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Abstract—Gait analysis is a crucial method for evaluating 
and monitoring an individual's health. A critical aspect of this 
analysis is understanding how forces are distributed across the 
foot while walking. Existing plantar pressure insole systems 
often lack the resolution needed for detailed foot analysis. To 
address this, a real-time insole system is presented with 253 
high-density resistive pressure sensors (4 sensors per cm²) for 
each foot with a wireless transfer rate of 60 Hz. In addition, our 
work combines the insole hardware with a custom convolutional 
neural networks (CNNs) and long short-term memory (LSTM) 
model to predict six lower body joint landmark positions. The 
prediction achieves a coefficient of determination (R²) of 0.83 
and a mean squared error (MSE) ranging from 7.0e-4 to 9.6e-4. 
With an inference time of 0.6 ms, this system provided accurate, 
high-resolution plantar foot pressures and insights into 3D joint 
movements in the lower body. It is a promising tool for 
applications in rehabilitation and sports performance 
optimisation. 

Keywords—Body landmark prediction, Flexible sensor, 
Gait analysis, Smart insole. 

I. INTRODUCTION  
Gait, the posture and behaviour characteristic of the 

human body during walking, often reflects an individual’s 
physical condition and musculoskeletal functions. Monitoring 
and analysis of gait based on wearable sensors has recently 
shown great potential in a wide range of healthcare 
applications [1], [2]. The distribution of plantar forces during 
various phases of the gait cycle can identify changes in body 
postures and motions. These subtle force variations are 
essential for predicting the detailed motion of lower body 
joints and are key to many health monitoring and 
biomechanical studies [3]. However, current gait analysis 
systems, particularly those using insole-based sensors, often 
rely on a limited number of large sensors [4]. These systems 
may underestimate peak pressure values and omit details in 
certain areas of the foot due to the limited spatial resolution of 
large sensors. Other researchers have argued that using a 
denser array of smaller sensors can accurately collect 
comprehensive data across the entire foot [5]. Capturing high-
resolution pressure data in real-time not only offers more 
valuable insights into gait dynamics but also provides new 
possibilities for lower limb joint motion prediction, an area 
that has been relatively underdeveloped in the existing 
literature. 

Previous research on gait analysis has focused on areas 
such as activity classification or posture recognition. For 
instance, D. Chen et al. [6] have used pressure sensors 
embedded in insoles to classify everyday activities such as 
walking, running, or standing. Another study has successfully 
achieved basic posture classification using a limited number 
of sensors [7]. However, in application scenarios such as 

rehabilitation therapy and sports performance optimisation, 
more detailed posture estimation methods are required. 
Precise joint motion feedback can prevent the development of 
undesirable movement patterns, thus creating a need for 
further exploration in this area. Although camera-based 
motion capture systems have achieved thorough and accurate 
lower body posture prediction, they still face limitations in 
practical applications, including susceptibility to obstacles and 
high costs, which hinder their widespread use in real-life 
settings. There is still a significant research gap for accurate 
lower body joint estimation using high-resolution insoles, 
which could hold great potential in many applications, 
especially in sports and rehabilitation training. 

In this paper, a designed and fabricated high-resolution 
insole system is described. A sensor density of 4 sensors per 
cm², totaling 253 sensors for a UK size 8 insole. The insole 
design leverages existing fabrication technologies, enabling 
cost-effective large-scale manufacturing. The sensing 
hardware is designed to balance size, power consumption, and 
data acquisition speed. It wirelessly transfers all sensor data to 
a PC, providing plantar pressure imaging at 60 Hz. Using 
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Fig. 1. (a) Predicted lower body joints. (b) Proposed insole system. (c) 
Display of pressure heatmap. (d) Customized neural network for lower body 
prediction. 
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custom convolutional neural networks (CNNs) and long short-
term memory (LSTM) neural network, the system inputs these 
pressure images to predict six lower body posture landmarks 
as shown in Fig.1 (a) with an average R2 of 0.83, offering a 
novel tool for body biomechanical analysis by transforming 
two-dimensional plantar pressure data into three-dimensional 
(3D) posture insights. The rest of this paper is organised as 
follows: Section II discusses the system architecture, 
including the insole design and the data acquisition system. 
Section III demonstrates the experimental design, data 
preprocessing process and deep learning algorithm. Section 
IV evaluates the experimental results. Conclusions are in 
Section V. 

II. OVERVIEW AND SYSTEM DESIGN 
The work can be summarised as a pipeline composed of 

three key stages. 1) As shown in Fig. 1(b), customised insole 
integrated with a small sensor readout board is fabricated . It 
collects plantar pressure data to generate foot pressure heat 
maps wirelessly. 2) A depth camera is used to capture the 
selected key body posture landmarks of the lower limbs, 
which serve as label data for the neural network. 3) Features 
from the plantar pressure heat maps are extracted and 
implemented as inputs, while the three-dimensional landmark 
coordinates of the lower limb joints serve as labels. These are 
then fed into a customised neural network model, which 
enables the prediction of three-dimensional coordinates of 
lower limb joints based on plantar pressure. The work 
pipelines are illustrated in Fig.1 (a) to (d), encompassing the 
entire process from insole fabrication, hardware design, data 
acquisition and feature extraction to model training and 
prediction. 

A. Insole Design and Fabrication 
As shown in Fig.1, the insole consists of a flexible printed 

circuit board (FPC) base and a Kapton top layer that 
sandwiches the circular piezoresistive material (Velostat). The 
only feasible design that can accommodate such a large sensor 
array is a row-column readout matrix. On the FPC base, each 
sensor requires two electrode contacts corresponding to the 
row and column readout lines. The electrode contacts are 
arranged in two concentric circles, as shown in Fig. 2. The 
pressure response characteristics of the designed circular 
Velostat sensors were tested with a pressure gauge, where 
different static pressures are applied using a clamp, and 
changes in resistance were measured. The resulting resistance-
pressure curve is shown in Fig. 2. A significant drop of 
resistance is observed in the low-pressure region (0-25 kPa), 

where resistance changes are not directly proportional to the 
applied pressure. From the 25 to 200 kPa, a region of interest 
to the insole applications, the resistance of the sensor 
demonstrated a more linear and steadier decreasing trend. 

The placement of the pressure sensor needs to cover all 
critical areas of the foot, such as the heel, the arch, and the 
edges, to monitor the pressure distribution across different 
foot regions. With a length of 26 cm and a width of 8 cm, the 
corresponding pitch of the sensor positions is determined to 
be 7.5 mm; in other words, there are approximately four 
sensors per cm2, which is comparable to an industry-standard 
pressure sensing mat [8]. Using a two-layer FPC, all the tracks 
can be placed on the bottom layer to facilitate easy routing. 
Due to the unsymmetrical shape of the insole, routings are 
interconnected diagonally, forming a grid of 32 rows by 10 
columns. This arrangement optimises the connection paths 
when reading the piezoresistive values. 

The fabrication process is critical in determining its cost 
and scalability, which ultimately affects the insole’s 
likelihood of reaching end-users. It consists of: 1) each 
electrode is laser-cut from a sheet of Velostat into individual 
circular sensors with a 3 mm radius. This radius is chosen to 
align the FPC electrodes better, allowing slight overlays to 
ensure good contact. These sensor cutouts are arranged in a 
pattern that matches the FPC electrode layout. Notably, the 
sensor is still attached to the original sheet with a 1 mm arc 
bridge. 2) the Velostat sheet is firmly adhered to Kapton tape. 
Then, the Kapton tape is peeled away from the sheet, and the 
1 mm arcs break, leaving the individual sensors securely 
bonded to the tape. This tape, with the sensors arranged in the 
desired pattern, is subsequently adhered to the FPC. The 
Kapton tape adhesion ensures that sensors remain in place and 
do not detach or shift due to friction or movement during use. 
This fabrication process method is quick, reproducible, and 
scalable, and it can be automated on a large scale. 

B. Sensor Readout Hardware Implementation 
The readout hardware consists of a customised PCB 

stacked on an ESP32 Microcontroller (Espressif, China), as 
shown in Fig.3. Controlled by the ESP32, two 32-channel 
MUX (ADG732BSUZ) scan the rows and columns of the 
sensor array. A potentiometer is adjusted to accommodate 
high-pressure regions. Before reading the resistance changes 

 
 
Fig. 3. Hardware architecture. 
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Fig. 2. Sensor resistance versus pressure curve. 

Electrode 

3 mm Ω

Velostat



across the pressure sensors by ESP32’s analog-to-digital 
converter (ADC), a pattern lookup table determines whether 
the chosen position within the matrix contains an active sensor. 
This ensures efficient data acquisition speed since only 253 
out of the 320 possible points are occupied by sensors.  

C. Wireless Connectivities 
The ESP32 is equipped with a Wi-Fi module that enables 

wireless connectivity, allowing multiple MCU devices to 
connect to a PC via access point (AP) mode. The system 
software is developed and configured using Espressif’s ESP32 
platform, allowing easy identification of the left and right foot 
insoles. To achieve a high transmission rate, data packets are 
encoded in a compact format, including sensor IDs and 
pressure values for each frame. The user data program (UDP) 
protocol, a connectionless communication protocol in the 
transport layer, is applied to send data packets, achieving a 
short delay time for real-time data transmission.  

After receiving the binary data packets, the PC decodes 
the sensor IDs and pressure values using a Python script. The 
decoded data is then used to generate heatmaps for both feet, 
visualising pressure distribution dynamically at 60 frames per 
second (FPS). Table I compares this system with other works 
and commercial products, demonstrating both high sensor 
density and fast FPS as a wearable plantar pressure system. 

TABLE I.  PLANTAR PRESSURE SYSTEM COMPARISON 

Study/
Work 

Number 
of 

Sensors  

FPS 
(Hz) 

Sensor 
Type 

Wearable 
Insole 
(Y/N) 

Pressure 
Range 
(kPa) 

This 
work 

253 60 Resistive Y 0 - 200 

[9]  16 100 Capacitive Y 0 - 50 

[10] 24 NA Capacitive Y 0 - 200 

[11] 99 400 Capacitive Y 15 - 600 

[8] 6080 100 Capacitive N 10 - 1270 

[12] 2500 60 Resistive N 1.2 - 63 
 

III. THREE DIMENSION POSTURE PREDICTION 

A. Experiment Setup 
Fig. 4 (a) illustrates the experimental setup used for data 

collection during a 6-meter walk. Two-foot pressure and body 
posture data were recorded using the smart insole and Intel 

RealSense Depth Camera D435i (Intel, USA), respectively. 
Although the smart insole's wireless data transfer rate can 
achieve 60 FPS, the depth camera's RGB frame rate is 30 FPS. 
The overall system is downsampled to match the camera. To 
capture the 3D coordinates of body joints landmarks, 
Mediapipe was used to predict the horizontal and vertical 
space information of the joints (i.e., the 2D x and y coordinates) 
from the RGB frame. The depth frame from the depth camera 
was aligned with the RGB frame to provide the complete 3D 
coordinates of the body joints. Subsequently, 9 key joint 
landmarks from the 33 predicted pose landmarks were 
extracted as shown in Fig. 4 (b). 

Five participants were recruited for this experiment, each 
with U.K. shoe size 8 ± 1, height 175 ± 5 cm, and weight 75 
± 15 kg. They walked back and forth in a straight line along 
the six-meter walkway, with each contributing 5,000 frames 
of data to the dataset for subsequent training. [This study was 
approved by the Ethics Committee of University College 
London, ID: 27647/001]. 

B. Data Preprocessing 
Several preprocessing steps are applied to the raw foot 

pressure and 3D coordinates of the nine joints to prepare the 
collected data for analysis and training, as shown in Fig. 4 (c).  

For label preprocessing, Z-score, which indicates how far 
a particular data point is from the mean of the data, is 
calculated for each joint using equation (1):  

z  =  
x  −  μ
σ

(1) 

where μ is the mean and σ is the standard deviation. Potential 
outliers caused by the inaccuracy of Mediapipe are then 
removed. Instead of using the absolute coordinates as labels, 
six relative coordinates (left hip, right hip, left knee, right knee, 
left foot, and right foot) are calculated and used to eliminate 
variations due to differing starting positions. A reference point, 
which consists of the x and y coordinates of the mid-hip and 
the z coordinates of the mid-foot, is calculated to extract this 
relative information for maximum stability.  

For input (the pressure image) preprocessing, a Gaussian 
filter is applied to smooth the raw pressure data, reducing 
noise while retaining important signal features. In addition, all 
input data were normalized to ensure that the different 
individual’s features lie on the same scale, improving the 
performance and stability of the machine learning models. 

 
 
Fig. 4. (a) Experimental setup. (b) Joints captured using Mediapipe. (c) Visualization of five sets of corresponding foot pressure heatmap and body joints in a 
gait cycle. 
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C. Deep Learning Model  
To achieve the lower body prediction, a CNN-LSTM 

model shown in Fig. 5 (a) was developed and applied to train 
the pre-processed data. By sending two pressure matrices 
(Left and Right foot) to 2D convolutional layers, their spatial 
features and dimensionality are both extracted and reduced. 
They are then combined at the input of an LSTM model with 
a timestep of 50. A dropout layer of 0.3 is added to the output 
of the LSEM model, preventing overfitting. Finally, it is 
connected to a fully connected layer to output the predicted 
six joints. 

IV. RESULTS AND DISCUSSION 
The regression model was trained and evaluated using 5-

fold cross-validation on the pressure data. Its average 
inference time is 0.6 ms on Nvidia Geforce 4060. The results 
in Fig. 5 (b) and (c) are from the best-performing fold, 
showcasing the model's top potential.  

The model's performance is evaluated through both scatter 
plots and time series comparisons between the predicted and 
true joint landmark positions as shown in Fig. 5 (b) and (c). 
The scatter plots show the predicted versus true values for the 
joints across three axes (X, Y, Z). Most of the points are 
distributed close to the diagonal, indicating a strong 
correlation between the predicted and true values. This 
suggests that the model generally performs well in estimating 
joint positions. However, there are slight deviations, 
particularly at the extremes of the value range, where some 
points are more scattered. This indicates that the model's 
accuracy may decrease when predicting extreme positions. 

The time series plots further demonstrate the model's 
ability to capture the temporal dynamics of joint movements. 
The predicted values closely follow the true values, 
confirming that the model can effectively capture the overall 
trend in joint position changes over time. Some minor 
discrepancies are observed at certain time points, but these do 
not significantly affect the overall trend prediction. 

It is worth noting that the performance across all folds was 
quite consistent, with only minor variations. The average 
performance across the different folds showed similar trends, 

indicating that the model is stable and generalises well across 
different data splits.  

The correlation coefficient (R2), mean absolute error 
(MAE), and mean squared error (MSE) of the regression 
model are detailed in Table II. When compared to previous 
lower body estimation results from a system that integrated an 
IMU and eight pressure sensors, as described in [13], the 
performance is slightly lower. However, the results 
demonstrate the strong potential of using only pressure 
sensors to achieve accurate lower body estimations. This 
approach allows for a more lightweight regression model, 
reducing system complexity while maintaining promising 
accuracy. 

TABLE II LANDMARK PREDICTION RESULTS FROM THE CNN-LSTM 
MODEL 

 R2 MAE MSE 

L-Foot 0.885 0.0205 9.6e-4 

R-Foot 0.902 0.0197 8.6e-4 

L-Knee 0.815 0.0195 9.0e-4 

R-Knee 0.852 0.0176 7.0e-4 

L-Hip 0.767 0.0178 7.4e-4 

R-Hip 0.779 0.0163 7.0e-4 
 

V. CONCLUSION 
This paper presents a real-time, high-resolution insole 

system combined with a deep learning model to predict lower 
body movements during walking using data collected from the 
system. By using custom hardware architecture, the 
established system can provide detailed plantar information at 
a decent transmission rate. After feeding these pressure data 
into the CNN-LSTM model, the 3D coordinates of six lower 
body joints can be estimated with an average R2 of 0.83. The 
model achieves a MSE ranging between 7.0e-4 and 9.6e-4, 
reflecting its high accuracy. The results indicate that using 
only pressure sensor data from the designed insole system, the 
accuracy of the model is high for the prediction of lower body 
joints, which shows potential in areas like rehabilitation and 
sport performance optimization. 

 

 
 
Fig. 5. (a) CNN-LSTM model architecture. (b) Scatter plots of the regression results for six joints. (c) Labels versus predicted outputs for x axis of left foot, 
knee and hip. 
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