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1 | INTRODUCTION

Marcos Vera-Hernandez”

Abstract

Basic methods to compute required sample sizes are well
understood and supported by widely available software.
However, researchers often oversimplify their sample
size calculations, overlooking relevant features of their
experimental design. This paper compiles and systematises
existing methods for sample size calculations for continuous
and binary outcomes, both with and without covariates, and
for both clustered and non-clustered randomised controlled
trials. We present formulae accommodating panel data
structures and uneven designs, and provide guidance on
optimally allocating sample size between the number of
clusters and the number of units per cluster. In addition, we
discuss how to adjust calculations for multiple hypothesis
testing and how to estimate power in more complex designs
using simulation methods.
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One of the big challenges in economics has been to estimate causal relationships between economic
variables and policy instruments. Randomised controlled trials (RCTs) have become one of the main
tools that researchers use to accomplish this objective (Hausman and Wise, 1985; Burtless, 1995;
Heckman and Smith, 1995; Duflo, Glennerster and Kremer, 2007).l Simpler RCTs are usually set up

! See Blundell and Costa Dias (2009) and Imbens and Wooldridge (2009) for reviews on non-experimental methods.
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with the objective of estimating the impact of a certain policy or intervention, while more complex
RCTs can be implemented to test the competing hypotheses that explain a phenomenon (also known
as field experiments; see Duflo (2006) and Levitt and List (2009)).

When setting up an RCT, one of the first important tasks is to calculate the sample size that will be
used for the experiment. This is to ensure that the planned sample is large enough to detect expected
differences in outcomes between the treatment and control groups. A sample size that is too small
leads to an underpowered study, which will have a high probability of overlooking an effect that is
real. The implications of small sample sizes go beyond that: low power also means that statistically
significant effects are likely to be false positives.” Studies with samples larger than required also
have their drawbacks: they will expose a larger pool of individuals to an untested treatment, be more
logistically complex and be more expensive than necessary.

Basic methods to compute the required sample size are well understood and supported by widely
available software. However, the sophistication of the sample size formulae commonly used has not
kept pace with the complexity of the experimental designs most often used in practice. RCTs are
usually analysed using data collected before the intervention started (baseline data) but this is often
ignored by the sample size formulae commonly used by researchers, as is the inclusion of covariates
in the analysis. Another departure from the basic design is that interventions are commonly assessed
not just on a single outcome variable but on more than one, creating problems of multiple hypotheses
testing that should be taken into account when computing the required sample size. Depending on the
context and specific assumptions, taking into consideration some of these departures from the basic
design will lead to smaller or larger sample sizes.

The objective of this paper is to provide researchers with a practitioner’s guide — supported by
accompanying software — that enables them to incorporate into their sample size calculations features
commonly present in RCTs but often overlooked in practice. Although most of the content is not
novel, most of it is dispersedly published in quite diverse notation, making it difficult for the applied
researcher to find the right formulae just at the busy time when they are writing the research proposal
that will fund the RCT. We also note that understanding the sample size implications of different design
features can be very useful when designing the RCT (what waves of data to collect, what information
to collect, etc.)

This article will include sample size calculations for both continuous and binary outcomes, starting
with the simplest case of individual-level trials, and then cluster randomised trials. We will also cover
how to take into account pre-intervention data, as well as covariates. Throughout the paper, we favour
simplicity in exposition and attempt to keep the language accessible to the applied researcher who
does not have previous exposure to sample size calculations.

The article has three extensions. The first extension discusses how to choose optimally the number
of clusters versus the number of units within clusters. The second extension explains how to compute
the power using simulation methods, which is useful when there are no existing formulae for the RCT
that is being planned. The third extension shows how to adapt the sample size computations when
several outcomes are used.

An inherent difficulty in using the sample size formulae that we provide in the paper is that
assumptions are needed on some key parameters of the data-generating process, which are not required
by the basic formulae. Our view is that the widespread trend towards making data publicly available,
including the data used in academic publications, will definitively help researchers to find realistic
values for the parameters of interest. Moreover, social science journals might follow the trend set
by medical journals on making it compulsory for authors to report certain key estimates that are
commonly used in sample size calculations (Schulz, Altman and Moher, 2010).

The paper is organised as follows. Section 2 presents the example of the intervention that will
be used throughout the paper, Section 3 provides an overview of basic concepts involved in power

2 An intuitive explanation using a numeric example can be found in a briefing in The Economist (18 October 2013), ‘Trouble at the lab’, https:/
www.economist.com/briefing/2013/10/18/trouble-at-the-lab.
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calculations, Section 4 considers power calculations for continuous outcomes, Section 5 focuses on
discrete outcomes, Section 6 discusses the three extensions and Section 7 concludes. In the online
appendices, we provide examples of Stata code to estimate key parameters needed to perform sample
size calculations, and code to compute power through simulation. Spreadsheets and Stata do-files to
implement the methods discussed in this article can be obtained from https://ifs.org.uk/publications/
sample-size-calculators-going-beyond-simple-sample-size-calculations-practitioners.

2 | OVERVIEW OF AN EXAMPLE INTERVENTION

In this section, we will set up an example that we will use for the rest of the paper. Let us assume that
we would like to evaluate APRENDE, a fictional job-training programme that will be implemented
by the government of EvalualLand. Such government will run a randomised controlled trial (RCT) to
evaluate APRENDE. Our task is to compute the required sample size for such evaluation. The main
outcomes of interest are individual earnings, and the proportion of individuals who work at least 16
hours a week.

As will be clear later on, to be able to compute the sample size requirements, we will need some
basic parameters, such as average earnings, the standard deviation of earnings, and the proportion of
individuals who work at least 16 hours a week. We are at the planning stage, so we have not collected
the data yet, and hence we do not know the value of these parameters for our target population. We
may use previous studies that report these parameters in our context or in a similar context.

In this case, we have benefited from the availability of a recent labour market survey — the
EvaluaLand National Survey of Earnings — which contains the key variables required for the sample
size calculations for APRENDE.? Specifically, the dataset reports individual earnings, town of
residence and a covariate that may be used in the analysis. Importantly, the survey is representative of
the target population of APRENDE.

The evaluation of APRENDE may be implemented using either individual-level or cluster-level
randomisation. Under individual-level randomisation, a small number of pilot towns would first be
selected. Within each town, a list of eligible individuals interested in participating in APRENDE
would be compiled, and a lottery would be conducted to determine which individuals are selected
to participate in the programme during the pilot phase and which are randomised out. Alternatively, a
cluster RCT design could be employed, whereby towns participating in the evaluation are randomly
assigned to either the treatment or control group. Eligible individuals residing in treatment towns
would then be invited to apply for and participate in APRENDE. In this case, the town constitutes the
cluster, as it is the unit of randomisation, even though the data for the evaluation would be collected
at a more granular level (i.e. the individual). Common examples of clusters in other contexts include
schools, job centres and primary care clinics.

One of the main parameters needed to compute the sample size requirements is the effect size, which
is the smallest effect of the policy that we want to have enough power to detect. When considering the
effect size for an individual-based RCT, we must take into account that it refers to the comparison
in the outcome levels of individuals initially allocated to treatment versus control. Note that this
difference will be diluted by any non-compliance (i.e. individuals initially allocated to treatment
that eventually decide not to participate), and hence we must adjust the effect size accordingly. For
instance, if we think that APRENDE will increase participants’ average earnings by 14,000 but 30 per
cent of individuals initially allocated to participate in APRENDE decide not to take it up, we must plan
for a diluted effect size of 9,800 (= 14,000 X 0.7) as this will take into account the non-compliance rate.
McKenzie (2025), published in this issue, discusses practical strategies to reduce non-compliance.

In a cluster RCT, the relevant comparison is the difference in outcome levels between the eligible
individuals living in treatment towns (irrespective of whether they participated or not) and the eligible

3 This dataset is included in the Supporting Information to enable readers to implement the code provided in Appendix B.
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individuals living in control ones (also irrespective of whether they participated or not). Because not all
eligible individuals living in treatment towns will end up participating, the coverage rate of the policy
must be taken into account when considering the effect size. Assuming that APRENDE increases
participants’ average earnings by 14,000, we should plan for an effect size of 8,400 (= 14,000 X
0.6) if the coverage rate is expected to be 60 per cent (it is expected that 40 per cent of the eligible
population living in the treatment towns will not participate in APRENDE, either because of capacity
constraints or because they are not interested).* Of course, the effect size would have to be even
smaller if we think that individuals in control towns can travel to treatment towns and participate in
APRENDE (contamination). For instance, if 10 per cent of individuals living in control towns could
do that, then the planned effect size would have to be 7,000 (= 14,000 X (0.6-0.1)).

3 | BASIC CONCEPTS

One of the most important questions when computing the required sample size for the evaluation of
APRENDE is ‘What is the smallest effect of the programme on earnings that we want the study to be
able to detect?’. The answer to this question defines the effect size — often referred to in the literature
as the minimum detectable effect (MDE) — and is denoted by 9.

For those unfamiliar with sample size calculations, this may be a slightly strange concept, as in
order to calculate the sample size for a trial, we need to input the impact we expect the trial to
have. It is common to refer to existing literature in order to get a sense of this effect size. Of course,
the results from previous literature must be contextualised to the study that is being planned. For
instance, the researcher might think that APRENDE should be less effective than existing studies,
maybe because it targets all ages rather than the youth. Differences in expected non-compliance and
contamination between APRENDE and other existing studies will also modify the effect size that we
will plan for. Nothing precludes the researcher from conducting sample size calculations with several
different values of the effect size to gauge the sensitivity of the results.

Assessing whether an intervention has a genuine effect on the outcome variable is challenging
because, in practice, we seldom observe outcomes for the entire population of individuals or clusters
assigned to treatment and control. Instead, researchers typically rely on data from a random sample
of each group. Even if the intervention has no effect at the population level, the sample average of
the outcome in the treatment group will usually differ from that in the control group. This is due
to sampling variability — the natural variation in estimates that arises because each sample captures
only a subset of the population, and the specific individuals or clusters included in the subset will
influence the sample mean. The core inferential task is to determine whether the observed difference
in sample means is sufficiently large to suggest a true difference in population means — attributable to
the intervention — or whether it is small enough to plausibly reflect random variation from the sampling
process alone. This is where hypothesis testing becomes essential. The null hypothesis (H)) typically
states that the population mean of the outcome is equal across treatment and control groups — implying
that the intervention was on average ineffective. The alternative hypothesis states that the effect of the
intervention is § (the difference in the population mean of the outcome variable between treatment
and control, which we call the effect size).

When conducting the hypothesis test, two possible errors are likely to happen. On the basis of the
sample at hand, and the test carried out, the researcher could reject a true null hypothesis, i.e. conclude
that the intervention was effective when it was not. This type of ‘false positive’ error is usually called
a Type I error (see Figure 1). The other possible error is to conclude that the intervention had no effect

4 Conceptually, coverage and compliance are distinct. The coverage rate refers to the proportion of individuals who choose to enrol in the treatment
when it is offered to them, whereas the compliance rate refers to the proportion of those enrolled who go on to fully participate in the treatment —
that is, who adhere to or complete the intended intervention.
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FIGURE 1 Type I and Type II errors in hypothesis testing

when one exists (fail to reject the null hypothesis if it is false). This type of ‘false negative’ error is
called a Type II error.

The researcher will never be able to know whether a Type I or Type II error is being committed,
because the truth is never fully revealed. But the researcher can design the study so as to control the
probability of committing each type of error. Significance, usually denoted by «, is the probability
of committing a Type I error (Prob[reject Hy|H, true] = ). Commonly, « is set to equal 0.05.° This
means that when the null is true, we will only reject it in 5 per cent of cases. The probability of a Type
II error, denoted by (3, is the chance of concluding that the intervention has no effect, when one exists
(Prob[fail to reject Hy|H; true] = §). Common values of 8 are between 0.1 and 0.2.

Power is defined as 1 — (3, i.e. Prob[reject Hy|H, true]. In our context, power refers to the probability
of detecting an effect of a given size of APRENDE on earnings, conditional on APRENDE having
such an effect. Put more bluntly, power is the probability that a study has of uncovering a true, non-
zero, effect. The researcher would like power to be as high as possible; otherwise the study has a high
chance of overlooking an effect that is real. Usually, power of 0.8 or 0.9 is considered high enough
(consistent with values of 3 between 0.1 and 0.2).

In addition to specifying the effect size and the desired levels of significance and power, several
other key parameters are required to compute the sample size. For binary outcome variables, it is
necessary to provide an estimate of the proportion of individuals in the control group who exhibit
the outcome of interest (e.g. who are employed, enrolled in school or vaccinated). For continuous
outcomes, one must specify the variance of the outcome, denoted o.° These values can typically be
obtained from existing household surveys (e.g. the EvalualLand National Survey of Earnings), from
previous studies or from a pilot study if one has been conducted.

There is an additional input required when calculating power for cluster RCTs. This is the intra-
cluster correlation (ICC), which is a measure of how correlated the outcomes are within clusters.
This parameter, denoted here as p and defined below, can be estimated from a pilot survey or based
on measures found in the existing literature. This parameter plays an important role in sample size
calculations for cluster randomised trials, and can lead to one requiring much larger sample sizes than
in the individual-level randomisation case.” The reason for this is that the larger is the correlation of
outcomes amongst individuals within clusters, the less informative an extra individual sampled within
the cluster is. Adding an extra cluster of k individuals will result in greater power than including k
more individuals across existing clusters.

3 Later in the paper, we will discuss testing for multiple outcomes, which will affect the value chosen for c.

%1In the binary case, there is no need to specify the variance separately, as it is fully determined by the mean: the variance of a binary variable
equals p(1 — p), where p is the mean of the variable.

7 Where covariates are included, it is the conditional ICC that will be used in the calculations below. This may be harder to obtain from
previous studies.
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4 | CONTINUOUS OUTCOMES

Here we derive the sample size calculation for the simple case of an RCT in which the treatment, T, is
randomised at the individual level and the outcome variable, Y, is continuous. This simple case allows
us to focus on the main steps that are necessary to derive the sample size formulae, and it is useful
to give a sense of how the other formulae used in this paper are derived.® Usually, we test whether
T had an effect on Y by testing whether the population means of Y are different in the treatment and
control groups. More formally, if we denote the population means in the treatment and control groups
by u; and y respectively, the null hypothesis is Hy: u;—uy=0; and the alternative hypothesis is that
the difference in the population means equals the MDE, H;:p;—py=9.

Assume that we have a sample of n individuals in the control group and a sample of n; individuals
in the treatment group. We denote by 7; = 0 that individual i is part of the control group and by 7; = 1
that individual i is part of the treatment group. To test H against H;, we would estimate the following
ordinary least squares (OLS) regression:”

Yi=yo+nTi +¢,

where Y is the value of the outcome variable (say earnings in the case of APRENDE) and ¢; is an error
term with zero mean and variance o2, which for the time being we assume is known. The z-statistic
associated with y; is given by the OLS estimate of y; divided by its standard error:

Y -7,
o\/(I/ng) + (1/ny)

where Y, and 70 are the sample averages of Y; for individuals in the treatment and control group
respectively, n; and n( are the sample size in the treatment and control group respectively, and o
is the standard deviation of Y;. If the null hypothesis is true, then @; = g, and Z follows a normal
distribution with mean O and variance 1. Hence, the null hypothesis will be rejected at a significance
level of a if Z > z, )5 or Z < —z4 5, where the cumulative distribution function of the standard normal
distribution evaluated at z, /> is 1 —a/2.

As mentioned above, power (denoted by 1 — (3) is the probability of rejecting the null hypothesis
when the alternative is correct, i.e.

7z =

1= B =Prob(Z < —z4/y U Z > 2/2|H}) = Prob(Z < —2, /5 |H}) + Prob(Z > z, o H)).

Because the alternative hypothesis is correct, u;—uy is no longer zero but 8. Hence, the mean of Z is

no longer zero but 6/ (O’\/(l /no) +(1/ n1)>. In this case, Prob(Z < —z,|H)) is approximately zero,

and hence we have that!?

1 — B = Prob(Z > 2,5 |H) = 1 = Prob(Z < zo5|H)).

8 The material in this section is standard for statistical textbooks. In this section, we follow Liu (2013) closely.
° We use a regression framework to keep the parallelism with forthcoming sections, but a t-test for two independent samples is equivalent.

10 See, for instance, Liu (2013). Note, however, that Liu (2013) defines Za/2 such that the cumulative distribution function of the standard normal
distribution evaluated at z,; is a/2 instead of 1 —ct/2.
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By subtracting the mean of Z under the alternative hypothesis from both sides of the inequality, we
obtain

B =Prob| Z —

J <Za/2— J .
O'\/(l/l’lo)-i'(l/l’ll) 0\/(1/710)4‘(1/1’!1)

Because the left-hand side of the inequality now follows a normal distribution with zero mean and unit
variance, it is the case that

é
2-g = Zaj2 — ,
o/ (1/ng) + (1/ny)
which implies that'!
)
28+ 2q/0 =

a\/(1/ng) + (1/ny)

In the case in which o is unknown and is estimated using the standard deviation in the sample, a t
distribution with v = ng + n; — 2 degrees of freedom must be used instead of the normal distribution.
In this case, we have that

)

o\/(/ng) + (1 /ny)

Solving for §, we obtain the expression for the MDE that can be detected with 1 — 8 power at

significance level a:
6 =(tg +t,n)0 1 + 1 €))
— VBT a2 ng  ony

Assuming equal sample sizes in the treatment and control groups, ny = n; = n, the formula
simplifies, and the required sample size per arm becomes

Ig + laj2 =

n=2g+ ta/z)z(%>2. )

As is clear from expressions (1) and (2), the required sample size depends solely on the standardised
effect size, defined as the ratio of the effect size to the standard deviation of the outcome, &/c. As a
result, it is not necessary to specify the outcome’s mean in the absence of the intervention, nor its
variance in absolute terms. This has led to the widespread use of standardised effect sizes in power
calculations, as it allows sample size requirements to be expressed without reference to the original
scale of the outcome variable.'”

Finally for this section, we outline the case where variances are unequal, following List, Sadoff and
Wagner (2011). This case is not very common in practice, as it is difficult a priori to consider how the

' Note that 8 = —Z1-p-

12 Cohen (1988) popularised benchmark values for standardised effect sizes, suggesting 0.2 for a small effect, 0.5 for a medium effect and 0.8 for a
large effect. Standardised effect sizes can be readily used in standard software by assuming that the variance of the outcome variable is equal to 1.
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8 | FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

treatment will affect not just the mean of the outcomes, but the variance too. 13 Under equal variances,
the expression for the MDE, equivalent to (1), becomes

which leads to the following expressions for the optimal sample (see Appendix A for the full
derivation):

1 (9 o
N*=(Iﬁ+ta/2)2§ 77:_5+7T_’1" >
N*=ng+ny, 3)
né = 7T6‘N*,
n*l‘ = nTN*,

where 77 = 0 /(0 + 0y) and 7w} = 0 /(0 + 71), nyy (n]) refer to the optimal sample in the control
(treatment) group, and N* refers to the total optimal sample size.'* These expressions imply that a
larger share of the sample should be allocated to the group with the higher variance in the outcome
variable, reflecting its greater contribution to the overall sampling variability.

4.1 | Cluster randomisation

In many cases, the outcome variable is measured at the unit level (individual, household, firm, etc.)
but the randomisation takes place at the cluster level (school, village, firm, etc.). This may be driven
by concerns over spillovers within a cluster, whereby unit-level randomisation would lead to control
members’ outcomes being contaminated by those of treated individuals. In this case, the sample
size formula must be adjusted to reflect that observations from units of the same cluster are not
independent, as they may share some unobserved characteristics.

The estimating equation will take the form

Yij:yo+lej+Cj+uij’ (4)

where i denotes units and j denotes clusters. 7; is the treatment indicator. ¢; and u;; are error terms

at the cluster and unit level respectively. The variances of ¢; and u;; are given by var(c;) = o2 and

var(u;) = 0y, and 07 + o}, = o”.

To carry out the sample size calculation in the presence of clustering, we require an additional input
— the intra-cluster correlation or ICC, denoted here as p:
o;
pP=—07"
ol +a2

13 One example is the provision of weather-linked insurance to farmers, where we expect the variance of consumption to be lower for the treated
individuals. Another example is a migration facilitation programme, where the treatment group may include a higher proportion of migrants,
leading to greater heterogeneity in outcomes; see McKenzie (2025) for details.

14 The notion of optimality employed here is based on minimising the MDE subject to a fixed total sample size. In Section 6.1, we consider an
alternative optimality criterion: maximising power subject to a budget constraint.
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The ICC thus gives a measure of the proportion of the total variance accounted for by the between-
clusters variance component. The intuition behind the ICC is that the larger the fraction of the
total variance accounted for by the between-clusters variance component (crf.), the more similar are
outcomes within the cluster and the less information is gained from adding an extra individual within
the cluster. Proceeding as in the simple case above, and assuming that both the number of clusters and
the number of units per cluster are equal across treatment and control groups, the expression for the
MDE is'?

&)

mO'g + Gtzl
mk ’

6% = (tq + zﬁ)22<

where there are k clusters per arm and m units per cluster.'® Using the definition of the ICC, and
rearranging, we arrive at the formula for the total sample per arm:'’

2
. o
n* = mk* = (tqr + tﬁ)22§(1 +(m—1)p). (6)

Comparing equations (2) and (6), the key difference is the term (1 + (m — 1)p), which is commonly
referred to in the literature as either the design effect or the variance inflation factor (VIF). This term
is a consequence of the clustered treatment allocation and leads to larger required sample sizes. There
is another difference between equations (2) and (6): in the cluster randomised case, the degrees of
freedom for the ¢-statistic are 2(k — 1), while in the individually randomised case they are 2(n — 1).
This difference is not taken into account when the sample size for a cluster RCT is computed by first
calculating the sample size for an individually randomised trial and then multiplying it by the design
effect. In practice, this will usually make little difference unless the number of clusters is small. The
methods used in this paper account for the correct degrees of freedom, and hence our results may
differ slightly from those produced by software that does not incorporate this adjustment.

In order to get a sense of the interplay between the ICC and the number of units per cluster, Table 1
presents required sample sizes for two different values of the MDE, &, and six different values of
the ICC, p. For reference, the standard deviation of earnings and the ICC are 126,383.5 and 0.042
respectively in the EvaluaLand National Survey of Earnings data.'®

Consider first the upper left quadrant of the table. The case where ICC = 0 represents unit-
level randomisation. As the ICC increases, so too does the sample size. The extent of the increase
depends also on m, the other key term in the VIF. For instance, for a p = 0.03 and m = 60, a cluster
RCT requires almost triple the sample size per arm of a unit-level randomisation equivalent (7,004
compared with 2,508).

Another way to see this is to consider the upper right quadrant. At low levels of the intra-cluster
correlation, there is a marked decline in the number of clusters per arm as we increase m (the number
of units per cluster). For p = 0.01, k drops from 274 to 51, 19 per cent of the initial value, as we move
from left to right. As the ICC increases, this decline is much shallower. For p = 0.2, the right-hand

15 With clustering, and assuming equal variances for the two groups, the standard error of § takes the form

a? . a2 N a2 N a\ _ 2maf.+af
k  mk k  mk) mk

In the clustered case, the degrees of freedom of the t distribution are 2(k — 1).

16

17 To operationalise this formula, one can either solve for m as a function of k or solve for  as a function of m. In the latter case (due to the fact
that the degrees of freedom of the t distribution are a function of the number of clusters (2(k — 1) in the absence of covariates)), it is necessary to
use an iterative process to ensure that the correct degrees of freedom (2(k* — 1)) are used to calculate the number of clusters. This issue will be
more pronounced when the number of clusters is small.

18 In Appendix B, we show how to compute the ICC using Stata.
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10 FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

TABLE 1 Sample size requirements per arm for continuous outcomes under cluster-level randomisation

ICC (p) Total sample size per arm (n") Number of clusters per arm k")
Number of individuals per cluster (m") Number of individuals per cluster (m")
10 30 60 100 10 30 60 100
Effect size = 10,000
0 2,508 2,508 2,508 2,508 251 84 42 25
0.01 2,743 3,264 4,046 5,089 274 109 67 51
0.03 3,194 4,718 7,004 10,053 319 157 117 101
0.05 3,646 6,173 9,963 15,017 365 206 166 150
0.1 4,774 9,808 17,360 27,428 477 327 289 274
0.2 7,030 17,079 32,153 52,251 703 569 536 523
Effect size = 20,000
0 628 628 628 628 63 21 10 6
0.01 693 839 1,058 1,351 69 28 18 14
0.03 806 1,202 1,796 2,589 81 40 30 26
0.05 919 1,565 2,536 3,829 92 52 42 38
0.1 1,201 2,474 4,384 6,931 120 82 73 69
0.2 1,765 4,292 8,083 13,136 177 143 135 131

Note: The cells in the left panels report the sample size per arm (n*) and those in the right panels report the number of clusters per arm (k*)
required to achieve 80 per cent power at 5 per cent significance if the effect size is either 10,000 (top panel) or 20,000 (bottom panel) and the
standard deviation is 126,383.5. The intra-cluster correlation (o) is given in the first column of the table.

value for & is 74 per cent of the initial value. It should be clear from this table that it is very important
to get accurate measures of the ICC. Small differences in the values of the ICC, such as moving from
o = 0.01 to0 0.03, can have significant impacts on the required sample size, particularly when m is large.
Finally, comparing the upper and lower panels of Table | illustrates the effect of the MDE: the
larger the value of &, the smaller the sample size required to detect a statistically significant effect.

4.1.1 | Unequal numbers of clusters and units per cluster

Keeping the same number of clusters and units per cluster in the treatment and control arms is common
practice, as it minimises the total sample size required to achieve a given level of power. However,
there are situations in which departing from this balanced allocation — by allowing for a different
number of clusters and/or a different number of units per cluster in treatment and control arms —
may be advantageous. One example is when the implementer’s capacity constraints limit the number
of clusters that can be assigned to treatment. Another is when costs are higher in treatment than
in control clusters, and the goal is either to minimise total cost subject to achieving a target power
level or to maximise power subject to a fixed budget; see McConnell and Vera-Hernandez (2022) for
precise methods. In the case of unequal allocation, the required number of treatment clusters (k) can
be computed as a function of the MDE, &, the number of control clusters, kj, and the number of units
per cluster, m, using the following formula:

(taja + 15)* ((mo? + o) /m)

k= .
e (o> + 1) ((mo7 + 07)/mky)

(7
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GOING BEYOND SIMPLE SAMPLE SIZE CALCULATIONS: A PRACTITIONER’S GUIDE | 11

which assumes that the number of units per cluster is the same in the treatment and control arms.
Expression (7) can also be written in terms of the design effect as

(tap + 15)°02 ((1 + (m = 1)p)/m)
62 = (toj2 + 15)202 ((1 + (m — 1)p)/mky)

ki = ®)

The formula for the number of units per treatment cluster (1) as a function of the MDE, &, the number
of units per control cluster, m, and the number of clusters per arm, %, is given by

(tapo + 15)%(05/K) o)
m; = s
82 (140 + 102202 [ + 02 [mok)

which assumes that the number of clusters in the treatment arm is the same as in the control arm.
Rewriting expression (9) in terms of p and o yields

(ta2 +1)°0* (1 = p) /)
62 — (12 + 15)202 ((1 + 2my — 1)p)/mok)

my = (10)

4.2 | The role of covariates

Although, due to randomisation, covariates are not used to partial out differences between treatment
and control, they can be very useful in reducing the residual variance of the outcome variable, and
subsequently lead to lower required sample sizes.

There are several equivalent ways of expressing the power calculation formula with covariates.
Below, we present multiple formulations, as the choice of which to use in practice often depends on
the specific inputs available to the researcher.

The simplest or most intuitive version is as follows:

2
7k Ox
n* = mk* = (g + rﬁ)22§(1 +(m—1)p,), (11)

where o7 is the conditional variance (i.e. the residual variance once the covariates have been controlled
for) and p, = f,c / (Uf,c + O’iu) is the conditional ICC.'"” The form of equation (11) mirrors that of
the unconditional representation in equation (6). If there are data from a similar context and target
population with the relevant variables, as in the case of APRENDE, it is straightforward to get
estimates of these conditional parameters.zo Howeyver, if such data are not available, the formulation
by Bloom, Richburg-Hayes and Black (2007) might be easier to apply:

2
n* = mkt = (tq) + tﬁ)z% (mp(1 —R2) + (1 —p)(1 —Ry)), (12)

where R? is the proportion of the cluster-level variance component explained by the covariates and
R? is the unit-level equivalent. This formulation is useful to see the differing impact of covariates at
different levels of aggregation, i.e. if the covariates are at the unit or cluster level. For instance, a

191n the case with covariates, the number of degrees of freedom of the t distribution is 2(k — 1) — J, where J is the number of covariates.

20 Refer to Appendix B to see how to estimate these parameters.
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unit-level covariate can affect both R2 and R?, whilst a cluster-level covariate can only increase R2.
Equation (12) may be useful if Rﬁ and R% are reported in previous research and the parameters in
equation (11) are not. To reiterate, with a series of calculations, it is straightforward to move from
equation (12) to equation (11), using R2, R2, o2 and p to obtain values for o2 and p,.”!

Finally, Hedges and Rhoads (2010) present the formula for the inclusion of covariates as

2
=k = (1 + zﬁ)Zz% [(1+ (m = Dp) — (RZ + (mR2 — R2)p)].

This equation is useful for building intuition into the role of covariates, as the first term in the square
brackets is the regular design effect, whilst the second shows how covariates impact the overall
variance inflation factor.

Table 2 presents how the inclusion of a covariate impacts the required sample sizes for six different
scenarios (m = 8, 20 and 100, p = 0.01 and 0.3). Values for the standard deviation come from the 2024
earnings variable of the EvalualLand National Survey of Earnings. As is clear from equation (12), the
larger either R2 or R? is, the smaller the sample size per arm is. Note from equation (12) that the
influence of R is larger when p is smaller. For example, in Table 2, when o = 0.01, m = 100 and
R? =0, the sample size per arm decreases from 1,351 to 1,043 (a 23 per cent reduction) when R2
increases from 0 to 0.5. However, the same increase in R> only translates into a decrease from 19,342
to 19,123 (a 1 per cent reduction) when p = 0.3. In this sense, increasing R? is similar to increasing
the number of units per cluster, which has little effect on power when p is high.

As is also clear from equation (12), the effect of R? is mediated by mp, so the reduction in sample
size achieved by increasing R? will be higher when both m and p are large. Again, increasing R? is
analogous to increasing the number of clusters. This will have a larger effect when p is large and when
m is large (because a large m indirectly implies that the number of clusters is small, so we obtain a
larger effect when we increase the number of clusters). This is also clear in Table 2: when p = 0.3,
m = 100 and R2 = 0, the sample size per arm decreases from 19,342 to 9,940 (a 49 per cent reduction)
when R? increases from 0 to 0.5. However, the same increase in R> only translates into a decrease from
679 to 654 (a 3.7 per cent reduction) when p = 0.01 and m = 8.

A final point to note concerns an issue raised by Bloom, Richburg-Hayes and Black (2007)
regarding unconditional versus conditional ICCs. As they emphasise, researchers should not be
concerned with the possibility that a unit-level covariate, by reducing the unit-level variance
component by a larger extent than the cluster-level component, may lead to a higher conditional ICC.
What matters is that by reducing both components, unit-level covariates increase precision and thus
lower required sample sizes.

4.2.1 | Unequal numbers of clusters

As shown in Section 4.1.1, the sample size equations can be expressed allowing either the number
of clusters or the number of units per cluster to differ between the treatment and control arms. First,
consider the expression for k; as a function of k; and m, written in the form presented by Bloom,
Richburg-Hayes and Black (2007):%2

(tayo + 15)°02 ((mp(1 = RZ) + (1 — p)(1 — R))/m)

ki = .
LT 82 (1 n + 150202 ((mp(1 — RD) + (1 — p)(1 — R2)/mky)

2! Using the definition of p,, we note that >(1 — p)(1 — R2) = 02, = (1 — p,)o? and 0>p(1 — R?) = 02, = p,07. This allows us to write the R
terms as functions of p, o2, p, and 02: 1 —R? = p,02/pc? and 1 — R2 = (1 — p,)o? /(1 — p)a?). These expressions are used in intermediate
steps to move from equation (12) to equation (11).

22 We can also write an expression for k; in the form of either equation (7), where we replace o, and o, with o, and o, ,, or equation (8), where
we replace o and p with o, and p,.
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14 | FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

As before, we can also write an expression for m, as a function of k and m:>

(o> + 15)*0* ((1 — p)(1 — R) /k)
82 — (o2 + 15202 (mop(1 = R2) + (1 — p)(1 — R2)) /mok)

my =

4.3 | Difference-in-differences and lagged outcome as a covariate

Where the researcher has data on the outcome variable not only subsequent to treatment, but also
prior to treatment (baseline), it is possible to employ a difference-in-differences approach, as well
as to include the baseline realisation of the outcome variable as a covariate, a special case of the
approach discussed in Section 4.2. Following Teerenstra et al. (2012), the data-generating process
(which includes the panel component) follows

Yijr =Yy + )/1T] + ¥y, POST, + y3(POST, X T]) + Cj + Cjr + Ujj + Wjjts

where i indexes units, j clusters and ¢ time periods (¢ = 0, the pre-intervention period, or ¢ = 1, the

post-intervention period), POST; takes value 0 if # = O and 1 if 7 = 1, and 7} is the treatment indicator.

2

The terms c;, ¢, u;; and u;, are assumed to be normally distributed with mean zero and variances o¢,

ijt
2 2 2 : 24
‘> 0, and o, respectively.
The error terms are structured as two cluster-level components (¢; and ¢;,) and two unit-level
components (u; and u;;), where ¢; and u;; are time-invariant. Two autocorrelation terms are required
in this case, namely the unit-level autocorrelation of the outcome over time, p,, and the analogous

cluster-level term, p,.:

g

2 2

alt C
pu=——> and p.=——7,
O'u+O'm O¢ +Uct

where Var(c]-)=of, Var(cjt)=af,, Var(u,:,»)=c7,% and Var(ul:,»,)=a§,. The ICC in this situation is expressed
25
as

ol +0?,

p= -
o240k +02+02

Once these parameters are in hand, we can define the key parameter used in sample size calculations,
r, which represents the proportion of the total variance attributable to time-invariant components:

o2 +02/m _ mp o, + 1—-p
2+l +ar/m+ai/m  1+m=1Dp™ 1+ (m—1p

Pu'

23 We can also write an expression for nz, in the form of either equation (9) or equation (10), replacing unconditional parameters with their
conditional versions.

24 We note the abuse of notation in using the subscript 7 for the variance terms o, and o,, as these terms are constant across the two time periods.

25 Appendix Section C.5 details how to estimate these key panel data parameters.
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TABLE 3  Sample size requirements per arm for continuous outcomes in panel data models

r Difference Difference-in-differences Lagged outcome
0.1 4,909 8,820 4,860
0.25 4,909 7,354 4,603
0.5 4,909 4,909 3,687
0.75 4,909 2,464 2,159
0.9 4,909 998 949

Note: The ICC is 0.05 and the number of individuals per cluster (m) is set to 20. The effect size is equal to 10,000 and the standard deviation is
126,383.5.

The sample size formula for a difference-in-differences estimation can be written as

2
= mk* = 2(1 = Pty + t5)22%(1 +(m—1)p) (13)

and the sample size formula for an estimation using the baseline outcome variable as a covariate can
be written as

2
n* =m*k* = (1 =)ty + rﬁ)22%(1 +(m—1)p). (14)

In order to see the benefit of using the panel element, it is instructive to compare equations (13) and
(14) with equation (6). The most important message is that the sample size requirement is minimised
by including the baseline level of the outcome variable as a covariate (note that 1 — 7> < 1 and that
1 — 7> < 2(1 — r)). Alternatively, given a sample, the highest power is achieved by including the
baseline value of the outcome variable as covariate. Hence if baseline data on the outcome variable are
available, one should always control for them as a covariate rather than doing difference-in-differences
or a simple post-treatment comparison (McKenzie, 2012; Teerenstra et al., 2012).

Also, it is useful to see that the largest reduction on sample size requirements when we include the
baseline value as covariate takes place when r is close to 1 (hence 1 — 72, which multiplies the sample
size formula (14), is close to zero). Intuitively, by conditioning on the baseline value of the outcome
variable, we are netting out the time-invariant component of the variance (which is large when r is
close to 1).

Note also that if r is close to zero, given a sample, there might be little difference in power between
including the baseline value of the outcome as a covariate and just post-treatment differences. Hence,
from the point of view of power, it might be better to spend the resources devoted to collect the baseline
on collecting a larger sample post-treatment or several post-treatment waves (see McKenzie (201 2)).20
Interestingly, in terms of power, including the baseline value of the variable as covariate always
dominates over difference-in-differences. Moreover, baseline data are required for both estimators.
Hence, there is little reason in terms of power to justify difference-in-differences.

In Table 3, we report the sample size requirements for the three estimation strategies for various
values of r, calibrating the calculations to the likely effect size and variance of the earnings for 2024 of
the EvalualLand National Survey of Earnings. The resulting sample sizes quantify the intuition above
— the higher the time-invariant component of the variance, r, the greater the benefit of controlling
for baseline differences via covariates or difference-in-differences vis-a-vis single post-treatment
difference. For low values of r, the difference-in-differences strategy is highly inefficient. The table

26 There might be other reasons to collect baseline data than gains in power. These include to check whether the sample is balanced in the outcome

variables, to collect information that allows stratification of the sample, and to have the basis for heterogeneity analysis (see McKenzie (2012)).
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16 | FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

also clearly illustrates the superiority of controlling for the baseline outcome as a covariate, which
consistently outperforms the other two strategies across all values of r.

5 | BINARY OUTCOME CASE
5.1 | Unit-level randomisation

We now move on to discussing the case where the outcome variable is binary — for instance, whether an
individual is working or not or whether a student obtained a certain grade level or not. There is a large
literature that focuses on the binary outcome case, with several different approaches (e.g. Moerbeek
and Maas, 2005; Demidenko, 2007). Some articles deal with effect sizes measured in differences in
log odds, others with differences in probability of success between treatment and controls. We follow
Schochet (2013), who measures the effect size in terms of differences in the probability of success.
We believe that this is more intuitive for most economists, and that the required inputs might be more
easily accessible from published studies.”’ One difference between the continuous and binary outcome
cases is that in the latter, we do not need the variance. Binary outcomes follow a Bernoulli distribution,
so knowing p, the probability of success, also yields the variance: p(1 — p).
Using a logistic model, we can write the probability of success for individual i as

erotn T
p; = Prob(y; = 1|T}) = 1+ erotnT;’

where y; is binary (takes value 1 in case of success and 0 in case of failure) and, as before, 7; denotes
treatment status. The effect size, &, can thus be written as p(y; = 1|T; = 1) — p(y; = 1|T; = 0) or (p| —
Do), where the subscripts denote treatment and control status respectively.

Following an analogous procedure to that in the continuous case, we arrive at a sample size
equation for the binary case (Donner and Klar, 2010):

Vo (m(l —p) , pol —po)><zs +2a)2)” )

7 -7 (1 —po)?’

where 7 is the proportion of the sample that is treated, nj = 7N* and n; = (1 — m)N*.”8 Note that

equation (15) is equivalent to equation (3), where o*é and O’% are replaced with their equivalents in
the binary case, py(1 — py) and p;(1 — p). In general, these variances will be different, so as we saw
in equation (3), the optimal treatment—control split will differ from 0.5. The optimal allocation to
treatment status, 77, can be written as

. \/(pl(l —p0)/ (Po(1 = py))
T = .
1+ \/(Pl(l =)/ (Po(1 = po))

27 An advantage of the approach we follow is that the impact parameter does not depend on whether covariates are included or not. This is not the
case when impact is measured in log odds. See Schochet (2013) for a detailed discussion of this.

28 If the null hypothesis of zero impact is tested using a Pearson’s chi-square test, and n} = ng, then

<Za/2\/2f7(1 —P) + 2511 =pp) +po(1 —[70)>~
(po —p1)? ’

where p = (p; + pg)/2; see Fleiss, Levin and Paik (2003), equation (4.14), as well as equation (4.19) for different sample sizes in treatment
and control.

n* =
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GOING BEYOND SIMPLE SAMPLE SIZE CALCULATIONS: A PRACTITIONER’S GUIDE | 17

Hence, in the binary outcome case, the optimal split would only equal 0.5 in the special case where
po=1—pi,eg py=0.4and p, =0.6.” In the case of an even split between treatment and control
status (7r = 0.5), we can write n* as

(Zﬁ + Zoc/2)2

n* = (p1(1 = p1) + po(1 = py)) 5

5.2 | Cluster-level randomisation

Having considered the unit-level treatment case, we now move to cluster randomised treatment, still
following Schochet (2013), as we do for the rest of Section 5. For the cluster randomised case, a
generalised estimating equation (GEE) approach is followed, where the clustering is accounted for in
the variance-covariance matrix, using the ICC, p. As before, we can write the probability of success
for individual i in cluster j as

etotniT;

pij = Prob(y; = 117)) = ——

For cluster j, the m X m variance-covariance matrix Vi is written as
1/2 1/2
V= AR@A", (16)

where A; is a diagonal matrix with diagonal elements p;;(1 — p;;) and R(p) is a correlation matrix with
diagonal elements taking the value of 1 and off-diagonals the value of p. Hence cov(y;j, ) = p when
J = mand cov(y;;, y,) = 0 when j # m. Note the lack of a j subscript on R(p) — it is taken as common
across clusters, as in the generalised least squares (GLS) approach for a continuous outcome. This
means that we no longer specify a random effect for each cluster, which allows us to get closed-form
solutions for the sample size equations.>”

The sample size equation for the binary outcome case with cluster randomisation can be written as

N* = (Pl(l —p) ol —P0)> (Raj2 + 257 (14 (m—Dyp),

V.4 1—-7m 52

where 7 is the fraction of clusters randomised to receive treatment, n’l" = mk’lk = tN* and n?; = mk(”)‘ =
(1 — m)N*. As above, if the treatment is evenly allocated, we can write this as

(Zﬁ + Zoc/2)2

5 (14 @m=1)p).

n* =mk* = (py(1 = py) + po(1 — po))

As before, the sample size equation for the binary outcome mirrors that of the continuous outcome,
with the design effect being the only difference between the unit and cluster randomised sample
size equations.

Table 4 presents sample size requirements for three different levels of success probability for the
control groups, py: 0.1, 0.3 and 0.5. The first thing to notice is that the closer py is to 0.5, the larger the

29 While setting p, = p; would result in an equal allocation between treatment arms, it effectively assumes that the intervention has no impact
under the alternative hypothesis. As such, it is unsuitable for power calculations intended to detect a treatment effect.

30 Results from simulations we ran utilising the GEE approach yielded very similar results to those using a linear probability model with random
effects. Schochet (2009) finds similar results using GEE and random effects logit models too.
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18 FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

TABLE 4  Sample size requirements for discrete outcomes under cluster-level randomisation

ICC Total sample size requirements (N ") Number of clusters (2k™)
Number of individuals per cluster (m) Number of individuals per cluster (m)
10 30 60 100 10 30 60 100
Control group success rate (py) = 0.1
0 392 392 392 392 39 13 7 4
0.01 428 506 624 781 43 17 10 8
0.03 498 734 1,087 1,558 50 24 18 16
0.05 569 961 1,550 2,335 57 32 26 23
0.1 746 1,531 2,708 4,278 75 51 45 43
0.2 1,099 2,669 5,023 8,163 110 89 84 82
Control group success rate (py) = 0.3
0 706 706 706 706 71 24 12 7
0.01 770 911 1,123 1,406 77 30 19 14
0.03 897 1,321 1,957 2,804 90 44 33 28
0.05 1,024 1,731 2,790 4,203 102 58 47 42
0.1 1,342 2,755 4,874 7,700 134 92 81 77
0.2 1,978 4,804 9,042 14,693 198 160 151 147
Control group success rate (pg) = 0.5
0 769 769 769 769 77 26 13 8
0.01 838 992 1,223 1,531 84 33 20 15
0.03 977 1,438 2,131 3,054 98 48 36 31
0.05 1,115 1,885 3,038 4,577 112 63 51 46
0.1 1,461 3,000 5,307 8,384 146 100 88 84
0.2 2,154 5,230 9,846 15,999 215 174 164 160

Note: Effect size is set to 0.1 and treatment is evenly allocated (7 = 0.5). The cells display total — rather than per-arm — sample size requirements
and number of clusters.

sample size required. This is because for a binary variable, variance is largest at p = 0.5. For example,
for m = 30 and p = 0.03, the sample size for p, = 0.5 is double that for p, = 0.1. As in the continuous
case, we see that higher ICCs and larger cluster sizes, m, lead to larger required total samples. This is
due to the design effect.

5.2.1 | Unequal numbers of clusters

It might be useful to have a formula for k; as a function of m and k), that will provide power of (1 — §3)
for the given m and ky:

(0 =p))/m)Gapn +29)* (1 + (m— Dp)
& — (po(1 = po)/mko) za 2 + 26)* (1 + (m — 1)p)
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GOING BEYOND SIMPLE SAMPLE SIZE CALCULATIONS: A PRACTITIONER’S GUIDE 19

5.3 | The role of covariates

In this subsection, we consider the case of unit-level treatment allocation where one has a single
covariate, X;, that is discrete, but not necessarily binary. In the case where the X; is continuous, one
can discretise the variable. Here, we write p; as

Prob T X eotriTi+y2X;
.= TO .= is ) = —
pi O ITi, Xi) 1 + evotniTitraX;

Where covariates are included, we need several extra inputs into the sample size equation,
relating to the distribution of the covariates and how success probabilities change according to the
covariate values.

First, assume that X; can take any of the following Q values, xi, ..., xy. Define 6, = Prob(X; = x,)
forgel,..,Q, with0 <6, <1and Zq 0, = 1. Next we need to specify how success probabilities
change across the values of X;. Define p,, = Prob(Y; = 1|T; = 0,X; = x,) and p;, = Prob(Y¥; = 1|T; =
1, X; = x,). Then we can define an effect size for a specific value of ¢, 8, = py, — po,» and an overall
effect size, § = Zq 6,8,- Schochet (2013) notes that covariate inclusion will improve efficiency if at
least two of the p, or py, probabilities differ across covariate values.

With these inputs at hand, we can now write the sample size equation as

_ (zg + Zoc/2)2
N* = (gM lg’)—52 ,
where
mp mp ms
M=|my, my; myl|,
m3 m4 m5

my =Y 70,p1,(1 = p1p) + (1 = 1)8,pog(1 = poy),
q

my = 2 70,p14(1 — p1y)s
q

my = quﬂeqmq(l —P1g) + (1 = 1)8poy(1 — poy),
q

my = Y x,70,p1,(1 = piy),

q

ms =Y X2w0,p1,(1 = p1g) + (1 = MB,po,(1 = poy),
q

and g is a 1 X 3 gradient vector with elements

g1, 11 =) 6,[p14(1 = p1g) — pog(1 = pog)l,
q

gl1,21= ' 6,[p1,(1 = p1l,
q
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20 FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

gll,3]= Z x404[P14(1 = p1g) — Pog(1 = pog)l-
q

In Appendix D, we provide a purposefully designed Stata program to carry out this computation for
five different values of the covariate.’’

5.3.1 | Cluster-level randomisation

Finally, we consider a cluster randomised treatment in the presence of a single, discrete cluster-level
covariate. Candidates for this could be a discrete cluster characteristic or a continuous variable, such as
cluster means of the outcome variable at baseline, which are then discretised. We write the probability
of success here as

elotr1Ti+r2X;
Pr— Prob Pr— l T,X =
Pi O 175, %) 1 + e’ot1TjHraX;

The variance-covariance matrix in this scenario is very similar to that without a covariate (see
equation (16)) with the exception of the use of the conditional ICC, p,, not the raw ICC (p), in the
correlation matrix. The sample size calculation for this subsection can be expressed as

(Z,B + Z05/2)2

k ko —1 g/
N* =2m*k* = (gM™'g’) 5

(1 + (m— 1)Px),

where p, is the conditional ICC, as we saw in the continuous outcome case with cluster randomisation
and covariates. Note that the inclusion of a cluster-level covariate can lead to precision gains through
decreasing the total residual variance, as well as by decreasing the conditional ICC. Schochet (2013)
suggests that the latter will have more impact on lowering the required sample size.

Table 5 presents the number of clusters required in the binary outcome case for two values of p,
0.05 and 0.1, and a binary covariate. What we see here is that the greater is the difference between p
and pg, (the difference in control group success rates for the two values of the covariate), the greater
is the sample size reduction due to the inclusion of the covariate. The number of clusters required
(for m = 60, p = 0.05, py = 0.5, and a constant effect size of 0.1 across covariate levels) is 51 in the

TABLE 5 Number of clusters required for binary outcomes under cluster-level randomisation with a binary covariate

Control group ICC =0.05 ICC=0.1
success rates for
X;i=0/X;=1 Impacts for X; =0/X; =1 Impacts for X; =0/X; =1

0.1/0.1 0.05/0.15 0.03/0.17 0.1/0.1 0.05/0.15 0.03/0.17

0.4570.55 50 49 49 88 86 85
0.4/0.6 49 47 47 85 83 81
0.3/0.7 42 40 39 74 70 68
02708 32 29 27 56 50 47

Note: Number of units per cluster () is set at 60. The overall base rate in this table is set to 0.5, with the overall impact set to 0.1. Treatment is
evenly allocated (7 = 0.5), and 6 = Prob(X; = 1) = 0.5. The cells display total — rather than per-arm — number of clusters.

31 Our Stata programs that accommodate two, three, four and five possible values of the covariate can be found at https:/ifs.org.uk/publications/
sample-size-calculators-going-beyond-simple-sample-size-calculations-practitioners. Schochet (2013) provides a set of SAS programs for sample
size calculations for binary outcomes.

UOIPUOD PUE SWB | 3L} 88S *[5202/60/ET] UO A%iq1T 8UIIUO /8|1 ‘20UB|BOXT 318D PUE U feeH Joj aiminsu| feuoieN ‘301N Ad S000L 0685-GLyT/TTTT OT/I0PAW00 A8 Im AReiqjeul|uo//Sdny WOy papeojumoq ‘0 ‘068551 T

oo ol Aeiq Ul

U

85UB017 SUOWIWIOD dAIER.D 3|eotdde auy Aq pausenob ae ssjoie O ‘88N Jo sojn. 1oy Akeiqi T 8uluO A8]IMm uo


https://ifs.org.uk/publications/sample-size-calculators-going-beyond-simple-sample-size-calculations-practitioners
https://ifs.org.uk/publications/sample-size-calculators-going-beyond-simple-sample-size-calculations-practitioners

GOING BEYOND SIMPLE SAMPLE SIZE CALCULATIONS: A PRACTITIONER’S GUIDE | 21

absence of a covariate (bottom right section of Table 4). In Table 5, this number falls to 49 when
Poo = 0.4 and py; = 0.6, and falls markedly to 32 when py, = 0.2 and py; = 0.8.

6 | EXTENSIONS

In this section, we provide three extensions that we think are particularly useful for researchers. The
first extension discusses how to choose optimally the number of clusters versus the number of units
within clusters. The second extension explains how to compute power using simulation methods,
which are useful when there are no existing formulae for the RCT that is being planned. The third
extension shows how to adapt the sample size computations when several outcomes are used.

6.1 | Choosing the number of clusters versus units per cluster

The same MDE can be obtained with different combinations of k, the number of clusters per arm,
and m, the number of units per cluster (see equation (5)). The question arises how to choose amongst
the different combinations. One common criterion is to choose the combination that maximises power
subject to a budget constraint. Consider the case in which the costs of the RCT comprise a fixed cost
per cluster, denoted by f, and a unit constant marginal cost, denoted by v. Hence, the total cost function
of the cluster RCT takes the form*”

C = 2k(f + vm).
Minimising the square of the MDE (as given in equation (5)) subject to this cost constraint yields

optimal values for m:

mt = 4= =L (17)

Using this formula and the cost function, we derive an expression for the optimal number of clusters
per arm, k:

k= ¢ (18)

2<f + V\/(f/v)(03/03)>

As Liu (2013) notes, it may be instructive to use the definition of the ICC to rewrite equations (17)
and (18) as

1—
and k* = ¢ (19)

e 2(f + WEMT =9/ )

ie)

< I~%

32 This formulation assumes that the fixed cost of a treatment cluster is equal to that of a control cluster and that the marginal cost per unit is the
same across both arms. These assumptions are reasonable when the research budget does not cover the cost of delivering the intervention. However,
when intervention costs are part of the research budget, treatment is typically more expensive than control. In such cases, the optimal sample
allocation will generally require differing numbers of clusters and units in the treatment and control arms; see McConnell and Vera-Hernandez
(2022) for detailed methods.
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22 | FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

where it is clear that the larger the ICC is, the smaller the optimal m is. This is due to the fact that
when the ICC is high, outcomes within clusters are highly correlated, and increasing the number of
units per cluster, m, adds little in precision gains. Resources are better spent by increasing the number
of clusters per arm, k.

By substituting the optimal values m* and k* in expression (6) and solving for 8, we can compute
the MDE that can be achieved given the budget constraint:

(20)

1 *—1
5* = (toc/Z + tﬁ) 202<M>

m*k*

By combining (19) and (20), we derive an expression for the minimum total cost, C*, required in
order to achieve a power of 1 — 8 for a given value of &:

rimp |+ (VIR =p7e - 1)e|
b (/v (1 =p)/p)

40
Cr= y(za/z +1)*|f+v

There are cases where the optimal allocation cannot be implemented — for example, when the
number of available clusters is smaller than the optimal, or when clusters have fewer units than
required. In such instances, expression (6) can be used to solve for the required number of units
per cluster, m, given a fixed number of clusters, k, or vice versa. A further consideration is that when
the number of clusters is small, standard inference procedures based on cluster-robust 7-statistics tend
to over-reject under the null hypothesis (Cameron, Gelbach and Miller, 2008; MacKinnon, Nielsen
and Webb, 2023). In such cases, inference is typically conducted using the wild cluster bootstrap
procedure. However, to the best of our knowledge, there are no widely accepted sample size calculation
methods when the analysis is going to be conducted using the wild cluster bootstrap. Hence, it seems
preferable to avoid a situation with too few clusters.

6.2 | Simulation

A researcher might need to compute the required sample size for an experiment whose features do
not conform to the ones indicated in previous sections. The possibilities of variation are endless. They
include experiments in which the number of units per cluster varies across clusters, experiments with
more than two treatment arms or using data from more than two time periods, to say a few. In situations
where some features of the experimental design vary significantly with respect to the canonical cases
given above, simulation methods can be very useful to estimate the power of a given design, and
correspondingly adjust the sample of the design to achieve the desired level of power.

To understand the logic of the simulation approach, it is useful to remember the definition of power:
the probability that the intervention is found to have an effect on outcomes when that effect is true. In
a hypothetical scenario in which the researcher happened to have 1,000 samples as the ones of their
study, and if they could be certain that ‘the effect is true’ in all these samples, then they could estimate
such probability (power) by simply counting in how many of these samples they ‘find’ the effect (the
null hypothesis of zero effect is rejected) and dividing it by 1,000.

The simulation approach simply operationalises the above by providing the researcher with 1,000
(or more) computer-generated samples, hopefully similar to the one of their study (or, at least, obtained
under the assumptions that the researcher is planning to use in the study). Because these are computer-
generated samples, the researcher can obtain these samples imposing the constraint that the effect is
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true (and, in particular, it will draw the samples assuming that the effect of the intervention is the same
as the effect size, d, for which the researcher wants to estimate the power).

In general, the steps required to estimate the power of a given design through simulation are as
follows (see Appendix C for an example): >

Step 1. Define the number of simulations that will be used to estimate the power of the design (say
S), as well as the significance level for the tests.

Step 2. Define a model that will be used to draw computer-generated samples to be as ‘those in
the study’. This model will have a non-stochastic part (sample size, number of clusters,
distribution of the sample across clusters, number of time periods, ICC, autocorrelation terms,
mean and standard deviation of the outcome variable, effect size, etc.) and a stochastic part
(error term).** An example of such a model could be equation (4) but with specific values for
the effect size, standard deviation and ICC (in Appendix Section C.6, these are set as § = 4,
o =10and p = 0.3).

Step 3. Using computer routines for pseudo-random numbers, obtain a draw of the error term (or
composite of error terms) for each unit in the sample. It is crucial that the error term is
drawn taking into account the stochastic structure of our experiment (the correlation of draws
amongst different units and time periods through the ICC or similar parameters). To draw
samples from the error terms, a distribution will need to be assumed. Although assuming
normality is common, the approach allows the assumption of other distributions that might be
more appropriate for the specific experiment.

Step 4. Using the model and parameter values indicated in Step 2 and the sample of the error term (or
composite of error terms) generated in Step 3, obtain the values of the outcome variable for
the sample. Once this is done, the draws of the error term generated in Step 3 can be discarded.

Step 5. Using the data on outcomes generated in Step 4 and the model of Step 2, test the null
hypothesis of interest (usually, that the intervention has no effect).’> Keep a record of whether
the null hypothesis has been rejected or not.

Step 6. Repeat Steps 3-5 for S times.

Step 7. The estimated power is the number of times that the null hypothesis was rejected in Step 5
divided by S.

Although using simulation methods to estimate power has a long tradition in statistics, the approach
is not so commonly used in practice (Arnold et al., 2011).>° We suspect that Step 3 is the most
challenging for the applied researcher. In Appendix C, we provide several hints, which could be of
some help.

6.3 | Adjusting sample size calculations for multiplicity

A common problem with experiments (and more generally in empirical work) is that more than one
null hypothesis is usually tested. For instance, it is common to test the effect of the intervention
on more than one outcome variable. This creates a problem because the number of rejected
null hypotheses (the number of outcome variables for which an effect is found) will increase —
independently of whether they are true or not — with the number of null hypotheses (outcome variables)
tested if the significance level is kept fixed with the number of hypotheses.

33 Feiveson (2002) provides insightful examples for Poisson regression, Cox regression and the rank-sum test.

341f a pilot dataset is available, an alternative approach is to bootstrap from these data (see Kleinman and Huang (2017)).
35 We are assuming that the test for the null hypothesis has the correct size. Otherwise, see Lloyd (2005).

36 See Hooper (2013), Kumagai et al. (2014) and Kontopantelis et al. (2016) for some recent implementations of the simulation approach to
estimate power.

UOIPUOD PUE SWB | 3L} 88S *[5202/60/ET] UO A%iq1T 8UIIUO /8|1 ‘20UB|BOXT 318D PUE U feeH Joj aiminsu| feuoieN ‘301N Ad S000L 0685-GLyT/TTTT OT/I0PAW00 A8 Im AReiqjeul|uo//Sdny WOy papeojumoq ‘0 ‘068551 T

/W00 A8 |1 AReAq1 Ul juo//Sdh

85UB017 SUOWIWIOD dAIER.D 3|eotdde auy Aq pausenob ae ssjoie O ‘88N Jo sojn. 1oy Akeiqi T 8uluO A8]IMm uo



24 | FISCAL STUDIES SYMPOSIUM: POWER IN EXPERIMENTS

For instance, consider that we are testing the effect of an intervention on three different outcome
variables, and that we use an a equal to 0.05 for each test. If we assume that the three outcome variables
are independent, then the probability that we do not reject any of the three null hypotheses when they
are all true is (I — 0.05)3. Hence, the probability that we reject at least one of them if all three are
true is 1 — (1 — 0.05)° = 0.14. Why is this a problem? Assume that the intervention will be declared
successful if it is found that it improves at least one of the outcomes. The numbers above imply that the
intervention will be declared successful with a probability of 0.14 (larger than the normal significance
level of 0.05) even if it has no real effect on any of the three outcome variables.

The problem of multiplicity of outcome variables is recognised by regulatory agencies that
approve medicines (US Food and Drug Administration, 1998; European Agency for the Evaluation
of Medicinal Products, 2002) and has become more common also in applied work in economics
(Anderson, 2008; Carneiro and Ginja, 2014; Mohanan et al., 2021).37 The standard solution requires
performing each individual hypothesis test under an a smaller than the usual 0.05 (Ludbrook, 1998;
Romano and Wolf, 2005) so that the probability that at least one null hypothesis is rejected when all
null hypotheses are true ends up being 0.05.® Hence, when doing the sample size calculations, the
researcher should also use a smaller a than 0.05, which will increase the sample size requirements.

When the outcome variables are independent, the probability that at least one null hypothesis is
rejected when all are true, usually called the family-wise error rate (FWER), is 1 — (1 — a)", where «
is the level of significance of the individual tests and /4 is the number of null hypotheses that are tested
(i.e. number of outcome variables). Hence, if our study needs a FWER of 0.05, then the significance
level for each individual test is given by 1 — (1 — 0.05)1/"  which would be 0.0170 in our example of
h=3%

In most experiments, the outcome variables will not be independent. Taking into account this
dependency will yield higher values of a, and consequently smaller sample size requirements. If
one was willing to assume the degree of dependency amongst the different outcome variables, then
a time-consuming but feasible approach to compute the required power is to use the simulation
methods previously described combined with a method for Step 5 (testing the null hypothesis) that
takes into account the multiple tests carried out and the dependence in the data, such as Westfall
and Young (1993) or Romano and Wolf (2005). If this was not available, a rule of thumb is to
use @ = 1 — (1 —0.05)"/ \/h), a correction which was popularised by John W. Tukey (Braun, 1994).
This will result in an o larger than when independence is assumed, and hence smaller sample
size requirements.

7 | CONCLUSION

In this paper, we have reviewed methods for conducting sample size calculations that go beyond the
standard textbook example. The extensions discussed include how to balance the trade-off between
the number of clusters and the number of units per cluster, how to adjust calculations when multiple
outcomes are considered, and how to use simulation techniques to estimate statistical power in more
complex designs not addressed by analytical formulae.

Researchers must make more assumptions when applying the more complex methods presented
here than when using simpler approaches. Nevertheless, we argue that the growing availability
of publicly accessible datasets places researchers in a relatively strong position to make credible
assumptions about key parameters. Moreover, researchers can contribute to cumulative knowledge

37 There is less consensus on whether correcting for multiplicity is necessary when testing multiple treatments (see Wason, Stecher and Mander
(2014)).

38 An alternative way to analyse the data is to test jointly (through an F-test) the null hypothesis that the intervention does not have an impact on
any of the outcome variables considered.

39 A common simplification is to use the Bonferroni correction, which would be 0.05/A.
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by routinely reporting fundamental quantities — such as intra-cluster correlations, unit- and cluster-
level autocorrelations, and R-squared values — in their studies. Journal editors could further facilitate
progress by coordinating reporting standards, as has been done in the medical sciences.
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