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Abstract  22 

Interaction between Tethys and the Paleo-Pacific subduction zones in Southeast Asia 23 

during the Mesozoic remains poorly understood. Using new and published zircon 24 

U-Pb and Hf datasets from Borneo (Paleo-Pacific domain) and Sumatra (Tethyan 25 

domain), we propose that isotopically juvenile magmatism was active on both sides of 26 

Sundaland due to the initiation of inward-dipping double subduction during the latest 27 

Triassic when Indochina collided with Sibumasu, as evidenced by a pronounced 28 

positive shift in zircon εHf(t) values from both Cenozoic sedimentary successions and 29 

Mesozoic magmatic rocks in Sumatra and Borneo. From the latest Triassic to 30 

Cretaceous, the contrasting positive εHf(t) values ranges between Borneo and 31 

Sumatra, with Borneo showing a broad range and Sumatra a narrower variability, 32 

imply that the inward-dipping double subduction system evolved asymmetrically due 33 

to differences in slab dip angles between the subducting Meso-Tethys and 34 

Paleo-Pacific oceanic lithosphere. After 80 Ma, this asymmetric double subduction 35 

system was disrupted, marked by the complete cessation of arc magmatism in Borneo 36 

while isotopically juvenile magmatism continued on Sumatra. Our findings emphasize 37 

that, when compared to the contemporary single-sided subduction system of the 38 

western Meso-Tethyan domain and the northern Paleo-Pacific domain, SE Asia 39 

developed more juvenile crust due to large-scale upper plate extension driven by 40 

inward-dipping double subduction.  41 

 42 

Plain Language Summary (PLS) 43 



The interaction between the Tethyan and Paleo-Pacific domains has shaped the 44 

formation of the present megacontinent Eurasia. However, how the two subduction 45 

zones (Tethyan and Paleo-Pacific domains) interacted and evolved, and how they 46 

impacted on the geology of Southeast Asia is not yet clear. Using radiometric ages 47 

and hafnium isotopes from magmatic and detrital zircon, we found that the interaction 48 

between the Tethyan and Paleo-Pacific domains in Southeast Asia can be explained by 49 

an inward-dipping double subduction model that began in the Late Triassic. 50 

Furthermore, our results highlight that the strengthened juvenile crustal signatures in 51 

Southeast Asia because the large-scale extension of upper plate in an inward-dipping 52 

double subduction system. 53 

  54 



1. Introduction 55 

The last supercontinent cycle was characterized by the breakup of Pangea, a 56 

process that began in the Triassic (Olsen, 1997; Golonka, 2007; De Min et al., 2020), 57 

leading to the formation of the present megacontinent Eurasia, regarded as a potential 58 

precursor to the future supercontinent Amasia (Wang et al., 2020). The assembly of 59 

Eurasia was driven by broadly E-W-trending Tethyan-style collisional orogens 60 

(Tethyan tectonic domain) and the approximately N-S-trending circum-Pacific-style 61 

accretionary orogens (Paleo-Pacific tectonic domain). These trends converge in 62 

Southeast Asia, influencing both mantle convection patterns and climate (Metcalfe, 63 

2011; Li et al., 2019; Nance et al., 2014; Wang et al., 2020; Wang et al., 2024).  64 

The post Triassic evolution of western Tethyan and the northern Paleo-Pacific 65 

tectonic domains have been extensively studied. The western Tethyan tectonic 66 

domains are characterized by closure of the Devonian-Triassic Paleo-Tethys in the 67 

Late Triassic (Hu et al., 2014; Fan et al., 2024), as well as the subduction and demise 68 

of the Permian–Cretaceous Meso-Tethys and Jurassic–Cretaceous Ceno-Tethys, 69 

between the Triassic and Paleogene (Hall, 2012; Metcalfe, 2013). These 70 

developments were accompanied by the accretion to Eurasia of continental blocks 71 

derived from the northern margin of Gondwana (e.g., the South Qiangtang and Lhasa 72 

terranes; Fig.1A; Metcalfe, 2017, 2021). In the Phanerozoic the Paleo-Pacific plate 73 

has been subducting along the East Asian continental margin in various stages, 74 

although the timing of its initial subduction remains debated. For South China, 75 



proposed subduction initiation of Paleo-Pacific plate spans from 500 Ma to the 76 

Permian or Triassic (Fig.1A; Li and Li, 2007; Isozaki et al., 2010; Zhu et al., 2013; 77 

Pastor-Galán et al., 2021; Zhou et al., 2023), while the North China Craton records 78 

Early Jurassic onset of Paleo-Pacific plate subduction (Wu et al., 2019; Zhu & Xu, 79 

2019; Qiu et al., 2022a, b).  80 

 81 

 82 

Figure 1. (A) Simplified tectonic map illustrating the Tethys tectonic domains and the 83 

Pacific tectonic domains, along with the temporal evolution of the ocean basins (refer 84 



to Metcalfe 2021; Zhou et al., 2023 and reference therein). (B) Location of compiled 85 

Mesozoic magmatic and detrital zircons, as well as the new detrital zircons in the 86 

interaction zone. Further details are provided in Table S3. 87 

 88 

However, the interaction and evolution of these two subduction zones (Tethyan 89 

and Paleo-Pacific domains), as well as their impact on the geology of Southeast Asia, 90 

remain unclear. Present-day West Sumatra and West and Southwest Borneo, which are 91 

separated from the Malay Peninsula by the Sunda Shelf, and the Bangka and Belitung 92 

islands, represent the easternmost extent of the Tethyan domain (Fig 1B; Metcalfe, 93 

2017, 2021; Zhang et al., 2019; Li et al., 2020) and the southernmost extent of the 94 

Paleo-Pacific domain (Metcalfe, 1996: Hennig et al., 2017; Breitfeld et al., 2020; 95 

Wang et al., 2022a, 2023, 2024). Two principal models have been proposed regarding 96 

the origin of Southwest Borneo: (1) it represents an allochthonous terrane that 97 

accreted to SE Asia during the Late Jurassic or Early Cretaceous (Metcalfe, 2009; 98 

Hall, 2012; Hennig et al., 2017; Breitfeld et al., 2020), or (2) it was autochthonous, 99 

undergoing accretion linked to Paleo-Pacific plate subduction since the Earliest 100 

Jurassic or possibly earlier (Wang et al., 2022a, 2023, 2024). Nevertheless, Southwest 101 

Borneo—or at least its northwestern portion (the Northwest Schwaner zone, termed 102 

West Borneo in Hennig et al., 2017)—was situated along the southeastern margin of 103 

the Sundaland continent since the Late Triassic. Tectonic reconstructions constrain 104 

accretion of the West Sumatra block onto the Sundaland margin to the Late Triassic, 105 



after which a Mesozoic subduction-related arc developed within a narrow belt 106 

throughout West Sumatra (Barber et al., 2005; Cobbing, 2005; Barber & Crow, 2009; 107 

Li et al., 2020; Metcalfe, 2021). Thus, the Mesozoic magmatic rocks in West Sumatra 108 

and West and/or Southwest Borneo record, respectively, continental accretion and 109 

growth related to the northeastward subduction of the Tethyan lithosphere (e.g., Li et 110 

al., 2020) and the westward subduction of the Paleo-Pacific plate (Breitfeld et al., 111 

2017, 2020a; Hennig et al., 2017; Wang et al., 2024). These rocks provide an 112 

important record for understanding how these two subduction systems interacted.  113 

In this study, we examined compiled regional magmatic and detrital zircon U-Pb 114 

data in the West and Southwest Borneo and West Sumatra, and integrated these results 115 

with new zircon U-Pb and Hf isotopic data obtained from samples collected across 116 

northern Borneo (Sabah). Zircon data from Mesozoic igneous rocks were used to 117 

track the spatial distribution of magmatism through time and Mesozoic detrital zircon 118 

ages from Upper Oligocene to Neogene sedimentary rocks capture temporal 119 

variations in magmatism across the sediment source regions. Collectively, these 120 

datasets capture regional temporal and spatial changes in Mesozoic magmatism 121 

providing fresh new insights into the tectono-magmatic evolution and underlying 122 

geodynamic processes across the interaction zone (Fig 1A) between the Tethyan and 123 

Pacific-Pacific domains.  124 

 125 

2. Geological Background  126 



Southeast Asia was formed by the successive assembly of different continental 127 

fragments that rifted from Gondwana since the Paleozoic (Metcalfe, 1988, 2017). 128 

During the Triassic, major continental blocks, such as Sibumasu, Indochina, West and 129 

SW Borneo were positioned between the Tethyan and Paleo-Pacific domains (Fig.1A; 130 

e.g., Metcalfe, 2017), herein referred to as the interaction zone of both. The origin of 131 

Southwest Borneo remains debated. It may represent either a continental terrane rifted 132 

from northwestern Australia (e.g., Metcalfe, 2009; Hall, 2012; Hennig et al., 2017; 133 

Breitfeld et al., 2020a), or a Paleo-Pacific active continental margin similar or 134 

attached to West Borneo (e.g., Wang et al., 2022a, 2023, 2024). In contrast, West 135 

Borneo (containing the Northwest Schwaner Zone) was unambiguously situated at the 136 

western and southernmost part of the Paleo-Pacific subduction zone in the Triassic, 137 

where most of the subduction-related Mesozoic igneous and metamorphic rocks were 138 

developed (Fig. 1B; Haile et al., 1977; Williams et al., 1988; Hennig et al., 2017; 139 

Breitfeld et al., 2020a). Upper Mesozoic to Paleogene fluvio-deltaic sedimentary 140 

rocks and deep-marine turbidites are mainly developed in Sarawak and Sabah, 141 

respectively. Sabah, situated at the northern tip of Borneo, is thereby dominated 142 

mainly by Paleogene-Neogene clastic sedimentary rocks deposited on the Mesozoic 143 

Chert-Spilite Formation/ophiolite basement (Hutchison, 2005). Cenozoic rifting of the 144 

Sunda Shelf caused by the propagating South China Sea, along with associated 145 

tectonic events in Borneo resulted in erosion and deposition of large volumes of 146 

Lower Oligocene to Neogene sediments in Sabah (Hutchison, 1996, 2005; Hall, 2013; 147 



Hall & Breitfeld, 2017; Breitfeld et al., 2023a, b). Although Early Cenozoic drainage 148 

reorganization in Borneo triggered dynamic sediment provenance fluctuations 149 

between the Malay-Thai Peninsula and West and Southwest Borneo (e.g., Galin et al., 150 

2017; Hennig-Breitfeld et al., 2019; Breitfeld et al., 2020b), most Upper Oligocene to 151 

Neogene sedimentary rocks in Sabah are dominated by Cretaceous zircons and were 152 

mainly derived by multi-recycling from West and Southwest Borneo with minor 153 

inputs from inland Sundaland (e.g., Malay Peninsula) or mainland Asia (van Hattum 154 

et al., 2006, 2013; Galin et al., 2017; Hennig-Breitfeld et al., 2019; Breitfeld et al., 155 

2020b, 2023a, b; Quek et al., 2021b). As a result, these Cretaceous zircons-dominant 156 

sedimentary successions represent an important archive of continental growth history 157 

and magmatism related to subduction of the southernmost Paleo-Pacific oceanic slab 158 

beneath Borneo in the Mesozoic.  159 

By contrast, Sumatra lies at the easternmost Tethyan domain and was partly 160 

formed from accretion of the Woyla Arc, and the West and East Sumatra blocks in the 161 

Cretaceous (Advokaat et al., 2018; Fig. 1B). Rocks exposed in Sumatra record 162 

subduction of Mesozoic Tethyan lithosphere following the closure of the 163 

Paleo-Tethyan Ocean in the Middle to Late Triassic (Metcalfe, 1996; Barber and Crow, 164 

2009). The Woyla Arc is mainly characterized by a Lower Cretaceous 165 

volcanic-sedimentary succession, comprising basaltic to andesitic volcanic rocks 166 

interbedded with clastic sedimentary units. It is interpreted as an intra-oceanic 167 

subduction-related arc that accreted to Sundaland in the Middle-Late Cretaceous due 168 



to the absence of continental rocks (Barber, 2000; Baber et al., 2005; Metcalfe, 2017, 169 

2021). West and East Sumatra are separated by the Medial Sumatra Tectonic Zone, 170 

characterized as a major crustal shear zone/strike-slip fault system rather than a suture 171 

zone, given the complete absence of exposed ophiolitic components (e.g., Baber & 172 

Crow, 2009; Metcalfe 2013). West Sumatra was probably emplaced by the Medial 173 

Sumatra Tectonic Zone in the Late Triassic (Baber & Crow, 2009). Triassic-Jurassic 174 

and Cretaceous granitoids that represent a subduction-related arc magmatic suite are 175 

mainly distributed within a narrow belt in West Sumatra, representing the 176 

southeastern extension of the Meso-Tethyan arc system (Gasparon and Varne, 1995; 177 

Cobbing, 2005; Zhang et al., 2019; Li et al., 2020). Thus, detrital and magmatic 178 

zircon data in West Sumatra record the onset of crustal growth related to subduction 179 

of the easternmost Tethyan lithosphere after the Late Triassic (Zhang et al., 2019; Li 180 

et al., 2020). 181 

 182 

3. Methods 183 

3.1 Sampling and Analytical Methods 184 

A total of five representative sandstones were collected from strata in Sabah 185 

(northern Borneo), which include the Cretaceous turbidite slice within the ophiolitic 186 

basement (TB-10B), Labang Formation (Late Oligocene, SK-06), Garinono Mélange 187 

(Early Miocene, SK-02), Kumaunt Formation (Early Miocene, K-01) and Tanjong 188 

Formation (Early-Middle Miocene, K-03). Zircon U-Pb-(Hf) isotopic analyses were 189 



conducted on these samples to constrain temporal variations in magmatism along the 190 

southernmost segment of the Paleo-Pacific subduction zone.  191 

Zircon grains were separated using standard density and magnetic techniques 192 

after Mange and Maurer (1992). U-Pb dating was performed by laser 193 

ablation-inductively coupled plasma-mass spectroscopy (LA-ICP-MS) at Wuhan 194 

SampleSolution Analytical Technology Co., Ltd., Wuhan, China using the Agilent 195 

7900 ICP-MS coupled with a GeolasPro laser ablation system. The diameter of the 196 

analytical spot is 32 µm. Zircon 91500 (1065 Ma; Wiedenbeck et al., 1995) and glass 197 

NIST610 (Pearce et al., 1997) served as external standards for U-Pb dating and trace 198 

element calibration. Data is provided in Supplementary Table S1. 199 

From the 506 dated grains, 117 concordant zircons with ages younger than 500 200 

Ma were selected for Lu­Hf isotopic analysis by LA-MC (multicollector) ICP-MS to 201 

track the Mesozoic tectono-magmatic evolution of Borneo. In-situe Lu-Hf isotopic 202 

measurements were performed at Wuhan SampleSolution Analytical Technology Co., 203 

Ltd employing a Neptune Plus MC-ICP-MS (Thermo Fisher Scientific, Germany) 204 

coupled with a Geolas HD excimer ArF laser ablation system (Coherent, Göttingen). 205 

The diameter of the ablation spot is 44 µm. Analyses followed established Hu et al. 206 

(2012) operational frameworks. Plešovice, 91500 and GJ-1 are analyzed 207 

simultaneously with our samples to ensure the reliability of our data (Zhang et al. 208 

2020). Their external precision (2SD) is better than 0.000020, with measured values 209 

showing concordance with published reference values within analytical uncertainty. 210 



ICPMSDataCal was used to perform off-line selection and integration of analyzed 211 

signals and mass bias calibration (Liu et al., 2010). Data is provided in Supplementary 212 

Table S2. 213 

3.2 Data Compilation 214 

To determine the interaction and evolution of the two subduction zones 215 

(Paleo-Pacific and Tethyan domains), we compiled Neogene detrital zircon U-Pb-(Hf) 216 

data from Sabah (Breitfeld et al., 2023a; Zhang et al., 2023) and Sumatra (Hsu, 2016; 217 

Zhang et al., 2019). Zircon U-Pb(-Hf) data of Mesozoic magmatic rocks from 218 

Sumatra (Li et al., 2020), West Borneo and Southwest Borneo (Setiawan et al., 2013; 219 

van Hattum et al., 2013; Hennig et al., 2017; Breitfeld et al., 2017, 2020a; Gan et al., 220 

2022; Qian et al., 2022; Wang et al., 2021a, 2021b, 2022a, 2022b), Indochina 221 

(Shellnutt et al., 2013; Tran et al., 2014; Hieu et al., 2015; Shi et al., 2015; Wang et al., 222 

2016; Hou et al., 2019; Nguyen et al., 2019; Minh et al., 2020), Malay Peninsula 223 

(Liew & Page et al., 1985; Searle et al., 2012; Ghani et al., 2013; Oliver et al., 2014; 224 

Ng et al., 2015; Jamil et al., 2016; Gillespie et al., 2019; Hazad et al., 2019; Cao et al., 225 

2020; Liu et al., 2020; Quek et al., 2021a; Wang et al., 2021a; Yu et al., 2022; Qian et 226 

al., 2023), Bangka and Belitung Island (Ng et al., 2017; Wang et al., 2021a) were also 227 

compiled. 228 

To ensure data reliability and comprehensiveness, all data were compiled directly 229 

from original studies, retaining the authors’ own processing approaches—including 230 

outlier removal and concordance threshold selection. Compiled data from the 231 



Mesozoic magmatic rocks and the Neogene detrital samples comprising 7,486 zircon 232 

U-Pb ages and 4,224 Hf isotopic measurements. The locations of the new study 233 

samples and complied samples are shown in Figure 1B. Compiled zircon age data and 234 

Hf isotopic data are shown in Supplementary Table S3 and Table S4, respectively. 235 

4. Results 236 

All new zircon grains from the Cretaceous turbidite slice and Upper 237 

Oligocene-Neogene sandstones in Sabah display lengths of 60-200 μm, and axial 238 

ratios spanning 1:1 to 3:1 (Fig. 2). Most of these detrital zircon data yield ages 239 

younger than 500 Ma (Table S1), comprising a total of 114 Paleozoic, 232 Mesozoic 240 

and 11 Cenozoic age. Grains exhibit oscillatory zoning (Fig. 2), and have Th/U ratios > 241 

0.1, consistent with a magmatic origin (Corfu et al., 2003). The Triassic and 242 

Cretaceous zircons display subrounded to euhedral morphologies, suggesting first 243 

cycle to moderately recycled input (Fig. 2). 244 



 245 

Figure 2. Cathodoluminescent (CL) images of zircons from the Cretaceous turbidite 246 

slice and Upper Oligocene-Neogene sandstones sampled in this study. 247 

 248 

The five samples exhibit comparable zircon age distributions, while the 249 

Cretaceous turbidite slice within the ophiolitic basement (TB-10B) contains a higher 250 

abundance of Permo-Triassic and Devonian-Carboniferous zircons (Fig. 3). A limited 251 

population of Oligocene to Early Miocene zircons exists in K-03A of Tanjong 252 

Formation, documenting potential magmatism associated with Proto-South China Sea 253 

subduction during this interval (e.g., Breitfeld et al., 2023a). When integrated with 254 

detrital zircons from published Neogene sedimentary rock samples in Sabah (e.g., 255 

Breitfeld et al., 2023a; Zhang et al., 2023), these zircons maintained a distribution 256 



pattern dominated by Late Cretaceous (~100 Ma) ages, while the Kernel Density 257 

Estimate (KDE) plots show minor age peaks in the Permo-Triassic (~210–260 Ma) 258 

and Devonian-Carboniferous (~330–380 Ma; Fig. 4). The εHf(t) values of these 259 

detrital zircons from five samples began to increase in the Latest Triassic, and became 260 

overwhelmingly positive during the Jurassic and Cretaceous (εHf(t) = −5.2~ +14.9; 261 

Fig. 5) 262 

 263 

 264 



Figure 3. Kernel density estimation (KDE) spectra of detrital zircons from the 265 

Cretaceous turbidite slice and Upper Oligocene-Neogene sandstones sampled in this 266 

study. 267 

 268 

 269 

Figure 4. (A) Kernel density estimation (KDE) spectra of published zircon U-Pb ages 270 

of Mesozoic magmatic rocks around Sundaland. New and compiled detrital zircons 271 

U-Pb ages from the Upper Oligocene-Neogene sedimentary rocks in Sabah and 272 



Sumatra are also shown for comparison. For the references pertaining to the compiled 273 

dataset, please refer to the Methods section. Supplementary Table S1 and Table S3 274 

present the new and compiled zircon age data, respectively. 275 

 276 

Figure 5 shows magmatic activity across West Sumatra and West and Southwest 277 

Borneo from the Permian, through the Triassic when Sibumasu collided with 278 

Indochina, to Early Miocene. Prior to the latest Triassic, magmatic zircons are scarce 279 

in both Borneo and West Sumatra. However, their detrital zircons exhibit scattered 280 

εHf(t) values, with detrital zircons from West Sumatra showing more positive εHf(t) 281 

values relative to those from West and Southwest Borneo. After the latest Triassic, on 282 

the western side (West Sumatra), magmatic zircons exhibit a narrow range in positive 283 

εHf values whereas detrital zircons show a progressive trend towards increasingly 284 

positive εHf values. This is not seen in the West and Southwest Borneo data, which 285 

instead shows a wider scattering of positive εHf values since the latest Triassic. 286 

Subduction-related magmatism in the West and Southwest Borneo appears to have 287 

ceased for a considerable period following 80 Ma. By contrast detrital zircon data 288 

from West Sumatra imply ongoing magmatism and a continuation of the trend of 289 

increasing positive εHf values. 290 



 291 

Figure 5. Zircon ages vs. zircon εHf(t) values of the Mesozoic magmatic rocks and 292 

Neogene sedimentary rocks in West Sumatra and Borneo. Magmatic zircons compiled 293 

from Mesozoic igneous rocks in the Malay Peninsula are also shown for comparison. 294 

For the references pertaining to the compiled dataset, please refer to the Methods 295 

section. Supplementary Table S2 and Table S4 present the new and compiled zircon 296 

Hf isotope data, respectively. 297 

 298 

4. Discussion 299 

4.1. Upper Oligocene-Neogene Sediments in Sabah: A Record of Magmatism in 300 

the Southern Pacific-Pacific Domain 301 



Previous provenance analyses indicates that sources of Cenozoic sedimentary 302 

rocks preserved in Sarawak and Sabah are mainly from West Borneo, Southwest 303 

Borneo and the Malay Peninsula with some grains may have been recycled from older 304 

sedimentary rocks (e.g., van Hattum et al., 2013; Galin et al., 2017; Hennig-Breitfeld 305 

et al., 2019, Breitfeld et al., 2020b, 2023a, b). The Malay Peninsula mainly provided 306 

Permian-Triassic zircons, while West Borneo yielded Triassic and Cretaceous zircons, 307 

and Southwest Borneo dominantly supplied Cretaceous age grains (Fig. 4). New 308 

detrital zircon data from Upper Oligocene-Neogene sandstones are also dominated by 309 

Cretaceous ages (Fig. 3), suggesting that sediment was mainly sourced from West 310 

Borneo and Southwest Borneo via the proto-Rajang River drainage system by 311 

recycling or directly from the arc, rather than from the Malay Peninsula (e.g., 312 

Breitfeld et al., 2020b). The subrounded to euhedral morphological signatures of 313 

Triassic zircons indicate that they may directly originate from the Triassic magmatic 314 

rocks of West Borneo (Fig. 2), while sedimentary recycling of the Kuching-Sibu zone 315 

incorporating Malay-Thai and West Borneo provenance components remains a 316 

plausible mechanism (e.g., Breitfeld et al., 2020b; 2023a, b). Similar to the KDE age 317 

spectra, an MDS plot (Fig. 6; Vermeesch et al., 2016) also shows zircon age 318 

distributions from Sabah samples plotting closest to zircon ages from magmatic rocks 319 

of West Borneo and Southwest Borneo, suggesting that this was the primary source 320 

area.  321 



 322 

Figure 6. A Multi-Dimensional Scalar (MDS; Vermeesch et al., 2016) plot for 323 

compiled zircon U-Pb ages from Mesozoic magmatic rocks around Sundaland, (A) 324 

with or (B) without the new and compiled Neogene detrital zircon data in Borneo and 325 

Sumatra. For the references pertaining to the compiled dataset, please refer to the 326 

Methods section. 327 

 328 

Magmatism in West Borneo and Southwest Borneo has been recognized as 329 

divided into Triassic and Jurassic subduction-related magmatic episodes and a 330 

Cretaceous magmatic arc associated with the Paleo-Pacific plate subduction (Williams 331 

et al., 1988; Breitfeld et al., 2017, 2020a; Hennig et al., 2017; Wang et al., 2021, 332 

2022a, 2024), while some Early Jurassic rift-related within-plate magmatism also 333 

developed in Southwest Borneo (Breitfeld et al., 2020a). Zircon εHf(t) values serve as 334 

a powerful tracer for sediment provenance (e.g., Zhang et al., 2023), with their 335 

capacity to distinguish between mantle-derived material (more positive) and older 336 

crustal components (characterized by strongly negative εHf(t) values) providing 337 

critical insights into the relative contributions of these endmembers to magmatic 338 



systems (Sundell & Macdonald, 2022). Most detrital zircons younger than 200 Ma 339 

have εHf(t) values similar to those of West Borneo and Southwest Borneo magmatic 340 

rocks (Fig. 5), and consistent with the implications of the KDEs and MDS plots that 341 

suggest a dominant supply from West Borneo and Southwest Borneo. A scarcity of 342 

detrital zircons postdating ~80 Ma aligns with the waning and cessation of 343 

subduction-related magmatic activity in West Borneo and Southwest Borneo 344 

(Williams et al., 1988; Hennig et al., 2017; Breitfeld et al., 2017, 2020a; Wang et al., 345 

2024). A small number of zircons younger than 200 Ma fall within the εHf(t) range of 346 

granites in the Malay Peninsula, indicating limited input from that area (e.g., Breitfeld 347 

et al., 2020b). The εHf(t) values of our detrital zircons from Sabah, that represent an 348 

archive of magmatism across West Borneo and Southwest Borneo, began to increase 349 

in the Latest Triassic, and became overwhelmingly positive during the Jurassic and 350 

Cretaceous (Fig. 5). The compiled magmatic zircons from West Borneo and 351 

Southwest Borneo also have heterogeneous εHf(t) values (varying by up to ~20 ε 352 

units) in the Latest Triassic, followed by fully positive εHf(t) values with juvenile 353 

features (Fig. 5). Although the detrital zircons in the Upper Oligocene-Neogene strata 354 

was interpreted as multi-recycling products from Rajang Group and/or Crocker 355 

Formation (Hennig-Breitfeld et al., 2019; Breitfeld et al., 2020b, 2023a, 2023b), the 356 

close similarity of results between Sabah and West and Southwest Borneo supports 357 

the view that the Neogene sediments in Sabah effectively document the temporal 358 

changes in magmatic activity in West Borneo and Southwest Borneo since the 359 



Mesozoic, thus serving as a record of the magmatic evolution of the southern 360 

Paleo-Pacific domain. 361 

 362 

4.2. Spatiotemporal Evolution of Magmatism in each Subduction System  363 

Published whole-rock elemental and Sr-Nd-Pb-(Hf-O) isotopic results indicate 364 

that the Mesozoic magmatic rocks in West Borneo were the products of subduction of 365 

the Paleo-Pacific plate under the East Asia active continental margin (Wang et al., 366 

2021; 2022a; 2024), while some Jurassic magmatic rocks in Southwest Borneo are 367 

interpreted as rift-related within-plate granites (Breitfeld et al., 2020a). Mesozoic 368 

granitoids in Sumatra represent the products of subduction magmatism in the 369 

easternmost Tethys (Li et al., 2020). Temporally, Mesozoic magmatism in West 370 

Borneo and Southwest Borneo exhibits some similarities in age with Sumatra, as 371 

shown by the magmatic zircon U-Pb ages on the KDE and MDS plots (Fig. 4, 6). 372 

During the Early Permian to Middle Triassic, magmatism associated with 373 

Paleo-Tethyan subduction predominantly occurred in East Malaysia, exhibiting 374 

distinct negative εHf(t) signatures (Fig. 5, e.g., Ng et al., 2015; Gillespie et al., 2019; 375 

Liu et al., 2020; Wang et al., 2021a). The positive εHf(t) values of detrital zircons 376 

from Sumatra likely preserve information predating its accretion to Sundaland, given 377 

that Sumatra may represent the southern extension of the West Burma block (Barber 378 

& Crow, 2009; Metcalfe, 2013). In contrast, westward subduction of the Paleo-Pacific 379 

plate remained limited or inactive until the Late Triassic (e.g., Zhou et al., 2023). 380 



Therefore, only sporadic magmatism from this period is preserved in West Sumatra 381 

and West Borneo (Fig. 5). Since latest Triassic, the temporal trends in Hf isotope 382 

variations are broadly similar in magmatic and detrital zircons from both Sumatra and 383 

Borneo, although εHf(t) values of magmatic and detrital zircons in Sumatra are 384 

consistently higher and more uniform than those in Borneo from the same period (Fig. 385 

5). This suggests that evolution of the Mesozoic magmatic arc was temporally 386 

synchronous across the two active continental margins (Sumatra and Borneo). The 387 

notable variation (~20 ε units) in εHf(t) values seen in latest Triassic magmatic and 388 

detrital zircons (220–200 Ma) from both Sumatra and Borneo, representing the 389 

western and eastern boundaries of Sundaland, suggest a mix of evolved and juvenile 390 

crust in each subduction system immediately after Triassic collision between 391 

Indochina and Sibumasu. A trend to positive εHf(t) values on Borneo and Sumatra 392 

was established during the Jurassic and Cretaceous, indicating that juvenile crustal 393 

growth is prevalent on both sides of the interaction zone (Fig. 5). In the central part of 394 

the overriding plate (Malay Peninsula), magmatic rocks remain isotopically evolved, 395 

implying that far from the trench the continental mantle lithosphere is thick (e.g., 396 

Chapman et al., 2017). Detrital data show a magmatic lull after ~80 Ma in West and 397 

Southwest Borneo, indicating that subduction-related arc magmatism in West and 398 

Southwest Borneo had largely ceased by that time (Hennig et al., 2017; Breitfeld et al., 399 

2020a), unlike Sumatra where magmatism continued throughout the Cenozoic (Fig. 4, 400 

5).  401 



Spatially, the post-Latest Triassic magmatic rocks of West Sumatra are distributed 402 

along a narrow belt near the trench with high and uniformly positive εHf(t) values, 403 

while those in West and Southwest Borneo are relatively more widely distributed with 404 

lower positive εHf(t) values away from the trench (Fig. 1B, 7A), potentially due to 405 

differences in the angle, age, and rate of the subducting plates. Although plate 406 

kinematics are not well-constrained due to a lack of preserved oceanic lithosphere, 407 

reconstructions of global plate motion show that from the Jurassic to the Cretaceous, 408 

there is no consistent pattern in reconstructed convergence rates between the two 409 

margins of Sundaland (Fig. 7B; Műller et al., 2016), this suggests that convergence 410 

rate is not the primary factor influencing the spatial distribution patterns of Mesozoic 411 

magmatic rocks. However, global plate reconstructions predict the eastern margin of 412 

interaction zone was mainly influenced by subduction of older Paleo-Pacific oceanic 413 

lithosphere that would be consistent with accreted ocean plate stratigraphy ages in SW 414 

Hokkaido, Japan (Ishiga and Ishiyama, 1987). By contrast, West Sumatra initially 415 

experienced subduction of relatively younger oceanic lithosphere that separating it 416 

from the Woyla Arc (Advokaat et a., 2018). Subduction of more steeply dipping 417 

young oceanic lithosphere would tend to form a narrow arc near the trench due to 418 

their weaker ability to carry volatiles to the lower crust, compared to more gently 419 

dipping subduction of a colder and older serpentinized Paleo-Pacific oceanic 420 

lithosphere (e.g., Bastias-Silva et al., 2024).  421 



  422 

Figure 7. (A) Spatial distribution of zircon εHf(t) values Mesozoic magmatic rocks 423 

(200–66 Ma) in West Sumatra, Malay Peninsula, and West and Southwest Borneo. 424 

Filled circles represent the mean εHf(t) values of magmatic zircons. (B) Convergence 425 

rate and oceanic plate age along the two subduction zones of Sundaland (orange 426 

line=Paleo-Pacific; blue=Tethyan) based on global plate reconstructions of Műller et 427 

al. (2016, 2019).  428 



 429 

4.3. Inward Dipping Double Subduction Initiated in Latest Triassic 430 

Spatiotemporal variations in radiogenic isotope compositions can shed light on 431 

the evolution of subduction zone dynamics. In Sumatra, a fundamental restructuring 432 

of the arc system in the Latest Triassic is identified based on the marked increase in 433 

εHf(t) values observed in zircons from Mesozoic granitoids, as well as detrital zircons 434 

from Cenozoic strata and modern river sediments (Fig 5; Zhang et al., 2019; Li et al., 435 

2020). An extensional fringing arc related to NW-SE trending extensional basins in 436 

Sumatra (Barber and Crow, 2009) or slab retreat or rollback that occurred shortly after 437 

the Middle-Late Triassic collision of Sibumasu with Indochina and East Malaya, have 438 

been considered as indicative of the initial input of juvenile material in Sumatra (Li et 439 

al., 2020).  440 

For Borneo, the presence of Mesozoic supra-subduction zone ophiolites and 441 

Mesozoic-Cenozoic basin indicates that Borneo has been subjected to a protracted 442 

extensional setting since the Late Triassic (Burton-Johnson et al., 2023). The 443 

development of the Triassic Sadong and Kuching Formations and Cretaceous 444 

Pedawan Formation—characterized by forearc basin successions in West 445 

Borneo—provides critical evidence for syn-depositional extensional tectonics (Pieters 446 

et al., 1993; Breitfeld et al., 2017, 2023c; Mazumder et al., 2021), likely associated 447 

with episodic slab rollback during subduction of the Paleo-Pacific plate (Zhou et al., 448 

2023). Significant extensional collapse around 215 Ma also characterizes the 449 



Sibumasu terrane, particularly in northern Thailand and potentially other regions 450 

(Morley, 2018). Therefore, the notable variation (220–200 Ma, ~20 ε units) in 451 

magmatic and detrital zircon εHf(t) values from both Sumatra and Borneo suggest the 452 

addition of juvenile material in an extensional setting in each subduction system.  453 

The initiation of double subduction is usually associated with collision, such as 454 

the Solomon subduction zone (Sun et al., 2021). Numerical modelling indicates that 455 

during the early stages of a double subduction system, the stress on the overriding 456 

plate either remained in an extensional state (Lyu et al., 2019) or transitioned from 457 

compression to extension, typically within the first few million years (Zhang et al., 458 

2024). Therefore, we consider that an inward-dipping double subduction system 459 

underneath Sundaland (the interaction zone) began to be established immediately after 460 

latest Triassic collision between Indochina and Sibumasu (Fig. 8).  461 

 462 



Figure 8. Input of juvenile material into Sumatra and Borneo, initiated in the Latest 463 

Triassic and continued to develop from the Jurassic to the Cretaceous due to the 464 

extension of the inward-dipping double subduction. 465 

 466 

During the Jurassic and Cretaceous, the positive εHf(t) values on Borneo and 467 

Sumatra indicate that the melt source region of the two subduction zones is 468 

predominantly depleted asthenospheric mantle but, mixed with varying proportions of 469 

isotopically evolved continental lithospheric mantle. The contrasting ranges of 470 

positive εHf(t) values imply the double subduction system evolved asymmetrically. 471 

The narrow spatial distribution observed in the arc magmatism of Sumatra and their 472 

uniformly positive εHf(t) isotopic values is thus attributed to the absence of 473 

continental lithospheric mantle near the trench during the high-angle subduction of 474 

the Meso-Tethys slab (e.g., Chapman et al., 2017). In contrast, the wide arc magma 475 

belt and broader Hf isotopic values in Borneo represent varying degrees of 476 

involvement of continental mantle lithosphere during more shallow dipping 477 

subduction of the Paleo-Pacific oceanic crust in that time (Zhou et al., 2023; Fig. 8). 478 

Around 80 Ma, this stable asymmetric double subduction system was disrupted, 479 

marked by the complete cessation of subduction-related arc magmatism in Borneo 480 

while magmatism continued in West Sumatra. In SE Vietnam (north of West Borneo) 481 

subduction-related magmatism had also ceased by c. 80 Ma (Hennig-Breitfeld et al., 482 

2021), implying the waning of the Paleo-Pacific subduction zone at that time. The 483 



magmatic arc in West Sumatra has maintained isotopically juvenile signals even after 484 

80 Ma (Fig. 5). This aligns with numerical models suggesting that large-scale 485 

extension, along with extensive and vigorous mantle upwellings, persists even after 486 

one of the two subductions ceases (Li et al., 2024). 487 

 488 

4.4. Juvenile Crust Production in SE Asia Linked to Double Subduction 489 

Our data show a significant isotopic shift from isotopically evolved to 490 

isotopically juvenile in the continental arc of the Sundaland margin around 200 Ma, 491 

triggered by collision between Sibumasu and Indochina and the initiation of an 492 

inward-dipping double subduction regime (Fig. 5). During the latest Triassic to 493 

Jurassic, Southeast Asia served as an interaction zone connecting the Qiangtang block 494 

of western Meso-Tethys and South China of the northern Paleo-Pacific, where single 495 

subduction developed (Fig. 9A). However, isotopic data for contemporary batholith 496 

from South Qiangtang in the Meso-Tethys domain and South China in the 497 

Paleo-Pacific domain exhibit εHf(t) values lower than those measured from West and 498 

Southwest Borneo and West Sumatra in the interaction zone (Fig. 9B). This raises the 499 

possibility that, compared to single subduction in the Meso-Tethys or Paleo-Pacific 500 

domains, an inward-dipping double subduction system is more conducive to the 501 

formation of juvenile crust. 502 



 503 

Figure 9. (A) Palaeogeographic reconstructions for the Paleo-Pacific and Eastern 504 

Tethys in late Triassic (after Metcalfe, 2017). Notes the enlarged view of the 505 

interaction zone. (B) Density curves of εHf (t) from latest Triassic to early Late 506 

Cretaceous (200–80 Ma) for batholith in the Tethys and Paleo-Pacific domains. Data 507 

of batholith in the South Qiangtang and South China are from Gong et al. (2024), 508 

Zhang et al. (2023) and references therein. 509 

  510 

Numerical simulations indicate that inward-dipping double subduction results in 511 

larger-scale upper plate extension and greater volumes of upwelling mantle compared 512 

to single subduction (Lyu et al., 2019; Li et al., 2024; Zhang et al., 2024). This fits 513 

with evidence of widespread extension across Sumatra and Borneo (Barber and Crow, 514 

2009; Pieters et al., 1993; Breitfeld et al., 2017, 2023c; Mazumder et al., 2021; 515 

Burton-Johnson et al., 2023; Zhou et al., 2023). Isotopically juvenile signature in 516 



Sumatra persist to the present day (Fig. 5) and may be a residual feature inherited 517 

from the time of double subduction (e.g., Li et al., 2024). Our study emphasizes that 518 

the role of inward-dipping double subduction in Southeast Asia, including its 519 

influence on mantle structure and temperature.  520 

 521 

5. Conclusions 522 

Records of magmatic and detrital zircons from both Borneo and Sumatra show 523 

an inward-dipping double subduction system beneath Sundaland initiated in the latest 524 

Triassic, coinciding with the collision of Indochina and Sibumasu. Magmatism 525 

persisted on both West and Southwest Borneo and West Sumatra from the latest 526 

Triassic to the Cretaceous; however, it evolved asymmetrically due to differences in 527 

the subducting oceanic lithospheres—specifically, the younger, steeply dipping 528 

Meso-Tethys and the older, more shallowly dipping Paleo-Pacific oceanic lithosphere. 529 

After 80 Ma, subduction-related magmatism on the Borneo side ceased following the 530 

termination of subduction of Paleo-Pacific oceanic crust, while on the Sumatra side, 531 

magmatism with isotopically juvenile compositions continued. Furthermore, our study 532 

establishes a possible causal link between the strengthened juvenile crustal signatures 533 

in Southeast Asia and the large-scale extension of the overriding lithospheric plate in 534 

an inward-dipping double subduction system.  535 

 536 
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