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Abstract 
  In everyday life, we are immersed in rich and dynamic auditory 

environments filled with complex statistical regularities. While previous research 

has demonstrated that the auditory system continuously tracks such patterns, 

much of this work has relied on simplified stimuli—often consisting of a single, 

fixed pattern repeated throughout the sequence. In contrast, real-world listening 

involves constantly shifting auditory patterns embedded in multi-modal sensory 

contexts. 

 This PhD thesis investigates how the brain tracks regularities in such 

environments with dynamic shifts in regularities and explores how these 

processes influence broader neural and cognitive functions. How do we 

navigate an uncertain auditory world, and in turn, how does this shape the way 

we perceive, respond to, and interact with our surroundings? Across three 

empirical chapters, the work combines electroencephalography (EEG), 

computational modelling, and psychophysiological measurements to examine 

different facets of this question. Chapter 2 explores how the brain utilises past 

information when tracking auditory regularities. By comparing two contexts—

one in which past input is informative for predicting the current sequence and 

one in which it is not—the study investigates whether the brain dynamically 

adjusts its reliance on memory to form predictions. Chapter 3 investigates 

whether regularity tracking is influenced by prior context. To test this, the study 

compares neural responses to identical regular sequences that are preceded by 

contexts of differing predictability. Chapter 4 examines the broader cognitive 

impact of automatic auditory regularity tracking. Using an audiovisual memory 

task, the study tests whether task-irrelevant background sound structures 

influence the encoding of concurrently presented visual information. 

 Together, these studies reveal a flexible and context-sensitive 

mechanism for auditory regularity tracking that operates outside the focus of 
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attention. This work contributes to our understanding of how the brain maintains 

adaptive perception in complex, real-world environments. 
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Impact Statement 
 This PhD thesis investigates how the human auditory system in healthy 

young adults processes dynamically evolving sound statistics during passive 

listening. Our surroundings are filled with complex acoustic patterns that carry 

rich information about the external world. Yet, scientific understanding of how 

the brain processes auditory regularities has largely been shaped by studies 

using static, simplified stimuli that fall short of capturing the adaptive demands 

of real-world listening. This thesis addresses this gap by examining how the 

brain tracks evolving statistical regularities across varying contexts, even 

without directed attention. The findings offer novel insights into the flexible, 

context-sensitive nature of auditory processing and provide a more ecologically 

grounded view of how the brain interprets the sounds that surround us. 

Specifically, the thesis makes three key contributions to the field of cognitive 

neuroscience: 

 First, it reveals that the brain’s processing of auditory regularities is 

highly sensitive to the broader environmental context. Rather than relying on a 

fixed strategy, the brain dynamically adjusts how it uses past information 

depending on the current context—responding differently to identical sounds 

based on their surrounding statistical structure. This flexible adjustment in 

predictive modelling may have direct relevance for understanding psychiatric 

conditions, such as autism or schizophrenia, where such adaptability to 

changing environments is often impaired. 

 Second, the research shows that background regularities are not merely 

confined to local auditory processing but are integrated into broader cognitive 

operations. Specifically, the findings suggest that statistical patterns in 

unattended sounds can influence processes like arousal regulation and memory 

encoding. This challenges the traditional view of background sounds as 

irrelevant noise, highlighting their capacity to influence how we perceive and 

interpret the world, even when our attention is focused elsewhere. 
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 Third, the thesis offers preliminary evidence that the computational 

principles underlying auditory regularity tracking share similarities with those 

involved in higher-order cognitive functions such as memory and decision-

making. It raises the possibility that the brain’s strategy for making sense of 

background auditory scenes may reflect a more general-purpose mechanism 

for navigating dynamic, uncertain environments.  

 Beyond basic science, the work has practical implications for how we 

design our auditory environments. It highlights the potential cognitive impact of 

background soundscapes, suggesting that the design of auditory 

environments—in public spaces, workplaces, educational settings, and digital 

platforms—should be approached with care. Thoughtfully designed 

soundscapes could support attention, reduce cognitive load, and enhance 

wellbeing. By recognising the power of background sound, this work advocates 

for a more holistic understanding of perception and behaviour—one that 

accounts for information beyond the focus of attention and reflects the brain’s 

continuous engagement with its sensory environment.  
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1. Chapter 1: General Introduction 
1.1 Understanding the capability of the passive listening 

brain 

Imagine walking through King’s Cross Station: a departure 

announcement echoes across the concourse, heels tap hurriedly past, a group 

of tourists chatter excitedly in a mix of accents. Outside, a street performer 

begins a tune on a saxophone, overshadowed by the blaring siren of an 

ambulance. Each sound source — transient or sustained, speech or mechanical 

— emerges, shifts, and fades unpredictably, across time, space, and spectral 

range.  

We are constantly immersed in such complex soundscapes and 

effortlessly navigate this dynamic flow of information. Yet, our understanding of 

how such environments influence the brain remains limited. This thesis explores 

how the brain adapts to, responds to, and learns from these rich and ever-

changing auditory signals through exposure. I begin the thesis by reviewing the 

kinds of information that the passive listening brain can extract and learn from 

the surrounding sound environment, specifically focusing on two major functions 

of listening: speech processing and salience detection.  

1.1.1 Speech 
Voice perception is a fundamental and widespread ability—not only in 

humans, but in many animal species that rely on complex vocal communication 

systems (Gil-da-Costa et al., 2004; Harford et al., 2024; Petkov et al., 2008). 

From early infancy, humans begin to acquire core structural properties of their 

native language—such as prosodic contours, phonotactic constraints, and word 

boundaries—through exposure, without explicit instruction (Jusczyk, Cutler, et 

al., 1993; Jusczyk, Friederici, et al., 1993; Jusczyk et al., 1994; Saffran, Aslin, et 

al., 1996; Wellmann et al., 2012). 
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A central mechanism supporting such acquisition is statistical learning —

the ability to detect regularities in the sensory environment through passive 

exposure. In the context of speech, this involves learning patterns embedded in 

the signal, such as the likelihood of one sound following another or the 

frequency distributions of certain phonetic features. Crucially, statistical learning 

is typically implicit: it operates without deliberate instruction or conscious 

awareness, and learners may not experience a subjective sense of familiarity 

with the patterns they have acquired (Turk-Browne et al., 2009).   

Even after the foundational rules of language are acquired, speech 

perception remains a dynamic task. Spoken language is inherently variable, 

influenced by accents, dialects, talker identity, and noisy environments. These 

variations shift the reliability and relevance of acoustic dimensions, requiring 

listeners to continuously sample their auditory environment and adjust their 

internal models to accommodate the present context (Holt, 2025; Holt et al., 

2018). The following sections review the range of speech regularities that 

listeners learn through exposure, and the flexibility of such representations. 

1.1.1.1 Transitional probability 

 A seminal demonstration of statistical learning comes from the work of 

Saffran, Aslin, et al. (1996), who showed that 8-month-old infants could extract 

word-like units from a continuous stream of artificial speech by tracking 

transitional probabilities (TPs)—that is, the probability that one syllable follows 

another. In their study, infants were exposed to a two-minute stream in which tri-

syllabic “words” had high internal TPs (e.g., syllable B always followed syllable 

A), but low TPs at word boundaries. In a subsequent test phase, infants 

successfully distinguished the learned “words” from non-words. This finding has 

been extended to adults (Saffran, Newport, et al., 1996), neonates (Teinonen et 

al., 2009), and natural languages (Pelucchi et al., 2009), suggesting that 

humans are equipped with a robust, passive ability to detect TP from infancy. 
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1.1.1.2 Non-adjacent learning 

 Natural language is replete with non-adjacent regularities, where relevant 

elements are separated by intervening material. While more complex than 

adjacent dependencies, such patterns can also be acquired through exposure. 

Newport and Aslin (2004) found that adults could learn non-adjacent 

dependencies, although in this experiment, the task required active 

engagement with the stimuli. Furthermore, Friederici et al. (2011) showed that 

4-month-old infants could learn such patterns passively, suggesting that the 

brain is tuned to structure beyond local transitions. 

1.1.1.3 Distributional learning 

Another powerful learning mechanism is distributional learning, which 

allows listeners to track how often particular features or cues occur in the 

speech signal. For instance, while young infants can discriminate nearly all 

phonetic contrasts (Aslin et al., 1998), by the end of their first year their 

perception becomes attuned to the phonemic structure of their native 

language—much like adults (Kuhl et al., 1992; Werker & Tees, 1984). This shift 

is considered to reflect sensitivity to the statistical distribution in their native 

language (Guenther & Gjaja, 1996; Kohl, 1993). Supporting this, Maye et al. 

(2002) demonstrated that 6-month-old infants could shift their sound 

discrimination patterns after brief passive exposure to bimodal or unimodal 

distributions of phonetic variation. 

This learning process also shapes how listeners weight different acoustic 

dimensions. When categorising speech sounds, the brain must integrate 

information across multiple acoustic cues—but not all cues are equally 

informative. Listeners learn, through long-term exposure, to prioritise 

dimensions that most reliably distinguish categories (Holt & Lotto, 2006; 

Toscano & McMurray, 2010; Wellmann et al., 2012). For example, when 

distinguishing /r/ and /l/, American listeners rely heavily on the onset frequency 

of the third formant (F3), while Japanese listeners— whose native language 
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does not contrast these sounds— tend to rely more on the second formant (F2), 

a less reliable cue in this context (Iverson et al., 2003).  

1.1.1.4 Co-occurring feature learning 

Speech signals are multidimensional, and infants also learn through 

exposure to co-occurring cues. Results from Thiessen and Saffran (2003) 

suggest that infants initially rely on transitional probabilities to segment words 

from continuous speech. Over time, they begin to integrate co-occurring stress 

cues and gradually shift their weighting toward such cues as they develop. 

Crucially, real-world learning often involves ambiguity. For example, 

when a word is presented, infants may see multiple potential referent objects, 

creating uncertainty about the correct mapping. Smith and Yu (2008) 

demonstrated that 12-months-old infants can learn word-object mappings even 

when multiple objects and words are presented simultaneously. Through 

repeated exposure across trials, infants were able to statistically infer the 

correct pairings—highlighting the brain’s capacity to extract consistent 

mappings from noisy environments. 

1.1.1.5 Generalisation of learned structure 

Statistical learning supports not only the recognition of specific 

regularities but also the generalisation of learned regularities. Marcus et al. 

(1999) exposed 7-months-old infants to sequences with structures like ABA 

(e.g., "ga ti ga") or ABB ("ga ti ti"), then tested them on novel sequences using 

different syllables. Infants successfully recognised the familiar pattern, 

demonstrating sensitivity to underlying structure, not just surface features. 

Further evidence from Gómez and Lakusta (2004) shows that such 

generalisation can occur even under noisy conditions— when 17% of training 

instances came from a different language—highlighting the robustness of 

statistical learning mechanisms. 
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1.1.1.6 Long-term vs. short-term learning 

As reviewed above, long-term exposure to the statistical structure of 

speech shapes how listeners perceive and categorise sounds. For instance, 

listeners learn to prioritise acoustic dimensions that are most consistently 

informative in their long-term exposure through development (Idemaru & Holt, 

2013; Iverson et al., 2003; Kondaurova & Francis, 2008).  

However, speech signals—and the environments in which they occur—

are inherently variable. Rather than relying on fixed representations, the 

perceptual system is remarkably flexible. A growing body of evidence suggests 

that listeners can rapidly adjust their perceptual strategies aligning with the 

short-term input regularities, even if it contradicts with the regularities 

familiarised through long-term exposure (Holt, 2025; Holt et al., 2018). 

In a study by Holt and Lotto (2006), participants were trained to 

categorise sounds that varied along two acoustic dimensions: carrier frequency 

(CF) and modulation frequency (MF). Most listeners naturally weighted CF more 

heavily, as it was more diagnostic for categorisation. However, a separate group 

that received brief pre-exposure to a distribution in which only MF varied (while 

CF remained constant) showed an increased reliance on MF. This shift occurred 

through passive exposure alone, suggesting that listeners implicitly track recent 

statistical patterns and adjust their weighting of cues accordingly. 

Such adjustments are not limited in the lab. In real-world scenarios, such 

as encountering a foreign accent, long-term perceptual expectations often fail to 

align with the input. Accented speech can distort familiar cue distributions, 

requiring rapid recalibration. Research shows that listeners can flexibly modify 

the weight given to specific acoustic cues when exposed to accented speech, 

effectively adapting to the altered structure of the signal (Hodson et al., 2023; 

Idemaru & Holt, 2011; T. K. Murphy et al., 2024). 
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Together, these findings illustrate that speech perception reflects a 

dynamic interplay between long-term regularity learning and short-term 

adaptation. The brain continuously integrates prior experience with current 

input, enabling flexible and context-sensitive interpretation of speech sound. 

1.1.2 Salience detection 

Another crucial function of the auditory system is the rapid detection of 

potential danger. Unlike the visual system, which typically requires directed 

gaze, the auditory system continuously monitors the environment regardless of 

our attentional focus. Moreover, auditory stimuli elicit faster responses related to 

attentional orientation toward potential danger compared to visual stimuli, 

positioning the auditory system as the brain’s early warning mechanism (Dalton 

& Lavie, 2004; S. Murphy et al., 2013; Rolfs et al., 2008; C.-A. Wang et al., 

2014).  

A key concept in this context is sound salience—the automatic attraction 

of attention by sound. Salient sounds can trigger a shift in attention even when 

processed in the background, often signalling an urgent or potentially 

threatening event. This ability allows the auditory system to alert us to sudden 

changes or anomalies in the environment that might require immediate action. 

Salience is shaped by both the acoustic properties of the sound and its 

relation to the surrounding auditory context. For example, a car horn is 

inherently salient, but it is likely to be perceived as more salient in a quiet 

countryside than in a bustling city, where such sounds are more expected. In 

the following sections, I review key factors that shape auditory salience—that is, 

the features that engage the passive listening brain. 

1.1.2.1 Salient sound components 

Consider the design of an auditory alarm: these sounds are purposefully 

made to capture attention. They are often jarring, unpleasant, and difficult to 
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ignore. Regardless of the surrounding context, such sounds tend to “pop out” 

perceptually. But what makes a sound so hard to ignore? 

Certain acoustic features inherently contribute to sound salience. 

Through both evolutionary adaptation and learned experience, the brain has 

developed heightened sensitivity to specific sound properties that signal 

importance, urgency, or danger. 

Traditionally, sound salience has been measured using subjective 

judgments, where listeners are asked to rate how distracting or attention-

grabbing a sound is. However, recent developments in physiological 

measurement techniques have introduced more objective ways of quantifying 

salience while participants passively processing the sound. Notably, ocular 

dynamics—specifically pupil dilation response (PDR) and microsaccadic 

inhibition (MSI)—have gained traction as reliable indices. PDR is thought to 

reflect general arousal levels, while MSI, referred to as the “ocular freezing” 

response, indicates a shift in attentional allocation (Bonneh et al., 2015; Rolfs, 

2009; Sara, 2009; Sara & Bouret, 2012). A more detailed review of these 

physiological measures is provided in the appendix chapter. 

Among the acoustic components that influence salience, loudness is 

perhaps the most intuitive. Loud sounds tend to be more difficult to ignore. 

Empirical findings support this intuition: For instance, Liao et al. (2016) 

demonstrated a correlation between loudness and perceived salience. 

Furthermore, louder sounds were associated with larger PDR (Liao et al., 2016; 

see also N.Huang and Elhilali (2017)).  

Beyond loudness, another important acoustic factor is roughness. 

Roughness refers to a perceptual quality typically described as harsh, raspy, or 

buzzing (Zhao, Wai Yum, et al., 2019). Human screams—a natural alarming 

sound—cluster within the roughness range in acoustic space (Arnal et al., 

2015). This quality is associated with energy in the high-frequency range of the 
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amplitude modulation spectrum, specifically above 30 Hz (Arnal et al., 2015; 

Zhao, Wai Yum, et al., 2019). Zhao, Wai Yum, et al. (2019) showed that 

roughness was correlated with subjective salience rating, and that it also 

correlated with MSI responses. Interestingly, neuroimaging data revealed that 

rough sounds activated the amygdala, a brain region implicated in emotion and 

danger processing (Arnal et al., 2015). This suggests the importance of 

roughness sound component for danger detection. 

Another potent cue for salience is the looming sound—sounds that 

appear to be approaching the listener in space. Looming sounds carry survival-

relevant information, such as an approaching predator in nature or an oncoming 

vehicle in urban environments. Numerous studies have shown that looming 

sounds are perceived as more salient than the receding sound, the reversed 

version of the looming sound that represent the objects moving away from the 

listener. For instance, listeners detect looming sounds more rapidly and 

consistently rate them as louder, closer, and longer in duration compared to 

identical sounds played in reverse (Bidelman & Myers, 2020; Grassi & Darwin, 

2006; Neuhoff, 2001; Ponsot et al., 2015). Looming stimuli also elicit stronger 

physiological responses reflecting heightened phasic alertness and engage the 

amygdala, again linking them to neural circuits responsible for monitoring 

potential threats (Bach et al., 2008). 

In the appendix chapter, I further review and examine additional types of 

potentially salient features. 

1.1.2.2 Salience relative to the surrounding context 

While these acoustic features are inherently attention-capturing, sound 

salience is also strongly modulated by the surrounding auditory context. A 

sound that is loud or rough may appear less salient if embedded in a 

background with similar features. In other words, salience is not determined 

solely by absolute acoustic properties, but also by the extent to which a sound 
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deviates from the statistical regularities of the ongoing auditory scene (N. 

Huang & Elhilali, 2017). According to predictive coding theory (Friston, 2010), 

the brain constructs internal models of the sensory environment by continuously 

extracting regularities from input. These models enable the detection of 

unexpected events—those that violate the predictions generated by prior 

context.  

As empirical support for this context-based view of salience, Kaya et al. 

(2020) constructed melodies in which the acoustic dimensions followed specific 

statistical distributions. Occasionally, a note would deviate from these 

distributions, serving as a salient event. Importantly, the same notes were also 

embedded in alternative melodies where they conformed to the distribution, 

allowing for a controlled comparison. Neural responses were recorded while 

participants focused on a separate visual task, ensuring that attention was not 

deliberately directed toward the sounds. Despite this, deviant notes elicited 

stronger neural signatures indicating an enhanced allocation of attention to the 

sound than their acoustically identical counterparts. In a related experiment, 

Kaya and Elhilali (2014) asked participants to identify salient events within 

sound clips and compared their responses to predictions from a computational 

model based on predictive coding. This model estimated the likelihood of future 

events from prior acoustic regularities and flagged events deviating from such 

predictions. Strikingly, its predictions closely matched participants’ behavioural 

judgments, further supporting the notion that salience is determined by 

deviations from expected statistical patterns. 

In summary, the brain’s ability to extract regularities, generate 

predictions, and detect deviations lies at the heart of both salience detection 

and speech perception—even in the absence of focused attention. This 

dynamic interplay allows listeners to navigate and interpret complex auditory 

environments with remarkable efficiency. The following sections delve deeper 

into the mechanisms underlying regularity extraction and predictive processing, 

which form the foundation of passive auditory perception. 
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1.2 Predictive coding theory 

As reviewed above, perception is not a passive reception of sensory 
input, but an active process of inference. The brain continuously seeks to 

uncover the underlying regularities in the environment, allowing it to utilise such 

regularities to interpret sensory signals. This inferential capacity is crucial 

because sensory input is often uncertain—any given stimulus could arise from 

multiple possible causes (Knill & Pouget, 2004). By forming predictions about 

the world, the brain not only makes sense of ambiguous input but also gains the 

ability to respond more rapidly and efficiently to external events (Bendixen et al., 

2012; Boubenec et al., 2017; Nobre et al., 2007; Southwell & Chait, 2018).  

This predictive process is formalised in the predictive coding theory, 

which proposes that the brain builds internal models of the environment, 

continuously compares these models against incoming sensory data, and 

updates them based on the discrepancy—known as prediction error—between 

expectation and reality (Friston, 2005, 2008; Y. Huang & Rao, 2011; Rao & 

Ballard, 1999). The following section explores how such internal models are 

generated and refined in the brain. 

1.2.1 Introduction to Bayesian brain 
A growing body of evidence suggests that predictive coding operates 

according to the principles of Bayesian inference (Friston, 2005, 2008; Knill & 

Pouget, 2004; Skerritt-Davis & Elhilali, 2018; but see Aitchison & Lengyel, 

2017). The Bayesian framework aligns with the long-standing view, dating back 

to Helmholtz, that perception is a form of unconscious inference—an 

interpretative process that relies on prior knowledge to resolve the inherent 

ambiguity of sensory input (Kersten et al., 2004).  

Bayesian inference provides a formal framework for describing how the 

brain integrates prior knowledge (top-down expectations) with new sensory 
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evidence (bottom-up input) to update the belief. This process is captured by 

Bayes’ theorem: 

𝑃(H|E)∝𝑃(E|H)𝑃(H) 

Here, H represents a Hypothesis or prediction, and E is the incoming 

sensory Evidence. The model evaluates how likely the evidence is, given the 

hypothesis (P(E∣H) or likelihood), and combines it with the prior probability of 

that hypothesis (P(H)) to generate an updated belief, the posterior (P(H∣E)). The 

regularities learned through long-term experience, as discussed in the previous 

section, provide the basis for these prior expectations. 

Consider a simple example: you hear barking in your yard (E), and you 

wonder if it is your dog (H). To evaluate this hypothesis, you assess how 

strongly the evidence supports it—that is, you consider the probability of H 

given E, or P(H|E). This depends on two things: how likely it is that your dog 

would be barking at all (P(H)), and how likely it is that your dog would produce 

the particular bark you heard (P(E|H)). The more the sound matches what you 

expect from your dog, the more confident you become that your interpretation is 

correct. 

Importantly, Bayesian inference operates on distributions (Knill & Pouget, 

2004); distribution with larger variance represents the inherent uncertainty of 

that information. When sensory input is noisy or ambiguous (high variance), its 

associated likelihood distribution P(E|H) has a high variance, and contributes 

less to the posterior P(H|E). As a result, the prior P(H) plays a more dominant 

role in shaping the updated belief. Conversely, when the sensory signal is 

precise, it has more power to update existing predictions (Kersten et al., 2004; 

Yu & Dayan, 2005). This inferential process involves continuously maintaining 

and evaluating multiple hypotheses, updating the internal model to reflect the 

most probable interpretation of the environment. The Bayesian framework thus 

enables to adaptively revise its representations in response to ongoing sensory 

input—a key advantage for navigating an ever-changing world. 
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1.2.2 Predictive coding and its hierarchical structure 

While the Bayesian framework offers a theoretical account of how the 

brain could update its beliefs in light of new sensory evidence, predictive coding 

provides a plausible neural mechanism for implementing this process (Aitchison 

& Lengyel, 2017; Bastos et al., 2012). In particular, hierarchical predictive 

coding has gained prominence as a model that explains how the brain 

organises perception and learning. 

Hierarchical predictive coding proposes that perception arises from the 

continuous interaction between higher-level predictions and lower-level sensory 

input, through feedforward and feedback connections (Friston, 2005, 2008; T. 

S. Lee & Mumford, 2003; Mumford, 1992; Rao & Ballard, 1999; Shipp, 2016). 

Higher cortical areas generate predictions about expected sensory input and 

send them down, while lower sensory regions compare these predictions to the 

actual input. Any mismatch—termed a prediction error—is then transmitted 

upward. For instance, predictions formed in visual area V2 are sent back to V1 

via feedback projections and serve as prior expectations in V1. V1 compares 

this prediction with the actual incoming signal; any unexplained residual—i.e., 

the prediction error—is sent forward to V2, prompting an update of the internal 

model (Rao & Ballard, 1999). This iterative loop continues across the cortical 

hierarchy, with the goal of minimising prediction error and optimising the internal 

model of the world (Friston, 2005, 2008).  

The viability of hierarchical predictive coding is supported by the brain’s 

known anatomical organisation, which exhibits a hierarchical structure across 

cortical areas (Felleman & Van Essen, 1991; Zeki & Shipp, 1988). Within this 

hierarchical structure, distinct neural pathways are proposed to mediate the flow 

of predictions and prediction errors. Feedforward pathways, which carry 

prediction error signals, typically involve excitatory projections from pyramidal 

neurons in the superficial layers. In contrast, feedback pathways that transmit 

top-down predictions typically arise from deep-layer pyramidal neurons and 
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modulate activity in lower cortical areas, often through inhibitory connections 

(Bastos et al., 2012; Shipp, 2016).  

1.2.2.1 Precision-weighted prediction error 

 Prediction error lies at the heart of hierarchical predictive coding models, 

serving as the primary signal that drives the updating of internal representations 

to align more closely with the environment. In theory, prediction errors are 

informative: they reflect meaningful discrepancies between top-down 

expectations and bottom-up sensory input, indicating that the brain’s current 

model of the world may need revision. However, the real world is inherently 

noisy, and not all prediction errors stem from meaningful discrepancies—some 

arise purely from sensory noise. This raises a critical question: how does the 

brain distinguish between informative prediction errors that warrant updating, 

and spurious ones that should be ignored? 

 A central solution proposed by predictive coding frameworks is the 

concept of precision, defined as the inverse of variance. Precision quantifies the 

estimated reliability of a prediction. By weighting prediction errors according to 

precision of the prediction, the brain can regulate their influence on model 

updates (Friston, 2008; Yon & Frith, 2021). As discussed above, prediction error 

arises from the comparison between sensory input and prediction. Therefore, 

the reliability of both sources critically determines the weight assigned to the 

resulting error signal. For example, when sensory input is noisy, it results in a 

broader predictive distribution, causing the associated prediction error to 

receive low precision and therefore exert a small influence on updating the 

internal model. In contrast, when prior beliefs are strong and reliable, the 

predictive distribution becomes narrower, assigning higher precision weighing to 

the prediction error and increasing its impact on model updating. In this way, 

precision functions as a modulatory parameter that dynamically adjusts the 

influence of sensory evidence versus prior expectations (Friston, 2008; Yon & 

Frith, 2021). At the neural level, precision is believed to be encoded by 
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modulating the postsynaptic gain of superficial pyramidal neurons which encode 

prediction error (Feldman & Friston, 2010; Friston, 2008; Shipp, 2016).  

 Such mechanism enables the brain to maintain adaptive and efficient 

internal models in complex, ever-changing environments. Importantly, 

disruptions in the estimation or use of precision may underlie certain 

neuropsychological conditions. For example, in autism, atypically strong belief 

about the precision of incoming sensory evidence may cause the system to 

overreact to minor fluctuations, prompting excessive model updates (Lawson et 

al., 2014; Pellicano & Burr, 2012; Yon & Frith, 2021; but see Lieder et al., 2019). 

 In summary, this section reviewed the core principles of predictive coding 

theory—a foundational framework for understanding how the brain interprets 

and adapts to sensory input. In the following section, I turn to the auditory 

domain, examining the empirical evidence for whether and how predictive 

coding can be implemented in the auditory system.  

 

1.3 Regularity detection, prediction formation, and 

model update in the auditory system 

 As discussed in Chapter 1.1, the ability to detect regularities and form 

predictions based on learned patterns is a fundamental function of the auditory 

system—even when sounds are not directly tied to behaviour. Empirically 

testing this ability in passive listeners, however, presents unique challenges. In 

decision-making tasks, participants’ choices provide a window into their 

expectations about the environment. In contrast, during passive listening in the 

auditory domain, it is much harder to determine what regularities have been 

learned or when a listener experiences a prediction violation. This section 

reviews the indirect methods that have been developed over the past decades 

to investigate how the auditory system tracks regularities and processes 

prediction models.   
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1.3.1 Neural signatures of regularity tracking 

To investigate how the auditory system computes predictions, 

electroencephalography (EEG) and magnetoencephalography (MEG) are 

particularly valuable tools, owing to their high temporal resolution. Since 

auditory scenes unfold rapidly over time, capturing the precise timing of neural 

responses is essential. Using these techniques, researchers have developed 

two complementary approaches to uncover the neural correlates of regularity 

detection and prediction formation: one focuses on identifying neural signatures 

of predictions themselves, while the other examines responses to deviations 

from those predictions. 

1.3.1.1 Repetition suppression 

 When auditory stimuli are repeatedly presented, neural responses to 

those stimuli often diminish—a phenomenon known as repetition suppression 

(Baldeweg, 2006; Todorovic & de Lange, 2012). A traditional explanation for this 

effect is neuronal adaptation, where the reduced activity reflects passive fatigue 

or habituation of sensory neurons. However, growing evidence suggests that 

repetition suppression cannot be fully explained by such passive mechanisms 

alone and may also reflect active, expectation-related processes. 

 For instance, Costa-Faidella et al. (2011) examined repetition 

suppression in a passive listening context by presenting sequences of pure 

tones with either a predictable (fixed) or unpredictable (varied) inter-stimulus 

interval (ISI). Despite equivalent levels of sensory exposure—and thus similar 

opportunities for adaptation—the unpredictable condition showed reduced 

repetition suppression. This indicates that predictability itself can modulate 

neural responses, suggesting that repetition suppression may, in part, reflect 

the operation of active predictive mechanisms. 

 A more direct dissociation between adaptation and expectation was 

demonstrated by Todorovic and de Lange (2012), who orthogonally manipulated 

adaptation (via tone repetition) and expectation (via transitional probabilities). 
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For example, repetitions of tone A were highly predictable (A followed by A was 

common), whereas repetitions of tone B were less predictable (B followed by B 

was rare), allowing the same physical repetition to carry different levels of 

expectation. Their findings showed that both repetition and expectation 

suppressed neural responses, but with distinct temporal profiles: repetition 

effects (repeated vs alternating tones) appeared earlier in the neural response, 

while expectation effects (expected vs unexpected tones) emerged later. This 

result suggests that neural suppression arises not only from adaptation but also 

from predictive processes. 

 Moreover, one could argue that even the initial repetition suppression 

may reflect a basic form of prediction—namely, the prediction of local 

transitional probabilities. If so, the temporal separation of effects related to 

repetition and expectation may reflect different levels of predictive complexity, 

aligning with hierarchical predictive coding models (Garrido, Kilner, Kiebel, 

Stephan, et al., 2009; Kiebel et al., 2008; Todorovic & de Lange, 2012; 

Wacongne et al., 2012). 

 Across studies, predictable elements in sensory input elicited reduced 

neural activity. But what drives this suppression? Two major theoretical 

accounts have been proposed (noting that much of the supporting evidence 

comes from visual studies). One suggests that top-down expectations from 

higher-level cortical areas filter out predicted information, suppressing activity in 

early sensory regions. The alternative account proposes that prediction 

sharpens neural representations in early sensory areas by inhibiting neurons 

that do not code for expected features. This leads to a more selective 

population response and, consequently, a reduction in overall response (de 

Lange et al., 2018; Kersten et al., 2004).  

 Empirical evidence supports both accounts, making it difficult to 

determine which predominates. For example, Kok, Jehee, et al. (2012) found 

that expectation of a specific orientation in visual gratings suppressed activity in 

primary visual cortex yet improved the decoding accuracy of the grating 
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orientation. This finding supports the sharpening hypothesis—less activity, but 

more informative. Similar conclusions have been drawn in other studies (Bell et 

al., 2016; Yon et al., 2018). On the other hand, some research has reported the 

opposite pattern: suppression accompanied by reduced decoding performance, 

which would be more consistent with a filtering account (Blank & Davis, 2016; 

Kumar et al., 2017).  

1.3.1.2 Mismatch responses 

Following exposure to a regular auditory sequence, a deviation from this 

established pattern elicits a range of mismatch responses. These neural 

responses emerge from deviation onset and can extend across the following 

several hundred milliseconds (Southwell & Chait, 2018; Wacongne et al., 2011; 

Winkler, 2007). One of the most well-known responses is the mismatch 

negativity (MMN). As MMN is triggered by violations of expectation, it serves as 

an indirect marker of the brain’s ability to learn and track specific regularities 

(Näätänen et al., 2007; Paavilainen, 2013; Winkler, 2007). MMN is typically 

computed by taking the difference between the neural response to standard 

tones and that to deviant tones, and is reflected as a negative deflection in 

fronto-central EEG channels, usually occurring 100–250 ms after the onset of 

the deviant (Winkler, 2007). One of the most common paradigms to elicit MMN 

is the oddball paradigm, in which a sequence of regular sounds is occasionally 

interrupted by a deviant. Variants of this paradigm range from simple tone 

repetition to more complex hierarchical patterns. One popular and well-

established modification is the roving-standard paradigm, in which a specific 

tone feature (e.g., frequency) serves as the standard before transitioning to a 

new standard, allowing direct comparisons between physically identical tones 

presented as standard versus deviant. This design controls for stimulus-specific 

effects and ensures that observed MMN responses reflect contextual regularity, 

rather than low-level sound features. 

The mismatch responses have provided compelling evidence that the 

auditory system can detect complex regularities beyond simple tone repetition. 
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Studies have shown that MMN can be elicited by deviations in frequency 

patterns (Bendixen & Schröger, 2008), violations of contingency rules between 

sound features (Paavilainen et al., 2007), and even disruptions in multisensory 

statistical patterns (Paraskevopoulos et al., 2018). Moreover, the magnitude and 

latency of the MMN are sensitive to the degree of deviation, with larger or more 

salient violations producing earlier and stronger responses (Fitzgerald & Todd, 

2020; Garrido et al., 2013; Näätänen et al., 2007; Winkler, 2007). 

Despite its widespread use, some have argued that they may reflect 

simple neural adaptation to repeated stimuli rather than prediction-based 

processes (Heilbron & Chait, 2018). However, this view has been challenged by 

more sophisticated paradigms. For instance, omission paradigms, in which the 

expected sound is omitted rather than replaced, have shown that neural 

responses are still evoked at the moment when a tone was expected to occur. 

This response cannot be attributed to the bottom-up signals, suggesting that the 

brain formed predictions, or expected to experience a certain sensory input 

(Bendixen et al., 2009; Todorovic & de Lange, 2012; Wacongne et al., 2011).  

Further support comes from local-global paradigms. In a study by 

Wacongne et al. (2011), participants passively listened to five-tone sequences 

(e.g., AAAAB– AAAAB–AAAAB ...). Here, the final B represents a local deviant 

(violating the immediate tone pattern). Conversely, when the final B is replaced 

by A in an AAAAB context, A maintains local regularity but violates a global, 

longer-term pattern. Results showed that local deviants elicited MMN 

responses, whereas global deviants triggered later responses involving broader 

brain networks. These findings demonstrate that mismatch responses cannot 

be fully explained by low-level neural adaptation alone—if it were, global 

deviants should not elicit responses—thereby supporting the idea that mismatch 

responses reflect prediction-based processing.  

Notably, the local-global paradigm provides compelling support for the 

notion of hierarchical predictive coding. In Wacongne et al. (2011), global 

deviants were found to activate a fronto-parietal network, whereas local 
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deviants did not. Combining with the finding of post-MMN response in global 

violation, this suggests that violations are computed at different hierarchical 

levels, consistent with the idea of a hierarchical predictive coding. Supporting 

this interpretation, an electrocorticography (ECoG) study by Dürschmid et al. 

(2016) similarly reported that global deviance recruited higher-order cortical 

regions, reinforcing the view that predictive coding operates across multiple 

levels of the cortical hierarchy.  

Furthermore, computational modelling of MMN generation has shown 

that predictive coding models within hierarchical networks provide the best fit to 

empirical data (Garrido et al., 2008; Garrido, Kilner, Kiebel, & Friston, 2009). 

Within this framework, MMN is considered to be tightly associated with a 

concept of prediction error. Supporting this account, individuals with autism (see 

Section 1.2.2.1) often exhibit a reduced MMN response (Dunn et al., 2008; 

Gomot et al., 2011). One interpretation is that heightened sensory precision in 

autism may reduce the suppression of prediction errors during standard, 

predictable tones, resulting in a smaller difference between standard and 

deviant responses (Lawson et al., 2014). 

Crucially, MMN can be elicited even in the absence of attention or explicit 

awareness of the regularity, making it a powerful tool for probing implicit 

prediction mechanisms in passive listeners (Bendixen et al., 2007; Bendixen & 

Schröger, 2008; Tivadar et al., 2021). This underscores MMN’s utility as a 

neural marker of automatic regularity detection and highlights the remarkable 

capacity of the auditory system to learn statistical structure and generate 

predictions without conscious effort. 

1.3.1.3 Decoding predicted content 

Findings from MMN and repetition suppression provide indirect evidence 

that the brain is sensitive to statistical regularities and capable of forming 

predictions based on repeated exposure. A more direct approach to studying 

this predictive capacity involves decoding expected information from neural 
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activity. This line of research has been primarily pursued in the visual domain 

(Ekman et al., 2017; Kok, Jehee, et al., 2012; Kok et al., 2014, 2017; 

Summerfield & de Lange, 2014). For example, Kok et al. (2017) demonstrated 

that sensory expectations can pre-activate stimulus templates in the brain, 

rendering them decodable even before the corresponding stimulus appears. In 

their study, participants heard auditory cues that reliably predicted the 

orientation of an upcoming grating stimulus. Using multivariate decoding 

techniques, the authors showed that these auditory cues elicited early neural 

activity patterns corresponding to the expected visual orientation—prior to the 

actual visual input. 

Demarchi et al. (2019) extended this work into the auditory domain using 

an omission paradigm (see above). Participants passively listened to tone 

sequences that varied in predictability, manipulated through the transitional 

probabilities of tone frequencies. By applying time-generalisation decoding 

approach, the researchers tested whether information about the expected tone 

frequency could be extracted from neural activity. They found that, in highly 

predictable sequences, frequency-specific information was present both before 

tone onset and during silent omissions. This result clearly indicates that the 

passive listening brain learns statistical regularities and uses them to pre-

activate frequency-tuned neural ensembles. 

Building on this finding, subsequent studies have explored individual 

variability in the strength of pre-stimulus predictive activity. Schubert et al. 

(2023), for instance, found that individuals with stronger anticipatory neural 

signals also exhibited enhanced cortical tracking of the speech envelope in a 

separate task, suggesting a potential functional benefit of this predictive 

processing. Another study focusing on individuals with tinnitus revealed altered 

anticipatory neural signals compared to control participants (Reisinger et al., 

2024), supporting the notion that aberrant predictive processing may contribute 

to the experience of tinnitus (Sedley et al., 2016). 
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Overall, these findings demonstrate that statistical regularities are 

learned and encoded in anticipatory brain activity. Moreover, they suggest that 

such predictive processing actively shapes perception and contributes to 

individual differences in sensory experience—even when the external input is 

identical. 

1.3.1.4 Sustained neural response 

So far, I have been reviewing the responses represent the outcome of 

learning processes and do not directly reveal how environmental regularities are 

internalised over time. This raises a key question: can we observe process of 

the gradual formation and refinement of internal models? A growing body of 

research suggests that the neural mechanisms underlying the tracking of 

auditory statistical regularities can be studied through analyses of M/EEG 

sustained activity. These neural responses systematically vary with the 

predictability of incoming sounds, offering a more direct view of how the brain 

dynamically monitors the structure of its sensory environment (Barascud et al., 

2016; Bianco et al., 2025; Herrmann et al., 2019, 2021; Herrmann & Johnsrude, 

2018; Hu et al., 2024; Magami et al., 2025; Southwell & Chait, 2018; Zhao et al., 

2025).  

A commonly used paradigm in this research involves presenting 

participants with sequences of 50 ms tone-pips arranged in either regularly 

repeating (REG) or random (RND) patterns, while they passively listen. Using 

this paradigm, Barascud et al. (2016) investigated how sequences with varying 

degrees of predictability are represented in sustained MEG responses. They 

found that the emergence of a REG pattern was associated with a gradual 

increase in sustained neural activity, which plateaued after experiences a few 

cycles of REG (Figure 1.1A). In contrast, during RND sequences, neural 

activity plateaued at a much lower amplitude. Notably, the timing of divergence 

between REG and RND responses closely matched the moment when active 

listeners detected the regularity, suggesting that the increase in amplitude 
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reflects the brain’s process of discovering the repeating pattern, while the 

plateau indicates stabilisation of the internal representation.  

Moreover, the amplitude of the sustained response varied according to 

the predictability of the REG sequences. For example, sequences formed from 

larger “alphabets” (i.e., greater number of different frequencies forming the REG 

pattern) were harder to predict and elicited slower, more moderate increases in 

neural activity (Figure 1.1A). This pattern supports the idea that sustained 

response amplitude indexes the inferred predictability of ongoing auditory input. 

Interestingly, when the alphabet size of the REG sequence was smaller 

(e.g., REG5 or REG10), the timing at which the sustained neural response 

diverged from that of the RND sequence closely matched the amount of 

information an ideal listener would need to detect the REG pattern, as predicted 

by a variable-order Markov model (Figure 1.1A; see Section 1.3.2.1 for 

modelling details). However, as the alphabet size increased, this 

correspondence weakened: the brain required more tones to detect the REG 

pattern than the model predicted. This discrepancy highlights the brain’s 

limitations in discovering and maintaining representations of higher-order 

statistical regularities. 

Similar sustained response patterns have been replicated in EEG studies 

(Southwell and Chait, 2018; see also Chapter 3), across different types of 

auditory regularities (Herrmann & Johnsrude, 2018; Sohoglu & Chait, 2016), 

and in stochastic sequences with varying alphabet size (Zhao et al., 2025).  

Sustained neural responses are not limited to representing static auditory 

scenes—they also reflect the brain’s dynamic tracking of changes in sound 

statistics over time. When the auditory environment transitions from REG to 

RND or from RND to REG, the sustained response changes accordingly, 

capturing the brain’s detection of pattern violations and the discovery of new 

regularities (Figure 1.1B; Barascud et al., 2016; Bianco et al., 2025; Magami et 

al., 2025; Zhao et al,, 2025). The asymmetry in neural responses to these 
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transitions—one exhibiting a more abrupt change and the other a more gradual 

shift—will be further explored in Section 1.4.  

Building on this, Bianco et al. (2025) extended the paradigm by replacing 

the RND segment with a new regular pattern. Their findings showed that the 

sustained response can also track the brain’s re-establishment of a new 

regularity, highlighting its sensitivity not only to the discovery and violation of 

predictability, but also to the ongoing process of updating internal models in 

response to structured changes in the environment (Figure 1.1C).  

While the precise computational parameters reflected in sustained 

response amplitude remain under active investigation (see Section 1.3.2  for 

further discussion), these results highlight the potential of sustained responses 

as a window into how the brain accumulates evidence, detects changes, and 

forms new predictions in real time—even in the absence of attention or explicit 

awareness. 

It is important to note that while the broad generators of sustained 

responses can be identified through source localisation (see next section for 

details), the underlying circuit-level mechanisms remain under investigation. 

The response resembles a direct current (DC) shift, potentially involving 

potassium flux. However, to date, there are no known reports of successful 

measurement of this response in ECoG or animal models. Investigating this 

phenomenon is particularly challenging due to the low-frequency nature of the 

signal, which is often eliminated by the high-pass filters commonly applied in 

ECoG studies. 
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Figure 1.1 MEG responses to rapidly evolving statistical 
structures in sound stimuli.  

[A] Top: Sustained MEG responses to regular sequences (REG) 

composed of different alphabet sizes (5, 10, and 15 tones), compared 

to random (RND) sequences as a control. Bold lines indicate time 

intervals where each REG condition significantly diverges from the 

RND condition. Numbers mark the divergence onset time for each 

REG condition. Bottom: Output from an ideal observer model, showing 

the point at which the information content (tone-evoked surprisal; see 

Section 1.3.2.1 for details) begins to decrease. Adapted from 

Barascud et al. (2016). [B] Sustained MEG responses during 

transitions from RND to REG (top) and from REG to RND (bottom), 

with their respective no-change controls. Bold lines indicate significant 
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divergence between conditions, and numbers marking the divergence 

onset. High-pass filtered versions of the data are plotted at the bottom. 

Adapted from Barascud et al. (2016). [C] Sustained MEG responses 

to REG, REG-RND, and REGx-REGy (a switch between two distinct 

REG sequences). Bold lines indicate the significant differences 

between condition pairs. Adapted from Bianco et al. (2025). 

 

1.3.1.5 Neural networks involving regularity tracking 

 I have reviewed in this section that the processing of auditory regularities 

engages a broad network of brain regions, ranging from low-level sensory areas 

to higher-order cortical regions, depending on the complexity of the extracted 

structure and the nature of the neural activity being measured (Dürschmid et al., 

2016; Kok, Jehee, et al., 2012; Wacongne et al., 2011). In line with this, 

Barascud et al. (2016) demonstrated that the discovery of regular patterns is 

supported by a distributed network involving the auditory cortex (AC), 

hippocampus (HC), and inferior frontal gyrus (IFG). Notably, the AC–IFG circuit 

has been consistently implicated in the generation of MMN, highlighting its 

importance in predictive auditory processing (Garrido et al., 2008; Garrido, 

Kilner, Kiebel, & Friston, 2007; Garrido, Kilner, Kiebel, Stephan, et al., 2007; 

Garrido, Kilner, Stephan, & Friston, 2009; Opitz et al., 2002; Phillips et al., 2015, 

2016). Extending this, Bianco et al. (2025) showed that activity within this 

network dynamically fluctuates in response to changes in auditory structure: the 

network’s engagement weakens when a regular pattern is disrupted and is re-

established as a new regularity emerges. These dynamics suggest that top-

down connectivity from IFG is strengthened when a predictive model is 

available and disrupted when the model becomes irrelevant to the current input. 

 The hippocampus also appears to play a key role in the rapid detection 

and encoding of sensory regularities (Bornstein & Daw, 2012; Schapiro et al., 

2012, 2014; Turk-Browne et al., 2010). In Schapiro et al. (2012), participants 

were exposed to a continuous stream of fractals while performing an unrelated 
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task. These stimuli were organised with varying transitional probabilities (TPs), 

such that some pairs had high TPs while others were more weakly associated. 

fMRI response recorded before and after this incidental learning session 

revealed that exposure to these temporal regularities altered the object 

representation in the hippocampus: fractals with high TPs were represented 

more similarly than those with lower TPs, suggesting that the hippocampus 

encodes the statistical structure of the input. Following to that, Schapiro et al. 

(2014) demonstrated that individuals with hippocampal lesions showed impaired 

learning to temporal regularities, further confirming the hippocampus's necessity 

in regularity learning. 

 Interestingly, Bianco et al. (2025) found that when a previously 

established REG pattern was reinstated after a brief disruption, hippocampal 

responses were stronger than during the initial presentation. This finding is 

striking given that the sound was task-irrelevant, rapidly unfolding, and 

passively processed, indicating that memory traces of the auditory structure had 

been formed rapidly and automatically. This aligns with growing evidence that 

the hippocampus supports implicit memory for auditory patterns (Billig et al., 

2022). Taken together, these findings suggest that the hippocampus plays a 

critical role not only in the rapid acquisition of sensory regularities but also in 

retaining and reactivating these representations to guide ongoing model 

construction and updates. The role of such stored representations in shaping 

scene prediction will be further explored in Chapter 2. 

1.3.1.6 Is regularity down-weighted or up-weighted? 

In Section 1.3.1.1, I introduced the phenomenon of expectation 

suppression, where expected stimuli tend to evoke reduced sensory responses. 

However, in Section 1.3.1.4, I presented findings showing that more predictable, 

regular sequences can actually elicit increased neural responses, posing an 

apparent contradiction. How can we reconcile these seemingly opposing 

effects? 
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One framework that offers a resolution is precision weighting (see 

Section 1.2.2.1). According to this account, signals that are deemed more 

precise (i.e., reliable) receive greater weight in neural processing. This 

prioritisation can amplify neural responses to deterministic sequences relative to 

random sequences, as observed in the REG response enhancement discussed 

in Section 1.3.1.4. In the predictive coding framework, precision is tightly linked 

with attentional gain (Feldman & Friston, 2010). Indeed, in some studies 

reporting enhanced neural responses to predictable stimuli, stimulus 

predictability covaried with attention factor (e.g., task-relevance; de Lange et al., 

2018). Kok, Rahnev, et al. (2012) manipulated those factors independently to 

demonstrate that attention can reverse the typical suppressive effects of 

expectation.  

However, many studies discussed in Section 1.3.1.4 (Barascud et al., 

2016; Hu et al., 2024; Sohoglu & Chait, 2016; Southwell & Chait, 2018; Zhao et 

al., 2025) were conducted under passive listening conditions where the sounds 

were not behaviourally relevant. This raises the question: could regularity itself 

be inherently salient and thus capable of automatically attracting attention? To 

address this, Southwell et al. (2017) tested whether REG sequences are more 

salient than RND sequences, but instead found that RND sounds were actually 

more distracting. This result suggest that attentional mechanisms alone cannot 

fully explain the enhancement of responses to regular input. It remains possible, 

however, that other precision-related processes—distinct from both voluntary 

and involuntary attention—contribute to the up-weighting of regular auditory 

input (Southwell et al., 2017).  

An alternative account proposes that the increase in sustained 

responses to REG may reflect heightened inhibitory activity. Since sustained 

responses measured with E/MEG cannot distinguish between excitation and 

inhibition, an increase in inhibitory processing could also produce the observed 

amplitude patterns (Barascud et al., 2016; Southwell et al., 2017). This 

inhibitory account aligns with behavioural findings that REG sequences are 
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easier to ignore (Southwell et al., 2017) and evoke lower arousal than RND 

sequences (Milne, Zhao, et al., 2021; discussed further in Chapter 4). Notably, 

the precision-weighting and inhibition accounts are not mutually exclusive. In 

fact, a growing body of evidence links precision estimation and inhibitory 

mechanisms (Lecaignard et al., 2022; Natan et al., 2015; Schulz et al., 2021; 

Yarden et al., 2022).  

1.3.2 Computational models  

So far, I have reviewed the neural signatures of regularity tracking in the 

auditory system. To deepen our understanding of the mechanisms that underlie 

this process, another valuable approach is the use of computational models. 

These models offer a framework for formalising theoretical assumptions and 

testing them directly against neural and behavioural data. By simulating how the 

brain might process and predict sensory input, computational models help 

uncover the underlying algorithms that support regularity tracking.  

In this section, I focus on two influential models that have been 

extensively applied to auditory research and whose assumptions are supported 

by empirical findings: the Information Dynamics of Music (IDyOM) model and 

the Dynamic Regularity Extraction (D-REX) model.  

1.3.2.1 IDyOM 

The Information Dynamics of Music model (IDyOM) is a computational 

framework that implements a variable-order Markov model using the Prediction 

by Partial Matching (PPM) algorithm (Harrison et al., 2020; Pearce, 2005, 

2018). Originally developed to model listeners' expectations in musical 

sequences, IDyOM estimates the probability of each upcoming symbol based 

on the sequence of preceding inputs. 

IDyOM learns incrementally from symbolic sequences, such as tone-pip 

patterns or musical notes, and produces a conditional probability distribution for 

each event in the sequence, given the preceding context. These predictive 
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distributions are derived from n-gram models, where sequences of 'n' adjacent 

symbols are used to generate conditional probabilities. For example, if n = 3, 

the model evaluates the probability that a sequence such as “AB” will be 

followed by “A,” based on the relative frequency of “ABA” among all 3-grams 

beginning with “AB” in the learned dataset. Crucially, IDyOM integrates 

probability estimates from multiple n-gram models of varying orders (i.e., 

different values of n; Figure 1.2A). 

Using the resulting probability distributions, IDyOM calculates the 

information content (IC) for each symbol in a sequence. IC is defined as the 

negative log probability of a symbol occurring, conditioned on the portion of the 

sequence heard so far, and serves as a measure of the symbol’s 

unexpectedness. Higher IC values reflect greater deviation from expectation. IC 

provides a dynamic readout of the model’s ongoing adaptation to the statistical 

structure of the input. 

IDyOM has often been used as an ideal-observer model, simulating a 

theoretically optimal learner with perfect memory. As such, it provides a 

benchmark against which human behavioural and neural responses can be 

evaluated. Deviations from the model's predictions offer insights into cognitive 

constraints and mechanisms that shape real-world auditory perception. 

For instance, Di Liberto et al. (2020) used IDyOM to model melodic 

expectations in natural music. They demonstrated that fluctuations in model-

derived expectations significantly predicted cortical responses during music 

listening. Their results provide compelling evidence that listeners' melodic 

expectations can be explained by the statistical learning model. 

Barascud et al. (2016) also used IDyOM to benchmark the earliest point 
at which listeners could detect the emerging regularity in tone-pip sequences. 

The comparison between IC estimates and sustained MEG activity revealed 

striking alignment between them, suggesting that the inferred predictability of 

the auditory scene was mirrored in neural dynamics. This analysis not only 
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demonstrated where the brain behaves like an ideal observer, but also 

highlighted its limitations, such as memory constraints, which caused deviations 

from the model’s predictions (see Section 1.3.1.4). More explanations and the 

actual implementation of the model are provided in Chapter 2 and 3.  

 

 

Figure 1.2 Model illustrations.  

[A] Illustration of how different n-gram models with different orders are 

integrated in IDyOM. In this example, the order bound is 2, with five 

possible symbols in the sequence, and the task is to predict the next 
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symbol (‘?’). The top row shows the weights—i.e., the frequency of 

each symbol—for each order. For example, the order-0 model reflects 

the overall frequency of each symbol encountered so far. Order-1 

model reflects the frequency of each symbol following ‘a’. The middle 

row displays the corresponding maximum-likelihood distributions, 

obtained by normalising the weights. The bottom row shows the 

interpolated distribution, which combines the maximum-likelihood 

distribution of the current order with the interpolated distribution of the 

next lower order. For details on how the weight of each distribution is 

computed, see Harrison et al. (2020). Adapted from Harrison et al. 

(2020). [B] Illustration of how D-REX combines predictions from 

multiple context hypotheses to account for an unknown change point. 

For each context, predictions are generated based on statistics 

accumulated within that context. These predictions are weighted by 

their corresponding beliefs, and the weighted combination of all 

context-specific hypotheses forms the overall predictive distribution for 

the next input. Adapted from Skerritt-Davis and Elhilali (2021). 

 

1.3.2.2 D-REX 
 Dynamic Regularity Extraction (D-REX) model is a computational 

framework grounded in predictive coding theory based in Bayesian inference 

(Skerritt-Davis & Elhilali, 2018, 2021a, 2021b). D-REX operates on an 

‘observe–predict–update’ loop: after each new observation in a sequence, the 

model generates a predictive distribution for the next observation, based on the 

previously encountered inputs. One of the core features of D-REX is its ability to 

monitor for potential changes in the underlying generative structure of the 

sequence. This capability is crucial in volatile environments, where maintaining 

an accurate internal model requires not only prediction, but also sensitivity to 

sudden shifts—change points—in ongoing sequences (see Section 1.4 for 

further discussion). 
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 To accommodate this, D-REX simultaneously maintains multiple 

hypotheses about the current state of the environment (context hypotheses; see 

Figure 1.2B), each assumes a different potential change point. For example, 

one hypothesis may assume that no change has occurred, incorporating the 

entire sequence history to form predictions. Another might assume that a 

change occurred just one tone ago and ignore earlier inputs to focus only on 

recent, relevant evidence for the current environment. These hypotheses are 

each weighted by a belief, or predictive probability of each hypothesis. The final 

prediction is then generated by combining these weighted hypotheses into a 

single predictive distribution. 

 In addition to its predictive output, D-REX also provides a measure of 

surprisal—the degree of mismatch between the predicted and actual input—and 

a signal of precision (inferred reliability), defined as the inverse variance of the 

predictive distribution. It also estimates the likelihood that a change point has 

occurred at any given moment. 

 D-REX has been successfully applied to a range of auditory perception 

tasks (Skerritt-Davis & Elhilali, 2018, 2021b; Zhao et al., 2025). For example, in 

tasks requiring detection of changes in rapid auditory sequences, the model has 

demonstrated strong alignment with listener performance (Skerritt-Davis & 

Elhilali, 2018). Furthermore, Zhao et al. (2025) recently extended the paradigm 

introduced by Barascud et al. (2016) by employing stochastic tone-pip 

sequences to examine whether sustained neural responses reflect change point 

estimation or the precision of predictions. Their findings revealed that the 

dynamics of the sustained responses were best accounted for by the precision 

computed by the D-REX model. This suggests that sustained neural response 

reflects the precision, or confidence, assigned to predicted sensory input while 

passively tracking sound sequences. More explanations and the actual 

implementation of the model are provided in Chapter 3. 
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 Taken together, these findings provide converging evidence for the 

auditory system’s remarkable sensitivity to regularities and its capacity to 

generate and continuously update internal models of the sensory environment. 

This continuous model updating—based on accumulated input history—is 

highly effective in stable, well-controlled contexts such as laboratory settings. 

However, real-world environments are often volatile, rendering simple 

cumulative updating suboptimal. In such settings, the ability to detect changes 

in the underlying statistical structure becomes critical. The next section explores 

the importance of this change detection process and how the brain may 

implement it. 

 

1.4 Importance of change point estimation  

 Imagine walking through a familiar city: your expectations, shaped by 

past experiences, guide your navigation. But upon entering a forest, those city-

based expectations no longer apply. Detecting such an abrupt change should 

prompt the brain to discard outdated priors and construct a new model tailored 

to the new context. This prevents interference from irrelevant memories and 

supports efficient adaptation to the new environment. However, if it is unclear 

whether you’ve entered a forest or simply a park within the city, abruptly 

resetting your internal model may be risky. In such cases, a more adaptive 

strategy is to retain the existing model while gradually updating priors by 

accumulating additional evidence. This section examines how, and under what 

conditions, the brain detects change points in the environment and adapts its 

information processing strategies accordingly. 

1.4.1 Change point detection in decision making  

 How the brain predicts upcoming events while accounting for potential 

changes in the environment has been a major topic in the field of decision-

making. Imagine you have a favourite café. One day, however, the coffee tastes 
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terrible. Now you’re faced with a decision: was this an indication of a 

fundamental change in the café’s quality—suggesting you should stop going—

or was it just a random anomaly you can ignore? This scenario captures a core 

challenge in decision-making: accurately inferring whether an unexpected event 

reflects a genuine change in the environment (a change point), or just random 

noise. A wide range of studies has shown that people are surprisingly adept at 

detecting such change points in dynamic environments (Boubenec et al., 2017; 

Glaze et al., 2015; McGuire et al., 2014; Nassar et al., 2010, 2012; Skerritt-

Davis & Elhilali, 2018). 

 For example, Nassar et al. (2010) used a task in which participants had 

to predict a number drawn from a Gaussian distribution. The mean of this 

distribution represented the current state of the environment, and its standard 

deviation represented environmental noise. Occasionally, the mean would 

abruptly shift, introducing a change point. Participants made predictions of the 

number, saw the true number, and adjust their prediction to minimise prediction 

errors. A key concept here is the learning rate—a parameter that determines 

the extent to which new information influences the internal model. A learning 

rate of zero implies complete reliance on prior beliefs, whereas a learning rate 

of one implies full updating based solely on the new observation. The study 

found that participants’ learning rates increased immediately following a change 

point, indicating that they were sensitive to change points and adapted their 

internal models accordingly by reducing reliance on outdated information. 

1.4.2 How can the brain achieve change point detection? 

 Detecting change points in dynamic environments poses a significant 

challenge because, as illustrated in the café example, observers are never 

explicitly told when a change has occurred. One theoretically optimal solution is 

to track all possible change points and generate predictions for each 

hypothesis. This is the strategy employed by D-REX, and many other ‘full-

Bayesian’ models which maintains multiple concurrent beliefs about when a 
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change might have happened and integrates them to form a final prediction 

(Adams & MacKay, 2007; Skerritt-Davis & Elhilali, 2018). 

 However, this approach is computationally demanding. As the sequence 

progresses, the number of potential change points increases, requiring a 

growing memory load and extensive computations to evaluate every 

hypothesis. In practice, such a model would demand infinite memory and 

processing capacity—an unrealistic requirement for biological systems. 

 To better understand the brain’s strategy, researchers have tested 

simplified models that relax the computational demands of ideal observer 

frameworks (McGuire et al., 2014; Nassar et al., 2010, 2012; Wilson et al., 

2013). For instance, Nassar et al. (2010) compared two models: a full-Bayesian 

model and a reduced-Bayesian model to explain participants’ behaviour 

introduced above. The full-Bayesian approach keeps a probability distribution 

over all possible change point locations. In contrast, the reduced-Bayesian 

model considers only two possibilities at each trial: whether the new observation 

comes from the same distribution (no change) or from a new one (a change has 

occurred). Surprisingly, the reduced-Bayesian model performed comparably to 

the full-Bayesian model in capturing human behaviour, suggesting that full-

Bayesian computations may not always be necessary to explain observed 

behavioural patterns. 

 It is important to note that the studies discussed above primarily stem 

from the sequential decision-making literature, which typically involves active 

engagement and focused attention. In contrast, much less is known about how 

change points are detected automatically during the processing of rapidly 

evolving auditory scenes—despite the fact that such detections are crucial for 

accurately tracking dynamic sequences in sound. How does the brain manage 

to detect changes under these conditions, often without active attention 

allocation? 
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 One key factor that supports change detection is environmental 

volatility—the expected frequency with which the underlying statistical 

properties or rules of an environment changes. In highly volatile contexts, 

prediction errors are more likely to signal genuine change points. In contrast, 

under stable conditions, similar deviations are more often attributed to noise. 

Empirical studies have demonstrated that people are sensitive to environmental 

volatility, and when volatility is high, individuals tend to increase their learning 

rate, or sensitivity to new information relative to prior beliefs (Behrens et al., 

2007; Glaze et al., 2015; Piray & Daw, 2024; see also Chapter 2 for further 

discussion). 

 Another key factor is the magnitude of the prediction error scaled by the 

variability (noise) of the generative distribution, or precision. When an 

environment is noisy (i.e., the underlying distribution is wide), prediction errors 

are more likely to be tolerated as plausible outcomes of the same distribution. 

However, in less noisy (narrower) environments, the same error magnitude is 

more likely to indicate a shift to a new distribution. In other words, whether an 

error is interpreted as a change point depends on both its magnitude and the 

expected variability of the distribution. This relationship has been demonstrated 

in several studies (McGuire et al., 2014; Nassar et al., 2010; Piray & Daw, 

2024). The next section introduces this second point more closely as a potential 

neural proxy for change point detection in the passive listening brain. 

1.4.3 Unexpected uncertainty as a proxy for change point 
 As reviewed above, ideal observer models offer a powerful solution to 

change point detection by maintaining and updating multiple hypotheses about 

when changes might occur. However, this approach demands extensive 

computational resources and is unlikely to be the brain’s default strategy. 

Instead, a more plausible mechanism may involve tracking a signal known as 

unexpected uncertainty. 
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 The brain constantly encounters uncertainty in sensory input, which can 

be broadly divided into expected and unexpected uncertainties (Yu & Dayan, 

2005). Expected uncertainty reflects the variability the brain anticipates based 

on environmental stochasticity, such as background noise in the busy café. 

Unexpected uncertainty, on the other hand, arises when input deviates beyond 

what is expected, potentially indicating a fundamental change in the 

environment, or change point (Bland & Schaefer, 2012; Yu & Dayan, 2005). 

Indeed, unexpected uncertainty and change points evokes similar neural 

responses.  

 Once a change point occurs, the brain must rapidly discard outdated 

beliefs and prioritise incoming sensory data to adapt to the environment 

(Skerritt-Davis & Elhilali, 2018). One system thought to mediate this shift is the 

locus coeruleus–norepinephrine (LC-NE) system. Norepinephrine (NE), 

released from the locus coeruleus (LC), plays a crucial role in network reset and 

in rebalancing top-down and bottom-up information processing (Aston-Jones & 

Cohen, 2005; Bouret & Sara, 2005; Joshi et al., 2016). This system enables the 

brain to redirect attention to salient cues and enhances sensitivity to new 

evidence (Devauges & Sara, 1990; Jepma & Nieuwenhuis, 2011; Lawson et al., 

2017, 2021; Nassar et al., 2012; Sara, 2009; Sara & Bouret, 2012).  

 For example, Devauges and Sara (1990) pharmacologically enhanced 

LC-NE activity in rats performing a maze task. When the task rules were 

unexpectedly altered, rats with increased LC-NE activation adapted more 

rapidly to the new condition. In a separate experiment, the same manipulation 

led rats to spend more time exploring novel stimuli. These findings suggest that 

the LC-NE system supports model reset and the initiation of new evidence 

gathering.  

 Further evidence comes from a study by Lawson et al. (2021), in which 

human participants categorised images as faces or houses. Each image was 

preceded by a sound cue indicating the likely category of the upcoming visual 

stimulus, allowing participants to form expectations that sped up their 
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responses. When participants received a NE blocker, their response times 

improved even further—likely due to a reduced influence of bottom-up sensory 

processing, increasing reliance on top-down expectations. However, when the 

cue–category relationship was covertly reversed—effectively introducing a 

change point—the NE-blockage delayed adaptation to the new rule, suggesting 

impaired belief updating by utilising bottom-up signals. This finding reinforces 

the idea that NE plays a central role in facilitating belief update in response to 

unexpected environmental change. 

 The LC-NE system is also activated by experiences of unexpected 

uncertainty and may induce internal model reset and initiation of bottom-up 

processing (Basgol et al., 2025; O’Reilly, 2013; Payzan-LeNestour et al., 2013; 

Sara & Bouret, 2012; Yu & Dayan, 2005; Zhao, Chait, et al., 2019). Supporting 

evidence comes from studies using pupil dilation response (PDR) as a proxy for 

LC-NE activity.  

 For instance, in Nassar et al. (2012), participants predicted numbers 

sampled from a Gaussian distribution whose mean occasionally shifted. Results 

showed that PDR increased following surprising outcomes, and this increase 

positively correlated with both the change point probability and the learning rate. 

Interestingly, the study extended this finding to task-irrelevant events that 

nonetheless evoked unexpected uncertainty. Occasionally, a surprising auditory 

change—irrelevant to the task and not informative of the generative model—

was introduced. These unexpected sounds elicited PDR and boosted learning 

rates in the subsequent primary task. This suggests that the brain may treat 

unexpected uncertainty, even if it is task-irrelevant, as signals of change point, 

triggering a model reset even when no actual change point is present (Nassar 

et al., 2012; Yu, 2012). The influence of task-irrelevant unexpected uncertainty 

on performance in an attended task will be explored in greater detail in Chapter 

4. 
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 A complementary line of evidence comes from Zhao, Chait, et al. (2019), 

who measured PDR while participants passively listened to auditory sequences 

that transitioned either from regular to random (REG-RAN) or from random to 

regular (RAN-REG). Although both transitions involved a change in statistical 

structure, the experienced abruptness of the change differed due to the 

predictability of the pre-transition sequence. In the REG-RAN condition, the 

highly predictable regular sequence generated precise expectations, making the 

transition to randomness feel like a sharp and unanticipated deviation—i.e., 

unexpected uncertainty. In contrast, the RAN-REG transition emerged from an 

unpredictable context, where higher expected uncertainty made the emergence 

of structure feel more gradual and expected. Critically, PDR was observed only 

in the REG-RAN transition, suggesting that the brain selectively tracks 

unexpected uncertainty as a cue for potential change points (Basgol et al., 

(2025) replicated this finding). However, when participants attended actively to 

the RAN-REG transitions, PDR was evoked also to this transition direction. This 

finding implies that LC-NE-mediated model resets are preferentially engaged by 

unexpected uncertainty when attention is limited, but that gradual changes can 

also elicit LC-NE responses when the system is actively engaged and 

computational resources are available.  

 A similar distinction between abrupt and gradual changes, as observed in 

Zhao, Chait, et al. (2019), is also evident in sustained neural responses 

(Barascud et al., 2016; Bianco et al., 2025; Zhao et al., 2025). For example, 

Barascud et al. (2016) showed that REG-RAN transitions elicited a sharp 

reduction in sustained neural activity, whereas RAN-REG transitions produced 

a more gradual (Figure 1.1B). These two distinct responses may also reflect 

different computational strategies, a full reset of the internal model in response 

to unexpected changes, and continuous updating in the face of slowly emerging 

structure. Chapter 2 and 3 investigate this hypothesis further. 

 In summary, these findings suggest that the brain may rely on 

unexpected uncertainty as a heuristic for change detection, especially when 
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scene tracking is not the primary task. This strategy likely confers computational 

efficiency, enabling the brain to remain sensitive to salient shifts without the 

burden of continuously maintaining and updating a full set of hypotheses. 

However, definitive evidence that unexpected uncertainty triggers model reset 

and enhances bottom-up processing during passive listening remains limited. 

This question will be further explored in Chapters 2 and 3. 

 

1.5 Aim of this project 

 In everyday life, we are constantly surrounded by dynamically fluctuating 

background sounds that often fall outside the focus of our attention. Yet, these 

task-irrelevant sounds are far from inert. As reviewed above, the auditory 

system is highly adept at tracking regularities in the environment, even in the 

absence of immediate behavioural relevance. While our attention tends to 

prioritise goal-directed tasks, the brain concurrently processes background 

regularities, which may shape internal models of the world, modulate arousal, 

and influence how we explore and interpret incoming information. However, our 

current understanding of these processes primarily stems from studies using 

simple stimuli that do not reflect the complexity of real-world auditory scenes. 

 This PhD thesis aimed to deepen our understanding of regularity 

processing in dynamically changing environments and to explore how such 

computations influence broader brain functions. How do we navigate an 

uncertain auditory world, and in turn, how does this shape the way we perceive, 

respond to, and act within it? 

 Chapter 2 investigates how the brain uses prior experience to inform 

ongoing sound sequence processing. While prediction relies on past sensory 

input, the relevance of that past information can vary greatly in everyday 

environments. This experiment examined whether the passively listening brain 

can flexibly evaluate the utility of past information and determine when it should 
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be integrated into ongoing predictive models. To address this question, the 

study combined EEG recording with computational modelling. 

 Chapter 3 explores how the predictability of a preceding sequence 

affects the efficiency of regularity detection in a subsequent auditory scene. As 

previously discussed, regularity detection is a fundamental process in auditory 

perception, but it is often studied in isolation. In real-world contexts, however, 

regularities arise within continuous streams of sensory input, and the brain 

typically approaches new input with an already-formed predictive model rather 

than from a neutral starting point. This chapter sought to embed regularity 

detection within a more ecologically valid framework by examining how prior 

context influences the processing of emerging regularities. EEG and 

computational modelling were employed to investigate these dynamics. 

 Chapter 4 turns to the question of how the automatic processing of 

background sound sequences impacts performance on an attended task. 

Typically, we process environmental sound while our primary attention is 

allocated elsewhere. While previous research has demonstrated that 

background sound regularities are continuously tracked, little is known about 

how such processes influence the execution of an unrelated, attention-focused 

task. This study examined the influence of dynamic auditory backgrounds on 

memory encoding, drawing on event boundary theory—a framework describing 

how we segment and store continuous experience. Using an audiovisual 

behavioural task combined with skin conductance measurements, this 

experiment investigated whether task-irrelevant background sound could 

modulate memory for concurrent visual events. 

 These studies build on previous findings related to sustained neural 

responses (Barascud et al., 2016; Bianco et al., 2025; Hu et al., 2024; Zhao, 

Chait, et al., 2019; Zhao et al., 2025). To place the research questions outlined 

above in a more concrete context, I briefly summarise the relevant literature 

introduced in this chapter. Figure 1.3 illustrates the sustained neural response 
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to a sound sequence that transition from one regularity to another (REGx–

REGy) reported in Bianco et al. (2025). The sustained neural response has 

been hypothesised to reflect the precision of the ongoing sequence: it increases 

as the brain detects REGx, drops upon violation of REGx, and then gradually 

recovers as REGy is discovered—eventually stabilising at a sustained 

amplitude following this second discovery (Barascud et al., 2016; Bianco et al., 

2025; Magami et al., 2025; Zhao et al., 2025). The sharp drop in sustained 

response following REG violation is accompanied by activation of the pupil-

linked LC-NE system (Basgol et al., 2025; Zhao, Chait, et al., 2019), and has 

been interpreted as reflecting a reset of the brain’s predictive model. In contrast, 

transitions from a random sequence to a regular one do not elicit abrupt shifts in 

sustained activity or engage the LC-NE system, suggesting that regularity 

discovery unfolds more gradually through evidence accumulation. 

 Chapter 2 focuses on this post-discovery neural response, examining 

whether and how prior auditory information influences on the ongoing scene 

predictions reflected in sustained neural activity. Chapter 3 investigates the 

discovery trajectory of REGy, testing whether its emergence is shaped by the 

statistical structure of preceding sounds. Finally, Chapter 4 contrasts two types 

of pattern transitions: REG violation (an abrupt change) and REG discovery (a 

gradual change). Here, I assess how these distinct transition dynamics 

influence the encoding of concurrently presented visual information. 
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Figure 1.3  Summary of current understanding of sustained 
neural responses.  

Top: Sustained MEG response to regular sequences (REG) and to 

sequences with a transition between two distinct regularities (REGx–

REGy). The first dotted line marks the offset of REGx, while the second 

marks the effective transition point to REGy, defined as the onset of its 

second cycle. The blue shaded area highlights neural responses 

associated with the violation of REGx, and the grey shaded area 

indicates responses related to the discovery of REGy. Adapted from 

Bianco et al. (2025). Bottom: Pupil dilation responses to REG violation 

(transition from REG to RND, left) and REG discovery (transition from 

RND to REG, right). Adapted from Zhao, Chait et al. (2019). 
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 Throughout this thesis, I employ rapidly evolving tone-pip sequences 

arranged in either regular (REG) or random (RND) patterns. Each tone pip has 

a duration of 50 ms, a timescale relevant for auditory perception and 

corresponding to the shortest known information integration window in the 

auditory cortex (Norman-Haignere et al., 2022; Saberi & Perrott, 1999). The 

rapid pace of these sequences makes it unlikely that listeners can consciously 

track the patterns, enabling investigation of pre-attentive neural mechanisms. 

Further, all sound sequences introduced in this thesis are drawn from the same 

frequency pool and carefully controlled for specific frequency composition. This 

design ensures that any observed effects can be attributed to the statistical 

structure of the sequence, rather than to low-level acoustic differences. An 

additional advantage of using such stimuli is the absence of semantic or 

emotional content, which are common confounds in naturalistic sounds such as 

music or speech-like artificial grammars. This reduces individual variability 

linked to experience and affect. Most importantly, these stimuli are highly 

quantifiable and well-suited for computational modelling. 
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2. Chapter 2: The Effect of Previously 
Encountered Sensory Information on 
Neural Representations of Predictability: 
Evidence from Human EEG 

2.1 Summary 
Accumulating evidence suggests that the brain continuously monitors the 

predictability of rapidly evolving sound sequences, even when they are not 

behaviourally relevant. An increasing body of empirical evidence links sustained 

tonic M/EEG activity to evidence accumulation and tracking the predictability, or 

inferred precision, of the auditory stimulus. However, it remains unclear 

whether, and how, this process depends on auditory contextual memory. The 

present EEG study examined neural responses to sound sequences across two 

experiments, and compared them to predictions from ideal observer models 

with varying memory spans. Stimuli were sequences of 50 ms long tone-pips. In 

Experiment 1 (N=26; both sexes), a regularly repeating sequence of 10 tones 

(REG) transitioned directly to a different regular sequence (REGxREGy). In 

Experiment 2 (N=28; both sexes), the same regular sequence was repeated 

after an intervening random segment (REGxINTREGx). Results from 

Experiment 2 revealed that the inferred predictability of the resumed REGx 

pattern was influenced by the preceding INT tones, even several seconds after 

they ended, indicating that the brain retains contextual memory over time. In 

contrast, neural responses in Experiment 1 were best explained by models with 

minimal memory. This dissociation implies that the brain can dynamically adjust 

its strategy based on inferred environmental structure—resetting context when 

interruptions signal change, and preserving context when patterns are likely to 

resume.  

This chapter has been adapted from a submitted paper: Magami K, 

Bianco R, Hall E, Pearce M, Chait M. 2025. The effect of previously 
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encountered sensory information on neural representations of predictability: 

evidence from human EEG. bioRxiv. https://doi.org/10.1101/2025.05.27.656332.  

 

2.2 Introduction 
As reviewed in Chapter 1, human brain is remarkably sensitive to the 

statistical regularities ubiquitously present in our surroundings (Arnal & Giraud, 

2012; Bendixen, 2014; Bendixen et al., 2012; de Lange et al., 2018; Maheu et 

al., 2019; Press et al., 2020; Willmore & King, 2023; Winkler et al., 2009). A 

large body of research has demonstrated that observers can automatically 

acquire complex statistics from sensory inputs, including auditory, visual, and 

multimodal streams (Boubenec et al., 2017; Conway & Christiansen, 2005; 

Demarchi et al., 2019; Fiser & Aslin, 2001; Garrido et al., 2013; Horváth et al., 

2001; Saffran et al., 1999; Stefanics et al., 2014; Turk-Browne et al., 2009; 

Wacongne et al., 2011). This computational ability is critical for generating 

predictions about the environment (Bendixen, 2014; Bendixen et al., 2012; de 

Lange et al., 2018; Friston, 2005; Press et al., 2020; Winkler et al., 2009), which 

allows the brain to optimise behaviour by efficient allocation of cognitive and 

neural resources, supporting adaptive responses to incoming events (Bendixen 

et al., 2012; Boubenec et al., 2017; Bouwkamp et al., 2025; Kok, Jehee, et al., 

2012; Nobre et al., 2007; Southwell & Chait, 2018; Yon et al., 2018). 

 An increasingly well-supported observation is that the neural 

mechanisms underlying the tracking of auditory statistical regularities can be 

studied through analyses of M/EEG sustained activity. These neural responses 

systematically vary with the predictability of sequential inputs, providing a direct 

window into how the brain monitors and adapts to environmental statistics 

(Barascud et al., 2016; Herrmann et al., 2019, 2021; Herrmann & Johnsrude, 

2018; Hu et al., 2024; Southwell & Chait, 2018; Zhao et al., 2025).  

Experiments using rapidly evolving auditory sequences have 

progressively revealed how the auditory system processes and accumulates 
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statistical information about the acoustic environment. In the standard paradigm 

(e.g., Barascud et al., 2016), participants passively listen to tone sequences that 

transition between regular (REG) frequency patterns and random (RND) 

patterns. These sequences elicit a sustained neural response that dynamically 

tracks the structure of the auditory input (Barascud et al., 2016; Hu et al., 2024; 

Southwell et al., 2017; Zhao et al., 2025). Specifically, the emergence of a REG 

pattern is associated with a gradual increase in sustained neural activity, which 

plateaus as the regularity becomes established, suggesting that the brain has 

stabilised a representation of the repeating structure (Figure 1.1A). Notably, 

longer and more complex patterns result in slower and more moderate 

amplitude increases, indicating limitations in the brain’s ability to discover and 

maintain representations of higher-order statistical regularities. Upon transition 

from REG to RND, the sustained response drops sharply and then settles into a 

lower, stable level—interpreted as reflecting the low predictability of random 

sequences. Zhao et al. (2025) extended these findings to stochastic sequences 

consisting of RND patterns with different predictability. These rises and drops in 

the sustained response align with predictions from computational ideal observer 

models (Harrison et al., 2020; Pearce, 2005; Skerritt-Davis & Elhilali, 2018, 

2021a), which quantify information content (IC;  how surprising a given tone is 

based on prior exposure) or precision (inferred reliability of the predictive 

distribution; Yon & Frith, 2021), providing support for the hypothesis that the 

sustained response represents a mechanism that tracks predictability within the 

unfolding signal. However, it remains unclear how the brain determines the 

context or reference frame, whether derived from immediate sensory input or 

retrieved from longer-term memory, against which this predictability is 

assessed. 

 Commonly used modelling measures such as information content (e.g. 

as used in Harrison et al., 2020; Pearce, 2005), or precision (e.g. as used in 

Zhao et al. 2025), quantify the expectedness of an event given a particular 

context of previously encountered events stored in memory. In theory—drawing 

from Bayesian change-point estimation models (Adams & MacKay, 2007; 
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Fearnhead & Liu, 2007; Wilson et al., 2010)—ideal observers should 

dynamically evaluate the relevance of a given context and determine how much 

of it to incorporate when constructing predictive distributions (Glaze et al., 2015; 

Nassar et al., 2010; Skerritt-Davis & Elhilali, 2018, 2021a; Wilson et al., 2013). 

However, whether and how the sustained response, as a proxy for predictability 

processing, depends on experienced auditory events remains unexplored. 

Addressing these questions is crucial for understanding how past experiences 

are leveraged to represent the predictability of a given event. 

Bianco et al. (2025) showed that REG patterns were recognised more 

quickly by the brain (as indicated by the MEG sustained response) when they 

were re-introduced following a scene interruption than when initially presented. 

This indicates the presence of an automatic memory store that carries a 

representation of the pattern across the interruption. More broadly, this finding 

suggests that by manipulating the information encountered by listeners and 

measuring its effects on the sustained response, it is possible to gain insight 

into what information is being stored and the conditions under which it is 

utilised. Here, I ask: Will the sustained response to a regular pattern be 

influenced by a listener’s prior experience with past information? This is tested 

by comparing two situations that differ in the relevance of prior experience: one 

in which a regularity is learned and then replaced by a new one—the prior 

experience is no longer relevant (Experiment 1), and another in which a 

regularity is learned, interrupted by a random tone sequence whose length is 

varied systematically, and then resumed—the prior experience is relevant and 

could be carried over (Experiment 2).   

 

2.3 Experiment 1 
 This experiment examines changes in the EEG sustained response 

triggered by transitions between two distinct regular (REG) patterns—REGx to 

REGy – compared with a continuation of REGx (Figure 2.1A). A similar 

comparison was made in one of the experimental conditions reported by Bianco 
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et al. (2025) using MEG. Here, I replicate that approach using EEG to justify the 

use of EEG in the extension reported in Experiment 2. 

To inform the interpretation of the data, I use IDyOM, which implements a 

variable-order Markov model based on the Prediction by Partial Matching 

algorithm (Harrison et al., 2020; Pearce, 2005). The model has been 

extensively and successfully used to account for regularity processing in 

artificial sequences, such as those used in the current study (Barascud et al., 

2016; Bianco et al., 2020, 2025; Harrison et al., 2020), as well as in more 

naturalistic musical settings (Cheung et al., 2019, 2023; Di Liberto et al., 2020; 

Kern et al., 2022; Quiroga-Martinez et al., 2021). 

Starting with a null model, IDyOM learns incrementally based on the 

unfolding tone sequence and uses its learned model to generate a conditional 

probability distribution for each tone given the preceding tones. Figure 2.1B 

shows model predictions. To simulate the availability of different amounts of 

contextual information for REGy pattern detection, I varied the duration of the 

input sequence—referred to as the “pre-training window”—the model was 

trained on before the transition to REGy. In the simulations shown in Figure 
2.1B, this window ranged from just a few seconds to 240 trials. Model 

predictions were always based on the full context available up to that point (i.e., 

all prior input; see figure legend). This approach enabled systematic 

manipulation of the model’s memory content to examine how varying levels of 

prior information influence its output. The model quantifies the information 

content (IC) of each tone —reflecting the surprise elicited by that tone given the 

preceding context. I compare a context incorporating model that retains 

increasingly long spans of past input (from a few seconds to the entire 

experiment) with a reset model that clears its memory upon detecting a deviant 

tone—the first tone in REGy that violates expectations based on REGx. 

All models show a gradual decrease in IC during REGx as the pattern is 

learned. This decrease occurs at different rates depending on the pre-training 
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window; models with longer pre-training windows exhibit greater variability 

across trials (indicated by larger error bars) due to cumulative influences from 

prior tones. At the transition to REGy, all models show a sharp increase in IC, 

corresponding to the surprise elicited by an unpredictable tone. IC then remains 

high for a period before gradually reducing again, indicating that the new 

regularity (REGy) is being learned. The duration of this learning period varies 

across models: models with a shorter pre-training window (e.g., Model 1.2) take 

longer to adapt (reflected by a slower decrease in IC), as existing memory 

content of REGx interferes with the encoding of the new pattern. Conversely, 

models with a longer pre-training window (e.g., Model 1.4) or where training is 

reset (e.g., Model 2) exhibit a more rapid decrease in IC, as the representation 

of REGy is less affected by prior memory of REGx. 

This example also illustrates how the difference in IC between REGy and 

the non-changing REG control condition is modulated by the pre-training 

window. When the pre-training window is short, the difference in IC is 

consistently large, as the memory of REGx strongly influences the encoding of 

REGy. However, as the model’s pre-training window increases in length, this 

difference diminishes due to memory saturation: previously encountered 

patterns interfere with both REGx and REGy representations. In the reset 

model, the IC difference is also low, reflecting a complete lack of memory 

competition. 

As discussed, the M/EEG sustained response is thought to reflect neural 

tracking of sequence predictability. If the brain represents sequence information 

similarly to the model, neural activity would be expected to mirror the dynamics 

of IC. 

2.3.1 Methods 
2.3.1.1 Stimuli 

 The stimuli (Figure 2.1A) were 3500 ms long sequences composed of 

50 ms tone pips (5 ms raised cosine ramps; 70 tone pips in total). REG 

sequences were generated by randomly selecting 10 frequencies from a pool of 
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20 logarithmically spaced values between 222 and 2000 Hz without 

replacement, and this sequence was cycled to create a regularly repeating 

pattern. For the REGxREGy sequence, two distinct REG sequences were 

generated: the first REG pattern (REGx) lasted 2 s, and the second (REGy) 

lasted 1.5 s. REGx was formed by randomly selecting 10 frequencies from the 

pool without replacement, and the remaining 10 frequencies were used to form 

REGy (Figure 2.1A). A unique sound sequence was generated for each trial 

and participant. The inter-stimulus interval (ISI) was jittered between 2.5 and 3 

s. 

2.3.1.2 Procedure 
 These data were collected as part of a separate study (reported in 

Chapter 3), that contained other stimuli (presented in a separate block). 

 Participants were seated in an acoustically shielded room (IAC triple-

walled sound attenuating booth). They listened to auditory stimuli while 

engaging in a decoy visual task, presented on a computer screen located about 

90 cm away. The visual task consisted of sequentially presented triplets of 

photographs of landscapes, and participants were instructed to press a key 

when the first and third images were the same (occurring in 40% of trials). 

Feedback regarding the number of hits, misses, and false alarms for the visual 

task was provided at the end of each block. The duration of the image 

presentation was jittered between 2 and 5 s, and images were cross faded to 

avoid abrupt visual transients. The timing of image presentation was not 

correlated with that of the auditory stimuli.  

 Overall, 120 sound stimuli were presented for each of the two sound 

conditions (REG, REGxREGy). These stimuli were presented randomly and 

arranged in 4 blocks. Sounds were presented diotically through headphones 

(3A Insert Earphone, 3M) via a Fireface UC sound card (RME) at a comfortable 

listening level (adjusted by each participant). Stimulus presentation was 

controlled with the Psychtoolbox package (Psychophysics Toolbox Version 3) in 

MATLAB (2019b The MathWorks, Inc.). 
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2.3.1.3 Recording and data processing 
EEG signals were recorded using a Biosemi system (Biosemi Active Two 

AD-box ADC-17, Biosemi, Netherlands) from 64 electrodes at a sampling rate of 

2048 Hz. Recording was restarted at the beginning of each block. For data 

analysis, the Fieldtrip (http://www.fieldtriptoolbox.org/) toolbox for MATLAB 

(2018a, MathWorks) was used.   

The recorded data were down-sampled to 256 Hz, low-pass filtered at 30 

Hz (two-pass, Butterworth, 5th-order) and detrended by a 1st-order polynomial. 

The data were divided into epochs of 6 s, from 1 s pre-stimulus onset to 1.5 s 

post-stimulus offset. The epochs were then baseline-corrected relative to the 

pre-onset interval (-0.5 s to 0 s relative to the sound onset). Outlier epochs and 

channels were removed by visual inspection, resulting in the removal of an 

average of 4.24 % of epochs and 0.9 channels per participant. De-noising 

source separation (DSS; De Cheveigné & Parra, 2014; De Cheveigné & Simon, 

2008) analysis was then applied to each subject’s data across all conditions to 

maximise reproducibility across trials (over the interval of 0 s to 4 s relative to 

sound onset). For each participant, the first three DSS components were 

retained and projected back into sensor space. Finally, the data were re-

referenced to the average of all channels, and the averages over epochs for 

each channel, condition and subject were calculated.  

To quantify the effects, the most auditory-responsive channels were 

selected: for each participant, the N1 component (negative event-related 

potential happening at around 100 ms post-stimulus onset) of the sound onset 

response was identified from the averaged data. At the peak of the N1, the 5 

channels showing the most positive activity and the 5 channels showing the 

most negative activity were considered to best reflect the brain’s auditory-

related activity. In the figures below, I quantify the instantaneous power of the 

brain response by computing the RMS (root mean square) across these 

channels, following a similar approach in other works (Barascud et al., 2016; 

Southwell et al., 2017; Zhao et al., 2025). The RMS reflects the instantaneous 

http://www.fieldtriptoolbox.org/
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power of the brain response regardless of polarity. Field maps at relevant time 

points are also provided. 

2.3.1.4 Statistical analysis 
To statistically evaluate the effect of interruption, the differences between 

sound conditions were calculated for each participant. This difference was then 

subjected to bootstrap resampling (Efron & Tibshirani, 1994). The difference 

between conditions was considered significant if the proportion of bootstrap 

iterations falling above or below zero exceeded 99% (p<.01) for more than 8 

adjacent samples (Barascud et al., 2016). 

2.3.1.5 Participants 
Twenty-eight paid participants participated in Experiment 1. All reported 

no history of hearing or neurological disorders. Two participants were excluded 

due to exceptionally noisy EEG data. Data from the remaining twenty-six 

participants (19 females; average age 24.81, ± 4.20) were used for analyses. All 

experimental procedures were approved by the research ethics committee of 

University College London, and written informed consent was obtained from 

each participant. 

2.3.2 Results and discussion 
2.3.2.1 The EEG sustained response tracks regularity discovery and 

violation 
 The group averaged responses for the two conditions (REG, 

REGxREGy) are shown in Figure 2.1C. Overall, findings from Bianco et al. 

(2025) were successfully replicated with EEG.  

The brain response exhibited an N1 peak at around 100 ms post-onset, 

then increased its amplitude until it reached a plateau before the end of the 2nd 

cycle of the REG sequence. This sustained response pattern aligns with 

previous literature and is thought to reflect a rapid, automatic process of 

regularity detection (Barascud et al., 2016; Herrmann et al., 2019, 2021; 

Herrmann & Johnsrude, 2018; Hu et al., 2024; Southwell et al., 2017). Following 

the emergence of the REGy pattern, the sustained response rapidly dropped in 
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amplitude, persisted at a low level (whilst the new REG pattern was being 

discovered) and then returned to the pre-transition level. To analyse the 

difference in the post-transition responses between conditions, data were 

baseline-corrected relative to the pre-transition window (1.5-2 s post-onset; 

Figure 2.1C, right). Bootstrap resampling revealed a significant difference 

between the amplitudes of REG (control) and REGxREGy, starting from 220 ms 

(~5 tones) after the transition, consistent with the timing shown in the MEG data 

from Bianco et al. (2025). 

As noted previously (Barascud et al., 2016; Bianco et al., 2025), unlike 

during regularity discovery, the EEG response latency here diverges from model 

predictions, which show a spike in IC immediately following the first tone that 

violates the REG pattern. Several factors could account for this divergence. 

One possibility is that the delay reflects a circuit-related delay in encoding the 

violation of the REG pattern. Alternatively, it might reflect a "wait-and-see" 

period, during which the system accumulates information about the scene 

change before responding. Indeed, Bianco et al. (2025) demonstrated that this 

latency is not fixed but scales with sequence information content (tone-pip 

duration), challenging the idea of a simple refractory period. 

Following the abrupt drop in the sustained response, levels remained low 

for a period before rising again. The difference between conditions disappeared 

at 800 ms post-interruption (16 tones), at which point the response to REGy 

returned to the levels of the no change control condition (REG). Overall, these 

patterns indicate that the EEG sustained response dynamically tracks the 

brain’s process of discovering predictability, detecting its violation, and then fully 

re-establishing a new regularity.  
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Figure 2.1 Experiment 1: stimuli, model simulations, and EEG 
results.  

[A] Left: Schematic illustration of the frequency selection method in 

Experiment 1, with each frequency represented as a circle. In this 

example, the brown frequencies were allocated to REGx and the pink 

to REGy. Right: Spectrograms depicting example stimuli for each 

condition. The dashed line marks the onset of REGy. [B] Model 

simulations. The model was implemented by using the 

“new_ppm_simple” function from the ppm R package, available on 

GitHub (https://github.com/pmcharrison/ppm). All parameters were 

kept with their default settings, as described in the repository 

documentation. Middle: Information content (IC; log transformed) 

computed from variants of the IDyOM model, each incorporating 

different memory constraints. The y-axis is inverted (bottom = higher 

IC). The REG condition is shown in grey; REGxREGy condition is 

shown in green. For each condition, data are averaged over trials, with 

shaded areas representing twice the standard deviation (STDEV). 

Models vary by the duration of the “pre-training window”. Model 1.1 is 

pre-trained on 2 cycles of REGx (indicated by the brown arrow). Model 

1.2 is pre-trained on 4 cycles of REGx. Model 1.3 is pre-trained over 3 

trials. Model 1.4 is pre-trained over all 240 trials. Model 2 is reset upon 

pattern interruption, resulting in a pre-training window of length zero. 

All models estimate variable-order conditional probabilities for the next 

tone given the immediately preceding sequence of tones. The stimulus 

context over which the model learns representations of statistical 

structure that inform its conditional probabilistic predictions consists of 

the pre-training window and all tones experienced up to the time of 

prediction. The context varies between models, for example when 

predicting tone 50, the context is: Model 1.1, tones 20-49 of the current 

sequence; Model 1.2, tones 1-49 of the current sequence; Model 1.3, 
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the three preceding trials plus tones 1-49 of the current sequence; 

Model 1.4, the 240 preceding trials plus tones 1-49 of the current 

sequence; Model 2, tones 41-49 of the current sequence. Right: Raw 

(non-log-transformed) IC values averaged over the last REGy cycle 

(tone 61 to 70; corresponding to 3-3.5 s). Left: IC differences (between 

REGxREGy and REG computed over tone 61-70) across all five 

models. [C] EEG data. Left: Group-averaged brain responses (RMS 

over 10 most responsive auditory channels; see Methods). Shading 

indicates twice the SEM (computed via bootstrap resampling, 1000 

iterations). Data are baseline-corrected relative to the 0.5-second pre-

onset window. Right: The same data but baseline-corrected using the 

1.5–2 s pre-transition window. Significant differences (p<.01) between 

conditions are indicated by the horizontal bold line. Scalp topographies 

are based on activity averaged over the time window of significant 

differences (2.2-2.8 s relative to stimulus onset); the colour ranges 

from -4 to 4 uV. 

 

2.3.2.2 Reconciling differences between modelling and the EEG response 
There are notable differences between the EEG responses and the 

model's behaviour. For instance, as previously noted, the model exhibits an 

immediate response to the transition from REGx to REGy, whereas brain 

responses show a delay of about five tones.  

A key point of divergence lies in how the model handles multiple cycles 

of regularity. Even in the control condition (no change, REG), the model 

continues to refine its representation of REG with each successive cycle. In 

contrast, the EEG sustained response to REG plateaus after approximately two 

cycles, indicating that the brain’s representation stabilises relatively quickly.  

As a result, in the model, REGy never reaches the same representational 

strength as REG in the control condition, since REG continues to be refined 

indefinitely. However, EEG data show that the transition from REGx to REGy 
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leads to a return to the same level of sustained activity observed for REG within 

about one second of REGy onset. This discrepancy suggests that aspects of 

evidence accumulation—or more generally, auditory processing—that shape 

brain responses are not fully captured by the model. 

Despite these differences, the models most consistent with the EEG 

findings are those in which the post-transition difference between REG and 

REGy is minimal—that is, models in which REGx and REGy do not strongly 

compete in memory. Such models typically either have a long pre-training 

window (e.g., Model 1.4) or are reset at the point of transition (Model 2), 

enabling a rapid reinstatement of a REGx-like response to REGy.  

To further refine this interpretation, Experiment 2 asked how prior context 

affects the ‘rediscovery’ of a previously experienced regularity. To address this, 

responses to an identical REG pattern were examined while systematically 

varying the immediately preceding context. 

 

2.4 Experiment 2 
 This experiment investigated the EEG sustained response evoked by an 

ongoing regular (REG) pattern occasionally interrupted partway. A stimulus set 

(Figure 2.2A) was employed in which 25% of the trials consisted of a regularly 

repeating sequence of tones. In the remaining trials, the regular pattern was 

interrupted by the insertion of 1, 3, or 5 novel tones (referred to as conditions 

INT1, INT3, and INT5, respectively) after which the original REG pattern 

resumed. I asked how this interruption would affect the representation of REG, 

with a specific focus on the speed at which the regularity was re-discovered and 

the post-interruption sustained response. 

 As in Experiment 1, the hypothesis was constrained using IDyOM 

(Figure 2.2B). In this case, the stimuli consisted of a continuous REG pattern 

interspersed with occasional deviant tones. As a result, the IC differences 

between conditions are markedly smaller than those observed in Experiment 1 
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(Figure 2.1B). Nevertheless, the overall dynamics are consistent with those 

reported previously.  

 Importantly, the post-interruption behaviour of the context incorporating 

model reveals two key phenomena: (1) Despite the post-interruption sequences 

being structurally identical across the INT conditions, IC levels remain distinct 

between them (Figure 2.2C). This occurs because the model incorporates the 

interruption tones into its predictive framework, increasing baseline uncertainty. 

(2) The model exhibits “phantom” IC spikes, reflecting an expectation for the 

interruption to recur. This behaviour arises because the model lacks the 

capacity to infer higher-order rules, such as the one-time occurrence of 

interruptions and the guaranteed resumption of the pre-interruption pattern. 

Overall, the model's behaviour is dictated by its perfect memory of all prior 

experiences, with every past observation—regardless of its present relevance—

being weighted equally. This includes the singleton interruptions, which continue 

to influence the model's present IC estimates. This pattern is largely preserved 

across models with different pre-training window lengths, though models with 

longer pre-training show less pronounced differences in post-interruption IC 

(due to memory saturation; as discussed in Experiment 1, above).   

 For a model whose memory is reset at the interruption (Model 2), IC 

differences between conditions are also present because the ‘post-interruption 

world’ contains different numbers of unique elements for each interruption 

condition. The interruption tones are incorporated into model predictions, 

thereby decreasing baseline predictability. This model does not display phantom 

spikes, because its memory does not contain the previously experienced REG 

and its transition to the interruption tones. 

 Another difference between the models concerns the speed at which the 

REG pattern is re-discovered, reflected in the timing of the decrease in IC 

following the interruption. The context-incorporating models exhibit a rapid re-

discovery of REG, whereas in the reset model, this process is slower due to the 

unavailability of pre-interruption memory.  
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 Building on these insights, this experiment examines whether passively 

listening participants exposed to these sequences will mirror model behaviour. 

Specifically, the investigation focused on whether transient disruptions affect 

subsequent representations of regularity in a manner comparable to the model. 
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Figure 2.2 Experiment 2: stimuli and model simulations. 

[A] Left: Schematic of the frequency selection method in Experiment 

2, with each frequency represented as a circle. The brown circles 

represent frequencies randomly chosen for REG; the pink circles 

represent tones chosen for the interruption tones (INT3 here). White 

circles denote unused frequencies in this trial. Middle: Spectrograms 

showing example stimuli for each condition. The white dashed box 

highlights the INT tones. The REG sequences before and after the INT 

tone follow an identical pattern. Right: Design schematics illustrating 

the stimulus sequences for each condition. ‘I’ indicates the interruption 

tones. [B] Model simulations. Middle: IC values (log-transformed) 

computed from variations of the IDyOM model, each with different 

memory constraints (as detailed in Figure 2.1), plotted for the INT0 

and INT5 conditions from Experiment 2, and REGxREGy condition 

from Experiment 1. For each condition, data are averaged over trials, 

with shaded areas representing twice the standard deviation (STDEV). 

The y-axis is inverted (bottom = higher IC). Right: Raw (non-log-

transformed) IC values averaged over the last REG cycle (tone 61 to 

70; corresponding to 3-3.5 s).  Left: IC differences (between INT5 and 

INT0 computed over tone 61-70) across all five models. [C] IC values 

for all four conditions, computed using Model 1.2.   

 

2.4.1 Methods 
2.4.1.1 Stimuli 

 The stimuli were 3500 ms long sequences of 50 ms tone pips (5 ms 

raised cosine ramps; 70 tone pips in total). Tone frequencies were drawn from a 

pool of 20 logarithmically spaced values between 222 and 2000 Hz. Each 

stimulus comprised a sequence of regularly repeating tones (REG), generated 

in the same manner as in Experiment 1 (Figure 2.2A). In 25% of trials, the REG 

pattern continued with no interruption (INT0). In the remaining trials, an 
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interruption in the form of 1, 3, or 5 new tones was introduced at 2000 ms post-

onset (following 4 cycles of REG). These conditions will be referred to as INT1, 

INT3 and INT5, respectively. The frequencies of INT tones were randomly 

selected without replacement from the pool of remaining frequencies not used 

to form the REG sequence. Following INT, the original REG pattern was re-

started. The duration of this remaining portion varied across conditions (1500 

ms, 1450 ms, 1350 ms, and 1250 ms for INT0, 1, 3, and 5 conditions, 

respectively), ensuring that the overall tone number remained fixed at 70 tones. 

The ISI was jittered between 2.5-3 s. A unique sound sequence was generated 

for each trial and participant.   

2.4.1.2 Procedure 
General procedures were identical to those in Experiment 1. Overall, 600 

sound stimuli were presented (150 stimuli per condition; in random order). The 

session was divided into 5 blocks, each approximately 10 min long. Participants 

were allowed a short rest between blocks.  

2.4.1.3 Recording and data processing 
General protocols were identical to those described in Experiment 1. On 

average, 1.47% of epochs were removed as outliers, along with 0.5 channels 

per participant. For the detailed comparisons of RMS values between 

conditions, two different baseline correction time windows were applied to the 

output RMS. For the comparison of the post-interruption neural response, 

baseline correction was applied at the time window before the interruption onset 

(1.5 s to 2 s post-onset). To compare the timing where the neural response after 

interruption tones stabilises, baseline correction was applied at a different time 

window (3 s to 3.3 s post-onset).  Additionally, post-interruption neural 

responses were compared across INT conditions (INT1, INT3, and INT5) by 

subtracting the control condition (INT0) from each INT condition, followed by 

baseline correction in the 1.5-2 s post-onset window. 

To uncover activity potentially masked by the slow DC changes, the 

same analysis was performed on high-pass filtered data at 2 Hz (two-pass, 
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Butterworth, 4th-order) with baseline correction applied just before the onset of 

the interruption (1.8 s to 2 s post-onset). DSS was applied to the data around 

the interruption tone (1.5 s to 4 s post-onset), and 2 components of the DSS 

outputs were retained for the data representation. Given the particular interest 

in the mismatch negativity (MMN)-like response to the pattern interruption, 

electrodes that best reflected the MMN response were selected. To do this, the 

data were averaged across all conditions across all participants and the 10 

electrodes with the most negative activation at the typical MMN response time 

(150 ms to 200 ms post-interruption-onset) were selected. 

To examine the possible presence of the “phantom” interruption peaks, 

the high-pass filtered data at 2 Hz were analysed by applying DSS separately to 

each experimental condition (2 s to 4 s post-onset) and 2 components were 

extracted for the data representation. Analysing each condition separately was 

necessary because the “phantom” peaks occur at a different latency in each 

condition (tone 52 and 62 in INT1, 54 and 64 in INT3, and 56 and 66 in INT5; 

Figure 2.2B, C). The output data were then segmented into 600 ms epochs 

(from 400 ms before the model-based peak timing to 200 ms after the peak 

timing) to limit the analysis at around the model-inferred peak locations. The 

initial 200 ms of each epoch was used for baseline correction, and the 

responses from 10 channels (same as those used in the RMS calculation) were 

averaged.  

2.4.1.4 Statistical analysis 
To statistically evaluate the effect of interruption, the differences between 

sound conditions (INT0, INT1, INT3, and INT5) were calculated for each 

participant. This difference was then subjected to bootstrap resampling (Efron & 

Tibshirani, 1994). The difference between conditions was considered significant 

if the proportion of bootstrap iterations falling above or below zero exceeded 

99% (p<.01) for more than 8 adjacent samples (Barascud et al., 2016).  

For the bootstrap analysis on data baseline-corrected to 3-3.3 s post-

onset, the final significance point was defined as the moment when the neural 
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response stabilised. To assess whether this timing differed across conditions, 

the bootstrap analysis was repeated for each condition pair (INT0 vs. INT1, 

INT0 vs. INT3, and INT0 vs. INT5). Specifically, 1000 iterations of bootstrap 

resampling were performed per pair and the last significant data point within the 

interval from INT offset to 3 s (the onset of the baseline correction window) was 

identified in each iteration. 

2.4.1.5 Participants 
 Thirty paid participants participated in Experiment 2. All reported no 

history of hearing or neurological disorders. Two participants were excluded due 

to exceptionally noisy EEG data. Data from the remaining twenty-eight 

participants (22 females; average age 23.4, ± 3.41) were used for analyses. All 

experimental procedures were approved by the research ethics committee of 

University College London, and written informed consent was obtained from 

each participant.  

2.4.2 Results and discussion 
2.4.2.1 All interruption conditions elicit early MMN-like responses 

Sensitivity to the interruption was evaluated by analysing the response at 

the transition. To isolate the MMN-like response which was expected to be 

evoked by the INT (deviant) tones (Figure 2.3), the EEG data were high-pass 

filtered at 2 Hz and averaged across trials for each condition (as detailed in the 

Methods section). Indeed, the response is not visible in the non-high-pass-

filtered data; see Figure 2.4. Bootstrap resampling revealed significant 

deflection in the INT1, INT3, and INT5 conditions relative to the INT0 condition 

(Figure 2.3), with latencies emerging between 70-100 ms post interruption 

onset. Notably, this latency and the corresponding topography (Figure 2.3; 

bottom) are consistent with those commonly associated with the MMN response 

(Winkler, 2007). Overall, this suggests that the interruption was similarly 

detected by the brain in all conditions.  
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Figure 2.3 Experiment 2: INT evoked deviance response.  

High-pass filtered mean EEG data, averaged over 10 channels 

(indicated in the scalp topographies). Shaded areas represent twice 

the SEM. Significant differences (p<.01) between INT0 and 

interruption conditions (INT1, INT3, INT5) are indicated by the 

horizontal lines above the EEG traces. Scalp topographies, calculated 

for two time windows (2.1-2.2 s and 2.25-2.3 s), are shown at the 

bottom. 

 

2.4.2.2 The EEG sustained response tracks the dynamics of sequence IC 
For each participant and condition, the RMS over 10 selected channels 

(detailed in the Methods section) was calculated at each time point on the non-
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high-pass filtered data. The group averaged RMS amplitude for the four 

conditions (INT0, INT1, INT3, and INT5) is shown in Figure 2.4A. The general 

trajectory mirrored the pattern observed in Experiment 1: the sustained 

response increased and plateaued as the brain adapted to the REG pattern, 

dropped in amplitude following the INT tones, and then recovered (but not fully 

to baseline) as the brain re-engaged with the REG pattern. This trajectory aligns 

with the information content patterns predicted by the IDyOM models. 

Following the REG interruption, the sustained response dropped rapidly. 

To analyse differences in post-interruption responses across conditions, the 

data were baseline-corrected relative to the pre-interruption window (1.5-2 s 

post-onset; Figure 2.4B). Bootstrap resampling (see Methods) revealed a 

significant difference between the control condition (INT0) and the interruption 

conditions (INT1, INT3, and INT5), starting at 187 ms (~4 tones) after the 

interruption onset. This finding is consistent with previous observations 

(Barascud et al., 2016; Bianco et al., 2025), including Experiment 1 in this study.  

As noted previously, one possibility is that the delay reflects a fixed 

refractory period after the MMN-like response or some other circuit-related 

delay in encoding the violation of the REG pattern. Alternatively, it might reflect 

a "wait-and-see" period. If the 4-tone latency reflects a period of assessment—

during which the system evaluates whether the REG violation is a spurious 

event or indicative of a consistent stimulus change—no interruption response 

would be expected in INT1, but a larger response would be expected in INT5. 

This was partially observed: while all interruption conditions exhibited a similar 

latency for the sustained response drop, the trough was deeper for INT3 and 

INT5 than for INT1 (Figure 2.4D).  

2.4.2.3 The EEG sustained response indicates a memory trace for REG 
post interruption 

 To assess the time required to re-learn the REG pattern—reflected in the 

recovery of the sustained response— the data were baseline-corrected relative 

to the post-recovery window (3-3.3 s post-onset; indicated in Figure 2.4C). 
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Bootstrap resampling (see Methods) identified time points where responses to 

the interruption conditions (INT1, INT3, and INT5) remained significantly below 

the control (INT0) condition. Amplitude recovery was defined as the latest time 

point where this significant difference was observed. This occurred 

approximately 216 ms (~4 tones), 202 ms (~4 tones), and 285 ms (~5 tones) 

after the offset of the final interruption tone in the INT1, INT3, and INT5 

conditions, respectively. 

 Under perfect memory conditions—as seen in the model dynamics—the 

timing of REG re-discovery following the interruption should be the same across 

all INT conditions, once the duration of the interruption is accounted for (i.e., 

subtracting 1, 3, or 5 tones, respectively; e.g., see Figure 2.2C). In contrast, the 

results show a longer latency following INT5 compared to INT1 and INT3. 

Bootstrap resampling confirmed a consistent difference between the INT1/INT3 

and INT5 conditions (Figure 2.4C), suggesting that INT5 requires one 

additional tone to re-establish the REG pattern after REG is reintroduced. This 

may reflect neural memory constraints that limit the speed of pattern re-

learning. 

 Critically, and notwithstanding the differences between conditions 

highlighted above, the observed recovery times were consistently shorter than a 

regularity cycle (i.e., <10 tones) and faster than model predictions for the 

discovery of a new REG pattern (i.e., 1 cycle + ~5 tones, as observed in 

Experiment 1). This indicates that, despite the interruption, the brain retained a 

memory of the REG pattern, enabling faster re-discovery (see also Bianco et 

al., 2025).  



 
 

84 

 

Figure 2.4 Experiment 2: sustained response dynamics.  

[A] Group-averaged RMS of brain responses. Shaded areas represent 

twice the SEM. Data are baseline-corrected to the -0.5-0 s pre-onset 

window. Scalp topographies illustrate two response phases: N1 

component (80-150 ms post-sound onset) and the sustained response 

(1-2 s post-sound onset); the colour ranges from -4 to 4 uV. [B] Same 

data as in [A] but baseline-corrected to the pre-interruption window 

(1.5-2 s). Significant differences (p<.01) between INT0 and INT1, INT3, 
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INT5 are indicated by bold horizontal lines above the EEG traces. 

Scalp topographies are provided for three time windows: 2.2-2.3 s, 2.3-

2.5 s, and 3-3.5 s relative to sound onset. [C] Same data as in [A], 

baseline-corrected to 3-3.3 s. Significant differences (p<.01) between 

INT0 and INT1, INT3, INT5 are indicated by bold lines below the EEG 

traces. The histogram (inset) shows the latencies associated with REG 

re-discovery. The results demonstrate delayed rediscovery of REG in 

the INT5 condition. [D] Right: EEG data (RMS) for each of the 

interruption conditions after subtracting the INT0 condition, baseline-

corrected within the pre-transition window (1.5-2 s). Grey lines 

beneath the traces mark significant differences (p<.01) between INT 

conditions (INT1 vs. INT3, INT1 vs. INT5, INT3 vs. INT5). Left: Same 

data averaged over the 3-3.5 s time window (grey shading). Error bars 

represent SEM. 

 

2.4.2.4 Persistent post-interruption sustained response differences 
between conditions 

In contrast to the results in Experiment 1, after the interruption, persistent 

differences in the sustained response between INT 1, 3, 5 and INT0 were 

observed; Figure 2.4B indicates that sustained responses did not return to the 

pre-interruption baseline in INT conditions. Given that the amplitude of the 

sustained response is hypothesised to reflect the brain’s representation of the 

predictability of unfolding sounds, this reduced amplitude suggests a decrease 

in inferred predictability with exposure to a greater number of INT tones, similar 

to that observed in modelling. 

One salient feature in the model is the expectation of “phantom” 

interruption events at the onset of every regularity cycle following the pattern 

interruption (tone 52 and 62 in INT1, 54 and 64 in INT3, and 56 and 66 in INT5, 

as shown in Figure 2.2B and C). To examine potential EEG correlates of these 

events, the data were high-pass filtered and RMS over 10 selected channels 
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was calculated (see Methods). However, this analysis did not yield consisted 

EEG parallels. It remains possible that the noisy nature of EEG signals 

obscured them and that the fluctuations in the time domain (e.g. see Figure 
2.4B) are a smeared manifestation of these peaks.  

The general pattern of a speeded re-discovery of REG and a persistent 

lower sustained response in the INT conditions matches the predictions of the 

“context incorporating” family of models. This is because the reset model does 

not predict faster re-discovery of REG, and the context incorporating models 

maintain a memory of the INT tones that directly affect the representation of the 

REG sequence following its resumption.  

The mean amplitude patterns across INT conditions (Figure 2.4D, left) 

were consistent with an effect of INT duration on the sustained response, 

although there was no statistically significant difference between the INT 

conditions (F(2,54) = 1.81, p = 0.17; repeated-measure ANOVA). The difference 

from the control (INT0) appeared graded, as reflected in the pattern of 

significance (horizontal lines) in Figure 2.4B. Direct condition comparisons 

revealed only a small effect between INT1 and INT5 (Figure 2.4D, right). This is 

perhaps not surprising given that the conditions only differed by the introduction 

of 2 tones. But overall, the pattern of EEG data appears consistent with a model 

that maintains a long enough pre-training window to incorporate a memory of 

the preceding REG and the INT tones into the inferred predictability of the post-

interruption REG.  

Overall, these results indicate that the presence of interrupting tones 

affected the representation of REG even a second or more after the interruption 

had ended. This pattern aligns with the predictions of context incorporating 

models (Model 1) which suggest that memory of the INT tones influences the IC 

of the REG pattern in a manner reflected in the EEG data. 
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2.5 General discussion 
The analysis used in this study focused on the dynamics of the EEG 

sustained response. Accumulating evidence suggests that it reflects the process 

of predictability tracking in statistically structured sequences (Barascud et al., 

2016; Bianco et al., 2025; Hu et al., 2024; Zhao et al., 2025), supported by the 

coordinated processing of information across a distributed neural network. 

Source localization of the MEG sustained response (Barascud et al., 2016; 

Bianco et al., 2025; Hu et al., 2024) implicates a distributed network involving 

the auditory cortex (AC), hippocampus (HC), and inferior frontal gyrus (IFG) in 

representing REG patterns. This activity fluctuates dynamically, decreasing 

during REG interruptions and reinstating upon the discovery of a new REG 

pattern. These fluctuations likely reflect the disruption of top-down connectivity 

when an existing model is deemed no longer relevant and the strengthening of 

top-down connectivity when predictive models are available.   

This study investigated whether and how the passive-listening brain 

utilises past experiences to represent ongoing sound sequences by recording 

EEG sustained responses in two situations: one in which a REG sequence is 

replaced by a different REG sequence (Experiment 1) — and another in which a 

REG sequence is occasionally disrupted by a varying number of new tones 

(Experiment 2). 

2.5.1 Sustained responses to REG patterns are affected by brief 
interruptions 

Experiment 2 revealed that sustained responses to the post-interruption 

REG patterns were affected by the INT tones. This finding suggests that the 

brain represents the post-INT REG sequence using past information, including 

the history of INT tones.  

Prior research similarly indicates that the brain incorporates long-term 

sensory history when processing sequences (Maheu et al., 2019; Rubin et al., 

2016; Ulanovsky et al., 2004; see also Demarchi et al., 2019; Fritsche et al., 

2022), though estimates of this duration vary depending on the specifics of the 
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paradigm used. For instance, Rubin et al. (2016) found that auditory cortex 

neurons in anesthetised cats best fit prediction models accounting for more than 

ten previous tones (~9 seconds). Similarly, Benjamin et al. (2024) showed that 

tone information remains decodable from MEG responses for approximately 

eight successive items (2 seconds) during passive listening. Skerritt-Davis and 

Elhilali (2018) revealed that memory span, estimated by fitting a Bayesian 

perceptual model to behavioural data, correlated with performance, extending 

up to the full duration of each sequence (60 tones; ~19 seconds). Zhao et al. 

(2025) applied a similar model to random tone-pip sequences and found that 

most listeners based their judgments on a context of 20–40 tones (~1-2 

seconds).  

In the current study, the result shows that even brief contextual 

perturbations—such as a single interrupting tone—can alter the brain’s 

representation of an ongoing pattern. Given the link between the sustained 

response and perceived predictability, the reduced sustained response 

amplitude following interrupting (INT) tones indicates that the inferred 

predictability of the REG pattern was diminished after the interruption, despite 

no change in the stimulus itself. 

This phenomenon—where transient surprise alters neural responses to 

an otherwise unchanged stimulus—has been observed across multiple 

research domains. In post-traumatic stress disorder (PTSD), for example, 

neural and physiological responses to a stimulus can change after a surprising 

or stressful event coincides with it, even if the stimulus itself remains the same 

(Kaczkurkin et al., 2017; Nutt & Malizia, 2004; Sartory et al., 2013; Wessa & 

Flor, 2007). Similarly, in perceptual decision-making, when participants predict 

an image’s location or value based on previous patterns, a surprising rule 

deviation can significantly alter their representation of the stimulus and its 

environment (Kao et al., 2020; McGuire et al., 2014; Nassar et al., 2010, 2012). 

This consistency across different psychological domains suggests a 

fundamental heuristic employed by the brain to track environmental changes. 
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2.5.2 Sustained response dynamics reflect memory of INT and 
pre-interruption REG 

As discussed above, the sustained response modulations are consistent 

with a memory trace for the interruption, which causes the sustained response 

to settle below the level observed in the control condition (INT0). As seen also 

in the model, the same memory effects also influence the speed of REG re-

discovery after INT. Specifically, re-discovery occurs more rapidly than the initial 

discovery of a new regularity (see also Bianco et al., 2025). In all cases, the 

sustained response begins to rise before a full cycle of the REG pattern has 

elapsed. Thus, both the modulation of the sustained response and the 

accelerated re-discovery of REG following INT reflect the system’s use of prior 

information, aligning with the notion of a “context-incorporating” memory 

process, even within a simplified model framework.  

Interestingly, the response dynamics also suggest memory decay. 

According to the model, under perfect memory conditions, the latency of REG 

re-discovery should be identical across INT conditions once the duration of the 

interruption is accounted for. However, this is not what was observe in the EEG 

data: following INT5, the re-discovery is delayed by approximately one tone (50 

ms) compared to shorter interruptions. This delay cannot be explained by 

increased memory interference, as each INT condition uses a distinct set of 

tones, eliminating overlap. Instead, the delay points to a reduction in memory 

duration—i.e., decay—rather than a loss of memory content. This finding is 

significant because it demonstrates that memory decay can be detected within 

this paradigm, even during passive listening. 

2.5.3 Distinct sustained response patterns in Experiment 1 and 
Experiment 2 suggest listeners can use or ignore context 
depending on its relevance 

Experiment 1 yielded a different pattern of results to Experiment 2, 

despite the use of similar sound stimuli and the same analysis protocol. While 

acknowledging that Experiments 1 and 2 were conducted separately and differ 
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in several respects—making direct comparisons necessarily speculative—this 

divergence suggests that the passive-listening brain may employ a flexible 

context integration strategy. 

In Experiment 1, the sustained response indicated that the REGy 

representation remained unaffected by the REGx context, as reflected in the full 

recovery of REGy amplitude to the REGx level (Figure 2.1). This pattern aligns 

with models where the REGx memory was either diluted by other contextual 

memories or erased entirely. In the simple modelling world used in this 

experiment, the results of Experiment 1 are either consistent with the reset 

model (Model 2) or a context incorporating model that learns from a relatively 

long prior context (e.g. Model 1.4).  

In contrast, as discussed above, the pattern of results in Experiment 2 is 

not consistent with a reset model, but rather with models maintaining a memory 

of the preceding trials. Notably, as illustrated in Figure 2.2, context 

incorporating models predict a greater IC deviation from the control condition 

(REG, INT0) in the REGxREGy condition (Experiment 1) than in the INT5 

condition (Experiment 2). However, the EEG data reveal the opposite pattern—

the INT5 condition shows a larger deviation from the control (Figure 2.5). 

Therefore, to reconcile both experiments, a parsimonious conclusion is that 

different strategies are used by the brain in the two experiments: a “memory 

reset” strategy for Experiment 1 and a “memory incorporating” strategy for 

Experiment 2. 
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Figure 2.5 Comparing EEG across Experiments.  

Group-averaged RMS of brain responses. The difference between 

REGxREGy and REG (Experiment 1) is shown in green. The 

difference between INT5 and INT0 (Experiment 2) is shown in purple. 

Data are baseline-corrected using the pre-transition window (1.5–2 s). 

Shaded areas indicate ± 2 SEM.    

 

One possible explanation for the existence of different strategies in the 

two experiments lies in the distinct differences in stimulus set, and hence 

listeners’ belief about the environment imposed in the two experiments. In 

Experiment 1, a violation of REGx (the first tone violating the REGx pattern) 

was always associated with a transition to a new pattern (REGy), meaning that 

REGx was not relevant, and its representation could be discarded to facilitate 

the learning of REGy. In contrast, in Experiment 2, the regular pattern 

consistently re-emerged shortly after an interruption, reinforcing the expectation 

that the pre-interruption REG sequence remained relevant. Therefore, in 

Experiment 1, participants may have automatically adapted by discarding the 

REGx representation, similar to the behaviour of the reset model, which erases 

prior context when making new predictions. Conversely, in Experiment 2, 

participants may have learned that the pre-interruption REG pattern remained 

relevant, leading them to preserve its memory even after the interruption. This 
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difference suggests the brain’s ability to flexibly adjust its memory integration 

strategies based on the statistical structure of the auditory environment. 

Importantly, a similar effect was also observed in Bianco et al. (2025; 

Figure 2.6 reproduces their findings). In that study, the authors investigated two 

experimental auditory environments. One, labelled ‘ENVnovel’, consisted of 

sequences that always transitioned to a new pattern (REGxREGy, as in the 

current study; REGxRND; and a REGx control). The other context, 

‘ENVresume’, presented in a separate set of blocks, included REGxRND and 

REGx sequences but also, crucially, a condition in which the original REGx 

pattern resumed after an interruption by 10 random tones (REGx-RND-REGx; 

Unlike in the present Experiment 2, the length of the interruption was not 

varied). Thus, while in ENVnovel it was possible to "discover" that once REGx 

was disrupted, the associated predictive model was no longer relevant (since 

REGx would not reappear), this was not the case in ENVresume, where REGx 

was reintroduced 30% of the time. The results of that experiment revealed a 

pattern consistent with the findings reported here: the sustained response in the 

REGx-RND-REGx condition was consistently lower than in its control 

counterpart. This suggests that the brain retains information about past 

regularities in memory even when they are not guaranteed to reoccur. 

This flexibility in adjusting the duration of reference memory is 

considered a crucial feature of the brain, allowing it to maintain an accurate 

representation of a dynamically changing environment (Bland & Schaefer, 2012; 

Glaze et al., 2015; O’Reilly, 2013; Yu & Dayan, 2005). Such adjustments occur 

in response to environmental state changes or change points—moments when 

past observations become unreliable for predicting future events. When a 

change point occurs, minimising the influence of past memory and prioritising 

new evidence accumulation enables a rapid adaptation to the new environment 

(Glaze et al., 2015; Nassar et al., 2010; O’Reilly, 2013; Skerritt-Davis & Elhilali, 

2018, 2021a). Empirical studies, mostly conducted using tasks involving slow 

decision-making and active attention allocation, suggest that humans can 
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flexibly adjust their change point assumptions based on volatility estimates 

(Behrens et al., 2007; Glaze et al., 2015, 2018; Nassar et al., 2010). The 

present results suggest that similar heuristics might be operating on a faster 

time scale associated with sensory processing. Further controlled studies are 

needed to clarify these effects. For example, comparing results from conditions 

(REGx-INT-REGy vs REGx-INT-REGx) presented in separate blocks versus 

intermixed within the same block could help determine whether strategy 

adjustments occur on a trial-by-trial basis, at the block level, or require 

prolonged exposure throughout the experiment. 

 

Figure 2.6 Results from Bianco et al. (2025) reveal results 
consistent with Experiment 2 here.  

The study presented stimuli in two contexts. In ‘ENVnovel’, transitions 

were always to a new pattern (REGxREGy, as in the current study; 

REGRND; and a REG control). ‘ENVresume’, presented in a separate 

set of blocks, included REGRND and REG sequences but also, 

crucially, a condition in which the original REGx pattern resumed after 

an interruption by 10 random tones (REGx-RND-REGx). [A] Group-
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average MEG brain responses (RMS across “auditory” channels; see 

more details in Bianco et al. (2025)) from the ENVnovel block. Data 

are baseline-corrected to the -0.5–0 s pre-onset window. Significant 

differences are indicated by the bold line below the MEG traces. These 

results are consistent with those in Experiment 1 here.   [B] Data from 

the ENVresume block, demonstrating a persistent difference between 

REG and REGx-RND-REGx conditions following the resumption of 

REGx. [C] Design schematics illustrating the stimulus sequences for 

each condition. [D] Direct comparison of REGxREGy from ENVnovel 

and REGx-RND-REGx from ENVresume. REGRND condition data are 

subtracted from each condition of interest. Significant differences 

between conditions are indicated by bold lines below the traces. The 

results demonstrate a reduced sustained response in ENVresume 

relative to ENVnovel, consistent with the observations in Experiment 

1 and 2 here.  

 

Additionally, it is important to stress that this study use simple model 

comparisons focusing on varying the length of the pre-training window 

(consisting of counts of occurring n-grams). However, this study did not account 

for other model dynamics or potential parameter variations. Moreover, while the 

IDyOM model was used in this study due to its success in predicting human 

sequential processing (Barascud et al., 2016; Cheung et al., 2019; Di Liberto et 

al., 2020; Kern et al., 2022; Quiroga-Martinez et al., 2021), this model does not 

account for complex cognitive constraints, such as dynamic memory limitations 

and low-level auditory sensitivity. Further exploration of various models and 

model parameters is critical to better understand how the brain flexibly tracks 

the ongoing sequences under dynamic environments. 
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3.  Chapter 3: The Effect of Prior Context 
Predictability on the Discovery of New 
Regularity  

3.1 Summary 

Regularity tracking is a fundamental aspect of auditory scene analysis, 

yet it remains unclear how this process is shaped by the statistical properties of 

preceding context. In this study, I examined how prior exposure to either 

random (RNDx) or regular (REGx) auditory sequences influences the brain’s 

detection of a newly emerging regular pattern (REGy). Predictions were 

benchmarked against two computational models of statistical learning: IDyOM, 

a symbolic variable-order Markov model, and D-REX, a Bayesian change point 

detection model. However, neither model captured the sustained neural activity 

observed in the EEG recordings. Specifically, EEG data (N = 26; both sexes) 

revealed that the emergence of the neural signature for REGy was delayed 

when it was preceded by a deterministic (REGx) context. This finding 

demonstrates how prior context shapes perceptual inference and reveals critical 

discrepancies between computational model predictions and actual neural 

dynamics, suggesting the presence of brain-specific heuristics and constraints 

that are not yet incorporated into existing models. 

 

3.2 Introduction 
 The ability to rapidly and efficiently build predictive models of the 

environment is fundamental for survival across species; such models allow for 

the optimal allocation of attentional and cognitive resources (Bendixen et al., 

2012; Boubenec et al., 2017; Bouwkamp et al., 2025; Kok, Jehee, et al., 2012; 

Nobre et al., 2007; Southwell & Chait, 2018; Yon et al., 2018). A crucial aspect 

of this process is the detection of regularities in the sensory environment, which 

enables accurate predictions about future events (Bendixen, 2014; Bendixen et 
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al., 2012; de Lange et al., 2018; Friston, 2005; Press et al., 2020; Winkler et al., 

2009). This is especially important in the auditory domain, where natural 

scenes—such as footsteps, bird chirps, or flowing water—are rich in temporal 

structure. Detecting and tracking these patterns supports effective monitoring of 

rapidly changing soundscapes (Andreou et al., 2011; Bendixen, 2014; Bendixen 

et al., 2012; Skerritt-Davis & Elhilali, 2018).  

 Previous studies have extensively investigated how the brain learns and 

responds to various types of regularities in auditory sequences. Notably, 

Barascud et al. (2016) showed that the emergence of regular structure in a 

sound sequence elicits a sustained neural response detectable via MEG, 

reflecting an online process of regularity detection. The source localisation 

revealed that this increase in sustained response while discovering the 

regularity was associated with the activation of a distributed network involving 

the auditory cortex, inferior frontal gyrus, and hippocampus. 

 However, most studies have focused on regularities emerging from 

silence or from acoustically random input, largely overlooking the influence of 

prior auditory context. In everyday listening, new regularities are rarely 

encountered in isolation—they are typically embedded within continuous 

streams of sound. Despite this, the impact of preceding auditory structure on 

the brain’s ability to discover and track new regularities remains poorly 

understood. Does prior context facilitate the discovery of new regularities by 

pre-tuning the brain toward pattern detection? Does it interfere by anchoring 

predictions too strongly to outdated structure? Or might it have no effect at all, 

leaving the discovery of new regularities unaffected? These questions remain 

open and highlight a critical gap in our understanding of how the brain navigates 

dynamic auditory environments. 

 To investigate how prior auditory context shapes the processing of 

emerging regularities, I designed auditory sequences that all transitioned into 

the same predictable pattern (REGy) but were preceded by two distinct 

contexts: either another regular pattern (REGx) or a random sequence (RNDx). 
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 Crucially, the frequency content was controlled such that REGx/RNDx 

and REGy were composed of distinct sets of frequencies; This ensured that any 

observed differences could be attributed to the statistical structure of the 

preceding context rather than low-level acoustic overlap (see Methods; Figure 
3.1A). To maximise the influence of prior context on the neural representation of 

REGy, these conditions were presented in separate blocks. Prior works have 

demonstrated the brain’s ability to maintain memory traces of sound streams 

across trials (Bianco et al., 2025; Magami et al., 2025), raising the concern that 

presenting REGxREGy and RNDxREGy within the same block could attenuate 

contextual effects. Accordingly, these responses were measured in separate 

blocks, alongside two additional control conditions (REG and RND), each 

referred as REGxREGy block and RNDxREGy block. 

 This design enabled an investigation into how the brain's response to the 

same regularity is modulated by the statistical nature of the preceding input. To 

interpret the neural signatures of this transition, expectations were 

benchmarked using two computational models of predictive processing: the 

Information Dynamics of Music (IDyOM) model and the Dynamic Regularity 

Extraction (D-REX) model. These models embody distinct approaches to 

evidence accumulation.  

 As discussed in Chapter 1 and 2, IDyOM implements a variable-order 

Markov model based on the Prediction by Partial Matching algorithm (Harrison 

et al., 2020; Pearce, 2005), and has been extensively used in studies using 

stimuli closely aligned with the present work (Barascud et al., 2016; Bianco et 

al., 2020, 2025; Harrison et al., 2020; Magami et al., 2025). As a symbolic 

model, IDyOM transforms frequency information into discrete tokens (i.e., 

alphabets) and operates in a manner that is blind to the physical properties of 

the tones. The model learns incrementally as the sequence unfolds and 

generates a conditional probability distribution for each upcoming tone based on 

its learned model. From this distribution, the model computes the information 

content (IC) of each tone —indicating how unexpected a tone is given its 
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preceding context. In this study, I used two variants of IDyOM. The first is a 

short-term IDyOM model (STM IDyOM), which accumulates evidence and 

generates predictions within each individual trial. This variant aligns with the 

motivation of this study to test the influence of the immediate preceding context 

on the processing of REGy. However, empirical evidence suggests that listeners 

retain statistical information beyond individual trials (Bianco et al., 2020; Kern et 

al., 2022; Magami et al., 2025). Motivated by this, I introduced a second variant: 

the long-term IDyOM model (LTM IDyOM), which accumulates evidence 

continuously across all sequences within a block. To reflect the actual stimulus 

environment experienced by listeners, the model was run separately for the 

REGxREGy and RNDxREGy blocks.  

 In contrast, D-REX is based on an extension of the Bayesian Online 

Change Point Detection framework widely used in the sequential decision-

making literature (Adams & MacKay, 2007; Nassar et al., 2010). Like IDyOM, D-

REX generates a predictive distribution for the next tone based on previous 

observations. However, D-REX differs in several important ways. First, it 

assumes that input tones are sampled from a Gaussian distribution over a 

continuous frequency space. Second, D-REX continuously estimates the 

change point probability—i.e., the probability that the underlying generative 

distribution has changed—and updates its reference window for prediction 

accordingly (Skerritt-Davis & Elhilali, 2018, 2021a). When a change point 

probability increases, the model shortens its reference window and places 

greater weight on recent sensory input, allowing for rapid adaptation to the new 

environment. This approach makes D-REX particularly well-suited to modelling 

dynamic belief updating in the presence of changing statistical structure. Such 

adjustments of weighting between new input and prior belief is referred to as the 

learning rate (Nassar et al., 2010; Sutton & Barto, 1998; Williams, 1992). A 

higher learning rate means the model gives greater weight to the incoming 

input, facilitating faster adaptation to the new context by down-weighting the 

outdated contextual information. Empirical evidence from human decision-

making studies demonstrates that learning rates adaptively increase after a rise 
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in change point probability, supporting the plausibility of such computations in 

the brain (Behrens et al., 2007; Glaze et al., 2015; McGuire et al., 2014; Nassar 

et al., 2010, 2012). This suggests that similar computational mechanisms may 

operate even during passive listening. In this study, I focused on three key 

statistics inferred by D-REX: (1) Surprisal: a measure analogous to IC in 

IDyOM. (2) Change point probability: the estimated probability that a change 

point has occurred at a given time. (3) Precision: the reliability of the model’s 

predictions, quantified as the inverse of the width of the predictive distribution.  

 Figure 3.1B illustrates model predictions across the STM IDyOM, LTM 

IDyOM, and D-REX frameworks. In the STM IDyOM, IC gradually diverges 

between REGx and RNDx as the REG pattern is learned. At the transition to 

REGy, both transition conditions exhibit a sharp spike in IC, reflecting the 

surprise elicited by the sudden appearance of previously unheard frequency. 

The spike is larger for the REGxREGy transition, as it not only introduces new 

frequencies but also violates an already established regular pattern. Following 

the transition, IC gradually decreases as the REGy pattern becomes 

established. The rate and pattern of IC reduction during REGy are identical for 

both transition conditions, as REGy frequencies were novel in both conditions. 

 The LTM IDyOM shows greater variability across trials (indicated by 

larger error bars) due to cumulative influences from prior tones. At the REGy 

transition, only the REGxREGy condition produces a pronounced IC spike. For 

the RNDxREGy condition, IC remains stable, as all 20 frequencies are nearly 

equally probable under the RND context, which makes the appearance of any 

tone less surprising. During the REGy discovery phase, the initial drop in IC, 

reflecting pattern learning, is similar across transition conditions. However, a 

small but consistent difference emerges in the sustained IC values that follows. 

This pattern suggests that in the REGxREGy condition, the model forms a more 

accurate internal representation of the REGy pattern more quickly than in the 

RNDxREGy condition, leading to lower ongoing IC. This advantage likely 
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reflects differences in the n-gram memory accumulated during the preceding 

context. 

 The D-REX model shows comparable patterns in surprisal—a measure 

similar to IC. Like IDyOM, D-REX generates a large spike in surprisal at the 

REGy transition only for the REGxREGy condition. This is because the 

predictive distribution in RNDx is broad, making the appearance of a new 

frequency unsurprising, whereas REGx's narrow predictive distribution amplifies 

the violation at transition.  

 The change probability, another key metric from D-REX, estimates the 

likelihood that a change point has occurred. An initial rise is observed across all 

conditions as the model detect the mismatch between the prior distribution and 

the actual input sequence. After the REGy transition, change probability rises 

rapidly in REGxREGy condition. In contrast, for the RNDxREGy condition, the 

gradual increase is seen after two full cycles of the REGy pattern. This 

asymmetry arises again from the fact that REGx compared to RNDx has 

sharper predictive distribution, making it easier to detect the emergence of the 

new context. 

 This dynamic is echoed in the precision metric, which captures the 

reliability of the model’s predictions. Precision has previously been shown to 

map closely onto the sustained neural response, a well-established proxy for 

regularity detection and learning (Zhao et al., 2025). Following a rise in change 

point probability, the model shifts its weighting towards incoming sensory input 

over prior expectations, thereby enhancing learning of the new structure. 

Indeed, in the REGxREGy condition, precision rises more rapidly following the 

transition compared to the RNDxREGy condition. This divergence begins 

around the first tone of the second REGy cycle—approximately when the 

change probability reaches its peak—indicating that the model has committed to 

the new structure. This gives REGxREGy an advantage: the clearer boundary 

provided by the REGx context enables the model to shift more decisively into 

learning the new regularity.  
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 In summary, although IDyOM and D-REX are grounded in different 

computational principles, they converge on two key predictions: (1) Stronger 

transition-evoked responses are expected for REGxREGy than for RNDxREGy. 

(2) REGy is learned faster following a structured context (REGx) compared to a 

random one (RNDx), as captured in both LTM IDyOM and D-REX. In the 

following EEG experiment, I test whether neural dynamics reflect these model-

derived predictions. 
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Figure 3.1 Stimuli and model simulations.  

[A] Left: Schematic illustration of the frequency selection method, with 

each frequency represented as a circle. In this example, the brown 

frequencies were allocated to REGx/RNDx and the pink to REGy. 

Middle: Spectrograms depicting example stimuli for REGxREGy and 

RNDxREGy. The dashed line marks the onset of REGy. Right: Design 

schematics illustrating the stimulus sequences presented in each 

block type. [B] Model simulations. Top: Information content (IC) 

computed from STM and LTM IDyOM models. The y-axis is inverted 

(bottom = higher IC). For each condition, data are averaged over 120 

trials, with shaded areas representing twice the standard error. 

Significant differences (p<.01) between REGxREGy and RNDxREGy 

are indicated by the grey horizontal lines. Bottom: Outputs from the D-

REX model. The y-axis of surprisal is inverted (bottom = more 

surprising). For each condition, data are averaged over 120 trials, with 

shaded areas representing twice the standard error. Significant 

differences (p<.01) between REGxREGy and RNDxREGy are 

indicated by the grey horizontal lines. 

  

 

3.3 Methods 

3.3.1 Stimuli 

The stimuli (Figure 3.1A) were 3500 ms long sequences composed of 

50 ms tone pips (5 ms raised cosine ramps; 70 tone pips in total). Tone 

frequencies were drawn from a pool of 20 logarithmically spaced values 

between 222 and 2000 Hz. Successive frequencies in the pool were 

perceptually distinguishable from each other. The tone-pips were arranged to 

yield four sequence types: REG, RND, REGxREGy, and RNDxREGy. REG 
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sequences were generated by randomly selecting 10 frequencies from the pool 

without replacement, and this order was cycled to create a regularly repeating 

pattern. RND sequences were generated by randomly selecting 10 frequencies 

from the pool without replacement, and then presenting them pseudo-randomly 

with the following constraints: (1) The first 10 tones in the sequence had unique 

frequencies. (2) The same frequency was not repeated consecutively. (3) All 10 

frequencies appeared equally in the sequence (7 times each). REGxREGy and 

RNDxREGy sequences were created by the combination of REG and RND, 

with the pattern transition occurring 2 s after the sound onset. To make the first 

part of the sequence (REGx and RNDx), the 10 frequencies were randomly 

selected from the pool without replacement, and the remaining 10 frequencies 

were used to make the second part of the sequence (REGy; Figure 3.1A).  

The sound stimuli were organised into two block types, referred to here 

as REGxREGy block and RNDxREGy block. Each block contained three types 

of sequences: REGxREGy block included REG, RND, and REGxREGy stimuli, 

while RNDxREGy block included REG, RND, and RNDxREGy stimuli. To allow 

for direct comparisons across the transition stimuli, sequences were 

constructed in matched pairs. Each REG trial in REGxREGy block had a 

counterpart in RNDxREGy block with identical frequency content (but different 

pattern), and the same was true for RND trials. For the transition trials 

(REGxREGy and RNDxREGy), the initial segments (REGx and RNDx) were 

also generated in matched pairs across blocks. Ideally, the terminal segment 

REGy would have been kept identical across both contexts. However, due to 

concerns that participants might recognise and recall repeated REGy patterns 

(as observed in Bianco et al., 2020; Bianco et al., 2025), different REGy 

sequences were used in each block. These REGy sequences contained the 

same set of tone pips but arranged in a different order, thus maintaining the 

same spectral content on average while avoiding exact pattern repetition. A 

unique stimulus set was generated for each participant. Block order was 



 
 

105 

counterbalanced, and within each block, stimuli were presented in random order 

with a jittered inter-stimulus interval (ISI) ranging from 2.5 to 3 seconds. 

3.3.2 Procedure  

Participants were seated in an acoustically shielded room (IAC triple-

walled sound attenuating booth). They listened to auditory stimuli while 

performing a decoy visual task, displayed on a computer screen located about 

90 cm away. The visual task consisted of sequentially presented triplets of 

photographs of landscapes, and participants were instructed to press a key 

when they found that the first and third images matched, which occurred in 40% 

of trials. Feedback regarding the number of hits, misses and false alarms for the 

visual task was provided at the end of each block. The duration of image 

presentation was jittered between 2 and 5 s, and images were cross faded to 

avoid abrupt visual transients. The image presentation timing was not correlated 

with that of the auditory stimulus.  

Participants completed the two stimulus blocks with a 10-minute break in 

between: Each block was divided into four 10 min runs. In total, 360 sound 

stimuli were presented in each block (120 stimuli per condition; in random 

order). The block order was randomised across participants. During the break, 

participants watched a cartoon video with audio to reset the memory from the 

previous block.   

Sounds were presented diotically at a comfortable listening level through 

earphones (3A Insert Earphone, 3M) via a Fireface UC sound card (RME). 

Stimulus presentations were controlled with the Psychtoolbox package 

(Psychophysics Toolbox Version 3) in MATLAB (2019b The MathWorks, Inc.).   

3.3.3 Recording and data processing 

The general recording and data processing methods are described in 

Chapter 2 Experiment 1 (there, only the REGxREGy and REG data were used 
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for analyses). In summary, EEG signals recorded from 64 electrodes were 

down-sampled to 256 Hz, low-pass filtered at 30 Hz (two-pass, Butterworth, 5th-

order) and detrended by a 1st-order polynomial. The data were divided into 

epochs of 6 s, from 1 s pre-stimulus onset to 1.5 s post-stimulus offset. The 

epochs were then baseline-corrected relative to the pre-onset interval (-0.5 s to 

0 s relative to the sound onset). Outlier epochs and channels were removed by 

visual inspection, resulting in the removal of an average of 4.24 % of epochs 

and 0.9 channels per participant. De-noising source separation (DSS; De 

Cheveigné & Parra, 2014; De Cheveigné & Simon, 2008) analysis was then 

applied to maximise reproducibility across trials, and the data were re-

referenced to the average of all channels.  

To quantify the effects, the most auditory-responsive 10 channels were 

selected for each participant. The N1 component of the sound onset response 

was identified from the averaged data across all conditions. At the peak of the 

N1, the 5 channels showing the most positive activity and the 5 channels 

showing the most negative activity were considered to best reflect the brain’s 

auditory-related activity. In the figures below, the instantaneous power of the 

brain response is quantified by computing the RMS (root mean square) across 

these channels, following a similar approach in other works (Barascud et al., 

2016; Bianco et al., 2025; Magami et al., 2025; Southwell et al., 2017; Zhao et 

al., 2025). The RMS reflects instantaneous power of the brain response 

irrespective of its polarity. Field maps at relevant time points are also provided. 

To uncover activity potentially masked by the slow DC changes, the 

same analysis was applied to high-pass filtered data at 2 Hz (two-pass, 

Butterworth, 4th-order). To extract the MMN response, and to enable us to 

compare its dynamics across conditions, DSS, in this analysis, was applied only 

to RNDxREGy and REGxREGy conditions (0-4 s post-sound onset). For each 

participant, the first two DSS components were retained and projected back into 

sensor space (including to REG and RND conditions). To select the electrodes 

best reflecting the MMN-like response, the data across all conditions across all 



 
 

107 

participants were averaged and the 10 electrodes with the most negative 

activation at the typical MMN response interval (150-200 ms post-transition 

onset) were selected. The output data were averaged across these channels for 

each condition and baseline corrected just before the onset of the transition 

(1.8-2 s post-stimulus onset). 

To investigate brain responses associated with the discovery of REGy in 

REGxREGy and RNDxREGy conditions, three analyses were conducted: REGy 
discovery onset analysis, REGy discovery offset analysis, and REGy 
response slope analysis. All used the same data (non high pass filtered) and 

specifically focused on the time window starting from 2.5 s post-stimulus onset 

(onset of the 2nd cycle of REGy) as this is the earliest time point where the 

REGy pattern can be detected. The REGy discovery onset analysis focused 

on the timing of divergence between REGy and the RND control. To accurately 

compare the divergence time, the data were baseline corrected for each 

condition right before the onset of the second cycle of REGy (0.2-0.5 s post 

transition), i.e. just before the pattern began to repeat. These baseline-corrected 

REGxREGy and RNDxREGy data were then compared against the RND 

condition from the corresponding block using bootstrap resampling and the 

earliest significant timepoint was interpreted as indicating the onset of REGy 

discovery. Repeating the boostrap analysis allowed us to generate a distribution 

of this onset timing. See the statistical analysis section for the details of the 

bootstrap resampling method. The REGy discovery offset analysis focused 

on the timing where the REGy response reached the level of the REG (no 

change) control. The general analysis procedure is identical to that of the REGy 

discovery onset analysis, but here the data were baseline corrected between 1 

s to 1.3 s post-transition onset, where the REGy amplitude plateaued in all 

conditions. Lastly, the REGy response slope analysis directly compared 

REGxREGy and RNDxREGy conditions. To compare two conditions recorded in 

separate blocks, RND in the corresponding block was subtracted from 
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REGxREGy and RNDxREGy for each subject data. These data were then 

baseline corrected at 2.4-2.5 s post-stimulus onset. 

To confirm if REGxREGy block and RNDxREGy block yield different 

patterns in their control conditions (REG and RND), DSS was applied only to 

the conditions of interest (REG from two blocks or RND from two blocks; 0-4 s 

post-sound onset). For each participant, the first three DSS components were 

retained and projected back into sensor space. The same 10 electrodes were 

used as those used in the RMS analysis.  

3.3.4 Statistical analysis 

 To statistically evaluate the effect of the prior context predictability on the 

next context discovery process, the differences between sound conditions were 

calculated for each participant. This difference was then subjected to bootstrap 

resampling (10000 iterations; Efron & Tibshirani, 1994). The difference between 

conditions was considered significant if the proportion of bootstrap iterations 

falling above or below zero exceeded 95% (p<.05) for more than 8 adjacent 

samples (Barascud et al. 2016) in all analyses. For reference, the result with the 

threshold of p<.01 was also reported. This statistical analysis method was used 

in the RMS analysis, MMN analysis, and REGy response slope analysis. 

 For the REGy discovery onset analysis, the same bootstrap resampling 

procedure described above was applied, comparing either REGxREGy or 

RNDxREGy against RND across 1,000 iterations. In each iteration, the first time 

point after 0.5 seconds post-transition at which a significant difference (p<.01) 

emerged was recorded. A similar procedure was used for the REGy discovery 

offset analysis. Here, each condition was compared to the REG baseline and 

the last time point before 1 second post-transition at which significance (p<.01) 

was observed was recorded.  

 To examine block effects on the control conditions, sustained response 

amplitudes were compared using the bootstrap resampling procedure described 

above. In addition, I assessed whether the variability of responses differed 
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between blocks by evaluating differences in standard error. Specifically, 1,000 

bootstrap resamples of participants were performed and the standard error of 

the sustained response across participants for each iteration was computed. 

The resulting distribution of 1,000 standard errors was then subjected to further 

bootstrap resampling to test for significant differences between block types. 

3.3.5 Modelling 

 In the introduction, I presented two computational models: IDyOM and D-

REX. The IDyOM model was implemented using the new_ppm_simple function 

from the ppm R package (available at https://github.com/pmcharrison/ppm). All 

parameters were set to their default values as specified in the repository 

documentation, with one exception: update exclusion was disabled to allow a 

fair comparison between transition conditions. Two variants of IDyOM were 

used: a short-term model (STM), in which the model was reset after each trial, 

and a long-term model (LTM), in which the model accumulated information 

continuously within each experimental block (either a REGxREGy or 

RNDxREGy block). 

 The D-REX model was implemented in MATLAB using the 

run_DREX_model function (available at https://github.com/JHU-LCAP/DREX-

model). All parameters were again set to their default values according to the 

repository documentation. The temporal dependence parameter D was set to 

10—the same as the number of unique tones in one cycle of the REG 

sequence—to ensure that the model could reliably detect the embedded 

regularities. This parameter determines how many successive observations are 

treated as statistically dependent within the input sequence. The model was 

reset after each trial. 

3.3.6 Participants 

 Twenty-eight paid participants participated in this experiment. All reported 

no history of hearing or neurological disorders. Two participants were excluded 

due to exceptionally noisy EEG data. Data from the remaining twenty-six 

https://github.com/pmcharrison/ppm
https://github.com/JHU-LCAP/DREX-model/blob/master/README.md
https://github.com/JHU-LCAP/DREX-model/blob/master/README.md
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participants (19 females; average age 24.81, ± 4.20) were used for analyses. All 

experimental procedures were approved by the research ethics committee of 

University College London, and written informed consent was obtained from 

each participant. 

 

3.4 Results  

3.4.1 The response to the emergence of REGy differs depending 

on the preceding context 

 Both the REGxREGy and RNDxREGy conditions involve a context 

change triggered by the introduction of new frequencies. I first examined how 

the brain responds to these novel events as a function of the preceding context. 

Because REGx and RNDx are matched in their frequency content (see 

Methods), any observed differences in neural responses can be attributed to the 

predictability of the pre-transition sequences, i.e., regular versus random 

structure, rather than to spectral differences. 

 To isolate the MMN-like response, which I expected to be evoked at the 

transitions (by the first REGy tone, which constitutes a novel frequency), the 

EEG data were high-pass filtered at 2 Hz to eliminate any sustained differences 

between conditions (see Figure 3.3). The data were then averaged across trials 

for each condition. Bootstrap resampling revealed a significant deflection in the 

REGxREGy condition relative to its baseline control (REG, Figure 3.2A), with 

differences emerging at ~130 ms post-transition (p<.05). This latency, and the 

corresponding topography (Figure 3.2A) are consistent with those commonly 

associated with the MMN response (Winkler, 2007). Notably, similar activity was 

not observed in the RNDxREGy condition relative to its control condition (RND, 

Figure 3.2A).  

 To directly compare the MMN response between REGxREGy and 

RNDxREGy, the control conditions (REG for REGxREGy and RND for 
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RNDxREGy) were subtracted from the transition conditions (Figure 3.2B). 

Bootstrap resampling revealed a significantly larger MMN response in 

REGxREGy than RNDxREGy, indicating that the predictability of the preceding 

context affected the MMN-linked salience of a deviant tone. This finding aligns 

with computational model predictions: both IDyOM and D-REX estimated a 

sharper transition-related spike in IC and surprisal, respectively, in the 

REGxREGy compared to RNDxREGy condition (Figure 3.1B). As both IC and 

surprisal reflect the unexpectedness of a tone given its prior context, the 

MMN—an established neural index of deviance detection—is likely linked to 

these peaks in model-derived surprise. 

 Following this negativity response, the positive response was observed 

in the REGxREGy condition relative to the control condition (REG), where the 

significance emerged at ~240 ms post-transition (p<.05). This latency and the 

corresponding topography are consistent with P3a response, which often shows 

the front-central activity at around 200-350 ms after the onset of the surprising 

event (Bendixen 2007). A similar, but delayed, response was observed in the 

RNDxREGy condition, emerging around 290 ms post-transition (p < .05). 

Notably, in both conditions, this positivity preceded the emergence of the REGy 

pattern (which occurs 500 ms, or 10 tones, after the transition), suggesting that 

this response reflects the brain’s detection of a deviation in frequency content 

from the preceding auditory context, not the discovery of REGy. 
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Figure 3.2 Transition evoked deviance responses.  

[A] High-pass filtered mean EEG data, averaged over 10 channels 

(indicated in the scalp topographies). Shaded areas represent twice 

the SEM, computed with bootstrap resampling (1000 iterations). 

Significant differences (p<.01 and p<.05) between conditions are 

indicated by the horizontal lines below the EEG traces. Top: 

RNDxREGy vs RND conditions. Shaded boxes indicate the time 

windows (2.1-2.2 s and 2.28-2.33 s) used for scalp topography 

calculations plotted at the bottom of the figure.  Bottom: REGxREGy 

vs REG conditions. Shaded boxes are located at 2.1-2.2 s and 2.25-

2.3 s. [B] Control conditions (REG, RND) are subtracted from 

transition conditions (REGxREGy, RNDxREGy). 
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3.4.2 The EEG sustained response tracks regularity discovery 
and violation 

For each participant and condition, the RMS over 10 selected channels 

(detailed in the Methods section) was calculated at each time point on the non-

high-pass filtered data. The group averaged responses for two blocks 

(REGxREGy block, RNDxREGy block) are shown in Figure 3.3. For the REG 

and RND conditions, the brain indicated an N1 peak at around 100 ms post-

stimulus onset, followed by increase in amplitude until it reached to a plateau. 

The timing and amplitude each condition reached a plateau differed: the 

condition difference between REG and RAN emerged before the end of the 2nd 

cycle (Figure 3.3). This timing aligns with previous literature (Barascud et al., 

2016; Bianco et al., 2025; Magami et al., 2025) and suggests that the brain 

discovers the regular patter in less than 2 cycles of exposure. 

For the REGxREGy condition, the amplitude abruptly dropped following 

the emergence of the REGy pattern. Upon the discovery of the new pattern, this 

amplitude gradually recovered to the pre-transition level. Bootstrap resampling 

revealed a significant difference between REG and REGxREGy, starting from 

220 ms (~ 4 tones) after the transition (p<.05), consistent with previous 

literature (Barascud et al., 2016; Bianco et al., 2025; Magami et al., 2025). 

Bianco et al. (2025) attributed this drop to reduced activity in the frontal-auditory 

network, suggesting that the brain’s predictive model of the REGx pattern was 

disrupted. For the timing of REGy discovery, the responses between the 

REGxREGy and RND conditions were compared to determine when REGy 

began to diverge from randomness. A significant difference between RND and 

REGxREGy emerged at 885 ms post-transition (~ 1 cycle + 8 tones).   

Lastly, the RNDxREGy condition did not show an abrupt response to the 

transition. Rather, it indicated a gradual increase in amplitude as REGy 

emerged. Bootstrap resampling indicated that the divergence from RND 
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condition started from 770 ms (~1 cycle + 5 tones). This is roughly 100 ms 

faster than REGxREGy condition.  

These dynamics were well captured by both the IDyOM and D-REX 

models (Figure 3.1B). For IDyOM, initial discovery of the REG pattern occurred 

during the second cycle, closely aligning with the EEG data. The model’s 

response trajectories across four conditions (REG, RND, REGxREGy, and 

RNDxREGy) matched the neural responses, and notably, the LTM version 

successfully captured the EEG-observed discrepancy between REGxREGy and 

RNDxREGy during the transition to REGy. For D-REX, I focused specifically on 

the Precision parameter, consistent with Zhao et al. (2025). In this model, REG 

was initially discovered by the end of the second cycle, broadly consistent with 

EEG, though slightly slower than IDyOM predictions. This lag likely reflects the 

fact that D-REX begins with a generic default distribution and incrementally 

updates it as new input is received. Importantly, D-REX also captured the 

contrast between REGxREGy and RNDxREGy conditions at transition point, 

consistent with the EEG observations.  

Despite these broad correspondences, several key differences emerged 

between the models and the neural responses. First, while both models 

continued to refine its predictability representation throughout the REG 

sequence (evidenced by a steady decline in IC and increase in precision), the 

EEG response plateaued after an initial build-up. Second, the EEG showed a 

delayed response to the REGxREGy transition, with the drop in sustained 

activity occurring roughly four tones later than the spike responses in both 

models. Third, in the models, REGy was discovered either equally or more 

rapidly in the REGxREGy condition than in the RNDxREGy condition (see 

Section 3.2 for detailed explanations). Contrary to this prediction, however, the 

EEG data revealed the opposite trend: the divergence from the RND condition 

was slower in the REGxREGy condition. In the next section, I focus specifically 

on the pattern of REGy discovery and investigate this discrepancy in more 

detail. 
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Figure 3.3 Sustained response dynamics.  

Group-averaged RMS of brain responses. Shaded areas represent 

twice the SEM. Data are baseline-corrected to the -0.5-0 s pre-onset 

window. Significant differences (p<.01 and p<.05) between REG and 

transition conditions are indicated by grey bold horizontal lines above 

the EEG traces. Significant differences between RND and transition 

conditions are indicated by brown bold horizontal lines below the EEG 

traces. Top: Responses from the RNDxREGy block. Middle: 
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Responses from the REGxREGy block. Bottom: Scalp topographies 

are provided for three time windows:  1-2 s (REG from REGxREGy 

block and RND from RNDxREGy block), 2.2-2.9 s (REG and 

REGxREGy from REGxREGy block), and 2.8-3.5 s (RND and 

RNDxREGy from RNDxREGy block). 

 

3.4.3 The prior context influences the discovery process of the 
following regularity pattern 

Here, the REGy discovery pattern was compared across the two 

transition conditions (REGxREGy, RNDxREGy) using three metrics: REGy 

discovery onset timing, REGy discovery offset timing, and REGy response 

slope pattern. 

Discovery onset was defined as the point at which the REGy response 

significantly diverged from the RND response. To assess this, the RMS data 

were baseline corrected (2.2-2.5 s relative to the stimulus onset) and bootstrap 

resampling was used to estimate the earliest significance divergence point (see 

Methods). Repeating this analysis yielded distributions of discovery onset 

timings, revealing a clear difference between the two transition conditions 

(Figure 3.4A right). Specifically, the discovery was earlier following RNDx than 

following REGx. 

Discovery offset was defined as the point at which the REGy response 

aligned with the REG condition. RMS data were baseline-corrected in the post-

discovery time window (3–3.3 s post-stimulus onset) and the time at which the 

transition condition responses converged with the REG response was identified 

(Figure 3.4B). Bootstrap resampling showed that offset timing was also later for 

REGxREGy than RNDxREGy.  

Finally, I directly compared the discovery slope between the two 

conditions. Because REGxREGy and RNDxREGy were presented in separate 
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blocks, the RND baseline was subtracted from each block to isolate the REGy-

related change. Bootstrap resampling (see Methods) showed that the rise in 

amplitude occurred earlier in the RNDxREGy condition, indicating a faster 

adaptation to REGy (Figure 3.4C). However, this difference reached 

significance only with p threshold of 0.05, but not 0.01, suggesting the effect is 

relatively weaker than other findings. 

Taken together, these results consistently show that prior context 

influences the processing of emerging regularities; presence of prior REG patter 

delays the discovery of the new regularity. Notably, this pattern diverges from 

the models’ predictions, which indicated the opposite.  
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Figure 3.4 REGy discovery dynamics.  

[A] RND and transition conditions are compared to determine the 

REGy discovery onset.  Left: Group-averaged RMS of brain responses. 

Shaded areas represent twice the SEM. Data are baseline-corrected 

to 2.2-2.5 s. Significant differences (p<.01, p<.05) between RND and 

RNDxREGy (top) or REGxREGy (bottom) are indicated by bold 

horizontal lines below the EEG traces. Right: The histogram showing 

the latencies associated with REGy discovery onset of two transition 

conditions calculated by repeating the bootstrap resampling in [A]. 

Results are shown for the resampling thresholds of p < .01. They 

demonstrate faster discovery onset in the RNDxREGy condition. [B] 
REG and transition conditions are compared to determine the REGy 

discovery offset.  Left: Same data as in [A] but baseline-corrected to 

3-3.3 s. Significant differences (p<.01, p<.05) between REG and 

RNDxREGy (top) or REGxREGy (bottom) are indicated by bold 

horizontal lines below the EEG traces. Right: The histogram showing 

the latencies associated with REGy discovery offset of two transition 

conditions. Results are shown for the bootstrap resampling thresholds 

of p < .01. They demonstrate faster discovery offset in the RNDxREGy 

condition. [C] EEG data (RMS) for each of the transition conditions 

after subtracting the RND condition, baseline-corrected to 2.4-2.5 s. 

Grey lines beneath the traces mark significant differences (p<.05) 

between conditions. 

 

3.4.4 Transition conditions do not yield a block-level effect 

Thus far, the focus has been on how the immediate preceding context 

influences the discovery of REGy. However, this design also introduces an 

asymmetry in the global context across blocks—specifically, REGxREGy blocks 

contain more instances of regularity (REGx) compared to RNDxREGy blocks. 

To assess whether this broader contextual difference influences neural 
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responses to control conditions, I examined the sustained responses to REG 

and RND sequences presented within each block type (Figure 3.5).  

For REG, both the amplitude and variability of the response remained 

stable, suggesting it was unaffected by the global context. In contrast, the RND 

condition exhibited greater variability across participants when RND was 

presented within a predominantly regular block (REGxREGy block). This 

suggests that reduced exposure to less-structured input (RND) may increase 

inter-subject response variability. RND was used as a control in some post-

transition analyses described above, but differences between blocks were 

confined to the pre-transition period, with no significant post-transition effects 

observed, assuring the use of these RND conditions in those analyses. Overall, 

these findings indicate that introducing two different transition conditions did not 

exert a widespread influence at the block level. 

 
Figure 3.5 Comparisons of control conditions across blocks.   

Control conditions (RND: top, REG: bottom) across two block types 

(REGxREGy: expressed as darker colours, RNDxREGy: expressed as 

lighter colours) are compared. Left: Group-averaged RMS of brain 

responses. Shaded areas represent twice the SEM. Data are baseline-
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corrected to -0.5-0 s. Significant differences (p<.01, p<.05) between 

block types are indicated by bold horizontal lines above the EEG 

traces. Right: Bootstrap resampled the data on the left and for each 

iteration, calculated the standard error. The average of those iterated 

standard error is plotted for each condition. Shaded areas represent 

twice the STDEV. Significant differences (p<.01, p<.05) between block 

types are indicated by bold horizontal lines above the EEG traces. 

 

 

3.5 Discussion 
This study set out to examine how prior auditory context influences the 

brain’s ability to detect emerging regularities, leveraging two established 

computational models of statistical tracking—IDyOM and D-REX. These models 

provided a theoretical framework for how regularities might be discovered 

based on the statistical properties of preceding sequences. To test these 

predictions empirically, I recorded sustained neural responses, a well-

established marker of the brain’s sensitivity to regularity. Surprisingly, the results 

diverged from the model predictions; the neural data revealed a delayed 

response when the new pattern followed a regular rather than a random 

sequence.   

3.5.1 Deviation responses are influenced by the predictability of 
the prior context 

In this experiment, both transition conditions (REGxREGy and 

RNDxREGy) had the onset of REGy marked by the introduction of entirely new 

frequencies not present in the preceding context. On the surface, this frequency 

change should be equally surprising in both cases. However, a clear mismatch 

negativity (MMN) response was observed only in the REGxREGy condition. The 

MMN is a well-established neural marker of deviance detection, and its 
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amplitude is considered to reflect the perceptual salience of the deviant event 

(Bendixen et al., 2012; Näätänen, 2001; Winkler, 2007; Winkler et al., 2009). 

The role of context in shaping deviance processing has been 

demonstrated in various studies (Garrido et al., 2013; Herrmann et al., 2015; 

Khouri & Nelken, 2015; Schröger & Roeber, 2021; Southwell & Chait, 2018). 

For instance, Southwell and Chait (2018) employed REG and RND sequences 

similar to those used in the present study and occasionally introduced deviant 

tones. Crucially, these deviant tones were drawn from a frequency range 

outside the one used to construct the REG and RND contexts, making them 

inherently salient regardless of the background. Despite this clear physical 

distinctiveness, neural responses to these deviants were reduced when they 

occurred within a random (RND) sequence. This finding demonstrates that 

deviance detection is not solely driven by the physical novelty of a sound, but is 

also shaped by the statistical regularity of the preceding auditory context.  

The present findings extend this line of research by examining transitions 

in which the transition (deviant) tones were drawn from the same frequency 

pool as the preceding context, yet never experienced in the preceding context. 

The observation that only the REGxREGy condition elicited an MMN response 

suggests two key insights: (1) when tones fall within a familiar frequency range 

experienced in the preceding context, their mere novelty does not strongly 

evoke surprise; and (2) a strong, structured prediction based on prior context 

can amplify the salience of a tone when it violates that prediction. In other 

words, even when the tone itself is not inherently surprising, it becomes 

surprising through the lens of violated expectations—a core idea in predictive 

coding frameworks (Friston, 2005). This highlights the critical role of contextual 

predictability in shaping the perceptual salience of auditory events. 

Interestingly, both computational models predicted the observed 

asymmetry in MMN responses. In the IDyOM, the STM variant showed a small 

but distinct peak in response to the RNDxREGy transition. However, this 
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response disappeared in the LTM IDyOM, which integrates memory over a 

longer timescale. This implies that once the full frequency range is experienced 

and expressed in the n-grams, the appearance of a “new” tone (in terms of local 

context) is no longer surprising. Reflecting on this, the brain’s response may not 

solely be based on local transitions but also incorporate prior exposure over 

longer timescales than a single trial. Indeed, prior research suggests that 

memory for tone statistics can span several seconds to tens of seconds, 

depending on task structure (Benjamin et al., 2024; Rubin et al., 2016; Skerritt-

Davis & Elhilali, 2018; Zhao et al., 2025), demonstrating the brain’s capacity for 

sustained statistical learning. 

The D-REX model shows a similar pattern but for a different 

computational reason. In D-REX, predictions are made over a continuous 

frequency space. A regular context yields a narrower predictive distribution than 

a random one, making transition tones more likely to be flagged as violations. 

This differential response aligns with empirical findings by Garrido et al. (2013). 

They presented tones drawn from Gaussian distributions with the same mean 

(500 Hz) but different variances (standard deviation of either 0.5 or 1.5 

octaves). Deviant tones—identical across conditions and set two octaves above 

the centre frequency—elicited stronger MMN responses when embedded in the 

narrower distribution. Furthermore , Schröger and Roeber (2021) found that 

when the underlying sound sequence was stochastic, deviant (i.e., rare) tones 

evoked an MMN response only when they fell outside the distribution of the 

standard (i.e., common) tones. In contrast, rare tones that remained within the 

distribution did not elicit an MMN. This result echoes the present findings: even 

when a tone is rare—or novel, in my case—it fails to evoke an MMN if it falls 

within the expected distribution of a stochastic sequence. 

Another notable neural signature observed at the transition point was a 

positive deflection following the initial negative response, occurring around 250–

300 ms post-transition. The timing and scalp topography of this response are 

consistent with the P3a component, which is typically associated with 
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involuntary attentional shifts toward novel or salient stimuli (Bendixen et al., 

2007; 2008). Interestingly, this P3a-like response was observed in both 

transition conditions, in contrast to the MMN, which was condition-specific. 

Traditionally, the presence of MMN in a rule-violation versus rule-confirmation 

contrast is interpreted as evidence that the brain has extracted the underlying 

regularity (Näätänen & Winkler, 1999). It would be intuitive to assume that a 

rule-violating sound becomes salient and therefore elicits a P3a. However, how 

can we account for a P3a response in the absence of an MMN? 

Coy et al. (2024) explored this issue using a modified oddball paradigm 

where standard tones were occasionally replaced by deviants. In one condition, 

deviant tones tended to repeat, while in another they were typically followed by 

a return to the standard. They compared responses to post-deviant standard 

tones that were either expected or unexpected. This manipulation failed to elicit 

an MMN but did produce a P3a-like response. Behavioural results further 

supported the notion that people could extract such rules, implying that the 

absence of MMN should not be taken as evidence against rule learning.  

These findings, along with the present results, are consistent with the 

idea that deviance responses are hierarchically organised, as demonstrated in 

the local-global paradigm. In a study by Wacongne et al. (2011), participants 

passively listened to five-tone sequences (e.g., AAAAB–AAAAB...). A local 

deviant (the final B) violated the immediate tone pattern and elicited MMN 

responses. In contrast, a global deviant (a final A in an otherwise AAAAB 

context) preserved local regularity but violated a higher-order, global pattern, 

eliciting later P3 responses. These results suggest that the MMN reflects lower-

level sensory prediction errors, whereas the P3 is associated with higher-level 

or context-based violations. 

In the present experiment, a similar hierarchical interpretation may apply. 

In the RNDxREGy condition, a shift in the frequency content of the auditory 

scene may have triggered a P3a response, even though no clear MMN was 
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observed. At the latency of the P3a, the REGy sequence had not yet completed 

a full cycle, making it unlikely that the underlying regularity had been detected. 

Thus, the only available cue distinguishing REGy from the preceding random 

sequence was the change in frequency composition. 

However, the interpretation of P3a in the absence of MMN, and more 

broadly, the nature of P3a itself, remains a topic of ongoing debate (Coy et al., 

2024; Dien et al., 2004). Further research is needed to clarify which specific 

aspect of the RND-to-REG transition drives this response. 

3.5.2 REGy discovery dynamics differ between EEG responses 
and model predictions 

The sustained neural response to REGy revealed a clear influence of the 

predictability of the preceding context. When REGy followed a random 

sequence, the new regularity was processed more quickly than when it followed 

another regular sequence (Figure 3.4). Interestingly, this pattern runs counter to 

the predictions of the two benchmark computational models. This discrepancy is 

surprising, given that both models have successfully accounted for a wide range 

of human auditory behaviours. The IDyOM model, for example, has been 

shown to capture aspects of regularity discovery in both passive (Barascud et 

al., 2016; Bianco et al., 2025; Magami et al., 2025)  and active listening 

(Barascud et al., 2016; Bianco et al., 2020), as well as cortical responses during 

music perception (Di Liberto et al., 2020; Kern et al., 2022) and subjective 

experiences of musical pleasure (Cheung et al., 2019). Likewise, D-REX, based 

on a change-point detection framework, is specifically designed to handle 

sequences with shifts in underlying statistics and has been shown to 

successfully predict behavioural change detection performance (Skerritt-Davis 

& Elhilali, 2018). Furthermore, Zhao et al. (2025) used stochastic tone 

sequences that transitioned from a broad to a narrower distribution (variants of 

RNDREG). The gradual increase in sustained neural activity observed as the 

distribution changed was closely mirrored by the rise in precision within the D-
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REX model, underscoring its utility in modelling the dynamics of statistical 

learning. 

The mismatch between these model predictions and the observed EEG 

results suggests that a distinct neural process, that is not accounted for in 

modelling, may be engaged during the passive detection of abrupt statistical 

transitions. In the following sections, I explore possible explanations for this 

discrepancy in more detail. 

3.5.2.1 Biological constraints as a potential source of discrepancy 

According to the predictive coding theory, the brain builds internal models 

based on past experience and continuously updates them by minimising 

prediction errors (Friston, 2005, 2008; Rao & Ballard, 1999). However, in 

environments where the underlying statistical structure changes, relying on the 

full history of past inputs may impede effective learning, as earlier information 

may reflect an outdated structure. Detecting such change points and adjusting 

the temporal window of reference is therefore crucial for maintaining an 

accurate internal model of the auditory environment (Nassar et al., 2010; 

Skerritt-Davis & Elhilali, 2021b). 

Yet, identifying true change points is inherently difficult. From the 

observer's perspective, it is often unclear whether a given prediction error arises 

from random noise or an actual shift in the environment (Nassar et al., 2010; 

Piray & Daw, 2024; Skerritt-Davis & Elhilali, 2021b). One potential solution is to 

maintain multiple hypotheses about possible change points and weigh them 

according to their likelihood—an approach used in the full Bayesian inference 

models (Adams & MacKay, 2007; Nassar et al., 2010; Skerritt-Davis & Elhilali, 

2018), including D-REX. 

If the brain follows a similar procedure to the D-REX model, why then did 

the observed neural dynamics diverge from its predictions? One plausible 

explanation is that, although the brain may implement a full Bayesian updating, 
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its biological constraints impose temporal delays not present in the model. 

While the D-REX model can adjust its weighting immediately after detecting a 

change point—reflected in the very next prediction—the brain likely undergoes 

a sequence of biological operations: detecting the change, modulating the 

relative influence of bottom-up versus top-down signals, and resetting prior 

beliefs. These steps may unfold over a longer timescale. Thus, even if change 

detection occurs efficiently at the REGxREGy transition, the implementation of 

belief updating in the brain may not be instantaneous, potentially obscuring any 

speed advantage observed in the model. 

3.5.2.2 The brain may not implement full-Bayesian updating 

Another possibility is that the brain does not implement full Bayesian 

updating. Maintaining and updating predictive distributions over all possible 

change point hypotheses is computationally demanding. A growing body of 

research suggests that the brain may not always operate according to full 

Bayesian principles. In many situations, simpler heuristic strategies offer equally 

good—or even superior—accounts of behaviour (Nassar et al., 2010, 2012; 

Payzan-LeNestour & Bossaerts, 2011). For instance, Nassar et al. (2010) 

showed that a simplified model, which considers only two possibilities on each 

trial—either the observation originates from the same distribution or from a new 

one—can capture human behaviour as effectively as a full Bayesian model. 

However, such heuristic approaches involve trade-offs. By not tracking every 

possible change point, the brain increases its risk of missing true changes in the 

environment. This raises a key question: how does the brain maximise 

sensitivity to genuine changes while minimising the risk of misinterpreting noise 

as change? 

One plausible strategy is to impose a brief “wait-and-see” period 

following the detection of a violation. During this window, the brain may 

accumulate further evidence before committing to resetting its internal model. 

Such a strategy would help prevent unnecessary resets triggered by noise, but 
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at the cost of requiring additional observations to confirm a change—potentially 

explaining the delay in discovering the new REGy pattern compared to the 

model. 

Indeed, the EEG data in the current experiment indicated a delay of 

approximately four tones—relative to the model—before a sharp drop in the 

sustained response emerged following a violation of the original REG pattern 

(Figure 3.3). This observation aligns with previous findings (Barascud et al., 

2016; Bianco et al., 2025; Magami et al., 2025), yet it is not accounted for by 

either model, suggesting that it reflects a distinctive feature of the brain’s 

computational architecture. 

Importantly, this delay is unlikely to reflect a fixed, circuit-level lag in 

encoding violations. Bianco et al. (2025) showed that the number of tones 

required for the drop remained constant even when tone durations were halved, 

indicating that the delay is tied to information content rather than absolute time. 

Further support comes from Chapter 2, where I introduced a one-tone 

interruption within a REG sequence—shorter than the typical “wait-and-see” 

window—and observed a less pronounced drop in sustained neural activity 

compared to longer interruptions (Figure 2.4). Together, these findings suggest 

that the delay serves as a strategic evidence accumulation period, during which 

the brain evaluates whether the experienced prediction violation is a spurious 

event or indicative of a consistent stimulus change. This delay may underlie the 

discrepancies observed between neural data and both models. 

Taken together, neither D-REX nor IDyOM fully captured the delayed 

regularity discovery process observed in the REGxREGy condition compared to 

RNDxREGy. While both models successfully account for key aspects of 

auditory statistical learning, they fall short in explaining the neural dynamics 

underlying abrupt changes in auditory structure. These findings suggest that the 

brain may employ specific heuristics or biologically grounded mechanisms to 

detect change points in background auditory scenes—strategies not yet 
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incorporated into current computational models. Future work that integrates 

such constraints into predictive frameworks may yield a more accurate and 

realistic understanding of auditory perception. Additionally, the pronounced 

impact of prior context on learning speed underscores the importance of 

accounting for statistical history—even during passive listening—to more fully 

understand how the brain functions in dynamic environments. 
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4.  Chapter 4: How Dynamic, Task-Irrelevant 

Auditory Statistical Changes Shape Visual 

Memory  

4.1 Summary 

 It is well established that continuous experiences are segmented into 

smaller "events" and stored in memory as discrete units. This study investigated 

whether changes in background (behaviourally irrelevant) sound statistics could 

create such event boundaries and influence long-term memory for concurrently 

presented visual events. Specifically, I focused on transitions between regular 

(REG) and random (RND) tone-pip sequences. It was predicted that transitions 

from REG to RND would form stronger event boundaries than the reverse, as 

the abrupt loss of structure could serve as a salient signal of environmental 

change. I hypothesised that such boundaries would lead to: (1) impaired 

temporal order memory for visual items spanning the boundary compared to 

items within the same context; (2) longer subjective temporal distance estimates 

for boundary-spanning item pairs; and (3) enhanced item recognition for visual 

events experienced concurrently with the boundary. In Experiment 1, I 

examined predictions (1) and (2). The results supported (1): transitions in 

background sound statistics—regardless of direction—were sufficient to induce 

memory segmentation, leading to impaired temporal order memory across the 

boundary. However, no consistent effects were observed for subjective time 

estimates. Experiment 2 tested prediction (3), but did not reveal significant 

enhancement in item memory at boundary moments. Overall, although the 

effects were weaker than those typically observed with task-relevant boundary 

signals, these findings demonstrate that changes in task-irrelevant auditory 

statistics can influence memory organisation in a broader, cross-modal context.  
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4.2 Introduction 

 So far, I have focused on how dynamically changing sound statistics are 

represented in the brain. The two EEG studies discussed above, along with 

related research, demonstrate that the brain is highly sensitive to shifts in 

auditory statistics—even when these sounds are presented as task-irrelevant 

background stimuli. Notably, transitions from highly predictable sequences elicit 

a sharp drop in sustained neural activity and activate the pupil-linked locus 

coeruleus–norepinephrine (LC-NE) system (Barascud et al., 2016; Basgol et al., 

2025; Bianco et al., 2025; Hu et al., 2024; Magami et al., 2025; Zhao, Chait, et 

al., 2019; Zhao et al., 2025).  

 Given that the amplitude drop has been hypothesised to reflect model 

disengagement—marked by reduced activity in a network involving the auditory 

cortex, inferior frontal gyrus, and hippocampus (Bianco et al., 2025)—and that 

norepinephrine (NE) is known to facilitate the processing of bottom-up sensory 

signals (Gelbard-Sagiv et al., 2018; T. H. Lee et al., 2018; Nassar et al., 2012; 

Sara, 2009; Sara & Bouret, 2012), these dynamics are considered to reflect a 

reset of the brain’s predictive model, followed by an exploratory phase aimed at 

constructing a new model adapted to the updated sensory environment. 

 Despite this evidence of rapid, state-level neural reconfiguration, it 

remains unclear how such changes impact other ongoing cognitive processes. 

In everyday life, we often encounter auditory environments passively, while our 

attention is directed toward a different, task-relevant goal. Yet, we know 

surprisingly little about how—or whether—these shifts in neural state, triggered 

by background statistical changes, influence performance on the tasks we are 

actively engaged in. 

 One potential consequence of changes in background sound is their 

influence on how concurrent experiences are segmented into discrete episodes.  

Interestingly, the neural responses triggered by changes in auditory statistics 

closely resemble those observed during episode formation in memory.  
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 A central question in memory research is how continuous streams of 

experience are segmented into distinct episodes—how the brain determines 

which elements belong together within a single episode and which are treated 

as separate. One influential account, Event Segmentation Theory (EST), 

proposes that we maintain mental models to represent ongoing experience, and 

that these models are updated at event boundaries—points where meaningful 

changes in the environment are detected (Reynolds et al., 2007; Zacks et al., 

2001, 2007). Such event boundaries have been shown to emerge from various 

stimulus features, including shifts in time and space (Ezzyat & Davachi, 2011; 

Horner et al., 2016), emotion (Clewett & McClay, 2025; McClay et al., 2023) and 

perceptual features of the stimuli (DuBrow & Davachi, 2013, 2014; Heusser et 

al., 2018; Pu et al., 2022). 

 A growing body of research inspired by EST has shown that event 

boundaries are not only moments of perceptual reorganisation but also play a 

critical role in how information is encoded and later retrieved from memory; 

Items within the same episode tend to be bound together, whereas items across 

episodes are more likely to be kept separate (Clewett et al., 2020, 2025; 

Clewett & McClay, 2025; DuBrow & Davachi, 2013, 2014; Heusser et al., 2018; 

Horner et al., 2016; McClay et al., 2023; Pu et al., 2022; Raccah et al., 2023; 

Rouhani et al., 2020; Sols et al., 2017). Recent work by Clewett and colleagues 

(2020, 2025) highlights the key role of the LC-NE system in memory formation 

at event boundaries. Clewett et al. (2020) demonstrated that event boundaries 

were accompanied by transient increases in pupil-linked LC-NE activity, and the 

magnitude of this response predicted the degree of memory separation across 

the boundary in the later memory test. Extending these findings, Clewett et al. 

(2025) used fMRI to show that boundary-evoked activity in the LC was 

associated with increased temporal pattern separation of items across the 

boundary in the left dentate gyrus (DG) of the hippocampus. Moreover, the 

strength of LC activation predicted the degree of memory separation across the 

boundary in the later memory test. These findings suggest a mechanistic role 

for LC-NE activity in reconfiguring hippocampal networks at event boundaries, 
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supporting a memory "reset" process that promotes the formation of discrete 

episodic segments. 

 This memory reset process following the detection of an event boundary 

strikingly parallels the proposed prediction model reset that occurs in response 

to changes in background sound statistics. This raises the intriguing possibility 

that shifts in background auditory statistics may contribute to the formation of 

episodes in a broader, multimodal context—such that changes in these 

statistics act as boundaries that segment concurrently presented experiences. 

Prior studies have shown that during passive listening, rapid shifts in brain 

state—marked by abrupt drops in sustained neural response and activation of 

the pupil-linked LC-NE system—do not occur in response to all statistical 

transitions. Rather, such neural signatures emerge only when the transition 

occurs from a highly predictable sequence (Barascud et al., 2016; Basgol et al., 

2025; Bianco et al., 2025; Magami et al., 2025; Zhao, Chait, et al., 2019; Zhao 

et al., 2025). This suggests that background sound transitions may trigger event 

boundaries only when the change involves a violation of precise prediction. 

 While EST has primarily been studied in the visual domain, there is 

growing evidence that its principles extend to auditory and multimodal contexts 

(Clewett et al., 2020, 2025; Clewett & McClay, 2025; McClay et al., 2023; 

Raccah et al., 2023). For example, Raccah et al. (2023) exposed participants to 

sequences of words spoken by either male or female voices, with the task of 

encoding the order of the items. They indicated that a change in speaker (from 

male to female or vice versa) functioned as an event boundary, segmenting the 

ongoing stream and influencing memory for the sequence. 

 However, most auditory studies have focused on task-relevant sounds, 

leaving open the question of whether task-irrelevant background sounds can 

similarly drive event segmentation processes (but see McClay et al., 2023). In 

this chapter, I explore whether changes in the statistical structure of task-

irrelevant background sounds can influence performance on an ongoing task, 

using the framework of event segmentation theory. 
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4.3 Experiment 1 
 In this experiment, I focus on two aspects of memory known to be 

influenced by event boundaries: temporal order and perceived temporal 
distance. It is well established that items experienced within the same context 

are more likely to be bound together in memory, whereas items that span an 

event boundary are more likely to be stored as part of separate episodes, which 

is also reflected in greater representational dissimilarity of those items in the 

hippocampus (Clewett et al., 2019; DuBrow & Davachi, 2014; Ezzyat & 

Davachi, 2014). This segmentation disrupts the ability to retrieve the precise 

order of items saved in different events and also leads to an expansion in the 

perceived temporal distance between them (Clewett et al., 2020, 2025; Clewett 

& McClay, 2025; DuBrow & Davachi, 2013, 2014; Heusser et al., 2018; Horner 

et al., 2016; McClay et al., 2023; Pu et al., 2022; Raccah et al., 2023; Rouhani 

et al., 2020; Sols et al., 2017).  

 Here, I investigated whether changes in the statistical structure of 

background sounds can induce an event boundary effect on memory for visually 

presented items. Specifically, I manipulated transitions between regular (REG) 

and random (RND) sound sequences and hypothesised that only the REG-to-

RND (REGRND) transition would trigger a boundary effect. This prediction is 

based on previous findings showing that REGRND—but not RND-to-REG—

transitions elicit pupil-linked LC-NE system activation (Basgol et al., 2025; Zhao, 

Chait, et al., 2019), which is considered to support boundary-related memory 

segmentation (Clewett et al., 2020, 2025). 

 In parallel with the main research question, this study also explored 

whether differences in the predictability of background sounds induces different 

level of arousal. Prior research on sustained neural responses has shown that 

predictable (REG) and less predictable (RND) sound sequences elicit different 

levels of sustained activity—often interpreted as reflecting the brain’s 

confidence in its sensory predictions, or precision (Barascud et al., 2016; 
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Southwell et al., 2017; Magami et al., 2025; see also Chapter 3). Highly 

unpredictable environments are generally perceived as more stressful or 

potentially threatening (Amat et al., 2005; de Berker et al., 2016; Koolhaas et 

al., 2011; A. Peters et al., 2017), prompting the brain to allocate additional 

computational resources to resolve the uncertainty (A. Peters et al., 2017). This 

suggests that RND sequences, compared to REG, may demand more 

processing resources. Supporting this, a previous pupillometry study reported 

that RND sequences evoke greater arousal than REG sequences, suggesting 

that processing RND sequences requires greater cognitive effort (Milne, Zhao, 

et al., 2021). However, it is important to note that in that study, participants 

engaged in sound-related tasks, making the auditory sequences task-relevant.  

 Here, I extend this line of research by examining whether auditory 

sequences with differing levels of predictability influence arousal even when 

they are task-irrelevant. To assess this, I measured participants' skin 

conductance activities. Skin conductance (SC) is a widely used 

psychophysiological measure that reflects changes in the electrical 

conductance of the skin due to sweat gland activity (Boucsein, 2012; Dawson et 

al., 2016; Tronstad et al., 2022). Because sweat glands are innervated 

exclusively by the sympathetic branch of the autonomic nervous system, SC 

serves as a sensitive index of sympathetic arousal (Bach, 2014; Boucsein, 

2012; Dawson et al., 2016; Tronstad et al., 2022). SC has been extensively 

used to assess emotional arousal, cognitive effort, and stress. Increases in SC 

are consistently observed in response to stress-inducing stimuli (Bach et al., 

2011; de Berker et al., 2016; Raio et al., 2017), emotionally salient events 

(Bradley et al., 2008; Ojala & Bach, 2020; Salimpoor et al., 2011; Vinberg et al., 

2022), and cognitively demanding tasks (Critchley, 2002; Dawson et al., 2016; 

Zhang et al., 2012). 

 There are several notable dissociations between SC and pupil dilation 

response (PDR), two commonly used physiological measures of arousal. Unlike 

SC, the pupil size is controlled by a combination of sympathetic and 



 
 

136 

parasympathetic activity, making it more difficult to isolate the specific 

contribution of each autonomic branch (Joshi et al., 2016; Joshi & Gold, 2020; 

Mathôt, 2018; Sirois & Brisson, 2014). Furthermore, SC reflects sympathetic 

activities mediated by acetylcholine (Ach; Bach, 2014; Boucsein, 2012; Dawson 

et al., 2016; Tronstad et al., 2022). Notably, this neurotransmitter works as part 

of parasympathetic activity in the pupil control circuit, with noradrenaline 

mediating the sympathetic activity (Joshi & Gold, 2020; Sirois & Brisson, 2014). 

Given these differences, examining SC responses to REG versus RAN stimuli 

may provide a distinct window into arousal mechanisms that are not captured 

by PDR. 

 To summarise, this experiment investigated two questions: (1) whether 

transitions in background sound statistics can serve as event boundaries that 

influence memory, and (2) whether differences in the predictability of the 

background sound influences on the general arousal level.  

4.3.1 Methods 
4.3.1.1 Auditory stimuli 

The stimuli (Figure 4.1A) were 200 s long sequences composed of 50 

ms tone pips (5 ms raised cosine ramps). Tone frequencies were drawn from a 

pool of 20 logarithmically spaced values between 222 and 2000 Hz. Each 

sequence consisted of alternation between regular (REG) and random (RND) 

patterns. REG patterns were generated by permuting the 20 frequencies from 

the pool and repeating this sequence to create a regularly repeating pattern. 

RND patterns were generated by randomly sampling frequencies from the pool 

with replacement. These REG and RND patterns were played alternately to 

form a long sequence with 4 ‘transitions’ (e.g., REG-RND-REG-RND-REG). 

Each of the REG and RND patterns in the sound sequence was unique. The 

duration of each REG/RND pattern was randomly chosen between 30 s and 50 

s (5 s steps) without replacement (the total stimulus duration was always 200 s).  
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Half of the stimuli began with REG and the other half with RND. A unique sound 

stimulus was generated for each trial and participant.   

To reduce the predictability of the pattern order, 7 out of 15 stimuli (see 

Procedure) included a switch in the pattern type. For instance, ‘REG-RND-

REG-REG-REG' was played instead of ‘REG-RND-REG-RND-REG'. The 

switch location was randomly selected. If the pattern switched to REG, a new 

REG sequence was generated. If it switched to RND, frequencies were drawn 

from a limited pool, as transitions between RND are undetectable unless the 

frequency range changes. In this condition, frequencies were selected from a 

limited pool of 10 frequencies within the middle range of the original pool (397 – 

1122 Hz), referred to here as RNDm. Any responses (both behavioural and skin 

conductance) collected during these switched patterns were not used for 

subsequent analyses.  

4.3.1.2 Visual Stimuli 

 The visual stimuli consisted of 600 coloured images of everyday objects 

presented on a white background. Images were selected from Bank of 

Standardized Stimuli (BOSS; Brodeur et al., 2010) and DinoLab object 

database (https://mariamh.shinyapps.io/dinolabobjects/) and resized to be 

300x300 pixels. Each image was a unique exemplar with a distinct name. 

Images that were highly arousing, such as food, military equipment, and 

animals were not included in this image set. 

4.3.1.3 Audio-visual stimulus presentation timing 

Visual stimuli were presented concurrently with auditory stimuli during 

the encoding session (see Procedure). The onset of the sound was 

synchronised with the presentation of the first image. The transition of the 

sound pattern (e.g., REG-RND) was also synchronised with the image onset 

(Figure 4.1B). For REG to RND transition, the change is immediately 

perceptible at the onset of the RND segment; thus, a new image was presented 



 
 

138 

at this point. In contrast, for RND-REG transition, the change only becomes 

discernible during the second cycle of the REG pattern, as the first cycle is 

acoustically identical to a RND sequence. Therefore, a new image was 

presented one cycle after (1 second after REG onset).  

4.3.1.4 Procedure 

 Participants were seated in an acoustically shielded room (IAC triple-

walled sound attenuating booth). The experiment comprised four phases: a 

resting period, an encoding session, a distraction task, and a memory test 

(Figure 4.1C). This ‘block’ was repeated 15 times, with short breaks in between 

blocks. The first block served as a practice session; data from this block were 

excluded from subsequent analyses.  

 The resting period lasted 1–2 minutes and continued until the 

participant’s skin conductance signal stabilised. To facilitate this, participants 

were instructed to relax and breathe slowly. Once it had stabilised, the skin 

conductance signal was recorded as baseline activity. 

 During the encoding session, 40 unique images were presented on the 

screen while the auditory stimulus played concurrently. Each image appeared 

for 2.5 s, with a 2.5 s inter-stimulus interval (ISI) during which a fixation cross 

was displayed. The order of image and sound presentation was randomised 

across participants. Participants were instructed to memorise the sequence of 

images and were specifically encouraged to do so by creating narratives that 

linked successive items. They were asked to press the ‘Enter’ key with their 

dominant (right) hand once they had finished encoding each image. The timing 

of the button press did not affect the duration of image presentation or the ISI. 

 After completing the encoding session, participants completed a 45-

second memory disruption task. In this task, 45 arrow images were presented in 

rapid succession. Participants were instructed to identify the direction of each 

arrow as quickly and accurately as possible. Each arrow was displayed for 500 



 
 

139 

ms, followed by a 500 ms ISI. Feedback on both hits and misses was provided 

at the end of the task. 

 Finally, the memory test session assessed two aspects of episodic 

memory: temporal order and temporal distance. Participants were shown 15 

pairs of objects from the encoding session, presented one pair at a time. Each 

pair consisted of items that had either been presented within the same sound 

pattern (e.g., within the same REG) or across two adjacent patterns (e.g., REG 

and RND; Figure 4.1D). In each trial, participants first indicated which object 

appeared more recently during the encoding session. Following this response, 

the same pair remained on the screen, and participants rated the perceived 

temporal distance between the two items. Ratings were made on a four-point 

scale: very close, close, far, or very far apart. Importantly, all item pairs were 

separated by three intervening items during encoding, resulting in a constant 

objective distance. Thus, any variation in perceived temporal distance reflects 

purely subjective memory judgments. Each response was constrained to an 8-

second time window, and the display advanced immediately after a button 

press. No auditory stimuli were presented during this session. At the end of the 

test, participants received feedback on their temporal order accuracy. The order 

of item pair presentations and their left/right screen positions were fully 

randomised.   

 Visual stimuli were presented on a computer screen positioned 

approximately 90 cm from the participant. Auditory stimuli were presented 

diotically through headphones (HD558, Sennheiser) via a Fireface UC sound 

card (RME) at a comfortable listening level (adjusted by each participant). 

Stimulus presentations were controlled with the Psychtoolbox package 

(Psychophysics Toolbox Version 3) in MATLAB (2019b The MathWorks, Inc.).  

4.3.1.5 Recording and data processing of skin conductance data 

 Skin conductance (SC) was recorded using the Biosemi system (Biosemi 

ActiveTwo AD-box ADC-17, Biosemi, Netherlands) at a sampling rate of 2048 

Hz. A constant current of 1 µA was applied via two flat Ag/AgCl electrodes 
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(Biosemi), filled with 0.5% NaCl gel (GEL 101, Biopac; Hygge & Hugdahl, 

1985). These electrodes were attached to the participant’s left (non-dominant) 

index and middle fingertips using double-sided adhesive pads and tape. Flat-

type CMS and DRL electrodes (Biosemi) were placed approximately two inches 

apart on the back of the same hand.  

 Data were down-sampled to 32 Hz and processed using the Fieldtrip 

(http://www.fieldtriptoolbox.org/) toolbox for MATLAB (2018a, MathWorks) and 

Ledalab (v 3.4.9, http://www.ledalab.de/). Movement artefacts were visually 

identified and corrected using spline interpolation. Phasic activities to the stimuli 

were extracted via Continuous Decomposition Analysis (CDA; Benedek & 

Kaernbach, 2010) to find non-responding blocks. Blocks with zero event-evoked 

phasic activities were excluded as outliers, resulting in an average removal of 

0.04% of blocks per participant. Also, only the first half of experimental blocks 

(Blocks 2–8; approximately the first hour of recording) were included in the SC 

analysis to minimise effects of signal drift over time.  

 To examine the relationship between SC activity and temporal memory 

performance, 200-second SC time series from each block were baseline-

corrected relative to the resting period from the corresponding block. The final 

10 seconds of the resting period were averaged and used as the baseline. Data 

were averaged across all blocks per participant to obtain an overall measure of 

physiological arousal during the task. These data were divided into high and low 

performer groups based on a median split of their average temporal order 

memory scores. These scores were computed using data from Blocks 2–8, 

including only the REG and RND (non-transition) conditions, which provided a 

baseline measure of task performance unaffected by statistical transitions. 

 To assess the effect of background sound predictability (REG vs RND) 

on SC activity, z-transformed SC time series (200 s per block) were segmented 

into 30-second epochs time-locked to the sound onset. Only the first auditory 

pattern in each block was analysed to eliminate potential carryover effects from 

preceding sound contexts, ensuring that SC responses reflected only the 

http://www.fieldtriptoolbox.org/
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response to sound condition of interest. Epochs were baseline-corrected 

relative to 0–1 s post-sound onset, a choice given the slow rise time of SC 

responses, which typically emerge around 1 s following stimulus onset (Dawson 

2016; Boucsein 2012).  

4.3.1.6 Data processing of behavioural measures 

 For the behavioural analyses, several measures were collected: 

response time during the encoding session; response time and accuracy from 

the temporal order memory test; and response time and distance judgments 

from the temporal distance memory test. For all analyses, responses to the first 

image of each block were excluded, as this item was presented at the transition 

from silence—a point that may act as a memory boundary. In the temporal 

distance memory test, distance ratings were converted to a numerical scale 

ranging from 1 (very close) to 4 (very far). The scores were then z-transformed 

per participant to standardise the data.  

4.3.1.7 Statistical analysis 

 For the behavioural data, difference between conditions were first 

evaluated using repeated-measure ANOVA. Pairwise t-tests were conducted for 

post-hoc comparisons when the ANOVA revealed a significant effect (p<.05). 

These t-tests were planned, so no adjustments were made for multiple 

comparisons. 

 For the statistical evaluation for the time series SC data, the difference 

between sound conditions were calculated for each participant. This difference 

was then subjected to bootstrap resampling (Efron & Tibshirani, 1994). The 

difference between conditions was considered significant if the proportion of 

bootstrap iterations falling above or below zero exceeded 95% (p<.05). 

4.3.1.8 Participants 

 Forty-three paid, right-handed participants were recruited for Experiment 

1. One participant with dyslexia was excluded from all analyses. For the 

behavioural analysis, item order memory performance was assessed, and 
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blocks in which participants made errors on more than half of the trials were 

flagged. The number of such blocks was tallied per participant, and those 

having flagged blocks more than two standard deviations from the mean (four 

participants) were excluded. This resulted in a final behavioural sample of 38 

participants (29 females; mean age = 23.0, ± 3.8). For skin conductance 

analysis, three participants were excluded as non-responders due to a lack of 

stimulus-evoked responses, and one additional participant was excluded due to 

a technical recording failure. The remaining dataset for this analysis also 

included 38 participants (29 females; mean age = 22.6, ± 3.6). All participants 

reported no history of hearing or neurological disorders. All experimental 

procedures were approved by the research ethics committee of University 

College London, and written informed consent was obtained from each 

participant. 
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Figure 4.1 Stimuli and task schematics.  

[A] Spectrograms depicting example stimuli for REG and RND, 

showing only the initial 3 s. [B] Image onset timings relative to the 

sound stimuli. For RNDREG transition, the image is presented after 

one cycle (i.e. 1 s) of REG.  [C] Experiment procedure. The experiment 

contained a resting period, an encoding phase, a distractor task, and 

a memory test. Participants repeated this process 15 times. [D] Image 

pairs used in the memory test are selected from the encoding phase. 
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All item pairs were separated by three intervening items. The object 

images in this figure are credited to: 

https://mariamh.shinyapps.io/dinolabobjects/ and Brodeur et al. 

(2010). 

 

4.3.2 Results  

4.3.2.1 Encoding RT 

 I first examined how background sound conditions influenced the speed 

of image encoding. A significant main effect of sound condition on response 

time was observed (F(3, 105) = 2.99, p = 0.03, η²p = 0.08), with participants 

responding significantly faster to images presented during REG sounds 

compared to those presented during RND sounds (t(35) = -2.25, p = 0.03, d = -

0.37), as well as to those presented immediately after a transition from RND to 

REG (t(35) = -2.80, p = 0.008, d = -0.47; Figure 4.2A). This pattern generally 

aligns with previous findings showing that task-irrelevant regular auditory 

patterns can enhance performance and speed up responses to attended tasks 

compared to random patterns (Southwell et al., 2017). In the context of 

boundary theory, however, studies using similar paradigms to investigate event 

boundaries rarely report encoding response times (McClay et al., 2023; Pu et 

al., 2022; Raccah et al., 2023), which limits direct comparisons to the current 

results. 

 

https://mariamh.shinyapps.io/dinolabobjects/
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Figure 4.2 Behavioural results of the influence of the background 
sound on the ongoing visual task.  

[A] Average response time for the item encoding. [B] Correct response 

rate (left) and the response time of the accurate trials (right) of the 

temporal order memory test. [C] z-transformed distance score (left) 

and the response time (right) of the temporal distance memory test. In 

all figures, the error bars represent the s.e.m. Overlaid dots represent 

individual participants. Significant results of the pairwise t-tests were 

plotted on the top of the bar plots. 

 

4.3.2.2 Effects of transition in sound statistics on temporal memory 
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 To investigate whether and how background sound modulates the 

temporal structure of memory, two aspects of episodic memory were tested: 

temporal order and temporal distance. 

 For temporal order memory, both the accuracy of responses and the 

response times for correct answers showed significant main effects of sound 

condition (accuracy: F(3, 111) = 3.02, p = 0.03, η²p = 0.08; response time: F(3, 

111) = 7.67, p < 0.001, η²p = 0.17; Figure 4.2B). Post-hoc comparisons 

revealed that temporal order memory was significantly impaired in both 

transition conditions compared to the REG condition (REG vs REGRND: t(37) = 

2.71, p = 0.01, d = 0.44; REG vs RNDREG: t(37) = 2.73, p = 0.01, d = 0.44). 

Additionally, participants took longer to select the correct response in the 

transition conditions than in the no-transition conditions (REG vs REGRND: 

t(37) = -3.19, p = 0.003, d = -0.52; REG vs RNDREG: t(37) = -4.77, p < 0.001, d 

= -0.77; RND vs RNDREG: t(37) = -3.50, p = 0.001, d = -0.57; Figure 4.2B). No 

significant differences were found between the REGRAN and RANREG 

conditions in any comparison. These results suggest that changes in 

background sound statistics—regardless of transition direction—disrupt 

temporal order memory for items presented across different sound contexts, 

implying that such transitions may induce the formation of event boundaries. 

Importantly, this impairment is unlikely to be driven by distraction from the 

abrupt sound change at the transition itself. As shown in Figure 4.1D, item pairs 

tested in the transition conditions were selected to span the boundary, with one 

item presented before the transition and the other at least 10 seconds after it. 

 For temporal distance memory, a subjective time expansion effect was 

expected for item pairs that spanned an event boundary, despite objective 

temporal distance between item pairs was identical across all trials. However, 

contrary to this expectation, temporal distance memory did not show the 

expansion effect associated with event boundaries (distance score: F(3, 111) = 

0.49, p = 0.69, η²p = 0.01; response time: F(3,111) = 1.63, p = 0.19, η²p = 0.04; 

Figure 4.2C). 



 
 

147 

 Overall, the results suggest that transitions in task-irrelevant sound 

statistics form event boundaries in memory. However, the strength of the 

boundary may be weak due to various reasons including task-irrelevance. 

Indeed, the failure to show the distance effect, that is commonly associated with 

smaller effect sizes than the order effect (Clewett et al., 2020; McClay et al., 

2023) would be consistent with this interpretation. 

4.3.2.3 Memory performance is reflected in skin conductance activity. 
 To examine whether individual skin conductance activity throughout the 

experiment reflects task performance, as measured by the temporal order 

memory score, we averaged the baseline-corrected skin conductance signals 

across blocks for each participant and compared these values between high 

and low performers (see Method). Bootstrap resampling revealed a significant 

difference between the two groups, with consistently higher skin conductance 

observed in high performers (Figure 4.3A). This finding aligns with the well-

established idea that physiological arousal reflects the level of task engagement 

and performance (Aston-Jones et al., 1999; de Gee et al., 2024; Waschke et al., 

2019).  

4.3.2.4 Background sound predictability induced different skin 

conductance activity. 

 Next, I examined whether background sounds with differing levels of 

predictability evoked different levels of skin conductance activity. To eliminate 

potential carryover effects from preceding sound patterns, I only analysed the 

REG and RND sequences presented at the start of each block (7 sequences 

per participant). Bootstrap resampling revealed significantly higher skin 

conductance activity during the presentation of RND compared to REG 

sequences (Figure 4.3B).  

 Interestingly, when participants were divided into high and low 

performers based on their temporal order memory scores (see Method), this 

difference was significant only in the low-performing group (Figure 4.3B). Taken 

together with the previous findings, this suggests that high performers 
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maintained elevated general arousal due to sustained task engagement, leaving 

little room for the influence of background sound to modulate arousal levels. In 

contrast, low performers—who consistently showed lower task-related 

arousal—may have been more susceptible to the effect of background sounds. 

This susceptibility allowed the differential arousal evoked by REG and RND 

patterns to become apparent in their physiological responses. 
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Figure 4.3 Skin conductance activity measured during the 
encoding session.  

[A] Left: Group-averaged skin conductance. Participants are divided 

into two groups based on their performance on the temporal order 

memory test (REG and RND conditions only, see Methods). Skin 

conductance data are baseline corrected relative to the resting period 

immediately preceding each block. Shaded areas represent twice the 

SEM. Significant differences (p<.05) between two performer groups 

are indicated by bold horizontal lines above the skin conductance 

traces. Right: Temporal order memory score for high and low 

performers. Baseline performance is calculated as the average across 

non-transition conditions (REG and RND, see Method) and plotted. 

Each dot represents an individual participant: green dots indicate high 

performers and orange dots indicate low performers. [B] Top: Group-

averaged skin conductance evoked during REG and RND sound 

presentation. Data are baseline corrected to 0-1 s.  Shaded areas 

represent twice the SEM. Significant differences (p<.05) between two 

performer groups are indicated by bold horizontal lines above the skin 

conductance traces.  Bottom: same as top, but participants were 

separated into high and low performers based on their temporal order 

memory score.  

 

4.3.3 Discussion 

 This experiment investigated whether and how task-irrelevant 

background sounds—specifically, changes in their statistical structure—can 

influence visual memory encoding and retrieval. Behavioural measures 

combined with skin conductance recordings revealed that (1) shifts in 

background sound statistics can induce event boundaries, and (2) the 
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predictability of background sounds modulates general arousal levels, even 

during tasks unrelated to the auditory input. 

4.3.3.1 Transition in background sound statistics forms an event boundary 

 In this experiment, I manipulated behaviourally irrelevant background 

sound statistics to examine whether a transition in auditory context could form a 

boundary in memory. I specifically hypothesised that the REGRAN transition 

would induce a boundary, based on prior evidence suggesting that REGRAN—

but not RANREG—activates the pupil-linked locus coeruleus–noradrenaline 

(LC-NE) system (Basgol et al., 2025; Zhao, Chait, et al., 2019). However, our 

results revealed impaired temporal order memory in both transition conditions 

when compared to the continuous REG condition, indicating that a boundary 

was formed regardless of the direction of the statistical change.  

 This finding aligns with the concept of event boundaries as markers of 

contextual shifts (Clewett et al., 2019; Reynolds et al., 2007; Zacks et al., 2001, 

2007). In this framework, any transition in sound statistics—whether from 

regular to random or vice versa—signals a meaningful change in context and is 

therefore sufficient to induce memory segmentation. This suggests that both 

REG and RND sequences were perceived as stable, distinct contexts, similar to 

those previously observed in other domains such as semantic categories (e.g., 

items belonging to the same conceptual group; DuBrow & Davachi, 2013, 2014; 

Manning & Kahana, 2012), emotional states (e.g., items encoded during a 

specific mood; Clewett & McClay, 2025; McClay et al., 2023), or spatial 

locations (e.g., items experienced within the same environment; Horner et al., 

2016). Notably, there was no significant difference in memory performance 

between the REG and RND conditions—that is, when items were experienced 

within a stable REG or RND context (Figure 4.2B). However, the memory 

impairment observed in the transition conditions was primarily evident in 

comparison to the REG context (Figure 4.2B). This suggests that while both 

REG and RND sequences can serve as stable contexts, the REG context may 
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offer greater contextual coherence, likely due to its deterministic and highly 

predictable structure. 

 Although previous work did not observe activation of the pupil-linked LC-

NE system in response to RND-to-REG transitions (Basgol et al., 2025; Zhao, 

Chait, et al., 2019), this does not preclude the possibility that such activation 

occurred in the present study, given substantial differences in experimental 

design. Most notably, the duration of each auditory pattern in our paradigm was 

considerably longer (30–50 seconds) compared to the 2.5–3.5 seconds used in 

the earlier work. This extended exposure may have allowed to form more stable 

predictions about the ongoing auditory context, even in the case of RND 

sequences. With sufficient exposure, the brain may develop a statistical model 

of the auditory environment—such as the expectation of a uniform distribution of 

tones—which, when violated by a sudden shift in regularity, could still trigger 

LC-NE engagement as part of a context-resetting mechanism. Alternatively, it 

remains possible that LC-NE activation is not essential for boundary formation.  

 Recent work by Clewett et al. (2025) has highlighted a potential role of 

the LC in resetting hippocampal memory representations following contextual 

shifts. While their findings are correlational and the causal role of the LC-NE 

system in boundary-induced memory segmentation remains to be established, 

their conclusions are consistent with broader literature on change-point 

detection. These frameworks propose that changes in environment prompt the 

brain to reset its internal model about the current environment and begin 

gathering new evidence—processes in which LC-NE activity is thought to play a 

critical role (Lawson et al., 2021; Nassar et al., 2010, 2012; Skerritt-Davis & 

Elhilali, 2021a, 2021b). Future research should investigate whether LC-NE 

activation is a necessary condition for boundary-driven memory effects, as 

current evidence is based on limited boundary types and task designs (Clewett 

et al., 2020, 2025). 

 While no significant difference was observed in temporal distance 

memory performance (Figure 4.2C), it is important to note that this measure is 
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relatively less established and tends to yield smaller effect sizes (Clewett et al., 

2020; Clewett & McClay, 2025; McClay et al., 2023). Indeed, several studies 

have either omitted reporting these results despite collecting the data or 

reported inconsistent findings when using distance-based memory metrics 

(Clewett et al., 2025; Clewett & McClay, 2025; Rouhani et al., 2020). 

 Nevertheless, the findings demonstrate that, even in the absence of task 

relevance, background sound statistics can reliably establish contextual 

frameworks that influence the encoding of concurrently presented visual 

information. 

4.3.3.2 Background sound predictability influences general arousal  

 Skin conductance revealed higher arousal levels in the RND condition 

compared to the REG condition (Figure 4.3B). This aligns with findings from 

Milne, Zhao, et al. (2021), who reported that the tonic component of the pupil 

dilation response (PDR) was higher for the RND sound than the REG sound. 

They interpreted this as reflecting the sustained computational demand required 

to process unpredictable input, in contrast to REG sequences, where PDR 

decreased once the pattern was learned—indicative of reduced processing 

effort.  

 Consistent with this interpretation, behavioural results from the present 

experiment showed slower response times in the encoding task under the RND 

condition (Figure 4.2A), suggesting that unpredictable background sounds 

could not be easily suppressed and interfered more with task performance. This 

is in line with prior work by Southwell et al. (2017), who demonstrated the 

distracting effect of RND versus REG sequences. However, it is also possible 

that the observed effect reflects facilitation by REG sequences rather than 

interference from RND. Without a silent control condition, it remains difficult to 

determine whether REG improves performance, RND disrupts it, or both. Future 

work incorporating a silence baseline will be necessary to disentangle these 

possibilities. Take together, these findings support the broader notion of 

expectation suppression, whereby predictable stimuli elicit reduced neural and 
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cognitive responses, reflecting increased processing efficiency (de Lange et al., 

2018).  

 Although differences in skin conductance and response times were 

observed during the encoding stage, these effects did not translate into 

measurable differences in subsequent memory performance (Figure 4.2B). 

This finding aligns with the finding from Clewett et al. (2025), who reported that 

the relationship between LC activity during encoding and the later memory 

performance was specific to boundary trials and absent during stable contexts. 

This suggests that LC-driven memory modulation occurs selectively during 

moments of contextual change, when internal representations are updated and 

encoded as novel events. While skin conductance is not a direct index of LC-NE 

activity, the absence of a memory effect, despite observed differences in SC 

between REG and RND conditions during encoding, suggests that the sound-

induced arousal differences in this experiment were too subtle to influence 

memory retrieval performance. 

4.3.3.3 How to interpret the skin conductance activity? 

 The SC activity observed in this experiment resembled previously 

reported PDR profiles (Milne, Zhao, et al., 2021), prompting the question of 

whether these effects reflect a shared arousal mechanism. However, the 

interpretation is more nuanced. Although both SC and PDR are associated with 

arousal, they are mediated by different neurophysiological pathways: SC is 

predominantly driven by acetylcholine (ACh)-mediated activation of sympathetic 

sweat glands, whereas PDR reflects the mixed responses from sympathetic and 

parasympathetic systems (Bach, 2014; Boucsein, 2012; Dawson et al., 2016; 

Joshi & Gold, 2020; Sirois & Brisson, 2014; Tronstad et al., 2022). Notably, the 

comparison of SC and PDR activities induced by fear conditioning and 

emotional stimuli have mixed results; some find some level of correlation but 

none of the studies are strong enough to state that they are derived from a 

common neural source (Bradley et al., 2008; Korn et al., 2017; Leuchs et al., 

2019). Although further investigation is needed to clarify the relationship 
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between SC and PDR as markers of arousal, the similarity in their response 

patterns suggests that background sound predictability may engage both 

cholinergic and noradrenergic branches of the sympathetic nervous system. 

This pattern may reflect a coordinated, multi-system arousal response involving 

both central and peripheral components of the autonomic nervous system.  

 In this study, the skin conductance activity was reported across 

conditions without dissociating skin conductance level (SCL) and skin 

conductance responses (SCR). While SC is often analysed by separating tonic 

(SCL) and phasic (SCR) components, this distinction was not feasible in the 

present paradigm due to the continuous nature of the multimodal stimulus 

presentation. The absence of discrete, well-defined stimulus onsets made it 

conceptually challenging to isolate event-evoked responses from ongoing tonic 

activity. Notably, our analysis (Figure 4.3) revealed that the observed SC 

differences were primarily driven by low-frequency components, with minimal 

contribution from high-frequency phasic activity. While the full signal was 

retained in the analysis and visualisation for transparency, it is likely that the 

condition differences primarily reflect variations in the tonic component. 

 Overall, this study provides evidence that changes in the task-irrelevant 

background sound statistics can influence boundary formation. While McClay et 

al. (2023) previously demonstrated that background sound can structure event 

boundary, their stimuli were intentionally composed to evoke distinct emotional 

states (e.g., sadness, calmness), meaning that boundaries were defined by 

complex combinations of acoustic features associated with emotion. In contrast, 

the present findings extend this line of work by showing that even in the 

absence of emotional shifts, mere changes in statistical regularity are sufficient 

to create contextual boundaries. This suggests a broader role for background 

auditory structure in memory organisation, beyond the influence of emotional 

arousal. Remarkably, in the current paradigm, all acoustic features were held 

constant except for tone order—yet this alone was sufficient to modulate 

contextual segmentation. Furthermore, building on Milne, Zhao, et al. (2021), 
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skin conductance measures indicated that the predictability of the background 

sound sequence modulates arousal levels even when the auditory input is 

entirely task-irrelevant. Together, these findings highlight the influence of 

dynamic, task-irrelevant auditory statistics on memory and arousal, 

underscoring the importance of studying ‘background’ computations to fully 

understand how we process and remember information in naturalistic 

environments where multiple streams of information coexist. 

 

4.4 Experiment 2 

 In this experiment, I investigated another aspect of the boundary effect 

on memory: recognition performance for incidentally experienced items. Event 

Segmentation Theory suggests that boundary information is processed more 

deeply in order to construct a new event model (Swallow et al., 2009; Zacks et 

al., 2007; Zacks & Swallow, 2007). Consistent with this, numerous studies have 

reported enhanced recognition for items presented at event boundaries 

compared to those encountered within continuous episodes (McClay et al., 

2023; Pettijohn et al., 2016; Radvansky et al., 2014; Rouhani et al., 2020; 

Swallow et al., 2009). 

 These findings raise the possibility that changes in background sound 

statistics—shown in Experiment 1 to evoke boundary-like responses—may also 

enhance recognition of concurrently presented items.   

4.4.1 Methods 

4.4.1.1 Auditory stimuli 

 The stimuli (Figure 4.4A) were ~9 minutes long sequences composed of 

50 ms tone pips (5 ms raised cosine ramps). Tone frequencies were drawn from 

a pool of 20 logarithmically spaced values between 222 and 2000 Hz. Each 

sequence consisted of alternation between regular (REG) and random (RND) 

patterns. REG patterns were generated by randomly selecting 10 frequencies 
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from the pool without replacement, and this sequence was repeated to create a 

regularly repeating pattern. RND patterns were generated by randomly 

sampling frequencies from the pool with replacement. These REG and RND 

patterns were played alternately (e.g., REG-RND-REG-RND...) to form a long 

sequence (60 REG and 60 RND patterns appeared in one sequence). Each of 

the REG and RND patterns in the sound sequence was unique. The duration of 

each REG/RND pattern was jittered between 3.5 and 5 s (70 – 100 tone-pips). 

To reduce the predictability of the pattern order, 6 additional REGx-REGy 

patterns were randomly inserted into the sequence. Both REGx and REGy were 

created by selecting 10 frequencies from the pool. There are some possible 

overlaps in the frequencies in REGx and REGy, but the patterns were distinct. 

The resulting sequence durations varied between 7.7 and 11 min. 

 Participants were exposed to two long sequences during the experiment: 

one starting with RND and the other with REG. The presentation order was 

counterbalanced across participants. A unique sound sequence was generated 

for each participant. 

4.4.1.2 Visual stimuli 

 The visual stimuli consisted of coloured images used in Clewett et al. 

(2022), including 125 images of animals and 125 images of tools, presented on 

a white background. In total, 240 images (120 animals, 120 tools) were used for 

the main experiment, while 10 images were used for the practice session. 

Images were resized to be 300x300 pixels. Each image was a unique exemplar 

with a distinct name.  

4.4.1.3 Audio-visual stimulus presentation timing 

 Visual stimuli were presented concurrently with auditory stimuli during 

the encoding session (see Procedure). Each image appeared under one of four 

conditions, based on the timing of its onset within the sound sequence: (1) 

during the middle of a REG pattern (midREG), (2) during the middle of a RND 

pattern (midRND), (3) shortly after a transition from REG to RND (REGRND), or 

(4) shortly after a transition from RND to REG (RNDREG). 
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 In the midREG and midRND conditions, images were presented at the 

midpoint of the corresponding auditory pattern. For the REGRND and RNDREG 

conditions, image onset was aligned with prior neurophysiological findings on 

transition detection. Barascud et al. (2016) reported that neural responses 

diverge from baseline approximately 150 ms (3 tones) after a REG-to-RND 

transition and around 750 ms (15 tones) after a RND-to-REG transition. These 

latencies were taken as the earliest points at which a transition could be 

detected and were used to time visual stimulus onset in the respective 

conditions (150 ms post-transition for REGRND, 750 ms post-transition for 

RNDREG). 

 To ensure even distribution of visual events across the sound sequence, 

the entire auditory stream was divided into 60 segments, each composed of 

either a REG–RND or RND–REG sound pair. One image was presented per 

segment. No images were presented during REGx–REGy segments. Visual 

stimulus onset and image category were pseudo-randomised according to the 

following constraints: (1) Each onset condition (midREG, midRND, REGRND, 

RNDREG) included 15 images. (2) The inter-image-interval was always longer 

than 3 seconds. (3) Animal and tool images were equally represented across 

conditions, with each condition containing 40–60% of each category. 

4.4.1.4 Procedure 

 Participants were seated in an acoustically shielded room (IAC triple-

walled sound attenuating booth). The experiment comprised four phases: a 

practice session, two encoding sessions, a distraction task, and a memory test 

(Figure 4.4B). Participants were not informed about the memory test 

beforehand.   

 Before the main task, participants completed a brief training session. 

They viewed 10 images (5 animals and 5 tools) and categorised each by 

pressing either the "4" or "6" key (counterbalanced). The training continued until 

participants achieved at least 8 correct responses. No auditory stimuli were 

presented during training. 
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 Participants then completed two encoding sessions, separated by a one-

minute break. Each session lasted approximately 9 minutes and involved the 

concurrent presentation of visual and auditory stimuli. In each session, 

participants viewed 60 unique images (30 animals and 30 tools). Images were 

presented for 500 ms each in a pseudo-randomised order, with no more than 

three consecutive images from the same category. Participants were instructed 

to categorise each image (animal vs tool) as quickly and accurately as possible 

while ignoring the background sound. The key mappings were the same as 

those used in the training session. Responses made more than 3 seconds after 

image offset were recorded as null responses. At the end of each session, 

participants received feedback on their total number of hits. 

 After completing the encoding sessions, participants completed a 45-

second memory disruption task, identical to the one used in Experiment 1. The 

memory test session commenced directly after the disruption task. To assess 

participants’ expectations about the memory test, a brief questionnaire was 

administered first (adapted from Dunsmoor et al., 2015). Participants rated their 

level of surprise using a 5-point Likert scale, ranging from 1 (“Did not expected 

a memory test at all”) to 5 (“Fully expected a memory test”). 

 The recognition task involved the presentation of 240 images: 120 

previously viewed during encoding and 120 novel lure images. All images were 

shown in randomised order. For each image, participants indicated whether it 

was previously seen (“old”) or not (“new”), using a four-point confidence scale: 

definitely old, maybe old, maybe new, and definitely new. The task was self-

paced and conducted without background sound. 

 All visual stimuli were displayed on a monitor positioned approximately 

90 cm from the participant. Auditory stimuli were delivered diotically through 

Sennheiser HD558 headphones using a Fireface UC (RME) sound card, set to 

a comfortable listening level (adjusted by each participant). Stimulus 

presentation was controlled using the Psychtoolbox package (Psychophysics 

Toolbox Version 3) in MATLAB (2019b, The MathWorks, Inc.).  
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Figure 4.4 Stimuli and task schematics.  

[A] Spectrograms depicting example stimuli, showing only the initial 

10 s. White dotted lines indicate the timing of transition. Here the 

sequence transitions from REG, RND, and REG. [B] Experiment 

procedure. The experiment contained two encoding sessions, a 

memory disruption task, and a memory retrieval session. The object 

images in this figure are extracted from Clewett et al. (2022). 

 

4.4.1.5 Statistical analysis 
 To assess the effect of background sound on visual processing, 

differences between sound conditions were evaluated using a repeated-

measures ANOVA. Encoding performance was assessed using both the correct 

response rate and response time. Memory retrieval performance was quantified 

using hit rates, calculated both across all trials and restricted to trials with high 

confidence ratings. The high-confidence hit rate was computed by dividing the 
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number of correct high-confidence responses by the total number of high-

confidence trials. Additionally, participants were split into two groups based on a 

median split of their overall memory performance scores, as indexed by d’, and 

their responses were analysed separately. In this report, I focus on the standard 

hit rate rather than d’ (except for the performer grouping described above), as 

the number of false positive was constant across sound conditions. This is 

because false positives originated from ‘new’ trials, which were not associated 

with any background sound condition. 

4.4.1.6 Participants 

 Thirty-four paid participants were recruited for Experiment 2. Three 

participants were excluded from the analysis: one anticipated the memory test, 

and two had poor memory performance—either with more than 50% missed 

items or more than 50% false positives. This resulted in a final behavioural 

sample of thirty-one participants (24 females; mean age = 22.8, ± 4.7). All 

participants reported no history of hearing or neurological disorders. All 

experimental procedures were approved by the research ethics committee of 

University College London, and written informed consent was obtained from 

each participant. 

4.4.2 Results  

4.4.2.1 Encoding performance 

 I first examined how background sound conditions influenced 

performance on the animal vs. tool judgment task during the encoding phase. 

As shown in Figure 4.5A, neither accuracy nor response time showed a 

significant main effect of sound condition (accuracy: F(3, 90) = 0.94, p = 0.42, 

η²ₚ = 0.03; response time: F(3, 90) = 2.24, p = 0.09, η²ₚ = 0.07). Overall, 

performance was near ceiling, making it difficult to detect any condition-related 

differences. As an exploratory analysis, the number of missed trials per 

condition was examined. Although missed trials were rare due to the ceiling 

effect, I computed the proportion of missed trials per condition, relative to each 
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participant’s total number of misses (e.g., if 8 out of 10 total misses were from 

the REG condition, the REG proportion would be 0.8). While this analysis is 

descriptive, the RNDREG condition showed a slightly higher proportion of 

misses compared to other conditions (Figure 4.5A), suggesting the distracting 

feature of this condition. 

4.4.2.2 Retrieval performance 
 To examine whether background sound influenced the visual encoding of 

concurrently presented items, memory retrieval performance was compared 

across sound conditions. As a first step, I confirmed that participants 

successfully learned the visual items presented during the encoding phase. 

Collapsing across sound conditions, the hit rate (correctly identifying old images 

as "old") and false positive rate (incorrectly identifying new images as "old") 

were calculated (Figure 4.5B). The average hit rate roughly aligned with 

findings from previous studies (Horner et al., 2016; McClay et al., 2023), 

confirming that the paradigm effectively supported visual memory encoding. 

 However, comparisons of memory retrieval performance across sound 

conditions revealed no significant main effect of sound condition on hit rates 

(Figure 4.5C). This was true both when considering all trials and when 

restricting the analysis to high-confidence responses (all trials: F(3, 90) = 0.21, 

p = 0.89, η²ₚ = 0.007; high-confidence trials: F(3, 90) = 0.14, p = 0.94, η²ₚ = 

0.005). Even when participants were divided into high and low performers 

based on their overall memory performance (see Methods), no significant main 

effect of the sound condition was observed (high performers: F(3, 42) = 0.92, p 

= 0.44, η²ₚ = 0.06; low performers: F(3, 45) = 0.25, p = 0.86, η²ₚ = 0.02; using all 

trials). These results suggest that, unlike in Experiment 1, no sound-induced 

boundary effects on memory performance were observed.  
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Figure 4.5 Behavioural results of the influence of the background 
sound on the visual task.  

[A] Average response time and correct response rate for the animal vs 

tool judgement task during encoding session. On the right, the 

proportion of each condition among the missed trials was calculated 

for each participant and plotted. [B] General performance of the 

retrieval test. All sound conditions are collapsed. [C] Top: Hit rate of 

the retrieval test of each sound condition from all trials (left) and trials 
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with high confidence ratings (right). Bottom: Performance of all trials 

(top left) is divided into high (left) and low (right) performers based on 

their d’ across conditions. In all figures, the error bars represent the 

s.e.m. Overlaid dots represent individual participants.  

 

4.4.3 Discussion 

 This experiment investigated whether transitions in background sound 

statistics—shown to function as event boundaries in Experiment 1—could also 

enhance recognition performance for incidentally experienced items. Although 

prior research has reported improved encoding for items presented at event 

boundaries, such an effect was not observed in this experiment. Below, I 

discuss possible explanations for this discrepancy. 

4.4.3.1 Potential influence of the task structure on boundary formation 

 One possible explanation relates to the task design. In this experiment, 

item recognition was tested only at the end of the experiment, and until then, 

participants were engaged in a different task—an animal vs. tool discrimination 

task. While such simple decoy tasks are commonly used (Clewett et al., 2022; 

DuBrow & Davachi, 2013; Dunsmoor et al., 2015; Horner et al., 2016; 

Kensinger et al., 2006), prior studies often include intermittent memory tests 

unrelated to item recognition itself (e.g., temporal order memory tests, as in 

Experiment 1) after each block, before testing item recognition at the end of the 

entire experiment (DuBrow & Davachi, 2013; Ezzyat & Davachi, 2014; McClay 

et al., 2023; Rouhani et al., 2020). Even when the final recognition test is 

unexpected, the presence of interim memory tasks may implicitly signal the 

importance of encoding items in context. 

 In the present study, the primary task did not require participants to form 

sequential memory traces or integrate items into coherent episodes, making it 

more likely that items were processed individually. Supporting this 

interpretation, DuBrow and Davachi (2013) conducted a study manipulating 
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encoding task structure to either encourage associative learning or emphasize 

individual item processing. They found that the memory boundary effect 

observed under associative learning conditions disappeared when participants 

were encouraged to encode items independently. This suggests that the 

emergence of boundary-related memory effects depends on processing 

strategies that promote temporal association and episodic structure. 

4.4.3.2 Insufficient salience of boundary cues may limit memory 

enhancement 

 An alternative explanation is that the boundary signal in the present 

experiment may not have been salient enough to elicit a memory enhancement 

effect. The memory boost targeted here was not necessarily specific to 

boundary items alone; rather, similar effects have been reported in response to 

a wide range of salient events, including those involving threat, reward, or 

emotional significance (Dunsmoor et al., 2015, 2018; Greve et al., 2017; Kalbe 

& Schwabe, 2020; Murty & Adcock, 2014; Rouhani et al., 2018). This suggests 

that the memory enhancements observed in previous studies may not reflect a 

necessary consequence of boundary detection per se, but instead occur when 

event boundaries are sufficiently salient to also trigger general memory-

enhancing mechanisms. In other words, prior studies that reported memory 

benefits at boundaries may have involved boundary cues that were inherently 

attention-capturing or emotionally charged (McClay et al., 2023; Rouhani et al., 

2020). Supporting this, some studies using more subtle or low-salience 

boundary cues have similarly failed to observe enhanced item memory (DuBrow 

& Davachi, 2013; Horner et al., 2016; see also Dunsmoor et al., 2018). 

4.4.3.3 Global regularity may undermine boundary salience 

 Another possible explanation for the absence of memory enhancement 

at transition points concerns the global structure of the stimulus. In Experiment 

1—where event boundary effects emerged—stimuli consisted of five auditory 

‘events’, each comprising a REG or RND sequence lasting 30–50 seconds. 

Furthermore, half of the blocks included a switch in pattern type (e.g., REG-
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REG-REG instead of REG-RND-REG) to minimise the predictability of REG-

RND transitions while still providing enough analysable trials. These features 

likely enhanced the perceptual salience and contextual informativeness of the 

transition. 

 In contrast, the stimuli in the current experiment featured much more 

frequent alternations between REG and RND within each trial (60 REG–RND 

transition pairs per trial) in order to present a sufficient number of test items for 

the final memory task. Each REG and RND segment was much shorter (3.5–5 

seconds), and although I attempted to reduce predictability by occasionally 

presenting REGx-REGy patterns (see Methods), participants were nonetheless 

exposed to a highly repetitive structure. This may have allowed them to 

anticipate the REG–RND alternation pattern, thereby diminishing the salience 

and cognitive impact of each individual transition. This interpretation aligns with 

prior work showing that repeated exposure to a salient but behaviourally 

irrelevant cue can lead to habituation and reduced neural responsiveness 

(Sara, 2009; Sara & Bouret, 2012). 

 More critically, this consistent alternation may have created a higher-

order regularity, leading participants to interpret each REG–RND pair as a 

unified unit rather than two distinct segments separated by a boundary. In effect, 

the numerous transitions may have rendered the stimulus highly stable at a 

conceptual level, with REG–RND functioning as a new “superordinate” pattern. 

Notably, while each REG and RND segment was uniquely generated, the 

possibility of abstracting such higher-order structure cannot be ruled out. 

 A potential future direction would be to increase the heterogeneity of the 

underlying regularities—for example, by introducing variation across additional 

auditory dimensions such as timbre, tempo, or spatial location. This would 

prevent transitions from being reduced to a predictable binary switch and may 

enhance the perception of contextual shifts. 
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 It would also be interesting to examine whether violations of this high-

level REG–RND pattern could serve as event boundaries. In this experiment, 

approximately 10% of the transitions were “violations”, where a REG sequence 

was followed by a different REG sequence (REGx–REGy), breaking the 

expected alternation. However, these trials were not analysed due to the 

absence of associated visual items. It remains an open question whether such 

prediction violations—despite preserving the overarching REGRND structure 

(which resumes immediately after the brief deviation)—are sufficient to elicit 

boundary-related memory effects, or whether a more fundamental contextual 

shift is necessary. I return to this issue in the General discussion. 

 In sum, while enhanced item encoding was not observed at transition 

points, this does not rule out the possibility that task-irrelevant background 

sounds can induce event boundaries. Instead, the present findings highlight the 

importance of task structure, stimulus salience, and contextual variability in 

supporting such effects.  

 

4.5 General discussion 

 This study examined whether changes in the statistics of background, 

task-irrelevant sound sequences can induce event segmentation and influence 

memory for concurrently presented visual items. Across two experiments, I 

tested the hypothesis that transitions between regular (REG) and random 

(RND) tone sequences—specifically, abrupt changes from predictable to 

unpredictable patterns—could act as event boundaries. In Experiment 1, I found 

that such transitions impaired participants’ temporal order memory for items 

spanning the transition, suggesting that changes in auditory regularity were 

sufficient to segment ongoing experience into discrete episodes, even when the 

sound was not behaviourally relevant. In contrast, Experiment 2 tested whether 

these transitions would also enhance recognition memory for boundary-

adjacent items but failed to find evidence for such enhancement. Together, 
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these findings suggest that while background auditory changes can drive event 

segmentation, they may not do so spontaneously. Instead, such changes may 

function more as contextual cues—becoming meaningful when the brain is 

actively engaged in forming event representations. 

4.5.1 The role of surprise and context change in memory 

boundary formation 

 In this paradigm, the change in background sound patterns (e.g., REG to 

RND) may act both as a surprising event that violates expectations (e.g., REG 

violation) and as a signal that the overall structure of the sound environment 

has changed (e.g., switch to RND). This raises a critical question: is it the 

prediction error that drives event boundary formation, or is it the underlying 

context shift itself? This distinction is not trivial, as many paradigms 

investigating event boundaries inherently introduce prediction errors when a 

context change occurs (Clewett et al., 2020, 2025; DuBrow & Davachi, 2013; 

McClay et al., 2023; Pu et al., 2022; Rouhani et al., 2020). 

 Siefke et al. (2019) directly addressed this issue by dissociating 

prediction error from context change. In their study, words were presented with 

background colours that signalled different contextual states. In the baseline 

condition, colour changes were infrequent, making them surprising and 

enhancing memory for the association of colour-word pairs —a form of 

associative memory boost often observed at event boundaries (though not 

assessed in this chapter). However, in a critical manipulation, they reversed the 

statistics such that colour changes became frequent and no-change trials 

became surprising. If prediction error were the driving force behind the memory 

enhancements, memory benefits should have shifted to the no-change items. 

However, they did not—suggesting that it was the context shift, not the 

prediction error, that primarily drove the memory boundary effect. This supports 

the idea that changes in contextual features, rather than surprise alone, are key 

determinants of discontinuities in mental representations. 
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 Supporting this, other studies have also demonstrated event 

segmentation in the absence of surprise (Ezzyat & Clements, 2024; Pettijohn & 

Radvansky, 2016; Schapiro et al., 2013; Sherman et al., 2023). For example, 

Schapiro et al. (2013) showed that people segment continuous experiences 

based on learned temporal community structure—clusters of stimuli with dense 

internal transitions and sparser transitions between clusters. Importantly, 

transitional probabilities were held constant across the nodes, ruling out 

surprise as a factor. Participants were still able to identify event boundaries after 

exposure. 

 Recent work by Clewett et al. (2025) adds nuance to this view by 

examining the role of locus coeruleus (LC) activity in memory segmentation. 

They found that LC activation predicted memory separation specifically at event 

boundaries, but not during trials occurring within a stable context. Furthermore, 

Wang and Egner (2023) showed that simple target detection, which is known to 

induce pupil-linked LC-NE activity (Swallow et al., 2019), did not impair 

temporal order memory. These findings support the idea that salience (e.g., 

surprising events) alone is insufficient to induce event boundary effects. Instead, 

memory segmentation appears to depend on whether an event triggers an 

internal update of the contextual model. 

 To further explore this idea, future work could investigate whether a 

surprising deviation in background sound alone is sufficient to trigger memory 

boundary formation. As discussed in Section 4.4.3.3, the stimuli used in 

Experiment 2 may have given rise to a higher-order regularity—a stable REG–

RND alternation pattern—rendering the auditory context relatively predictable 

overall. Occasionally, this pattern was violated by a REG–REG transition, 

introducing a prediction error. However, this deviation did not signal a shift in the 

overarching structure of the stimulus; the regular REG–RND alternation 

resumed immediately afterward. In this sense, the REG–REG transition may 

have been perceived as noise rather than evidence of a new context. This 

structure parallels the REG–INT–REG stimuli discussed in Chapter 2, where the 
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brief interruption (INT) did not disrupt the broader regular pattern. I interpreted 

those findings to suggest that the brain did not treat the INT segment as a 

context change and thus did not reset its predictive model. By extension, if a 

deviation is interpreted as a transient anomaly rather than a genuine contextual 

shift, it may not trigger event segmentation or memory boundaries. 

 In Chapter 2, I also proposed that the impact of prediction error on 

prediction model updating depends on the inferred structure of the environment. 

When the global context suggests that a violation likely leads to a new pattern, 

the brain tends to reset its model. In contrast, when the environment implies 

that violations are transient and the original pattern is likely to return, the 

predictive model remains stable. This raises an important question: Is boundary 

formation similarly sensitive to these global environmental structures? Future 

research could directly test whether the brain flexibly distinguishes between 

“informative” and “noisy” deviations when deciding whether to segment 

experience and form episodic boundaries.  

4.5.2 Broader cognitive effects of background sound 

 So far, this work has primarily focused on how background sound 

statistics contribute to event boundary formation. However, the findings also 

suggest that the influence of background sound extends beyond memory 

segmentation, affecting behaviour and perception through changes in arousal. 

 Arousal is closely tied to states of wakefulness, attention, stress, and 

motivation (Aston-Jones et al., 1999; Aston-Jones & Cohen, 2005; de Gee et 

al., 2024; Joshi & Gold, 2020; Waschke et al., 2019). It fluctuates dynamically in 

response to external events, especially those that are emotionally charged, 

stressful, or unpredictable (Bradley et al., 2008; Sara, 2009; Zhao, Wai Yum, et 

al., 2019). Several studies have demonstrated that arousal can facilitate 

sensory processing and behavioural responsiveness. For instance, Garrido et 

al. (2013) found that participants responded faster to changes in a fixation 

cross’s luminance when occasional pattern violations occurred in concurrently 
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presented background sounds. Similar enhancements in visual sensitivity have 

been observed when salient auditory stimuli (Ngo & Spence, 2010; Stein et al., 

1996; Vroomen & Gelder, 2000) or emotionally arousing stimuli (Dahl et al., 

2020; Laretzaki et al., 2010; Padmala & Pessoa, 2008; Phelps et al., 2006) 

coincided with visual tasks.  

 Consistent with these findings, I observed possible arousal-related 

modulation of task performance in Experiment 2. Transitions between sound 

types introduced violations of established sequence and were expected to be 

more distracting than stable sequences. However, only RNDREG transitions 

were associated with an increase in missed trials during the encoding phase, 

whereas REGRND transitions did not produce such impairments. This 

asymmetry may reflect a phasic arousal response specifically triggered by 

REG-to-RND transitions, as suggested by Zhao, Chait, et al. (2019), potentially 

leading to a transient boost in perceptual or attentional responsiveness. 

 At the same time, heightened arousal elicited by task-irrelevant stimuli 

can also impair performance on the primary task by diverting attention (Dahl et 

al., 2022; Sara, 2009; Sara & Bouret, 2012). Supporting this, I observed slower 

encoding responses in Experiment 1 under RND background sound compared 

to REG, aligning with elevated skin conductance levels during RND periods—

suggesting tonic arousal increases that may have impaired performance 

through sustained distraction. Importantly, however, it remains unclear whether 

this effect reflects an impairment caused by the RND condition or, alternatively, 

a performance enhancement under the REG condition. 

 Taken together, these findings indicate that the background sound 

stream does more than just segment experience into discrete events. Its 

predictability modulates arousal in a complex way that influences ongoing 

cognition, attention, and memory encoding. 

 In sum, this work extends prior research by demonstrating that even 

task-irrelevant, low-level changes in sound statistics can shape the encoding of 
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concurrently presented visual information. This suggests that the brain actively 

monitors the sensory environment—even when it is not directly relevant to the 

task—to extract structural cues and guide cognitive processing. These insights 

also have promising implications for applied settings. In real-world 

environments, background sound may act as a subtle but powerful cue to guide 

attention and memory. For example, in educational contexts, strategically 

structured auditory environments could support event segmentation and 

improve long-term retention. Prior research has shown that individuals who are 

better at perceiving and segmenting events tend to have enhanced memory for 

the overall episodes, even weeks later (Flores et al., 2017; Gold et al., 2017; 

Sargent et al., 2013). Leveraging multimodal cues—such as synchronising 

auditory and visual shifts—may enhance boundary perception and facilitate 

memory organisation. 
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5. Chapter 5: General Discussion  
5.1 Summary of findings 

 Everyday auditory environments are rich and dynamic, shaped by 

constantly changing acoustic patterns. By investigating how the brain processes 

regularities in these complex contexts, I have taken steps toward advancing our 

understanding of auditory processing—moving beyond the insights gained from 

studies that rely primarily on simple stimuli. 

 Chapter 2 investigated how the brain utilises prior experience to guide 

ongoing processing of sound sequences. Comparison of EEG data with 

computational models employing various training window sizes revealed that 

even during passive listening, the auditory system flexibly evaluates the 

relevance of past information. When the experimental context indicated a stable 

environment, the brain retained and integrated past context, whereas it 

minimised the influence of prior experience when the environment suggested 

volatility. These findings suggest that even through passive exposure, the brain 

tracks environmental stability and dynamically adjusts its predictive strategies 

accordingly—revealing an adaptive mechanism that supports efficient 

perception in ever-changing environments. 

 Chapter 3 examined how the predictability of a preceding auditory 

sequence influences the efficiency of detecting regularities in a subsequent 

sound stream. The study revealed that prior exposure to a deterministic context 

delayed the emergence of the neural signature associated with discovering a 

new regular pattern. Notably, the observed EEG dynamics were not fully 

captured by two commonly used computational models—IDyOM and D-REX. 

This discrepancy highlights a gap between current model predictions and actual 

brain responses, casting doubt on the notion that the brain operates according 

to Bayesian principles.  

 Finally, Chapter 4 explored whether changes in the statistical structure of 

background sounds—despite being behaviourally irrelevant—could act as event 
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boundaries and influence the encoding of concurrently presented visual 

information. Results from two experiments provided partial support for this 

hypothesis. While the effects were weaker than those typically observed with 

task-relevant boundaries, the findings suggest that statistical changes in the 

auditory background can influence memory organisation across modalities, 

highlighting the subtle yet pervasive impact of unattended sound on broader 

cognitive functions. Additionally, skin conductance measurements revealed that 

the predictability of background sounds modulated arousal levels, offering 

further evidence that auditory regularities can influence the brain’s global state, 

even when outside the focus of attention. 

 Overall, this thesis advances our understanding of how the brain 

processes complex, dynamically changing auditory regularities, and how this 

processing shapes broader neural and cognitive functions. The findings 

underscore the importance of studying auditory perception within the rich, ever-

changing contexts that characterise real-world listening. Moreover, this series of 

experiments highlights the powerful role of background sound statistics, 

revealing that the brain treats such information as a meaningful cue for inferring 

the state of the environment—even when it holds no explicit behavioural 

relevance. 

 

5.2 Implications 

 This thesis provides compelling evidence that the brain does more than 

passively detect the acoustic features of background, task-irrelevant sounds—it 

actively interacts with them, extracting structure and drawing inferences that 

extend far beyond simple sensory analysis. 

 When considering the potential influence of unattended auditory input, 

several levels of engagement can be proposed. At the most basic level, the 

brain might entirely ignore such input. A step beyond this would involve passive, 

bottom-up processing that registers the signal without higher-order 
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interpretation. However, prior research indicates that the brain often goes 

further, engaging in predictive inference even when sounds are not the focus of 

attention. As reviewed in Chapter 1, phenomena such as mismatch negativity 

(MMN) demonstrate that the brain forms expectations about incoming auditory 

input based on prior experience, even in the absence of directed attention 

(Bendixen et al., 2007; Bendixen & Schröger, 2008; Tivadar et al., 2021). 

Similarly, the alignment between sustained neural responses and predictions 

generated by ideal observer models—which predict future events based on past 

experiences—suggests that the brain actively constructs internal 

representations of auditory sequences by tracking and exploiting statistical 

regularities over time (Barascud et al., 2016; Bianco et al., 2025; Hu et al., 

2024; Zhao et al., 2025). 

 The formation of expectations enables us to detect change points in the 

sensory environment, often signalled by violations of predictions. Such change 

point detections indicate that internal models based on past input are no longer 

reliable, prompting an update of the temporal reference window used for 

generating predictions. Previous studies have shown that the brain is highly 

sensitive to abrupt changes in the statistical structure of auditory input, 

responding with a sharp reduction in sustained neural activity (Barascud et al., 

2016; Bianco et al., 2025; Zhao et al., 2025) and activation of the pupil-linked 

locus coeruleus–norepinephrine (LC-NE) system (Basgol et al., 2025; Zhao, 

Chait, et al., 2019). However, the downstream consequences of such an abrupt 

change point detections for neural processing have remained less well 

understood. This thesis contributes to filling that gap by elucidating how change 

point detection impacts ongoing neural computations. 

 In Chapter 2, I showed that upon detecting a change, the brain shortens 

its temporal reference window for prediction (i.e., run length). In Chapter 3, I 

demonstrated that the detection of the abrupt change paradoxically delayed the 

discovery of new regularities in the environment. In Chapter 4, I found that 
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change point detections modulated the formation of visual memory, suggesting 

that its influence extends beyond the auditory domain. 

 Importantly, change point detection is not exclusive to the auditory 

domain. For instance, it is well documented in the domain of sequential 

decision-making, where extensive research has shown that individuals adjust 

their predictive models in response to inferred changes in environmental 

statistics (Glaze et al., 2015; McGuire et al., 2014; Nassar et al., 2010, 2012). 

Similarly, as discussed in Chapter 4, memory research indicates that contextual 

shifts act as event boundaries, segmenting experience into discrete episodes 

and shaping the organisation and retrieval of long-term memory (Clewett et al., 

2020, 2025; DuBrow & Davachi, 2013; Ezzyat & Davachi, 2011; Horner et al., 

2016). The fact that change-point sensitivity emerges in auditory perception, 

decision-making, and memory suggests that it may reflect a domain-general 

computational principle—one that enables the brain to remain attuned to 

environmental dynamics by flexibly adjusting internal models across both time 

and modality. Taken together, the findings support the idea that change point 

detection is a core component of the brain’s adaptive architecture, supporting 

efficient and flexible behaviour in an unpredictable world.   

 Furthermore, this thesis proposes an additional layer of auditory 

processing beyond simple prediction formation: the inference of broader 

environmental structure from the evolving statistics of ongoing sound 

sequences. In Chapter 2, I observed that the brain does not always interpret 

prediction violations as evidence of environmental change. When violations 

occurred in a context where such deviations consistently indicated a shift in the 

auditory scene, the brain responded by shortening its temporal reference 

window for future predictions. In contrast, when the same violations occurred in 

a context where they did not typically signal a change, the brain continued to 

rely on pre-violation information. These differential responses to identical 

violations suggest that the brain learns about the stability of the environment 

through exposure and uses this inferred stability to evaluate whether a given 
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violation is more likely to reflect a genuine change or mere noise. In volatile 

environments, violations are more likely to signal change, whereas in stable 

contexts, they are more likely treated as random fluctuations.  

 Such sensitivity to environmental volatility has been widely studied in the 

decision-making literature (Behrens et al., 2007; Glaze et al., 2015; Piray & 

Daw, 2024). However, Chapter 2 provided compelling evidence that the similar 

computational principles operate on a much faster timescale. These findings 

suggest that the brain continuously and automatically monitors environmental 

dynamics, flexibly adjusting its internal models to optimise perception and 

behaviour—even in passive, task-irrelevant listening contexts. 

 Although further work is needed to fully validate this claim, the present 

findings represent a promising step toward understanding how the brain 

dynamically adapts to changes in its environment. They raise questions about 

whether the computational strategy of change detection and adaptive model 

updating is shared across cognitive domains and timescales. If so, auditory 

regularity tracking may offer a powerful window into the brain’s core 

computational architecture. This possibility suggests that neural responses to 

auditory regularities may serve as a broader index of the brain’s inferential 

processes—extending beyond sound processing. The auditory sequences used 

in this thesis were devoid of semantic or emotional content, providing a 

relatively unbiased platform for examining fundamental neural computations. In 

turn, these paradigms could generate hypotheses and models relevant to other 

domains, including visual perception, decision making, and memory. 

  

5.3 Limitations  

 While this thesis aimed to bridge the gap between experiments using 

simplified auditory stimuli and the complexity of real-world soundscapes, the 

stimuli employed remained artificial. This design choice was deliberate, 
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enabling precise testing of hypotheses concerning dynamic tracking of auditory 

regularities while minimising potential confounds. All sound sequences were 

constructed from pure tone pips drawn from a fixed set of 20 frequencies—

chosen to avoid unintentional salience or emotional associations that might 

arise from broader frequency distributions or more naturalistic sounds. 

Furthermore, the auditory patterns used in this thesis were either fully random 

or fully deterministic. While such extremes are rare in real-world listening—

where statistical structure is typically more graded and probabilistic—this binary 

manipulation offered an advantage of providing statistical power, which was 

particularly important given the inherent noisiness of the EEG data. Future 

research could build on these findings by incorporating more ecologically valid, 

naturalistic auditory patterns to assess whether the observed effects generalise 

beyond the controlled conditions used here. Such work would help extend and 

validate the mechanisms identified in this thesis within more complex, real-world 

listening environments. 

 In terms of methodology, the use of EEG enabled high temporal 

resolution and allowed us to track rapid changes in neural responses over time. 

However, this came at the cost of spatial resolution, limiting our ability to 

precisely localise the neural generators of the observed signals. Moreover, the 

sustained neural responses that formed a central focus of this work are 

particularly susceptible to low-frequency noise and slow drift—sources of 

artefact that overlap with the frequency range of the signal itself. As a result, 

conventional denoising techniques such as high-pass filtering were not viable 

without risking the loss of the signal of interest. To mitigate this, analyses relied 

on trial-averaging to reveal consistent response patterns. However, this 

approach precludes trial-level analyses, which are essential for understanding 

how the brain incrementally learns and adapts to statistical structure over the 

course of an experiment.  

 Finally, the computational models used in this thesis served to formalise 

task-specific hypotheses and guide the interpretation of empirical findings, 
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rather than to directly fit the neural data. For example, in Chapter 2, models 

were implemented using default parameters to explore how memory span might 

shape auditory scene representation, without aiming to identify the best-fitting 

model at the individual or group level. While this approach provided valuable 

conceptual insights, future work could benefit from adopting a more systematic 

model-fitting framework to more precisely characterise the computational 

mechanisms underlying regularity processing in dynamic auditory 

environments. 

 

5.4 Future direction 

 While the present findings offer valuable insights into the passive 

listening brain’s capacity to track changes in background auditory statistics, 

several critical questions remain for future research. 

 First, although this thesis raised the possibility that the passive brain can 

infer environmental volatility and adjust its prediction strategy accordingly, this 

conclusion remains tentative. In Chapter 2, I compared two types of auditory 

sequences: one in which deviations consistently signalled a structural change, 

and another in which deviations does not always lead to a structural change. 

While this design offers initial support for volatility-sensitive inference, it remains 

unclear whether the adjustment of predictive strategy occurs on a trial-by-trial 

basis or emerges gradually as the brain accumulates evidence about the 

environment over time. Furthermore, real-world environments rarely operate on 

simple binary rules used in the experimental paradigm; instead, they often 

involve more complex, fluctuating patterns with varying rates of change. Future 

studies should investigate how much statistical complexity the passive listening 

brain can accommodate and how this capacity is shaped by the duration of 

exposure.  

 For example, what happens when genuine structural changes are 

embedded within random fluctuations? Recent findings in the decision-making 
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literature suggest that, even in such ambiguous contexts, the brain can 

distinguish volatility from stochasticity—when active attention is engaged, 

possibly by tracking features such as autocorrelation across successive events 

(Piray & Daw, 2024). However, it remains unclear whether, and how, the 

passive brain—without explicit task demands—can make similar distinctions. 

Comparing what is already known about inference under active engagement 

with the responses observed in passive contexts could clarify whether rapid 

auditory tracking relies on the same mechanisms as higher-order decision-

making—or whether it reflects modality-specific heuristics optimised for fast 

sensory environments. 

 Understanding how the brain samples and interprets environmental 

information is not only of theoretical interest—it also holds significant 

implications for mental health and neuropsychiatric disorders. Maladaptive 

inferences about environmental volatility have been implicated in conditions 

such as psychosis, anxiety, and autism (Browning et al., 2015; de Berker et al., 

2016; Lawson et al., 2014, 2017; Powers et al., 2017). While these patterns 

have primarily been observed in the context of sequential decision-making 

tasks, the findings presented in this thesis suggest that similar maladaptive 

mechanisms may also be reflected in how individuals track and respond to 

changes and volatility in the background auditory sequences. 

 Investigating this possibility could provide valuable insights. First, it may 

deepen our understanding of how neurodivergent individuals experience and 

interpret auditory signals. Second, and more critically, it raises the potential for 

identifying sustained neural responses to emotionally neutral, semantically 

stripped sound sequences as candidate markers for clinical symptoms—or even 

as therapeutic targets. Future work could explore whether stable auditory input 

might help recalibrate maladaptive beliefs about environmental uncertainty and 

volatility, akin to extinction-based strategies used in cognitive behavioural 

therapy. For instance, pairing perceived volatility with a consistently stable 
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sound sequence may facilitate more accurate belief updating in individuals 

prone to anxiety or hypervigilance. 

 A related avenue for future research concerns the broader influence of 

background sound statistics on perception and behaviour. As demonstrated in 

Chapter 4, changes in the statistical structure of background sounds can 

modulate processing in other sensory modalities, indicating that the auditory 

environment shapes how we engage with the world more broadly. This raises 

the possibility that environmental auditory cues could be strategically leveraged 

in applied settings. For instance, incorporating structured auditory regularities 

into the design of public spaces or workplaces may promote more efficient 

navigation, improve focus, and mitigate cognitive load in complex real-world 

settings. While there is a growing body of research on the impact of 

soundscapes and ambient noise on cognition and behaviour (Angel et al., 2010; 

Baijot et al., 2016; Haake, 2011; Woods et al., 2024), the findings from this 

thesis contribute to this line of work by emphasising the potential relevance of 

statistical structure as a factor influencing perceptual and cognitive processing. 
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6.  Appendix Chapter: Is Speaker Size a 
Salient Auditory Feature? 

6.1 Summary 

 This chapter presents a set of supplementary experiments conducted 

independently of the core research question addressed in the main thesis. As 

reviewed in Chapter 1, salient sounds often convey biologically relevant 

information and capture attention through bottom-up mechanisms. Here, I 

examined whether vocal cues related to speaker size can serve as auditory 

salience signals. In Experiment 1, an online behavioural study demonstrated 

that listeners are highly proficient at discriminating vowels produced by 

speakers of different sizes. In Experiment 2, the same stimuli were presented in 

a controlled laboratory environment while ocular dynamics—specifically, 

microsaccadic inhibition (MSI) and the pupil dilation response (PDR), both 

considered objective indices of auditory salience—were measured. Contrary to 

our hypothesis, voices perceived as larger in size did not elicit stronger ocular 

responses. These findings suggest that vocal size may not constitute a primary 

acoustic feature driving bottom-up auditory salience. 

 

6.2 Introduction 

 The ability to infer body size from vocal cues is a fundamental skill in 

social communication across the animal kingdom. This capacity serves crucial 

functions, such as selecting mates, evaluating potential rivals, and maintaining 

territorial boundaries. A broad range of species—including deer (Reby et al., 

2005), frogs (Fairchild, 1981), monkeys (Ghazanfar et al., 2007), and humans 

(Ives et al., 2005; D. R. R. Smith et al., 2005; D. R. R. Smith & Patterson, 

2005)—share this sensitivity to acoustic indicators of body size, highlighting its 

evolutionary importance. 
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 In human speech, cues to body size are primarily conveyed through two 

physiological features: vocal tract length (VTL) and glottal pulse rate (GPR). 

VTL is closely linked to overall body size and shows a near-linear inverse 

relationship with vowel formant frequencies—longer vocal tracts result in lower 

formant frequencies (Fitch & Giedd, 1999). In contrast, GPR refers to the rate at 

which the vocal folds open and close, which largely determines the perceived 

pitch of the voice. It is shaped by the length and mass of the vocal folds, both of 

which typically increase with development (Titze, 1989). 

 The influence of VTL and GPR on perceived speaker size has been 

extensively studied using precise acoustic manipulations (Ghazanfar et al., 

2007; Ives et al., 2005; D. R. R. Smith et al., 2005; D. R. R. Smith & Patterson, 

2005; von Kriegstein et al., 2006, 2007). A widely used tool in this research is 

the STRAIGHT vocoder (Kawahara et al., 1999; Kawahara & Irino, 2004), which 

allows the separation of a vowel’s GPR contour from its spectral envelope. This 

capability enables flexible resynthesis of vowels with independent control over 

GPR and VTL—for example, converting an adult male voice into one 

resembling a child’s. 

 Using STRAIGHT, D.R.R. Smith et al. (2005) showed that listeners could 

detect differences in VTL as small as 6–10% in a two-alternative forced choice 

task. Given that the just-noticeable difference for loudness is around 10% 

(Miller, 1947), this highlights the fine-grained sensitivity of human listeners to 

vocal tract cues. D.R.R. Smith and Patterson (2005) further demonstrated that 

listeners could estimate a speaker’s size from a single voice token, without 

comparison stimuli. Their results confirmed that while both GPR and VTL 

contribute to size perception, VTL plays the more dominant role. A meta-

analysis by Pisanski et al. (2014) reinforced this conclusion. 

 Importantly, this sensitivity to vocal size cues is not unique to humans; 

Ghazanfar et al. (2007) extended these findings to rhesus monkeys. In their 

study, untrained monkeys were presented with ‘coo’ calls that had been 

modified using STRAIGHT to simulate different vocal tract lengths. The 
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monkeys looked at larger faces when hearing larger-sounding coos and at 

smaller faces when hearing smaller-sounding coos—indicating a cross-species 

sensitivity to vocal cues of size. 

 Given the biological importance of vocal size cues and their 

demonstrated cross-species relevance, it is plausible that this information may 

function as salient auditory features that can automatically engage perceptual 

systems through bottom-up processes. Just as acoustic properties like loudness 

and roughness have been shown to increase perceptual salience (Arnal et al., 

2015; N. Huang & Elhilali, 2017; Liao et al., 2016; Zhao, Wai Yum, et al., 2019), 

voices that convey larger body size may likewise have a stronger capacity to 

draw attention in a bottom-up manner. 

 What makes a sound salient remains poorly understood. In the visual 

domain, salience has been effectively studied using eye movements as an 

index of bottom-up attentional capture (Krauzlis et al., 2019; Parkhurst et al., 

2002; R. J. Peters et al., 2005; Veale et al., 2017). However, the auditory 

domain lacks a similarly well-established method for measuring stimulus-driven 

attentional captures, making it hard to test auditory salience systematically. 

Recent research has suggested that ocular dynamics—such as microsaccades 

and pupil dilation—may offer an objective window into auditory salience (Liao et 

al., 2016; Zhao, Wai Yum, et al., 2019). Nevertheless, only a limited set of 

acoustic features has been validated to modulate these ocular responses, 

leaving open the question of whether other perceptually relevant features, such 

as speaker size, can also influence them. 

 Thus, this study aims to broaden our understanding of auditory salience 

by investigating an additional potentially salient auditory feature. This chapter 

explores whether vocal size cues contribute to auditory salience using synthetic 

vowel stimuli that vary in perceived speaker size. Experiment 1 validated 

listeners’ sensitivity to these size manipulations in a large-scale online study 

and Experiment 2 assessed the salience of these cues by measuring 

oculomotor responses in a controlled laboratory setting. 
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6.3 Experiment 1 
 Before conducting the main eye-tracking experiment, the stimulus set 

was validated through an online study. This study aimed to confirm that 

participants could accurately differentiate size differences conveyed by the 

vowel sounds.  

6.3.1 Methods 

6.3.1.1 Stimuli 

Three vowels (/a/, /e/, /i/) were recorded from a female speaker with a 

height of 155 cm and subsequently manipulated using WORLD (Morise et al., 

2016), a vocoder similar to STRAIGHT but optimised for lower computational 

cost. The vocal tract length (VTL) parameter was systematically adjusted to 

simulate speakers of varying heights—142 cm, 155 cm, 169 cm, 184 cm, and 

201 cm—based on values reported in D.R.R. Smith and Patterson (2005). The 

glottal pulse rate (GPR) was fixed at 71% of the original to minimise variation in 

roughness across stimuli, a known contributor to auditory salience (Arnal et al., 

2015; Zhao, Wai Yum, et al., 2019). All stimuli were 700 ms in duration and 

root-mean-square (RMS) normalised.  

6.3.1.2 Procedure 

The experiment was designed and hosted on the Gorilla platform 

(www.gorilla.sc; Anwyl-Irvine et al., 2020). Participants were asked to make 

relative size judgments based on pairs of vowel sounds, presented with a 500 

ms inter-stimulus interval. From a pool of 105 possible sound pairs, 34 were 

randomly selected for each participant. To control for potential order effects, a 

second set of 105 reversed-order pairs was generated, and half of the 

participants were randomly assigned to this reversed pool. After hearing each 
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pair, participants indicated which sound they believed was produced by a larger 

individual. 

To ensure participants were attentive during the online experiment, six 

catch trials were randomly interspersed throughout the task. In these trials, one 

of the vowel sounds contained a brief 50 ms silent gap (a “blip”), and 

participants were asked to identify which sound contained it. The blip was 

equally likely to occur in the first or second sound. Participants who failed more 

than one catch trial were classified as outliers and excluded from further 

analysis (four participants were excluded). 

Prior to the main experiment, participants completed a practice session 

for the blip detection task, and only those who correctly identified all blips were 

allowed to continue; five participants were excluded at this stage. For the size 

judgement task, no practice trials were provided to avoid biasing participants. 

However, participants had the opportunity to listen to example stimuli before 

starting the main experiment. 

6.3.1.3 Participants 

 Participants aged between 18 and 40 years with no reported hearing 

problems were recruited via Prolific (www.prolific.co). All participants were 

required to use a laptop or desktop computer and wear headphones. A 

headphone screening test (Milne, Bianco, et al., 2021) was administered to 

verify headphone use, resulting in the exclusion of 62 participants. An additional 

9 participants were excluded: 5 for failing the practice session and 4 for failing 

more than one catch trial (see above). The final sample comprised 140 

participants (83 female; mean age = 30.54 ± 6.26). All participants were naïve to 

the purpose of the study and were instructed to complete the experiment in a 

quiet environment while seated comfortably. All experimental procedures were 

approved by the research ethics committee of University College London. 
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6.3.2 Results  

6.3.2.1 Consistent size ranking was observed across vowels  

 Figure 6.1A illustrates the number of presentations for each sound 

across all participants, showing that each sound was presented approximately 

650 times. To determine the size ranking of the 15 sounds, the proportion of 

trials in which each sound was judged as larger than its paired counterpart was 

calculated relative to its total number of presentations. As shown in Figure 
6.1B, sounds representing larger sizes were more frequently judged as larger 

than their paired sounds. This size ranking was consistently observed across all 

vowel categories (Figure 6.1C), and the order remained stable even when 

averaged across vowels (Figure 6.1D). 

 Importantly, the potential effect of presentation order on participants’ 

judgments was evaluated by comparing the number of “larger” responses 

attributed to the first versus the second sound. This analysis found no 

significant order bias (paired t-test; t(139) = -0.37, p = 0.71). 
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Figure 6.1 Results of the subjective size judgement.  

[A] Total number of trials each sound was presented, summed across 

all participants. Colours indicate vowel conditions (green: /i/, blue: /e/, 

red: /a/), with fainter colours representing sounds associated with 

smaller sizes. [B] Proportion of trials in which each sound was judged 

as larger than its paired counterpart. Colours indicate vowel conditions 

(green: /i/, blue: /e/, red: /a/), with fainter colours representing sounds 
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associated with smaller sizes. [C] Same data as [B], reorganised by 

vowel condition to show size judgement within each vowel category. 

The bottom-right plot displays the average across the three vowel 

conditions.  

 

6.3.2.2 Identifying ambiguous sound pairs in size judgement 
 To assess which sound pairs participants found difficult to discriminate, I 

analysed their size judgments across all pairwise combinations. For each sound 

condition (columns in Figure 6.2A), I calculated the proportion of trials in which 

it was judged as larger than its paired sound (rows in Figure 6.2A), by dividing 

the number of “larger” responses by the total number of presentations for that 

specific pair. Diagonal cells were excluded (set to NaN), as identical sounds 

were never presented together. 

 Figure 6.2B illustrates the ideal response pattern, where the sound 

representing the larger size is always judged as larger, and performance for 

same-size pairs remains at chance. Overall, participants’ responses broadly 

aligned with this pattern: brighter cells—indicating higher proportions of “larger” 

responses—clustered in the lower-left triangle. 

 Nevertheless, some sound pairs showed evidence of confusion. In 

particular, pairs involving adjacent size steps (e.g., 169 cm vs. 155 cm) were 

more difficult to distinguish reliably. The mid-range 169 cm stimuli were 

especially prone to misjudgement, suggesting that this condition may lie near a 

perceptual boundary within the stimulus continuum. 
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Figure 6.2 Judgement matrix for each sound pair.  

[A] Proportion of trials in which the sound in each column is judged as 

larger than its paired sound (row). Brighter colours indicate higher 

proportions. Diagonal cells are set to NaN. [B] Ideal response matrix 

assuming perfect discrimination.  

 

6.3.3 Discussion 

 This study demonstrated that listeners can reliably judge differences in 

speaker body size based on vowel sounds. Across vowel types, participants 

consistently perceived voices with longer VTL as belonging to larger speakers, 

producing a size ranking that closely matched the intended size manipulation. 

This robust performance is particularly noteworthy given the study’s online 

format, which involved naïve participants using varied hardware and listening 

environments. 

 Given the consistency of the size ranking across vowels, subsequent 

eye-tracking analyses treated vowel identity as a controlled factor and focused 

solely on differences in size. Additionally, pairwise analysis (Figure 6.2) 

revealed that the mid-range stimulus (169 cm) was particularly prone to 
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confusion with adjacent size conditions. To avoid potential ambiguity, this 

stimulus will be excluded from the following eye-tracking experiment. 

 Crucially, this experiment also validated the robustness of size 

perception from voice in a broader and more ecologically valid context. Previous 

studies in this area (Ghazanfar et al., 2007; Ives et al., 2005; D. R. R. Smith et 

al., 2005; D. R. R. Smith & Patterson, 2005; von Kriegstein et al., 2006, 2007) 

relied on small samples (typically fewer than 15 participants) and were 

conducted under controlled laboratory conditions. While these foundational 

studies demonstrated the perceptual relevance of vocal size cues, they left 

open the question of whether this ability generalises across populations and 

environments.  

 By testing a larger and more diverse sample (n = 140) in a less controlled 

online environment, the present study provides compelling evidence that vocal 

size discrimination is a robust and generalisable perceptual skill—likely 

reflecting a fundamental aspect of human auditory processing. Notably, 

participants succeeded in the task with minimal instruction and without any 

practice trials. Despite considerable variability in listening conditions—including 

background noise, device quality, and participant posture—listeners consistently 

detected size-related vocal cues. This finding suggests that the perceptual 

features underlying speaker size estimation are highly salient and readily 

accessible, resilient to individual and environmental variability.  

 

6.4 Experiment 2 

 This chapter investigates whether perceived speaker size, conveyed 

through vowel sounds, serves as a salient auditory cue that automatically attract 

attention in a bottom-up manner. To examine this, oculomotor responses were 

recorded from participants passively exposed to the same stimuli used in 

Experiment 1. Specifically, the analyses focused on two measures: 

microsaccadic inhibition (MSI) and the pupil dilation response (PDR). 
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 Microsaccades (MS) are small, involuntary eye movements that occur 

roughly once or twice per second (Rolfs, 2009). These movements are closely 

linked to attentional sampling mechanisms involving the frontal eye fields and 

the superior colliculus (Hafed et al., 2009, 2015; Krauzlis et al., 2013; Peel et 

al., 2016; Rolfs, 2009; Rucci & Poletti, 2015; C.-A. Wang & Munoz, 2015; Zénon 

& Krauzlis, 2012). When attention is rapidly captured by a surprising events, 

microsaccades are temporarily suppressed  (Hafed & Clark, 2002; Rolfs et al., 

2008; Zhao, Wai Yum, et al., 2019) —a phenomenon known as microsaccadic 

inhibition (MSI). This suppression is considered to reflect a temporary 

interruption of the brain’s spontaneous exploration of the visual environment, 

allowing prioritisation of processing potentially important events (Contadini-

Wright et al., 2023; Zhao, Wai Yum, et al., 2019).  

 The degree of MSI—typically characterised by faster onset, later offset, 

and fewer microsaccades during the inhibition phase—has been shown to be 

modulated by the salience of visual stimuli (Bonneh et al., 2015; Rolfs et al., 

2008). Zhao, Wai Yum, et al. (2019) extended this finding to the auditory 

domain, demonstrating that the subjective salience ranking of sounds correlates 

with the degree of MSI. This raises the possibility that MSI reflects domain-

general stimulus salience and the extent of stimulus-evoked bottom-up 

attentional capture. 

 In contrast, the pupil dilation response (PDR) is linked to activity in the 

locus coeruleus (LC), the brain’s primary source of norepinephrine (NE; Aston-

Jones & Cohen, 2005; Joshi et al., 2016). Since NE modulates arousal and 

global vigilance by enhancing neuronal gain (Sara, 2009; Sara & Bouret, 2012), 

PDR serves as an indirect measure of arousal. Supporting this connection, 

Joshi et al. (2016) showed that loud, arousing tones evoke increases in LC 

activity and larger pupil dilations. Additionally, the superior colliculus (SC) has 

been implicated in mediating pupil responses to salient stimuli in the visual 

domain (C.-A. Wang et al., 2014; C.-A. Wang & Munoz, 2015). However, 
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findings in the auditory domain are less consistent (Liao et al., 2016; C.-A. 

Wang et al., 2014; Zhao, Wai Yum, et al., 2019). 

 Although both MSI and PDR are evoked by surprising stimuli, they 

exhibit distinct temporal dynamics. In Figure 6.3, MSI emerges around 300 ms 

after stimulus onset and persists for several hundred milliseconds, whereas the 

pupil dilation response (PDR) begins later—after 500 ms in Figure 6.3—and 

peaks around one second post-onset (see also Contadini-Wright et al., 2023). 

These differences suggest that MSI and PDR may reflect distinct stages of 

neural processing, with MSI indicating early attentional orienting and PDR 

indexing a later, arousal-related response. Alternatively, the temporal 

dissociation may arise from physiological factors—for example, delays in the 

neural circuit linking arousal modulation to the musculature controlling pupil 

size. While some studies have reported correlations between the two responses 

(Johnston et al., 2022; C.-A. Wang et al., 2022; C.-A. Wang & Munoz, 2021), 

the precise nature of their relationship remains under debate. 
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Figure 6.3 Examples of sound-evoked ocular dynamics.  

Top:  Microsaccadic inhibition (MSI) induced by various sound stimuli. 

The y-axis indicates the microsaccade rate (events per second) 

relative to baseline. Each coloured line represents a different sound 

condition. Bottom: Pupil dilation response (PDR) evoked by the same 

sound stimuli. Each coloured line corresponds to a different sound; the 

thick black line indicates the average response across conditions. The 

dashed line marks the peak of the average PDR. Adapted from Zhao, 

Wai Yum, et al. (2019). 

 

 In this experiment, I investigated whether MSI and PDR are sensitive to 

speaker size cues embedded in vowel sounds. I hypothesised that voices 

perceived as coming from larger speakers would be judged as more salient—or 

more threatening—than those from smaller speakers, and would thus elicit 

stronger MSI and/or greater PDR. 

6.4.1 Methods 

6.4.1.1 Stimuli 

The stimuli used in this experiment were generated in the same manner 

as those in Experiment 1. The same three vowel sounds (/a/, /e/, /i/) were 

included; however, sounds corresponding to the 169 cm height condition were 

omitted, based on findings from Experiment 1. This resulted in a total of 12 

sound stimuli used in the current experiment. Based on the result from 

Experiment 1, the subsequent analyses treat vowel identity as a controlled 

factor and focused solely on differences in size. 

6.4.1.2 Procedure 

 Participants were seated in a dimly lit, acoustically shielded room (IAC 

triple-walled sound-attenuating booth), with head movements minimised using a 

chinrest. They passively listened to auditory stimuli delivered diotically via 
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headphones (Sennheiser HD558) at a comfortable listening level (adjusted by 

each participant). During sound presentation, participants maintained visual 

fixation on a central cross displayed on a monitor (24-inch BENQ XL2420T; 

1920 × 1080 resolution; 60 Hz refresh rate) positioned 65 cm away. 

 Each participant completed five blocks of trials, with rest breaks between 

blocks. Each block contained 48 trials, comprising 12 distinct sound stimuli 

presented four times in a randomised order. Intertrial intervals were jittered 

between 6 and 7 seconds. Stimulus presentation was controlled using the 

Psychtoolbox package (Psychophysics Toolbox Version 3) in MATLAB (2018a, 

The MathWorks, Inc.). 

6.4.1.3 Eye tracking recording  

 Ocular dynamics were recorded using an EyeLink 1000 Desktop Mount 

eye tracker (SR Research), positioned below the monitor and sampling at 1000 

Hz. A standard five-point calibration procedure was performed prior to each 

block. Each trial commenced only after the system confirmed that the 

participant’s eyes were open and fixated on the central fixation cross. 

Participants were instructed to blink naturally throughout the experiment. 

6.4.1.4 Microsaccade preprocessing and analysis 

 To identify microsaccade (MS) events from horizontal eye movement 

data, the following criteria were applied, based on Zhao, Wai Yum, et al. (2019): 

(a) velocity exceeding six times the standard deviation within each block; (b) 

event duration between 3 ms and 100 ms; (c) binocular detection with onset 

disparity less than 10 ms between eyes; and (d) a minimum interval of 50 ms 

between successive MS events. The onset of each detected MS was coded as 

1, while all other time points were coded as 0. The resulting binary time series 

was then epoched from –1 to +5 seconds relative to sound onset. 

 To examine MS dynamics over time, MS event series were smoothed 

using a causal exponential kernel (decay parameter α = 1/50 ms). For this 

analysis, the four sound conditions were grouped into two categories: large (201 
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cm and 184 cm conditions) and small (155 cm and 142 cm conditions). For 

each participant, MS event data were first averaged within each group (large, 

small), then smoothed, and subsequently z-score normalised using the baseline 

window from –0.2 to 0 seconds relative to stimulus onset. 

 Trials with excessive blinking were excluded, as they can compromise 

data quality. The number of blinks per epoch was calculated, and the top 10% of 

blink-heavy epochs across all participants were discarded. Additionally, 

participants with extremely low MS rates (<0.5 events/s across trials) during the 

pre-stimulus (–1 to 0 s) time window were excluded from further analysis. As a 

result, three participants were flagged as outliers.  

6.4.1.5 Pupillometry preprocessing and analysis 

 Only data from the left eye were analysed. Periods corresponding to 

blinks, partial blinks, or when gaze deviated more than 100 pixels from the 

fixation cross were excluded. These missing segments were reconstructed 

using shape-preserving piecewise cubic interpolation. The resulting time series 

were smoothed using a 50 ms Hanning window. 

 Data were then epoched from 1 second before to 5 seconds after sound 

onset, z-score normalised within each block, and baseline-corrected by 

subtracting the median pupil size in the −0.2 to 0 s window preceding stimulus 

onset from each trial. As in the MS analysis, sound conditions were grouped 

into large and small speaker size categories and averaged per condition. 

 Trials contaminated by excessive blinking were excluded using the same 

criteria as in the MS analysis. In addition, trials with average responses (0–5 s 

post-stimulus) falling outside ±2 standard deviations (SD) of the condition mean 

were discarded. Blocks with baseline variability (−0.2 to 0 s) exceeding ±2 SD of 

the grand average were also excluded. Furthermore, blocks in which 

participants maintained fixation for less than 65% of the time were removed. 

Data from one participant were entirely excluded, as more than half of the data 

were identified as outliers under these criteria. 
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6.4.1.6 Statistical analysis 

 For both MS and PDR data, the difference between sound conditions 

(large vs. small) was calculated for each participant. These individual 

differences were then subjected to bootstrap resampling (Efron & Tibshirani, 

1994). A difference was considered statistically significant if more than 99% of 

the bootstrap iterations fell consistently above or below zero (p < .01). 

6.4.1.7 Participants 

 Thirty-one paid participants aged 18 to 40 were recruited for Experiment 

2. For the MS analysis, three participants were excluded due to the data quality 

(see above for details), resulted in a final sample of twenty-eight participants (23 

females; mean age = 23.5, ± 4.1). For the PDR analysis, one participant was 

excluded due to the data quality (see above for details), resulted in a final 

sample of thirty participants (23 females; mean age = 24.1, ± 4.7). All 

participants reported no history of hearing or neurological disorders. All 

experimental procedures were approved by the research ethics committee of 

University College London, and written informed consent was obtained from 

each participant. 

6.4.2 Results  

6.4.2.1 Microsaccadic inhibition did not reflect speaker size 

 Microsaccadic events (see Methods) were extracted for each trial 

(Figure 6.4A left). A rapid reduction in MS events—microsaccadic inhibition 

(MSI)—was consistently observed across trials immediately following sound 

onset. To compare the degree of MSI between conditions in more detail, the MS 

event data were smoothed (see Methods) and averaged within two groups 

based on speaker size: large (201 cm and 184 cm conditions) and small (155 

cm and 142 cm conditions; Figure 6.4A right). A bootstrap resampling 

procedure was performed to assess differences between groups, but no 

significant difference was found (p < .01). This result suggests that, contrary to 
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the original hypothesis, MSI does not vary as a function of perceived speaker 

size. 

6.4.2.2 Unexpected PDR modulation by speaker size 

 Next, we examined whether speaker size information is reflected in the 

pupil dilation response (PDR). To test this, PDRs for the large and small size 

conditions were compared using bootstrap resampling. This analysis revealed a 

significant difference (p < .01) between the two conditions approximately 2.5–3 

seconds after sound onset. Interestingly, the effect was in the opposite direction 

to the hypothesis: smaller-sized sounds elicited a larger PDR than larger-sized 

sounds (Figure 6.4B). 
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Figure 6.4 Ocular dynamics evoked by sounds conveying 
different speaker size.  

[A] Microsaccadic (MS) events. Left: Raster plot of MS events pooled 

across all participants. Each dot represents the onset of an MS event, 

with the y-axis indicating individual trials grouped by speaker size 

conditions. The pink line along the x-axis marks the timing of sound 

presentation, and the black square highlights the microsaccadic 

inhibition (MSI). Right: Data on the left is smoothed and averaged for 

two size conditions (large: 201 cm and 184 cm conditions; small: 155 

cm and 142 cm conditions). Shaded areas represent ± 2 standard 

errors of the mean (SEM). The pink line along the x-axis marks the 

timing of sound presentation. [B] Averaged pupil dilation response 

(PDR) for each size condition. Periods showing significant differences 

between conditions (p < .01, determined via bootstrap resampling) are 

indicated by bold horizontal lines. Shaded areas represent ± 2 SEM. 

The pink line along the x-axis marks the timing of sound presentation. 

[C] Average acoustic power for sounds representing small (142 cm 

and 155 cm) and large (184 cm and 201 cm) speaker sizes. Power 

was calculated in 20 ms bins over the first 500 ms of each stimulus. 

Shaded areas represent ± 2 SEM. 

 

6.4.2.3 Acoustic power comparison across conditions 

 The stimuli used in this experiment were RMS-equalised to match their 

mean power. However, sounds with identical RMS values can still differ in 

perceived loudness due to variations in their long-term power profiles. Given 

that the PDR results contradicted the original hypothesis—and that the 

divergence appeared to emerge early in the PDR time course (though not 

significantly)—I tested whether differences in acoustic power might account for 

the observed effect. 
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 To examine this, the first 500 ms of each sound was divided into 20 ms 

bins, and the average power within each bin was calculated (Figure 6.4C). 

Independent-samples t-tests (α = 0.05) were conducted at each time bin to 

compare the large and small size conditions. No significant differences were 

found at any time point, even before correcting for multiple comparisons. These 

findings suggest that the two sound conditions were acoustically matched and 

that power differences are unlikely to explain the PDR result. 

6.4.3 Discussion 

 The aim of this study was to investigate whether vocal size information is 

reflected in ocular dynamics, focusing specifically on microsaccadic inhibition 

(MSI) and pupil dilation response (PDR) as potential objective measures of 

auditory salience. I hypothesised that voices associated with larger speaker 

sizes would elicit stronger MSI and PDR responses. To test this, I conducted an 

online behavioural experiment and a controlled eye-tracking study. The online 

experiment confirmed participants’ sensitivity to vocal size cues, showing 

reliable size discrimination across most conditions. However, contrary to the 

expectations, the eye-tracking results revealed no significant differences in MSI 

between sound conditions, and unexpectedly, smaller-sized voices evoked 

larger PDRs than larger-sized ones. 

 In the eye-tracking experiment, MSI was induced by all sound conditions 

(Figure 6.4A), yet no significant differences emerged between size conditions. I 

had hypothesised that larger-sized voices—presumably more salient due to 

their association with dominance or threat—would produce stronger MSI. The 

absence of this effect suggests that while the sound itself captures attention, 

differences in vocal size information do not modulate the degree of early 

attentional orienting as indexed by MSI. 

 Since microsaccades are primarily controlled by the superior colliculus 

(SC)—a midbrain structure involved in automatic attentional shifts (Hafed et al., 

2009)—this null finding implies that size-related vocal cues may not be 
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represented at this subcortical level. This interpretation aligns with 

neuroimaging evidence indicating that speaker size perception involves higher-

order cortical regions rather than subcortical structures (von Kriegstein et al., 

2006, 2007). Thus, the lack of MSI modulation suggests that speaker size may 

not be an intrinsically salient feature processed through rapid, bottom-up 

mechanisms. Instead, it may rely on more abstract, interpretive processes 

requiring cortical integration and contextual evaluation. It is also possible that, in 

human voices, height does not necessarily convey threat or salience in the way 

it might in wild animals. For instance, Raine et al. (2018) found that judgments 

of strength and size of the speakers from the voices were uncorrelated, with 

listeners sensitive to both cues separately, implying that threat (strength)-related 

information may be embedded in other vocal features, not size. Alternatively, 

the size contrast between 142 cm and 201 cm may have been insufficient to 

elicit measurable differences in MSI responses. Future studies could leverage 

vocoder flexibility to manipulate vocal stimuli beyond typical human height 

ranges to more effectively test this hypothesis.  

 Alternatively, vocal size information captured bottom-up attention to 

some extent, but MSI was not sensitive enough to detect this. While MSI has 

been extensively studied in vision and shown to reflect visual salience (Bonneh 

et al., 2015; Rolfs et al., 2008), auditory evidence is limited—mostly stemming 

from one study linking MSI to roughness-mediated auditory salience (Zhao, Wai 

Yum, et al., 2019). Further research with a broader variety of auditory features 

is necessary to validate ocular dynamics as a reliable measure of objective 

sound salience. 

 Unlike MSI, the PDR showed a significant, though transient, difference 

between conditions: smaller-sized voices elicited larger pupil dilations, 

characterised by a more prolonged reduction phase following peak dilation 

compared to larger voices. This finding contradicts the hypothesis that larger 

voices would evoke stronger autonomic responses. Follow-up analyses 

confirmed that this effect was not explained by differences in acoustic power 
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during the early phase of stimuli. Although it is tempting to conclude that 

smaller-sized voices are more salient or arousing, it is also possible that 

perceived loudness—a subjective quality not fully controlled by RMS 

normalisation—contributed to the PDR pattern. Since loudness differences are 

known to affect pupil responses (Liao et al., 2016), future studies could 

incorporate explicit loudness ratings or use loudness roving to control for this 

factor.  

 Why did the PDR show a difference while MSI did not? This may reflect 

differences in their underlying neural circuits and temporal dynamics: MSI 

reflects early attentional orienting primarily mediated by the superior colliculus, 

whereas PDR indexes later, arousal-related processing linked to the locus 

coeruleus–norepinephrine system (Aston-Jones & Cohen, 2005; Contadini-

Wright et al., 2023; Hafed et al., 2009; Joshi et al., 2016; Zhao, Wai Yum, et al., 

2019). Alternatively, the discrepancy might be simply due to the inherently 

noisier nature of microsaccade data—since microsaccades occur only once or 

twice per second (Hafed et al., 2009), the necessary data smoothing could have 

obscured subtle condition differences that the more continuous pupil diameter 

measurements could capture. 

 Taken together, this study confirms that human listeners possess a 

remarkably robust ability to discriminate speaker size from vocal cues, even 

under minimal instruction and uncontrolled conditions. However, there was no 

clear modulation of ocular dynamics by speaker size, suggesting that size 

information may not serve as a bottom-up salience cue. The understanding of 

which auditory features capture bottom-up attention—and the use of ocular 

dynamics as objective measures of auditory salience—remains an emerging 

area of research. Further exploration of other factors contributing to auditory 

salience, alongside continued validation of ocular dynamics as reliable objective 

measure of auditory salience, will deepen our knowledge of auditory attention 

mechanisms and inform the design of improved soundscapes and auditory 

alarms. 
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