processing and extrac-
tion of visual features, HVAs are capable of higher-order processing to facilitate complex
visually-guided tasks (Glickfeld & Olsen, 2017). Different HVAs are thought to specialise
in distinct functions. It has been proprocessed that HVAs in mouse can be divided into
the ventral and dorsal streams analogous to primate visual cortex (Kravitz et al., 2011),
with the medial/anterior areas (AL, RL, A, AM, PM) preferentially connected to pari-
etal, motor and limbic cortices for spatial perception (the "where" pathway), and lateral
areas (LM, P, LI, POR) more strongly linked to temporal and parahippocampal cortices
for object perception (the "what" pathway Wang et al., 2012). V1 inputs to HVAs show
similar trend of specialisation – distinct V1 populations were found to project to AL and
PM (Han et al., 2018; Kim et al., 2018).

Mouse V1 is comprised a monocular zone and a small binocular zone (Dräger, 1975;
Kalatsky & Stryker, 2003; Schuett et al., 2002; Wagor et al., 1980). The monocular
zone maps to the contralateral visual field, and the binocular zone receives projections
from both the contralateral and ipsilateral eye (Dräger and Olsen, 1980; Herrera et al.,
2003; Petros et al., 2008), mapping to the binocular overlap between two eyes. Mouse V1
and HVAs inherit the retinotopic organisation of the subcortical pathway (Garrett et al.,
2014). While V1 representation covers the whole visual field, HVA representations are
biased towards particular parts of the visual field, indicating a more specialised processing
of certain visual information (Garrett et al., 2014). For example, RL is biased towards the
lower nasal visual field, PM predominantly covers the temporal visual field and P prefers
the upper visual field.

V1 receives projections from various cortical and subcortical areas which convey rich
information beyond pure visual signals. These projections include the secondary motor
cortex (M2), the hippocampal complex, the retrosplenial cortex (RSC), and multiple
thalamic nuclei such as LGN, LP and LD (Froudarakis et al., 2019; Juavinett et al.,
2020). M2, RSC and the hippocampal complex convey rich signals encoding locomotion,
head direction, eye movement and spatial location (Leinweber et al., 2017; Saleem et al.,
2018; Vélez-Fort et al., 2018). Apart from relaying retinal visual information, dLGN and
LP both convey locomotion signals to V1, with dLGN signals positive combination of
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running speed and visual motion speed and LP responding to the discrepancies between
self-motion and visual motion (Roth et al., 2016).

Regarding laminar circuitry, the main feedforward circuit of visual information in the
visual cortex generally follows the canonical cortical microcircuits as other sensory cortices
(Adesnik & Naka, 2018; Gilbert & Wiesel, 1983; Harris & Mrsic-Flogel, 2013; Petersen
& Crochet, 2013). Although all layers of the visual cortex receive thalamic projections,
layer 4 (L4) receives the strongest innervation (Ji et al., 2016). Next, thalamic inputs
are relayed to layer 2/3 (L2/3) and then convey the signals to deeper layers layer 5 (L5)
and 6 (L6) as the main cortical output to subcortical structures. As the major input
layer, L4 mainly integrates signals from multiple dLGN neurons, and and is proposed to
conduct initial processing of visual information (reviewed in Niell and Scanziani, 2021).
L2/3 excitatory neurons link the input and output layers of the visual cortex and also
send projections throughout the neocortex, and thus are considered to play a critical role
in integration of cortical information (Harris & Shepherd, 2015).

1.2.3 Tuning properties of neurons in the mouse visual cortex

Following the introduction of "receptive fields" (RFs) by Sherrington (1906), visual
neuroscientists use RFs to describe a specific region of the visual field where the presence
of visual stimuli can trigger a response of the neurons (Hartline, 1938; Spillmann, 2014;
Wandell, 1995; Wandell & Winawer, 2015). Early studies found that RFs of RGCs follow
a circular center-surround pattern – the ON-centre cells which are excited by light in the
centre and inhibited by light in the surround, and the OFF-centre cells which are excited
by the opposite light pattern (Barlow, 1953; Hartline, 1938, 1940; Kuffler, 1953). RFs
of dLGN relay cells measured in cats are similar to the circular and antagonistic center-
surround organisation of their retinal inputs (Hubel & Wiesel, 1961). However, RFs of
neurons in the visual cortex are drastically different from the circular and concentric RFs of
dLGN neurons and RGCs. RFs of cells in the cat visual cortex constitute of 2 categories –
simple cells and complex cells (Hubel & Wiesel, 1962). Simple cell RFs consist of elongated
ON and OFF subregions which can be modelled by Gabor functions, and their responses
can be predicted by a linear summation of responses to the input image (Bonin et al., 2011;
Hubel & Wiesel, 1962; Niell & Stryker, 2008; Skottun et al., 1991). As a result, simple
cells exhibit little response to diffuse light stimulation of the entire RF. Instead, they
are optimally excited by bright (or dark) slits, bar, or edges on a background of opposite
polarity (Hubel & Wiesel, 1962). Moreover, these cells are selective to specific orientations
of elongated stimuli (Dräger, 1975; Hubel & Wiesel, 1959, 1962; Niell & Stryker, 2008).
On the other hand, complex cell RFs could not be easily defined by two distinct ON and
OFF subregions, and their responses are featured by non-linear summation of the input
image (Callaway, 2001; Hubel & Wiesel, 1962; Niell & Stryker, 2008; Skottun et al., 1991).
Complex cells are also optimally excited by slits, edges and bars of specific orientations
(Hubel & Wiesel, 1962; Niell & Stryker, 2008). However, unlike simple cells which are
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excited by a stimulus placed at a specific part of the RF, complex cells usually have larger
RFs and can be excited by a stimulus at their preferred orientation placed at any part
of the RF (Hubel & Wiesel, 1962). Therefore, Hubel and Wiesel (1962) have proposed
that simple cell RFs were constructed by converging the circular RFs of LGN neurons
that are appropriately aligned, while complex cells pool inputs from simple cells with
similar orientation preferences with different signs and positions of their RFs. The LGN -
simple cell circuitry has been experimentally demonstrated (Chapman et al., 1991; Reid
& Alonso, 1995). whereas the simple cell - complex cell circuitry is still under debate
(Callaway, 2001).

Building on the pioneering studies of Hubel and Wiesel (1959, 1962), how neurons
in the visual cortex respond to a broader variety of parameters in the visual scene have
been further characterised, using similar simple, parametric and two-dimensional visual
stimuli such as moving bars, drifting gratings and noise stimuli (Andermann et al., 2011;
Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker,
2008). Following the early studies in primates and carnivores, the rodent visual cortex has
also been extensively investigated. Both simple and complex cells have been identified
in the mouse visual cortex (Niell & Stryker, 2008). Apart from orientation selectivity,
the size and structure of the RFs as well as the ability to integrate responses over time
lead to V1 neurons of rodents, carnivores and primates also selectively respond to stimuli
with specific spatial frequencies, temporal frequencies, contrasts, and directions of motion
(mice: Andermann et al., 2011; Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue
et al., 2012; Niell and Stryker, 2008; cats: DeAngelis et al., 1993; Frazor et al., 2004;
Glezer et al., 1982; Pasternak et al., 1995; Zhang et al., 2017; primates: Bredfeldt and
Ringach, 2002; De and Horwitz, 2022; Foster et al., 1985; Guan et al., 2021; Gur and
Snodderly, 2007; Mazer et al., 2002). In the mouse visual cortex, the majority of V1
excitatory neurons show clear orientation selectivity, and inhibitory neurons are generally
less tuned to orientation (Gao et al., 2010; Niell & Stryker, 2008). Simple cells usually
only respond to stimuli within a specific range of spatial frequencies that typically range
from 0.02 to 0.08 cpd, and the phase and orientation of the stimuli needs to align with
the ON and OFF subregions of their RFs (Gao et al., 2010; Niell & Stryker, 2008). The
majority of V1 neurons are tuned to temporal frequency (Gao et al., 2010). Almost half
of V1 neurons show low-pass properties with the median preferred temporal frequency
at 1.2Hz, and the rest are bandpass neurons with the median at 1.9 Hz (Gao et al.,
2010). The spatial and temporal frequency tuning indicates the speed tuning properties
of V1 neurons, as speed of visual motion can be calculated by the ratio of the temporal
and spatial frequencies. Almost half of the V1 neurons are tuned to speed of moving
random-dot patterns (Gao et al., 2010). V1 display an intermixed distribution of visual
motion speed preferences, with neighbouring V1 neurons preferring distinct spatial and
temporal frequencies spanning a diverse range (Andermann et al., 2011; Marshel et al.,
2011). However, invariant speed tuning seems to be rare in V1 of mice compared to
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macaques (LeDue et al., 2012; Priebe et al., 2006). In mouse V1, most neurons have a
fixed preferred spatial frequency, leading to their preferred speed varying with temporal
frequency (LeDue et al., 2012).

HVA neurons generally have similar properties as V1 neurons yet with more functional
specialisation (Glickfeld & Olsen, 2017). Consistent with the notion of circuit hierarchy,
HVA neurons usually have larger RFs than V1 neurons (DSouza et al., 2022; Murgas et
al., 2019; van Beest et al., 2021; Wang & Burkhalter, 2007). The spatiotemporal tuning
of HVAs show more specialisation compared to V1 (Andermann et al., 2011; Han et al.,
2022; Marshel et al., 2011; Tohmi et al., 2014). For example, compared to V1, neurons in
PM prefer lower temporal frequencies and higher spatial frequencies, whereas neurons in
AL prefer higher temporal frequencies and lower spatial frequencies (Andermann et al.,
2011; Marshel et al., 2011). LM, AM, and LI prefer both spatial and temporal frequencies
to be higher (Marshel et al., 2011; Tohmi et al., 2014). As a result of their spatiotemporal
preferences, HVAs such as AL and PM which show specialised biases towards fast-moving
and slow-moving stimuli respectively, whereas LM, AM and LI prefer stimuli moving at
intermediate speeds (Andermann et al., 2011; Marshel et al., 2011; Tohmi et al., 2014).

There are several interesting differences regarding how V1 neurons are functionally
organised across species. Layer 4C of the primate and carnivore V1 is organised in al-
ternating ocular dominance columns, where neurons each column receive LGN inputs
predominantly from one of the eyes (Bonhoeffer & Grinvald, 1991; Hubel & Wiesel, 1969;
Hubel & Wiesel, 1965, 1972; LeVay et al., 1975; Weliky et al., 1996). The orientation
preferences of neurons in V1 are also organised in a columnar structure – neurons with the
same orientation preferences reside within the same cortical column, and the orientation
preference varies linearly when traversing the cortex parallelly (Hubel & Wiesel, 1962;
Hubel & Wiesel, 1968, 1974; Hubel et al., 1977). Orientation columns are proposed to
be organised around pinwheel centres (singularity) with weak orientation selectivity, and
neurons surrounding the singularity show orientation preferences that change smoothly in
a radial fashion (Bartfeld & Grinvald, 1992; Baxter & Dow, 1989; Blasdel, 1992; Braiten-
berg & Braitenberg, 1979; Dow, 2002; Obermayer & Blasdel, 1993). Similar to mice, V1
of primates generally follows a retinotopic organisation (Adams & Horton, 2003; Tootell
et al., 1988). On the contrary, the absence of clear ocular dominance columns in the
rodent visual cortex has been widely acknowledged, especially given their small binocular
zone (Adams & Horton, 2009). No large-scale periodic organisation of orientation prefer-
ences were observed in rodents either (Bonin et al., 2011; Ohki et al., 2005; Van Hooser
et al., 2005). Nevertheless, a recent study revealed some spatial clustering of ipsilateral
and contralateral eye dominated neurons across different cortical depths in the binocular
V1 of mice Ringach et al., 2016, suggesting potential columnar organisation of the rodent
visual cortex which may have been overlooked before.

The properties of V1 neurons, as examined using simple two-dimensional stimuli, have
led to the widely accepted view that V1 acts as a set of Gabor filters on two-dimensional
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retinal images (Bonin et al., 2011; Niell & Stryker, 2008). V1 was perceived as a col-
lection of spatiotemporal filters selective for specific parameters of the two-dimensional
retinal image, such as spatial and temporal frequency, orientation and direction (Adelson
& Bergen, 1985; Baker & Issa, 2005; Basole et al., 2003; Mante & Carandini, 2005). Pro-
gressive functional specialisation occurs along the hierarchy of the visual cortical pathway
(from V1 to HVAs), allowing the visual system to process the visual scene from detect-
ing simple features to perform complex visually-guided tasks such as object recognition,
spatial perception and motion perception (Glickfeld & Olsen, 2017; Wang et al., 2012; Yu
et al., 2022).

1.2.4 Locomotion-related modulation of neurons in the mouse
visual cortex

A key feature of mouse visual cortex is its strong modulation by locomotion. The
effects of locomotion on activity of neurons in the visual cortex are characterised exten-
sively in the context of running (Ayaz et al., 2013; Dadarlat & Stryker, 2017; Erisken
et al., 2014; Keller et al., 2012; Niell & Stryker, 2010; Saleem et al., 2013). The response
amplitude of excitatory neurons in V1 can be amplified substantially during running
(Erisken et al., 2014; Niell & Stryker, 2010). Niell and Stryker (2010) recorded units
in upper layers of V1 when mice were running while viewing open-loop grating stimuli.
They found that visually-evoked responses of most units were significantly elevated once
their running speed surpassed 1 cm/s, while spontaneous neuronal activity were only in-
creased in a small proportion of neurons. Once the mice started to run, the increase
in response amplitude was not correlated with the running speed. Similar conclusions
were drawn by Erisken et al. (2014). Although they found that spontaneous activity was
also elevated around locomotion onset, the enhancement in visually-driven responses was
much stronger. Meanwhile, locomotion modulation did not change the selectivity towards
orientation, contrast or spatial frequency of neurons (Erisken et al., 2014; Mineault et al.,
2016; Niell & Stryker, 2010). Therefore, it has been proposed that locomotion induces a
modulation of cortical state which boosts the gain of sensory responses (Bennett et al.,
2013; Harris & Thiele, 2011; Niell & Stryker, 2010). Running state-induced modulation in
visually-evoked neuronal activity were later found in all layers of V1 (Dadarlat & Stryker,
2017; Erisken et al., 2014), although the effect of running was most prominent in L2/3
during adulthood compared to other layers (Hoy & Niell, 2015). A higher proportion
of neurons were found to be suppressed by running in deeper layers of V1 compared to
superficial layers (Erisken et al., 2014).

This widespread gain modulation across V1 can improve encoding of visual infor-
mation. Compared to the stationary periods, running boosted the mutual information
between neuronal responses and visual stimuli (quantified by directions and orientations
of drifting gratings) in all layers of V1, and L2/3 enjoys the greatest fractional increase
(Dadarlat & Stryker, 2017). On the population level, parameters of visual stimuli (grating
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movement direction and grating orientation) were more accurately decoded from popula-
tion activity in all layers of V1 during running (Dadarlat & Stryker, 2017). Running also
reduced the noise correlations between neuronal pairs within V1, indicating a decrease in
stimulus-independent trial-to-trial variability of neuronal responses and enabling a more
robust neural representation of visual stimuli in V1 (Dadarlat & Stryker, 2017; Erisken
et al., 2014). The neuronal activity in the population also became less correlated during
running when mice were trained on a visual discrimination task to detect changing in
stimulus contrast (McBride et al., 2019), which allows neurons to convey information in
a more independent manner and improve perception sensitivity (Ruff & Cohen, 2014).

However, other studies suggest that running-related modulation may not be a generic
gain modulation. Firstly, running can alter selectivity of neurons towards sensory stimuli.
Running was found to modulate spatial integration of V1 neurons (Ayaz et al., 2013).
Most V1 neurons are suppressed by larger stimuli due to surround suppression, when the
sensitivity to a stimulus decreases when the stimulus is surrounded by a similar pattern
(Adesnik et al., 2012; Van den Bergh et al., 2010). Running was found to significantly
reduce surround suppression in head-fixed mice viewing grating patches of various sizes,
which enables V1 neurons to integrate over broader areas in the visual field (Ayaz et al.,
2013). Secondly, running does not impose a uniform effect on all V1 neurons. During
running, the degree of gain modulation in response to grating stimuli was larger in neurons
selective for high spatial frequencies compared to neurons tuned to low spatial frequencies,
potentially amplifying the spatial resolution of visual perception (Mineault et al., 2016).
Moreover, V1 neurons are not merely modulated by running state but also tuned to
running speed (Christensen & Pillow, 2022; Keller et al., 2012; Saleem et al., 2013).
There are V1 neurons that monotonically increase or decrease their activity as a function
of running speed, and neurons that are non-monotonically tuned to running speed, both
with and in absence of visual stimuli (Christensen & Pillow, 2022; Saleem et al., 2013).
When mice were running in a VR corridor with grating and plaid patterns, V1 neuronal
responses can be described by linear integration (weighted sum) between running speed
and optic flow speed (Saleem et al., 2013). Therefore, Saleem et al. (2013) proposed
that instead of a binary and uniform modulation of cortical state, locomotion signals
provide a drive to V1 neurons. Locomotion signals can be integrated with visual signals
and can alter visual preferences of V1 neurons. On the other hand, a series of studies
recorded V1 responses when mice were running in a VR environment with closed-loop
visual feedback interspersed by periods of visuomotor mismatch created by sudden visual
flow halts (Attinger et al., 2017; Jordan & Keller, 2020; Keller et al., 2012; Leinweber
et al., 2017; Muzzu & Saleem, 2021; Zmarz & Keller, 2016). They found that a small
subset of L2/3 V1 neurons were responsive (or exhibited subthreshold responses) to the
visual flow halts during locomotion, but not to passive viewing of visual flow halts. This
observation was interpreted in the predictive coding framework where V1 neurons are
signalling the prediction error between bottom-up optic flow speed input and top-down
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predictions of optic flow speed based on current running speed.
Different regions of the visual system are modulated by locomotion in distinct ways.

The influence of locomotion on subcortical regions seem minimal or inconsistent compared
to V1. Although Niell and Stryker (2010) did not find a significant change in LGN
activity during running compared to stationary periods, Erisken et al. (2014) found that
locomotion onset transiently increased both spontaneous and visually-driven activity in
dLGN, and the effect was much less prominent compared to the visual cortex. When
imaging neuronal responses to grating stimuli in a running mice in open loop, (Roth
et al., 2016) found that the activity of ∼20% dLGN boutons in V1 can be explained
by a cooperative integration between running and visual motion speed signals. On the
contrary, many LP boutons’ tuning to running and visual motion speed are anti-correlated,
indicating that they may signal visuomotor mismatch (Roth et al., 2016). In superficial
SC, neuronal activity was not consistently modulated by running and there seem no
prominent trend (increase or decrease) in the activity of the whole population (Savier et
al., 2019). A slight increase in activity of a proportion of cells (20%) and slight decrease in
some other cells (10%) could be observed during running compared to stationary periods,
and the modulation was much weaker compared to V1 (Savier et al., 2019). Among
HVAs, visually-evoked activity in LM and AL were also positively correlated with running,
although to a smaller degree (Christensen & Pillow, 2022). In contrast, activity in PM,
RL and AM were either unchanged or suppressed by running (Christensen & Pillow,
2022). Despite negative correlation between neuronal activity and running in some HVAs,
running enhances the performance of decoding drifting gratings from population activity
in all areas (Christensen & Pillow, 2022).

Locomotion affects different cell types in V1 in a distinct manner. Some studies found
that while the activity of somatostatin-positive (SST) interneurons were suppressed by
running in darkness, vasoactive intestinal peptide-positive (VIP) neurons (a group of
interneurons that mainly inhibit SST neurons Jiang et al., 2015; Pfeffer et al., 2013), in-
creased their responses during running with or without visual stimulation (Fu et al., 2014;
Jackson et al., 2016; Reimer et al., 2014). The effect on parvalbumin-positive (PV) popu-
lations is more diverse, including both positive and negative association with locomotion
(Fu et al., 2014). These results led to the proposal that locomotion-related elevation of
excitatory neuronal activity in V1 is facilitated by disinhibition via VIP neuron activa-
tion (Fu et al., 2014). However, Polack et al. (2013) found that both spontaneous and
visually-evoked activity of PV and SST neurons was increased during running. Pakan
et al. (2016) sampling a larger population of inhibitory neurons in V1 using two-photon
calcium imaging found that locomotion-related modulation of SST neuronal activity de-
pends on the behavioural context. While VIP and PV neurons increased their activity
both in darkness or under visual stimulation during running, running only consistently
elevated SST neuronal activity under visual stimulation (also found by Attinger et al.,
2017). The modulation can also depend on visuomotor experience. Attinger et al. (2017)
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trained mice to run in either closed-loop coupled VR environments (CT mice) or non-
coupled environments (NT mice). Running onsets strongly drove VIP activity in CT
mice but not NT mice. These results indicate that a simple disinhibition model may not
capture the full circuit mechanisms for locomotion-related modulation in V1.

Movement-related modulation of V1 activity was mainly studied in the context of
running for mice. However, head, eye and even facial movements have also been found to
modulate V1 activity (Bouvier et al., 2020; Guitchounts et al., 2020, 2022; Meyer et al.,
2018; Parker, Abe, Leonard, et al., 2022; Stringer et al., 2019). Simulated head movements
induced by body rotations and real head-orienting movements were found to suppress V1
activity in the dark while exciting V1 neurons across all cortical layers in ambient light
(Bouvier et al., 2020; Guitchounts et al., 2020). There are also V1 cells tuned to direction
of head movements, but their head direction tuning was not correlated between the dark
and light conditions (Guitchounts et al., 2020). The effects of head movements on V1
activity could be confounded by changes in retinal image during head movements due to
the lack of eye tracking data in these studies. However, Parker, Abe, Leonard, et al. (2022)
used miniature head-mounted cameras to track the eye and head positions of mice in real
time (Meyer et al., 2018)and obtain retinal images when corrected for gaze directions.
They show that the activity of many V1 neurons can be described by a multiplicative
integration between visual inputs and eye and head positions, indicating encoding of
gaze directions by V1 neurons. Large-scale recordings of V1 neurons and simultaneous
facial movements of mice suggest that V1 activity without explicit visual stimulation
can be largely explained by spontaneous activity such as running, whisking, sniffing,
and other facial movements (Stringer et al., 2019). The extent of locomotion-related
modulation in mouse V1 contrasts sharply with what has been observed in primates.
Spontaneous activity of primates provides minimal drive to neuronal activity in primate
V1, V2 and V3, and most locomotion-related modulation can be explained by changes in
retinal images (Talluri et al., 2023). Therefore, compared to mice, the integration of visual
and locomotion-related signals is likely to happen in later stages of visual processing, in
areas such as MT (Kim et al., 2015a; Kim et al., 2016; Nadler et al., 2008, 2009).

1.3 Neural mechanisms of depth perception

1.3.1 Neural mechanisms of depth perception from binocular
disparity

The neural mechanisms of depth perception from binocular disparity has been exten-
sively studied across species. Studying binocular disparity as a depth cue stemmed from
the invention of stereoscope by Charles Wheatstone in the 1830s (Wade, 2002; Wheat-
stone, 1949). The stereoscope allows the observer to look into two mirrors angled at 90
degrees to each other reflecting two slightly different two-dimensional images of the same
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object. The difference in the images viewed between two eyes can create a sensation of
depth, establishing horizontal binocular disparity as a cue for depth perception (Qian,
1997; Wade, 2002; Wheatstone, 1839; Wheatstone, 1838; Wheatstone, 1842). Wheat-
stone also observed the crossed and uncrossed binocular disparity for nearby and far
depths relative to the focal point. Over a hundred years later, Julesz (1971) created the
random-dot stereograms, where patterns of random dots with a horizontal shifts were
viewed by two eyes, generating a sensation of depth from binocular disparity. In this
way, the visual stimulation can be precisely controlled, and he showed that even when
monocular pictorial cues and motion parallax cues were excluded, humans can perceive
depth from binocular disparity alone.

Disparity tuning in cat visual cortex

Hubel and Wiesel (1962)’s milestone study in cat striate cortex (the V1 in cats) shows
that the activity of most cells can be driven by visual stimuli in either eye, and thus having
a receptive field in each eye. The stimuli required to stimulate these cells are similar
between two receptive fields. This study raised the possibility that binocular integration
could happen as early as V1. Barlow et al. (1967) then continued to record neurons in
V1 of anaesthetised cats. By moving simple patterns such as a black bar, a white slit
or black-white edges around the receptive fields of binocularly-activated neurons in one
or two eyes, they found neurons that responded to stimuli at a similar position in the
visual field of both eyes much stronger than stimuli in only one eye. Moreover, neurons in
V1 were excited by different degrees of horizontal and vertical disparities between stimuli
presented to the two eyes, and their preferred disparities were distributed over a horizontal
range of ∼6.6° and a vertical range of ∼2.2°. A series of studies followed (Bishop et al.,
1971; Ferster, 1981; Fischer & Krüger, 1979; Nikara et al., 1968; Pettigrew et al., 1968; von
der Heydt et al., 1978) to characterise the disparity-tuned neurons in cats. Later studies
have also found disparity-tuned cells in area 18 of the cat’s V1 as well as in HVAs such as
area 21a (Ferster, 1981; Wang & Dreher, 1996). The functional significance of cat V1 in
stereoscope depth perception was confirmed by the abolishment of distinguishing between
two three-dimensional shapes created by random-dot stereograms following lesions of the
areas 17-18 (Ptito et al., 1992). Two types of disparity-tuned cells have been identified
(Ferster, 1981; Guillemot et al., 1993; Poggio & Fischer, 1977). The first type consists of
binocular cells that are either excited (tuned excitatory) or inhibited (tuned inhibitory)
maximally by specific degrees of disparity, when the stimuli pass over the receptive fields
of the two eyes simultaneously. The second type consists of cells broadly excited by any
near disparity (near cells) or far disparity (far cells) in a band-pass manner. The activity
of these cells is usually dominated by one eye.
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Disparity tuning in primate visual cortex

Similarly, disparity-selective neurons have been experimentally identified in monkeys
(Burkhalter & Van Essen, 1986; Felleman & Van Essen, 1987; Gonzalez, Krause, et al.,
1993; Gonzalez, Relova, et al., 1993; Hubel & Wiesel, 1970; Hubel & Livingstone, 1987;
Maunsell & Van Essen, 1983; Poggio & Fischer, 1977; Poggio et al., 1988; Poggio & Talbot,
1981; Poggio et al., 1985). Hubel and Wiesel (1970) have first reported disparity-tuned
neurons in V2 (area 18) of anaesthetised monkeys using moving slits. Some cells were
found to respond maximally to a specific displacement between the visual fields of two
eyes, while not responsive to monocular stimuli. Cells with similar disparity preferences
were also found to group together.

Subsequently, studies have reported disparity-tuned neurons across V1, V2, V3, V3A,
V4, V5/middle temporal area (MT) and inferior temporal cortex (IT) in both anaes-
thetised and awake monkeys, using stimuli such as moving bars, random-dot stereograms
or three-dimensional shapes (Adams & Zeki, 2001; Anzai et al., 2011; Bakin et al., 2000;
Cumming & Parker, 1997; Cumming & DeAngelis, 2001; DeAngelis & Newsome, 1999;
Hinkle & Connor, 2002; Hubel et al., 2015; Hubel & Livingstone, 1987; Poggio & Fischer,
1977; Poggio et al., 1988; Verhoef et al., 2010). In V1 and V2, the majority (84%) of neu-
rons are tuned to disparity (Poggio & Fischer, 1977). In V1, V2 and MT, disparity-tuned
neurons predominantly reside in separate stripes from non-orientation-selective neurons
(DeAngelis & Newsome, 1999; Hubel & Livingstone, 1987). Nearby neurons usually
have similar disparity preference yet different direction preferences (DeAngelis & New-
some, 1999; Hubel & Livingstone, 1987; Peterhans & von der Heydt, 1993; Roe & Ts’o,
1995), allows similar depths to be detected from objects moving at various directions.
Specificially characterised in MT, the organisation of disparity-tuned neurons mirrors the
orientation pinwheel structures in V1, clustering into cortical columns by preferred dis-
parity while varying their disparity preferences smoothly parallel to the cortical surface
(DeAngelis & Newsome, 1999). Both types of neurons that are sharply tuned to dis-
parity (tuned excitatory/inhibitory cells) and neurons that are broadly tuned to near or
far depths (near/far cells) were found across visual areas, allowing both fine and coarse
binocular vision (DeAngelis & Newsome, 1999; Poggio et al., 1988).

The dorsal and ventral stream areas differ in processing local vs. global disparity
cues. Displaying anticorrelated random-dot stereogram stimuli to both eyes by inverting
the contrast of the image abolishes the sensation of depth for human observers (Cogan
et al., 1993, 1995). Primate V1 and dorsal stream areas such as MT and MST exhibit
inverse responses to the anticorrelated stimuli (Cumming & Parker, 1997; Krug et al.,
2004; Takemura et al., 2001), yet ventral stream areas such as V4 and IT are almost
silent (Janssen et al., 2003; Tanabe et al., 2004). This reflects that while the dorsal
stream areas perform the low-level processing of local binocular disparity signal in the
visual stimuli, only the ventral stream areas perform global computation and are more
closely related to the formation of stereoscopic depth perception.
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Disparity tuning in mouse visual cortex

When mice were trained to jump across a gap with variable distances, optogenetic
suppression of the binocular zone the V1 significantly reduced the success rate as well as
the accuracy of jumping (Parker, Abe, Beatie, et al., 2022), demonstrating the critical
role of V1 in depth perception from binocular cues. Other studies have characterised
disparity tuning in V1 and several HVAs in the mouse visual cortex (La Chioma et al.,
2019, 2020; Scholl et al., 2013). By presenting stimuli such as drifting gratings or random-
dot stereograms with a phase shift between two eyes, a majority of neurons (∼50 - 80%)
in the binocular region of V1, LM and RL show strong binocular disparity-dependent
excitation or suppression (La Chioma et al., 2019, 2020). Compared to cat V1 neurons,
mouse V1 neurons are modulated less by disparity (Scholl et al., 2013). There is no
difference in the degree of disparity modulation between simple cells and complex cells in
mouse V1, whereas in cat V1, complex cells are tuned to smaller disparities compared to
simple cells (Chino et al., 1994; Scholl et al., 2013).

Depth preferences from binocular disparity are related to the elevation of RFs of neu-
rons in V1. V1 neurons with RFs in the lower half of the visual field prefer nearer depths
compared to V1 neurons representing the upper visual field (La Chioma et al., 2019).
There are some fine-scale spatial clustering of neurons with similar disparity preferences
(La Chioma et al., 2020). Neurons within 10 µm from each other tend to prefer similar
disparities (La Chioma et al., 2020). Interestingly, HVAs display specialisation in depth
preferences from disparity – compared to V1 (estimated distances encoded by neurons
recorded: 3.5 - 24.6 cm) and LM (4.0 - 18.3 cm), RL neurons prefer much nearer depths
(2.6 - 7.0 cm) (La Chioma et al., 2019). Apart from the specialisation in depth prefer-
ences, some HVAs also display higher-order processing of disparity signal compared to
V1 (La Chioma et al., 2020). Similar to primate dorsal stream areas, neurons in mouse
V1 and RL display inverse disparity tuning to anticorrelated random-dot stimuli across
the two eyes, whereas analogous to the primate ventral stream areas, neurons in mouse
LM reduce its disparity tuning to anticorrelated stimuli (La Chioma et al., 2019). This
indicates that V1 and RL perform low-level processing of local disparity cues whereas LM
is responsible for high-level processing of global disparity cues for depth perception.

Unexpectedly, the disparity tuning of neurons in V1, LM and RL are not correlated
with their ocular dominance (La Chioma et al., 2020; Scholl et al., 2013). Ocular domi-
nance is usually measured by presenting gratings to each eye separately, and neurons in
V1, LM, and RL are usually strongly driven by the contralateral eye (Dräger, 1975; Gor-
don & Stryker, 1996; La Chioma et al., 2020; Mrsic-Flogel et al., 2007). Three modes of
disparity tuning and ocular dominance were found – neurons that are classified as monoc-
ular by ocular dominance but are strongly modulated by binocular disparity, neurons that
are classified as binocular by ocular dominance with no modulation by binocular dispar-
ity, and neurons that are classified as binocular by ocular dominance and show strong
tuning to binocular disparity (Scholl et al., 2013). It is possible that neurons classified
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as monocular by ocular dominance still receive inputs from both eyes, yet the monocular
responses elicited by the non-dominant eye could not reach the spiking threshold (Scholl
et al., 2013). However, with binocular integration, the neuronal responses could reach the
spiking threshold and fire (Scholl et al., 2013).

1.3.2 Neural mechanisms of depth perception from motion par-
allax

Depth perception from motion parallax in primates

Compared to binocular disparity, the neural mechanisms of motion parallax remain
much less explored. Existing studies have focused on primates. Early studies used
random-dot stereograms to test depth perception from motion parallax in rhesus monkeys
and humans (Cao & Schiller, 2002, 2003; Schiller et al., 2011; Zhang & Schiller, 2008).
The visual stimuli they used were a plane created by random dots rotating around a ver-
tical axis with some protrusions on the plane, while the observer remained still. Depth
was simulated by the difference in speed of motion of the dots. However, as the sign
of depth (near or far relative to the fixation point) from motion parallax is ambiguous
without extra-retinal inputs (the direction of visual motion of objects depends on the
direction of locomotion of the observer Farber and McConkie, 1979; Hayashibe, 1991;
Rogers and Graham, 1979), the behavioural performance and the neuronal responses in
V1 they measured could be a pure result of tuning to visual motion speed. Unlike mouse
V1, spontaneous movements in face and body do not modulate visual responses of primate
V1 neurons (Stringer et al., 2019; Talluri et al., 2023), which constrains the capacity of
primate V1 neurons to integrate visual motion and self-motion signals.

More recent studies have addressed this issue when studying motion parallax responses
in the higher visual area MT of macaque monkeys (Kim et al., 2015a; Kim et al., 2016;
Nadler et al., 2008, 2009). Monkeys were presented a circular patch of random dots
simulating planes at different depths while being passively translated horizontally in front
of the stimuli. The monkeys made compensatory smooth eye movements to track the
fixation point during the translation. Therefore, eye movement signals can be integrated
with visual motion signals to compute depth from motion parallax. Pictorial cues such
as shading and relative size were eliminated. This motion parallax condition has been
compared to a pure retinal motion condition, where the visual motion of the stimuli
during the translation was replicated while the animal remains stationary. MT neurons
are highly selective for visual motion direction and speed (Britten et al., 1993; Britten,
2003; Lagae et al., 1993; Maunsell & Van Essen, 1983; Saito et al., 1986), and show
binocular disparity tuning (Bradley et al., 1995; DeAngelis & Newsome, 1999; DeAngelis
& Uka, 2003; Maunsell & Van Essen, 1983). Nearly two thirds of recorded MT neurons
exhibit selective responses to specific depths indicated by motion parallax cues and display
symmetrical tuning to simulated depth by pure retinal motion (Nadler et al., 2008, 2009).
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This indicates that the depth selectivity in MT neurons could not be purely attributed
to visual motion speed tuning alone, but was a result of the integration of visual motion
signals and the eye movement signals that generated the visual motion(Nadler et al.,
2008, 2009). Interestingly, depth tuning tuning from motion parallax in MT are mostly
monotonic, rising or declining from near to far (Nadler et al., 2008).

Kim et al. (2015a) further linked the motion parallax selectivity of MT neurons to
depth perception behaviourally. Macaques were trained to report the depth sign (near
or far) from random dot stimuli while being translated horizontally, and the difficulty
of the task was manipulated by introducing a proportion of dots with incoherent depths
from the target depth. Macaques were able to report the depth sign from the stimuli,
and their performance showed a typical psychometric curve as a function of task diffi-
culty. The responses of many individual MT neurons (35%) could predict the animal’s
perceptual choice of depth from motion parallax above chance. As a population, although
the sensitivity of most MT neurons towards depth (measured by the depth coherence of
random dots when an ideal observer could predict 82% of stimuli correctly based on neu-
ronal responses) was lower than the sensitivity of the behaviour of the animals, a small
proportion of neurons outperformed the animal. This suggests that the perceptual choice
of depth can be accounted for by the responses of small populations of sensitive MT
neurons. Despite ample evidence suggesting a strong correlation of MT responses with
depth perception from motion parallax, inactivation experiments are needed to link MT
causally with depth perception.

Depth perception from motion parallax in rodents

The neural mechanisms of depth perception from motion parallax in other species such
as carnivores or rodents are also poorly understood. Rats with bilateral lesions of visual
cortex failed to show depth discrimination on the visual cliff, yet the performance was
unimpaired for cats with lesions of the visual cortex (Meyer et al., 1966). This suggests
that the visual cortex is required for depth perception for rats but not for cats. However,
this does not address whether visual cortex is required for motion parallax processing.

A number of studies examined the depth perception of rodents (rats, mice, and Mon-
golian gerbils) and cats through training them to jump across a distance between two
raised platforms (Carey et al., 1990; Ellard et al., 1984; Goodale et al., 1990; Lashley &
Russell, 1934; Olson, 1980; Parker, Abe, Beatie, et al., 2022; Russell, 1932). Mongolian
gerbils and mice were able to jump across a gap with only monocular information, show-
ing that they can perceive depth with monocular visual cues alone (Ellard et al., 1984;
Parker, Abe, Beatie, et al., 2022). Interestingly, it was observed in early studies that lo-
custs make lateral head movements to perform visual scanning ("peering") before jumping
towards a target, which has been proposed as a way of generating motion parallax cues
from self-motion to assist more accurate depth perception (Sobel, 1990b; Wallace, 1959).
Similarly, Mongolian gerbils and mice were also observed to make vertical translational
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head movements (head bobs) before jumping across the gap (Ellard et al., 1984; Parker,
Abe, Beatie, et al., 2022). The number and frequency of head bobs were positively corre-
lated with the gap distance and the accuracy of jumping, and monocular mice performed
more frequent head bobs compared to binocular mice. These results indicate that in
absence of binocular cues, motion-based cues can be important for depth perception.

The head bob movement provides a behavioural readout for depth perception from
motion parallax. Lesions in the visual cortex introduced severe deficits in jumping accu-
racy and latency to gerbils and a significant increase in the proportion of trials where head
movements were performed before a jump (Ellard et al., 1986). Gerbils with SC lesions
show no impairment in jumping accuracy (Ellard et al., 1986). In contrast, gerbils with
lesions in the visual cortex or mice with optogenetic suppression of V1 monocular zone
displayed significant disruptions of the jumping performance (Ellard et al., 1986; Parker,
Abe, Beatie, et al., 2022). Mice were more likely to abort the jumping attempt (Parker,
Abe, Beatie, et al., 2022). These lesion and inactivation experiments indicate that V1 is
essential for depth perception in mice using monocular visual cues, whereas the role of SC
in depth perception of mice is unclear. However, multiple other monocular cues such as
looming, shading and perspectives still exist in the jumping task, so it is not conclusive
whether V1 specifically supports motion parallax processing.

Extra-retinal signals required for depth perception from motion parallax

What extra-retinal locomotion signals are required for depth perception from motion
parallax? In humans and primates, eye movement signals contribute to the disambigua-
tion of depth sign from motion parallax (Nadler et al., 2009; Naji & Freeman, 2004;
Nawrot, 2003). Depth perception of human subjects was tested using stimuli with four
rows of vertical bars alternately moving in opposite directions, and the adaptation to the
movements of bars would cause an illusions of stationary bars moving to the opposite di-
rection due to motion after-effect (Nawrot, 2003). A perception of depth could be created
when the subject translated their head or eyes – the bars with an illusionary movement
opposite to the head or eye translation appeared to stand out in depth. When the subjects
translated their head while making compensatory eye movements or just translating their
eyes, the perceived depth was same as expected. However, when the subjects only trans-
lated their head while keeping their eyes stationary in the head, a smooth eye movement
command signal in the direction of head movement would be generated to suppress the
compensatory eye movement signal, causing the subjects to perceive the opposite depth
signs from the stimuli (Nawrot, 2003). The perception of depth sign was completely am-
biguous when the smooth eye movement was removed (Nawrot, 2003). These experiments
show that smooth eye movement command signal was required to produce a perception
of depth from motion parallax.

The role of eye movement in motion parallax processing was also investigated in
macaque monkeys (Nadler et al., 2009). Using a patch of random dots simulating plans
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at different depths, Nadler et al. (2009) tested the neuronal responses in macaque MT
with four conditions: the motion parallax (MP) condition where animals were translated
while maintaining fixation by compensatory eye movements, the head only (HO) condition
where only head translation was performed without eye movements, the eye only (EO)
condition where only smooth pursuit eye movements were performed to follow the mov-
ing stimuli while the animal remained stationary, and the retinal motion (RM) condition
where only the stimuli moved while the head and eyes of the animals remained stationary.
The activity of MT neurons were tuned to depth signs in both the MP condition and the
EO condition, whereas MT neurons were not selective to depth signs in the RM and HO
conditions. This indicates that the depth selectivity of MT neurons from motion parallax
in macaques relies on smooth pursuit eye movements as the extra-retinal signals but not
the head/body translation.

Voluntary smooth pursuit eye movements have not been observed in rodents (Ambrad
Giovannetti & Rancz, 2024). Instead, the eye movements of mice were mainly driven by
head rotations to stabilise the direction of gaze during locomotion Holmgren et al., 2021;
Meyer et al., 2020; Michaiel et al., 2020. Head tilt (pitch and roll) elicits compensatory
non-conjugated eye movements to stabilise the visual field, whereas head yaw triggers a
"saccade and fixate" gaze pattern where eye movements shift and then stabilise the gaze
(Meyer et al., 2020). Therefore, self-generated visual motion in mice is primarily driven
by translation of the head of the animals.

1.3.3 Neural mechanisms of depth perception from pictorial cues

There are limited studies that investigate the neural mechanism of depth perception
from pictorial cues in isolation. It has been proposed that the ventral stream visual areas in
humans and non-human primates are particularly key to processing monocular pictorial
cues (Heider, 2000; Mon-Williams et al., 2001). For example, lesions in the occipito-
temporal lobe in humans can cause visual agnosia, when the basic visual functions such
as the detection of brightness, colour and motion remain intact whereas high-level visual
functions such as object recognition and face recognition are disrupted (Heider, 2000;
Marotta et al., 1997; Mon-Williams et al., 2001; Turnbull et al., 2004). They mainly
rely on binocular cues for depth perception (Mon-Williams et al., 2001), and cannot
make accurate depth judgements to perform visually-guided reaching with only monocular
pictorial cues (Marotta et al., 1997) such as relative size (Mon-Williams et al., 2001).
Visual agnosia patients were unable to correctly imagine three-dimensional rotations of
objects, and this could be attributed to their deficiency in extracting three-dimensional
structures from pictorial cues in the two-dimensional pictures of objects such as shading
and linear perspective (Turnbull et al., 2004). In macaques, a large proportion of neurons
(67%) in the area inferior temporal (IT) showed selectivity to the degree of tilt of surface
created by either texture gradients or disparity gradients, and half of these neurons were
significantly tuned to both gradients defined by texture and by disparity (Liu et al., 2004).
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The tilt tuning remained invariant to texture patterns, indicating that these neurons are
tuned to depth gradients rather than local two-dimensional visual patterns (Liu et al.,
2004). Depth estimation from pictorial cues has not been systematically examined in
the mouse visual cortex. However, we would expect that similar to primates, calculating
depth from pictorial cues is likely to be supported by HVAs, as they can pool the outputs
from V1 neurons that are tuned to local visual features such as spatiotemporal frequency,
orientation, size and luminance (Adesnik et al., 2012; Andermann et al., 2011; Bonin
et al., 2011; Dipoppa et al., 2018; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012;
Niell & Stryker, 2008) and calculate depth gradient by comparing population activity
that represent a larger area in the visual field.

1.4 Project overview

Although depth computation is essential for animal behaviour in the three-dimensional
environment and motion parallax is an important depth cue for many animals, there is a
lack of systematic characterisation of the neural mechanisms underlying depth perception
from motion parallax, especially in rodents. Therefore in this thesis, I aim to explore
the developmental origin of depth perception and then investigate the neural mechanisms
underlying depth estimation from motion parallax in mice.

In Chapter 3, I will demonstrate whether depth perception is innate for mice. I used a
customised version of the visual cliff as a paradigm to systematically characterise the depth
discrimination behaviour in mice. I will then show whether depth perception requires prior
visual experience by testing mice born and reared in the dark on the visual cliff. I will
also present a pilot experiment exploring whether superior colliculus, an important input
structure to the visual cortex, is required for the computation of depth before the visual
information reaches the visual cortex.

In Chapter 4, I will explore the neural mechanisms underlying depth estimation from
motion parallax in visual cortex. Specifically in this project, I used V1 as a starting point,
due to its well-characterised tuning properties and the extensive evidence of visuomotor
integration. I focus my experiments on L2/3 of V1 due to the limitation on the range
of cortical depth imageable by two-photon microscopy (Yildirim et al., 2019). I will
start by presenting the design of a virtual reality (VR) environment which allows precise
manipulation of visual stimuli to present motion parallax cues during active navigation of
mice. Then, I demonstrate how neurons in L2/3 of V1 exhibit depth-selective responses
when head-fixed mice were navigating in the VR environment using two-photon calcium
imaging to record neuronal activity.

Next, in Chapter 5, I will illustrate how depth selectivity in V1 neurons can be gen-
erated from motion parallax signals. By modelling neuronal activity as a function of
running speed and optic flow speed, I will show that depth selectivity arises from the
integration of running speed and optic flow speed tuning.
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Finally, in Chapter 6, I will characterise the representation of depth across V1. I will
demonstrate that the activity of V1 neurons during active navigation can be characterised
by three-dimensional RFs, in the dimensions of two-dimensional visual field as well as
depth. Then, I will characterise the representation of depth across V1 and illustrate how
depth is mapped by specific populations of V1 neurons.

Overall, this thesis provides novel insights on how V1 is functionally organised to drive
behaviour in our environment. Not only is depth perception an evolutionarily important
behaviour, depth is also encoded explicitly in the visual system to facilitate this essential
computation. It shows that mouse V1 does not merely reflect the two-dimensional visual
field, but represent three-dimensional locations of visual cues. It also provides a functional
explanation for the widespread locomotion-related modulation of the mouse visual cortex.
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Chapter 2

Methods

2.1 Authorship declaration

This chapter built upon materials that I have previously disseminated in a preprint
on bioRxiv (He et al., 2024).

2.2 Animal welfare compliance

All experimental procedures were performed in accordance to the UK Animals (Sci-
entific Procedures) Act of 1986 (PPL PP4882546) and approved by the Animal Welfare
Ethical Review Body at the Francis Crick Institute. Animals used in each experiment are
detailed below.

2.3 Examining the innate nature of depth perception
using the visual cliff test

2.3.1 Visual cliff

The visual cliff assay was conducted on a custom-built arena adapted based on previous
studies (Fox, 1965; Gibson & Walk, 1960; Trychin & Walk, 1964). Each mouse was placed
on a raised central platform (raised by 6 cm and 5 cm wide) and would need to make a
choice and descend to either the shallow side or the deep side. The two sides were created
by a large transparent panel divided by the central platform (25 cm × 25 cm on each side)
made of acrylic and were raised 60 cm from the floor. On one side, a checkerboard texture
(25 cm × 25 cm), printed on paper and affixed to an acrylic board, was placed directly
beneath the panel, creating the "shallow side". On the opposite side, another checkerboard
texture (25 cm × 25 cm) was placed 60 cm below (on the floor of the chamber), simulating
a vertical depth on the "deep side". The whole setup were supported by two metal rods
and bases. All acrylic boards were cut with laser to achieve their precise sizes and were
joint by UV-curing transparent glue.
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Textures of various densities were used across different experiments. For the exper-
iments with textures of identical physical density, the checkerboard textures placed on
both the shallow and deep sides consisted of 2.5 cm × 2.5 cm squares (Figure 3.1A-B).
16 C57BL/6J (wild-type, JAX stock #000664) mice were used. For the experiments with
textures of matched density from the perspective of the animal, the textures placed on
the shallow side consisted of 2 cm × 2 cm squares, and the textures on the deep side
consisted of 22 cm × 22 cm squared (Figure 3.2A-C). 8 C57BL/6J mice were used. For
the experiments to confirm the effect of texture density on the animals decision on the
visual cliff, a texture consisting of 1 cm × 1 cm squares and a texture consisting of 2 cm
× 2 cm squares were placed on the two sides respectively, and both sides were made to
be shallow (Figure 3.3A). 8 C57BL/6J mice were used.

To limit the difference in illumination and shadows between the two sides, a string of
dimmable LED lights were arranged in arrays to cover the whole back panel of the setup,
and light diffuser sheet was placed in front of the light bulbs to create diffused lighting for
the whole chamber (Figure 3.1B). The left and right interior panels of the chamber were
also covered by diffuser sheets to eliminate pictorial cues on the chamber walls (Figure
3.1B).

At least 1 hour before the start of the visual cliff experiments, mice were briefly
restrained and their whiskers were trimmed with a shaver to prevent them from making
the decision using tactile cues. Mice were tested on the visual cliff for 1 session without
any prior exposure to the visual cliff setup. Each session consisted of either 12 or 20
trials, and had equal number of trials with the shallow side (or the deep side) appearing
on the left and right sides of the setup. The trials where the shallow side appearing on
the left or right side of the setup was interleaved in a pseudorandom order. Before each
trial, the texture indicating the shallow side was placed on the left or right side of the
setup according to the predetermined sequence, while the texture indicating the deep
side remained on the floor. At the beginning of each trial, a mouse was placed on the
central platform and was allowed to freely navigate on the arena. The choice of side for
the mouse was determined when mice descended to one side of the acrylic platform with
all four paws. Once the mouse had made its decision, it was removed from the arena
and the top surfaces where the mouse had made contact with were cleaned with Anistel
wipes and tissues to eliminate the remaining smell. Mice were allowed a maximum of
3 attempts to complete a trial. For the very first trial, each mouse was given up to 3
attempts until they made a decision, each lasting 10 minutes. If no decision was made
after 3 attempts, the trial was recorded as "no descent". In subsequent trials, each mouse
was allowed up to 3 attempts, each lasting 5 minutes, before being counted as "no descent"
if a decision was not made. A session was terminated if a mouse failed to make a decision
for 3 consecutive trials. A new trial was initiated as soon as a decision had been made or
once a "no descent" trial had been confirmed.
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2.3.2 Dark rearing

3 pregnant C57BL/6J female mice were transferred to dark cages a week before their
due date, while 2 pregnant female C57BL/6J mice were transferred to normal cages in
the same room. 23 pups of the dams in dark cages were born and raised in dark cages for
10 weeks with no exposure to light (dark-reared mice), whereas 17 pups of the dams in
normal cages were born and raised under normal lighting condition for the same duration
(control mice). Dark-reared mice were fed and checked daily by the experimenter with
infrared night vision goggles.

During the visual cliff experiments, the experimenter was blinded on whether the
tested animal was from the dark-reared or the control cohort. At the start of each visual
cliff test, one mouse was transferred into a different cage by another experimenter, and
was placed in the experimental chamber for 10 minutes to habituate to the lighting level.
Then the visual cliff assay would be operated in the same manner indicated in Section
2.3.1.

2.3.3 Visual cliff with optogenetic inhibition

To test whether the activity of superior colliculus is required for depth perception
in mice, 5 Vgat-cre mice (JAX stock #028862, Vong et al., 2011) were injected with
AAV-hSyn-DIO-Chrmine-P2A-mScarlet (titre: 7.97 × 1012 vg/ml) and 5 other Vgat-cre
mice acting as controls were injected with AAV-FLEX-tdTomato (titre: 1.2×1013 vg/ml)
bilaterally in their SC. Each side had two injections of 124 nl of virus in total, with the
two anterior injection sites at ±1.15 mm in the medial-lateral axis from lambda, 0.5 mm
anterior to lambda, and 2 mm from the brain surface, and the two posterior injection sites
at ±1.15 mm in the medial-lateral axis from lambda, 0.1 mm anterior to lambda and 1.8
mm from the brain surface. Then, a Dual Fiber-Optic Cannula containing two optic fibres
(TFC_300/330-0.37_2mm_TS2.3_FLT Two Ferrule Cannula, Doric, core diameter 200
µm) was implanted so that the ends of the two optic fibres targeted the brain at ±1.27 mm
in the medial-lateral axis from lambda, 0.35 mm anterior to lambda and 1.12 mm below
the brain surface. The optic fibre implants allowed photo-stimulation of Vgat-positive
cells. The location of the fibres implantation was confirmed via postmortem fluorescence
imaging, and the ends of the fibres were located in the centre of the superior colliculus
on the superficial layer. Based on the size and location of the viral injections, the target
area of viral infection was estimated to be ∼500 µm2 on each side.

A red laser (Doric Laser Diode Fiber Light Source, λ = 638nm, maximum power
80mW) was used to deliver the optogenetic stimulation. The laser was connected with a
rotary joint (Doric Fiberoptic Rotary Joint, Intensity Division) using a Mono Fiberop-
tic Patchcord (MFP_200/240/LWMJ-0.22_1m_FCA-FC, Doric). Before a behavioural
trial, the laser and the rotary joint was connected to the optic fibre implant on the head of
the mouse with another Mono Fiberoptic Patchcord (MFP_200/240/900-0.22_1m_FC-
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ZF1.25, Doric).
20 trials were performed on the visual cliff for each mouse as described Section 2.3.1.

During half of the trials, the laser was turned on ("laser-on" trials) as soon as the mouse
was placed on the central platform. The laser was triggered with pulses of square waves
at 20 Hz with a 5% or 15% duty cycle. The maximum average laser power was 9.8 mW
measured at the end of the Mono Fiberoptic Patchcord connecting to the optic fibre
implant with ∼85% coupling efficiency (from the Patchcord to the Cannula). During
the other half of the trials, the laser was turned off ("laser-off" trials). The laser-on and
laser-off trials were interleaved in a pseudorandom order.

Since the sample size for this experiment was quite small (4 mice for each group), to
control for animal-to-animal variability, I used hierarchical bootstrap (Saravanan et al.,
2020) to test the statistical significance of data from this experiment. For each bootstrap
sample I resampled mice followed by trials for each mouse. Then I calculated the statistic
of interest for each bootstrap sample. When determining whether mice at a specific
condition significantly preferred the shallow side, I calculated the average probability of
choosing the shallow side across all sampled trials, and then subtract the chance level (0.5)
from the mean value. When comparing whether the performance of mice at two conditions
(e.g. optogenetic vs. control mice with the laser on), I calculated the difference in the
average probability of choosing the shallow side across all sampled trials between the two
conditions. Finally, I determined the quantile q of the bootstrap distribution at 0 and
calculated the two-sided bootstrap p-value as 2 min{q, 1 − q}.

2.4 Characterising the neural representation of depth
in the primary visual cortex

2.4.1 Animals

Experiments described by all figures apart from Figure 4.6 were conducted in 7 trans-
genic mice, including 6 Emx1-Cre × Ai95D mice (JAX stock #028865, Madisen et al.,
2015 and #005628 Gorski et al., 2002) and one CamKII-tTA × TRE-GCaMP6s line G6s2
mouse (JAX stock #003010, Mayford et al., 1996 and #024742 Wekselblatt et al., 2016)
expressing genetically encoded calcium indicators GCaMP6f or GCaMP6s respectively in
cortical excitatory neurons. Both male and female mice were used (1 male and 6 females).
In Figure 4.6, 2 C57BL/6J (JAX stock #000664) female mice expressing GCaMP8m in
their primary visual cortex through virus injections were included.

2.4.2 Cranial window implantation

To implant the cranial window for chronic two-photon calcium imaging, mice were
anaesthetized with isofluorane (1.5-2.5%). A subcutaneous injection of dexamethasone
(0.02 ml at 2 mg/ml) was administered to reduce brain adaema. The skull was exposed,
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and a metal headplate was affixed with dental cement. A craniotomy (4 mm in diameter)
was performed over the left visual cortex, and the removed bone flap was replaced by a 4
mm glass coverslip. Imaging was typically conducted when the mice were 3 to 7 months
(up to 10 months).

2.4.3 Virus injection

For the two mice expressing GCaMP8m in their primary visual cortex through virus
injections, a craniotomy (4 mm in diameter) was first performed over the left visual cortex
as described above. Then, virus injections were performed through a glass micropipette
mounted to a Nanoject (Nanoject III, Drummond Scientific). The glass pipette was pulled
to a fine tip (outer diameter ∼10-20 µm) prior to the surgery, and was backfilled with
an adequate amount of the viral mixture (1:5 AAV1-Syn-GCaMP8m, 1:10 AAV2/1-Ef1a-
FLEX-H2B mCherry and 1:7000 AAV2/1hSyn-Cre). The micropipette was mounted onto
the Nanoject attached to a stereotax prior to the surgery. After the craniotomy was per-
formed, the micropipette was positioned at -2.8 medial/lateral and -3.5 anterior/posterior
from bregma. Then, the micropipette was lowered into the cortex at 300 µm from the
dura surface. 100 nl of the viral mixture was injected at a speed of 1 nl/s interspaced with
3 s pauses. 2 minutes after a round of viral injection was completed, the micropipette
was further lowered to 550 µm from the dura surface, and another 100 nl of the viral mix-
ture was injected following the same procedure. After two rounds of viral injections were
completed, the micropipette was withdrawn from the brain, and a 4 mm glass coverslip
was placed over the left visual cortex to replace the removed bone flap.

2.4.4 Virtual reality setup and visual stimuli

During the recordings, mice were head-fixed on a polystyrene cylindrical wheel and
presented with a virtual reality (VR) setup on four monitor screens (MSI Optix G241)
surrounding the mouse. The monitors were arranged in portrait orientation approxi-
mately along four sides of a hexagon centred on the mouse and covered a visual field of
∼240 degrees horizontally and ∼80 degrees vertically. The animals’ position in the VR
environment was updated in closed loop based on the distance they traveled on the wheel
recorded using a rotary encoder (Kubler 2400). The virtual reality environment was ren-
dered in Bonsai software (Lopes et al., 2015) using the BonVision package (Lopes et al.,
2021). The 3D environment was rendered using cube mapping, which projected a 360°
visual scene onto the view ports around the mouse (Lopes et al., 2021). The view ports
were defined as the positions of the screens relative to the mouse, whose translation and
rotational vectors were calibrated using ArUco markers (Bradski, 2000; Garrido-Jurado et
al., 2014) displayed on the screens and placed at the location of the mouse. The right eye
was monitored with a camera (Basler acA1440-220um) synchronized with the two-photon
acquisition (∼15 Hz) and illuminated with an infrared light placed above the camera.
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The VR environment had a gray background (11.9 cd/m2), a 5 cm wide floor with a
checkerboard texture positioned 2.5 cm below the mouse in the VR, and 24 black spheres
presented at varying virtual distances from the animal. The locations of the centres of
the spheres were selected in cylindrical coordinates (Figure 4.1F). The longitudinal axis
of the cylinder was aligned to the animals path of travel in the VR, while its radius
was equal to the virtual depth of a given trial chosen pseudorandomly from a range of
logarithmically spaced values (either 5 virtual depth values between 6 cm and 600 cm, or
8 depths between 5 and 640 cm). The spheres were spaced along the axis of the animal’s
locomotion by 0.15 × d with 19 spheres ahead of and 5 spheres behind the mouse. The
cylindrical azimuth of the spheres, which determines their position relative to the horizon,
was randomly chosen from a uniform distribution between -40 and 40 degrees or between
140 and 220 degrees, i.e. around the horizon on either the left-hand side or right-hand
side of the animal (Figure 4.1F). To maintain constant visual stimulation during the trial,
whenever the animal moved the distance of 0.15 × d in the VR, resulting in a sphere
disappearing outside of the monitors’ field of view behind the mouse, a new sphere was
generated 2.7 × d ahead of the mouse at a randomized cylindrical azimuth. New spheres
gradually faded in from gray over 0.3 s. The virtual radius of the spheres on trials of
different virtual depths was equal to tan 5° × d, so that they covered the same angular
extent in the visual field of the mice across different virtual depths (10 degrees when
the mice passed closest to each sphere in the VR). The spheres were a solid black color
without specular highlights.

Each trial continued until the mouse traveled 6 m after which the spheres faded to
gray and a 10 s inter-trial period commenced. A probabilistic reward of soy milk (∼8
µl of 10% SMA Wysoy) was delivered from a spout in front of the mouse 2 s into the
inter-trial interval on 60-80% of trials. Each session consisted of at least 10 trials for each
virtual depth.

During open loop sessions, the animal’s movement on the wheel was recorded but did
not control its virtual position in VR. Instead, the running trajectory of a previous closed
loop session of the animal was replayed and determined the animal’s moment-to-moment
virtual position and the updating of the sphere stimulus.

The nominal refresh rate of the four monitors was 144 Hz. To synchronize the visual
stimuli with imaging data, and measure the actual frame rate, a small square (3 cm ×
3 cm) with varying luminance was displayed in the bottom left corner of the leftmost
monitor. The luminance changes of this square were recorded with a photodiode at 1
kHz (HARP Behavior device, Champalimaud Research Scientific Hardware Platform).
For 2 mice (25 sessions), the square alternated between black and white at every frame
and was used to detect dropped frames. To determine the closed loop latency between
rotary encoder inputs and updates of the visual stimulus, the brightness of the square was
updated following an irregular predefined sequence of 5 values for the remaining 5 mice
(60 sessions, Figure 4.2A). The sequence was designed to alternate brightness increases
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and decreases in consecutive frames. Frames were then detected based on the photodiode
trace. To identify which frame was presented at each time point, the cross-correlation
between the filtered predefined sequence and the photodiode recording was computed to
continuously measure display lag.

2.4.5 Calibration of screen positions

The positions of the four screens were calibrated using ArUco markers as described
in previous literature Bradski, 2000; Garrido-Jurado et al., 2014. First, the intrinsics
of the camera used for calibrating the screen positions were calculated by taking pic-
tures of a flat checkerboard pattern (consisting of 3.1 cm × 3.1 cm squared) at various
angles (Figure 4.3A, Kshirsagar et al., 2022). The camera was modelled as a pinhole
camera with distortions, projecting 3D coordinates of real-world objects (e.g. the corners
of the checkerboard) to two-dimensional coordinates on the image. The coordinates of
the corners of the checkerboard patterns were detected on the images. The undistorted
normalized coordinate of a corner on a image (x, y) is a result of applying the translation
(T ) and rotation matrices (R) of the checkerboard pattern relative to the camera as well
as the intrinsics of the camera (K) to the predefined 3D coordinates of the corners of the
checkerboard (X, Y, Z):

s
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Y
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1

 , (2.4.1)

where s is a scaling factor. The camera intrinsics matrix (K) include parameters such as
focal lengths (fx, fy) and optical centers (cx, cy) in pixels:

K =


fx 0 cx

0 fy cy

0 0 1

 . (2.4.2)

The actual coordinates of checkerboard corners would incorporate distortion factors in-
cluding radial distortion (parts of the image bulging outward or squeezing inward rela-
tive to the optical center) and tangential distortion (asymmetrical shifts on the image
due to misalignment of lens to the image plane). Therefore, the camera intrinsics can
be estimated by iteratively optimising the pinhole camera project from the real-world
3D geometry of the checkerboard pattern to the known two-dimensional coordinates of
checkerboard corners across multiple pictures, while minimising reprojection error. Next,
two ArUco markers with known patterns and dimensions (5 cm × 5 cm) were placed in
the middle of each monitor screen and the location where the head of mice would be fixed,
respectively (Figure 4.3B). A picture containing both markers was taken. The corners
and x, y, and z axes of the individual markers were detected from the picture using the
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OpenCV package (Figure 4.3B, Bradski, 2000), and the translation (Ti, Tj) and rotation
vectors (Ri, Rj) of the aruco markers relative to the camera were computed. Then, the
relative translation (Rrel) and rotation (Trel) between the two aruco markers could be
computed as:

Rrel = RT
j Ri, (2.4.3)

Trel = RT
j (Ti − Tj), (2.4.4)

which indicates the transformation of screens from the perspective of the mice.

2.4.6 Eye camera calibration

Four cameras were used to monitor the eye, facial, and body movements of the mice.
To monitor the position of the right eye of the mice, the position of the camera monitoring
the right eye was calibrated. First, the intrinsics of the camera were estimated by taking
pictures of small checkerboard patterns (consisting of 0.8 mm × 0.8 mm squares) using the
camera from various angles, and calculated using the method described in Section 2.4.5
(Figure 4.3C). The relative rotation from the eye to the camera was estimated by taking
a picture of an ArUco marker (1 cm × 1 cm, Figure 4.3D), with the method described in
Section 2.4.5. As the changes in visual motion speed resulting from gaze direction shifts
were the primary focus, the translation vector of the eye camera was not relevant in this
context.

2.4.7 Behavioral training

To encourage mice to run in the VR environment, they underwent a 2-4 week training
period under food restriction. Mice were acclimatized to the behavioral setup for at least
3 sessions of 5-15 min. Mice initiated their training with a minimum distance traveled
per trial of 1 m that was gradually increased to 6 m depending on the animals’ running
behavior. Each training session lasted 30 min - 1 h. Imaging commenced once the mice
could reliably complete ∼2 trials per minute. After the training period, food restriction
continued during the imaging experiments.

2.4.8 Two-photon calcium imaging

Fluorescence signals from neurons in layer 2/3 of the primary visual cortex (150-300
µm below pia) were recorded using a custom-built resonant scanning two-photon micro-
scope (Independent NeuroScience Services) and a Nikon 16x water-immersion objective
(NA 0.8). The microscope was controlled with ScanImage 2020 software. GCaMP6f and
GCaMP6s fluorescence signals were excited with a 930 nm laser (SpectraPhysics MaiTai
DeepSee eHP) at 70-100 mW and acquired with a 525/50 emission filter (FF03-525/50-
25, Semrock). Imaging frames (1024 x 1024 pixels) were acquired at ∼15 Hz. Individual
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recordings covered a field of view of ∼661 µm x 661 µm. To minimize the interference
from the monitors’ during imaging, a custom electronic circuit activated the backlights
of the monitors (screen blanking) only during the turn-around period of the resonant X
mirror.

2.4.9 Widefield calcium imaging

The locations of V1 and higher visual areas (HVAs) were determined using wide-
field calcium imaging of the whole visual cortical window. Widefield calcium imaging
was performed using a camera integrated into the two-photon microscope (Independent
NeuroScience Services) using a Nikon AF Nikkor 85mm f/1.8D camera lens as the ob-
jective and a 100 mm tube lens (Thorlabs AC508-100-A-ML). Two excitation LEDs at
470 nm (M470L3, Thorlabs, with excitation filter FF02-447/60-25, Semrock) and 405 nm
(M405L4, Thorlabs, with excitation filter FF01-405/10-25, Semrock) were combined using
a dichroic mirror (FF458-Di02-25x36, Semrock) and coupled to the infinity focused imag-
ing path (FF495-Di03 BrightLine primary dichroic mirror). Images were acquired with an
emission filter (FF03-525/50-25, Semrock) and a CMOS camera (Basler acA2040-120um)
at 60 Hz. Illumination of the two LEDs was interleaved for hemodynamic correction using
a microcontroller (Arduino Uno) triggered by the camera’s FlashWindow output.

During imaging, mice were head-fixed on the wheel and presented with a circular
square-wave grating patch of 20 degrees diameter (at a spatial frequency of 0.2 cpd and
a temporal frequency of 2 Hz) at 30 or 90 degrees azimuth and 0 degrees elevation on a
black background. Each grating patch was presented for 4 seconds and grating direction
(8 directions in 45 degree increments) changed every 500 ms in pseudorandom order. The
grating patches were repeated 50 times for each location in pseudorandom order with 8
seconds of blank screen between presentations.

Images were first deinterleaved to separate 405 nm and 470 nm channels. Hemody-
namic signal correction was carried out by performing linear regression on each pixel of
the 470 nm channel’s signal using the 405 nm channel signal as the independent variable.
The residuals of the regression added to the mean fitted signal of the 470 nm channel was
used as the corrected widefield signal for each pixel. Corrected signals were detrended
by applying a high-pass filter of 0.001 Hz. The signal at each pixel was normalized by
its average value. The responses to the grating patches at each retinotopic location were
averaged across repetitions to determine the locations of V1 and HVAs.

2.4.10 Grating stimuli

To map the spatiotemporal tuning of V1 neurons, I recorded the neuronal responses to
2D grating stimuli in a subset of sessions (N = 6 sessions from 2 mice). Sinusoidal drifting
gratings were presented on a black background (0.12 cd/m2) rendered in Bonsai software
(Lopes et al., 2015) using the BonVision package (Lopes et al., 2021). Full-field drifting
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gratings were displayed exclusively on the two screens covering the right visual field of
the mice. The stimuli consisted of gratings with combinations of 6 spatial frequencies
(0.01, 0.02, 0.04, 0.08, 0.16, 0.32 cpd) and 6 temporal frequencies (0.5, 1, 2, 4, 8, 16 Hz)
drifting at 8 directions (0, 45, 90, 135, 180, 225, 270, 315, 360 degrees). The gratings
were presented in a pseudorandom order, with each combination of spatial frequency,
temporal frequency, and direction displayed for 4 seconds before switching to the next.
0° represented vertical gratings moving forward. Every session included 5 repetitions of
all grating combinations.

2.4.11 Data analysis

To account for the nested structure of the experimental data, statistical comparisons
were conducted using hierarchical bootstrap (Saravanan et al., 2020) unless specified
otherwise. In analyses at the level of individual neurons, for each bootstrap sample I
resampled mice, followed by experimental sessions for each mouse, and neurons for each
session and calculated the statistic of interest, such as correlation coefficient between
two variables, or difference in medians between two conditions, for each sample. I then
determined the quantile q of the bootstrap distribution at 0 and calculated the two-sided
bootstrap p-value as 2 min{q, 1 − q}.

Eye movements

To determine if the visual stimulation triggered eye movements, in a subset of sessions
(N = 16 sessions from 2 mice) I reconstructed the gaze direction during behaviour. Eyelid
position, the reflection of the infrared light and 12 key points around the pupil border were
tracked on each frame using DeepLabCut (Mathis et al., 2018). Frames in which the eye
was closed (distance between top eyelid and bottom eyelid < mean distance - 3 standard
deviations, or DeepLabCut likelihood <0.88) were excluded. For the remaining frames,
the 12 markers around the pupil were fitted with an ellipse which was used to perform
gaze reconstruction as previously described (Wallace et al., 2013). Briefly, the eye was
modeled as a 3D sphere with a circular pupil rotating at a constant radius around the the
eye centre. Translation of the eye relative to the camera was corrected using the infrared
light reflection as the origin for each frame. The position of the eye centre on the camera
frame was defined as the least square estimate of the intersection of all minor axes of the
fitted ellipses. The scale factor, which depends on the radius of the eye, was estimated
based on the ratio of the short and long axis of the fitted ellipses and the position of the
eye centre (Wallace et al., 2013). With these parameters, the pupil radius r and rotation
angles relative to the camera axes, φ and θ define the reprojected pupil border in the
camera frame. I performed a grid search for each frame to find the (r, φ, θ) minimizing
the difference between the fitted and reprojected ellipses.

To estimate the azimuth and elevation from the gaze vector in camera coordinates,
I calibrated the camera position using an ArUco marker (Garrido-Jurado et al., 2014)
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placed parallel to the floor in the camera field of view and pointing in the animal’s
direction of travel. The pose of the marker relative to the camera was estimated using
OpenCV (Bradski, 2000) and used to rotate the gaze vector from camera coordinates to
world coordinates.

Angular velocity (Figure 4.8K) was calculated on the mean filtered azimuth and eleva-
tion traces (rolling window of 3 frames). Saccades (Figure 4.8L) were defined as instances
when the filtered velocity traces (calculated on median-filtered azimuth and elevation
traces with a rolling window of 5 frames) exceeded 75 degrees per second, i.e. a 5 degrees
change in a frame.

Preprocessing of two-photon imaging data

Imaging frames were registered and segmented using the suite2p package (Pachitariu
et al., 2017) with anatomical segmentation (Cellpose Stringer et al., 2021) to avoid bias
towards active cells. Fluorescence traces were detrended by subtracting a rolling baseline
calculated as the 20th percentile in a moving window of 900 frames. To remove neuropil
contamination of the fluorescence trace for the ROIs, I fitted the fluorescence of the ROIs
and their surrounding areas with asymmetric Student-t distributions. The mean of these
distributions depended on a shared neuropil signal that affected both ROI and surrounding
fluorescence (Orsolic et al., 2021). Finally, I estimated F0, by fitting a Gaussian mixture
model with 2 components to the fluorescence time series and identified F0 as the mean of
the smaller Gaussian. ∆F /F0 was defined as ∆F/F0 = (F − F0)/F0, where F was the
fluorescence value after neuropil correction.

Depth selectivity

To determine the preferred virtual depth for each ROI, I calculated the mean ∆F/F0

across each trial for each neuron, and fitted a Gaussian model to the average single trial
responses f and the corresponding log-transformed virtual depth d displayed in each trial:

f = ae
−(d−d0)2

2σ2 + b, (2.4.5)

where a was the peak response amplitude, d0 was the log-preferred depth, σ was the
tuning width, and b was the baseline fluorescence. The preferred virtual depth d0 was
constrained between ln 2 and ln 2000 cm, and the peak amplitude a was constrained to
be positive. The tuning width σ2 was constrained to >0.5 to avoid overfitting. All depth
tuning curves were plotted using this fit.

To identify depth-selective neurons, I fitted the Gaussian model using 5-fold cross
validation. On each fold, 80% of trials were assigned to the training set, which was used
to estimate model parameters and 20% were assigned to the test set, which was used
to evaluate model predictions. Then I calculated the Spearman’s correlation coefficient
of predicted and observed fluorescence on test trials across all 5 folds. Depth-selective
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neurons were defined as having a Spearman’s correlation p-value <0.05 and a Spearman’s
correlation coefficient >0.1.

Near-preferring cells and far-preferring cells (Figure 4.5D) were defined as the cells with
preferred virtual depths close to the bounds of d0 (log-preferred virtual depth < ln 2+10−4

for near-preferring cells, and > ln 2000 − 10−4 for far-preferring cells).

Optic flow and running speed tuning

To visualise the optic flow speed and running speed tuning curves in Figure 5.1B,F, I
first smoothed the sum of responses from all frames and the number of frames at different
bins of running speed or log-transformed optic flow speed respectively, using a 1D Gaussian
kernel with a standard deviation of 1 bin width (10 cm/s for running speed, ∼0.691 for
log-transformed optic flow speed). The tuning curves were calculated by dividing the
smoothed sum of response by the smoothed number of frames to account for the number
of samples in different bins. Only frames with a running speed above 1 cm/s were included
for the optic flow speed tuning curves to facilitate the logarithmic transformation of the
optic flow speeds.

To determine how optic flow and locomotion-related signals were integrated and es-
timate preferred optic flow and running speeds, I fitted the ∆F/F0 trace as a function
of log-transformed optic flow speed v and running speed r on individual imaging frames
when mice were moving at >1 cm/s using 5 models.

The optic flow only and running speed only models were Gaussian functions of log-
optic flow speed v and log-running speed r, respectively:

∆F/F0 = ae
−(v−v0)2

2σ2
v + b, (2.4.6)

∆F/F0 = ae
−(r−r0)2

2σ2
r + b. (2.4.7)

The additive model fitted responses as the sum of Gaussian functions of log-optic flow
speed v and log-running speed r:

∆F/F0 = ave
−(v−v0)2

2σv2 + are
−(r−r0)2

2σr2 + b. (2.4.8)

The conjunctive model consisted of a bivariate Gaussian tuned to both log-optic flow
speed v and log-running speed r:

∆F/F0 = ae−
(

kv(v−v0)2+kr(r−r0)2+kvr(v−v0)(r−r0)
)

+ b, (2.4.9)

where
kv = cos2 θ

2σ2
1

+ sin2 θ

2σ2
2

, (2.4.10)

kr = sin2 θ

2σ2
1

+ cos2 θ

2σ2
2

, (2.4.11)
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kvr = sin 2θ

2σ2
1

− sin 2θ

2σ2
2

. (2.4.12)

a was the peak amplitude of the overall response, b was the baseline activity, and v0 and
r0 were the log-preferred optic flow and log-preferred running speeds. For the conjunctive
model, θ determined the orientation of the axes of the bivariate Gaussian, and σ1 and σ2

were the standard deviation for its two axes.
The ratio model was a Gaussian function of the difference between log-running speed

and log-optic flow speed, equivalent to the logarithm of their ratio:

∆F/F0 = ae
−(r−v−d0)2

2σd
2 + b, (2.4.13)

where d0 was the log-preferred virtual depth and σd was the depth tuning width. This
model is similar to the depth tuning model in Eq. 4.4.1 fitted on individual imaging
frames rather than trial-averages.

The preferred optic flow speed ev0 was constrained between 0.03 to 3000 degrees/s. The
preferred running speed er0 was constrained between 0.5 to 500 cm/s. d0 was constrained
between 0.0095 and 9.5 × 105 cm according to the lower and upper bounds of ev0 and er0 .
σ2

v , σ2
r , σ2

1, and σ2
2 were constrained to be >0.25. θ was constrained between 0 and 90

degrees. a, ar, and av were constrained to be >0.
To determine which model best described neuronal activity for individual neurons,

I fitted each model with 5-fold cross validation. On each fold, individual trials were
assigned to the training set (80%), which was used to estimate model parameters, or test
set (20%), which was used to evaluate model predictions. I then computed the predicted
fluorescence ∆̂F/F0 on test trials using parameters estimated on the training set for
each fold and compared it to observed ∆F/F0 to compute R2 as the fraction of variance
explained by the model:

R2 = 1 − Var[∆F/F0 − ∆̂F/F0]
Var[∆F/F0]

. (2.4.14)

The best model for each neuron was selected as the model with the highest R2. To
compare performance between models across the dataset, I first calculated the proportion
of neurons best fitted by each model for each recording session and then used hierarchical
bootstrap (Saravanan et al., 2020) to resample mice and sessions 20000 times. I then
compared the difference of the median proportions between models.

To estimate the preferred running speed and optic flow speed for each neuron, I fit-
ted the ∆F/F0 trace, the corresponding optic flow speed and running speed from all
trials using the conjunctive model. Closed loop recordings and open loop recordings
were fitted separately. The neurons plotted in Figure 5.4A-C and Figure 5.5A-B were
the depth-selective neurons well-fitted by the conjunctive model in closed loop recordings
(cross-validated R2>0.02 computed as described above, 5,737 of 31,013 depth-selective
neurons recorded in closed loop conditions from 84 out of 85 sessions; no neurons passed
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this threshold in 1 session). To quantify the correlation between preferred depth, pre-
ferred running speed, preferred optic flow speed or the ratio between preferred running
and optic flow speed in Figure 5.4A-C and Figure 5.5A-B, I first calculated the Spear-
man’s correlation coefficient between the two variables and calculated the p-value using
hierarchical bootstrap by resampling mice, sessions, and neurons as described above.

To compare the preferred running speed and preferred optic flow speed of depth-
selective neurons in closed loop vs. open loop trials in Figure 5.7E-F, I chose depth-
selective neurons with good fits to the conjunctive model (cross-validated R2>0.02) in
both closed and open loop conditions (1,234 of 10,850 depth-selective neurons recorded in
open loop from 34 sessions). Then, I computed the Spearman’s correlation coefficient be-
tween the variables and calculated the p-value using hierarchical bootstrap by resampling
mice, sessions, and neurons as described above.

To compare the peak response amplitudes of depth-selective neurons in closed loop
vs. open loop trials in Figure 5.7G-I, I calculated the peak response amplitude using the
conjunctive model fit (sum of amplitude a and offset b). The selection criteria for neurons
was the same as Figure 5.7E-F. Then I compared the median ratio between the peak
response amplitude of closed loop and open loop trials to 1 using hierarchical bootstrap
by resampling mice, sessions, and neurons as described above.

Spatiotemporal and direction tuning in response to 2D grating stimuli

To determine the preferred speed tuning of V1 neurons mapped by 2D drifting gratings,
I calculated the average response of individual neurons during each 4-s presentation of
gratings with specific combinations of spatial frequency, temporal frequency and direction.
Then, the trial-averaged neuronal responses were then fitted with a model that combined
a spatiotemporal tuning component represented by a bivariate Gaussian function and a
direction tuning component based on a von Mises distribution. The bivariate Gaussian
component, G(s, t), modelled the neuron’s spatiotemporal tuning as:

G(s, t) = ae−
(

ks(s−s0)2+kt(t−t0)2+kst(s−s0)(t−t0)
)

+ b, (2.4.15)

where
ks = cos2 θ

2σ2
1

+ sin2 θ

2σ2
2

, (2.4.16)

kt = sin2 θ

2σ2
1

+ cos2 θ

2σ2
2

, (2.4.17)

kst = sin 2θ

2σ2
1

− sin 2θ

2σ2
2

. (2.4.18)

s and t were the log-transformed spatial and temporal frequency of the presented grating.
a was the peak response amplitude of the spatiotemporal tuning component, b was the
baseline, and s0 and t0 were the log-preferred spatial frequency and temporal frequency.
θ determined the orientation of the axes of the bivariate Gaussian, and σ1 and σ2 were
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the standard deviation for its two axes. The direction tuning component, D(α), modelled
the neuron’s direction tuning as:

D(α) = e(κ cos(α−α0)) + (1 − dsi) · e(κ cos(α−α0−π))

e(κ) + (1 − dsi) · e(−κ) ,

where α was the direction of the presented grating. α0 was the preferred grating direction,
and κ controlled the width of the direction tuning. dsi was the direction selectivity index
ranging from 0 to 1, defined as Dpreferred−Dnull

Dpreferred+Dnull
, where Dpreferred represented the preferred

direction of motion and Dnull represented the opposite direction. The the trial-averaged
neuronal responses was modelled as G(s, t) · D(α) with an offset representing the baseline
activity.

Receptive field estimation

To estimate the receptive field for each neuron, I used the recorded sphere locations
and the animal’s position in the VR to reconstruct the three-dimensional visual stimulus
presented for each imaging frame. The first two dimensions corresponded to retinotopic
location in spherical coordinates with a resolution of 5 degrees in azimuth and elevation,
while the third dimension corresponded to the virtual depth of the stimulus on a given
trial. I then constructed a design matrix representing the visual stimuli S, where each
row contained the stimulus reconstruction for the corresponding imaging frame and for
each virtual depth, as well as a column of 1s to account for a bias term. The number of
rows corresponded to the number of imaging frames. Therefore, the dimension of S was
Nframes × (Npixels ∗ Ndepths) + 1, where Npixels was the number of pixels on each visual
stimulus frame, Ndepths was the number of virtual depths, and the Nframes was the number
of imaging frames. S was reconstructed based on the stimuli presented on either the two
screens on the right-hand side of the mouse or the two screens on the left-hand side of
the mouse. I used a linear model to fit ∆F/F0:

∆F/F0 = Sb (2.4.19)

I used the regularized pseudoinverse method (Cossell et al., 2015; Smyth et al., 2003)
to impose a smoothness constraint on the receptive field in azimuth and elevation and in
virtual depth. The constraints aimed to make the Laplacian of the receptive field close
to zero at all points. To impose this constraint, I constructed matrices Lxy and Ldepth.
Lxy aimed to smooth the receptive fields across azimuth and elevation. To assemble the
matrix Lxy, I first generated Laplace matrices that contained the values


0 −1 0

−1 4 −1
0 −1 0

 (2.4.20)
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corresponding to adjacent x and y pixels for a single depth embedded in Ny × Nx × Ndepth

matrix of zeros for each x and y pixel location and depth. These matrices were flattened
and assigned to individual rows of Lxy.

Ldepth controlled the smoothness the receptive fields across different virtual depths.
To assemble Ldepth, I generated Laplace matrices that contained the values

[
−1 2 −1

]
corresponding to adjacent depths for a single pixel embedded in a Ny ×Nx ×Ndepth matrix
of zeros for each x and y pixel location and depth. These matrices were flattened and
assigned to individual rows of Ldepth.

I appended a column of 0s to Lxy and Ldepth so as not to regularize the bias term. I
then assembled the design matrix X containing the stimulus matrix S and the smoothness
constraints Lxy and Ldepth:

X =


S

λxy · Lxy

λdepth · Ldepth

 . (2.4.21)

λxy and λdepth are scalars that control the strength of regularization of receptive field
smoothness across azimuth and elevation (λxy) and across virtual depths (λdepth). I con-
structed an augmented response vector by appending 0s to the ∆F/F0 fluorescence vector
corresponding to each row of Lxy and Ldepth

y =



∆F/F0

0
.

.

.

0


. (2.4.22)

To estimate the receptive field I found the least squares solution for the equation y = Xb
as

b̂ = (XT X)−1XT y. (2.4.23)

The first Npixels elements of b̂ correspond to coefficients of the receptive field, while the
last element represents the bias term.

To optimize hyperparameters λxy and λdepth, I used 5-fold cross validation to split
imaging trials into training and test sets and estimated b̂ on each training set. I then
computed the predicted fluorescence

ŷ = Stestb̂ (2.4.24)

for each test set and found the combination of λxy and λdepth which yielded the highest
fraction of variance explained by the model for each ROI by searching over a 13 x 13
grid of values logarithmically spaced between 2.5 and 10240. The receptive field for each
neuron was calculated based on the best combination of λxy and λdepth by averaging the
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coefficients b̂ across 5 folds. The peak azimuth and elevation of the receptive field (RFazi

and RFele) were defined as the position with the maximum coefficient value.
To identify the neurons with significant receptive fields, I used the procedure above

to optimize λxy and λdepth and fit the receptive field using the stimuli in the right visual
field (RFright). To estimate the null distribution for receptive field coefficients for each
neuron, I used these values of λxy and λdepth to fit the receptive field using stimuli in the
left visual field (RFleft), which have the same statistics but are not expected to drive
neuronal activity recorded in the left visual cortex. I calculated the mean and standard
deviation of the coefficients in RFleft and defined the ROIs with significant receptive fields
as those with a maximum value of the RFright which was 6 standard deviations above the
mean of RFleft. The 6 standard deviations threshold was chosen such that ∼5% of neurons
passed this threshold if it was applied to RFleft.

Cortical location

To determine the spatial location of imaged neurons within V1 in individual animals,
I first found the location of neurons within the field of view (FOV) for each recording
session based on their cell masks. I then aligned the location of each FOV within the
whole visual cortical window by matching the blood vessel patterns between the surface
of the FOVs and the overview image of the window acquired using the widefield camera.

To align the location of imaged neurons across animals, I assumed that the RF az-
imuth and elevation followed the same linear gradient in V1 across animals. Under this
assumption, the overview location xoverview and yoverview of individual neurons depends
linearly on their RF azimuth and elevation with a translational offset that can vary across
mice:

xoverview = b1,1RFazi + b1,2RFele + b1,mouse (2.4.25)

yoverview = b2,1RFazi + b2,2RFele + b2,mouse (2.4.26)

I used Huber regression to fit the coefficients and individual mouse offsets ensuring ro-
bustness to outliers. I then chose a reference mouse and aligned the neurons’ coordinates
of all other mice to the reference mouse by subtracting the offset of the original mouse
and adding back the offset of the reference mouse:

xaligned = xoverview − b1,mouse + b1,reference (2.4.27)

yaligned = yoverview − b2,mouse + b2,reference (2.4.28)

Depth selectivity in relation to RF location

To illustrate the spatial distribution of RF azimuth, elevation and the preferred depth
in Figure 6.4B-D, I plotted these parameters of all depth-selective neurons with a sig-
nificant RF at the location of individual neurons. In the lower panels, I smoothed the
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spatial distribution map with a 113 µm Gaussian kernel. To set the transparency of the
smoothed map, I calculated the sum of Gaussian weights for all plotted neurons for each
pixel, normalized by its maximum value. The alpha for each pixel was set to either 5
times this value or 1, whichever was smaller.

As the virtual distance between the spheres and the mouse varied based on the spheres’
positions, in the analyses in in Figure 6.5D-E I calculated the corrected log-preferred
virtual depth d′

0, corresponding to the distance to the spheres at the centre of the neurons’
receptive field at the peak of their depth tuning curve (Eq. 4.4.1):

ed′
0 = ed0√

sin2 RFazicos2 RFele + sin2 RFele

. (2.4.29)

To test for the presence of a gradient in preferred depth as a function of azimuth and
elevation, I used hierarchical bootstrap (Saravanan et al., 2020) to resample neurons across
mice and recording sessions. For each bootstrap sample, I performed linear regression
between the RFazi and RFele of the centre of the neurons’ receptive fields and the neurons’
corrected log-preferred virtual depth:

d′
0 = kaziRFazi + keleRFele + b, (2.4.30)

where kazi and kele defined the gradient of depth as a function of azimuth and elevation
of the neurons’ receptive fields, respectively.

To test for statistical significance, I modeled the coefficients (kazi, kele) obtained from
different bootstrap samples using a bivariate Normal distribution and used a multivariate
generalization of the Z-test to compare their mean to 0. To this end, I first computed the
mean µ and covariance Σ of bootstrap samples (kazi, kele). As the square of the Maha-
lanobis distance µT Σ−1µ follows the chi-squared distribution with 2 degrees of freedom,
the p-value is calculated as e−µT Σ−1µ/2.

Population decoding

To decode virtual depth from population activity, I trained a linear SVM classifier
using ∆F/F0 values of simultaneously recorded neurons in a session. I split imaging trials
into training (64%), validation (16%) and test (20%) sets with 5-fold cross validation
such that each trial was included in one test set. I then trained the classifier on individual
imaging frames from trials in the training set using the validation set to optimize the
hyperparameter C. I used the test sets to evaluate the performance of the optimized
classifier to obtain the accuracy and the confusion matrix of predicted and true virtual
depths. Confusion matrices in Figures 4.7A-D and 5.8A-D show decoder performance as
the proportion of imaging frames for each true depth.

To determine how decoding accuracy depends on the animals’ running speed, I trained
a single decoder using data across all running speeds for each session. I then evaluated

65 of 207



2.4. Characterising the neural representation of depth in the primary visual cortex

decoder performance on imaging frames from trials in the test set belonging to different
running speed bins. Figure 4.7E shows mean decoding error across sessions. Confidence
intervals were computed using bootstrap by resampling sessions.

To compare decoding accuracy between closed loop and open loop trials, I trained and
evaluated separate SVM classifiers on closed loop and open loop data.
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Chapter 3

Depth perception in mice does not
require prior visual experience

3.1 Authorship declaration

I, Yiran He, performed the majority of the experiments and analysis in this chapter.
Marcelo Moglie from Iacaruso Lab at the Francis Crick Institute performed the surgical
procedures for optogenetic mice. Xavier Cano-Ferrer (a member of the Cricks Making
Lab) contributed to the design and construction of the visual cliff setup.

3.2 Background

Depth perception is a critical ability supporting the everyday life of animals in our
three-dimensional environment. Whether this vital visual function is an innate ability
across the animal kingdom has drawn considerable attention. The innate nature of depth
perception has been widely studied using the visual cliff (Birch et al., 1982; Fox et al., 1980;
Gibson & Walk, 1960; Tsuruhara et al., 2014; Walk & Gibson, 1961). This behavioural
paradigm assesses depth discrimination by observing animals’ tendency to avoid a visual
drop. The apparatus typically features a large transparent panel divided by a central
platform. On one side, known as the "shallow side," a texture is placed directly beneath
the panel. On the opposite "deep side," another texture is positioned several feet below,
creating a sensation of vertical depth. Animals with normal depth perception would
choose to descend to the shallow side and avoid the deep side, possibly due to a fear of
heights (Gibson & Walk, 1960; Walk & Gibson, 1961). The visual cliff experiment is an
ideal behavioural paradigm to probe whether depth perception is innate or requires prior
visual experience. It does not require prior training or high-level motor coordination for
animals to perform the task (unlike the jumping tasks used in Ellard et al., 1984; Parker,
Abe, Beatie, et al., 2022). Depth discrimination can be easily quantified by animals’
choices between two simple options, and the behavioural performance is robust across
many species (Gibson & Walk, 1960; Walk & Gibson, 1961).
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On the visual cliff, human infants display a fear of vertical drops as early as 4 months
old (Birch et al., 1982; Fox et al., 1980; Gibson & Walk, 1960; Tsuruhara et al., 2014).
Many birds and mammals, including chicken, sheep, goats, and rats, demonstrate an
innate ability to perceive depth on the visual cliff (Cheney & Crow, 1969; Gibson & Walk,
1960; Walk et al., 1957; Walk et al., 1965). Immediately after birth or following rearing in a
completely dark environment, these animals inherently preferred to descend to the shallow
side, indicating that their depth perception does not depend on prior visual experience.
On the other hand, some carnivores and primates seem to need visual experience to fully
develop their depth perception. Compared to kittens that could actively explore the
environment and receive closed loop visual feedback, kittens that only received passive
visual inputs did not develop paw placing reflexes and did not avoid apparent vertical
drops (Hein et al., 1970). Infant monkeys reared in the dark for more than a month could
not discriminate between the shallow and deep sides on the visual cliff (Fantz, 1965).

Previous work has shown that adult mice with normal vision can reliably discriminate
depth on the visual cliff, whilst mice with retinal degeneration lost this ability (Fox,
1965). Adult mice can also perform a modified version of the visual cliff task with mainly
binocular information, where mice climbed down a pole and mainly engaged their upper
visual field (Boone et al., 2021). However, it is unknown whether depth perception is
an innate ability for mice. In addition, previous studies have used patterns with the
same physical texture density for both deep and shallow sides. This means that mice
could discriminate depth by comparing relative size or density of textures between the
two sides, rather than relying on motion parallax or binocular disparity cues. The effect
of key pictorial cues, such as relative size, on depth discrimination of mice on the visual
cliff has not been systematically examined.

In this chapter, I will explore whether depth perception is innate or requires any
prior visual experience for mice using the visual cliff. I will use a modified version of the
visual cliff which enables flexibility in manipulating the density and height of the textures
presented on both sides. If depth perception is proven innate in mice, the mouse visual
system can serve as an ideal model to study the functions and connectivity of specialised
neuronal populations defined by their gene expression patterns.

Another question I will touch on in this chapter is which parts of the visual system are
necessary for depth perception. In the introduction, I have presented extensive anatom-
ical and functional evidence that the visual cortex is a likely neural substrate for depth
perception in mice. The visual cortex, especially the primary visual cortex (V1), is in-
dispensable for rodents to perform depth perception tasks such as the visual cliff and
jumping across a horizontal gap (Ellard et al., 1986; Meyer, 1963; Parker, Abe, Beatie,
et al., 2022). The neural mechanism of depth perception from binocular disparity has
been well-characterised in mice, and many neurons in V1, AL and RL display selectiv-
ity towards disparity of visual stimuli presented to two eyes (La Chioma et al., 2019,
2020; Scholl et al., 2013). The visual cortex also receives rich locomotion-related signals
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from areas such as the thalamus, the hippocampal formation and secondary motor cortex
(Froudarakis et al., 2019; Leinweber et al., 2017; Saleem et al., 2018; Vélez-Fort et al.,
2018) and neuronal activity in the visual cortex is highly modulated by locomotion (Keller
et al., 2012; Niell & Stryker, 2010; Saleem et al., 2013). This could allow neurons in the
visual cortex to compute depth from motion-based depth cues by integrating visual and
locomotion-related signals. However, the innate nature of depth perception across many
species suggests that it may be supported by evolutionarily conserved regions such as
subcortical areas. It remains unclear which subcortical structures are required for depth
perception.

The two main subcortical structures that provide visual information to the visual
cortex are the lateral geniculate nucleus (dLGN) and superior colliculus (SC), which are
the key subcortical centres that support the image-forming pathway and the non-image-
forming pathway, respectively (Juavinett et al., 2020; Seabrook et al., 2017). dLGN
provides key inputs of retinal visual information to V1 (Petros et al., 2008). Given that
depth computation requires perception of the visual environment and that V1 is required
for depth perception in rodents, it is likely that dLGN is involved in depth perception.
SC is an evolutionarily-conserved, integrative sensorimotor structure that receives inputs
from the majority of RCGs. It channels the alternative pathway for retinal information
to reach V1 via its projections to dLGN and higher-order thalamic nuclei (Bickford et
al., 2015; Gale & Murphy, 2014; Roth et al., 2016; Seabrook et al., 2017; Tohmi et al.,
2014). SC is a key structure involved in visuomotor transformations and visually guided
orienting, controlling eye movements, head movements, escape and hunting behaviour
(Hoy et al., 2019; Ito & Feldheim, 2018; Shang et al., 2015, 2019; Sparks et al., 1990;
Wei et al., 2015). However, lesion studies suggest that superior colliculus is not required
for depth perception in rodents including Mongolian gerbils and rats (Cheney & Crow,
1969; Ellard et al., 1986). Lesions in the superior colliculus of Mongolian gerbils did not
significantly affect depth judgements during a task of jumping across a gap, while lesions
in the visual cortex impaired the task performance (Ellard et al., 1986). Gerbils with
superior colliculus lesions displayed similar latency before jumping as the control group,
although their landing positions were less accurate (Ellard et al., 1986). Lesions in the
superior colliculus of rats did not affect their performance on the visual cliff (Cheney
& Crow, 1969). It is unknown whether SC is dispensable for depth perception in mice.
Therefore, I will present a pilot experiment using the visual cliff to examine the role of
SC in depth perception.
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3.3 Mice can discriminate depth using visual cues on
the customised visual cliff setup

I first designed and built a customised visual cliff setup (Figure 3.1A-B) based on
previous studies (Fox, 1965; Gibson & Walk, 1960; Trychin & Walk, 1964). A mouse
was placed on a raised central platform and could choose to descend to either a shallow
side or a deep side. The two sides were created by a large transparent panel divided by
the central platform. On one side, a checkerboard texture was placed directly beneath
the panel, creating the "shallow side"; whereas on the opposite side, another texture was
positioned 60 cm below, simulating a vertical depth on the "deep side". The textures could
be easily replaced by sliding from the side of the large transparent panel, enabling us to
alter texture pattern or density as well as randomising the side of texture presentation.

I aimed to established a baseline for the performance of mice with normal vision on
the visual cliff. I tested 8 adult C57BL/6J mice (referred as wild-type mice below) on the
visual cliff with checkerboard textures of the same physical density on both the shallow
side and deep side (Figure 3.1A-B). Mice were tested without any prior exposure to the
visual cliff for only 1 session consisting of 12 trials. Before each trial, the position of the
shallow and deep sides was shuffled randomly between the left and right side of the arena,
while ensuring that the shallow side appeared on the left and right sides an equal number
of trials. Each trial began with a mouse being placed on the raised central platform and
ended when the mouse made a decision to descend to either the shallow or deep side,
determined by all four paws landing on one of the sides. On average, wild-type mice with
normal vision chose to descend to the shallow side in 84.4% of the trials, significantly above
chance level (Figure 3.1C,E, one sample signed-rank test, p = 0.0078). This indicates a
strong preference to the shallow side in mice while visual cues are present.

Non-visual cues, such as the smell left by the exploration of mice in previous trials,
could bias their choice on the visual cliff. To examine the effect of any non-visual cues on
the performance of mice, I tested another 8 wild-type mice on the visual cliff in the dark.
The dark environment had no visible lighting but only infrared red light for monitoring
with cameras. The frequency of choosing the shallow side was significantly lower than
that in the normal lighting condition (Figure 3.1D,E, rank sum test, p = 0.0005), and
was not different from chance level (Figure 3.1E, one sample signed-rank test, p = 0.25).
This shows that mice rely on visual cues to discriminate depth on the visual cliff.
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Figure 3.1: Mice can discriminate depth using visual cues on the customised
visual cliff setup. (A) Schematic of the visual cliff setup with textures of the same
physical density on both sides. (B) Visual cliff setup, front view (left) and aerial view
(right). (C) Side of descending for each trial for each mouse on the visual cliff with normal
lighting. (D) Side of descending for each trial for each mouse on the visual cliff in dark
environment. (E) Proportion of trials choosing the shallow side (mean ± 95% confidence
interval) in 12 trials for mice tested in normal lighting condition or dark environment (N
= 8 for each group). **: p < 0.01, ns: p > 0.05.

3.4 Mice can discriminate depth on the visual cliff
with limited pictorial cues

With the same physical texture density at both side, the texture at the deep side will
appear to be smaller than the shallow side from the perspective of the mouse. Therefore,
I next aimed to limit pictorial depth cues on the visual cliff test to prevent mice from
simply discriminating depth based on relative size. To this end, I scaled the texture
density of the checkerboard patterns on the shallow and deep side so that each square on
the checkerboard covered the same visual angle from the perspective of the mice (Figure
3.2A). I also noticed that the metal base of the visual cliff setup was visible from the
deep side but not the shallow side, which may bias the choices of the mice (Figure 3.1B).
Therefore, I modified the setup such as the bottom texture covered the entirety of the
floor, hiding the metal base of the setup (Figure 3.2B-C).

I then tested another cohort of 8 wild-type mice on the visual cliff with matched texture
density in longer sessions (20 trials). Across the whole session, mice still exhibited a strong
preference to the shallow side, with 90.6% of trials descending to the shallow side (Figure
3.2D-E). The probability of choosing the shallow side did not differ between the first 12
trials and the whole 20 trials (first 12 trials: 90.6%; 20 trials: 90.6%). The probability of
descending to the shallow side when texture density was matched from the perspective of
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the mouse was similar to the condition when texture density were not matched (Figure
3.1E, 3.2E, Wilcoxon rank sum test, p = 0.357). These results suggest that mice are able
to discriminate depth on the visual cliff when pictorial cues were limited.

Figure 3.2: Mice can discriminate depth on the visual cliff with limited pictorial
cues. (A) Schematic of the visual cliff setup with matched retinal texture density. (B)
Front view of the visual cliff setup with matched retinal texture density. (C) Aerial view
(left) and from the eye level of mice (right) of the visual cliff setup in (B). (D) Side of
descending for each trial for each mouse on the visual cliff with matched retinal texture
density. (E) Proportion of trials choosing the shallow side (mean ± 95% confidence
interval) in 20 trials (N = 8 for each group). **: p < 0.01, ns: p > 0.05.
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3.5 Texture density does not bias the decision of mice
on the visual cliff

In the previous section, I show that texture density is not required for mice to discrim-
inate depth on the visual cliff. Since the texture density will change slightly as mice move
their head around during the freely-moving task, I then asked if texture density alone is
sufficient for mice to judge depth on the visual cliff. I tested another 8 wild-type mice on
the visual cliff with texture of different densities placed on the shallow platform of both
sides (Figure 3.3A). Neither the performance of mice on the first trial (Figure 3.3C, one
sample signed-rank test, first trial vs. chance level: p = 0.641) nor the average across all
20 trials showed significant preference on either side (Figure 3.3D, one sample signed-rank
test, average across trials vs. chance level for mice completing all 20 trials: p = 0.0656;
for all mice: p=0.397). This confirms that texture density alone is not sufficient to bias
the decision of mice on the visual cliff, and the slight change in texture density during
free exploration on the visual cliff is unlikely to bias the choice of mice.

Figure 3.3: Texture density does not bias the decision of mice on the visual
cliff. (A) Schematic of visual cliff assay with textures of two densities both on a shallow
side. (B) Side of descending for each trial for each mouse on the visual cliff with both
textures on the shallow side. (C) Average probability of choosing the larger side on the
first trial (N = 8 mice). ns: p > 0.05. (D) Proportion of trials choosing the larger side
(mean ś 95% confidence interval) for all mice (N = 8). ns: p > 0.05. (E) Proportion of
trials choosing the larger side (mean ± 95% confidence interval) for mice completing all
20 trials (N = 5). ns: p > 0.05.
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3.6 Depth perception in mice does not depend on
prior visual experience

After establishing a baseline performance on the customised visual cliff setup and
characterising the effect of the major pictorial cue (i.e. texture density), I then aimed to
investigate whether depth perception is innate for mice as demonstrated in many other
species. To this end, I reared 23 wild-type mice in complete darkness for 10 weeks to
eliminate any prior visual experience before exposing them to the visual cliff. Then I
compared their performance on the visual cliff to 17 age-matched control mice reared in
normal lighting. All mice were tested on the visual cliff with matched texture density
from the perspective of the mice (Figure 3.2A).

When mice were exposed to the visual cliff setup for the very first time, dark-reared
mice showed strong preference to the shallow side (86.3%, one sample Wilcoxon test, p =
1.918×10−4), and their probability of descending to the shallow side was not significantly
different from that of control mice (100%, Figure 3.3C, Wilcoxon rank sum test, p =
0.1251). The strong preference to the shallow side at the very first trial after dark-reared
mice were exposed to light indicates the presence of depth discrimination ability without
any prior visual experience. This is confirmed by the performance of dark-reared mice
across the whole session – the average probability of choosing the shallow side for dark-
reared mice across the whole session (20 trials) was significantly above chance level (Figure
3.3D-E, all mice: 72.1%, one sample Wilcoxon test, p = 3.344 × 10−4; mice completing
all trials: 70%, one sample Wilcoxon test, p = 9.506 × 10−4).

Notably, dark-reared mice still exhibited some differences in performance on the visual
cliff compared to control mice. On average, the probability of descending to the shallow
side for dark-reared mice across the whole session was lower than that of control mice
(Figure 3.4D-E, all mice: Wilcoxon rank sum test, p = 3.785 × 10−3; mice completing all
trials: Wilcoxon rank sum test, p = 3.529 × 10−4). Several factors could contribute to
this difference. First, dark-reared mice may have higher stress level compared to control
mice when they were exposed to light for the first time. During my experiments, the
dark-reared mice were more likely to not descend to any side at all compared to the
control mice. Among 23 dark-reared mice, 1 never descended and 6 stopped descending
after a few trials, whereas only 1 out of 17 control mice stopped descending in the middle
of the session (Figure 3.4A-B, F). Approximately one-third of the dark-reared mice took
significantly longer to make a decision on the first trial compared to the longest decision
time in the control group (276 s, Figure 3.4G). The increased likelihood of no-descend
trials and the prolonged decision-making time may suggest heightened stress levels in
dark-reared mice when exposed to light. Nevertheless, it is worth noting that even for
mice that stopped descending in the middle of a session, most of them still preferred the
shallow side (Figure 3.4A,D), which suggests that they were able to discriminate depth
despite the high stress level. Second, dark-reared mice may have not fully developed their
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motor coordination skills due to the lack of visuomotor feedback during development.
The impairment in motor coordination in dark-reared mice has been reported by Lashley
and Russell (1934). In my experiments, dark-reared mice exhibited slower movement
and reduced exploration of the arena. They also displayed less coordinated behaviours,
including shaky posture, difficulty in maintaining balance, and occasional slipping from
the central platform. While being blinded to the mouse identity, I re-evaluated the video
recordings of each mouse’s first trial and classified whether they belonged to the dark-
reared or control group. 76% of the dark-reared mice were correctly classified, indicating
noticeable differences in movement patterns between dark-reared and control mice (Figure
3.4H).

Overall, these results indicate that depth perception in mice does not depend on any
prior visual experience and is thus innate for mice. It also established mice as a reliable
and meaningful model for studying depth perception and exploring the underlying genetic,
connectomic, and functional mechanisms.

75 of 207



3.6. Depth perception in mice does not depend on prior visual experience

Figure 3.4: Depth perception in mice does not depend on visual experience.
(A) Side of descending for each trial for each mouse on the visual cliff for dark-reared
mice. (B) Side of descending for each trial for each mouse on the visual cliff for control
mice. (C) Average probability of choosing the shallow side (± 95% confidence interval)
on the first trial of visual cliff test for dark-reared (N = 22) or control mice (N = 17). (D)
Proportion of trials choosing the shallow side for all dark-reared (N = 22) or control mice
(N = 17). (E) Proportion of trials choosing the shallow side for dark-reared or control
mice (N = 16 for each group) who have completed all 20 trials. (F) Bottom - Probability
of choosing the shallow side (mean ± 95% confidence interval) for each trial in dark-reared
for control mice. Top - number of mice completing that trial. (G) Average time of the
first descend (mean ± 95% confidence interval) for dark-reared (N = 22) or control mice
(N = 17). **: n < 0.01, ***: n < 0.001, ns: p > 0.05. (H) Confusion matrix for the
classification of mouse groups (dark-reared or control) based on video recordings of their
first trials while being blinded of the identity of the mice.
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3.7 Superior colliculus (SC) may not be required for
depth perception in mice

To test whether SC activity is required for depth perception in mice, I tested 4 mice
on the visual cliff for 20 trials, while bilaterally inhibit their SC activity during half of the
trials. These mice expressed Cre-dependent ChRmine (optogenetic mice) in the vesicular
GABA transporter-positive (Vgat) cells of their SC via bilateral virus injection. The
inhibition of SC was achieved by optogenetically stimulating Vgat cells in SC bilaterally
with a ∼9.8 mW laser at 20 Hz. To control for the non-specific effect of the laser and
the surgical procedures, I also tested 4 mice expressing Cre-dependent tdTomato (control
mice) on the visual cliff for 20 trials, with laser on for half of the trials and laser off for
the other half.

Without laser stimulation, both optogenetic mice and control mice were able to dis-
criminate depth on the visual cliff, choosing the shallow side with a probability of 92.5%
and 85% on average respectively (Figure 3.5A-C, hierarchical bootstrap, optogenetic mice:
p = 0.0004; control mice: p = 0.0024, see Methods 2.3.3). Their performance was not
significantly different from each other without laser stimulation (Figure 3.5C, hierarchical
bootstrap, p = 0.4568). This verifies that the Vgat-cre mice that I used in this experi-
ment are also able to discriminate depth on the visual cliff, and the surgical procedures
including the implantation of optic fibres and virus injections did not affect their depth
discrimination ability.

With laser stimulation, the control mice still strongly preferred the shallow side (Fig-
ure 3.5B-C, 77.4%, hierarchical bootstrap, p = 0.0048), and their performance did not
differ significantly compared to their performance without laser stimulation (Figure 3.5C,
hierarchical bootstrap, p = 0.4326), which suggests that the laser itself did not affect
depth discrimination performance on the visual cliff. Under laser stimulation, optogenetic
mice also strongly preferred the shallow side (Figure 3.5A,C, 85%, hierarchical bootstrap,
p = 0.0022), with no significant difference compared to their performance when laser was
off (Figure 3.5C, hierarchical bootstrap, p = 0.32), which indicates that the inhibition of
SC activity does not impair the depth discrimination ability of mice on the visual cliff.
Overall, these results suggest that SC is not required for depth perception in mice.

However, the conclusion needs to be interpreted with caution. Firstly, the sample
size was quite small (N = 4 for each group). Secondly, the efficiency of SC inactivation
needs to be further verified. Given the large size of SC, it is challenging to affect the
activity of all SC neurons with optogenetics without implanting multiple fibres. In these
experiments, the optogenetic approach was designed to achieve inhibition via activating
inhibitory neurons, which should result in widespread silencing of the structure. During
preliminary experiments (data excluded from this analysis), one mouse exhibited pro-
nounced and frequent head-turning behavioural throughout the 5-s period of stimulation
with a continuous-wave laser (as opposed to the pulsed laser used in the presented data).
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This observation is consistent with previous reports of SC’s role in orienting behaviour
(Hoy et al., 2019; Ito & Feldheim, 2018; Shang et al., 2015, 2019; Sparks et al., 1990; Wei
et al., 2015). However, the spatial extent and effect of our optogenetic inhibition of SC
needs to be further validated with simultaneous in vivo recordings of neuronal activity in
SC during laser stimulation.

Figure 3.5: Superior colliculus may not be required for depth perception in
mice. (A) Side of descending for each trial for each mouse on the visual cliff for opto-
genetic mice. (B) Side of descending for each trial for each mouse on the visual cliff for
control mice. (C) Proportion of trials choosing the shallow side (mean ± 95% confidence
interval) for mice completing all 20 trials (N = 4 for optogenetic mice, N = 4 for control
mice).
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3.8 Discussion

3.8.1 The nurture and nature of depth perception

Depth perception is an essential visual function that guides animal behaviour in our
three-dimensional world. It is important to understand whether this vital visual func-
tion is innate for all animals or is developed through visual experience, as an innate
behaviour across species implies its functional significance and the presence of evolution-
arily conserved neural mechanisms. Previous research have used the visual cliff to study
the developmental origin of depth perception. Being presented choices of a shallow side
and a deep side with a visual drop ("visual cliff"), most animals with normal vision would
choose to descend to the shallow side (Walk & Gibson, 1961). Birds (chicks) as well as
many mammals, such as sheep, goats, pigs and rats, were found to show an innate abil-
ity to perceive depth on the visual cliff (Gibson & Walk, 1960; Spalding, 1875). Here I
adapted the visual cliff setup from Walk and Gibson (1961) and examined whether depth
perception is innate for mice. I replicated the preference to the shallow side on the visual
cliff observed in Fox (1965) for mice using my custom-built setup. I also confirmed that
visual cues, especially non-pictorial depth cues, were required for mice to discriminate
depth on the visual cliff. Compared to the visual cliff apparatus used in previous studies,
my customised setup provides a simple and reproducible solution that facilitates easy
texture changes and randomization of the shallow and deep sides. As a result, I was
able to manipulate texture densities presented on both sides to control the pictorial cues
displayed, which was not considered in Fox (1965). Finally, by rearing mice in the dark,
I show that depth perception of mice does not require any prior visual experience.

It is not surprising that the mouse visual system can support a visual function that
does not require prior visual experience, as several parts of the visual system including
SC and V1 can already show some mature-like responses at the time of eye-opening for
mice (Shen & Colonnese, 2016; Tan et al., 2022; Thompson et al., 2017; Wang et al.,
2010). The innate nature of depth perception for mice along with many other species
(Gibson & Walk, 1960; Walk & Gibson, 1961) highlights its functional significance in
guiding behaviour. It also indicates that the neural circuits supporting depth perception
are likely conserved throughout evolution for these species. Therefore, studying the neural
mechanisms of depth perception in mice is highly valuable, as it is likely that we are able
to extrapolate our findings to other mammals. This innate visual function can also serve
as a bridge between behavioural functions, evolutionarily conserved neural circuits and
molecularly distinct neuronal populations.

However, environment or visual experience may still play a role in the development or
refinement of depth perception. For example, aquatic turtles were able to jump off a raised
edge while their terrestrial counterparts refused the action (Yerkes, 1904), demonstrating
how distinct environments in which animals have evolved can affect their depth percep-
tion or behavioural responses to depth. For kittens, the development of normal depth
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perception requires self-initiated active exploration in the environment coupled with vi-
sual flow feedback, whereas kittens raised in an environment with only passive visual
inputs could not perform depth discrimination (Hein et al., 1970). Some animals exhibit
impaired depth discrimination when their visual experience has been deprived through
dark-rearing. Kittens reared in the dark for more than 3 months displayed deficiency in
visually-guided behaviour such as obstacle avoidance (Crabtree & Riesen, 1979). Infant
monkeys reared in the dark for more than a month failed to discriminate depth on the
visual cliff (Fantz, 1965). Rats reared in the dark for more than 5 months requires 2 -
4 weeks of visual experience before displaying depth discriminating ability on the visual
cliff (Walk et al., 1965). However, dark-rearing may not only abolish visual experience
but also impair the normal functioning of neurons in the visual system, leading to impair-
ment in all visually-guided behaviours. Studies have shown that dark-rearing can reduce
light-evoked responses in mouse RGCs (Tian & Copenhagen, 2001), lead to poorer binoc-
ular responses in neurons of the mouse visual cortex (Tan et al., 2021), alter short-term
plasticity of L2/3 pyramidal cells in the rat visual cortex (Liu et al., 2012), and disrupt or
delay the maturation of visual cortical functions (Gianfranceschi et al., 2003; Liu et al.,
2012; Morales et al., 2002; Müller, 1990). Dark-rearing may also disrupt the development
of motor skills, hindering animals’ ability to perform behavioural tasks. As an example,
our mice raised in the dark for 3 months exhibited impaired motor coordination and high
stress level, which may be a potential reason for suboptimal performance on the visual
cliff. Therefore, the results of visual function impairments caused by dark-rearing should
be interpreted with caution.

It is unclear how much visual experience is required for human infants to develop
depth perception as the youngest tested infants were 4-month old (Birch et al., 1982;
Fox et al., 1980; Tsuruhara et al., 2014). It is possible that since higher mammals such
as primates and carnivores have prolonged period of juvenile growth before adulthood
compared to rodents and birds (Bogin, 1997; Paquette & Bigras, 2018), depth perception
is not immediately needed after birth while the animals are under the care of their parents.
Therefore, while birds and rodents have innate ability of perceiving depth, the maturation
of depth perception for primates and carnivores may require some exposure to visual
experience during their critical developmental period.

3.8.2 Neural substrates for depth perception

Causal manipulations such as lesions or optogenetic suppression have demonstrated
that the visual cortex is indispensable for depth perception in rodents such as rats, mice
and Mongolian gerbils (Ellard et al., 1986; Meyer et al., 1966; Parker, Abe, Beatie, et al.,
2022). Lesions in the visual cortex of rats impair their performance on the visual cliff
(Meyer et al., 1966), and lesions in the visual cortex of gerbils significantly reduces the
accuracy of jumping across a gap (Ellard et al., 1986). Optogenetic suppression of the
binocular or monocular zone of V1 also impaired the jumping performance of mice under
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binocular conditions or monocular conditions, respectively (Parker, Abe, Beatie, et al.,
2022).

However, an innate function like depth perception may be supported by subcortical
areas that are more evolutionarily conserved. Apart from the image-forming pathway
involving dLGN projections to V1, SC controls an important alternative pathway convey-
ing non-image-forming information to V1 (Froudarakis et al., 2019; Juavinett et al., 2020;
Seabrook et al., 2017). Receiving the majority of the RGC outputs, SC is key to visuo-
motor transformations and visually guided orienting behaviour (Hoy et al., 2019; Ito &
Feldheim, 2018; Shang et al., 2015, 2019; Sparks et al., 1990; Wei et al., 2015). Although
previous studies have shown that lesions in SC do not impair depth perception perfor-
mance in tasks such as the visual cliff or jumping across a gap for rats and Mongolian
gerbils (Cheney & Crow, 1969; Ellard et al., 1986), it is unknown whether SC is required
for depth perception in mice. Here I tested the performance of mice on the visual cliff
under optogenetic inhibition of SC. Optogenetic inhibition of SC did not affect the depth
discrimination ability of mice on the visual cliff, indicating that similar to other rodents,
SC may not be required for depth perception in mice. However, a concrete conclusion
cannot be drawn here, as I have not verified the inhibitory effect on the neuronal activity
in SC by optogenetic stimulation using simultaneous in vivo recordings. It is possible that
the silencing of SC in my experiments was not strong enough to create an effect due to
insufficient laser power, pulsing frequency or duration.

Nevertheless, if SC is truly dispensable for depth perception in mice, the image-forming
pathway involving dLGN, V1 and HVAs are likely to act as vital neural substrates for
depth computation. It is unclear whether depth computation from depth cues such as
binocular disparity or motion parallax happens at the level of dLGN. Although it was
thought that most neurons in dLGN represent monocular information, the activity of some
dLGN neurons in cats and monkeys can be modulated by visual stimuli in both eyes (Xue
et al., 1987; Zeater et al., 2015), indicating the ability to integrate binocular information.
In addition, dLGN neurons are able to integrate visual motion and locomotion-related
signals (Erisken et al., 2014; Roth et al., 2016), which may contribute to the computation
of motion parallax. To confirm which areas are required for depth perception, further ex-
periments are needed to establish a causal link between depth perception and the activity
of dLGN and different visual cortical areas, by comparing the performance of mice on the
visual cliff while inhibiting different areas in the visual thalamus and the visual cortex.

3.8.3 Limitations

My design of the visual cliff paradigm still encompass a few limitations. Pictorial cues
such as occlusion, luminance contrast and relative size were limited by measures such as
hiding the metal feet, creating arrays of ambient light, and scaling the texture density
of the two sides. However, pictorial cues may still be present as mice move around the
central platform, as the luminance contrast or the relative size of the textures on the two
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sides would vary according to the head position of mice. Although it was shown in section
3.5 that texture density played a limited role in determining the choice of descend for mice
on the visual cliff, the setup could be further improved by implementing projections of VR
environment onto the visual cliff combined with real-time tracking of the head position
of the mice in order to fully control the depth cues presented.

It is also unknown whether mice mainly used binocular disparity or monocular motion
parallax cues in depth discrimination on the visual cliff. A recent study suggested that
our version of visual cliff test would mainly utilise the lower visual field of mice with
far less binocular overlap compared to their upper visual field (Boone et al., 2021). To
investigate whether monocular cues are sufficient for mice to perform depth discrimination
tasks, future experiments could involve suturing one eye to ensure that only monocular
visual cues are available.

3.8.4 Summary

In summary, I established the functional significance of depth perception from non-
pictorial visual cues for mice by confirming that depth perception of mice is innate and
does not require any prior visual experience. In the next 3 chapters, I will explore in detail
how the neuronal activity in the visual cortex, particularly V1, supports the computation
of motion parallax signals to infer depth.
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Chapter 4

The representation of depth from
motion parallax in the primary
visual cortex of head-fixed mice

4.1 Authorship declaration

I, Yiran He, performed the majority of the experiments and analyses in this chap-
ter. Antonio Colas Nieto performed ∼2/3 of the two-photon recordings in 2 out of 7
GCaMP6f or GCaMP6s mice, and performed some of the two-photon recordings in the 2
mice injected with GCaMP8m virus. Antonin Blot contributed to the detection of mon-
itor frames and the extraction of eye tracking traces. Xavier Cano-Ferrer and George
Constantinou (members of the Making Lab at the Francis Crick Institute) built parts
of the customized electronics in the behavioural setup, including screen blanking (see
Methods 2.4.8), lick detection, and a printed circuit board for synchronising camera and
imaging triggers. This chapter built upon findings that I have previously disseminated in
a preprint on bioRxiv (He et al., 2024).

4.2 Background

Motion parallax is a powerful monocular cue for depth perception (Rogers & Graham,
1979). When animals translate in the environment, objects at different distances to the
observer appear to move at different velocities on the retinae. If the observer fixates
their eyes at optical infinity or cannot converge their eyes to focus on a single point like
rodents, all parts in the retinal image move in the opposite direction of self-motion, and
the speed of visual motion is inversely proportional to the distance of the target object
(Miles, 1998; Yoonessi & Baker, 2011). In this scenario, objects closer to the observer
appear to move at a faster speed compared to far objects. If the observer fixates at an
intermediate distance, objects closer than the plane for fixation will move in the opposite
direction of self-motion, whereas objects farther than the plane of fixation will move in
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the same direction as the self-motion direction (Miles, 1998; Nadler et al., 2008; Yoonessi
& Baker, 2011). In this case, visual motion speed is inversely proportional to the distance
between the object and the plane of fixation. Therefore, the relationship between visual
motion and self-motion enables depth estimation by comparing the speed of self-motion
and the speed of the resulting visual motion (Figure 4.1A-B, Kral, 2003; Rogers and
Graham, 1979).

Many species including humans, non-human primates, rodents and insects are able to
make depth judgements based on motion parallax (Cao & Schiller, 2002; Ellard et al.,
1984; Kim et al., 2015a; Lehrer et al., 1988; Parker, Abe, Beatie, et al., 2022; Rogers
& Graham, 1979; Sobel, 1990a; Srinivasan, 1992). Humans and monkeys can report or
detect the shape and corrugation of three-dimensional (3D) surfaces simulated by random-
dot stereograms when translating their head or when the stimuli were translated (Cao
& Schiller, 2002; Rogers & Graham, 1979; Zhang & Schiller, 2008). Macaque monkeys
can also report the depth sign (near or far) from random dot stimuli simulating surfaces
at different distances, while being translated horizontally and making compensatory eye
movements. Motion parallax is especially important for animals such as rodents who
do not have binocular overlaps as extensive as humans and primates (Ellard et al., 1984;
Parker, 2007). Several species, including locusts, mongolian gerbils and mice, make trans-
lation head movements (head bobs) before jumping across a gap or towards a target, and
the number and frequency of head bobbing are positively correlated with the distance
required to jump, indicating the use of motion parallax cues for depth estimation (Ellard
et al., 1984; Parker, Abe, Beatie, et al., 2022; Sobel, 1990a). Optic flow speed simulating
a near or far depth can bias the depth judgements of bees during flying (Srinivasan, 1992).
These results suggest that motion parallax is an important source of depth information
used across many species.

The visual cortex, the primary site for cortical processing of visual information, is
a likely neural substrate for depth perception from motion parallax. The visual cortex
in mice receives both visual and locomotion-related information from multiple areas in-
cluding secondary motor cortex (M2), the hippocampal complex, the retrosplenial cortex
(RSC), and multiple thalamic nuclei such as LGN, LP and LD (Froudarakis et al., 2019;
Juavinett et al., 2020). Neurons in the mouse visual cortex are widely modulated by
locomotion, and can integrate visual motion and self-motion information (Ayaz et al.,
2013; Dadarlat & Stryker, 2017; Erisken et al., 2014; Keller et al., 2012; Niell & Stryker,
2010; Saleem et al., 2013). Running significantly amplifies visual responses of excitatory
neurons in V1 (Erisken et al., 2014; Niell & Stryker, 2010). When mice were running in a
VR corridor with grating and plaid patterns, V1 neuronal responses can be described by a
linear integration between running speed and optic flow speed (Saleem et al., 2013). The
ability to integrate visual motion and self-motion information makes the visual cortex the
perfect platform to compute motion parallax signals for depth perception.

How neuronal activity the visual cortex supports depth perception from motion par-
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allax remains under-explored. Previous studies investigating the neural mechanisms un-
derlying motion parallax in primates typically used passive translations of animals to
generate visual motion. Studies in macaques have found that when passively translating
the macaques in front of a random dot stimuli, a large proportion of recorded neurons in
a higher visual area (HVA) MT display selective responses to specific depths that could
be inferred from motion parallax cues (Kim et al., 2015a; Nadler et al., 2008, 2009).
However, vision in an active sense in the natural world – animals usually acquire visual
information during active exploration of the environment to achieve behavioural goals
(Skyberg & Niell, 2024). It has been shown that active locomotion and the resulting
closed loop visual feedback is indispensable for cats to develop normal depth perception
(Held & Hein, 1963). It is unclear how motion parallax signals are processed by the visual
cortex to support depth perception during active navigation of the animals. In contrast,
research in rodents often involves naturalistic behavioural tasks, offering less control over
the visual stimuli presented. Studies in mongolian gerbils and mice approached depth
perception by assessing the animals’ ability to jump across a gap (Ellard et al., 1984;
Parker, Abe, Beatie, et al., 2022). They found that optogenetic suppression of neuronal
activity in the monocular zone of the primary visual cortex (V1) significantly disrupted
the jumping performance for monocular mice. However, controlling the visual stimuli
and depth cues experienced by the animals during freely-moving behaviours such as the
jumping task is highly challenging.

Therefore in this chapter, I will present the design of a visual stimulation environment
in order to systematically characterise neuronal responses to motion parallax depth cues
during active locomotion of animals. I developed a virtual reality (VR) environment with
visual cues at different virtual distances to mice while the head-fixed animal was actively
exploring the environment. VR environments enable precise control over the parameters of
visual stimulation, such as size, location, colour and texture. In addition, the closed loop
feedback between the VR environment and the movement of the head-fixed animal offers
an opportunity to study motion parallax during active locomotion of animals. It has been
demonstrated that mice can perform spatial memory tasks in VR environments (Chen et
al., 2018). Neurons critical to navigation in real-world environments, such as place cells,
grid cells and head-direction cells, are also active in VR (despite some differences in
firing patterns, Chen et al., 2018). Therefore, VR can simulate a sensation of space for
mice and serve as a powerful tool to study active vision of mice while allowing precise
control over visual stimulation. In this project, I focus my investigation on L2/3 excitatory
cells in V1 due to the well-characterised, widespread locomotion-related modulation of V1
neurons (see Section 1.2.4) and the constraints on imageable cortical depth by two-photon
microscopy (Yildirim et al., 2019).
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4.3 Manipulating virtual depth using motion paral-
lax in head-fixed mice

To investigate whether depth from motion parallax is represented by neurons in V1,
I first designed visual stimuli where motion parallax was the only cue for discriminating
depth. Ideally, the visual stimuli should provide a 3D experience with easily manipulable
parameters. Additionally, the recording setup should be suitable for in vivo two-photon
calcium imaging during presentation of visual stimulation while allowing the animals to
actively navigate within the visual environment. Two-photon calcium imaging was se-
lected as the recording technique as it covers a larger field of view and records spatial
information of neurons compared to in vivo electrophysiological techniques (e.g. tetrode
recordings, O’Keefe and Recce, 1993; Wilson and McNaughton, 1993 or neuropixels Stein-
metz et al., 2021). Therefore, I chose to establish a recording setup incorporating a 3D
virtual reality (VR) environment coupled with a two-photon microscopy. Head-fixed mice
could navigate in the VR environment where visual stimuli were presented at different
virtual distances, while their neuronal activity in V1 could be imaged by two-photon
microscopy (Figure 4.1C).

The 3D VR environment was presented on four monitor screens surrounding the mice,
covering ∼ 240 degrees of their visual field horizontally and ∼ 80 degrees vertically (Fig-
ure 4.1C). Mice were head-fixed on a cylindrical wheel and were allowed to freely run on
the wheel. The position of the mice in the VR environment was updated in closed loop
according to the distance travelled by the mice on the wheel. The VR environment was
rendered in the Bonsai software (Lopes et al., 2015). In the virtual environment, mice
ran across a textured floor against a gray background, while black spheres at different
virtual distances to the mice were presented in their monocular visual field to eliminate
binocular cues (Figure 4.1C-G). The locations of the spheres were determined by cylin-
drical coordinates (Figure 4.1F). The direction of animal’s travel was aligned with the
longitudinal axis of the cylinder, and the radius of the cylinder is equivalent to the virtual
depth of each trial chosen pseudorandomly from a list of logarithmically spaced values
(either 5 virtual depths ranging from 6 cm to 600 cm, or 8 depths ranging from 5 cm to
640 cm). The spheres were spaced along the axis of the animal’s direction of travel, and
the azimuth of the spheres were randomly chosen from a uniform distribution between -40
and 40 degrees on the right-hand side of the animal or between 140 and 220 degrees on the
left-hand side of the animal (Figure 4.1E). Spheres of the same virtual depth continued
to appear until the end of a trial, marked by the time when the animal had travelled
6 m (Figure 4.1F). A 10 s inter-trial interval with only the gray background followed
the end of each trial, during which the mice received a probabilistic soy milk reward in
60 - 80% of the trials to motivate their running (Figure 4.1E). The size and density of
the spheres in each trial were adjusted so that the spheres maintained the same visual
angle at different virtual depths and appeared spaced similarly from the animal’s point

86 of 207



4.3. Manipulating virtual depth using motion parallax in head-fixed mice

of view (Figure 4.1D,G). The spheres were coloured in solid back without specular high-
lights (Figure 4.1C,G), eliminating neuronal responses to changes in specular highlights
as spheres moved across the animal’s visual field. In this VR environment, mice could not
distinguish virtual depths of the spheres if they stayed stationary (Figure 4.1G). They
could only estimate depth when they started to move, by comparing their own locomotion
speeds to the optic flow speeds generated by locomotion (Figure 4.1A-B,G). When mice
ran, optic flow speed depends on the animal’s locomotion speed and the virtual depth of
the spheres – spheres at a near depth trial would create much faster optic flow compared
to spheres at a far depth trial.

Figure 4.1: Manipulating virtual depth using motion parallax in head-fixed
mice. (A-B) Schematic of the relationship between locomotion and visual motion speed
due to motion parallax. Depth is the ratio of locomotion speed and optic flow speed when
the target object is at 90 degree azimuth (A), and depth is proportional to the ratio of
locomotion and optic flow speeds when the object is elsewhere (B). (C) Virtual reality
setup and stimulus schematic (left) and a photo of the virtual reality setup (right). (D)
Stimulus schematic. Size of spheres at different depths were scaled to cover the same
angular extent from the perspective of the mouse. (E) Schematic of trial structure. (F)
Schematic illustrating the generation of sphere locations. The locations of the centers
of the spheres were selected in cylindrical coordinates. Virtual depth determined the
radius of the cylinder, while cylindrical azimuth of the spheres θ (selected from a uniform
distribution between -40 and 40 degrees or between 140 and 220 degrees) determined
their position relative to the horizon. The mouse drawing from Tyler, E., & Kravitz,
L. (2020), Zenodo. doi.org/10.5281/zenodo.3925915. (G) Illustration of stimuli at two
virtual depths from the animal’s perspective and viewed from above. The mouse (not to
scale) is shown to indicate the animals position in the virtual environment.
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The four monitors were normally refreshed at 144 Hz. To synchronize the visual
stimuli with imaging frames, a small square with varying luminance was presented at the
bottom left corner of the leftmost monitor. The square alternated its gray scale at every
frame and its luminance changes was recorded by a photodiode, enabling the detection of
dropped frames. For 2 mice (25 sessions), the square alternated at every frame between
black and white. 89.7 ± 5.1% of the frame were presented at 144 Hz, resulting in a
average frame rate per session above 124 ± 9 Hz. To determine the closed loop latency
between rotary encoder inputs and updates of the visual stimulus, for the remaining 5
mice (60 sessions), I updated the brightness of the square following an irregular predefined
sequence of 5 values (Figure 4.2A). The sequence was selected to ensure that brightness
increases and decreases were alternating at each frame. Frames were detected by the
photodiode trace, and the cross-correlation between the filtered predefined sequence and
the photodiode recording was computed to identify which frame was presented at each
time point and to continuously monitor display lag. The display lag was quantified as the
latency between the mouse position measurement by the rotary encoder and the update of
the mouse position when rendering the monitor frames in the VR environment, averaged
at 26.6 ś 1.4 ms per session (Figure 4.2B-C).
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Figure 4.2: Closed loop synchronisation and latency. (A) Example sequence of
varying luminance presented in the corner of the monitor for synchronization (top) and
the recorded photodiode signal (bottom). Dashed line indicates the corresponding frames.
(B) Real time mouse position (black), as measured by the rotary encoder, and the current
mouse position used to render the VR environment (blue). Each step on the blue trace
is a frame and the horizontal shift between the black and blue traces is the closed loop
latency. (C) Histogram of VR latencies at each frame.
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The positions of the four screens were calibrated using ArUco markers as described
in previous literature (Bradski, 2000; Garrido-Jurado et al., 2014, see Methods 2.4.6).
In brief, I first estimated the intrinsics of the camera used for calibrating the screen
positions by taking pictures of a flat checkerboard pattern at various angles (Figure 4.3A,
Kshirsagar et al., 2022). Next, two ArUco markers with known patterns and dimensions
were placed in the middle of each monitor screen and the location where the head of
mice would be fixed, respectively (Figure 4.3B). After detecting the two ArUco markers
in the same picture using the Open CV package (Figure 4.3B, Bradski, 2000), the relative
translation and rotation between the two markers could be computed, which indicates the
transformation of screens from the perspective of the mice.

Four cameras were used to monitor the eye, facial, and body movements of the mice
and were calibrated in a similar way (see Methods 2.4.6. The calibration of the camera
monitoring the right eye was shown as an example in Figure 4.3C-D. The intrinsics of
the camera were estimated by taking pictures of small checkerboard patterns using the
camera from various angles (Figure 4.3C), and the relative rotation from the eye to the
camera was estimated using an ArUco marker (Figure 4.3D). As the changes in visual
motion speed as a result of gaze direction changes were our primary focus, the translation
vector of the eye camera was not relevant here.
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Figure 4.3: Screen and camera calibration using ArUco markers. (A) Example
photos of a checkerboard pattern at different angles (consists of 3 cm × 3 cm black
and white squares) taken by the camera used to calibrate screen positions for intrinsics
calibration. (B) Example photos of ArUco markers (5 cm × 5 cm) displayed both in
the centre of each monitor screen and centred at the location where the head of the mice
would be fixed at the setup. Photos were taken by the camera in (A). Green lines around
the markers show the detection of the marker borders by OpenCV. The red, green, and
blue lines pointing out from the centre of the marker indicate the detected x, y, and z axes
of the marker respectively. (C) Example photos of a checkerboard pattern at different
angles (consists of 0.8 mm × 0.8 mm black and white squares) taken by the right eye
camera for intrinsics calibration. (D) Example photos of an ArUco marker (5 cm × 5
cm) placed parallel to the ground taken by the right eye camera. The borders and axes
indicate the marker detection in a similar manner in B.
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4.4 L2/3 excitatory neurons in V1 are tuned to depth
from motion parallax

To investigate whether V1 neurons selectively respond to specific virtual depths in the
VR environment, I recorded neuronal activity in L2/3 of V1 in mice expressing GCaMP6f
or GCaMP6s in their pyramidal neurons. Neuronal activity was recorded via two-photon
calcium imaging while the mice were navigating the VR environment with spheres at
various virtual distances (60,357 neurons from 85 sessions in 7 mice). The VR environment
was updated in closed loop with the distance travelled by the animal on the wheel. By
visualising the calcium fluorescence (∆F/F0) of individual neurons at trials of different
virtual depths, I found that many neurons strongly responded to specific virtual depths
and were not responsive to others (see examples in Figure 4.4A-B, D-E). To quantify
the selectivity towards virtual depth in V1 neurons, I first calculated the average ∆F/F0

of individual neurons at trials of different virtual depths (Figure 4.4C,F). Then, I fitted
the trial average ∆F/F0 (f) as a function of log-transformed virtual depth (d) with a
Gaussian model (see Methods 2.4.11, Figure 4.4C,F):

f = ae
−(d−d0)2

2σ2 + b, (4.4.1)

where a was the peak response amplitude, σ was the tuning width, and b was the baseline
fluorescence. The centre of the fitted Gaussian curve (d0) represented the log-transformed
virtual depth that would triggered the peak response of a neuron, and the preferred depth
of that neuron was defined as the exponential of d0. To determine whether a neuron is
significantly selective for virtual depth, I fitted the Gaussian model above using 5-fold cross
validation. On each fold, 80% of the trials were assigned to the training set to estimate
model parameters, and the remaining 20% were assigned to the test set to evaluate model
predictions. I then calculated the Spearman’s correlation between the predicted and
observed trial average ∆F/F0 on test trials across all 5 folds. Depth-selective neurons
were defined as having a p-value of Spearman’s correlation < 0.05 and a Spearman’s
correlation coefficient > 0.1.
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Figure 4.4: Quantifying depth selectivity for two example neurons. (A,D) Raster
plot of responses of two example neurons in mouse V1 across virtual depths from a session
with 5 virtual depths (A) or 8 virtual depths (B) as a function of distance traveled during
the trial including 3 m of inter-stimulus interval before and after each trial. Dashed lines
separate different trial types. (B, E) Mean responses of the example neuron (top) and
mean running speed (bottom) across 5 virtual depths (B) or 8 virtual depths (E). (C,
F) Virtual depth tuning of the neuron in A,D during locomotion (>5 cm/s) or stationary
(maximum speed during preceding 1 second <5 cm/s) periods. Error bar – 95% confidence
interval.
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I found that depth selectivity was widespread among V1 L2/3 excitatory neurons, with
individual cells tuned to distinct virtual depths (Figure 4.5A-B). Across all recording
sessions, a large proportion (51.4%, 31,013 out of 60,357) of L2/3 excitatory neurons
displayed significant depth selectivity. The median proportion of neurons in individual
recording sessions classified as depth-selective was 33.8% (Figure 4.5C). The preferred
virtual depths of depth-selective neurons covered the entire range of depth values probed
with the VR stimuli (Figure 4.5D-F).

Figure 4.5: Depth selectivity is widespread among V1 L2/3 excitatory neurons.
(cont.)
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Figure 4.5: Depth selectivity is widespread among V1 L2/3 excitatory neurons.
(A) Virtual depth tuning of 6 additional example neurons during running (blue) and
stationary (gray) periods and spatial location of depth-tuned neurons in an example
imaging session. Error bar – 95% confidence interval. (B) The spatial distribution of
depth-selective neurons and all other neurons in the example imaging session, and the
locations of example neurons in (A). Scale bar – 100 µm. (C) Proportion of depth-
tuned neurons across imaging sessions (N = 85 sessions). Triangle indicates the median
value. (D) Distribution of preferred virtual depths of depth-selective neurons (N = 31,013
neurons). N.P., near-preferring neurons; F.P., far-preferring neurons. (E-F) Raster plot
of z-scored responses of all depth-selective neurons from sessions with 5 virtual depths
(E) or 8 virtual depths (F) in mouse V1, in a [-1 m, +1 m] window around stimulus
presentation. Neurons are sorted by virtual depth preferences estimated using hold-out
data not used in calculation of the raster plot.
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When comparing recordings in GCaMP6f and GCaMP6s mice, a significant difference
was observed in the proportion of depth-selective neurons detected, with GCaMP6s ses-
sions showing a significantly higher proportion. To systematically characterise the effect of
calcium indicator type on the proportion of depth-selective neurons detected, I compared
imaging sessions from GCaMP6f mice (N = 6 mice) with those from one GCaMP6s mouse
and two additional mice injected with GCaMP8m virus. Sessions using brighter indicators
(GCaMP6s and GCaMP8m) showed significantly higher proportions of depth-selective
neurons (Figure 4.6B-C, median of GCaMP6s sessions: 81.9%; GCaMP8m: 73.1%) com-
pared to GCaMP6f sessions (Figure 4.6A, median: 31.6%). This likely reflects higher
signal-to-noise ratios of GCaMP6s and GCaMP8m indicators (Chen et al., 2013; Zhang
et al., 2023), which can be further validated by comparing baseline noise level and neu-
ronal activity across calcium indicators in my experiments. The slightly lower proportion
observed in GCaMP8m sessions relative to GCaMP6s sessions may be attributed to the
variation in viral expression level using different methods (viral injections vs. genetic en-
coding) as well as the smaller sample size (6 vs. 14 sessions). Given that the detection of
depth-selective neurons can be limited by the signal-to-noise ratio of calcium indicators,
the percentage of depth-selective neurons reported here likely represents a lower bound
of the true prevalence of depth-tuned neurons in the brain.

Figure 4.6: Depth-selective neurons measured by different calcium indicators.
(A-C) Proportion of depth-tuned neurons across imaging sessions recorded in GCaMP6f
mice (A, N = 71 sessions from 6 mice), the GCaMP6s mouse (B, N = 14 sessions from
1 mouse), and wildtype mice injected with GCaMP8m virus (C, N = 6 sessions from 2
mice). Triangle indicates the median value.
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Moreover, neurons did not show depth-selective responses when mice were stationary
which was defined by moments when the maximum running speed in the preceding 1
second was lower than 5 cm/s (Figure 4.5A). To examine whether running improves the
encoding of depth by V1 populations, I trained a linear support vector machine (SVM)
decoder to decode virtual depth from population activity of V1 neurons in each recording
session, and then compared the classification errors at frames when mice were stationary
or running at different ranges of running speeds. The confusion matrices from the example
sessions (Figure 4.7A-B) and the average confusion matrices from all sessions (Figure 4.7C-
D) demonstrated that while virtual depth could be accurately decoded when mice were
running (e.g. at speeds between 40 - 60 cm/s), it could not be decoded during stationary
periods. The decoding error was around chance level during stationary periods, and was
significantly reduced when mice started to run above 5 cm/s (Figure 4.7E). The results
show that the representation of depth in mouse V1 is driven by motion parallax as a result
of animals’ locomotion.
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Figure 4.7: Depth selectivity in V1 is driven by motion parallax. (A-B) Confusion
matrices of decoded virtual depth from an example session with either 5 (A) or 8 virtual
depths (B), when animals were stationary or running at a speed of 40-60 cm/s. (C-D)
Average confusion matrices of decoded virtual depth when animals were stationary or
running at a speed of 40-60 cm/s, from all sessions with either 5 virtual depths (C, N =
25 sessions) or 8 virtual depths (D, N = 60 sessions). (E) Mean error of virtual depth
decoded from population activity of simultaneously recorded neurons when mice were
stationary and as a function of running speed (N = 85 sessions). Dashed line – chance
level; shading – 95% confidence interval.
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As neuronal activity in mouse V1 is highly modulated by behavioural states (Miura &
Scanziani, 2022; Saleem et al., 2013; Stringer et al., 2019), it is necessary to confirm
whether systematic differences in behaviour could confound our interpretation of the
recorded neuronal responses. First, I compared the average running speed across trials
of different virtual depths. Across corridor positions in each trial, mice showed a similar
movement pattern – they stopped temporarily when the spheres appeared, then ran at a
sustained speed throughout the trial, and finally stopped for the reward after trial ended
(Figure 4.8A-B). Across trials of different virtual depths, mice ran at similar speeds,
despite slight reduction in the farthest depths in the 5-depth condition (Figure 4.8C)
or in the nearest depths in the 8-depth condition (Figure 4.8D). It is unlikely that the
depth-selective responses I observed were elicited solely by changes in running speed, as
individual neurons displayed a vast range of depth preferences. I will further examine
the relationship between running speed and depth-selective responses in Section 5.3 in
next chapter. Next, I examined whether depth-selective responses might be a result
of stereotyped eye movements triggered by stimuli of different depths. Stereotyped eye
movements, especially rapid saccades in response to attempted head rotation (Meyer
et al., 2020), would change the retinal image and visual motion speeds of the stimuli
drastically, confounding V1 responses to virtual depths. To this end, I compared the
average eye velocity and saccade rate across trials of different virtual depths by tracking
the pupil of the right eye of the mice in a subset of recordings (Figure 4.8I-L. Across trials
of different virtual depths, eye velocity and saccade rate were similar (Figure 4.8K-L),
indicating that no stereotyped eye movements were triggered. The saccade rate was also
very low on average (∼0.05 Hz, Figure 4.8L), with 1 saccade happening in every two
trials based on the average running speed (Figure 4.8C-D). Therefore, the depth-selective
responses I observed cannot be attributed to behavioural changes in running speeds or
eye movements.

4.5 Depth selectivity is invariant to stimulus size

To maintain a consistent visual angle for sphere stimuli across various virtual depths,
the size of spheres in the virtual environment was scaled proportionally to the virtual
depth for each trial (Figure 4.1D). Consequently, the observed depth-selective responses
could be attributed to selectivity for size of the spheres. To examine this possibility, we
recorded the neuronal activity in response to both variation in virtual depth and sizes of
the spheres in 3 recordings. At each virtual depth trial, spheres subtended either 5, 10
or 20 degrees of the visual field in diameter when the mice passed closest to each sphere
in the VR. As V1 neurons were tuned to stimulus size (Adesnik et al., 2012; Dipoppa
et al., 2018), the magnitude of neuronal responses were modulated by the visual angle of
spheres as expected (Figure 4.9A-B). However, the preferred virtual depth was maintained
in response to spheres of different visual angles (Figure 4.9C). This indicates that depth
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Figure 4.8: Running, optic flow speeds and eye movements across different
virtual depths. (cont.)

selectivity is unaffected by stimulus size.
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Figure 4.8: Running, optic flow speeds and eye movements across different
virtual depths. (A-B) Mean of session average running speed as a function of distance
traveled during the trials at 5 (A, N = 25 sessions) or 8 (B, N = 60 sessions) virtual
depths, including 3 m of inter-stimulus interval before and after the trials. Shading – 95%
confidence interval. (C-D) Mean running speed of each session at 5 (C) or 8 (D) virtual
depths. Error bar – 95% confidence interval. (E-F) Mean of session average optic flow
speed as a function of distance traveled during the trials at 5 (E) or 8 (F) virtual depths.
Shading – 95% confidence interval. (G-H) Mean optic flow speed of each session at 5
(G) or 8 (H) virtual depths. Error bar – 95% confidence interval. (I) Example frame of
the right eye recorded during imaging. The pupil border was tracked using DeepLabCut
(orange dot), fitted with an ellipse (blue circle) and gaze (blue line) from the eye center
(black dot) was estimated as described in Wallace et al., 2013. (J) Example gaze direction
in azimuth and elevation relative to median direction during a recording. (K-L) Average
eye velocity (K) and saccade rate (L) by session across trials of different virtual depths
(N = 16 sessions, 2 mice).
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Figure 4.9: Virtual depth selectivity is invariant to stimulus size. (A) Virtual
depth tuning of 3 example neurons across all stimulus sizes. (B) Virtual depth tuning
of the neurons in (A) in response to different sizes of sphere stimuli. (C) Preferred
virtual depths of all depth-selective neurons (500 neurons from 3 sessions in 2 mice)
across pairs of stimuli sizes. Triangles indicate medians. Insets – histograms of the ratio
of preferred virtual depths across pairs of stimuli sizes. Preferred virtual depth mapped
with 5 degree vs. 10 degree spheres, median ratio = 1.13, pratio = 0.232, r = 0.678,
pcorrelation < 0.0001; 5 vs. 20 degree spheres, median ratio = 1.13, pratio = 0.401, r = 0.635,
pcorrelation < 0.0001; 10 vs. 20 degree spheres, median ratio = 0.93, pratio = 0.229,
r = 0.721, pcorrelation < 0.0001.
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4.6 Discussion

4.6.1 Studying the neural representation of depth from motion
parallax using virtual reality

Motion parallax is a key monocular cue for depth estimation(Rogers & Graham, 1979)
and is particularly important for many animals without extensive binocular overlap, such
as rodents (Ellard et al., 1984; Parker, Abe, Beatie, et al., 2022). Animals can infer depth
by using vision as an active sense – when moving through the environment, objects at
different distances will appear to move at different velocities. However, the neural mech-
anisms underlying motion parallax during active navigation have not been systematically
explored. The visual cortex, especially V1, is a likely neural substrate for depth perception
from motion parallax. Optogenetic suppression of the neuronal activity of the monocular
V1 significantly disrupts the ability of mice to jump across a gap, suggesting that V1 is
critical to depth estimation (Parker, Abe, Beatie, et al., 2022). Additionally, V1 neurons
can integrate visual motion and self-motion information (Ayaz et al., 2013; Dadarlat &
Stryker, 2017; Erisken et al., 2014; Keller et al., 2012; Niell & Stryker, 2010; Saleem
et al., 2013), the two key components required for computing motion parallax. However,
existing studies have primarily examined motion parallax either in the context of passive
translations (Kim et al., 2015a; Nadler et al., 2008, 2009) or in freely-moving tasks with-
out precise control of visual stimulation (Ellard et al., 1984; Parker, Abe, Beatie, et al.,
2022). To address this gap, I aimed to design experiments to systematically characterise
how V1 supports depth perception from motion parallax during active locomotion, precise
control over the visual stimuli presented to the animal.

In this chapter, I introduced the design of a 3D VR environment to provide motion
parallax depth cues for head-fixed mice. The VR setup presented spheres at varying
virtual distances to the mice. During active locomotion of head-fixed mice on a wheel,
the positions of spheres in the virtual environment were updated according to the running
speed of the mice. Consequently, optic flow was generated by active running of the mice.
Objects at different virtual depths created optic flow at distinct speeds, equivalent to
the ratio between running speed and virtual depth. VR offers a powerful tool to study
depth perception from motion parallax. It has been shown that mice can perform spatial
memory tasks in VR environments and the neurons supporting spatial perception remain
active in VR environments (Chen et al., 2018), indicating a sensation of space for mice
in VR. Moreover, VR allows easy and precise manipulation of the visual cues presented,
which enabled the isolation of motion parallax as the only available depth cue. For
example, objects were presented exclusively in the monocular zone to eliminate binocular
depth cues. Spheres were chosen as the visual stimuli to minimise the influence of shape
changes with shifts in the observer’s perspective. Size of spheres were scaled to maintain a
constant visual angle across all virtual depths, preventing depth-selective responses from
being confounded by changes in stimulus size. By restricting pictorial and binocular cues,
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this design ensured that motion parallax remained the primary cue for distinguishing
trials with different virtual depths. Coupling VR environments with active locomotion in
head-fixed mice enables us to study the neural mechanisms underlying depth perception
from motion parallax during active navigation, while allowing for precise control over
visual stimulation.

4.6.2 The representation of depth in V1

Using this 3D VR environment, I recorded L2/3 excitatory neurons in V1 when mice
were actively running in the environment. I found that a large proportion (51.4%) of
the recorded L2/3 excitatory neurons exhibited significant selectivity to virtual depths of
stimuli in VR. Neurons tuned to the full range of the virtual depth values I probed were
found in V1, allowing V1 to represent a wide range of distances that are ethologically
relevant for mice in the natural environment. I also confirmed that depth selectivity
of V1 neurons was driven by motion parallax as a result of active locomotion of the
mice on the wheel. Depth-selective responses were absent when animals were stationary,
and virtual depth could not be decoded from the population activity during stationary
periods. Compared to previous research that investigated motion parallax through passive
translations (Kim et al., 2015a; Nadler et al., 2008, 2009), my findings provide new
insights into the neural mechanisms underlying depth perception from motion parallax in
a scenario more reflective of natural conditions and demonstrate that the visual cortex
can represent depth during active navigation of the animal.

The signal-to-noise ratio of the calcium indicator used can hinder the detection of
low neuronal responses. When imaging using a calcium indicator with higher signal-to-
noise ratios such as GCaMP6s or GCaMP8m (Chen et al., 2013; Zhang et al., 2023),
the proportion of depth-selective neurons identified was significantly higher compared
to the imaging sessions using GCaMP6f. Although the proportion of depth-selective
neurons measured in mice expressing GCaMP8m was not higher than that measured in
mice expressing GCaMP6s, this may be attributed to variations in virus expression levels
resulting from the virus injection process in mice expressing GCaMP8m compared to
transgenetic GCaMP6s mice. Therefore, the percentage of neurons with significant depth
selectivity is likely to represent a lower bound of the actual proportion of neurons in the
brain that are tuned to depth.

Neuronal responses in V1 are modulated by a variety of behaviours such as running, eye
movements, pupil dilation and facial movements (Ayaz et al., 2013; Dadarlat & Stryker,
2017; Erisken et al., 2014; Keller et al., 2012; Niell & Stryker, 2010; Parker, Abe, Leonard,
et al., 2022; Saleem et al., 2013; Stringer et al., 2019). In my experiments, two key factors
that could potentially affect responses to different virtual depths are running speed and
eye movement. If mice exhibited stereotyped running speed changes or eye movements in
response to specific virtual depths, the observed depth-selective responses might simply
reflect these stereotyped behaviours. To test this, I first compared the average running
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profiles of mice across trials of different virtual depths, and confirmed that the running
speeds were similar across virtual depths. This indicates that depth-selectivity cannot
be solely attributed to differences in running speed. Next, I analysed the eye velocity
and saccade rate during trials of different virtual depths. Eye movements, especially
rapid saccades, can cause abrupt changes in the visual motion speed, potentially con-
founding neuronal responses to motion parallax cues. However, no significant differences
were found in eye velocity or saccade rate across virtual depths, suggesting that depth-
selective responses are unlikely to result from stereotyped eye movement patterns. The
eye movement patterns observed in my experiments also aligns with previous research
(Meyer et al., 2020), showing that head-fixed mice typically do not exhibit drastic and
dynamic eye movements. One potential confounding factor requring further analysis is
facial movement, as certain depths (e.g. very near depth) may trigger facial movements
such as whisking, which was found to modulate the spontaneous activity in V1 (Stringer
et al., 2019). further analysis is needed using tools such as Facemap (Syeda et al., 2024)
to track and quantify the facial movement of the mice. To address this, further analysis
could employ tools such as Facemap (Syeda et al., 2024) to track and quantify the facial
movements of mice.

4.6.3 Summary

V1 neuronal responses have traditionally been studied using two-dimensional visual
stimuli such as gratings or natural images (Andermann et al., 2011; Bashivan et al.,
2019; Bonin et al., 2011; Dräger, 1975; Fu et al., 2024; Gao et al., 2010; LeDue et al.,
2012; Niell & Stryker, 2008; Walker et al., 2019). This has contributed to a widely
accepted view that V1 neurons act as a set of Gabor filters over two-dimensional retinal
images, exhibiting selectivity for spatial and temporal frequency, orientation and direction
(Adelson & Bergen, 1985; Baker & Issa, 2005; Basole et al., 2003; Bonin et al., 2011;
Mante & Carandini, 2005; Niell & Stryker, 2008). Here I established a VR setup which
enabled systematic characterisation of V1 neuronal responses to motion parallax depth
cues when mice were actively navigating in a 3D virtual environment. I found that V1
neurons are tuned to the third-dimension of the visual environment – depth, during active
locomotion. How this depth selectivity arises from locomotion and visual motion signals
and how the representation of depth is distributed across V1 will be illustrated in the
next two chapters.
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Chapter 5

The emergence of depth-selective
activity from the integration of
locomotion and visual motion signals

5.1 Authorship declaration

I, Yiran He, performed the majority of the experiments and analyses in this chapter.
Antonio Colas Nieto performed ∼2/3 of the two-photon recordings in 2 out of 7 GCaMP6f
or GCaMP6s mice. Xavier Cano-Ferrer and George Constantinou (members of the Mak-
ing Lab at the Francis Crick Institute) built parts of the customised electronics in the
behavioural setup, including screen blanking (see Methods 2.4.8), lick detection, and the
printed circuit board for synchronising camera and imaging triggers. This chapter built
upon findings that I have previously disseminated in a preprint on bioRxiv (He et al.,
2024).

5.2 Background

To compute depth from motion parallax, the brain needs to get access to two criti-
cal signals – the speed of self-motion and the speed of visual motion as a result of the
self-motion. In mice, eye movements are mainly made to compensate for head rotations
(Holmgren et al., 2021; Meyer et al., 2020; Michaiel et al., 2020). Therefore, body move-
ments such as walking or running are the main source of locomotion to induce motion
parallax for mice. Multiple studies have shown that excitatory neurons in mouse V1 can
respond to both signals. V1 neurons are tuned to speed of visual motion (Andermann
et al., 2011; Marshel et al., 2011). The spontaneous and visual-driven activity in V1 is
also highly modulated by the running speed of mice (Keller et al., 2012; Niell & Stryker,
2010; Saleem et al., 2013), indicating that V1 neurons are able to integrate visual motion
and self-motion signals (Keller et al., 2012; Saleem et al., 2013).

The functional significance of visuomotor integration in V1 has been a topic of active
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debate. Some have proposed that locomotion modulates the gain of sensory responses in
V1, thereby enhancing the encoding of visual information within V1 populations (Bennett
et al., 2013; Dadarlat & Stryker, 2017; Harris & Thiele, 2011; Niell & Stryker, 2010).
Others have suggested that visuomotor integration contributes to predictive coding, where
visual responses reflect the prediction error between the predicted and actual sensory
feedback to help form an internal model of the world (Jordan & Keller, 2020; Keller &
Mrsic-Flogel, 2018; Keller et al., 2012; Muzzu & Saleem, 2021; Zmarz & Keller, 2016).
No consensus on the function of V1 visuomotor integration in visual processing has yet
been reached. Given that depth can be computed from the ratio of self-motion speed and
the resulting visual motion speed, I propose that visuomotor integration in V1 neurons
enables the estimation of depth from motion parallax cues.

In this chapter, I aim to test the hypothesis that depth selectivity in V1 demonstrated
in the previous chapter arises from the integration of running speed and optic flow speed
signals. I will also characterise how the integration occurs in depth-selective neurons by
comparing different computational models of running and optic flow speed integration.
Finally, I will explore on a population level, whether closed loop coupling contributes to
a more accurate representation of depth among V1 populations.

5.3 Depth selectivity arises from conjunctive coding
of running speed and optic flow speed

Optic flow speed varied across trials of virtual depths. Optic flow speed generated
by locomotion is determined by the ratio of locomotion speed to virtual depth. With
similar running speed, nearby depths elicit faster optic flow speed compared to far depths
(Figure 4.8E-H). Therefore, depth-selective responses could simply be a result of neuronal
selectivity for optic flow speeds. However, depth from motion parallax is ambiguous
without extra-retinal inputs – slow visual motion can indicate either a far object or a
slow-moving observer. Therefore, both running speed and optic flow speed are important
for depth estimation. I hypothesize that depth selectivity of V1 neurons measured in
the previous chapter is a product of integrating both optic flow and locomotion-related
signals.

To explore the relationship between depth selectivity, running speed and optic flow
speed, I first visualised the activity of depth-selective neurons as a function of running
speed and optic flow speed (Figure 5.1B,F). Optic flow speed of each imaging frame was
calculated as the ratio of running speed and virtual depth, corresponding to the visual
motion speed when spheres were at 90 degree azimuth. Two key observations can be
drawn from this visualisation. First of all, if depth selectivity can be solely attributed
to responses to different optic flow speeds, optic flow tuning should remain the same
across virtual depths. On the contrary, for depth-selective neurons, the same optic flow
speed resulted in substantially distinct neuronal responses at different virtual depths
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(Figure 5.1B,F). Given that different running speeds were needed to generate the same
optic flow speed across virtual depths, this suggested that both running and optic flow
speed contribute to depth-selective activity. Neuronal responses as a function of both
running and optic flow speeds further supported this conclusion (Figure 5.1C,G). If a
depth-selective neuron were exclusively tuned to optic flow speed (or running speed), the
matrix would show that the neuron is only responsive on a specific horizontal (or vertical)
line while maintaining invariant responses to the other axis. Instead, the depth-selective
responses I observed are neither a product of optic flow speed tuning or running speed
tuning alone, but an integration between these two signals. The second interesting point
is that, since virtual depth is defined as the ratio of optic flow speed to running speed,
different virtual depths should correspond to the parallel 45-degree lines with varying
intercepts on the y-axis in the plot of log-optic flow speed versus log-running speed (in
Figure 5.1C,F). Depth-selective neurons seemed to prefer specific conjunctions of running
speed and optic flow speed, and the preferred conjunctions lie on the line corresponding
to their preferred virtual depths (Figure 5.1C,F). This will be illustrated further in the
next section (Figure 5.5A-B).

To further quantify how running and optic flow speed were integrated, I fitted the
responses of depth-selective neurons as a function of running speed and optic flow speed
using five models: a model where neurons were tuned to either optic flow speed or running
speed (optic flow model or running speed model); an additive model where neuronal
responses were a linear summation of running and optic flow responses; a conjunctive
model where neuronal responses were driven by a specific conjunction of running and
optic flow speed tuning modelled by a two-dimensional Gaussian function; and an idealised
depth tuning model (RS/OF model) where neurons were tuned to the ratio of running
and optic flow speed (Figure 5.1D,H, 5.2A-B).
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Figure 5.1: Activity of depth-selective neurons as a function of running and
optic flow speeds. (cont.)
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Figure 5.1: Activity of depth-selective neurons as a function of running and
optic flow speeds. (A,E) Virtual depth tuning of two example depth-selective neurons.
(B,F) Responses of the two example depth-selective neurons binned by running speed
(B left, E left) or optic flow speed (B right, E right). Gray line (B left, E left) –
running speed tuning during the inter-trial interval, when sphere stimuli were absent.
As virtual depth equals to the ratio of running speed and optic flow speed, neuronal
responses at a fixed running speed but different virtual depths (B left, E left) reflect the
effect of optic flow speed. Similarly, neuronal responses at a fixed optic flow speed but
different virtual depths reflect the influence of running speed (B right, E right). (C,G)
Responses of the example neurons as a function of both running and optic flow speeds.
(D,H) Running speed and optic flow tuning of the example neurons fitted with the pure
optic flow, pure running speed, additive, conjunctive or ratio models (see methods). The
heatmaps represent the fitted neuronal responses of each model as a function of running
speed and optic flow speed, across the full range of speeds presented in the figure. RS –
running speed, OF – optic flow speed.
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Figure 5.2: Example running speed and optic flow speed traces and and ex-
ample fitted neuronal activity of the 5 models. Depth selectivity arises from
conjunctive coding of optic flow speed and running speed. (A) Example running
speed trace (left) and optic flow trace (right) from 6 trials of an example session. Then,
imaging frames with running speed (x) larger than a threshold (T , 1 cm/s) were taken,
and running speed and the optic flow speed of the selected frames were log-transformed
(right). The log-transformed running speed (r) and optic flow speed (v) were used to
fit the 5 models (see Methods 2.4.11). (B) Actual and predicted ∆F/F0 of the example
trials in (A) using the 5 models.
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To compare the performance of models for each neuron, I used K-fold cross-validation
to evaluate the goodness of fit (R2) of each model for each neuron, using the test data that
were excluded from parameter tuning. This helps to account for variations in model com-
plexity. Then, I compared the proportion of neurons whose activity was best explained by
each model in each session, applying different thresholds for depth selectivity and peak
neuronal responses (Figure 5.3A-D). A larger peak response at the neuron’s preferred
virtual depth indicates a better signal-to-noise ratio, while a smaller p-value of the depth
tuning fit signifies greater depth selectivity. Across thresholds, neither running speed nor
optic flow speed alone could account for neuronal responses (Figure 5.3A-D), suggesting
that the integration of optic flow and locomotion-related signals is required to produce
depth selectivity. The conjunctive model and additive model consistently outperformed
the optic flow model, the running speed speed model, or the RS/OF ratio model across
recording sessions (Figure 5.3A-D). When looking at all depth-selective neurons, the con-
junctive model performed similarly to the additive model (Figure 5.3A, p = 0.0987).
However, when comparing model performance for highly depth-selective neurons with
strong peak responses at their preferred virtual depth, the conjunctive model explained
neuronal responses significantly better than the additive models across recording sessions
(Figure 5.3B-D; p < 0.0001 for all thresholds). Taken together, depth-selective responses
are best explained by a conjunctive coding of running speed and optic flow speed. Nev-
ertheless, when comparing the observed neuronal activity with the predicted neuronal
activity from the conjunctive model, a proportion of variance still seems unexplained by
the model (Figure 5.2A-B). The underlying reason will be illustrated in the next chap-
ter. In brief, beyond the conjunctive coding of running speed and optic flow speed,
neuronal activity of depth-selective neurons is also influenced by the neurons’ receptive
fields. Since the current model lacks receptive field information, the predictions would be
less well-explained compared to a model that incorporates the interactions between the
stimuli and the neurons’ receptive fields.
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Figure 5.3: Depth selectivity arises from conjunctive coding of optic flow speed
and running speed. (A-D) Proportion of depth-selective neurons best explained by
the pure optic flow, pure running speed, additive, conjunctive and ratio models in each
session, for neurons filtered with different criterion. (A) For all depth-selective neurons
(N=31,013 from 85 sessions), the p-values for conjunctive model vs. other models are: vs.
optic flow speed model: p < 0.0001, vs. running speed model: p < 0.0001, vs. additive
model: p = 0.0987, vs. RS/OF model: p < 0.0006. (B) For depth-selective neurons
with the peak responses at the preferred virtual depth > 0.1 (N=9,834 from 85 sessions),
the p-values for conjunctive model vs. other models are: vs. optic flow speed model:
p < 0.0001, vs. running speed model: p < 0.0001, vs. additive model: p < 0.0001, vs.
RS/OF model: p < 0.0001. (C) For depth-selective neurons with the peak responses at
the preferred virtual depth > 0.2 (N=7,337 from 85 sessions), the p-values for conjunctive
model vs. other models are: vs. optic flow speed model: p < 0.0001, vs. running speed
model: p < 0.0001, vs. additive model: p < 0.0001, vs. RS/OF model: p < 0.0001. (D)
For depth-selective neurons with the peak responses at the preferred virtual depth > 0.2
and the p-value for depth-tuning fit < 0.01 (N=6,366 from 84 sessions, no neurons from 1
session pass the thresholds), the p-values for conjunctive model vs. other models are: vs.
optic flow speed model: p < 0.0001, vs. running speed model: p < 0.0001, vs. additive
model: p < 0.0001, vs. RS/OF model: p < 0.0001.
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5.4 Preferred depth is determined by the ratio of
preferred running speed and preferred optic flow
speed

Given the observation above that the preferred conjunction of running speed and
optic flow speed lies on the line corresponding to each neuron’s preferred virtual depth, I
explored the relationship between the preferred virtual depth of individual neurons and
their preferred optic flow or running speed. To this end, I split the recordings for each
neurons into two halves: half of the trials were used to estimate each neuron’s preferred
virtual depth, while the other half were used to estimate preferred optic flow and running
speeds with the conjunctive model described above. Across the population, a strong
negative correlation was observed between the optic flow speed preferences and virtual
depth preferences (Figure 5.4A, r = −0.728, p < 0.0001). However, this correlation might
arise from the limited range of optic flow speeds sampled in the VR stimuli, which was
constrained by the possible running speeds of the mice (Figure 5.4B). Optic flow speed in
the VR was calculated from the ratio of running speed and virtual depth. Given that the
natural running speed of mice typically ranges from several cm/s to 2-3 m/s (Garland et
al., 1995), the resulting optic flow speeds were restricted to a specific range, which might
result in a natural negative correlation with virtual depth (Figure 5.4B). This relationship
is demonstrated by the overlap between the preferred optic flow speeds of depth-selective
neurons and the range of optic flow speeds sampled (Figure 5.4B). It remains uncertain
whether the observed distribution of optic flow speed preferences would persist if a broader
range of running speeds were sampled.

The running speed preferences and virtual depth preferences of all depth-selective
neurons did not seem to have an apparent correlation (Figure 5.4C, r = 0.013, p = 0.715).
However, when considering neurons tuned to low (<10 degrees/s), intermediate (10-100
degrees/s) or high (100-1000 degrees/s) optic flow speeds separately, preferred running
speed displayed a significant positive correlation with preferred virtual depth (Figure 5.4C,
low optic flow speeds, r = 0.617, p < 0.0001; intermediate optic flow speeds, r = 0.568,
p < 0.0001; high optic flow speeds, r = 0.489, p < 0.0001). This pattern reflects the
Simpson’s paradox, where a statistical trend is evident within subgroups of data but
disappears when the groups are combined.

Overall, selectivity for both optic flow speed and running speed contribute to the
virtual depth preferences of individual neurons. This population-level trend also mirrors
the principles of motion parallax, that far depths generate slower optic flow speed when
controlling for running speed, and faster running is required to generate the same optic
flow speed for far depths.
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Figure 5.4: The relationship between preferred depth, preferred running speed
and preferred optic flow speed. (cont.)
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Figure 5.4: (A) Preferred virtual depth as a function of preferred optic flow speeds esti-
mated using hold-out data not used in calculating preferred virtual depths (r = −0.728,
p < 0.0001). (B) Preferred virtual depth as a function of preferred optic flow speeds in
(A) overlapped with histograms of possible optic flow distribution across virtual depths
calculated from the distribution of running speed across all sessions. The y-axis of the
histograms is linear and does not corresponds to the y-axis of preferred virtual depth. (C)
Preferred virtual depth as a function of preferred running speeds of all neurons estimated
using hold-out data not used in calculating preferred virtual depths (top left, r = 0.013,
p = 0.715), and for neurons with preferred optic flow speeds between 110 degrees/s (top
right, r = 0.617, p < 0.0001), 10100 degrees/s (bottom left, r = 0.568, p < 0.0001),
and 1001000 degrees/s (bottom right, r = 0.489, p < 0.0001). Histogram represents the
distribution of running speed across all sessions (top left).
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Next, I examined the relationship between the ratio of preferred running speed to
preferred optic flow speed and virtual depth preferences of individual neurons. Consistent
with the observed relationship in Figure 5.1C and F, I found that the ratio of the preferred
running and optic flow speeds of individual V1 neurons could predict their preferred virtual
depth (Figure 5.5A, r = 0.794, p < 0.0001). Most neurons clustered around the expected
gradient, where preferred virtual depths equal to the ratio of the preferred running and
optic flow speeds (Figure 5.5A). Nevertheless, since these two variables were estimated
from independent trials and given the large sample size, it is reasonable the regression
slope did not exactly equal one (Huber regression, gradient = 0.533).

This relationship can be further illustrated by visualising running speed and optic
flow speed preferences of neurons preferring various virtual depths in logarithmic space
(Figure 5.5B). As different virtual depths are associated with different ratios of running
and optic flow speeds, expected log-transformed optic flow speeds for each virtual depth
lie along a line as a function of log-transformed running speed with a different intercept in
logarithmic space (Figure 5.5B inset). Depth-selective responses echoed this relationship,
where neurons tuned to the same virtual depth lie along a line in the log-transformed
preferred running speed / preferred optic flow speed space. In other words, neurons
tuned to the same virtual depth preferred different combinations of running and optic
flow speeds with a constant ratio. As a consequence, neurons tuned to similar virtual
depth have a wide range of running speed preferences, enabling neuronal populations in
V1 to encode depth regardless of animal’s locomotion speed.
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Figure 5.5: Preferred depth is determined by the ratio of preferred running
speed and preferred optic flow speed. (A) Preferred virtual depths as a function
of the ratio between preferred running and optic flow speeds estimated using hold-out
data not used in calculation of preferred virtual depths (N = 5,737 neurons). Contours
– kernel density estimate. Red dotted line – when preferred virtual depths equal to the
ratio between preferred running and optic flow speeds estimated by hold-out data. (B)
Preferred optic flow speed and running speed of neurons estimated using hold-out data
color coded by their preferred virtual depth (N = 5,737 neurons). Inset – optic flow speed
as a function of running speed across virtual depths.
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5.5 Closed loop coupling between locomotion and op-
tic flow enables accurate representation of depth

Next, I explored whether closed loop coupling between locomotion and optic flow
feedback was necessary for the integration of two signals to produce depth-selective re-
sponses. To this end, I broke the coupling between locomotion and optic flow in an
open-loop manner, by manipulating the optic flow feedback using a previously recorded
running trajectory (Figure 5.6A-B). In this way, optic flow speed in the VR environment
was determined by this previously recorded running trajectory instead of the current run-
ning speed of the mouse, which broke the closed loop coupling (Figure 5.6C-D) while
maintaining the overall statistics of the visual stimuli.

Figure 5.6: Open loop stimuli breaks the coupling between locomotion and
optic flow feedback. (A-B) Relationship between running speed and optic flow speed
on closed loop and open loop trials (A) and example traces (B). Shaded areas color-
coded by depth indicate stimulus presentation. (C-D) Correlation coefficient between
the actual and virtual running speeds during open loop recordings with 5 (C) or 8 (D)
virtual depths for individual imaging sessions.
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I then recorded neuronal responses during blocks of closed loop and open loop trials
and analysed whether the running speed and optic flow speed preferences changed when
the closed loop coupling was broken. For individual neurons, preferred optic flow speed
and running speed remained similar when the coupling between locomotion and optic
flow feedback was disrupted by the open loop stimuli (Figure 5.7A-D). Across all depth-
selective neurons, optic flow speed and running speed preferences were highly correlated
between closed loop and open loop conditions (Figure 5.7E-F, running speed r = 0.578,
p < 0.0001, optic flow speed r = 0.700, p < 0.0001). The peak response magnitude at the
combination of preferred running and optic flow speeds was maintained during open loop
recordings (Figure 5.7G, p = 0.681). These results suggest that the conjunctive coding of
locomotion and optic flow speeds does not depend on their closed loop coupling.

Photobleaching during imaging could reduce the fluorescence responses overtime if
some trials were recorded much later than the others (Patterson & Piston, 2000). Since
the closed loop recordings usually started 1-2 hours before the open loop recordings,
the unchanged peak response amplitude could be a result of photobleaching. To test
this effect, I compared the peak response amplitudes of neurons recorded in a subset of
sessions, where there were closed loop trials both before and after open loop trials. Even if
the peak response amplitudes of neurons seemed slightly higher in closed loop recordings
preceding an open loop recording, they remained statistically similar regardless of the
order of closed loop and open loop trials (Figure 5.7H-I; ratio of response amplitudes in
closed loop before open loop trials vs. open loop trials: median 1.394, p = 0.0774; closed
loop after open loop vs. open loop trials: median 0.961, p = 0.783). Therefore, although
slight photobleaching could be happening during the recording, it does not significantly
affect the peak fluorescence amplitude of depth-selective neurons.

I then examined whether closed loop coupling enhanced the accuracy of depth rep-
resentation at the population level. To test whether virtual depth was more accurately
represented by population activity in closed loop condition, I trained a linear support
vector machine (SVM) classifier to decode virtual depth from activity of neuronal popu-
lations recorded in closed loop recordings and open loop recordings respectively. I split
imaging trials into training, validation and test sets with 5-fold cross validation such
that each trial was included in one test set. Then, I trained the classifier on individual
imaging frames from trials in the training set, optimised the hyperparameter using the
validation set, and finally evaluated the performance of the optimised classifier using the
test set. Confusion matrices of decoded virtual depth demonstrated that the classifier
could decode the virtual depth of individual frames from population activity in V1 in
closed loop recordings, but performed poorly in open loop recordings (Figure 5.8A-D).
The accuracy of the classifier was significantly higher in closed loop recordings compared
to open loop recordings (Figure 5.8E). These results indicate that closed loop coupling
between locomotion and optic flow is required for accurate representation of depth by
neuronal populations in V1, and suggest that locomotion-related signals which give rise
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Figure 5.7: Conjunctive coding of locomotion and optic flow speeds does not
rely on their closed loop coupling. (A-D) Depth tuning (left) and the neuronal
responses as a function of both running and optic flow speeds in closed loop (middle)
and open loop (right) in 4 example neurons. (E-F) Scatter plot of preferred running
speed (E), preferred optic flow speed (F) in open loop and closed loop for depth-selective
neurons (N = 1,234 neurons from 34 sessions). Contours – kernel density estimates. (G)
Histogram of ratios of peak response amplitude in closed loop over open loop for neurons
in J-K. (H-I) Histogram of ratios of peak response amplitude in closed loop over open
loop for closed loop trials before (H) or after (I) open loop trials (N = 116 neurons from
10 sessions in 4 mice).

to the optic flow feedback may contribute to disambiguating the depth of visual stimuli.
Since closed loop recordings usually started 1-2 hours before open loop recordings in

most sessions, I also assessed whether photobleaching during imaging could affect decoding
accuracy. I compared the decoding accuracy between closed loop and open loop recordings
in a subset of sessions where closed-loop recordings occurred both before and after the open
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loop trials. Due to insufficient trial numbers for each depth in some recordings, I focused
on 5 sessions where the number of trials allowed for 4-fold cross-validation (Figure 5.8F).
Although statistical significance was not reached due to the limited sample size (Figure
5.8F, closed loop before open loop vs. open loop: Wilcoxon signed-rank test, p = 0.4375;
closed loop after open loop vs. open loop: Wilcoxon signed-rank test, p = 0.0625),
the decoding accuracy of the closed loop recordings after an open loop recording was,
on average, higher than the decoding accuracy of the open loop recordings within the
same session (Figure 5.8F). This suggests that the reduced classification accuracy in open
loop recordings is unlikely to be caused by photobleaching. The relatively low decoding
accuracy of the closed loop recordings preceding an open loop recording is likely due to
the limited amount of data (typically comprising fewer than 5 trials per virtual depth).
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Figure 5.8: Closed loop coupling between locomotion and optic flow enables
accurate representation of depth by neuronal populations in V1. (A) Confusion
matrices of decoded virtual depth in closed loop and open loop recordings of an example
session with 5 virtual depths. (B) Confusion matrices of decoded virtual depth in closed
loop and open loop recordings of an example session with 8 virtual depths. (C) Confusion
matrices of decoded virtual depth in closed loop and open loop recordings with 5 virtual
depths (N = 7 sessions). (D) Confusion matrices of decoded virtual depth in closed
loop and open loop recordings with 8 virtual depths (N = 27 sessions). (E) Accuracy
of decoding virtual depth from population activity of depth-selective neurons in closed
loop and open loop recordings (N = 34 sessions). (F) Accuracy of decoding virtual depth
from population activity of depth-selective neurons in closed loop recordings preceding an
open loop recording, open loop recordings, and closed loop recordings after an open loop
recording (N = 5 sessions).
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5.6 Speed preferences of V1 neurons are consistent
across conditions of passive viewing and and self-
generated visual flow

Traditionally, the speed tuning of V1 neurons has been characterised using passive
viewing of two-dimensional stimuli, such as bars or drifting gratings. (Andermann et al.,
2011; Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell &
Stryker, 2008). In the VR setup, optic flow was generated by active self-motion within a
three-dimensional environment. It was unclear whether the optic flow speed preferences
of V1 neurons mapped in three-dimensional VR environments during active locomotion
of mice correspond to the speed tuning mapped with canonical two-dimensional stimuli
during passive viewing. To test this question, I recorded neuronal activity with both
the three-dimensional VR stimuli and two-dimensional drifting gratings in a subset of
recordings. The VR stimuli were updated in closed loop according to the animal’s running
speed, and the drifting gratings were uncoupled with the animal’s locomotion. Gratings
were presented in combinations of 6 spatial frequencies, 6 temporal frequencies, and 8
orientations in a pseudorandom order, and each set of gratings were presented for 5 times
throughout the recording sessions. A direction of 0° represented vertical gratings drifting
forward, and a direction of 90° represented horizontal gratings drifting downward.

First, I found that neurons exhibiting strong responses to drifting gratings could
be either depth-selective (Figure 5.9A-D) or non-depth-selective (Figure 5.9E-H, Figure
5.10A). To characterise the spatiotemporal tuning of neurons, I fitted the responses of all
neurons as a function of spatial frequency, temporal frequency and grating direction. The
model combined a spatiotemporal tuning component as a bivariate Gaussian function and
a direction tuning component following a von Mises distribution (Figure 5.9C-D,G-H, see
Methods 2.4.11). Then I defined the preferred spatial frequency and preferred temporal
frequency as the combination of spatiotemporal frequencies that gave rise to the peak re-
sponse amplitude. The majority (58%) of neurons displayed strong spatiotemporal tuning
mapped by drifting gratings (Figure 5.10A), including both populations of depth-selective
and non-depth-selective neurons (Figure 5.10A).

Then, I quantified the relationship between the preferred optic flow speed mapped
by three-dimensional VR stimuli and the preferred speed of neurons mapped by grating
stimuli. To this end, I selected neurons that have both strong spatiotemporal frequency
tuning (R2 of the spatiotemporal tuning fit > 0.05) and strong conjunctive tuning to
running speed and optic flow speed (cross-validated R2 of the conjunctive model fit >
0.02). Although the preferred speed of most V1 neurons changes with spatial frequency
(LeDue et al., 2012), for simplicity, preferred speed of a neuron here was defined as the
ratio of its preferred temporal frequency to its preferred spatial frequency. I found that
optic flow speed preferences were positively correlated with the speed preferences mapped
by gratings (Figure 5.10B, r = 0.384, p = 0.0109, p-value was calculated directly from
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Spearman’s correlation). This result demonstrates some consistency between the speed
tuning of V1 neurons mapped by passive two-dimensional stimulation and self-generated
visual flow, although additional samples are required to strengthen this conclusion.

It is worth noting that optic flow speed preferences mapped by the VR stimuli only
included two directions (parallel to the animal’s direction of running), whereas the speed
preferences mapped by gratings include 8 directions of motion. To explore the distri-
bution of preferred directions of depth-selective neurons mapped by passive viewing, I
first visualised the distribution of the direction selectivity index (DSI) across all depth-
selective neurons with strong spatiotemporal frequency tuning (N = 477 out of 3.012
neurons, Figure 5.10C). Among depth-selective neurons, many did not display strong di-
rection selectivity, with half of the neurons having a DSI lower than 0.5 (Figure 5.10D).
Many depth-selective neurons displayed preferences to horizontal gratings (Figure 5.10E).
Among depth-selective neurons with strong direction selectivity (DSI > 0.6, N = 193 neu-
rons), neurons that preferred horizontal gratings drifting upward were enriched (Figure
5.10F). The orientation and direction preferences mapped by gratings are consistent with
the orientations of RFs mapped by VR stimuli typically found in depth-selective neurons
(Figure 6.2A), which will be demonstrated in the next chapter.

Interestingly, the preferred speed mapped by gratings showed a negative correlation
with preferred virtual depth (Figure 5.10C, r = −0.315, p = 0.0396, p-value was calculated
directly from Spearman’s correlation). Despite being significant within a small sample,
this is a much weaker correlation compared to the correlation between the preferred virtual
depth and the ratio between optic flow and running speed preferences. Therefore, visual
motion speed tuning during passive viewing is a less reliable predictor of depth tuning
compared to the combination of running speed and self-generated optic flow speed signals.

125 of 207



5.6. Speed preferences of V1 neurons are consistent across conditions of passive viewing
and and self-generated visual flow

Figure 5.9: Spatiotemporal tuning of example V1 neurons. (A-D) An exam-
ple depth-selective neuron, its depth tuning curve (A), optic flow speed tuning as a
function of virtual depth (B), responses to 8 orientations of drifting gratings binned by
spatial and temporal frequencies (C, and the fitted responses as a function of spatial
and temporal frequencies at 8 orientations of drifting gratings (D). (E-H) An example
non-depth-selective neuron, its depth tuning curve (E), optic flow speed tuning (F), and
spatiotemporal tuning (G-H).
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Figure 5.10: Speed preferences mapped by three-dimensional stimuli and two-
dimensional gratings. (A) Venn diagram of depth-selective neurons and neurons with
strong spatiotemporal frequency tuning. (B) Scatter plot of preferred optic flow speed
against preferred speed mapped by gratings of neurons significantly tuned to the conjunc-
tive model and spatiotemporal frequency (43 out of 3,012 neurons from 6 sessions from
2 mice). (C) Scatter plot of preferred virtual depth against preferred speed mapped by
gratings of neurons in (B). (D) Histogram of the direction selectivity index of all depth-
selective neurons that have strong spatiotemporal frequency tuning (N = 477 out of 3,012
neurons). (E) Histogram of the preferred orientation of all depth-selective neurons that
have strong spatiotemporal frequency tuning (N = 477 out of 3,012 neurons). 0° and
180° represent vertical gratings, and 90° represents horizontal gratings. (F) Histogram of
the preferred orientation of all depth-selective neurons that have strong spatiotemporal
frequency tuning and strong direction selectivity (N = 193 out of 3,012 neurons). 0° or
180° represents vertical gratings drifting forward or backward. 90° or 270° represents
horizontal gratings drifting downward or upward.
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5.7.1 Locomotion-related modulation supports depth represen-
tation in V1

Locomotion-related modulation of neuronal responses in mouse V1 has been exten-
sively characterised. Locomotion elevates the amplitude of visually-evoked responses
(Ayaz et al., 2013; Keller et al., 2012; Niell & Stryker, 2010), regulates tuning to cer-
tain visual features (Ayaz et al., 2013; Mineault et al., 2016), and improves the accuracy
of visual representation among V1 populations (Dadarlat & Stryker, 2017; Erisken et al.,
2014; McBride et al., 2019). However, the functional significance of locomotion-related
modulation of V1 neurons in visual processing remains heavily debated (Christensen &
Pillow, 2022; Dadarlat & Stryker, 2017; Keller & Mrsic-Flogel, 2018; Keller et al., 2012;
Muzzu & Saleem, 2021; Niell & Stryker, 2010). Here I propose that locomotion-related
modulation allows L2/3 neurons in V1 to infer depth of visual cues in the environment – a
crucial computation that needs to be conducted by the visual system to support animals’
daily life. By analysing depth-selective responses of V1 neurons as a function of running
speed and optic flow speed, I show that depth selectivity arises from the integration of
these two signals. Depth selectivity is generated from a conjunctive tuning of running
and optic flow speed. For individual neurons, their depth preferences are determined by
the ratio of preferred running and optic flow speed. As a population, neurons preferring
similar virtual depth encompasses a wide range of running speed preferences, enabling V1
population to represent a variety of depths when animals are running at any speed.

It has been long proposed that locomotion can adjust the gain of visual responses in V1
excitatory neurons, amplifying visual responses during the state of running (Erisken et al.,
2014; Niell & Stryker, 2010). While some studies proposed that the state of locomotion
induces a generic modulation of cortical state which boosts the gain of sensory responses
across V1 (Bennett et al., 2013; Harris & Thiele, 2011; Niell & Stryker, 2010), others have
found that the effect of running on visual responses depends on the running speed tuning
of individual neurons (Christensen & Pillow, 2022; Keller et al., 2012; Saleem et al., 2013).
V1 consists of neurons that monotonically increase or decrease their activity as a function
of running speed, and neurons that are non-monotonically tuned to running speed (Chris-
tensen & Pillow, 2022; Saleem et al., 2013). Consistent with previous literature, I found
that V1 neuronal responses arise from the integration of visual motion speed and running
speed when mice experience optic flow generated by their own locomotion in a 3D VR
environment. Individual neurons have distinct optic flow speed tuning and running speed
tuning. The depth-selective responses I characterised here is achieved by multiplicative
gain modulation – locomotion-related signals modulate the gain of optic flow responses in
individual neurons, with the greatest responses occurring at the conjunction of a neuron’s
preferred running speed and optic flow speed. The conjunctive coding of running speed
and visual motion speed observed in my study differs from the findings of Saleem et al.
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(2013), who reported that V1 neuronal responses could be explained by a linear summa-
tion of running speed and optic flow speed signals when mice were navigating in a VR
corridor with grating and plaid patterns. This conjunctive integration may not have been
evident in Saleem et al. (2013) due to the narrower range of running speeds examined in
their study. Specifically, the running speed of mice in their experiments reached up to 30
cm/s, whereas the preferred running speeds of most neurons characterised in my studies
exceed 10 - 30 cm/s.

Previous studies have shown that gain modulation can support coordinate transforma-
tion (Andersen et al., 1985; Lu et al., 2022; Lyu et al., 2022; Pouget & Sejnowski, 1997;
Zipser & Andersen, 1988). For example, it has been proposed that posterior parietal
neurons in monkeys can support the transformation from retinal to body-centric coordi-
nates (Andersen et al., 1985; Pouget & Sejnowski, 1997; Zipser & Andersen, 1988). It is
achieved by jointly encoding different combinations of retinotopic inputs and eye positions
through gain modulation. Then, the activity of joint-coding neurons can be converged
to produce egocentric representation of the visual scene invariant to eye positions. An-
other example is the central complex in the brain of Drosophila melanogaster, which can
transform inputs from egocentric to allocentric coordinates in a similar manner (Lu et al.,
2022; Lyu et al., 2022). PFN neurons receive inputs from EPG terminals in the proto-
cerebral bridge which conveys information on world-centric heading direction, and project
to h∆B neurons in the fan-shaped body which outputs the world-centric travelling direc-
tion of the fly. To compute allocentric travelling directions and guide navigation, PFN
neurons integrate different combinations of world-centric heading directions and body-
centric translational velocity signals in a multiplicatively manner. Then, PFN neurons
preferring similar world-centred travelling directions are converged into h∆B neurons. In
this way, body-centric translational vectors are transformed into world-centric travelling
directions regardless of body orientations. In our case, I propose that L2/3 neurons in V1
can integrate optic flow and locomotion inputs and generate sets of basis functions tuned
to various combinations of running and optic flow speed through gain modulation. Then
downstream areas, such as V1 L5/6 or HVAs, can integrate inputs from L2/3 neurons
with similar depth preferences, leading to depth representation by neurons that are tuned
to depth independent of running or optic flow speed (Figure 5.11).

5.7.2 Predictive coding

Another popular hypothesis on the visual functions of locomotion-related modulation
is associated with predictive processing (Jordan & Keller, 2020; Keller & Mrsic-Flogel,
2018; Keller et al., 2012; Muzzu & Saleem, 2021; Zmarz & Keller, 2016), which suggests
that neuronal activity is driven by the comparison between bottom-up sensory inputs
and top-down prediction based on an internal model of the world (Rao & Ballard, 1999).
In V1, it has been proposed that L2/3 neurons may signal visuomotor prediction errors
by computing the discrepancies between actual visual flow and predicted visual feedback
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Figure 5.11: Model of depth representation in the visual cortex. (A) Schema
of depth representation in the visual cortex. Depth-selective neurons in the L2/3 of V1
receives running speed and optic flow speed inputs (left) and integrate the two signals
via gain modulation. This leads to neurons preferring different combinations of running
speed and optic flow speed (middle). Then, the outputs of L2/3 neurons preferring similar
depth are converged in deeper layers in V1 or HVAs to form neurons that are tuned to
depth invariant to running or optic flow speed (right).

based on locomotion-related input (Keller & Mrsic-Flogel, 2018). A subset of L2/3 V1
neurons were found responsive to a mismatch between running speed and visual flow speed
created by a sudden halt in visual flow (mismatch neurons), whereas passive viewing of
the playback of visual flow halts did not elicit responses in these neurons (Jordan & Keller,
2020; Keller et al., 2012; Zmarz & Keller, 2016). However, my findings do not support the
hypothesis that V1 neuronal responses are driven by visuomotor prediction errors. First,
as optic flow speed is determined by both depth and running speed, optic flow speed
cannot be predicted without the information on depth. Second, depth-selective neurons
were active throughout the trials of their preferred virtual depth despite no prediction
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errors were created under the closed loop condition. Third, the conjunctive coding of
visual motion and running speed does not rely on closed loop coupling of locomotion and
optic flow feedback. Running speed and optic flow speed preferences as well as the peak
response amplitude of individual neurons were maintained even when prediction errors
were introduced in the open loop condition. Therefore, depth-selective responses shown
in my experiments do not reflect mismatch signals.

Could the mismatch responses observed in previous studies (Attinger et al., 2017;
Jordan & Keller, 2020; Keller et al., 2012; Leinweber et al., 2017; Muzzu & Saleem, 2021;
Zmarz & Keller, 2016) be interpreted through the lens of the depth representation model?
Neurons selective for negative prediction errors (slower visual flow than predicted or visual
flow halts during locomotion) may actually be responding to a lower ratio between visual
flow speed and running speed, corresponding to far depths. In contrast, neurons selective
for positive prediction errors (faster visual flow than predicted) may be responding to near
depths. On the other hand, predictive coding and depth representation could co-exist as
functions of V1 neurons.

Another possibility is that prediction error representation of visuomotor mismatch
may still exist in V1 and the rest of the visual cortex. Prediction errors signals and
depth could be represented by independent populations in V1. While depth selectivity is
widespread in V1, mismatch neurons identified in previous studies only occupy a small
proportion of V1 neurons (Jordan & Keller, 2020; Keller et al., 2012; Zmarz & Keller,
2016). Depth-selective responses in V1 can also form the basis for predictive coding in
downstream areas. Depth information can be used to refine the prediction of optic flow
speed, enabling downstream areas to compare the actual and predicted visual motion and
update the internal model of the world.

5.7.3 Circuit mechanisms of depth representation in V1

Depth selectivity in V1 may be supported by long-range and local circuitry. Depth-
selective responses may be generated in V1 de novo by integrating locomotion-related
signals from the basal forebrain (Fu et al., 2014) and/or the secondary motor cortex (Lein-
weber et al., 2017). During locomotion, cholinergic innervations from the basal forebrain
activate the nicotinic receptors of VIP neurons in V1 (Fu et al., 2014). The secondary
motor cortex and the A42b region of the anterior cingulate cortex also provide a major
input to L2/3 and L6 excitatory cells and PV interneurons in V1 (Leinweber et al., 2017).
Alternatively, V1 neurons may inherit depth selectivity from upstream structures such
as the thalamus or superior colliculus (SC). Subcortical regions that provide direct or
indirect input to V1, such as dLGN, LP and superior colliculus (SC), have been shown to
exhibit varying degrees of visuomotor integration. Locomotion onset can increase spon-
taneous and visually-driven responses of neurons in dLGN, albeit to a much less degree
compared to V1 (Erisken et al., 2014). When mice were running in a VR environment
with simple gratings and circles, the activity of a subset of dLGN boutons (∼20%) in
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V1 was found to be positively corrected with both running and visual motion speed, po-
tentially facilitating the cooperative integration of these signals (Roth et al., 2016). On
the contrary, many LP boutons in V1 displayed anti-correlated tuning to running and
visual motion speed, potentially reflecting their role in signalling visuomotor mismatch
(Roth et al., 2016). As for SC, minor locomotion-related modulation of neuronal activity
was found in its superficial lamina (Savier et al., 2019). Given their ability to integrate
visual and motor information, dLGN, SC and LP could serve as potential sites for depth
computation from motion parallax before visual signals reach V1.

The multiplicative visuomotor integration observed in V1 pyramidal neurons can be
supported by local excitatory-inhibitory circuitry. VIP neurons in the visual cortex, a
group of interneurons that mainly inhibit SST inhibitory neurons (Jiang et al., 2015;
Pfeffer et al., 2013), were found to increase their responses during running (Fu et al.,
2014; Jackson et al., 2016; Reimer et al., 2014). In contrast, the activity of SST neu-
rons are suppressed by locomotion (Fu et al., 2014). Therefore, it has been proposed
that locomotion-related modulation of pyramidal neurons in V1 is achieved by VIP neu-
rons conveying locomotion signals via disinhibition (Fu et al., 2014). A previous study
in Drosophila melanogaster has suggested that disinhibition can support multiplicative
integration of signals (Groschner et al., 2022). It was hypothesized that the detection
of motion direction in T4 neurons in the fly optic lobe requires a multiplicative compu-
tation between delayed and non-delayed signals from adjacent photoreceptors, in order
to effectively enhance responses to the preferred direction and suppress responses to the
non-preferred ones (Haag et al., 2016; Strother et al., 2017). Groschner et al. (2022)
further showed that this multiplicative computation is achieved by the coincidence of
cholinergic excitation and the release from glutamatergic shunting inhibition (disinhibi-
tion) through conductance reduction. A similar mechanism may underlie the generation
of depth-selective responses through multiplicative integration of optic flow speed and
running speed signals. Excitatory inputs conveying optic flow speed information may
coincide with a release from inhibition by activating VIP neurons carrying running infor-
mation from VIP neurons, enabling multiplicative computation between running speed
and optic flow speed tuning. This mechanism would require connections to be formed
between specific excitatory and inhibitory neuronal pairs with opposite running speed
tuning.

5.7.4 Closed loop coupling is required for the accurate repre-
sentation of depth

When breaking the coupling between running and optic flow in the open loop con-
dition, running speed preferences, optic flow speed preferences and the peak response
amplitude did not change for individual neurons. This suggests that the conjunctive cod-
ing of running speed and optic flow speed does not depend on the closed loop coupling
between running and optic flow feedback. However, it is much more difficult to decode
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depth from the population activity in V1 in the open loop condition. Although the overall
statistics of optic flow speed may provide a rough estimate of depth, accurate computa-
tion of depth requires access to information about the running speed that gives rise to
the optic flow feedback. The importance of closed loop coupling for the accurate depth
representation is reminiscent of previous research on the development of depth perception
in cats, which demonstrates that closed loop coupling between active locomotion and the
resulting visual feedback is essential for the development of normal depth perception (Hein
et al., 1970). This also indicates that the computation of depth in V1 may reply more on
running speed information provided by the efferent copy of motor command rather than
on the reafference signal from sensory feedback.

5.7.5 Summary

In conclusion, I show that depth selectivity in V1 arises from conjunctive coding of
running speed and optic flow speed. Within V1 population, neurons with similar depth
preferences display a wide range of running speed preferences, enabling the representation
of a wide range of depths when animals are running at any speed. Accurate representation
of depth in V1 requires the closed loop coupling between locomotion and optic flow feed-
back. These results bring a new perspective on the role of locomotion-related modulation
in visual processing, and suggest that the widespread locomotion-related modulation in
V1 may serve as a foundation for inferring from motion parallax – a crucial computation
for the daily lives of animals. In the next chapter, I will characterise the representation of
depth across V1, and illustrate how V1 can create a depth map of the visual space from
motion parallax.
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cortex

Chapter 6

A depth map of the visual space
from motion parallax in the mouse
primary visual cortex

6.1 Authorship declaration

I, Yiran He, performed the majority of the experiments and analyses in this chapter.
Antonio Colas Nieto performed ∼2/3 of the two-photon recordings in 2 out of 7 GCaMP6f
or GCaMP6s mice. Xavier Cano-Ferrer and George Constantinou (members of the Mak-
ing Lab at the Francis Crick Institute) built parts of the customised electronics in the
behavioural setup, including screen blanking (see Methods 2.4.8), lick detection, and the
printed circuit board for synchronising camera and imaging triggers. This chapter built
upon findings that I have previously disseminated in a preprint on bioRxiv (He et al.,
2024).

6.2 Background

Building on the pioneering studies of Hubel and Wiesel (1959, 1962), visual responses
of excitatory neurons in the mouse primary visual cortex (V1) have been extensively
characterised, primarily using simplified, parametric, two-dimensional (2D) stimuli such
as moving bars, drifting gratings and noise stimuli (Andermann et al., 2011; Bonin et al.,
2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker, 2008). These
studies have led to several prevailing views regarding the properties of V1 neurons. It
has been widely acknowledged that mouse V1 is organised retinotopically, with individual
neurons responding to particular locations in the 2D visual field and neighbouring neurons
representing adjacent areas in the visual field (Dräger, 1975; Kalatsky & Stryker, 2003;
Wagor et al., 1980). Individual V1 neurons exhibit specific preferences for several key pa-
rameters of the visual scene, including orientation, spatial frequency, temporal frequency,
contrast, and direction of motion (Andermann et al., 2011; Bonin et al., 2011; Dräger,
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1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker, 2008). These findings have
given rise to a widely accepted view that V1 acts as a collection of Gabor filters on 2D
retinal images (Bonin et al., 2011; Niell & Stryker, 2008).

Although 2D gratings are powerful tools to study the receptive fields (RFs) of V1
neurons, it imposes strict assumptions on the tuning properties of neurons. Recent studies
have started to harness deep neural network to synthesize non-parametric stimuli based
on natural images and have identified more complicated receptive fields in mouse V1
(Bashivan et al., 2019; Fu et al., 2024; Walker et al., 2019). Unlike monkey V1 neurons
which are mostly excited by Gabor stimuli, RFs of mouse V1 neurons have a complicated
organisation of subfields with distinct orientation preferences (Fu et al., 2024). However,
regardless of parametric or non-parametric stimuli, previous research have rarely probed
how V1 neurons respond to the third-dimension – depth – of the visual scene and whether
depth is represented in RFs of V1 neurons. Using a virtual reality (VR) environment to
present three-dimensional (3D) visual scenes, I have demonstrated in Chapter 4 that a
majority of V1 neurons are selectively tuned to virtual depth of the stimuli. Given that
V1 neurons display RFs at specific locations of the 2D visual field, I further hypothesize
that depth-selective neurons respond to visual cues at specific retinotopic locations and
at specific virtual depths. In other words, the activity of depth-selective neurons in V1
can be described by 3D RFs.

If V1 neurons have 3D RFs, another important question to consider is how these
RFs are spatially distributed across V1. While RFs of V1 neurons are expected follow
retinotopic gradients along the dimensiosn of azimuth and elevation, their distribution
along the dimension of depth remains unknown. Multiple studies have shown that neu-
ronal populations in V1 and the surrounding higher visual areas (HVAs) have distinct
preferences for visual motion speed mapped by grating stimuli (Andermann et al., 2011;
Garrett et al., 2014; Glickfeld & Olsen, 2017; Marshel et al., 2011). While V1 neurons
show diverse tuning to visual motion speed covering a wide range, HVAs exhibit more
specific preferences, with anterior HVAs (e.g. AM, A, RL and AL) preferring fast-moving
stimuli and posterior HVAs (e.g. PM) preferring slow-moving stimuli. Since optic flow
speed preferences are indicative of depth preferences (Figure 5.4A), I hypothesize that V1
consists of heterogenous populations preferring distinct depths, with neurons preferring
diverse depths intermingled with each other. Meanwhile, different HVAs may display
specialisation in representing near or far depths.

6.3 V1 neurons have three-dimensional receptive fields

To test the hypothesis that neurons are tuned to specific retinotopic locations and
specific virtual depths, I first reconstructed the stimuli presented during each imaging
frame (Figure 6.1A). Then to characterise the RFs of individual neurons, I fitted neuronal
responses (∆F/F0) as a function of the reconstructed stimuli in each imaging frame (S)
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and the RF of each neuron (b) using a linear model, such as ∆F/F0 = Sb. This model
accounted for the modulation of neuronal responses by retinotopic locations in azimuth
and elevation as well as virtual depth, while maintaining smoothness of the receptive field
along the azimuth and elevation dimensions and the tuning to virtual depth (see Methods
2.4.11). Only the stimuli in the right visual field of the mice was taken into account
(Figure 6.1A), as imaging was conducted in the left visual cortex.

Figure 6.1: Schematics of linear receptive field model. (A) An example recon-
structed stimulus frame. Stimuli were downsampled to 5 degrees for analysis.

I found that many neurons responded to visual stimuli at specific retinotopic locations,
and their spatially-selective activity was modulated by virtual depth (Figure 6.2A-D). To
determine the proportion of neurons that have identifiable receptive fields, I estimated the
null distribution for RF coefficients for each neuron by fitting the RF using the stimuli in
the left visual field (RFleft). Then I compared it with the RF estimated using the right
visual field (RFright), and determined the neurons with significant RFs as those with a
maximum value of the RFright which was 6 standard deviations above the mean of RFleft.
Across recording sessions, the majority (66.3%, 20,554 / 31,013) of depth-selective neurons
displayed identifiable receptive fields (Figure 6.2E). In other words, V1 neuronal responses
can be characterised by 3D RFs during active navigation through a 3D VR environment.

I then explored the spatial organisation of the 3D RFs within recording sessions.
As expected, the spatial location of RFs recorded within the same field of view was
clustered in a particular region of the visual field (Figure 6.3A-B). The preferred azimuth
and elevations of neurons followed retinotopic gradients (Figure 6.3A-B,D-E), validating
the methods of RF estimation. However, the distribution of virtual depth preferences
exhibited a salt-and-pepper pattern, with neighbouring neurons often preferring disparate
virtual depths (Figure 6.3C,F).
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Figure 6.2: Depth-selective neurons have three-dimensional receptive fields.
(A-B) Receptive fields of 6 example V1 neurons in 2 sessions as a function of virtual
depth. (C-D) Receptive fields of the example V1 neurons in A-B visualized in 3D. The
rendered volume represents the receptive field locations with responses greater than half
of maximum for each cell. (E) Proportion of neurons with significant receptive fields
across imaging sessions (N = 85 sessions). Triangle indicates the median value.

6.4 The representation of depth across V1

I then characterised the spatial distribution of retinotopic and depth preferences of
neurons across V1. Neurons within V1 were identified by mapping the boundaries between
V1 and HVAs using widefield calcium imaging (Figure 6.4A, see Methods 2.4.9). To
align the cortical locations of neurons across all animals, I first identified the spatial
location of recorded neurons within V1 in individual animals, by determining the location
of neurons within each field of view based on cell masks and the location of each field
of view within the window based on blood vessel patterns. Next, I assumed that RF
azimuths and elevations followed the same linear gradient in V1 across animals, and found
the translational offsets between windows of different animals. The spatial locations of
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Figure 6.3: Depth preferences display a salt-and-pepper distribution. (A-C)
Preferred azimuth (A), elevation (B), and depth (C) of depth-selective neurons across
the field of view in an example imaging session. A – anterior; P – posterior; M – medial; L –
lateral. Scale bar – 100 µm. Arrow – direction of gradient of increase in preferred azimuth
or elevation. Inset – mean fluorescence image. (D-F) Mean pairwise distance of RF
azimuth (D), RF elevation (E) or log-preferred depth (F) between depth-tuned neurons
with significant RFs binned by the distance (N = 20,554 neurons from 85 sessions). Pairs
of neurons within 10µm from each other were excluded to avoid the effects of fluorescence
contamination. Shading – 95% confidence interval computer by bootstrap resampling
neuron pairs.

neurons within V1 across animals were aligned to a reference animal (see Methods 2.4.11).
After aligning the cortical locations of neurons across all animals, I visualised the

distribution of preferred azimuth, elevation and virtual depth across V1. As expected,
preferred azimuth and elevation of neurons across V1 still followed retinotopic gradients
(Figure 6.4B-C). Preferred virtual depths of neighbouring neurons were intermingled in
general, yet displaying certain biases in spatial distribution (Figure 6.4D). Notably, pos-
terior V1 was enriched with neurons preferring near virtual depths (Figure 6.4D), and the
virtual depth preferences were negatively correlated with the anterior-posterior locations
of depth-selective neurons in V1 (r = −0.239, p = 0.0007), but were not significantly
correlated with their lateral-medial locations (r = 0.094, p = 0.079).

I further analysed the relationship between virtual depth preferences and the RF
location of individual neurons. In previous analysis, virtual depth was defined as the
virtual distance to the sphere stimuli when the spheres passed 90 degrees of azimuth from
the animal’s perspective. However, the depth of the stimuli varies at different retinotopic
locations due to the cylindrical design of the stimuli, and the spheres that were not
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Figure 6.4: The representation of depth across V1. (A) Location of V1 and higher
visual areas identified using widefield calcium imaging. Cyan and yellow indicate responses
to grating patches centered at 30 and 90 degrees of azimuth. Scale bar – 1 mm. LM,
lateromedial; AL, anterolateral; RL, rostrolateral; A, anterior; AM, anteromedial; PM,
posteromedial. (B-D) Top – spatial distributions of receptive field (RF) azimuths (B)
and elevations (C), and preferred virtual depths (D) of depth at the location of individual
neurons; bottom – RF azimuth, elevation and preferred virtual depth smoothed with a
Gaussian kernel (N = 20,554 neurons from 85 sessions).

at 90 degrees azimuth were further away than the virtual depth value of the trial. To
correct for this effect, I adjusted the preferred depth of individual neurons by calculating
the distance of spheres to the animal at the neuron’s preferred retinotopic location (see
Methods Eq.2.4.29, Figure 6.5C). This correction had the largest effect at small azimuths,
where spheres were ∼2 times further compared to the spheres at the closest point (at 90
degrees azimuth). However, this difference was substantially smaller than the >100 fold
range of depths sampled across trials.

By visualising the distribution of virtual depth preferences as a function of RF loca-
tion, I found that neurons tuned to near depths were over-represented in the upper and
lateral visual field (Figure 6.5A-B,D-E), and this effect was significant regardless of the
correction for preferred depth described above (corrected, p = 6.51 × 10−5; uncorrected,
p = 0.00761). Despite the biased distribution of neurons preferring near depths, neu-
rons tuned to a wide range of depth values could be observed in all retinotopic locations
(Figure 6.5B,E). Consistent with what was observed in individual fields of view, virtual
depth preferences were distributed in a salt-and-pepper manner throughout the visual
field sampled by the stimuli (Figure 6.5B,E). When separating depth-selective neurons
into 3 populations - near- (<20 cm), mid- (20-100 cm), and far (>100 cm) preferring
cells, the 3 populations of neurons were intermingled (Figure 6.5B,E). Overall, these re-
sults suggest that V1 contains a depth map of the visual space from motion parallax,
with neuronal populations preferring distinct depths intermingled with each other. This
organisation of depth preferences allows neurons responding to similar locations in the
visual field to encode a broad range of distances from various objects in the visual scene.
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Figure 6.5: Relationship between depth preferences and RF locations. (A)
Median uncorrected preferred virtual depth as a function of RF location (N = 20,554
neurons from 85 sessions). Inset – direction of the gradient of preferred virtual depth
across the visual field estimated across hierarchical bootstrap samples of the dataset. RF
locations were estimated with 5 degree resolution and was plotted with 2 degrees of jitter.
(B) RF locations of depth-selective neurons tuned to near (<20 cm, N = 4,518 neurons),
intermediate (20-100 cm, N = 10,325 neurons) and far (>100 cm, N = 5,711 neurons)
virtual depths without correcting for RF location. Bottom – proportion of depth-selective
neurons in each category as a function of RF location. (C) Log-transformed correction
coefficients as a function of RF location. (D) Median corrected preferred virtual depth
as a function of RF location (N = 20,554 neurons from 85 sessions). Only locations with
at least 20 neurons are shown. Inset – direction of the gradient of preferred virtual depth
across the visual field estimated across hierarchical bootstrap samples of the dataset. (E)
RF locations of depth-selective neurons tuned to near (<20 cm, N = 3,753 neurons),
intermediate (20-100 cm, N = 8,412 neurons) and far (>100 cm, N = 8,389 neurons)
virtual depths (top) after correcting for RF location, and proportion of depth-selective
neurons in each category as a function of RF location (bottom).
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6.5 Discussion

6.5.1 A depth map of the visual space in V1

Neuronal responses in V1 have been traditionally studied with simplified, parametric,
2D stimuli such as moving bars, drifting gratings and noise stimuli (Andermann et al.,
2011; Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker,
2008). This has led to a popular view that V1 neurons can be modelled as a collection
of Gabor filters with specific preferences to spatiotemporal frequencies and orientations
of visual stimuli (Andermann et al., 2011; Bonin et al., 2011; Gao et al., 2010; Hubel
& Wiesel, 1962; LeDue et al., 2012; Niell & Stryker, 2008; Skottun et al., 1991). Here
I recorded V1 neuronal responses when mice were navigating in a 3D VR environment.
Then, I analysed their RFs by reconstructing the visual stimuli at each imaging frame,
and fitted the neuronal responses with a linear model incorporating retinotopic locations
in azimuth and elevation as well as virtual depth. While a large proportion of V1 neurons
show selectivity towards virtual depth from motion parallax as demonstrated in Chapter
4, the majority of them (∼66%) displayed clear canonical 2D RFs as characterised in
previous studies (Dräger, 1975; Kalatsky & Stryker, 2003; Wagor et al., 1980). They
responded to particular locations in the 2D visual field as well as specific virtual depths.
In other words, V1 neuronal responses can be characterised by 3D RFs during active
locomotion. The proportion of depth-selective neurons with detectable RFs represents
a lower bound, as neurons with responses at lower signal-to-noise ratios may have RFs
that are challenging to detect. Overall, the discovery of 3D RFs of V1 neurons supports
a novel view of how mouse V1 represents the visual scene in actively moving animals.
These results demonstrate that motion parallax generates a depth map of visual space in
V1, with distinct neuronal populations responding to near versus far visual cues.

The preferred retinotopic locations of the neurons followed expected retinotopic gradi-
ents (Dräger, 1975; Kalatsky & Stryker, 2003; Wagor et al., 1980), validating the method
of estimating RFs. Moreover, the RFs of many neurons in azimuth and elevation displayed
Gabor-like features, showing separated yet aligned ON and OFF subregions (Figure 5.1A-
B) as previously characterised in V1 simple cells (Bonin et al., 2011; Hubel & Wiesel, 1962;
Niell & Stryker, 2008; Skottun et al., 1991). Nevertheless, it is worth noting that RF esti-
mation is limited by the statistics of the visual stimuli. Albeit being in three dimensions,
my VR stimuli only consisted of black spheres and gray background moving in the di-
rection of the animal’s locomotion, lacking the complex statistics that would appear in
natural scenes. As a result, I did not observe the complicated RF subregions as mapped
by Fu et al. (2024) using natural images. In future experiments, the RFs of V1 neurons
could be mapped using more naturalistic 3D environments that incorporate objects with
diverse shapes, contrasts, and colours, reflective of the visual scenes found in nature.
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6.5.2 The distribution of depth representation across V1

In contrast of the gradual retinotopic gradients, the distribution of virtual depth pref-
erences within V1 exhibited a salt-and-pepper pattern. Neurons responding to similar
retinotopic locations displayed a wide range of virtual depth preferences, which poten-
tially allows a broad range of depth values to be represented in every part of the visual
field. This result is consistent with previous studies which show that V1 neurons have
a diverse range of visual motion speed preferences, whereas HVAs have more specialised
speed preferences when mapped with 2D (Andermann et al., 2011; Garrett et al., 2014;
Glickfeld & Olsen, 2017; Marshel et al., 2011). As preferred depth is inversely correlated
with preferred optic flow speed, I hypothesize that anterior HVAs (e.g. AM, A, RL and
AL) that prefer fast-moving stimuli (Andermann et al., 2011; Marshel et al., 2011) will
specialise in representing near depths. On the contrary, posterior HVAs (e.g. PM) pre-
fer slow-moving grating stimuli (Andermann et al., 2011; Marshel et al., 2011) and are
proposed to provide information about visual landmarks to the navigation system for the
formation of spatial representation of the environment (Roth et al., 2012). Therefore, I
hypothesize that posterior HVAs will bias towards representing far depths.

Although nearby V1 neurons show disparate virtual depth preferences, the distribution
of depth preferences in V1 is not homogenous. The most notable trend is the over-
representation of near depths in the upper lateral visual field. This salient trend cannot be
solely attributed to the bias inherent to the layout of the virtual environment. The virtual
depths of objects presented at different locations of the visual field were symmetrical along
the horizontal axis (0 degree elevation) and along the vertical axis of 90 degree azimuth,
yet the distribution of virtual depth preferences were asymmetrical across these two axes.

The distribution of depth representation from motion parallax is different compared
to depth preferences characterised by binocular disparity in binocular V1. Nearby depths
are over-represented in the upper visual field of V1. In contrast, the lower visual field of
V1 binocular zone (and RL binocular zone which primarily covers the lower visual field)
tend to represent nearer depths (La Chioma et al., 2019). This distinction may indicate
the ethological relevance of monocular and binocular zones in V1. Binocular zone was
found to specifically support tracking preys during hunting behaviour, whereas mice with
only monocular vision performed poorly in hunting (Johnson et al., 2021). Mice seldom
use motion parallax as a depth cue during prey pursuit, as they tend to coordinate their
head and eye movements to keep their prey in a retinal region with minimal optic flow
(Holmgren et al., 2021). On the contrary, the monocular zone of V1 may specialise in
detecting predators in the periphery, when high sensitivity to visual motion is critical
and binocular information may not be available. The distribution of depth preferences
in V1 may be inherited from the bias in the distribution of retinal ganglion cells (RGCs)
in the retina. RGCs are not evenly distributed across the mouse retina, with the highest
density of RGCs in the ventronasal retina (Drager & Olsen, 1981) corresponding to the
upper lateral visual field. W3 cells, a type of RGCs with the smallest RF that are
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densely enriched in the ventral retina, are specialised for detecting objects moving against
a featureless or stationary background (Zhang et al., 2012). The ability of detecting local
motion by W3 cells is considered as an alarm mechanism for detecting predators (Zhang
et al., 2012). However, it was also proposed that the small receptive field of W3 cells may
be designed for the detection of far predators covering a smaller angular subtense (Zhang
et al., 2012). Further investigation is needed to determine the ethological relevance of the
distribution patterns of depth representation in V1.

6.6 Summary

In conclusion, I have presented a revolutionary view of how V1 is functionally organised
to process visual scenes. Instead of the traditional view that V1 acts as a set of Gabor
filters on 2D retinal images, I show that motion parallax generates a depth map of 3D
visual space in V1, with distinct population of neurons representing near or far visual
cues. Nearby neurons prefer disparate virtual depths, which enables a broad range of
depths being represented in each part of the visual field. Interestingly, computer vision
algorithms use a similar approach, generating an estimation of depth for each pixel of
the visual scene (Du et al., 2020; Fu et al., 2019; Gimeno et al., 2013; Liao et al., 2020;
You et al., 2020). The strategy of encoding a depth map of the visual scene allows both
biological agents and artificial agents to navigate in complex 3D environments.
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Chapter 7

Discussion

7.1 Summary

Understanding the structure of the three-dimensional (3D) environment is crucial for
animals’ daily life. Many animals have an innate ability to perceive depth (Walk &
Gibson, 1961). Nevertheless, how 3D scenes are parsed by the visual system for depth
estimation remains poorly understood. Motion parallax is an important monocular cue
for depth perception that relies on the visual motion of objects as a result of the observer
moving in the environment. As the observer move through the environment, depth can
be estimated by comparing the speed of locomotion and the speed of resulting visual
motion. Motion parallax alone is sufficient for humans to generate a sense of depth (Rogers
& Graham, 1979), and it is especially valuable for animals without extensive binocular
overlap (e.g. rodents). How neurons in the visual system support depth perception from
motion parallax remains to be systematically characterised.

My project focuses on the depth perception of mice and aimed to examine two main
questions:

1. Is depth perception innate for mice?

2. How does the primary visual cortex (V1) support depth perception from motion
parallax in mice?

In Chapter 3, I presented a customized version of the visual cliff test (Walk & Gibson,
1961) as a behavioural assay to systematically characterise depth perception in mice. I first
demonstrated that mice can discriminate depth reliably on the visual cliff test using visual
cues, and specifically non-pictorial visual cues. Then, I showed that depth perception does
not require any prior visual experience in mice, by comparing the performance of mice
born and reared in the dark for 3 months to their counterparts raised in normal lighting.
Finally, I presented the preliminary results showing that superior colliculus (SC) – one
of the main subcortical structures providing inputs to the visual cortex – is not required
for depth perception, by quantifying the performance of mice on the visual cliff under
optogenetic inhibition of the superior colliculus. The innate nature of depth perception
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for mice, along with many other animals, highlights the functional significance of depth
perception throughout evolution. The neural circuits supporting depth perception are
thus likely conserved through evolution across different species, and are likely to involve
subcortical structures in addition to the visual cortex, which was proven indispensible for
rats (Meyer et al., 1966; Meyer, 1963). However, SC does not seem to be required by
mice to perform depth discrimination tasks. Therefore, other subcortical inputs such as
thalamic nuclei (e.g. dLGN, LP) as well as the visual cortex may be the essential neural
substrates for depth perception in mice.

Next, in Chapter 4 to 6, I explored the neural mechanism underlying depth per-
ception from motion parallax, focusing on V1. V1 neurons are widely modulated by
locomotion (Keller et al., 2012; Niell & Stryker, 2010; Saleem et al., 2013), and can inte-
grate both visual motion and locomotion-related signals (Keller et al., 2012; Saleem et al.,
2013). Therefore, I hypothesized that V1 neurons can integrate both visual motion and
locomotion-related signals to compute motion parallax for depth estimation. To test this
hypothesis, I designed a virtual reality (VR) environment where spheres were presented
at various virtual distances to the mice. I then recorded neuronal responses in L2/3 of V1
using two-photon microscopy while head-fixed mice navigating in the VR environment.
The parameters of the VR environment were precisely controlled so that motion parallax
was the only cue available for depth estimation. I found that over half of L2/3 neurons
in V1 were selectively tuned to virtual depth. This depth selectivity was driven by mo-
tion parallax, with little neuronal responses during stationary periods of visual stimulus
presentation. Depth selectivity of neurons were also unaffected by the size of the stimuli
despite expected changes in response magnitude to different stimulus sizes (Adesnik et al.,
2012; Dipoppa et al., 2018).

I then investigated how depth selectivity arises from locomotion and visual motion
signals in Chapter 5. I compared different computational models of depth-selective re-
sponses being generated by running speed tuning alone, optic flow speed tuning alone,
or the integration of both running speed and optic flow speed tuning. I show that depth
selectivity arises from the specific conjunction of running speed and optic flow speed tun-
ing. The preferred virtual depth is determined by the ratio of preferred running speed
and preferred optic flow speed. When breaking the coupling between running and optic
flow feedback, running speed preferences, optic flow speed preferences or the peak depth-
selective responses of neurons do not change, indicating that the conjunctive coding of
individual neurons does not reply on closed loop visuomotor coupling. However, on a pop-
ulation level, closed loop coupling enables the accurate representation of depth encoded
by population activity of V1 neurons. In addition, I compared the speed preferences of
V1 neurons mapped by the closed loop VR stimuli during active locomotion of the mice
and two-dimensional (2D) drifting gratings during passive viewing. Traditionally, visual
responses of V1 neurons have been studied using simple parametric 2D stimuli, such as
bars or drifting gratings, while animals passively observe the stimuli (Andermann et al.,
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2011; Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell &
Stryker, 2008). Despite the small sample size, I found a positive correlation between the
speed preferences of neurons mapped using 3D VR stimuli and 2D drifting gratings. This
suggests that the speed preferences of V1 neurons remain consistent across conditions of
passive visual stimulation and self-generated visual flow.

Finally in Chapter 6, I characterised the receptive field (RF) of V1 neurons and the
distribution of depth representation in V1. RFs of V1 neurons have been traditionally
characterised by 2D stimuli such as gratings or natural images, leading to a view that V1
is a collection of spatiotemporal filters where each neuron respond to a specific location in
the 2D visual field and stimuli with specific spatiotemporal frequencies, orientations and
moving directions (Andermann et al., 2011; Bonin et al., 2011; Gao et al., 2010; Hubel
& Wiesel, 1962; LeDue et al., 2012; Niell & Stryker, 2008; Skottun et al., 1991). By
modelling RFs of depth-selective neurons in V1, I found that these neurons responded to
specific retinotopic locations in azimuth and elevation as well as specific virtual depths,
displaying 3D RFs during active locomotion. While azimuth and elevation preferences
exhibited expected retinotopic gradients in V1, virtual depth preferences displayed a salt-
and-pepper pattern, with nearby neurons preferring disparate virtual depths. This enables
V1 to represent a wide range of depths at each retinotopic location. Across V1, neurons
preferring different virtual depths were generally intermingled, with some biases in the
upper lateral visual field overrepresenting near depths. The distribution of depth prefer-
ences may reflect the ethological relevance of different parts of the visual field in natural
behaviours such as hunting. Overall, motion parallax creates a depth map of visual space
in V1, with distinct population of neurons representing near or far depths.

7.2 Depth perception in naturalistic environments

Building on the pioneering work from Hubel and Wiesel (1959, 1962), existing studies
have predominately examined V1 neuronal activity using passive visual stimulation con-
sisting of simplified parametric 2D stimuli, characterising the selectivity of V1 neurons
for specific visual features such as spatiotemporal frequency and orientation (Andermann
et al., 2011; Bonin et al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell
& Stryker, 2008). However, such stimulation differ significantly from the visual expe-
rience of animals in the real world. Natural environments usually contain diverse and
complex three-dimensional structures. Moreover, animals predominantly use vision as an
active sense – they acquire visual information during active exploration of the environment
to guide essential behaviours such as navigation and foraging (Skyberg & Niell, 2024).
Recent studies have started to harness deep neural network to synthesize non-parametric
stimuli with statistics are more akin to natural images, and have identified receptive fields
(RFs) of V1 neurons that are remarkably different from canonical Gabor-like RFs in mice
(Bashivan et al., 2019; Fu et al., 2024; Walker et al., 2019). In this project, I focused on
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incorporating the third-dimension – depth – into the visual environment, and developed
a VR system that allows animals to experience self-generated visual flow during active
locomotion while maintaining precise control over stimulus parameters. However, this
VR environment was intentionally simplified so that motion parallax depth cues could
be studied in isolation. Real-world environments typically contain much richer optic flow
patterns and additional cues that can contribute to depth perception.

7.2.1 Object motion

All objects were stationary in the VR environment I designed. However in the real
world, objects can be either stationary or moving. Therefore, visual motion can be gen-
erated by both self-motion of the observer and object motion. How would depth-selective
neurons in V1 respond to moving objects and would V1 population still be able to encode
depth accurately with the presence of object motion?

For primates and humans, object motion can be determined by the conflicts between
binocular disparity and motion parallax cues. When primates or humans fixate their eyes
to focus on a specific point in space and translate in the environment, objects closer than
the fixation plane appear to move in the opposite of self-motion, whereas objects farther
than the fixation plane appear to move at the same direction of self-motion (Nadler et al.,
2008). Therefore, object motion in the opposite direction of the direction of visual flow
predicted from its depth sign (near or far) can create conflicts between motion parallax
and disparity cues. For example, if an object farther than the fixation plane moves towards
the opposite direction of self-motion at a faster speed than self-motion, motion parallax
cues will indicate that the object is closer than the fixation plane. The neural mechanisms
of computing object motion from the conflicts between multiple depth cues were proposed
by Nadler et al. (2013), where they measured the neuronal activity in macaque area MT
in response to either motion parallax or binocular disparity cues. Many neurons (60%)
showed matched preferences of depth sign (near or far) in response to each cue (congruent
cells). Surprisingly, 40% of MT neurons preferred opposite depth signs when depth was
specified by binocular disparity vs, motion parallax cues (opposite cells). While congruent
cells may be responsible for integration of depth cues for more accurate depth perception,
opposite cells may signal the conflict between motion parallax and disparity cues (Nadler
et al., 2013). When objects moving in the opposite direction of its depth sign, opposite
cells may be more responsive compared to congruent cells, and thus support the detection
of object motion during self-motion (Kim et al., 2016; Nadler et al., 2013). This hypothesis
is supported by a subsequent study which showed that opposite cells were more responsive
to moving objects than stationary objects compared to congruent cells (Kim et al., 2022).

For mice and many other animals without an extensive binocular overlap (Heesy,
2004), the majority of the visual information comes from the monocular visual field.
Object motion speed can be calculated from the population activity of depth-selective
neurons in V1 via conjunctive coding of running and optic flow speed. Assuming that
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optic flow speed can be derived from the ratio between self-motion speed (S) and depth
(d), and that total optic flow speed (V ) is a result of combining optic flow generated by
self-motion speed (S) and object motion speed (O), we can express the total optic flow
speed V as:

V = S

d
+ O

d
. (7.2.1)

Assuming that object motion and depth are constant for a short period of time, V can
be expressed as a linear function of the self-motion speed plus a constant (b):

V = 1
d

S + O

d
= 1

d
S + b, (7.2.2)

where the slope of the linear equation is the inverse of depth (1
d
) and the intercept is

the ratio between object motion speed and depth (O
d

). Therefore, object motion can be
computed by downstream areas through population activity of V1 depth-selective neurons
as animals sample the environment at various locomotion speeds.

7.2.2 Free navigation

In my experiments, mice were head-fixed and were running in a single direction on the
treadmill. Head-fixed mice display much less eye movements compared to freely moving
mice (Meyer et al., 2020), and lack vestibular feedback for estimating their self-motion.
For freely moving mice performing naturalistic navigation in the environment, mice ex-
hibit rich head and eye movement patterns – they make non-conjugate eye movements
compensatory to head tilts (pitch and roll) for visual field stabilisation, as well as con-
jugate eye movements in a "saccade and fixate" manner in response to horizontal head
rotation (yaw). Moreover, they are able to move in various directions so that optic flow
from many directions can be experienced. Therefore, it is important to investigate how
depth is encoded in V1 during free navigation, when the mice experience rich head and
eye movement patterns as well as optic flow in various directions, and whether vestibular
inputs contribute to depth selectivity in V1. This question could be addressed through
recording V1 activity using electrophysiology while the mice are freely navigating in an
arena projected with an VR environment with objects at various distances. To accurately
estimate the retinal image in freely-moving mice, momentary head and eye movements
would need to be tracked during the recording. Thanks to the newly developed recording
technology with miniature head-mounted cameras (Meyer et al., 2018; Michaiel et al.,
2020; Parker, Abe, Leonard, et al., 2022; Sattler & Wehr, 2021), visual scene from the
perspective of an freely-moving animal could be reconstructed by combining the recorded
eye movements and head movements.
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7.2.3 Naturalistic scenes

Our VR environment isolated motion parallax as the only cue for depth by eliminating
any cues related to binocular disparity, textures, shading, dynamic perspective (spheres
do not change when viewed from different angles), etc. In the nature, there are rich
binocular and monocular cues generated by objects with complex shapes, colours and
texture patterns with various spatial frequencies. Moreover, recent studies have identified
more complicated receptive fields in mouse V1 probed by natural images compared to the
canonically-identified Gabor-like receptive fields (Bashivan et al., 2019; Fu et al., 2024;
Walker et al., 2019). To explore how depth can be represented in V1 and how different
depth cues can be integrated during real-world navigation, it is essential to design more
naturalistic environments that resemble natural scenes, incorporating objects with diverse
colours, shapes and texture patterns.

In summary, further experiments could focus on characterising the representation of
depth in V1 using environments that closely mimic real-world scenes. This approach
could involve allowing mice to navigate freely, incorporating naturalistic settings with
richer depth cues – such as binocular and pictorial cues, as well as objects at varying
depths – and introducing elements such as object motion and passive motion.

7.3 A depth map in the visual cortex

7.3.1 Depth representation across the visual cortex

Chapter 5 - 6 have characterised the distribution of depth-selective neurons in L2/3 of
V1. V1 L2/3 populations have a wide range of depth preferences, with neurons preferring
similar depths tuned to a variety of combinations of optic flow speed and running speed.
The mixture of optic flow and running speed tuning can serve as basis functions for V1
L2/3 populations to encode the depth of objects when animals are running at various
speeds. In downstream areas such as L5/6 of V1 or HVAs, neurons might pool the inputs
from V1 L2/3 neurons with similar depth preferences to form tuning to depth that is
invariant to running or optic flow speed.

Furthermore, depth preferences are largely intermingled in V1 – neighbouring neurons
in V1 are tuned to disparate depths. Although a bias towards near depth representation
can be observed in the area corresponding to the upper lateral visual field, neurons tuned
to near, intermediate or far depths can be found across V1. This allows a wide range
of depth values to be encoded at any retinotopic location, with the activity of certain
regions emphasising salient stimuli. This result is also consistent with previous studies
which mapped the vision motion speed preferences across the visual cortex and showed
that V1 neurons have a diverse range of visual motion speed preferences, whereas HVAs
have more specialised speed preferences (Andermann et al., 2011; Garrett et al., 2014;
Glickfeld & Olsen, 2017; Marshel et al., 2011; Roth et al., 2012). Anterior HVAs including
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AM, A, RL and AL were found to prefer fast-moving grating stimuli, where as posterior
HVAs such as PM were found to be more responsive to slow-moving stimuli. Due to
the low sensitivity of motion, PM was also proposed to provide information on visual
landmarks to the navigation system such as RSC to support spatial perception (Roth et
al., 2012). Therefore, HVAs may also display functional specialisation in depth encoding,
with anterior areas representing near depths and posterior areas representing far depths.
This functional specialisation may be supported by specific projections from V1. For
example, V1 neurons projecting to AL and PM are largely non-overlapping (Han et al.,
2018; Kim et al., 2018). The tuning of V1 neurons also matches with the tuning of their
target regions – AL projection neurons prefer high speed stimuli whereas PM projection
neurons prefer high spatial-frequency which corresponds to lower speed (Kim et al., 2018).
Therefore, V1 populations that prefer near depths may project to near-preferring HVAs
such as AL, whereas V1 populations preferring far depths may project to far-preferring
HVAs such as PM, generating specialisation in depth representation and visual functions
in HVAs.

Further characterisation of depth preferences across the visual cortex can be achieved
by recording depth-selective responses across different HVAs and different cortical layers.
To examine the circuit mechanisms underlying the depth map across the visual cortex,
in vivo imaging can be combined with retrograde labelling, using either virus injections
at HVAs (Kim et al., 2018) or high-throughput in situ sequencing methods (Zhang et
al., 2024). This approach can help determine whether potential specialisations in depth
preferences within HVAs arise from specific V1 projections.

7.3.2 A novel perspective of V1

The neuronal activity of V1 has been traditionally probed using parametric and 2D
stimuli such as moving bars, gratings and noise stimuli (Andermann et al., 2011; Bonin et
al., 2011; Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker, 2008). These
stimuli allow us to systematically probe the neuronal responses to various key parameters
of visual scenes such as spatial frequency, temporal frequency, luminance, orientation and
retinotopic locations. However, these studies have resulted in a widely held view that
V1 acts as a collection of Gabor filters, enabling the detection of specific spatiotemporal
frequencies and orientations at specific locations in the 2D visual field (Andermann et al.,
2011; Bonin et al., 2011; Gao et al., 2010; Hubel & Wiesel, 1962; LeDue et al., 2012; Niell
& Stryker, 2008; Skottun et al., 1991). By introducing the third dimension – depth – into
the visual stimuli while mice were navigating in a VR environment, I demonstrated that
V1 neurons not only respond to specific locations in azimuth and elevation, but also show
selectivity to virtual depth of the stimuli which could be estimated from motion parallax.
In other words, V1 neuronal responses during active locomotion can be characterised as
3D receptive fields. This result provides a revolutionary perspective of how visual scenes
are parsed by V1. V1 contains a 3D map of the visual scene, with each neuron representing
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a 3D location of the environment.
Similar strategies of encoding the visual scene have been applied in computer vision.

Depth information can be represented in the form of a depth map, where each pixel on a
2D image contains the distance from the camera to the corresponding point in the visual
scene (Müller et al., 2011). Depth maps can be generated by using cameras in the way of
mimicking the depth perception cues used by animals, such as stereo matching (analogous
to binocular disparity), structure from motion (motion parallax), structure from shading
and depth from defocus (pictorial cues) as well as measuring the time of reflection of light
(similar to a sonar system) (Ding & Sharma, 2017; Ibrahim et al., 2020; Li et al., 2006;
Waters & Abulula, 2007; Yu & Gallup, 2014). Depth maps can be easily combined with
RGB images to facilitate various visual processing tasks such as 3D object recognition and
segmentation (Cheng et al., 2023; Jordan, 2013; Ma et al., 2021; Weng & Kitani, 2019)
and 3D reconstruction (Sayed et al., 2022; Ylimäki et al., 2018). The understanding of
the 3D structure of the visual scenes enables the computer system to interact with our 3D
world and powers technologies such as augmented reality (AR, Du et al., 2020; Gimeno
et al., 2013 and autonomous driving Fu et al., 2019; Liao et al., 2020; You et al., 2020.
Studying how the depth is parsed by biological agents may contribute to advancing the
algorithms for 3D artificial agents. For example, understanding how the brain integrates
multiple depth cues to converge on a consistent perception of depth may facilitate decision
making in autonomous agents (such as robots or self-driving cars) operating in dynamic
and complex environments.

7.3.3 A comprehensive depth map in the visual cortex

In this project, I focused on motion parallax and demonstrated that V1 forms a depth
map of the visual space from motion parallax when actively navigating in a VR envi-
ronment. Individual V1 neurons encode specific three-dimensional locations of the visual
cues, with different neuronal populations representing near and far visual cues. Although
neurons with distinct depth preferences are largely intermingled with each other, a correla-
tion between depth preferences and the anterior-posterior positions of individual neurons
was observed. Near depths are over-represented in the upper and lateral visual field, while
far-preferring neurons are more common in the lower visual field. Apart from motion par-
allax, visual scenes in the real world usually consist of rich binocular and monocular depth
cues. The visual cortex may create a comprehensive depth map by integrating various
depth cues to facilitate a coherent depth perception.

For mice, the main binocular depth cue is binocular disparity (Samonds et al., 2019).
Depth from binocular disparity is represented by the binocular zone of V1 as well as
HVAs such as RL and LM (La Chioma et al., 2019, 2020; Scholl et al., 2013). Interest-
ingly, similar to the distribution of depth representation from motion parallax, disparity
preferences in binocular V1 are largely intermingled (La Chioma et al., 2020). However,
fine-scale clustering of neurons with similar disparity preferences has been observed (La
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Chioma et al., 2020). Moreover, depth preferences from binocular disparity are related
to the elevation of RFs of neurons. V1 neurons with RFs in the lower half of the visual
field prefer nearer depths compared to V1 neurons representing the upper visual field
(La Chioma et al., 2019). RL, mainly covering the lower visual field, also prefer nearer
depths compared to V1. This is opposite to what I observed in V1 for depth tuning
from motion parallax – the part of V1 covering the upper visual field prefers near depths.
This distinction may stem from the difference in functional significance of the binocular
and monocular zones in mice. Mice use the binocular zone to support hunting behaviour
while keeping the prey in a retinal area with minimal optic flow (Holmgren et al., 2021;
Johnson et al., 2021). The lower visual field of the binocular zone may be primarily used
for locating prey during hunting. On the other hand, the upper visual field of the wide
monocular zone may specialise in the detection of nearby predators, when visual motion
is crucial and binocular information may not be always available.

The majority of pictorial cues, including perspectives, relative size, texture gradients
and shading, requires integrating and comparing visual features from multiple retinotopic
locations. In humans and primates, area IT, part of the ventral stream, was shown to be
involved in inferring depth from pictorial cues such as shading, perspective and texture
gradients (Heider, 2000; Liu et al., 2004; Marotta et al., 1997; Mon-Williams et al., 2001;
Turnbull et al., 2004). In mouse, texture was found to be represented mainly by LM and
LI, analogous to the ventral stream areas in primates for object recognition (Yu et al.,
2022). Existing evidence on the use of pictorial cues to aid depth perception has been
highly limited in mice. If mice do make depth judgements based on pictorial cues, it
may be supported by HVAs which integrate inputs from V1 and other HVAs conveying
local visual features such as spatiotemporal frequency, orientation, size and luminance
(Adesnik et al., 2012; Andermann et al., 2011; Bonin et al., 2011; Dipoppa et al., 2018;
Dräger, 1975; Gao et al., 2010; LeDue et al., 2012; Niell & Stryker, 2008).

The same cells in the visual cortex may receive multiple depth cues, such as disparity
and motion parallax signals, at the same time. How can they integrate all depth cues
to form a coherence perception of depth? Behavioural studies in humans show that
disparity and motion parallax are not processed independently by the human visual system
(Bradshaw & Rogers, 1996; Domini et al., 2006). When the depth information provided
by disparity and motion parallax was conflicted, the perceived depth was better predicted
by a composite score between disparity and motion parallax signals rather than a weighted
linear summation of both signals (Domini et al., 2006). Studies in macaques have found
that MT neurons either show matched or opposite preferences of depth sign in response
to motion parallax vs. binocular disparity cues (congruent cells vs. opposite cells, Nadler
et al., 2013). When depth was specified by both binocular disparity and motion parallax
cues, depth selectivity was enhanced in congruent cells but was slightly reduced in opposite
cells. Therefore, congruent cells may be responsible for integration of depth cues for more
accurate depth perception. On the other hand, opposite cells may signal the conflict
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between motion parallax and disparity cues (Nadler et al., 2013), which contributes to
the detection of object motion during self-motion (Kim et al., 2022; Kim et al., 2016;
Nadler et al., 2013). It will be interesting to measure the neuronal responses to motion
parallax and binocular disparity in the binocular zone of V1 or HVAs in mice to see how
neurons may support depth cue integration and object motion detection.

7.3.4 The role of V1 in depth perception from motion parallax
across species

It is crucial to recognize that visual cortex can play distinct roles in depth perception
for rodents and for other mammals such as cats and primates. Although the visual cortex
is indispensable for depth perception in rodents including mice, rats, and Mongolian
gerbils (Ellard et al., 1986; Meyer et al., 1966; Parker, Abe, Beatie, et al., 2022), lesions
in the cat neocortex or just the visual cortex did not affect the performance of cats on the
visual cliff (Cornwell et al., 1976; Meyer et al., 1966; Meyer, 1963), suggesting that the
visual cortex is not required for cats’ depth perception. Rodents share many similarities in
the functional organisations of the visual cortex with carnivores and primates, while also
displaying notable differences. For example, rodent visual cortex lack the clear columnar
structures in higher mammals for orientation and spatial frequency selectivity (Hubel &
Wiesel, 1962, 1963; Hubel & Wiesel, 1968, 1972, 1974; Hubel et al., 1977; Issa et al., 2000;
Ohki & Reid, 2007; Ohki et al., 2005) (although clusters of similarly-tuned cells exist, see
Ringach et al., 2016). Neurons in mouse V1 have much more complicated receptive fields
compared to Gabor-like receptive fields in macaques (Fu et al., 2024). Moreover, their V1
activity is modulated by locomotion to different degrees – mouse V1 neurons are widely
modulated by locomotion (Keller et al., 2012; Niell & Stryker, 2010; Saleem et al., 2013),
whilst spontaneous facial and body movement in macaques produce minimal effect on
their V1 neuronal activity (Galletti et al., 1984; Talluri et al., 2023). Therefore, while
V1 neurons in mice play a more significant role in processing motion parallax cues to
support depth perception, depth computation from motion parallax may predominantly
happen in HVAs for carnivores and primates. For example, many studies have identified
the area MT as a crucial structure supporting depth computation from motion parallax
for primates (Kim et al., 2015a; Kim et al., 2016; Nadler et al., 2008, 2009).

7.4 Functions of locomotion-related modulation in
V1

Locomotion-related modulation of V1 activity has been extensively characterised (Ayaz
et al., 2013; Dadarlat & Stryker, 2017; Erisken et al., 2014; Keller et al., 2012; Niell &
Stryker, 2010; Stringer et al., 2019) and the function of such modulation in visual pro-
cessing has been widely debated (Christensen & Pillow, 2022; Dadarlat & Stryker, 2017;
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Keller & Mrsic-Flogel, 2018; Keller et al., 2012; Muzzu & Saleem, 2021; Niell & Stryker,
2010). Some suggested that locomotion modulates the gain of sensory responses in V1,
thus enhancing the encoding of visual information in V1 populations (Bennett et al., 2013;
Dadarlat & Stryker, 2017; Harris & Thiele, 2011; Niell & Stryker, 2010). Others proposed
that visuomotor integration in V1 signals the prediction error between predicted and ac-
tual sensory feedback to support predictive coding and sensory learning (Jordan & Keller,
2020; Keller & Mrsic-Flogel, 2018; Keller et al., 2012; Muzzu & Saleem, 2021; Zmarz &
Keller, 2016). In this section, I will compare the leading hypotheses on the functional sig-
nificance of locomotion-related modulation in V1, and argue that visuomotor integration
enables V1 neurons to facilitate depth estimation from motion parallax.

7.4.1 Cortical state modulation and enhanced encoding of visual
information

It has been proposed that locomotion indiscriminately increases visual responses in V1
which amplifies visual signals (Niell & Stryker, 2010). Locomotion, similar to attention
or arousal (Harris & Thiele, 2011; Iriki et al., 1996; Lee & Dan, 2012; Reimer et al., 2014;
Vinck et al., 2015), was thought to induce a general modulation of cortical state that
elevates the gain of sensory responses in V1 (Bennett et al., 2013; Harris & Thiele, 2011;
Niell & Stryker, 2010). Niell and Stryker (2010) found that when mice were running
while viewing grating stimuli, there was a sharp elevation of visually-evoked responses
when the running speed exceeded 1 cm/s, but no further rise in activity was observed as
speed increased. This increased gain of sensory responses did not change the selectivity
towards sensory stimuli such as orientation tuning (Niell & Stryker, 2010). Locomotion
was found to correlate with reduced membrane potential variability in V1 neurons by
suppressing spontaneous firing rate (Bennett et al., 2013). Meanwhile it boosted the
sub-threshold responses to visual stimulation (Bennett et al., 2013). Therefore, it was
proposed that locomotion imposes a generic modulation of V1 activity by changing the
cortical state broadly in a nearly binary manner (Niell & Stryker, 2010).

The modulation on cortical state can contribute to enhancing encoding of visual in-
formation and assist visually-guided tasks. When presenting mice on a treadmill with
drifting gratings moving at multiple directions, running increased the mutual information
between neuronal responses in all V1 layers and visual stimuli, and the parameters of vi-
sual stimuli could be more accurately decoded from V1 population activity during running
compared to stationary periods (Dadarlat & Stryker, 2017). Running also significantly
reduces the noise correlations between V1 neuronal pairs, allowing more robust neural
representation of visual stimuli across trials (Dadarlat & Stryker, 2017; Erisken et al.,
2014). A more accurate encoding of visual information can lead to better performance for
visually-guided tasks. When testing trained mice on a visual detection task for contrast
discrimination of gratings, locomotion significantly promoted success discrimination rate
(Bennett et al., 2013). Nevertheless, the effect of locomotion on visually-guided tasks
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may vary with behavioural context. For example, when mice were trained on a task
to detect changes in grating contrast, running significantly impaired the performance of
mice trained on a spatially-selective task but not the non-selective group (McBride et al.,
2019). This suggests that locomotion may compete with mechanisms supporting selective
attention when locomotion is not relevant to the task (McBride et al., 2019).

On the other hand, our data and some other previous studies (Christensen & Pillow,
2022; Saleem et al., 2013) do not support that locomotion only induces a generic change in
cortical state. Instead, locomotion-related modulation in V1 operates in a more complex
manner. In our datasets, running did not modulate the activity of all V1 neurons in
the same manner – V1 populations cover a wide range of running speed preferences,
and running speed signals modulate the gain of optic flow responses with the greatest
responses at the conjunction of individual neuron’s preferred running speed and optic
flow speed. This modulation is neither binary nor monotonic, as the degree of modulation
varies continuously with running speed, and the amplitude of modulation does not merely
monotonically increase or decrease. Non-monotonic running speed tuning in V1 neurons
has been reported before, when V1 neuronal activity was measured in the dark or during
visual stimulation while mice were running on a treadmill (Christensen & Pillow, 2022;
Saleem et al., 2013). Therefore, locomotion does not merely induce a simple generic or
binary change to sensory responses in V1, but modulates neuronal activity according
to individual neuron’s running speed tuning. Nevertheless, it is possible that locomotion
does change the cortical state and applies an uniform effect on all neurons to some degree,
whereas running speed tuning in individual neurons provides further activation of specific
populations related to the visual stimuli or tasks. It is also possible that some neurons
are affected by running in a binary manner, whereas others have specific selectivity for
running speed.

7.4.2 Predictive coding

Another hypothesis on the function of locomotion-related modulation pertains to pre-
dictive processing (Jordan & Keller, 2020; Keller & Mrsic-Flogel, 2018; Keller et al.,
2012; Muzzu & Saleem, 2021; Zmarz & Keller, 2016). There are two main streams of
thoughts regarding how neural circuits encode information (Keller & Mrsic-Flogel, 2018)
– the representational framework (Marr, 2010) and the predictive processing framework
(Clark, 2016). The representation framework suggests that neuronal activity in the sen-
sory system is mostly driven by bottom-up feed-forward inputs, with layers of feature
detectors representing different levels of object features in the environment (e.g. from
edges to shapes and faces, Martin, 1994). On the other hand, the predictive processing
framework proposes that the brain can form and use an internal model of the world to
make predictions about sensory inputs based on current locomotion and past sensory ex-
perience (Friston, 2005; Körding & Wolpert, 2004; Rao & Ballard, 1999; Spratling, 2010).
In this framework, cortical sensory responses are driven by the prediction errors between
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the actual bottom-up sensory signals and the top-down prediction of sensory inputs based
on a generative model of the world. In this way, the internal representation can be up-
dated based on prediction errors or even in absence of bottom-up inputs, which helps
sensorimotor learning and simulating the environment (Keller & Mrsic-Flogel, 2018).

The idea that predictive coding underlies locomotion-related modulation in V1 came
from a series of experiments when visuomotor mismatch was created in the visual stimuli
(Jordan & Keller, 2020; Keller & Mrsic-Flogel, 2018; Keller et al., 2012; Muzzu & Saleem,
2021; Zmarz & Keller, 2016). A small subset of L2/3 V1 neurons (13% measured by
Keller et al., 2012) were found to be responsive (or displaying subthreshold responses)
to a mismatch between running speed and visual flow speed created by a sudden halt in
visual flow (mismatch neurons), but not responding to passive viewing of visual flow halts
(Jordan & Keller, 2020; Keller et al., 2012; Zmarz & Keller, 2016). This was interpreted
as prediction error responses to the mismatch between bottom-up optic flow speed input
and top-down predictions of optic flow speed based on current running speed.

However, as discussed in Chapter 5, the depth-selective responses observed in V1
seem not to be a result of prediction error responses. First, since optic flow speed is
determined by the ratio of running speed and depth, optic flow speed cannot be accurately
predicted without the information on depth. Second, during closed loop experiments when
visuomotor mismatch was absent, depth-selective neurons were active as long as stimuli
were presented at their preferred depths and retinotopic locations. Third, the conjunctive
coding of running speed and optic flow speed does not depend on closed loop coupling of
locomotion and visual feedback. During open loop experiments when the predicted optic
flow did not match the actual sensory feedback, depth-selective neurons displayed similar
peak response amplitudes compared to closed loop conditions. The optic flow speed
preferences and running speed preferences of individual neurons were also maintained in
open loop. Therefore, depth selectivity in V1 observed in my experiments does not reflect
prediction error.

Mismatch responses described in previous studies can be explained by depth selectiv-
ity. Neurons selective for negative prediction errors (slower visual flow than predicted)
may reflect a preference for a lower gain of optic flow responses and correspond to far-
preferring cells, whereas neurons selective for positive prediction errors (faster visual flow
than predicted) may be a subset of near-preferring cells. Alternatively, visuomotor pre-
diction error and depth may be represented by independent neuronal populations in V1.
While mismatch neurons identified in previous studies only occupy a small proportion of
V1 neurons, depth-selectivity seems more widespread. Another possibility is that depth-
selective responses in V1 neurons may form the basis for predictive coding in downstream
areas. The prediction of optic flow can be refined with depth information, contributing
to a more accurate internal model of the world.
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7.5 The role of V1 depth selectivity in spatial per-
ception

Mouse V1 is largely organised in retinocentric coordinates which were inherited from
early visual areas (Dräger, 1975; Kalatsky & Stryker, 2003; McLaughlin & O’Leary, 2005;
Wagor et al., 1980). In order to perform goal-directed behaviour such as navigation
towards a target or prey capture, the environment needs to be represented in an egocentric
coordinate system, so that the environment is anchored to the position of a given body
part and the representation remains stable regardless of eye movements (Martins et al.,
2024). Egocentric information can then to used to form an allocentric representation of
the environment, which is invariant to the animal’s pose and facilitates the formation of
an internal model of the world for spatial navigation (Wang, Chen, & Knierim, 2020).

My experiments leveraged the fact that head-fixed mice make far less eye movements
compared to freely-moving mice (Holmgren et al., 2021; Meyer et al., 2020; Michaiel et
al., 2020). They do not exhibit non-conjugate eye movements compensatory to head tilts
for visual field stabilisation, but only make conjugate eye movements in a "saccade and
fixation" manner in response to head rotation attempts. The analysis of eye movements
of mice in my experiments also confirmed that eye positions were generally stable during
the recording and saccades were rare (Figure 4.8I-L). Therefore, I did not calibrate the
distance of sphere stimuli according to eye movements. However, in freely-moving condi-
tions, the activity of depth-selective neurons in V1 are expected to anchor to the retinal
image, and gaze direction changes caused by eye and head movements would drastically
affect neuronal responses in V1 even if the animal’s body remains stationary with respect
to the stimuli.

Therefore, to compute the location of stimuli in an egocentric coordinate (i.e. with
respect to the animal’s body and invariant to gaze direction), V1 depth-selective responses
or depth signals from other sources in retinocentric coordinates needs to be integrated
with gaze directions to form an egocentric representation of object locations in the envi-
ronment. A theoretical model for the process of transforming retinocentric to egocentric
representation has been proposed (Martins et al., 2024; Pouget, 1993; Zipser and Ander-
sen, 1988, Figure 7.1). First, visual inputs in retinotopic coordinates and eye position
signals are integrated in neurons that jointly encode both visual stimuli and eye position.
Next, the activity of joint-coding neurons are combined which gives rise to egocentric rep-
resentation that does not vary with eye position. This is similar to the model discussed
in Chapter 5 (Figure 5.11) of how depth coding can arise from joint coding of running
and optic flow speeds.

In mammals, information on eye position can be obtained from proprioceptive sig-
nals indicating extraocular muscle position and the efference copies of the eye movement
motor command (Ambrad Giovannetti & Rancz, 2024; Wurtz, 2008). Motor command
that directly innervate in the eye muscles in mice comes from the oculomotor nuclei in
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Figure 7.1: Model of the transformation from retinocentric to egocentric rep-
resentation. (A) Model schema of the transformation from retinocentric to egocentric
representation, adapted from Figure 5.11 and Martins et al., 2024. At the early stage of
visual processing, visual inputs are encoded in retinocentric coordinates (left). At inter-
mediate stages, retinotopic inputs and eye position signals are integrated in neurons that
jointly encode both visual stimuli and eye position (middle). Next, inputs from joint-
coding neurons are combined, giving rise to egocentric representation that is invariant to
eye position (right).

the midbrain and brainstem, which is controlled by multiple subcortical and cortical ar-
eas such as the accessory optic system, the vestibular system, cerebellum, SC, RSC, the
thalamus, the visual cortex and the motor cortex (Ambrad Giovannetti & Rancz, 2024;
Sparks, 2002). In mice, eye positions are strongly coupled with head movements (Holm-
gren et al., 2021; Meyer et al., 2020; Michaiel et al., 2020). The visual cortex can obtain
head movement signals from vestibular organs (Cullen, 2019; Vélez-Fort et al., 2018), SC
(Wang et al., 2015; Wilson et al., 2018) and secondary motor cortex (M2, Guitchounts
et al., 2020).
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Although neurons that jointly code depth and gaze direction have not been directly
identified, the modulation of eye or head movements of neuronal activity has been iden-
tified across species. Surprisingly in mice, encoding of head and eye movements can be
found in V1 in addition to the representation of visual information (Bouvier et al., 2020;
Guitchounts et al., 2020, 2022; Meyer et al., 2018; Parker, Abe, Leonard, et al., 2022).
Bouvier et al. (2020) explored the modulation of V1 activity by simulated head movement
induced by body rotation in the dark and light conditions without explicit visual stimuli.
They found that while head movement mainly suppressed V1 activity in the dark, head
movement excited V1 neurons across all cortical layers in ambient light. Guitchounts
et al. (2020) further investigated in the encoding of head-orienting movements in V1 in
freely-moving rats. Similar to Bouvier et al. (2020), head-orienting movements were cor-
related with suppression of overall V1 activity in the dark and elevation in V1 activity in
the light. Moreover, there are V1 cells tuned to direction of head movements, yet their
head direction tuning was not correlated between the dark and light conditions. The
studies above show that V1 activity is modulated by head movements, but the conclusion
can be confounded by the changes in retinal images as a result of gaze changes. Using
miniature head-mounted cameras (Meyer et al., 2018; Parker, Abe, Leonard, et al., 2022)
allows the real-time tracking of the eye and head positions of the animal to obtain the
gaze-corrected, retinocentric visual scene. Parker, Abe, Leonard, et al. (2022) show that
the activity of many V1 neurons is best described by a multiplicative integration between
visual inputs and eye and head positions. This again challenges the traditional view of
V1 being a truthful representation of the retinal image. Modulation of neuronal activity
by eye or head positions or gaze directions have been found in V1, V2, V3, V4, MT,
MST, V6, and PPC of primates (Andersen & Mountcastle, 1982; Andersen et al., 1985;
Bremmer et al., 1997; Durand et al., 2010; Galletti & Battaglini, 1989; Galletti et al.,
1995; Guo & Li, 1997; Morris & Krekelberg, 2019; Morris et al., 2012; Rosenbluth &
Allman, 2002; Sakata et al., 1980; Trotter & Celebrini, 1999) and the visual cortex of
humans (Merriam et al., 2013).

Finally, egocentric representation of distances can be found in various areas. In areas
such as retrosplenial cortex (RSC), dorsomedial striatum (DMS), lateral entorhinal cortex
(LEC), postrhinal cortex (POR) and PPC, some neurons were found to be excited or
inhibited when rats were at a specific distance to any wall and are moving towards the
wall in a specific heading direction or body orientation (egocentric boundary vector cells),
and their responses to local boundaries can be generated across environments (Alexander
et al., 2020, 2022; Gofman et al., 2019; Hinman et al., 2019; Wang et al., 2018). Some
LEC cells are also tuned to distance to 3D objects or goal at a specific bearing (Wang et
al., 2018). It was proposed that these egocentric spatial representation can be combined
with heading direction and body movements to generate allocentric spatial representation
in median entorhinal cortex (MEC) and the hippocampal formation (Bicanski & Burgess,
2018; Byrne et al., 2007; Hinman et al., 2019; Martins et al., 2024). Examples of allocentric
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coding of distances include allocentric boundary vector cells found in the subiculum of
the hippocampal formation, which would fire when the animal was at the specific distance
to a boundary in a specific allocentric direction (regardless of the animal’s head or body
direction, Lever et al., 2009). The firing fields of boundary vector cells remained stable
across environments with boundaries of different colours, shapes, or materials and across
environments with or without vertical walls (Lever et al., 2009). Border cells previously
found in MEC that fire along environmental boundaries (Savelli et al., 2008; Solstad et al.,
2008) might include a subset of boundary vector cells that are tuned to short distances
(Lever et al., 2009). Boundary vector cells have been proposed to provide environmental
inputs to the hippocampus to assist the formation of place fields in place cells (Burgess
et al., 2000; O’Keefe & Burgess, 1996) that represent specific allocentric spatial locations
and are thought to be key for forming a cognitive map of the space (O’Keefe, 1976).
Similarly, cells that encode the distance and the animal’s allocentric direction to discrete
objects in the environment (object vector cells) were also identified in the MEC (Høydal
et al., 2019). It is also proposed that allocentric spatial information can be converted
back to egocentric representation to facilitate behavioural output (Bicanski & Burgess,
2018; Byrne et al., 2007; Hinman et al., 2019).

In summary, depth-selective responses in V1 can form an integral part of the wider
spatial navigation system. Combined with signals conveying eye and head positions and
body movements, the representation of depth in retinotopic coordinates in V1 can be
used to create egocentric and allocentric representation of three-dimensional locations of
objects in the environment, which enables animals to perform spatial navigation, prey
capture and other visually-guided tasks.

7.6 Circuit mechanisms of depth coding in mouse V1

7.6.1 Long-range inputs of locomotion signals

Depth-selective responses in V1 neurons require the integration between visual mo-
tion and locomotion-related signals. This integration might be inherited from upstream
subcortical inputs to V1 or generated in V1 de novo. For example, some degrees of
locomotion-related modulation can already be observed in dLGN, LP and SC. Although
Niell and Stryker (2010) did not find a significant change in visually-driven LGN activity
during running compared to stationary periods, Erisken et al. (2014) later found that
both spontaneous and visually-driven neuronal activity in dLGN were enhanced at lo-
comotion onset, although to a smaller degree compared to V1. When imaging neuronal
responses to grating stimuli in a running mice under an open-loop condition, (Roth et
al., 2016) found that ∼20% dLGN boutons in V1 exhibited activity that cooperatively
integrate running and visual motion speed signals. On the other hand, many of the LP
boutons displayed anticorrelated tuning to running and visual motion speed, suggesting
that they may signal the visuomotor mismatch between predicted visual motion speed
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based on running speed and actual visual motion speed (Roth et al., 2016). In superficial
SC, running did not exert a prominent trend (increase or decrease) in the activity of the
whole population (Savier et al., 2019). However, there was a slight increase in activity of
a proportion of cells (20%) and slight decrease in some other cells (10%) during running
compared to stationary periods (Savier et al., 2019). However, this modulation in SC was
much weaker than what was observed in V1, with smaller spontaneous firing rate and
response variability (Savier et al., 2019). Therefore, although V1 can potentially inherit
some locomotion-related modulation of visual responses from subcortical inputs, a greater
degree of visuomotor integration is likely to happen within V1.

V1 can also directly receive running speed signals. The basal forebrain receives pro-
jections from the mesencephalic locomotor region which elicits and maintains locomotion
(Dautan et al., 2021; Lee et al., 2014; Nauta & Kuypers, 1958; Noga & Whelan, 2022;
Shik & Orlovsky, 1976). During locomotion, cholinergic innervations from the basal fore-
brain directly activate the nicotinic receptors of VIP neurons in V1 (Fu et al., 2014). The
secondary motor cortex (M2) and the A42b region of anterior cingulate cortex also pro-
vide a major input to L2/3 and L6 excitatory cells and PV interneurons in V1 (Leinweber
et al., 2017).

To further investigate how long-range inputs contribute to locomotion signals in V1,
inactivation of key input areas can be performed to examine the effects on V1 depth-
selective responses.

7.6.2 Local circuitry for visuomotor integration

Local excitatory-inhibitory circuitry within V1 may provide a basis for multiplicative
visuomotor integration in V1 pyramidal neurons. Previous research has found that VIP
neurons, a group of interneurons that mainly inhibit SST inhibitory neurons (Jiang et
al., 2015; Pfeffer et al., 2013), elevated their responses during running with or without
visual stimulation (Fu et al., 2014; Jackson et al., 2016; Reimer et al., 2014). On the
other hand, in darkness, the activity of SST cells were suppressed by locomotion, and
PV populations showed both positive and negative association with locomotion (Fu et
al., 2014). Therefore, it was proposed that locomotion signals activate VIP neurons and
elevate the activity of pyramidal neurons via disinhibition (Fu et al., 2014).

Apart from a broad increase in visual responses, can disinhibition contribute to the
conjunctive coding of running speed and optic flow speed that I observed in Chapter 5?
Conjunctive coding requires a multiplicative integration of running speed and optic flow
speed tuning in individual neurons. Disinhibition has been implicated in multiplicative
computation in T4 neurons, supporting the computation of direction of visual motion in
Drosophila melanogaster (Groschner et al., 2022). The supralinear integration of signals
for visual motion computation in individual T4 direction-selective neurons comes from the
coincidence of cholinergic excitation and the release from glutamatergic shunting inhibi-
tion through the reduction in conductance (Groschner et al., 2022). The multiplicative
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integration of running and optic flow speed could be a result of a similar disinhibitory
circuitry, where excitatory inputs from optic flow speed-tuned neurons coincides with the
disinhibitory signals carrying running information from VIP neurons. This mechanism
would rely on the formation of specific connections between excitatory and inhibitory
neuronal pairs with opposite running speed tuning.

On the contrary, evidence have been found to challenge the disinhibition model of gain
modulation in V1. Polack et al. (2013) using in vivo current-clamp whole-cell recordings
has found an increase in both spontaneous and visually evoked firing rates in both PV
neurons and SST neurons during running (although only 9 PV neurons and 10 SST neu-
rons were sampled due to restrictions of the recording technique). Pakan et al. (2016)
further suggested that locomotion-related modulation of neuronal activity depends on
the visual context. Locomotion increased the activity of VIP neurons and PV neurons
during running both in darkness and during visual stimulation, and visual stimulation
slightly reduces the average activity of VIP neurons. On the other hand, SST neuronal
responses to locomotion were more context-dependent. During visual stimulation, loco-
motion significantly increased SST neuronal responses. In darkness, SST neurons could
increase or decrease their activity or stay non-responsive during locomotion, and the SST
population on average show no consistent changes in responses during locomotion. Over-
all, visual stimulation significant increased the average responses of SST neurons as well
as the correlation between running speed and neuronal responses. Therefore, Pakan et
al. (2016) proposed that disinhibition may explain the activity of a small proportion of
SST neurons whose activity was inhibited during locomotion in the darkness. On the
contrary, locomotion-related modulation in the rest of neurons may manifest in a more
context-dependent way. Neuromodulatory inputs evoked by locomotion may not only ac-
tivate VIP neurons, but also directly activate SST, PV and excitatory neurons in V1. In
darkness, SST neurons largely remain unresponsive to locomotion due to sub-threshold
influence of neuromodulatory inputs and VIP neuron activation. During visual stimula-
tion, both SST and excitatory neurons are activated by overcoming the inhibition by VIP
and PV neurons.

A recurrent network model similar to what was proposed by (Salinas & Abbott, 1996)
may be an alternative way of explaining the multiplicative integration of running speed
and optic flow speed that gives rise to depth selectivity. Neurons are recurrently con-
nected in the network of the visual cortex, with potential connections forming between
excitatory neurons with similar running speed and optic flow speed preferences. In this
way, excitatory external inputs carrying similar running speed and optic flow speed in-
formation can be amplified in groups of recurrently connected neurons with like-to-like
connections in a multiplicative manner. On the other hand, inhibitory neurons, which are
often broadly tuned (Packer & Yuste, 2011; Xue et al., 2014; Znamenskiy et al., 2024),
may form broader connections with excitatory neurons with slightly different depth pref-
erences, regulating the network dynamics. Dipoppa et al. (2018) further constructed a
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recurrent network model for predicting visuomotor responses in different cell types in V1.
In this model, locomotion increases external excitatory visual inputs to all cell types while
decreasing recurrent excitation between pyramidal cells and boosting recurrent inhibition
between PV cells. The effects of locomotion on visual responses depends on the size of
the stimuli, with VIP cell activity being modulated by small stimuli and SST cells by
large stimuli.

Nevertheless, the studies above usually treat running as a binary state – stationary or
locomotion (Fu et al., 2014; Jackson et al., 2016; Jiang et al., 2015; Pakan et al., 2016;
Pfeffer et al., 2013; Polack et al., 2013; Reimer et al., 2014), whereas neuronal responses
to running in V1 is largely dependent on the running speed and the running speed tuning
of individual neurons (shown in Chapter 5, Christensen and Pillow, 2022; Saleem et al.,
2013). It remains unclear how the connections and dynamic interactions between different
cell types give rise to the multiplicative visuomotor integration observed in this study. As
we are still discovering new excitatory-inhibitory connection motifs (Kuan et al., 2024;
Znamenskiy et al., 2024), further investigation is needed to fully uncover the connection
patterns between different types of excitatory and inhibitory neurons, and to investigate
how local circuitry contribute to visuomotor integration in V1.

7.7 Conclusion and future outlooks

In conclusion, my project serves as a crucial step toward advancing our understanding
of neural mechanisms underlying depth perception – an essential part of animal behaviour
in this 3D world. Using mice as the model organism, I first established the importance of
depth perception in mice using visual cliff as a behavioural assay and show that depth per-
ception is innate for mice. Then, I focused on motion parallax, a powerful monocular depth
cue for mice which remained largely unexplored. Combining two-photon calcium imaging
and 3D VR environments, I show that pyramidal neurons in V1 have three-dimensional
receptive fields during active locomotion – they encode not only the retinotopic locations
but also virtual depths of the visual stimuli. The representation of depth is widespread
in V1, with neurons representing similar retinotopic location being able to respond to a
wide range of depths. Depth selectivity from motion parallax arises from the conjunctive
coding of running speed and optic flow speed in a multiplicative manner. Overall, this
study offers a groundbreaking perspective on the role of V1 activity in visual processing.

This project opens up many exciting avenues for future research. One important di-
rection is to characterise depth perception (and visual responses in general) of mice in
more naturalistic environments. Visual neuroscience has transitioned from using simple
parametric stimuli (Andermann et al., 2011; Bonin et al., 2011; Dräger, 1975; Gao et al.,
2010; LeDue et al., 2012; Niell & Stryker, 2008) to more naturalistic ones (Bashivan et
al., 2019; Fu et al., 2024; Walker et al., 2019) to probe the activity of the visual cortex.
This project further emphasizes the importance of incorporating the third dimension –
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depth – into visual stimuli. In future experiments, more elements from the real world
can be included to make the visual responses studied in lab as naturalistic as possible.
For example, mice could be tested in freely moving conditions, with natural scenes fea-
turing richer depth cues, such as binocular and pictorial cues, objects at varying depths,
and introducing object motion. VR provides a perfect tool for creating complex visual
environments that can be easily manipulated.

Another critical avenue of investigation is to establish a causal link between neuronal
activity in the visual system and depth perception. In this project, I measured V1 neuronal
responses to stimuli at different distances to the observer. This does not imply a causal
relationship between neuronal activity in the visual cortex and depth perception. Parker,
Abe, Beatie, et al. (2022) have shown that V1 is required for both binocular and monocular
depth perception, yet the role of higher visual areas is unknown. Further experiments are
needed to establish a causal link between neuronal activity at different parts of the visual
cortex and depth perception, by testing the performance of mice on the visual cliff under
optogenetic or chemogenetic inhibition of different visual areas. Once the areas causally
involved in depth perception are identified, further research can focus on the role of specific
neuronal populations within these regions in depth perception.

A third direction is to systematically characterise the representation of depth across
the visual system. In this project, I focused on the depth representation in L2/3 of
V1. Further experiments can focus on characterising the depth-selective responses across
different subcortical regions, HVAs and layers of the visual cortex. Among HVAs, anterior
HVAs (e.g. AM, A, RL) may prefer near depths while posterior HVAs (e.g. PM) may
prefer far depths based on their speed preferences (Andermann et al., 2011; Garrett et al.,
2014; Glickfeld & Olsen, 2017; Marshel et al., 2011; Roth et al., 2012). Neurons in the
shallower and deeper layers of V1 may have different tuning properties to running speed,
optic flow speed and depth. In the output layers of V1 or in HVAs, it may be possible to
identify neurons that are tuned to depth invariant of running speed or optic flow speed
tuning.

Finally, the innate nature of depth perception provides a perfect platform to explore
the relationship between gene expression patterns, circuit mechanisms and behavioural
functions. In vivo imaging can be combined with high-throughout spatial transcriptomics
to link in vivo with ex vivo data. Spatial transcriptomics enable gene expression patterns
to be extracted while retaining the spatial information of cells. By registering in vivo
imaging data with ex vivo spatial transcriptomics data, functions, connectivity and cell
types of the same cells can be connected. Several interesting questions can be explored.
First, do different excitatory cell types in V1 vary in their depth preferences? Do inhibitory
cell types have depth selectivity? If so, how are they tuned to running speed, optic flow
speed and depth? If HVAs specialise in their depth preferences, does this specialisation
come from different populations of V1 projection neurons? Exploring these questions will
provide valuable insights into the circuit mechanisms underlying depth perception.
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