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Abstract

This thesis examines conical singularities in the context of special holonomy and gauge theory,

with a focus on both analytical and variational aspects.

In the first chapter, we study instantons on metric cones and establish a new relation between

the instanton deformation operator and the Bourguignon stability operator on the corresponding

link. This framework is used to study instantons with isolated conical singularities, yielding an

analytical construction of their moduli spaces. As a result, we give an explicit formula for their

virtual dimension.

In the second chapter, we investigate generalisations of Hitchin’s functionals, whose critical

points correspond to nearly Kähler and nearly parallel G2-structures. We study the gradient

flow of these functionals and perform a spectral decomposition of their Hessians relative to

natural indefinite inner products. This study leads to the definition of the Hitchin index, a

Morse-like invariant that provides a lower bound for the Einstein co-index. We investigate the

connection of this index with the deformation theory of G2 and Spin(7)-conifolds.

In the third chapter, we investigate nearly Kähler manifolds under a cohomogeneity one sym-

metry assumption. This enables us to study and bound the cohomogeneity one contributions

to the Hitchin index by reducing the PDE eigenvalue problem to an ODE eigenvalue problem.

We focus our analysis on the inhomogeneous nearly Kähler structure on S3 × S3 constructed

by Foscolo and Haskins, and obtain non-trivial lower bounds for both the Hitchin and Einstein

indices of the manifold, thereby addressing an open question posed by Karigiannis and Lotay.
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Impact statement

This thesis contributes to the understanding of conical singularities in special holonomy and

gauge theory. This work deepens our understanding of geometric analysis on singular spaces,

particularly those exhibiting special holonomy, and provides concrete analytic tools for studying

moduli spaces of instantons with isolated conical singularities, including a precise formula for

their virtual dimension. These results address a gap in the literature relative to the relatively

extensively studied cases of conical singularities in special holonomy metrics and calibrated

submanifolds. These results create new pathways for exploring geometric structures with sin-

gularities, which play a central role in the mathematics underlying string theory and M-theory.

In particular, the methods developed have applications to the analytic study of Calabi–Yau, G2

and Spin(7) manifolds.

Another contribution is the introduction of the Hitchin index, a new invariant that captures the

stability properties of critical points of Hitchin-type functionals. Its relationship to the Einstein

co-index creates a framework for understanding rigidity and deformation in special holonomy

geometries, which opens up new avenues in the Morse-theoretic approach to moduli spaces and

their topology.

In a different direction, the use of cohomogeneity one symmetry to reduce partial differen-

tial equations to non-explicit ordinary differential equations, while still being able to prove

interesting results, demonstrates that there remains considerable scope for investigating and

establishing new results under a cohomogeneity one assumption.

Although the research is purely mathematical, its findings may influence future developments

in other areas. The structures studied are relevant to theoretical physics, particularly in the

pursuit of a unified framework for gravity and quantum field theory in the context of M-theory

and string theories. The analytic tools developed could aid in modelling singularities that

appear in those theories and in constructing compactification schemes for extra dimensions.
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Introduction

The study of manifolds with special holonomy plays a central role in modern differential geom-

etry and geometric analysis, with deep connections to topology, global analysis, and theoretical

physics. These manifolds are distinguished by having a Riemannian holonomy group that is

strictly smaller than the full orthogonal group. The resulting geometric structures often possess

remarkable properties, such as Ricci-flatness or the existence of parallel differential forms, which

lead to rich geometric structures.

The work by Berger in 1955 [Ber55] laid the foundation for the theory of special holonomy,

identifying the possible holonomy groups that can arise in irreducible, simply connected, non-

locally symmetric Riemannian manifolds:

Hol(g) dim(M) Type of manifold Curvature Parallel 4-form

SO(n) n Orientable − −
U(n) 2n Kähler − ω2

2

SU(n) 2n Calabi–Yau Ricci-flat ω2

2

Sp(n) 4n Hyperkähler Ricci-flat
ω2
1
2 ,

ω2
2
2 ,

ω2
3
2

Sp(n) · Sp(1) 4n Quaternion-Kähler Einstein λ ̸= 0 Ω

G2 7 Holonomy G2 Ricci-flat ψ

Spin(7) 8 Holonomy Spin(7) Ricci-flat Φ

Table 1: Berger’s list of possible holonomy groups

The list, which has since been refined and confirmed through the construction of explicit ex-

amples, remains a guiding framework in the field. An additional candidate, Spin(9), was later

shown by Alekseevski [Ale68] and Brown and Gray [BG72] to only occur as locally symmetric

spaces. For the remaining groups, both compact and non-compact examples have been con-

structed, thanks notably to the contributions of Yau [Yau77] [Yau78], Bryant [Bry87], Bryant

and Salamon [BS89] and Joyce [Joy96a] [Joy96b], amongst many others.

As noted in Table 1, all special holonomy manifolds admit a natural parallel 4-form Ω, due to

their structure group being connected and contained in the normaliser of a semisimple Lie group

(cf. Appendix A). The holonomy reduction ensures that the 4-form is parallel with respect to

the Levi-Civita connection and therefore harmonic.

While the classical theory focuses mainly on smooth complete manifolds, modern developments

—particularly those in geometric analysis, string theory, and gauge theory — require an exten-

sion of this framework to singular spaces, and in particular to manifolds with conical singulari-
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ties. These spaces arise naturally as degenerations of smooth manifolds in moduli problems and

therefore play a major role in compactifications of moduli spaces, glueing constructions, and as

geometric flow singularities.

These considerations naturally lead to the central themes of this thesis: the analysis of conically

singular spaces with special holonomy and the study of associated gauge-theoretic problems on

such spaces. These problems not only retain many of the features of their smooth counterparts

but also present new phenomena due to the singular geometry. In particular, the presence of

a conical singularity affects the behaviour of differential operators, the moduli space structure

of geometric objects like instantons, and the analytic techniques required to study them. An

analogue study for calibrated submanifolds can be carried out and will be outlined in the

introduction, but will not be examined in detail in the thesis.

An isolated conical singularity, in its simplest form, is a metric degeneration where a neighbour-

hood of a singular point is modelled on a metric cone

(C(Σ), gC) =
(
R+ × Σn−1, dr2 + r2gΣ

)
,

where (Σn−1, gΣ) is a Riemannian manifold called the link (cf. Definition 3.4) and r is the

obvious coordinate in the R+ factor. In this thesis, we will only deal with the case where Σ is

closed.

The geometry of the cone (C(Σ), gC) is intimately related to that of its link (Σ, g). If C(Σ)

admits a G-structure, then Σ naturally inherits an H-structure, with H = StabG(r∂r). When

the cone metric is irreducible, its tangent space is an irreducible G-representation, and one has

the identification

G/H ∼= Gr+(1, n) ∼= Sn−1.

The metric cone carries a natural R+-action

t : C(Σ)× R+ −→ C(Σ),

((r, x), λ) 7 −→ (λr, x),

which induces an action on smooth differential forms. A form is said to be homogeneous of rate

λ ∈ R if it has weight λ under this action. Equivalently, a homogeneous k-form γ ∈ Ωk(C(Σ))

of weight λ can be expressed as

γ = rλ
Ä
rk−1 dr ∧ α + rk β

ä
,

where α ∈ Ωk−1(Σ) and β ∈ Ωk(Σ). Such homogeneous forms will play a central role in our

analysis (see Section 3).

In the special holonomy setting, a cone C(Σ) with special holonomy carries a canonical parallel

4-form Ω (see Table 1) that is invariant under dilations. The link Σ then inherits a pair of

associated forms Ξ ∈ Ωn−4(Σ) and Υ ∈ Ωn−5(Σ), defined by

∗CΩ = rn−4

Å
dr

r
∧Υ+ Ξ

ã
,

where ∗C denotes the Hodge star on the metric cone The fact that Ω is parallel for the Levi-

Civita connection on the cone induces specific differential relations between Ξ and Υ.

2



Hol(gC) H dim(Σ) Type of manifold Υ Ξ

SO(n) SO(n− 1) n− 1 − − −
U(k + 1) U(k) 2k + 1 Sasaki η ∧ ωk−2

(k−2)!
ωk−1

(k−1)!

SU(k + 1) SU(k) 2k + 1 Sasaki Einstein η ∧ ωk−2

(k−2)!
ωk−1

(k−1)!

Sp(k + 1) Sp(k) 4k + 3 3-Sasaki ηi ∧
ω2k−1
i

(2k−1)!
ω2k−2
i
(2k)!

Ä
ω2
i −

∑
(ijk) ωi ∧ ηj ∧ ηk

ä
G2 SU(3) 6 Nearly Kähler ω ρ

Spin(7) G2 7 Nearly parallel G2 φ ψ

Table 2: Berger’s list on metric cones

The notation for these induced forms on the link varies with the holonomy of the cone; for

convenience, we summarise the most common conventions in Table 1.

The existence of the (n− 4)-form Ξ induces a first order differential operator on Σn−1:

curlΞ : Ω1 → Ω1 (1)

X 7→ (−1)n ∗ (dX ∧ Ξ),

generalising the usual 3-dimensional curl. We prove

Proposition (Prop. 2.10 & Prop. A.11). Let (Σ, g) be a closed Riemanninan manifold equipped

with an H-structure admitting a compatible (n−3)-form Ξ. If Ξ is closed, then the curl operator

is self-adjoint and fits in the complex

0 → Ω0 d−→ Ω1 curlΞ−−−→ Ω1 d∗−−→ Ω0 → 0 . (2)

Let Eλ = {X ∈ Ω1| curlΞ(X) = λX}. If (Σ, g) is the link of a special holonomy Ricci-flat cone,

then

(i) the Lie algebra of the automorphism group of the H-structure auto(M,H) is given by

auto(M,H) ∼= E−2 ,

(ii) the Lie algebra of the isometry group of the metric isom(M, g) satisfies

isom(M, g) ∼= E−2 ⊕ En−2 ,

The current proof of the last claim requires a case-by-case discussion and forces one to exclude

spaces of constant sectional curvature. However, we believe the result should extend to sphere

quotients and admit a general proof that does not require case-by-case considerations.

Remark. The complex (2) is, in general, not elliptic. The condition for the complex above

to be elliptic is equivalent to the 3-form ∗Ξ inducing a cross product, so it can only occur for

n − 1 = 3 and n − 1 = 7. However, in the nearly Kähler and Sasaki cases, the complex still

has finite cohomology H0 ∼= H3 ∼= R and H1 ∼= H2 ∼= 0 and all eigenvalues but one have finite

multiplicity. In all cases, the curl operator can be viewed as part of the corresponding Dirac

operator on Σ.
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Variational problems and special holonomy

Variational principles are foundational to modern differential geometry and mathematical physics.

Many of the most geometrically significant structures can be realised as critical points of natural

functionals. These functionals encode intrinsic or extrinsic geometric quantities, and their criti-

cal loci are characterised by a partial differential equation (PDE) known as the Euler—Lagrange

(E–L) equation.

Let Mn denote a complete smooth manifold of dimension n. Among the most well-known

examples of such variational problems are:

(i) Assume M is compact and n ≥ 3. The Einstein-Hilbert functional

S : Met(M) → R

g 7→ 1

n− 1

∫
M
sg − λ(n− 2) dvolg ,

where Met(M) is the space of smooth metrics on M and sg is the scalar curvature of the

metric g (cf. Appendix C). The E–L equation of S is Ricg = λg, and critical points are

Einstein metrics of constant λ.

(ii) Let Nk be a closed manifold. The area functional

V : Imm(N,M) → R

ι 7→
∫
N
ι∗(dvolg) ,

where Imm(N,M) is the space of immersions of Nk into M , equipped with a metric g.

Critical points of V are called minimal submanifolds, and the E–L equation is HΣ = 0,

the vanishing of the mean curvature.

(iii) For a principal U(k)-bundle P over (M, g), the Yang–Mills functional is

YM : A → R

A 7→ 1

2

∫
M
||FA||2dvolg ,

where A(P ) denotes the space of connections on P , and FA is the curvature of the con-

nection A. The critical points are called Yang–Mills connections and they satisfy the E–L

equation d∗AFA = 0.

The Euler–Lagrange equations of these functionals are second-order elliptic PDEs (modulo

gauge symmetries), and their solutions encode deep geometric and topological information of

the underlying manifold.

In certain favourable situations, the geometric structure of M allows us to reduce these second-

order PDEs to first-order PDEs. These reductions occur most notably whenM admits a special

holonomy structure. In this case, the existence of parallel differential forms (equivalently parallel

spinors) allows one to rephrase the variational problem in terms of calibrated geometry or gauge-

theoretic instanton equations.
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Euler–Lagrange Equation Critical points Symmetry group

Einstein–Hilbert Ricg = λg λ - Einstein metrics Diff(M)

Area functional HΣ = 0 Minimal submanifolds Diff(Σ)

Yang–Mills d∗AFA = 0 Yang–Mills connections Aut(P )

Table 3: Variational problems, their Euler–Lagrange equations and symmetries

For example, if M has holonomy contained in G ⊆ SO(n), where G is a semisimple group from

Berger’s list (i.e., G is either SU(n), Sp(n), G2 or Spin(7)), then the Ricci-flat condition is

automatically satisfied. Furthermore, in the G2 case, one may view the holonomy condition as

the critical point condition of a Hitchin-type functional on 3-forms. A more thorough discussion

of this viewpoint is presented in Section 6.

Let us now consider a special holonomy manifold (M, g) equipped with a parallel calibrating

form θ ∈ Ωk. That is, θπ(p) ≤ volg(π(p)) for any k-plane π ⊆ TpM . The standard requirement

that θ is closed follows from θ being parallel. Associated with θ, and for a fixed cohomology

class α = [N ] ∈ Hk(M,Z), we have the topological charge

cθ([α]) = ⟨ι∗α, [θ]⟩ .

The calibrating condition implies that any immersion representing this homology class satisfies

the inequality cθ([α]) ≤ V(ι). An immersion ι is called a calibrated submanifold if it realises

the equality above, and so calibrated submanifolds are absolute area minimisers within their

homology class.

A similar situation arises in the context of gauge theory on special holonomy manifolds. Given

a closed Riemannian manifold (M, g) with special holonomy and a principal bundle P over it,

one defines the charge

cΩ(P ) = −1

2

∫
M

Tr(FA ∧ FA) ∧ ∗Ω ,

where Ω is the associated parallel 4-form from Table 1. By Chern-Weil theory, it follows that

cΩ is a topological invariant of the principal bundle P . In all cases (cf. Section 1), one can show

that cΩ(P ) ≤ YM. Connections for which equality is satisfied are called Ω-instantons, and are

absolute minimisers of the Yang–Mills functional.

Remark. For minimal submanifolds, one can consider the more general setup of harmonic

maps, where the area functional gets replaced by the energy functional

E : C∞(N,M) → R

u 7→
∫
M
|du|2dvolg ,

for a pair of closed Riemannian manifolds (M, g) and (N,h). In the context of special holonomy,

the notion of calibrated submanifolds is replaced by holomorphic maps in the Kähler case, and

Smith maps (cf. [CKM23]) in general.

An alternative approach to this discussion would be from a spinorial perspective, but we will

not explore it in this thesis.
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Metric cones and Chern–Simons functionals

The previous discussion focused on variational problems in the compact setting, where the

charges cθ([α]) and cΩ(P ) are well-defined topological invariants. In the non-compact setting,

the discussion becomes more complicated and requires the introduction of Chern–Simons type

functionals that account for boundary contributions. We outline the calibrated submanifold

case below. The instanton case is treated in detail in Section 2, and an analogue to this setup

for G2 and Spin(7) holonomy cones is the primary focus of Sections 7 and 8 respectively.

Let Θ ∈ Ωk(C(Σ)) be a homogeneous parallel calibrating k-form on the cone, so it is given by

Θ = rk
Å
dr

r
∧ τ + θ

ã
(3)

with τ ∈ Ωk−1(Σ) and θ ∈ Ωk(Σ). Fix a suitable reference immersion ι1 ∈ Imm(Nk−1,Σn−1),

and consider Path• (Imm(N,Σ)) the space of (smooth) paths in the space of immersions, based

at ι1. We define the functional:

C : Path• (Imm(N,Σ)) → R

ιt 7→
∫
N×[1,T ]

ι∗t (Θ) .

This corresponds to the calibration charge cθ above evaluated over the compact manifold with

boundary N ′ = [1, T ]×N ⊆ R+ × Σ, but it is no longer a topological invariant. In particular,

if we consider an infinitesimal variation of the boundary end-point, we obtain a Chern–Simons

1-form functional:

Lemma. The Chern–Simons 1-form functional associated to C at an immersion ι is

C̃ι : Γ(Norι(N)) → R

X 7→
∫
ι(N)

LXτ = k

∫
ι(N)

X⌟θ ,

where Norι(N) denotes the normal bundle of ι(N) ⊆ Σ and τ, θ ∈ Ω•(Σ) are given by Equation

(3).

Notice that this discussion is quite similar to the one outlined in Section 2 of Donaldson–Segal

[DS11], where they consider cylinder metrics over special holonomy links (Σ, gΣ), Cyl(Σ) =

(R×Σ, dt2+ gΣ). In the Donaldson–Segal case, the Chern–Simons functional is the 1-form of a

locally defined functional, whereas in our case, the functional C is globally well-defined modulo

gauge.

We say that an immersion ι is a critical point of C̃ if C̃ι vanishes for all vector fields. One might

expect that critical points correspond to calibrated links and that gradient flows for C represent

calibrated submanifolds on the metric cone.

While this holds in the nearly parallel G2 case, it fails in the cases where (Σ, g) is a nearly

Kähler or a Sasaki manifold, and is related to the lack of ellipticity of the curl complex (2). For

instance, if N is a horizontal totally real submanifold of a Sasaki manifold, then C̃ will vanish,

6



but it is not the link of a holomorphic cone inside C(Σ). This mismatch suggests the need for

additional geometric constraints.

To remedy this in the instanton case, we introduce a cone constraint. Importantly, we show

that this constraint is preserved under gradient flow in all cases of interest, allowing us to

recover the expected characterisation of instantons. While the geometric justification for the

cone constraint remains case-dependent, it offers a coherent framework that is likely to extend

to the calibrated submanifold case.

At a critical point ι of the Chern–Simons C̃ functional, its second variation characterises in-

finitesimal deformations of the calibrated cone condition. Along the linearised cone constraint

and up to gauge fixing, the second variation can be identified with a Dirac-type operator “Dι.

Therefore, it has a discrete unbounded spectrum with finite multiplicities.

If ι0 and ι∞ are two distinct critical points of C̃ and ιt is a gradient flow line connecting them, the

associated spectral flow of the family “Dι provides a virtual count of the expected dimension of

the moduli space of calibrated submanifolds asymptotic to the calibrated cones on each end. In

analogy with finite-dimensional Morse theory, one would hope to define an index-like geometric

quantity Kι such that the spectral flow of the family of Dirac operators “Dιt satisfies the relation

SpecFlow(“Dιt) = Kι∞ −Kι0 .

In the case of special Lagrangian and coassociative cones, we expect that this spectral index is

related to the stability indices introduced by Joyce [Joy04] and Lotay [Lot07], respectively.

Summary of results and overview

This thesis investigates the analytic and variational aspects of instantons and special holonomy

structures with isolated conical singularities (ICS). The overarching goal is to develop and

understand a coherent deformation and moduli theory for such objects, extending the well-

established compact theory to the singular setting. Ultimately, this work aims to provide tools

that could contribute to the construction of new invariants and the development of enumerative

theories in gauge theory and special holonomy metric, as well as laying the groundwork for

understanding more geometric objects with higher codimension conical singularities.

Chapter I - Conically singular instantons

The first part of the thesis focuses on instantons with ICS, with particular emphasis on nearly

parallel G2 and nearly Kähler geometries. We begin with a review of instanton theory in general,

highlighting new contributions and clarifications.

A first result concerns the ellipticity of the deformation complexes introduced by Reyes-Carrión

[Rey98]. We provide a short and conceptual proof that these complexes are indeed elliptic under

mild hypotheses (cf. Theorem 1.11). In addition, we present a new rigidity-type result as an

application of the instanton charge:

Proposition (Prop. 1.9). Let (Mn, g,Ω) be a manifold carrying an admissible N(H) structure

with associated 4-form Ω closed, and let E → M a Hermitian vector bundle admitting an Ω-

instanton. Let T k be a flat torus of dimension k and denote by π : M × T k → M the trivial
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fibration. Assume the product metric on M × T admits an N(“H)-structure with characteristic

4-form Ω̂, compatible with N(H) and such that the difference Ω̂− π∗(Ω) is exact.

Then the moduli spaces of irreducible instantons are related by

Mirred
Ω̂

(π∗(E)) ∼= Mirred
Ω (E)× T ∗ ,

where T ∗ denotes the torus dual to T . In particular, to every Ω̂-instanton on π∗(E) we can

associate an Ω-instanton on E →M .

This result extends earlier work of Wang [Wan18b], who treated only the case k = 1. Notably,

our proof relies on a direct argument using the topological charge, which is significantly shorter

and more transparent than Wang’s approach to the question.

Turning to metric cones, we introduce a Floer–type functional whose critical points coincide with

instantons, thereby providing a variational framework naturally adapted to conical geometries.

In this context, we define the notion of the cone bundle L, and establish a key link between the

Hessians of the Yang–Mills functional SA and the Floer–type functional DA:

Proposition (Prop. 2.6). Let A be an Υ-instanton and L the associated cone bundle. There

exists constants Ci ∈ R such that

SA(α) = D2
A(α)− (n− 4)DA(α)− d∗A

∑
i

Ci
Ä
πL⊥

i
(dAα)

ä
,

where L⊥
i form the direct sum decomposition of irreducible N(H)-representations of L⊥ and πB

is the bundle projection map to the corresponding bundle B.

This result generalises a formula of Waldron [Wal22] in the case of nearly parallel G2-instantons.

Building on this variational framework, we then move to the setting of connections with isolated

conical singularities. We first establish that the instanton charge extends naturally to the ICS

case. Using weighted analysis on conically singular manifolds, we generalise the Uhlenbeck

gauge slice construction to an appropriate weighted gauge group. With this in hand, we can

apply the implicit function theorem and obtain a natural description of the moduli spaces of

instantons with isolated singularities.

We conclude the chapter with a virtual dimension formula for these moduli spaces, which

decomposes into contributions from the geometry of the link and the global geometry of the

manifold.

Chapter II - Hitchin Functionals and their index

The second part of the thesis focuses on Hitchin’s functionals in dimensions six and seven. These

functionals realise nearly Kähler and nearly parallel G2 structures as their critical points, and

they admit a natural interpretation as Chern–Simons-type functionals for the cone. Motivated

by this perspective, we introduce two new Hitchin-type functionals, denoted Q and T , which

are defined on spaces of stable and exact forms carrying natural SU(3)– and G2–structures,

respectively. We summarise their main properties in the following two theorems:
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Theorem (Prop. 7.12, Prop. 7.13, Prop. 7.16 & Prop. B.4). Let Σ6 be a closed spinnable

6-manifold. Consider the space

U =
{
ω ∈ Ω2(Σ) | dω is stable, ω is stable and positive, ω2 is exact

}
.

The new Hitchin functional Q : U → R satisfies the following:

(i) Critical points are nearly Kähler structures 1

(ii) The Einstein–Hilbert action is a lower bound for Q. The two only coincide along rescalings

of nearly Kähler structures.

(iii) The associated gradient flow is not parabolic, even after a DeTurck trick.

(iv) Critical points have a well-defined index with respect to a natural indefinite inner product,

called the Hitchin index.

(v) The index provides a lower bound for the Einstein co-index.

(vi) The index corresponds to the count of solutions to the eigenvalue problem

Eλ =

{
(β, γ) ∈ Ω2

8 × Ω3
12

∣∣∣ dβ =
λ

4
γ , d∗γ =

λ

3
β

}
for λ ∈ (0, 12).

(vii) There is an explicit connection between the spectrum of the second variation of Q and the

spectrum of the second variation of Hitchin’s original functional.

Theorem (Prop. 8.6, Prop. 8.7, Lemma 8.14 & Prop. 8.15). Let Σ7 be a closed spinnable

7-manifold, with a given orientation. Consider V = {ψ ∈ Ω4(Σ) | ψ is stable and exact}. The

new Hitchin functional T : V → R satisfies the following:

(i) Critical points are nearly parallel G2 structures, up to orientation.

(ii) The Einstein–Hilbert action is a lower bound for T . The two only coincide along rescalings

of nearly parallel G2 structures.

(iii) The associated gradient flow is third-order, in particular, not parabolic.

(iv) Critical points have a well-defined index with respect to a natural indefinite inner product,

called the Hitchin index.

(v) The index provides a lower bound for the Einstein co-index.

(vi) The index corresponds to the count of solutions to the eigenvalue problem

Eλ =
{
χ ∈ Ω4

27| d ∗ χ+ λχ = 0
}

for λ ∈ (0, 4).

1In general, a nearly Kähler structure is viewed as a pair of forms (ω, ρ) ∈ Ω2 × Ω3 satisfying a PDE. In our

case, the 3-form ρ is determined by the 2-form ω.
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(vii) There is an explicit connection between the spectrum of δ2T and the spectrum of the second

variation of Hitchin’s original functional.

The main motivation for introducing new Hitchin functionals and defining the Hitchin index

was to provide a bridge between variational methods in G2 and Spin(7) geometries and analytic

contributions to moduli space formulas. More precisely, the idea was to relate the Hitchin index

to the CS/AC analytic term appearing in the expected dimension formula for moduli spaces.

From this perspective, the Hitchin index serves as a measure of instability. It plays a part in G2

and Spin(7) geometries similar to Joyce’s stability index for special Lagrangians and Lotay’s in-

dex for coassociatives. In each of these settings, the index captures the instability of its singular

model; model structures with a higher index should be regarded as less generic, appearing only

in higher–codimension strata of the boundary of the moduli space. Thus, the Hitchin index, a

variational invariant, becomes an object directly relevant to deformation problems and to the

formulation of counting invariants.

Chapter III - A Cohomogeneity one computation

The final part of this thesis focuses on the study of the Hitchin index, introduced in Chapter II,

in the context of the cohomogeneity one examples constructed by Foscolo and Haskins [FH17].

Building on their framework, we aim to construct cohomogeneity one solutions to the PDE

associated with the Hitchin index. After recalling the general setup of Foscolo and Haskins, we

derive the ODE system (110) obtained from our PDE under the cohomogeneity one ansatz. We

then establish the following existence result:

Theorem (Thm. 11.7). Let a, b > 0, and consider the nearly Kähler halves Ψa and Ψb of

Foscolo and Haskins [FH17], with singular orbits S2 and S3, respectively. Then, for every

Λ ∈ (0,∞), there exists a unique (up to scale) solution to the ODE system (110) on the nearly

Kähler half Ψa (resp. Ψb). Moreover, this solution depends continuously on the parameters a

(resp. b) and Λ.

By analysing the global behaviour of the ODE and applying an intermediate value argument,

we prove:

Theorem (Thm. 12.6). The Hitchin index of the inhomogeneous nearly Kähler structure on

S3 × S3 is bounded below by 1. The Einstein co-index is bounded below by 4.

The proof of this result is quite intricate, since the ODE, though linear, depends on the under-

lying nearly Kähler structure, which is itself determined by non-explicit functions.

The question of whether these bounds are sharp remains open and out of reach beyond the use of

numerical methods. Similarly, there appears to be no clear path for treating the inhomogeneous

S6 case beyond numerical methods. This result stands in sharp contrast with the homogeneous

nearly Kähler manifolds, all of which have vanishing Hitchin index. It remains an open question

whether these bounds are sharp, and whether similar methods can be successfully applied to

the inhomogeneous nearly Kähler structure on S6, which appears to require a new analytic

approach or numerical tools.
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Outlook

The developments in this thesis, ranging from Floer-type functionals on cones and weighted

analysis for conical instantons to the introduction of new Hitchin functionals and the Hitchin

index, provide a comprehensive toolkit for making gauge theory and special holonomy metrics

with singularities more analytically tractable. These methods are expected to play a key role

in refined glueing constructions. We briefly list some open questions that naturally arise from

this work.

On the gauge theory side, it is crucial to understand further the geometric and analytic con-

straints imposed by conical singularities, the cone condition, as well as to understand stabil-

ity conditions for such singularities. Further understanding the virtual dimension of Spin(7)-

instantons, in analogy with the algebraic side of Hermitian–Yang–Mills connections, remains a

central problem. Constructing explicit examples of instantons with ICS via glueing construc-

tions is a promising avenue, through glueing anti-self-dual connections along associative 3-folds

or Cayley 4-folds, with singularities expected to appear at points where the Fueter section

vanishes transversely, extending the early work of [Wal17].

In the direction of special holonomy and Hitchin-type functionals, one may ask whether a

natural functional exists in the Calabi–Yau setting. More broadly, extending the work of Kari-

giannis–Lotay to the Spin(7) case and to manifolds having both CS and AC ends would advance

understanding of the Hitchin functional and its spectral flow properties, while potentially offer-

ing new insights into the treatment of unstable singularities.

Finally, several natural directions emerge for the study of eigenvalue problems under a coho-

mogeneity one symmetry assumption. One may further investigate the stability of the Fos-

colo–Haskins nearly Kähler examples, potentially avoiding reliance on numerical methods, and

more generally, extend the approach to other cohomogeneity one structures, such as Einstein

manifolds and minimal submanifolds.
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Gauge Theory

In 1997, Donaldson and Thomas [DT98] (cf. [DS11]) proposed a program to construct geometric

invariants of exceptional holonomy manifolds in dimensions 7 and 8 using ideas from gauge

theory in dimensions 3 and 4. The original proposal stems from Thomas’ PhD thesis, where

he introduced the Donaldson–Thomas (DT) invariants for compact Calabi–Yau threefolds as a

holomorphic analogue of the three-dimensional Casson invariant.

The main obstacle to Donaldson and Thomas’ proposal is that we are far from understanding

how to compactify the moduli spaces of instantons in high dimensions. In particular, this is why

DT invariants were defined using algebraic tools rather than analytic ones. In 2001, Tian [Tia00]

published an influential paper outlining the main challenges one faces when constructing suit-

able compactifications for these moduli spaces: bubbling and singularity formation. Bubbling

corresponds to an L2-energy concentration. According to the work of Uhlenbeck (cf. [Weh04]),

this process occurs in codimension four. In [Tia00], Tian showed that bubbling occurs along

Ω-calibrated currents.

By singularity formation, we mean any other process for which the limit (up to a subsequence)

of a sequence of connections {An}n whose curvature is bounded in L2-norm might not exist. In

[Tia00], Tian proved that this phenomenon must occur in codimension at least 5 for a sequence

of Yang–Mills connections and conjectured that the codimension bound can be improved to

6 in the Ω-ASD case. We will concern ourselves with the case where singularities arise in

codimension n, i.e. point singularities. In 2003, Baozhong Yang, a student of Tian, proved the

first results on how these singularities behave.

Theorem 0.1 ([Yan03, Thm. 1 & 2]). Let (Mn, g) be a complete Riemannian manifold with

n ≥ 5. Let A be a smooth, stationary Yang–Mills connection on the bundle E over M \ x0 and

let E∞ → Sn−1 be the induced bundle by the restriction of E in a neighbourhood of x0. Assume

that there exists a neighbourhood U of x0 and a constant C > 0 such that

|FA|(x) ≤ Cr−2 ,

where r = dist(x, x0), the distance to the singularity. Then, the tangent cone of A exists and

is unique and up to gauge. That this, there exists a smooth Yang–Mills connection A∞ and a

gauge transformation g∞ on E∞ around x0 such that

||(g∗∞(A)(r)−A∞) ||Ck(Sn−1)≤ Ck|log(r)|α

for some Ck > 0 and α depending on A. Furthermore, assume that A0 is integrable, in the

sense that every infinitesimal deformation of A0 belongs to a one-parameter family of Yang-
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Mills connections. Then one can drop the requirement of A being stationary, and the stronger

estimate

|(g∗∞(A)(r)−A) |Ck(Sn−1)≤ Ckr
α−1−k

holds, for some different Ck > 0 and α.

In contrast to the general setting, the behaviour of singularities of Hermitian Yang–Mills (HYM)

is far better understood, due to the deep interaction between differential and algebraic ge-

ometry. The foundational result of Bando and Siu[BS94] shows that conically singular HYM

connections correspond precisely to reflexive sheaves, a natural class of coherent sheaves that ex-

tend holomorphic bundles. Their result extends the well-known analytic–algebraic Donaldson–

Uhlenbeck–Yau correspondence. Consequently, moduli spaces of smooth HYM connections can

be compactified via reflexive sheaves.

The theory of Hermitian Yang–Mills (HYM) connections on reflexive sheaves has been exten-

sively developed, particularly through the works of Chen and Sun [CS21] and Jacob, Sá Earp,

and Walpuski [JSW18], among others. We refer the reader to their contributions for a compre-

hensive treatment of this subject. In light of these results, our focus shifts to the study of G2

and Spin(7)-instantons, where the analytical framework is less well understood and there is no

algebraic correspondence available.

It is worth noting that the natural inclusion SU(4) ⊆ Spin(7) requires any theory of Spin(7)-

instantons to be compatible with the case of reflexive sheaves on Calabi–Yau fourfolds, which

leads to the consideration of DT4-invariants in the algebraic geometry literature. These sheaves

provide a rich and well-understood class of examples against which we can test our constructions.

However, we prove (cf. Proposition 1.7 and Corollary 4.2) that topological rigidity results imply

we cannot get genuine Spin(7)-instantons on these singular holomorphic bundles associated with

the reflexive sheaves.

1 Instantons

Let (Mn, g) be an n-dimensional Riemannian manifold without boundary, G a compact Lie

group with Lie algebra g, and let π : P → M a principal G-bundle. We assume throughout

that G = U(n) for simplicity. We denote by gP the vector bundle with fibre g, associated to P

via the adjoint representation.

Recall that a connection H on P is the choice of a complement to the fibres of the tangent space

of the G-orbits, i.e. a choice of splitting of the short exact sequence of vector bundles.

0 → TG→ TP → TM → 0 .

Alternatively, a connection can be thought of as a 1-form θ ∈ Ω1(P, gP ) satisfying some G-

equivariance properties, and such that H = ker θ.

One can ask whether a connection H is integrable, i.e. whether a submanifold in P whose

tangent space is H locally exists. By Frobenius’ theorem, the integrability failure is measured

by the curvature 2-form F = dhθ := θ ◦ h, where h : TP → H is the projection map.
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Theorem 1.1 (Structure equation and Bianchi identity). Let θ be a connection in P and F its

curvature. Then, it satisfies

F = dθ +
1

2
[θ, θ] , (4)

where [θ, θ](X,Y ) = [θ(X), θ(Y )] and the bracket is induced by Lie bracket in g under the

pointwise identification TG ∼= g. Moreover, F is covariantly closed, i.e. dhF = 0.

Equation (4) is known as the Maurer–Cartan Equation or structure Equation. The condition

of the curvature being closed is known as the (differential) Bianchi identity.

The G-equivariance of the connection and curvature forms allows us to (locally) identify them

with objects in the base M . Thus, we have the following:

Proposition 1.2. Let U ⊆M an open set over which the principal bundle P trivialises.

(i) A connection θ ∈ Ω1(P ) can be identified with a linear connection on the associated bundle

gP . Thus, it can locally be identified with a 1-form A ∈ Ω1(U, gP ), where U is as above

and the connection acts on Ωk(U, gP ) as dA = d+A∧.

(ii) The space of connections is naturally an affine space A modelled on Ω1(M, gP ).

(iii) Under this identification, the curvature F is mapped to a (globally defined) 2-form FA ∈
Ω2(M, gP ).

The space of connections carries a natural action by principal bundle automorphisms. These

form a group under composition, called the gauge group of P and denoted by G. In the same

spirit as above, its Lie algebra can be identified with Ω0(M, gP ). For g ∈ G, the action on a

connection is given by dA·gα = g−1dA (gα). In particular, the curvature 2-form FA transforms as

a tensor under the gauge group action, FA·g = g−1FAg. Finally, recall the Yang–Mills functional

YM : A →R

A 7→1

2

∫
M

Tr(FA ∧ ∗FA)

from the introduction. Its first variation is given by

δ

δα
YM =

∫
Σ
Tr (dAα ∧ ∗FA) , (5)

By Stokes’ theorem, the corresponding Euler-Lagrange equation is

d∗AFA = 0 , (6)

called the Yang–Mills equation. The second variation is

δ2

δαδβ
YM =

∫
Σ
Tr (dAα ∧ ∗dAβ + α ∧ β ∧ ∗FA) = ⟨β, (d∗AdAα+ {FA, α})⟩ , (7)

where {FA, α} = ∗[∗FA, α]. The second variation operator SA(α) = d∗AdAα + {FA, α} is called

the stability operator (cf. [BL81]).
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The Yang–Mills functional is invariant under gauge transformations, which implies that both the

Yang–Mills equation and its associated stability operator possess an infinite-dimensional kernel

arising from the action of the gauge group. To obtain a well-posed variational problem, it is

necessary to restrict our attention to a suitable complement of the gauge orbits. The standard

approach is to impose a gauge-fixing condition, selecting a representative in each gauge orbit.

The standard choice is the Coulomb gauge, where one restricts to the L2-orthogonal complement

of the infinitesimal gauge orbit TAG ⊆ TAA ∼= Ω1(M, gP ). Explicitly, this corresponds to

imposing the condition d∗Aα = 0 for α ∈ Ω1(M, gP ).

More conceptually, this procedure corresponds to working locally in the quotient space A/G.
The slice theorem (cf. [FU84, Thm. 3.2.]) guarantees that near any irreducible connection A,

the quotient A/G is modelled locally as the product ker(d∗A) × G. We prove a slice theorem

adapted to the conically singular case in Section 5.

Under the Coulomb gauge, the Yang–Mills equation and the stability operator become elliptic.

In particular, the operator

ŜA(α) = SA(α) + dAd
∗
Aα = ∆Aα+ {FA, α}

is strongly elliptic, so its eigenvalues are discrete, have finite multiplicity and are bounded below.

In particular, the finite-dimensional notions of index and nullity generalise:

IndA =
∑
λ<0

dim
{
α ∈ Ω1(gP )| ŜA(α) = λα

}
(8a)

NulA = dim
{
α ∈ Ω1(gP )| ŜA(α) = 0

}
(8b)

Instantons are an attempt to reduce the Yang–Mills equation above from a second-order PDE

to a first-order PDE by exploiting some geometrical structure of the underlying base manifold

(M, g). They were initially considered in the physics literature in the 4-dimensional case. In this

case, the instanton equation reads FA = ± ∗ FA and is known as the (anti)-self-dual equation.

The study of solutions to the ASD equation led to numerous breakthroughs in low-dimensional

topology in the 1980s through the works of Donaldson, Taubes, and Uhlenbeck, among others

(cf. [DK90]).

We aim to explore higher-dimensional analogues of the ASD equation. The idea is to find such

equations to exploit a reduction of the frame bundle of M . That is, we consider manifolds

carrying a G-structure for some suitable group G (cf. Appendix A). This approach was initially

systematised by Reyes-Carrión in [Rey98]. Harland and Nölle introduced a different approach

using spin geometry in [HN12]. We follow the former approach throughout. First, we need the

following technical result.

Proposition 1.3. Let H be a semisimple subgroup of SO(n) with connected normaliser N(H).

Consider Mn a smooth manifold carrying an N(H)-structure. Then, there is a splitting

Λ2T ∗M = h⊕ h⊥ ,

where h is the associated N(H)-vector bundle with fibres the Lie algebra of H.

Proof. The Lie algebra of the normaliser N(h) splits as the direct sum of h and its centraliser

C(h). Since N(H) is connected, its action preserves this decomposition.
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The idea is to consider connections whose curvature FA is a section of h⊗ gP . In other words,

we are interested in solving the equation π⊥(FA) = 0, where π⊥ : Λ2 → h⊥. Thus, we need to

characterise the subbundles h and h⊥. Since we assumed H is semisimple, its Killing form is an

element of S2h, invariant under N(H), so it extends to a section S2(h) ⊆ S2Ω2(M). Therefore,

it naturally defines a 4-form Ω by composing with the alternating map Alt : S2Ω2(M) → Ω4(M).

We now assume that H is simple, rather than just semisimple. The discussion could be easily

adapted to the semisimple case. However, we are not aware of any case of interest where the

group H is semisimple but not simple.

Given the 4-form Ω there is an induced N(H)-equivariant map on 2-forms ΛΩ(β) = ∗(β ∧ ∗Ω).
Since H is simple, by Schur’s Lemma, the subbundle h is an eigenbundle of ΛΩ(β) of eigenvalue

µ ∈ R. Assuming µ ̸= 0, we can rescale Ω to ensure µ = −1 as needed. In all cases of interest,

the following is true.

Lemma 1.4. Let H be a group from Table 4. Then,

(i) The bundle h is the unique (−1)-eigenbundle of ΛΩ.

(ii) All remaining eigenbundles of ΛΩ have non-negative eigenvalues.

The proof is a case-by-case linear algebra exercise that we omit.

n H K Ω Geometry

4 SU(2) SO(4)) vol -

2k SU(k) U(k) ω2

2 Almost hermitian

4k Sp(k) Sp(k)
ω2
1+ω

2
2+ω

2
3

6 Almost hyperhermitian

4k Sp(k) Sp(k)Sp(1) Ω Almost quaternionic hermitian

7 G2 G2 ψ G2

8 Spin(7) Spin(7) Φ Spin(7)

2k + 1 SU(k) 1×U(k) ω2

2 Transverse almost hermitian

4k + 3 Sp(k) 13 × Sp(k)
ω2
1+ω

2
2+ω

2
3

6 Transverse almost hyperhermitian

Table 4: Admissible geometries

More generally, we are unaware of any general criteria or argument that establishes which

geometries the statement above holds for. Now that we have our candidate instanton equation,

we can verify under which conditions it implies the Yang–Mills equation. Let A be a connection

whose curvature satisfies the equation

FA + ∗ (FA ∧ ∗Ω) = 0 . (9)

By the Bianchi identity, the Yang–Mills equation for a connection satisfying Equation (9) re-

duces to

dA ∗ (FA) = −dA(FA ∧ ∗Ω) = −FA ∧ d ∗ Ω .

Therefore, we define
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Definition 1.5. Let (M, g,Ω) be a Riemannian manifold endowed with an N(H)-structure with

associated 4-form Ω. Moreover, assume that

Γ(h) ⊆
{
β ∈ Ω2| β ∧ d ∗ Ω = 0

}
. (10)

Then Equation (9) will be referred to as the Ω-instanton equation. A connection satisfying the

Ω-instanton equation will be called an Ω-instanton.

In particular, if the 4-form is coclosed, Lemma 1.4 implies

Proposition 1.6. If H is one of the groups of Table 4 and Ω is coclosed, Ω-instantons are

global minima of the Yang–Mills functional.

To prove this, it is convenient to introduce the Ω-charge of the principal bundle P :

cΩ(P ) = −1

2

∫
M

Tr(FA ∧ FA) ∧ ∗Ω .

Chern-Weil theory implies that cΩ(P ) = 1
16π2

〈
(c21(P )− 2c2(P )) ∪ [∗Ω], [M ]

〉
is a topological

quantity.

Proof. Let −1 = λ0 < λ1 < ... < λk be the eigenvalues of ΛΩ = ∗(· ∧ ∗Ω) by virtue of Lemma

1.4 and πi : Λ
2T ∗M → Λ2T ∗M the projection to the eigenbundle corresponding to λi. Then

cΩ(P ) = ⟨FA, ∗(FA ∧ ∗Ω)⟩L2 =
∑
i

λi||πi(FA)||2L2≥ −||FA||2L2 .

Thus, ||FA||2L2≥ cΩ(P ), with equality if and only if πi(FA) = 0 for i ≥ 1, as needed.

If the manifold carries multiple N(H)-reductions, we can define the charge difference, allowing

us to obtain topological rigidity statements. The idea was first introduced by Lewis in his PhD

thesis [Lew98]. Assume that (M, g) admits two compatible reductions, with groups H1 ⊆ H2

from Table 4 and such that d(Ω2 − Ω1) = 0. We define the relative charge of a bundle as

D(P ) =

∫
M

Tr(FA ∧ FA) ∧ (Ω2 − Ω1) . (11)

Once more, Chern-Weil theory guarantees that D(P ) is a well-defined topological quantity. If

both Ωi are closed, then D is simply the difference of charges cΩ2(P )− cΩ1(P ). As a corollary,

we have

Proposition 1.7. Let P be a principal bundle such that D(P ) = 0. Then, Ω2-instantons and

Ω1-instantons coincide.

Proof. Since we assumed the reductions were compatible, all H2-representations carry an in-

duced H1-representation, and the symmetric operator d(β) = ∗(β ∧ ∗(Ω2 −Ω1)) can be decom-

posed into irreducible H1-representations d(β) =
∑

i µiπi(β).

If β is a (−1)-eigenform for Ω2, then the µi that contribute to d(β) are all strictly positive, since

(−1) is the smallest eigenvalue for both ΛΩi , by (ii) in Lemma 1.4.

17



Thus, if D(P ) = 0 and A is an Ω2-instanton, we have

0 = D(P ) =
∑
i

µi||πi(FA)||2≥ 0 ,

so ||πi(FA)||2= 0, and A must be an Ω1-instanton. The converse is straightforward.

These topological rigidity statements are common in the literature, and they all follow a similar

argument, for instance [DW19, Prop. 7.1] and [Joy00, Thm. 10.6.1] in the context of calibrated

submanifolds and special holonomy, respectively. We give two applications of Proposition 1.7.

The first one is straightforward:

Corollary 1.8 ([Lew98, Thm. 3.1]).

(i) Let (M8, g, ω, ρ) be a Calabi-Yau fourfold, and E → M a vector bundle admitting a

Hermite–Yang–Mills (HYM) connection. Then all Spin(7)-instantons on E are HYM.

(ii) Let (M4n, g, ωi) be a hyperkähler manifold and E →M a vector bundle admitting a hyper-

Hermite–Yang–Mills (hHYM) connection. Then all HYM connections on E are hHYM.

Proposition 1.9. Let (Mn, g,Ω) be a manifold carrying an admissible N(H) structure with

associated 4-form Ω closed, and let E →M a Hermitian vector bundle admitting an Ω-instanton.

Let T k be a flat torus of dimension k and denote by π : M × T k → M the trivial fibration.

Assume the product metric on M × T admits an N(“H)-structure with characteristic 4-form Ω̂,

compatible with N(H) and such that the difference Ω̂− π∗(Ω) is exact.

Then the moduli spaces of irreducible instantons are related by

Mirred
Ω̂

(π∗(E)) ∼= Mirred
Ω (E)× T ∗ ,

where T ∗ denotes the torus dual to T . In particular, to every Ω̂-instanton on π∗(E) we can

associate an Ω-instanton on E →M .

A particular case of this Proposition is the main topic of Yuanqi Wang’s paper [Wan18b], where

he considers the cases CY 3× S1 and G2 × S1. Other cases of interest, that have not appeared

in the literature as far as we are aware, are CY n× T 2 and K3× T 3.

Proof. Consider Ω̂ and π∗(Ω)-instantons on M × T k. Since Ω̂− π∗(Ω) is assumed to be exact,

D(π∗(E)) vanishes and Proposition 1.7 implies that the two instanton conditions are equivalent,

so M
Ω̂
∼= Mπ∗(Ω).

Let dθi ∈ Ω1(T ) denote a basis of parallel 1-forms on the torus T k. We have an injective map

MΩ(E) → Mπ∗(Ω)(π
∗(E)) induced by pullback. More concretely, we have the map

Mirred
Ω (E)× T ∗ → Mirred

π∗(Ω)(π
∗(E))

(A,µi) 7→ π∗(A) + i
k∑
i=1

µidθi .
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We construct an inverse to this map, assuming the connection A is irreducible. Let A be an

irreducible π∗(Ω)-instanton and ξi be the dual vector fields to dθi, which are Killing since dθi

are parallel and the torus is flat. We have that ξi⌟FA from π∗(Ω)-instanton equation.

Let ξ̃i the horizontal A-lift of ξi, each of which generates an R-action on P , so together they

generate an abelian subgroup K inside the gauge group G since [ξ̃i,‹ξj ] = FA(ξ̃i,‹ξj) = 0. The

group K preserves the connection A since

L‹ξiA = ξ̃i⌟FA = 0 . (12)

We need to understand the obstruction to the K-action inducing a T k-action. For each of the

generators ξ̃j , we have an associated gauge transformation2 gjA ∈ G fixing A, which will act by

multiplication eiµj for µ ∈ Rk. The connection Ã = A − i
∑k

j=1 µidθi also satisfies L‹ξiÃ = 0,

and for each j we have g‹A = idE , so Ã descends to a connection on E →M , as needed.

1.1 Instanton deformation theory

We now turn to the deformation theory of Yang–Mills connections and instantons. Let A

be a Yang–Mills connection (respectively an instanton). We want to understand under what

conditions, for a perturbation α, the connection A+ α is again a Yang-Mills connection (resp.

an instanton)?

The general approach is to apply the Implicit Function Theorem (IFT) for Banach Manifolds (cf.

Theorem 3.13) after choosing appropriate Banach completions of the domain and co-domain.

In the Yang–Mills case, we are interested in the map f(A) = d∗A(FA). At a Yang–Mills connec-

tion, we can use the structure equation (4) to write f as

f(A+ α) = d∗A(FA + dAα+
1

2
[α, α]) = d∗AdAα+

1

2
d∗A([α, α]) ,

where the linear and quadratic terms are clear. To apply the IFT, we need the linear part to

be Fredholm, which is false due to the gauge invariance of f . However, we have

Lemma 1.10. Let A be a Yang–Mills connection. The map d∗AdAα fits in the elliptic complex

0 → Ω0(gP )
dA−→ Ω1(gP )

d∗AdA−−−→ Ω1(gP )
d∗A−→ Ω0(gP ) → 0 .

The proof is standard and well-known. Notice that this complex is self-dual, so that any

deformations will be a priori obstructed, and so one would expect generic moduli spaces to

consist of points. However, if A happens to be an instanton, we can generally hope to have a

moduli space of positive virtual dimension, as we will discuss now.

In the instanton case, we want to consider f(A) = π⊥(FA). As before, the structure equation

implies that, at an instanton A, we have

f(A+ α) = π⊥(FA + dAα+
1

2
[α, α]) = π⊥(dAα) +

1

2
π⊥([α, α]) .

Thus, we must prove that the map π⊥(dAα) is Fredholm. We have the following result, stemming

from the work of Reyes-Carrión [Rey98]:

2This corresponds to the notion of broken gauge transformation in [Wan18b]
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Theorem 1.11. Let (Mn, g,Ω) be an n-dimensional Riemannian manifold with an N(H)-

structure, where H satisfies Lemma 1.4, and corresponding associated 4-form Ω. Denote by

ĥ ⊆ Ω∗(M) the (graded) ideal generated by sections of h and assume it is a differential ideal,

i.e. dĥ ⊆ ĥ. Then, for any Ω-instanton A:

(i) The differential of f(A) = π⊥(FA) is given by df |A(α) = π⊥(dAα). It fits into the complex

0 → Ω0(gP )
dA−→ Ω1(gP )

π⊥ ◦ dA−−−−−→ Ω2/h(gP )
π⊥ ◦ dA−−−−−→ . . . (13)

(ii) The complex is elliptic.

The first claim is a main result of Reyes-Carrion [Rey98], whose proof we will sketch. The

second claim is proved in many cases of interest in the literature (cf. [Rey98]) by a case-by-case

computation. We present a short and simple general proof that, to the best of our knowledge,

has not appeared in the literature before.

Proof. The first claim is precisely the discussion from Section 2 in [Rey98]. The idea is that

the differential condition dĥ ⊆ ĥ is necessary and sufficient to have a short exact sequence of

complexes

0 → (ĥ, d) → (Ω∗(M), d) → (Ω∗(M)/ĥ, π⊥ ◦ d) → 0 . (14)

Explicitly, this corresponds to

0 0 0 Γ(h) Γ(h ∧ Λ1) Γ(h ∧ Λ2) . . .

0 Ω0 Ω1 Ω2 Ω3 Ω4 . . .

0 Ω0 Ω1 Γ(h⊥) Γ((h ∧ Λ1)⊥) Γ((h ∧ Λ2)⊥) . . .

d

∼=

d

∼=

d d

d π⊥ ◦ d π⊥ ◦ d π⊥ ◦ d π⊥ ◦ d

(15)

Suppose one twists the previous complexes by an Ω-instanton A. In that case, the bottom

complex remains a complex, since d2A = FA ∈ Γ(h) ⊆ ĥ by assumption, and is precisely the

complex we are interested in. We refer the reader to [Rey98] for further details.

To show ellipticity, we need to show that the complex of vector spaces
Ä
Λ∗(T ∗M)/ĥ, π⊥(ξ ∧ ·)

ä
is exact whenever ξ ̸= 0, where ĥ is the ideal generated by h. From the short exact sequence of

complexes (14), we have

0 → (ĥ, ξ ∧ ·) → (Λ∗T ∗M, ξ ∧ ·) →
Ä
Λ∗T ∗M/ĥ, π⊥(ξ ∧ ·)

ä
→ 0 .

Using the 2-to-3 property, the claim is equivalent to proving that the leftmost term, (ĥ, ξ ∧ ·),
is exact. By induction, it suffices to check that the map h

ξ∧·−−→ Λ3T ∗M is injective for ξ ̸= 0,

i.e. h has no decomposable elements.

Indeed, let β = ξ ∧ α ∈ h decomposable, so β ∧ β = 0. Since h is the (−1)-eigenbundle of ΛΩ,

we have

0 = β ∧ β ∧ ∗Ω = ⟨β,ΛΩ(β)⟩ = −||β||2 .
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The remaining question is under what conditions on the N(H)-structure do we have

(i) that the ideal ĥ is differential and,

(ii) that every β ∈ h satisfies β ∧ d ∗ Ω = 0,

ensuring instantons are Yang–Mills connections. The following is an immediate first result:

Proposition 1.12. If (Mn, g,Ω) has holonomy contained in N(H), conditions (i) and (ii)

above are satisfied.

Proof. The holonomy condition implies that Ω is parallel, so d ∗ Ω = Alt ◦∇(∗Ω) = 0, and

condition (10) is trivially satisfied. Similarly, the bundle h will be parallel, and differentiability

of the ideal ĥ follows by the same argument.

For a systematic approach to these questions, it is convenient to consider the intrinsic torsion

associated with the N(H)-structure, discussed in the Appendix A. Using Lemma A.1, Reyes-

Carrión proves

Proposition 1.13 ([Rey98, Prop. 8]). The obstruction to the ideal ĥ being closed under the

exterior derivative is given by the map

O : Γ(h)
∇−→ Ω1 ⊗ Ω2 Alt−−→ Ω3 π⊥

−−→ Γ
Ä
(h ∧ Λ1)⊥

ä
,

which depends only on the intrinsic torsion τ of the N(H)-structure.

We conclude the section by considering how the deformation complex looks in three special

holonomy instances: when the holonomy is contained in Spin(7), G2, and U(k), the latter being

simply Kähler manifolds.

The case of Spin(7)-holonomy was first studied in detail in the PhD thesis of Lewis [Lew98].

Let Φ denote the associated parallel 4-form. The deformation complex is

0 → Ω0(gP )
dA−→ Ω1(gP )

π⊥dA−−−→ Ω2
7(gP ) → 0 , (16)

where the projection map can be written down explicitly as π⊥(β) = 1
4 [β + ∗(Φ ∧ β)]. As

already remarked by Lewis, this can be identified with the twisted Dirac operator “DA. Since

this is a 3-term complex, the virtual dimension of the moduli space of instantons coincides with

minus the index of the complex (16).

For the G2 case, let ψ denote the parallel 4-form. The deformation complex (13) is

0 → Ω0(gP )
dA−→ Ω1(gP )

π⊥dA−−−→ Ω2
7(gP )

π⊥dA−−−→ Ω3
1(gP ) → 0 .

Using the isomorphisms Ω2
7
∼= Ω1 and Ω3

1
∼= Ω0 (cf. Lemma A.16), one shows it is isomorphic to

0 → Ω0(gP )
dA−→ Ω1(gP )

∗(ψ∧dA·)−−−−−→ Ω1(gP )
d∗A−→ Ω0(gP ) → 0 . (17)

The complex above can be thought of as the linearisation of the G2-monopole equation

∗(FA ∧ ψ) + dAf = 0 (18)

for a connection A and a Higgs field f . Akin to the case of 3-dimensional monopoles, we have
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Lemma 1.14. Let M7 be a closed 7-manifold and consider φ ∈ Ω3 a coclosed G2-structure

(dψ = 0) on M . Then the forgetful map (f,A) 7→ A mapping G2-monopoles to G2-instantons

is surjective, and its fibre can be identified with infinitesimal automorphisms of A.

Proof. Acting by d∗A on the monopole equation, we get ∆Af = 0. Integrating by parts the

condition ⟨∆Af, f⟩L2 = 0, we get dAf = 0 as needed.

Finally, for the Kähler setting, let ω be the Kähler form and Λ : Ωk → Ωk−2 the adjoint to

wedging with ω, Λ(β) = ∗(ω ∧ ∗β). The deformation complex can then be written as

0 → Ω0(gP )
dA−→ Ω1(gP )

π(2,0)(dA·)+ΛdA−−−−−−−−−−→ Ω(2,0)+(0,2)(gP )⊕ Ω0(gP )⊗ ⟨ω⟩ π(3,0)(dA·)−−−−−−→ . . .

After complexification and using the Kähler identities, one finds that the complex above is

isomorphic to the twisted Dolbeault complex:

0 → Ω0(gP )
∂A−→ Ω1(0, 1)(gP )

∂A−→ Ω(0,2)(gP )
∂A−→ Ω(0,3)(gP ) → . . . (19)

In the context of gauge theory, this first appeared in Kim’s PhD thesis [Kim85]. In all the cases

above, it will be useful to consider the “rolled-up” operator to the deformation complex, which

coincides with the natural Dirac 3 operator twisted by A.

2 Instantons over cones

We now focus on studying the model version of our conically singular problem, instantons on

a cone. For the remainder of the section, we take (Σn−1, g) a closed Riemannian manifold with

n > 4, (C(Σ), gC) its associated metric cone and P a principal G-bundle over C(Σ). We assume

throughout that G = U(k) for simplicity, as before. Since R+ is contractible, we can identify P

with a principal G-bundle over Σ, PΣ (cf. Section 3) via a principal bundle isomorphism.

Given a connection A on P , we say that A is in temporal gauge if the local connection 1-form of

A has no dr component, Ar = 0, under the principal bundle isomorphism identification above.

Given any connection on P , we can always find a family of bundle isomorphisms for which A

is in a temporal gauge, by parallel transporting the gauge along the R+ direction. To do so, it

suffices to find a gauge transformation g solving the ODE

g−1∂rg +Ar = 0 .

For the remainder of this section, we will assume all connections are in temporal gauge. A

connection A in temporal gauge should be interpreted as a family of connections AΣ(r) on PΣ.

The curvature of A in temporal gauge is

FA = dr ∧ ∂A

∂r
+ FA ,

where FA is the curvature of A as a connection over PΣ for each r. A connection A on PΣ can

be pulled back to a connection on P . In the temporal gauge, it should be viewed simply as the

3Recall that Spin(7) and G2 manifolds carry a natural spin structure, and Kähler manifolds carry a natural

spinc-structure, so they all carry an associated Dirac operator.
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constant path. This connection on the cone will be locally represented by a (−1)-homogeneous

1-form, and its curvature will be a (−2)-homogeneous 2-form, as defined in the introduction (cf.

Definition 3.1).

Let us now study the instanton equation in the cone. We will assume that the cone C(Σ)

carries an admissible frame bundle reduction and that the associated 4-form Ω is co-closed.

The reduction of the cone frame bundle induces an N(H)-reduction on the link Σ.

Recall that the (n− 4)- form ∗Ω can be written as

∗Ω = rn−4

Å
dr

r
∧Υ+ Ξ

ã
,

with Υ ∈ Ωn−5(Σn−1) and Ξ ∈ Ωn−4(Σn−1). The condition d ∗ Ω = 0 on the cone reduces to

dΥ = (n− 4)Ξ dΞ = 0 , (20)

where the former condition implies the latter since n > 4.

The Ω-instanton equation ∗C(FA ∧ ∗CΩ) = −FA in temporal gauge becomes

∗(r∂rA) = Ξ ∧ FA , (21a)

−r∂rA ∧ Ξ = ∗FA + FA ∧Υ . (21b)

In particular, we can combine the two to obtain the constraint:

FA + ∗(FA ∧Υ) = ∗ (Ξ ∧ ∗(Ξ ∧ FA)) . (22)

This identity is purely linear, forcing a pointwise condition on the curvature. In other words,

Equation (22) forces the curvature FA to be a section of the bundle

L = {β ∈ Λ2(Σ)| β + ∗(β ∧Υ) = ∗ (Ξ ∧ ∗(Ξ ∧ β))} . (23)

We refer to L as the cone bundle and say that its sections satisfy the cone constraint.

We lack a priori geometric intuition for the role this subbundle plays in general and can only

justify it through a case-by-case analysis. However, we have the following general observation,

using the map:

LΞ : Λ1 → Λ2

α 7→ ∗(Ξ ∧ α)

Lemma 2.1. Assume that Λ1 does not contain any N(H)-representations isomorphic to h.

Then the cone bundle L in (23) satisfies h ⊆ L ⊆ h⊕ LΞ(Λ
1).

Proof. The map ΛΞ : Λ2 → Λ1 given by β 7→ ∗(Ξ ∧ β) is the adjoint to LΞ, up to a constant.

By the assumption, we have that h must be contained in the kernel ΛΞ, so h ⊆ L.

Similarly, consider the decomposition Λ2 = h ⊕ LΞ(Λ
1) ⊕ V , with V = [LΞ(Λ

1) ⊕ h]⊥. Then,

it follows that ΛΞ(V ) = 0. The claim follows from the N(H)-equivariance of the maps ΛΞ and

ΛΥ.
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In all three cases of interest, one has L ∼= h⊕ LΞ(Λ
1).

If we assume that A is a (−1)-homogeneous connection on P , the instanton equations (21)

reduce to

∗(FA ∧Υ) = −FA , (24a)

FA ∧ Ξ = 0 . (24b)

Under Equation (24a) and the cone-closedness condition dΥ = (n − 4)Ξ, Equation (24b) is

equivalent to the Yang–Mills equation on Σ:

d∗AFA = − ∗ dA ∗ FA = ∗dA(FA ∧Υ) = (n− 4) ∗ (FA ∧ Ξ) = 0 .

In particular, we have that a (−1)-homogeneous solution to Equation (21) is a ∗Υ-instanton.

Using the (n−4)-form Ξ on Σ, we can define a Chern-Simons–type functional. Fix a background

connection A0, and for a connection A, let α = A−A0. We define

CSΞ(A) =

∫
Σ
CS0(A,A0) ∧ Ξ =

1

n− 4

∫
Σ
Tr
(
F 2
A − F 2

A0

)
∧Υ , (25)

with CS0(A,A0) = Tr
(
α ∧

(
FA + 1

2dA0α+ 1
3α ∧ α ∧ α

))
the classical Chern-Simons 3-form.

Notice that the functional is well-defined modulo gauge, unlike the 4-dimensional (cf. [Don02])

and cylinder case (cf. [DS11]).

The Chern-Simons functional had appeared in the literature for the nearly Kähler ([Xu09]) and

nearly parallel G2 ([Wal22]) cases, but their treatment is not as detailed as the one here. The

first result that motivates the interest in this functional is the following:

Proposition 2.2.

(i) The gradient flow of CSΞ in (25) is given by ∂tA = (−1)n ∗ (FA ∧ Ξ).

Assume further that the cone constraint (22) is preserved under the gradient flow.

(ii) A connection A on C(Σ) is an Ω-instanton if and only if the induced family A(r) on the

link Σ evolves under the gradient flow of the Chern Simons, with the change of variable

t = log(r).

(iii) In particular, Υ-instantons are the critical points of CSΞ that satisfy the constraint (22).

Remark 2.3. All relevant examples satisfy the condition that the cone constraint is preserved

under the gradient flow. However, we have not succeeded in removing this assumption altogether

or replacing it with a more geometrically natural condition.

Proof.

(i) The first variation of CSΞ is given by

δ

δα
CSΞ =

1

n− 4

∫
Σ
Tr (dAα ∧ FA ∧Υ) = ⟨α, (−1)n ∗ (FA ∧ Ξ)⟩ .
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(ii) Under the cone constraint (22), Equation (21a) implies (21b). The claim follows by

considering the Chern-Simons flow under the change of variables t = log(r).

At a critical point, one may study the second variation of the Chern-Simons and Yang–Mills

functionals. First, recall

Lemma 2.4. Let A be an Υ-instanton on (Σ, g). Then

δ2

δαδβ
CSΞ =

∫
Σ
Tr (β ∧ dAα ∧ Ξ) = ⟨β, (−1)n ∗ (dAα ∧ Ξ)⟩ , (26)

Thus, we consider the associated endomorphisms

DA(α) = (−1)n ∗ (dAα ∧ Ξ) (27a)

SA(α) = d∗AdAα+ {FA, α} . (27b)

They satisfy the following relation:

Proposition 2.5. Let A be an Υ-instanton, and consider the space

C =
{
α ∈ Ω1(gP )| dAα ∈ ΓL

}
,

the space of infinitesimal deformations satisfying the cone condition (22). For α ∈ C, we have

SA(α) = D2
A(α)− (n− 4)DA(α) . (28)

In particular, we have the bound SA|C≥ −
(
n−4
2

)2
, and the index and nullity of the gauged fixed

operator ”SA = SA + dAd
∗
A satisfies the lower bounds

IndA ≥
∑

λ∈(0,n−4)

dλ NulA ≥ d0 + dn−4 . (29)

with dλ = dim {α ∈ C| DA(α) = λα , d∗Aα = 0} .

Proof. The proof is a straightforward computation using the Leibniz rule, the cone condition

dΥ = (n− 4)Ξ and the cone constraint (22). Expanding D2
A, we have

D2
A(α) = ∗ (Ξ ∧ dA ∗ (Ξ ∧ dAα)) = (−1)n ∗ dA ∗ ∗(Ξ ∧ ∗(Ξ ∧ dAα)

=d∗A [dAα+ ∗(Υ ∧ dAα)] = d∗AdAα+ (−1)n ∗ dA(Υ ∧ dAα)
=d∗AdAα+ (−1)n(n− 4) ∗ (Ξ ∧ dAα)− ∗ (Υ ∧ [FA, α])

=d∗AdAα+ (−1)n(n− 4) ∗ (Ξ ∧ dAα) + ∗ ([∗FA, α])
=SA + (n− 4)DA ,

where we used the linearised cone constraint, i.e α ∈ C, from the first to the second line and

the Υ-instanton condition in the second to last line. The lower bound for SA follows from

completing the square.

When restricted to C, the operators DA and SA commute by the above computation, and so

they admit a common basis of eigenvectors. The index and nullity estimates are simply the

index and nullity of ŜA restricted to C via the eigenvalue count of DA.
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We have the following, more general computation:

Proposition 2.6. Let A be an Υ-instanton. There exists constants Ci ∈ R such that

SA(α) = D2
A(α)− (n− 4)DA(α)− d∗A

∑
i

Ci
Ä
πL⊥

i
(dAα)

ä
, (30)

where L⊥
i form the direct sum decomposition of irreducible N(H)-representations of L⊥ and πB

is the bundle projection map to the corresponding bundle B.

Proof. The proof is again an application of Schur’s Lemma. Since both maps ∗(Υ ∧ ·) and

∗(Ξ ∧ ·) are N(H)-equivariant, there exist constants Ci such that for any β ∈ Λ2

∗ (Ξ ∧ ∗(Ξ ∧ β)) = β + ∗(Υ ∧ β) +
∑
i

CiπL⊥
i
(β) .

Now, substituting in the previous proof, we have

D2
A(α) = d∗A

[
dAα+ ∗(Υ ∧ dAα) +

∑
i

CiπL⊥
i
(dAα)

]
.

The proof follows by reproducing the computations above.

Remark 2.7. The results above can be further generalised to arbitrary Yang–Mills connections

by adding terms of the form (1 + λi){πiFA, α}, where πi are the projections to the irreducible

representations orthogonal to h and λi is the corresponding eigenvalue under the map ∗(Υ ∧ ·).

Along C, the above computations read like Weitzenböck formulae between ∆A and
(
DA − n−4

2

)2
.

This compares to the case when the manifold carries a special holonomy metric, and the

Weitzenböck formulae relate ∆A and D2
A. For example, if we consider holomorphic deformations

of a HYM connection, we have

ŜA(α) = 2∆∂A
α .

The challenge is therefore, going from C to Ω1(gP ) and finding a way of working with the

generalised Weitzenböck formula of Equation (30). We do not know any general criteria or

strategy for doing so, and so our discussion comes down to a case-by-case study of Table 5

(cf. Table 2). Before proceeding, we present two additional applications of our Weitzenböck

Geometry h L

Sasakian Λ
(1,1)
0 η ∧ Λ1 ⊕ Λ(1,1)

Nearly Kähler Λ2
8 Λ2

6 ⊕ Λ2
8

Nearly parallel G2 Λ2
14 Λ2

Table 5: Characteristic bundles associated to special holonomy cones

formula. An interesting first corollary of the previous discussion arises by combining the results

for the trivial connection with a Bochner–Weitzenböck identity. To this end, we first introduce

the following operator.
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Definition 2.8. Let (Σn−1, g) be a closed Riemannian manifold. The divergence operator is

div : Sym2 → Ω1

h 7→ c ◦ ∇h ,

where c : Ω1 ⊗ Sym2 → Ω1 is the usual contraction map.

The adjoint to the divergence is div∗(X) = −1
2LXg. We have the following identities

Lemma 2.9 (Bochner formula). Let (Σn−1, g) be a closed Riemannian manifold. Then the

Hodge Laplacian on 1-forms satisfies

∆X = ∇∗∇X +Ric(X) = 2 div div∗(X) + 2Ric(X)− dd∗X . (31)

Proposition 2.10. Let (Σn−1, g,Υ,Ξ) be the closed link of a special holonomy Ricci-flat cone,

so Ric(g) = (n− 2)g and the condition ∗(Ξ ∧ β) = 0 for β ∈ L⊥ holds. Let

Eλ = {α ∈ C| curl(α) = λα} .

Then,

(i) For λ ̸= 0, Eλ ⊆ Ω1
coclosed and we have E0 = dΩ0.

(ii) For λ ∈ (−2, n− 2) \ {0}, we have Eλ = 0.

(iii) We have E−2 ⊕ En−2
∼= isom(M, g) ∩ C.

Proof. Recall that the curl operator respects the splitting C⊕C⊥ since curl : C → C by definition

of C, and since it is self-adjoint, we must have curl : C⊥ → C⊥. If λ ̸= 0, the coclosed condition

follows by direct differentiation, λd∗α = ∗d(Ξ ∧ dα) = 0.

From Proposition 2.6, it follows that ker(curl) ⊆ C. Now, Equation (28) implies that, for

α ∈ Eλ ⊆ C,
d∗dα = D2(α)− (n− 4)D(α)+ =

[
λ2 − (n− 4)λ

]
α .

If λ = 0, we have ||dα||2= 0, and so α ∈ dΩ0, since H1(Σ) = 0 by Myers’ theorem. If λ ̸= 0, α

is coclosed and taking norms on Equation (31), we get

1

4
||LXg||2= ||div∗(α)||2=

ï
λ2 − (n− 4)λ

2
− (n− 2)

ò
||α||2 .

Solving for λ, the second claim follows.

Finally, α ∈ C is dual to a Killing field if and only if it solves the equation d∗dα = 2(n−2)α, and

the claim E−2 ⊕ En−2
∼= isom(M, g) ∩ C follows from the Weitzenböck formula (31) again.

The fact that infinitesimal isometries are divided into two classes raises the question of the

significance of each class. Indeed, we have the following:

Proposition 2.11 (Prop. A.11). Under the assumptions of Proposition 2.10, the space E−2

corresponds to aut(Σ, g,Υ,Ξ), the Lie algebra of infinitesimal automorphisms.
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A case-by-case discussion and proof are included in the Appendix for nearly Kähler, nearly

parallel G2 and Sasaki-Einstein structures in Lemma A.53, Lemma A.29 and Proposition A.68,

respectively. Moreover, from that discussion, one can further conclude

Proposition 2.12. Under the assumptions of Proposition 2.10, if (Σ, g) does not have constant

sectional curvature,

isom(M, g) ∼= E−2 ⊕ En−2 .

The argument for this result is somewhat unsatisfactory, and we believe there should exist a

general, direct proof that isom(M, g) ⊆ C. However, we have not been able to find one.

Similarly, we can consider the following generalisation of Simons’ result. For a connection A,

consider the 1-forms given by α⌟FA ∈ Ω1(Σ, gP ) for α ∈ Ω1.

Lemma 2.13. Let A be a Yang–Mills connection. The 1-form α⌟FA satisfies the Coulomb gauge

condition whenever α is closed. Similarly, if A is an instanton, it suffices that dα ∈ Γ(h⊥) .

Proof. Using the condition d∗AFA = 0, we have

d∗A(α⌟FA) = (−1)n−2 ∗ dA (∗FA ∧ α) = (−1)n−2 ∗ (∗FA ∧ dα) = (−1)n−2⟨FA, dα⟩ .

If dα = 0, the claim is clear. If A is an instanton for an N(H)-structure, FA ∈ Γ(h⊗ gP ).

Let A be an Υ-instanton and α ∈ Ω1
closed, and set α̂ = α⌟FA. By direct computation using the

Leibniz rule, we have

DA(α̂) = (−1)n ∗ (Ξ ∧ dAα̂) = ∗dA[Ξ ∧ (α⌟FA)]

= (−1)n−1 ∗ dA[(α⌟Ξ) ∧ FA] = (−1)n−1 ∗ (LαΞ ∧ FA)
= (−1)n−1 ∗ [(∇αΞ + L2αg)∗ Ξ ∧ FA]
= (−1)n ∗ (α ∧Υ ∧ FA) + (−1)n−1 ∗ [(L2αg)∗ Ξ ∧ FA]
= −α⌟ ∗ (Υ ∧ FA) + (−1)n−1 ∗ [(L2αg)∗ Ξ ∧ FA]
= α̂+ (−1)n−1 ∗ [(L2αg)∗ Ξ ∧ FA] ,

where we used the identity LXΞ − ∇XΞ = (∇X)∗ in the third line, and the fact that links of

special holonomy cones satisfy ∇XΞ = −X ∧Υ in the fourth line.

Therefore, we are interested in the space

GCK = {α ∈ Ω1
closed(Σ

n−1)| (Lαg)∗Ξ = fΞ for f ∈ Ω0}

of generalised conformal Killing fields. We have proved that:

Proposition 2.14. Let α ∈ GCK. Then DA(α̂) = −α̂.

In particular, if we further assume α̂ ∈ C, it follows that SA(α̂) = (5− n)α̂.

This recovers the well-known Yang-Mills stability result [BL81, Thm. 7.11] of Simons on the

round sphere Sn−1 for n ≥ 6 by taking α a conformal Killing field.
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Of course, one would like to have a direct proof that α̂ ∈ C for all α ∈ GCK. We could not

find a general proof, but a proof for the nearly parallel G2 and nearly Kähler cases follows from

Corollaries 2.19 and 2.30 respectively.

One might wonder whether our discussion leads to new examples. Unfortunately, the following

result due to Obata is rather discouraging:

Proposition 2.15 ([Oba71]). Let (Σn−1, g) be either a nearly parallel G2, nearly Kähler or

Sasaki manifold with non-trivial conformal Killing fields. Then Σ is isometric to the round

sphere Sn−1.

In the nearly parallel G2, we have GCK ∼= CK, so there is nothing else to be done. In the nearly

Kähler and Sasaki cases, the space Sym2
0(TM) splits into multiple irreducible pieces, some of

which act trivially on Ξ, so one might hope that GCK is in general non-trivial in these cases.

We conclude this section with one final application of Proposition 28. Assume the cone

constraint is preserved under the gradient flow of the Chern–Simons functional. Consider

A(r) a gradient flow line with well defined Υ-instanton limits A0 = limr→0A(r) and A∞ =

limr→∞A(r). We make the following definition:

Definition 2.16. The spectral flow of the family A(r) around k is the algebraic intersection

number (with multiplicity) of the spectrum of the operator DA(r) − k with the zero axis. We

denote it by SpecFlow(A, k).

Then we have the following result:

Proposition 2.17 ([KM07, Prop. 14.2.1]). The virtual dimension of the moduli space of Ω-

instanton at A = A(r) with the same asymptotics is equal to SpecFlow(A, 0).

By direct application of Proposition 28, we have

IndCA∞ − IndCA0
= SpecFlow(A, 0)−SpecFlow(A, n−4) = dimvir (MΩ(A))−SpecFlow(A, n−4) ,

where IndCA is the Yang–Mills index of A restricted to the subspace C. Thus, we ask

Question 1. Does the shifted spectral flow SpecFlow(A,n − 4) carry any natural geometric

significance?

We proceed to specialise the preceding discussion to three cases of interest: nearly parallel G2,

nearly Kähler and Sasaki structures. We focus on the former two and include the latter as it

presents some interesting differences.

2.1 Holonomy Spin(7) cones

We start with the case where the cone has holonomy contained in Spin(7), so (Σ7, g) carries

a nearly G2-structure. Let A be a G2-instanton on Σ. To be consistent with the existing G2-

geometry literature, the 3-form Υ will be denoted by φ and the 4-form Ξ as ψ for the remainder

of this section (cf. Table 2). The Spin(7)-cone case is straightforward due to the following

observation.
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Proposition 2.18. The cone constraint (22) is trivial. In particular, it is trivially preserved

by the Chern-Simons gradient flow and Equations (24a) and (24b) are equivalent.

Proof. In the terminology of Section A.2, we have Υ = φ ∈ Ω3(Σ7) and Ξ = ψ = ∗φ ∈ Ω4(Σ7).

Then, the cone constraint (22) become β + ∗(β ∧ φ) = ∗(ψ ∧ ∗(ψ ∧ β)), which is the identity in

Lemma A.18.

In particular, we have

Corollary 2.19. The stability operator SA is fully characterised by DA via the relation

SA(α) = D2
A(α)− 4DA(α) . (32)

The index and nullity of ŜA = SA + dAd
∗
A are given by the equality case of Equation (29).

Remark 2.20. The relation (32) was first introduced in [Wal22] with a typo.

To conclude this case, let us study the mapping properties of the deformation operator “DA =

(d∗A, π7 ◦ dA) : Ω1(gP ) → Ω0(gP )⊕Ω2
7(gP ) on the cone. These computations were carried out in

[Gho24] from a spinorial point of view. First, we need the following technical lemmas:

Lemma 2.21. Let β̂ = rdr ∧ α+ r2β be a homogeneous 2-form on a Spin(7)-cone. The map

π̂ : Ω2
homo(C) → Ω1(Σ)

β̂ 7→ −4α = −4

r
∂r⌟β̂

is surjective, and 2-forms of type 21 span its kernel. Moreover, it is a homothety on the image

by a factor of 1/4, i.e. we have

||π7(β)||2C=
1

4
||π̂(β)||2Σ ,

where π7(β) =
1
4 [β + ∗(Φ ∧ β)] is the projection map.

Proof. Clearly, the map is surjective. By dimensional count, its kernel has dimension 21. The

map ι(α) = rdr ∧ α + r2 ∗ (ψ ∧ α) is a right inverse for π̂ up to a constant; so it suffices to

prove that its image is contained in Ω2
7(C). From Lemma A.13, this is equivalent to proving

that ∗C(Φ ∧ ι(α)) = 3ι(α). Indeed

∗C (Φ ∧ ι(α)) = ∗C [(r3dr ∧ φ+ r4ψ) ∧ (rdr ∧ α+ r2 ∗ (ψ ∧ α)]
= ∗C

[
r5dr ∧ (φ ∧ ∗(ψ ∧ α) + ψ ∧ α) + r6ψ ∧ ∗(ψ ∧ α))

]
= 3

(
rdr ∧ α+ r2 ∗ (ψ ∧ α)

)
,

where the last line follows from the G2 identities (iii) and (iv) in Lemma A.17. Finally, by

Lemma A.17 once more, we have

||ι(α)||2C= ||α||2Σ+||∗(ψ ∧ α)||2Σ= 4||α||2Σ .

30



Remark 2.22. Notice that the choice of constant −4 has no a priori geometric significance but

is helpful to make “DA manifestly self-adjoint.

Using this identification, we can prove the following:

Proposition 2.23. Let α̂ = rλ (fdr + rα) be a λ-homogeneous section of Ω1(C, gP ), with A a

G2 instanton on the link. Then, under the identification above, we have“DA : Ω0 ⊕ Ω1(Σ, gP ) → Ω0 ⊕ Ω1(Σ, gP )

(f, α) 7→
Ç
−(λ+ 7) d∗A

dA − ∗ (ψ ∧ dA)− (λ+ 1)

åÇ
f

α

å
(33)

Proof. From Lemma 3.2, we have

dAα̂ = rλ+1

ï
dr

r
∧ ((λ+ 1)α− dAf) + dAα

ò
d∗Aα̂ = rλ−1 (d∗Aα− (λ+ 7)f) .

Using the Cayley 4-form Φ = r3dr ∧ φ+ r4ψ, we have

∗C (Φ ∧ dAα̂) = ∗C
î(
r3dr ∧ φ+ r4ψ

)
∧
Ä
rλ−1dr ∧ ((λ+ 1)α− dAf) + rλdAα

äó
= rλ+5 ∗C

ï
dr

r
∧ (φ ∧ dAα+ ψ ∧ [(λ+ 1)α− dAf ]) + ψ ∧ dAα

ò
= rλ+1

ï
dr

r
∧ ∗(ψ ∧ dAα) + ∗ (φ ∧ dAα+ ψ ∧ [(λ+ 1)α− dAf ])

ò
Now, using the identification from Lemma 2.21, we have

π̂ ◦ π7(dAα) = dAf − (λ+ 1)α− ∗(ψ ∧ dAα) .

The following gives a natural geometric interpretation of the kernel of “DA in a certain range.

Lemma 2.24. Let A be a G2-instanton on Σ. For λ ∈ (−7,−1), if α̂ = rλ(fdr + rα) is a λ-

homogeneous section in the kernel of “DA, then f = 0 and α is an eigenvector of DA = ∗(ψ∧dA·)
of eigenvalue −(λ+ 1).

If A is the trivial connection, the same applies in the range λ ∈ (−8, 0) with the difference that

for λ = 0, f can be constant.

Proof. By Equation (33), we need to solve

d∗Aα = (λ+ 7)f , dAf = ∗(ψ ∧ dAα) + (λ+ 1)α .

Acting by d∗A on the equation on the left and substituting the right one, we have

∆Af = − ∗ (ψ ∧ [FA, α]) + (λ+ 1)d∗Aα = (λ+ 1)(λ+ 7)f ,

where we used the instanton condition FA ∧ ψ = 0, so the curvature term vanishes. The claim

follows from the positivity of the Laplacian. If A is trivial, the improved bound is a corollary

of Obata’s theorem (cf. [Oba62]).

Notice that the previous lemma is essentially a twisted version of Prop. A.32.
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2.2 Holonomy G2 cones

We now move on to the case where C(Σ) is a metric cone with holonomy contained in G2, so

(Σ, g) carries a nearly Kähler structure, considered previously in the literature by [Xu09] and

[CH16]. To be consistent with the existing literature on nearly Kähler manifolds, the 2-form Υ

will be denoted by ω and the 3-form Ξ as ρ for the remainder of this section (cf. Table 2). We

also set ρ̂ = ∗ρ, its Hodge dual, to maintain consistent notation with the rest of the thesis (cf.

Section 7). From Lemma A.38, we have

Lemma 2.25. The cone bundle is L =
{
β ∈ Ω2(gP )| ω2 ∧ β = 0

} ∼= Ω2
8 ⊕ Ω2

6
∼= ⟨ω⟩⊥.

Proposition 2.26. The Chern-Simons gradient flow preserves the cone constraint.

Proof. The gradient flow is ∂tA = − ∗ (FA ∧ ρ). By the Maurer-Cartan formula, it follows that

∂tFA = −dA ∗ (FA ∧ ρ). Thus,

∂

∂t
(FA ∧ω2) = −dA ∗ (FA ∧ ρ)∧ω2 = −dA

Ä
∗ (FA ∧ ρ)∧ω2

ä
= dA(FA ∧ ρ̂) = −2FA ∧ω2 . (34)

In particular, the cone constraint is preserved by the flow.

We give a more geometrically satisfactory interpretation of the cone constraint.

The base manifold Σ is even-dimensional and carries a closed (n − 2)-form ω2/2, so the space

of connections is naturally equipped with a symplectic structure:

W(α, β) =

∫
Σ
Tr(α ∧ β) ∧ ω2

2
. (35)

This symplectic structure is preserved by the action of the gauge group G on the space of

connections A. In particular, it admits a well-known G-equivariant moment map

µ : A →Ω6(M, gP ) ∼= Ω0(M, gP )
∗

A 7→FA ∧ ω2

2
.

(36)

One can also consider a second Chern-Simons-type functional

CSρ̂(A) =

∫
Σ
CS0(A,A0) ∧ ρ̂ .

Proposition 2.27. The cone constraint (22) in the nearly Kähler case corresponds to the

vanishing of the moment map µ in Equation (36). Over µ−1(0), the instanton equation on the

cone reduces to the Hamiltonian flow of CSρ̂.

Proof. The first statement follows immediately from Lemma 2.25. The first variation of CSρ̂ is

δ

δα
CSρ̂ =

∫
Σ
Tr(α ∧ FA) ∧ ρ̂ .

Thus, the Hamiltonian flow with respect to W will be

∂tA = ∗
Å
ω2

2
∧ ∗(FA ∧ ρ̂)

ã
= −J ∗ (FA ∧ ρ̂) = − ∗ (FA ∧ ρ) ,

where we used Lemmas A.38 and A.39.
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As in the previous case, we have

Lemma 2.28. The nearly Kähler instanton equations (24a) and (24b) are equivalent. In par-

ticular, critical points of the Chern-Simons functional CSρ are automatically nearly Kähler

instantons.

Proof. We need to show that the equations

∗(FA ∧ ω) = −FA , FA ∧ ρ = 0

are equivalent. The first directly implies the second (cf. Lemma A.38). Now, the second is

equivalent to π6(FA) = 0, and thus to FA ∧ ρ̂ = 0. Differentiating and using the Bianchi

identity, we have FA ∧ ω2 = 0, and the claim follows.

Finally, let us discuss what happens at the level of second variations. Since the cone bundle L

corresponds to the kernel of the contraction operator Λ : Ω2(gP ) → Ω0(gP ), we have

Lemma 2.29. Let A be a nearly Kähler instanton. The linearisation of the cone constraint is

d∗A(Jα) = 0 and C⊥ =
{
JdAf | f ∈ Ω0(gP )

}
. Moreover, the subspace C⊥ is an eigenspace of the

operator DA with eigenvalue 4.

Proof. The first two claims are straightforward. Let us prove that C⊥ is an eigenspace of DA.

We have:

DA(JdAf) = − ∗ (dAJdAf ∧ ρ) = ∗dA(dAf ∧ ρ̂)

= ∗([FA, f ] ∧ ρ̂) + 4 ∗
Å
dAf ∧ ω2

2

ã
= 4JdAf ,

where we used the relationship JX ∧ ρ = −X ∧ ρ̂ in the first line and the instanton condition

on the third. (cf. Proposition A.48).

Thus, Proposition 2.6 takes the following form in the nearly Kähler case:

Corollary 2.30. Let A be a nearly Kähler instanton. Let α̂ = α+ JdAf ∈ Ω1(gP ) with α ∈ C.
Then

⟨SA(α̂), α̂⟩ = ⟨D2
A(α)− 3DA(α), α⟩+ 4||dAf ||2+||Λ(dAJdAf)||2 . (37)

The index and nullity of ŜA = SA + dAd
∗
A are given by the equality case of Equation (29).

Proof. Since C⊥ is an eigenspace of DA, it follows easily that ⟨SA(α), JdAf⟩ = 0. Thus, we only

need to compute ⟨SA(JdAf), JdAf⟩. From Proposition 2.6 and Lemma A.39, we have

⟨SA(JdAf), JdAf⟩ = ⟨D2
A(JdAf)− 3DA(JdAf), JdAf⟩+ ||ΛdAJdAf ||2

= 4||dAf ||2+||Λ(dAJdAf)||2

where the second line simply follows from JdAf being an eigenform of DA with eigenvalue 4.

Since SA(JdAf) is non-negative, and SA(JdAf) = 0 implies dAf = 0, the eigenspaces of non-

positive eigenvalue are contained in C, and the claim follows.
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Again, we finish with the study of the mapping properties of the deformation operator “DA :

Ω0(gP )⊕Ω1(gP ) → Ω0(gP )⊕Ω1(gP ) on the cone. As in the Spin(7)-case, the computation was

carried out in [Dri21] from a spinorial point of view. Using the identification

Omega1(C) ∼= Ω0(Σ)⊕ Ω1(Σ) , (38)

we prove:

Proposition 2.31. Let f̂ = rλf ∈ Ω0(gP ) and α̂ = rλ (gdr + rα) be λ-homogeneous sections

of Ω0(C, gP ) and Ω1(C, gP ) respectively. Then, “DA(f̂ , α̂) is given by“DA : Ω0 ⊕ Ω0 ⊕ Ω1(Σ, gP ) → Ω0 ⊕ Ω0 ⊕ Ω1(Σ, gP )

(f, g, α) 7→

Ö
0 −(λ+ 6) d∗A
λ 0 d∗AJ

dA −JdA − ∗ (ρ̂ ∧ dA) + (λ+ 1)J

èÖ
f

g

α

è
(39)

Proof. As in the previous case, from Lemma 3.2, we know

dAα̂ = rλ
ï
dr

r
∧ ((λ+ 1)α− dAg) + dAα

ò
,

d∗Aα̂ = rλ−1 (d∗Aα− (λ+ 6)g) ,

dAf̂ = rλ
ï
λf
dr

r
+ dAf

ò
.

Plugging in ψ = −r3dr ∧ ρ̂+ r4 ω
2

2 , we have

∗C (ψ ∧ dAα̂) = ∗C
ïÅ

−r3dr ∧ ρ̂+ r4
ω2

2

ã
∧
Ä
rλ−1dr ∧ ((λ+ 1)α− dAg) + rλdAα

äò
= rλ+4 ∗C

ï
dr

r
∧
Å
ω2

2
∧ [(λ+ 1)α− dAg]− ρ̂ ∧ dAα

ã
+
ω2

2
∧ dAα

ò
= rλ

ï
dr

r
∧ ∗
Å
ω2

2
∧ dAα

ã
+ ∗

Å
ω2

2
∧ [(λ+ 1)α− dAg]− ρ̂ ∧ dAα

ãò
= rλ

ï
dr

r
∧ d∗A(Jα) + (λ+ 1)Jα− JdAg − ∗ (ρ̂ ∧ dAα)

ò
where we used identities from Lemma A.38 and Proposition A.48 in the last line.

As in the previous case, we have

Lemma 2.32. Let A be a nearly Kähler instanton and (f̂ , α̂) ∈ Ω0⊕Ω1(gP ) be λ-homogeneous

solutions to “DA(f̂ , α̂). Under the identification (f̂ , α̂) ∼= (f, g, α) from Equation (38), we have

that g = 0 for λ ∈ (−6,−1), and f = 0 for λ ∈ (−5, 0). Moreover, if λ ∈ (−5,−1), then α is

an eigenvector of DA = − ∗ (ρ ∧ dA) of eigenvalue −(λ+ 1).

If A is the trivial connection, g = 0 for λ ∈ (−7, 0) \ {−6,−1}, f = 0 for λ ∈ (−6, 1) \ {−5, 0}
and α will be an eigenvector of DA in the range λ ∈ (−6, 0).
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Proof. By Equation (39), we need to solve

d∗Aα = (λ+ 6)g , (40a)

d∗AJα = −λf , (40b)

dAf − JdAg = ∗(ρ̂ ∧ dAα)− (λ+ 1)Jα . (40c)

Acting by d∗A and by d∗AJ on the last equation, we have

∆Af = ∗dA (ρ̂ ∧ dAα)− (λ+ 1)d∗A(Jα)

= −4 ∗
Å
ω2

2
∧ dAα

ã
− ∗ (ρ̂ ∧ [FA, α])− (λ+ 1)d∗A(Jα) (41a)

= −(λ+ 5)d∗A(Jα) ,

∆Ag = − ∗ dA(ρ ∧ dAα) + (λ+ 1)d∗Aα = ∗ (ρ ∧ [FA, α]) + (λ+ 1)d∗A(α)

= (λ+ 1)d∗Aα . (41b)

where we use Lemma A.39, and the observation that, for any function h,

d∗AJdAh = (d∗A)
2(hω) = ∗

Å
[FA, h] ∧

ω2

2

ã
= 0 ,

since FA is an instanton. Similarly, we have ρ∧[FA, α] = 0 = ρ̂∧[FA, α]. Substituting Equations

(40a) and (40b) above, we get

∆Ag = (λ+ 1)(λ+ 6)g and ∆Af = λ(λ+ 5)f .

The first claim follows from the positivity of the Laplacian. If both f and g vanish, Equation

(40c) reduces to ∗(ρ̂∧dAα) = (λ+1)Jα. Acting by J and using Lemma A.39, we see α satisfies

DA(α) = − ∗ (ρ ∧ dAα) = −(λ+ 1)α, as needed.

If A is trivial, the improved bounds are a corollary of Obata’s theorem (cf. [Oba62]).

2.3 Kähler cones

Finally, let us discuss the case where the metric cone C(Σ) carries a Kähler metric, so (Σ2k+1, g)

carries a Sasaki structure (g, η, ω,R,Φ), as defined in Appendix A.4. In the notation of Sasakian

geometry, we have Υ = η ∧ ωk−2

(k−2)! and Ξ = ωk−1

(k−1)! ; and we verify

dΥ =
2

(k − 2)!
ωk−1 = (2k − 2)

ωk−1

(k − 1)!
= (n− 4)Ξ .

First, we have

Lemma 2.33. The cone constraint (22) corresponds to the curvature being a section of the

subbundle
Ä
Λ(2,0)+(0,2)

ä⊥ ∼= η ∧ Λ1H ⊕ Λ1,1 ∼= η ∧ Λ1H ⊕ ⟨ω⟩ ⊕ Λ1,1
0 .

Proof. Let β ∈ Ω2. We can write it in terms of its irreducible representation components:

β = η ∧ α+ fω + β2,0 + β0 ,
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with β2,0 ∈ Ω(2,0)+(0,2) and β0 ∈ Ω1,1
0 . Then, using the identities in a Sasaki manifold, we have

∗(β ∧Υ) = ∗
Ç
β ∧ η ∧ ωk−2

(k − 2)!

å
= (k − 1)fω + β2,0 − β0

∗ (Ξ ∧ ∗(Ξ ∧ β)) = ∗
ñ
ωk−1

(k − 1)!
∧ ∗
Ç
β ∧ ωk−1

(k − 1)!

åô
= ∗

Ç
ωk−1

(k − 1)!
∧ (Jα+ kfη)

å
= η ∧ α+ kfω .

Collecting the terms, it follows that the cone constraint is equivalent to 2β2,0 = 0, as needed.

As in the previous cases, we have

Proposition 2.34. The Chern–Simons flow preserves the cone constraint.

Proof. Denote by π2,0 : Λ2 → Λ(2,0)+(0,2) the projection to the (2, 0) + (0, 2) component. We

need to show that π2,0 (∂tFA) = 0 assuming π2,0(FA). Again, by the Maurer-Cartan Equation,

we have ∂tFA = dA∂tA = dA ∗ (Ξ ∧ FA).
Assume that at time t, FA satisfies the cone constraint, so it admits the decomposition FA =

η ∧ α+ fω + β0. Thus, we need to check that the following term vanishes:

π2,0 (∂tFA) = π2,0 [dA ∗ (Ξ ∧ FA)] = π2,0 [dA (Jα+ kfη)] = π2,0 (dAJα) .

Now, from the Bianchi identity, we have

dAFA = 2ω ∧ α− η ∧ dAα+ dAf ∧ ω + dAβ0 = 0 .

Now, looking at the irreducible (p, q)-parts, it follows that π2,0(dAα) = 0. But this is equivalent

to π2,0(dAJα) = 0, as needed.

Let us now focus on studying the critical points of the Chern-Simons flow. In contrast to the

previous cases, the critical points of the Chern-Simons functional will not necessarily be Sasaki

instantons if the cone constraint is dropped. This raises the question of whether general critical

points of CSΞ have some geometric interpretation or significance. We have

Lemma 2.35. Critical points of CSΞ are transverse connections with respect to the Reeb foli-

ation.

Proof. Let A be a critical point of CSΞ. We need to show that R⌟FA = 0. Now, since Ξ = ωk−1

(k−1)!

is horizontal (in fact, basic), we have that 0 = R⌟(FA ∧Ξ) = (R⌟FA)∧Ξ, and the claim follows

since LΞ : Λ1 → Λ2k−1 is an isomorphism.

Thus, locally, we can think of A as a constant connection along the leaves. If the foliation were

quasi-regular, with orbifold base X , then A = π∗(B)− k
2η, where B is a connection on the base

χ and k is the monodromy of the connection along the S1-fibres. The following proposition is

straightforward.

Proposition 2.36. Let M be a quasi-regular Sasaki manifold and A = π∗(B)− k
2η be a trans-

verse connection. Then
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(i) The cone constraint is equivalent to B being a holomorphic connection.

(ii) The connection A is a critical point of CSΞ if ΛFB is constant. In this case k is the degree

of B, deg(B) = i
2π ⟨FB, ω⟩.

(iii) The connection A is a Sasaki instanton if and only if B is a Hermite–Yang–Mills connec-

tion.

Proof. The curvature of A will be FA = π∗(FB)− kω − 1
2dk ∧ η. Thus,

(i) The cone condition becomes 0 = π(2,0)(FB), which is equivalent to B being a holomorphic

connection.

(ii) Critical points of CSΞ correspond to (π∗(FB)− kω)∧ ωk−1

(k−1)! = 0. Contracting with ω and

using the definition of the degree of E, the claim follows.

(iii) The two conditions above are precisely the Hermite–Yang–Mills equation.

Even when the Sasaki structure is irregular, one can still make sense of the notions of A being

transverse holomorphic. In all cases, one has a transverse analogue of the Hitchin–Kobayashi

correspondence, as proved by [BH22].

3 Conical singularities and weighted Banach spaces

We describe the analytic framework necessary to study the deformation problems of interest.

While standard analytical techniques on compact Riemannian manifolds break down in the

non-compact setting, they can be adapted by prescribing appropriate behaviour near the non-

compact ends. The key idea is to introduce weighted versions of the classical Hölder and Sobolev

spaces. On those, we can define a suitable notion of (uniformly) elliptic operators. These will

enjoy similar properties to their counterparts in the compact setup, including nice Fredholm

and index theory, as well as good regularity properties. We begin by motivating this work by

considering the study of harmonic forms on a Riemannian metric cone. We follow the approach

outlined in [Che79] (cf. [FHN21, Appendix A]).

Recall the notion of homogeneous k-forms from the introduction:

Definition 3.1. We will say a smooth k-form γ on the cone is homogeneous of rate λ if there

exist α ∈ Ωk−1(Σ) and β ∈ Ωk(Σ) such that

γ = rλ(rk−1dr ∧ α+ rkβ) .

Equivalently, λ-homogeneous k-forms are elements of the representation of weight λ under the

natural induced R+-action.

Denote by ∗ and ∗C the Hodge star operator on (Σ, g) and (C(Σ), gC) respectively. We are

interested in understanding the mapping properties of the associated Laplace operator ∆C =

dd∗C + d∗Cd. The obvious approach to this problem is by separation of variables.
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Let γ = rλ+k(drr ∧ α+ β) a λ-homogeneous k-form. We have the relation

∗Cγ = rλ+n−k
Å
∗α+ (−1)k

dr

r
∧ ∗β

ã
, (43)

where n is the dimension of the cone. Using this, we get

Lemma 3.2. Let γ = rλ+k(drr ∧ α+ β) be a λ-homogeneous k-form. Then

dγ =rλ+k
Å
dr

r
∧ ((λ+ k)β − dα) + dβ

ã
(44a)

d∗Cγ =rλ+k−2

Å
−dr
r

∧ d∗α+ d∗β + (k − λ− n)α

ã
(44b)

∆Cγ =rλ+k−2dr

r
∧ (∆α− (λ+ k − 2)(λ+ n− k)α− 2d∗β) (44c)

+ rλ+k−2 (∆β − (λ+ k)(λ− k + n− 2)β − 2dα) .

Thus, one could try to solve the eigenvalue problem ∆Cγ = ν2γ by considering forms of the

type γ =
∑

i fi(t)γi, where fi(t) belong to a suitably chosen family of smooth functions and γi

are homogeneous forms to solve. From the Lemma above, this leads to

∆C(fiγi) = fi∆Cγ − f ′′i γi −
n− 1

r
f ′iγi = ν2fiγi . (45)

Choosing γi to be eigenforms of the operator ∆C leads to a Bessel-type equation for f . Thus,

one should take fi(r) to be suitably rescaled multiples of the Bessel functions Jν(r). In the

case of harmonic form, ν2 = 0, it suffices to consider functions f of the form f(r) = rλ logk(r),

rather than general Bessel functions. More concretely, we have the following result:

Theorem 3.3 ([FHN21, Thm. A.2, Prop. A.6]). Let γ =
∑m

j=0 γj (log(r))
j with γj a λ-

homogeneous k-form. If ∆Cγ = 0 then ∆Cγj = 0 for all j and either m = 0 or m = 1 and

λ = 1−n
2 . Each γj = rλ+k

(
dr
r ∧ α+ β

)
solves the elliptic eigenvalue problem on the link:Ç

∆− (k − 2)(n+ 1− k) −2d∗

−2d ∆− k(n− k − 1)

åÇ
α

β

å
= λ(λ+ n− 1)

Ç
α

β

å
. (46)

Given the discussion above, we see that although it makes no sense to count solutions ∆Cγ = 0

in general, one can do so if one prescribes the behaviour of the k-form at either infinity or the

cone singularity. In that case, only finitely many λ will contribute, with the multiplicities given

by the multiplicity of solutions in Equation (46). This behaviour of the Laplacian on the metric

cone carries over to the case where we have a Riemannian manifold with singularities modelled

on a metric cone.

The rigorous theory to treat problems of this nature was initially introduced in the works of

Lockhart and McOwen [LO85], Bartnik [Bar86], and Lockhart [Loc87]. We will cover the main

results of these papers, adapted to our context. Their study is carried out in the asymptotically

cylindrical case, where the metric near the end converges (in a sense that will be made precise

later) to (R×Σ, dt2+gΣ). We are interested in the case where the metric converges to that of a

cone, (R+ × Σ, dr2 + r2gΣ). Since the two are conformally equivalent under the change t 7→ et,
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up to a global factor e2t, their results carry over to our case. A comprehensive discussion of

their work and its adaptation to the conical case can be found in Marshall’s PhD thesis [Mar02].

The section is organised as follows. We begin by defining the objects of interest, namely,

manifolds and connections with conical singularities. We then discuss weighted Banach spaces

and conclude with a review of the Fredholm properties of (uniform) elliptic operators between

these Banach manifolds.

Manifold with conical singularities

Throughout this section, we assume Mn is a non-compact smooth n-manifold and Σ is a closed

(n − 1)-dimensional manifold. We say M is a manifold with end Σ if there exists a compact

submanifold M̌ ⊆M and a diffeomorphism f :M \ M̌ → (a, b)× Σ.

The idea is to furnish the manifold with ends that have a Riemannian structure resembling a

metric cone on each end. We focus on a particular family of examples.

Definition 3.4. Consider M a compact connected Hausdorff topological space and p1, . . . , pm ∈
M such that M = M \ {p1, . . . , pm} carries a smooth n-dimensional Riemannian manifold

structure, with metric g.

We say (M, g) is a Riemannian manifold with isolated conically singularities (ICS), with sin-

gularities at p1, . . . , pm with rates ν1, . . . , νm, such that νi > 0, if the following is satisfied for

each i ∈ {1, . . . ,m}: There exist ϵ > 0, open disjoint neighbourhoods of pi, Ui, Riemannian

cones C(Σi) = (R+ × Σi, gC) over closed Riemannian manifolds (Σn−1
i , gΣ) and diffeomor-

phisms Ψi : (0, ϵ)× Σi → Ui \ {pi} such that

|∇k
i (Ψ

∗
i (g)− gi) |gCi

= O(rνi−ki ) as ri → 0 , (47)

for k ≥ 0, where ri is the radial coordinate of the cone and ∇i is the induced Levi-Civita

connection on the cone.

We say M is of rate ν if each pi is a conical singularity of rate ν. The Riemannian manifold

(Σi, g) is called the link of the singularity pi.

Remark 3.5. Given any closed Riemannian n-manifold M , one can produce an ICS manifold

by removing any collection of points {p1, . . . , pm}. In this case, the link of each singular point

is modelled on (Sn−1, ground).

Similarly, we can define the related notion of an asymptotically conical Riemannian manifold.

Definition 3.6. Let (Mn, g) be a complete Riemannian n-manifold. We say (M, g) is asymptot-

ically conical (AC) of rate ν < 0 if there exists a compact set K ⊆M , R > 0 and a Riemannian

cone C(Σ) = (R+ × Σ, gC) over a closed Riemannian manifold (Σn−1, gΣ) such that there exists

a diffeomorphism Ψ : [R,∞)× Σ →M \K satisfying

|∇k
i (Ψ

∗(g)− g)|gC= O(rν−k) as r → ∞ , (48)

for all k ≥ 0, and terms as above.
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Conically singular spaces admit a natural class of principal bundles. We state all definitions for

the case of an ICS manifold. Analogue definitions follow for the AC case.

Definition 3.7. Let P → M be a principal G-bundle over an ICS space M . We will say P is

an admissible bundle if, for each pi, there exist principal G-bundles Qi over Σi and principal

bundle isomorphisms

Fi : π
∗
iQ→ Ψ∗

i

(
P |Ui\{pi}

)
,

where πi : C(Σi) → Σi are the natural projection map and Ψi are the diffeomorphisms of

Definition 3.4. In this case we say P is framed by (Qi, Fi).

This definition extends naturally to vector bundles. Given a framing, we can define the corre-

sponding admissible objects, like bundle metrics and connections:

Definition 3.8. Let (E, h,∇) be a vector bundle E with a bundle metric h and a metric con-

nection ∇ over an ICS manifold. We will say the triple (E, h,∇) is admissible of rate ν > 0

if E is framed by Ei → Σi and there exist bundle metrics h∞i and metric connections ∇∞
i on

each Ei such that

|∇k
i (F

∗
i (h)− h∞i ) |gC⊗h∞i = O(rνi−ki ) |∇k

i (F
∗
i (∇)−∇∞

i ) |gC⊗h∞i = O(rνi−ki ) as ri → 0 ,

where Fi are the induced bundle isomorphisms from Definition 3.7.

Remark 3.9. One may define an admissible connection without choosing a metric; all that is

needed is the choice of a compatible metric at the framing.

As in the case of smooth Riemannian manifolds, smooth connections can be viewed as admissible

connections, where the framing connection is the trivial one.

3.1 Weighted spaces

To study the Fredholm properties of various differential operators on M , we need to introduce

suitable Banach spaces on which the operators act. For the remainder of this section, M will

denote an n-dimensional ICS manifold and E → M an admissible vector bundle. We start

by defining the usual and the weighted Banach spaces on sections of E, in the same spirit of

[LO85]. First, we define a radius function to lighten the notation.

Definition 3.10. Let M be an ICS manifold. We say ρ :M → (0, 1] is a radius function if we

have constants 0 < c1 < 1 < c2 such that for each i, we have

c1ri < Ψ∗
i (ρ) < c2ri (49)

on (0, ϵ)× Σi, where Ψi are the diffeomorphisms from Definition 3.4.

By using partitions of unity, it is clear that all ICS manifolds admit a radius function.

Definition 3.11. Let (E, h,∇) be an admissible triple over M and ρ a radius function. For all

p ≥ 1, k ∈ N, α ∈ (0, 1) and µ ∈ R, we define the weighted Sobolev space W k,p
µ and the weighted
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Hölder space Ck,αµ of sections of E as the norm completion of C∞
c (M,E) with respect to the

norms

||ξ||
Wk,p

µ
=

Ñ
k∑
j=0

∫
M

(
ρj−µ|∇jξ|

)p
ρ−n dvol

é1/p

||ξ||
Ck,α

µ
=

k∑
j=0

||ρj−µ∇jξ||C0+
î
ρk−µ∇kξ

ó
α
,

where the Hölder seminorm [·]α is defined using ∇-parallel transport to locally identify the fibres

of E.

Some authors (cf. [Mar02]) prefer to consider the multi-index µ ∈ Rm to allow different decay

rates at each singularity. We find no relevant advantage in working with these spaces, so we

will always assume that the decay rate is the same around all singularities.

Notice that we have an isomorphism W 0,p
n
p

∼= Lp. If we drop the Hölder seminorm, we get the

usual spaces Ckµ. Similarly, we set C∞
µ = ∩k∈NCkµ. By Definition 3.10, it is clear that different

choices of radius function yield equivalent norms. As in the compact case, we get an analogue

of the Sobolev embedding theorems, by adapting the results from Bartnik [Bar86, Thm. 1.2]

and Lockhart and McOwen [LO85, Lemma 7.2].

Theorem 3.12 (Sobolev embeddings for weights spaces). Let M be an n-dimensional ICS

manifold, equipped with an admissible triple (E, h,∇). Let p, q ≥ 1, α, β ∈ (0, 1), k, l ∈ N and

consider the associated Sobolev and Hölder spaces of sections. Then:

1. If k ≥ l, k− n
p ≥ l− n

q , p ≤ q and µ ≥ µ′, there is a continuous embedding W k,p
µ ↪→W l,q

µ′ .

2. If µ > µ′ and k − n
p ≥ l + α, the embeddings W k,p ↪→ C l,αµ ↪→W l,q

µ′ are continuous.

3. If µ ≥ µ′ and k+ α ≥ l+ β, the embeddings Ck+1
µ ↪→ Ck,αµ ↪→ C l,βµ′ ↪→ C lµ′ are continuous.

4. If µ1 + µ2 ≥ µ, the multiplication of smooth section extends to a continuous map

Ck,αµ1 (E)× Ck,αµ2 (E) ↪→ Ck,αµ (E ⊗ E) .

The main purpose of introducing these weighted spaces is to make the Implicit Function Theo-

rem for Banach spaces available to us, which we now recall:

Theorem 3.13 (Implicit Function Theorem (IFT), [Lan83, Thm. 2.1]). Let X,Y be Banach

spaces and let f : X → Y be a Fredholm map: its derivative Dxf is a Fredholm linear operator

for all x, so the vector spaces K = ker(Dxf) and C = coker(Dxf) are finite-dimensional.

Fix a point x0 ∈ X, with y0 = f(x0). Let L = Tx0f be the derivative of f at x0. There are

charts (U, κ) for X, (V, κ̃) for Y and a vector space B such that

κ : U → B ⊕K κ̃ : V → B ⊕ C ,

such that κ(x0) = 0, κ̃(x0) = 0 and the map F = κ̃ ◦ f ◦ κ−1 : B ⊕ K → B ⊕ C is given by

F (b, n) = (L(b),Φ(b, n)) on an open neighbourhood W ⊆ B ⊕ K, with Φ : W → C a smooth

map.

The map Φ is called the Kuranishi map or obstruction map. It essentially encodes the non-linear

information of f . Since it holds that f−1(y0) ∼= F−1(0, 0) ∼= Φ−1(0), if the obstruction map

vanishes we get that f−1(y0) is diffeomorphic to a neighbourhood of 0 in K.
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3.2 Asymptotically conical operators

Let us now consider the relevant class of operators that possess good Fredholm and regularity

properties, similar to those of their counterparts in compact manifolds.

Definition 3.14. Let P : Γ(E) → Γ(F ) be an elliptic operator of order k between sections of

admissible vector bundles over an ICS manifold. Let P∞
i : Γ(E∞

i ) → Γ(F∞
i ) elliptic operators

on the corresponding cone. We will say P is an admissible elliptic operator asymptotic to P∞
i

if there exists µ > 0 such that for each i and every l ≥ 0

|∇l
∞ [F ∗

i (Pu)− P∞
i (F ∗

i u)] |= O(rµ−l−k)

for every smooth section u of E on Ui \ pi, where Fi are the maps from Definition 3.7.

A moment’s thought suffices to realise that the set of admissible elliptic operators forms an

algebra under composition. For instance, consider ∇ : Γ(E) → Γ(T ∗M ⊗ E) an admissible

connection (cf. Definition 3.8). Then any differential operator given by the composition of

∇k : Γ(E) → Γ(⊗kT ∗M ⊗ E) with a bundle map Γ(⊗kT ∗M ⊗ E) → Γ(F ) with constant

coefficients is an admissible elliptic operator. In particular, it follows that

Proposition 3.15. Let A be an admissible connection. Then, the associated twisted Dirac

operator DA and twisted Laplacian ∆A operators are admissible elliptic operators.

Let us study some basic properties of admissible elliptic operators. First, integration by parts

and Stokes’ theorem yield

Lemma 3.16. Let P : Γ(E) → Γ(F ) be an admissible operator of order one and P ∗ : Γ(F ) →
Γ(E) its formal adjoint. Then for u ∈W 1,2

µ and v ∈W 1,2
µ′ with µ+ µ′ > 1− n, we have

⟨Pu, v⟩L2 = ⟨u, P ∗v⟩L2 .

Secondly, many of the local estimates for elliptic operators in Rn carry over to the ICS case, by

adapting the scaling argument of Bartnik [Bar86, Thm. 1.2], which uses the uniform ellipticity

property. The argument is the following.

Consider the compact set K = ρ−1([ϵ,∞)). For ϵ > 0 small enough, we can identify the

complement of K with the disjoint collection {0 < ri ≤ ϵ} in C(Σi) and P with its asymptotic

model P∞
i , up to a small error.

The region {0 < ri ≤ ϵ} can be decomposed into the annuli {2−k−1ϵ ≤ ri ≤ 2−kϵ} for k ∈ N. On

each annulus, the weighted norms are all equivalent, up to a factor, to the norms on the standard

annulus {1/2 ≤ ri ≤ 1} for each singularity. The desired inequalities follow by applying the

standard inequalities in the rescaled annuli and rescaling back. For instance, this yields the

weighted version of the standard elliptic regularity estimates.

Theorem 3.17 (Elliptic regularity). Let P : Γ(E) → Γ(F ) be an admissible elliptic operator

of order k. Suppose that u, f ∈ L2
loc such that u solves Pu = f in the weak sense. If u ∈ L2

µ(E)

and f ∈ C l,αµ−k(F ), then u ∈ C l+k,αµ (E) and u solves Pu = f in the strong sense. Moreover, we

have the estimate

||u||
Cl+k,α

µ
≤ C

Å
||Pu||

Cl,α
µ−k

+||u||L2
µ

ã
(50)

for C > 0 independent of u.
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Now, let us deal with the mapping properties of admissible elliptic operators. The idea is that

the operators will mimic the behaviour of the model operator on the cone, as in the case of the

Laplacian outlined before. Thus, we make the following definitions:

Definition 3.18. Let C(Σ) be a metric cone and a hermitian vector bundle (E∞, h∞) → C(Σ).

(i) We say a section u ∈ Γ(E∞) is λ-homogeneous if |u|h∞ is a homogeneous function of rate

(or weight) λ.

Let P∞
i : Γ(E∞

i ) → Γ(E∞
i ) be a (formally) self-adjoint elliptic operator on the cone C(Σ).

(ii) We say that λ ∈ R is an indicial root if there exists u ∈ Γ(E∞
i ) such that u is λ-

homogeneous and satisfies P∞
i (u) = 0. We denote the indicial roots of P∞

i by D(P∞
i ).

(iii) For λ ∈ D(P∞
i ), consider the space Kλ(P

∞
i ) of sections u ∈ ker(P∞

i ) of the form u =∑m
j=0 r

λ logj(r)uj, with each uj a λ-homogeneous section.

(iv) For an admissible elliptic operator P on an ICS, a rate λ ∈ R is called a critical rate if λ

lies in D(P∞
i ) for some i. Set

D(P ) =
m⋃
i=1

D(P∞
i ) and d(λ) =

m∑
i=1

dim Kλ(P
∞
i ) .

In general, one must allow for complex values of the critical rates. However, we will almost

exclusively consider formally self-adjoint operators of order one, which guarantees that the

critical rates are all real (cf. proof of Lemma 3.19).

The following lemma rules out the appearance of log terms in ker(P∞) and will be useful to us

later on.

Lemma 3.19. Let P : Γ(E) → Γ(E) be an admissible self-adjoint operator of order one,

asymptotic to P∞
i . Let u =

∑m
j=0 r

λ logj(r)uj ∈ ker(P∞
i ). Then m = 0.

In particular, dim Kλ(P
∞
i ) is equal to the multiplicity of λ as an indicial root.

Proof. Let u =
∑m

j=0 r
λ logj(r)uj with uj λ-homogeneous. Let PΣi the operator induced on the

link by P∞
i , i.e P∞

i = ∂r+
1
rPΣi . The condition that P∞

i (u) = 0 is equivalent to PΣi(uj) = λuj .

Now, collecting the logm(r) and logm−1(r) terms of P∞
i (u) = 0, we have

PΣi(um) = λum PΣi(um−1) +mum = λum−1 .

Projecting the latter equation to um and using the fact that PΣi is self-adjoint, we have

m||um||2 = λ⟨um−1, um⟩ − ⟨PΣi(um−1), um⟩ = λ⟨um−1, um⟩ − ⟨um−1, PΣi(um)⟩ = 0 ,

so m = 0, as needed.

We can now extend the regularity result Theorem 3.17 to obtain an improved decay estimate

for our solutions.
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Proposition 3.20. Let P : Γ(E) → Γ(F ) be an admissible elliptic operator of order k and

assume we have u and f as in Theorem 3.17. Moreover, let µ′ > µ such that [µ, µ′]∩D(P ) = ∅,
so there are no indicial roots of P contained in the interval. Then there exists C > 0 such that

||u||
Cl+k,α

µ′
≤ C

Å
||Pu||

Cl,α

µ′−k

+||u||L2
µ

ã
(51)

Proof. For a large enough compact set, one can study the boundary value problem P (u−v) = 0

on M \K with u = v on ∂K with v ∈ O(rµ) and u ∈ O(rµ̃). Since there are no indicial roots

in [µ′, µ], one can prove (cf. [LO85]) the estimate

||u||
Cl+k,α

µ′
≤ C

Å
||Pu||

Cl,α

µ′−k

+||u||
Ck,α

µ

ã
.

Combined with the elliptic regularity theorem above, the claim follows.

As an immediate corollary, we have

Corollary 3.21. The kernel of P k+l,αµ : Ck+l,αµ → C l,αµ−k is independent of k (and thus α).

Moreover, the kernel is also invariant from the decay rate µ, as long as we stay away from

critical rates. That is ker(P )µ ∼= ker(P )µ′ as long as [µ, µ′] ∩ D(P ) = ∅.

We can now state the main result that motivated this discussion

Theorem 3.22 ([LO85, Thm. 1.1]). Let P : Γ(E) → Γ(F ) be an admissible elliptic operator of

order k. Then the set D(P ) is discrete and the corresponding map P k+l,αµ is Fredholm whenever

µ /∈ D(P ). If µ ∈ D(P ), the operator P k+l,αµ fails to be Fredholm only because its image is not

closed.

A detailed proof can be found in [LO85] and [Mar02]. The theorem above implies, in particular,

that we can make sense of the index of P k+l,αµ for generic µ. As in the compact case, we have

a version of the Fredholm Alternative:

Theorem 3.23. Let P : Γ(E) → Γ(F ) be an admissible elliptic operator of order k, and P ∗

its formal adjoint. Take λ /∈ D(P ), so P k+l,αµ : Ck+l,αµ → Ck,αµ−k is Fredholm. Then, there is an

isomorphism coker(P )µ ∼= ker(P ∗)k−n−µ.

Notice that ker(P ∗)k−n−µ will be contained in the codomain of P k+l,αµ whenever µ < k − n
2 . In

this case, the isomorphism is an equality.

A natural question is how to compute the index of P k,αµ . We give two results in that direction.

First, as in the cone case, the change of the index between two non-critical rates is accounted

for by counting the solutions to the corresponding model problem on the cone:

Theorem 3.24 ([LO85]). Let P : Γ(E) → Γ(E) be an admissible elliptic operator of order k

and consider µ, µ′ ∈ R \ D(P ), with µ′ > µ. The index of the Fredholm operators P l,αµ does not

depend on l or α, and

Indµ′(P )− Indµ(P ) = −
∑

λ∈D(P )

d(λ) . (52)

44



Therefore, we are interested in computing Indµ(P ) for some value µ and the set of indical roots

D(P ). If P = “DA is a twisted Dirac operator, we get the following result by adapting the

Atiyah–Patodi–Singer index theorem:

Theorem 3.25 (cf. [APS75, Thm. 4.2]). Let E →M be an admissible hermitian operator over

an ICS manifold with singularities {p1, . . . , pm}. Consider A an admissible unitary connection

on E, framed by A∞ = (A∞
1 , . . . , A

∞
m ). Then the twisted Dirac operator “DA is admissible, and

satisfies

Ind 1−n
2
(“DA) =

∫
M

ch(E)Â(M) +
d(0) + ηA∞(0)

2
, (53)

where ch(E) and Â(M) denote the Chern character of E and the Â-genus of M respectively;

and ηA∞ is the meromorphic continuation of the eta function

ηA∞(s) =
∑

λ∈D(“DA)

sign(λ)λ−s . (54)

Proof. (Idea). The standard L2-index theorem of Atiyah, Patodi and Singer (APS) applies to

manifolds with boundary, where we have a cylindrical collar I × Y on the boundary, and the

operator P takes the shape P = ∂t + PY on the collar.

In our case, our conical ends are conformal to cylindrical ends. Since the index of the Dirac

operator is a conformal invariant, the APS index theorem carries over to our case for the weight

µ = 1−n
2 , which corresponds to L2-sections under the conformal rescaling of the metric. A

detailed discussion of how the result is adapted from the cylindrical to the conical setting is

provided in [Moo17].

Remark 3.26. If µ = 1−n
2 is an indicial root, one needs to take closed images to compute the

index, since the operator is not Fredholm.

4 Instantons over spaces with conical singularities

We study instantons on spaces with isolated conical singularities (ICS). The asymptotically

conical case has been previously treated for Spin(7)-instantons in [Pap22; Gho24], and for G2-

instantons in [Dri21]. Related results in the more general setting of conically singular spaces

were also obtained by Yuanqi Wang [Wan18a; Wan19], using non-standard weighted function

spaces. Our approach offers a more accessible framework that simplifies some aspects of his

analysis.

For the remainder of this section, we consider a compact manifold (Mn, g) of dimension n > 4,

with isolated conical singularities (ICS) at points {p1, . . . , pm}, and equipped with a closed

(n−4)-form ∗Ω. Let P → M \ {p1, . . . , pm} be an admissible principal G-bundle with fixed

framing connections A∞
i near each singularity. We denote by ρ a radius function as in Definition

3.10.

We focus on connections on P that are asymptotic to the framing connections A∞
i at rate

µ. Analogously to the compact setting, the space of such connections forms an affine space,

denoted Aµ−1, modelled on the vector space Ω1(gP )µ−1. Throughout this chapter, we fix µ > 0
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sufficiently small so that all admissible elliptic operators we encounter have no indicial roots in

the interval (0, µ).

In the compact case, we proved the existence of a topological charge associated with a principal

bundle P and a closed (n−4)-form ∗Ω. This charge ensured that instantons are absolute minima

of the Yang–Mills functional and provided specific topological rigidity results. This framework

extends naturally to the conically singular setting. Specifically, we have the following:

Proposition 4.1. Let A ∈ Aµ−1 be a connection on P asymptotic to the framing connections

A∞
i at rate µ. Then:

(i) There exists a well-defined topological charge cΩ(P,A).

(ii) The charge is independent of the choice of connection within the class Aµ−1.

(iii) The charge is independent of the framing connections A∞
i .

(iv) If (Mn, g) carries multiple suitable closed n−4 forms ∗Ωk, then there exists a well-defined

charge difference D(P,A), which only depends on the principal bundle P .

Proof. Let A ∈ Aµ−1. For ϵ > 0, let Uϵ = {x ∈M | ρ(x) > ϵ} and consider

cΩ(P ) = lim
ϵ→0

cϵΩ(P ) = lim
ϵ→0

∫
Uϵ

F 2
A ∧ ∗Ω .

(i) Since A is in Aµ−1, we have that |FA|= O(ρ−2) and ρ−2 ∈ L2(M) since n > 4.

(ii) Now, let A,B ∈ Aµ−1. We know that F 2
A − F 2

B = dCS(A,B), the Chern-Simons 3-form.

As ∗Ω is closed by assumption, Stokes’ theorem implies

cϵΩ(P )(A)− cϵΩ(P )(B) =

∫
Uϵ

Tr (F 2
A − F 2

B) ∧ ∗Ω =

∫
∂Uϵ

CS(A,B) ∧ ∗Ω .

Since A,B ∈ Aµ−1, we have the estimate |CS(A,B)|{ρ=ϵ}≤ Cϵ−3+2µ, and so

|cϵΩ(P )(A)− cϵΩ(P )(B)|≤ |CS(A,B)|{ρ=ϵ}vol(ρ−1(ϵ)) ≤ Cϵn−4+2µ

for ϵ > 0 small enough.

(iii) Assume A and B are framed by A∞
i and B∞

i respectively. As above, we need to bound

|CS(A,B)|{ρ=ϵ}. If ϵ > 0 is small enough, we have

|CS(A,B)|{ρ=ϵ}≤ |CS(A,A∞
i )|{ρ=ϵ}+|CS(A∞

i , B
∞
i )|{ρ=ϵ}+|CS(B∞

i , B)|{ρ=ϵ}≤ Cϵ−3 .

(iv) The arguments used in items (i)− (iii) carry verbatim for the charge difference.

In particular, we have the following immediate corollary.

Corollary 4.2. The topological rigidity statements in Proposition 1.7 hold in the case of a

manifold with ICS.

46



Remark 4.3. In the case of AC manifolds, one cannot define analogue quantities cΩ(P ) and

D(P ), but one can still make sense of the differences cΩ(P,A)−cΩ(P,B) and D(P,A)−D(P,B),

provided A,B ∈ Aµ−1 for µ < 4−n
2 . In particular, this is enough to obtain the rigidity analogues

of Proposition 1.7(cf. [Pap22] and [MW24]).

We have the following result to complete the parallelism with the compact case.

Proposition 4.4. Assume Mn is a smooth manifold with n > 5 and P is an admissible ICS

principal bundle, with structure group G = SU(2). Then c2(P ) is well defined in H4(M,R), and
the charge cΩ(P ) above coincides with the topological charge ⟨c2(P ) ∪ [∗Ω], [M ]⟩

Proof. If P extends to a smooth principal bundle, there is nothing to prove. Otherwise, since

πi(SU(2)) is a torsion group for all i > 4, there are only finitely many SU(2)-bundles over

Sn−1. So, we can perform a surgery to change the admissible bundle P to a smooth bundle

that will not change c2(P ) in real cohomology. Alternatively, by Mayer-Vietoris, we have

H4(M,R) ∼= H4(M \ {pi},R).
The standard Chern–Weil argument implies that the topological invariant c2(P ) computed

using a connection on the admissible bundle agrees with the one defined from a topological

perspective; as both represent the same cohomology class in H4(M,R).

5 A deformation problem

We now focus on the deformation theory of instantons modelled on the configuration space

Ak,α
µ−1

∼=
{
A+ a

∣∣∣ a ∈ Ω1(gP )
k,α
µ−1

}
,

where A is an admissible connection asymptotic to the framing connections A∞
i at each singular

point.

To understand the local structure of the moduli space, we begin by studying the action of the

gauge group and establishing a suitable slice theorem. Since the framing is fixed, we require the

gauge transformations to act trivially at the singularities. Therefore, the space of infinitesimal

gauge transformations is taken to be Ω0(gP )
k+1,α
µ . As we shall see later, this is not the most

suitable space to consider. For now, we have

Proposition 5.1. The space Ω0(gP )
k+1,α
µ carries a natural Lie algebra structure under the

pointwise bracket. Moreover, it is the Lie algebra of a Hilbert Lie group Gk+1,α
µ of gauge trans-

formations acting smoothly on Ak,α
µ−1.

Proof. By the Sobolev embeddings in Theorem 3.12, we have a continuous map

Ω0(gP )
k+1,α
µ × Ω0(gP )

k+1,α
µ →

(
Ω0(gP )⊗ Ω0(gP )

)k+1,α

µ

[·,·]−−→ Ω0(gP )
k+1,α
µ .

So the space Ω0(gP )
k,α
µ inherits the structure of a Lie algebra from g.

The remainder of the statement is to prove that the (usual) exponential map is well-defined and

defines a smooth group action; and that Gk+1,α
µ acts smoothly on Ak,α

µ−1. The remainder of the

proof is verbatim to that of Freed and Uhlenbeck [FU84, Prop. A.2, A.3].
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We now construct a slice for the action of the gauge group in Coulomb gauge, defined by

the condition d∗Aa = 0. That is, given a perturbation a ∈ Ak,α
µ−1, we want to find a gauge

transformation g ∈ Gk+1,α
µ such that

SA(g, a) := d∗A
(
g−1dAg + g−1ag

)
= 0.

The standard strategy is to apply the Implicit Function Theorem (Theorem 3.13) to solve this

equation. The linearisation at (id, 0) is

δSA = d∗AdA(δg) + δa.

To apply the IFT, we need the operator d∗AdA to be invertible. We begin by showing it is

injective.

Lemma 5.2. The operator d∗AdA : Ω0(gP )
k+1,α
µ → Ω0(gP )

k−1,α
µ−2 is injective.

Proof. For k ≥ 2, let f ∈ Ω0(gP )
k,α
µ lie in the kernel of d∗AdA. Then, by integration by parts

(Lemma 3.16), we have that ||dAf ||2L2= ⟨d∗AdAf, f⟩L2 = 0, so f is constant. Since µ > 0, we

have |f |→ 0 near the singularities, and so f = 0.

However, this operator is generally not surjective. We compute its cokernel

Proposition 5.3. The cokernel of the operator d∗AdA : Ω0(gP )
k+1,α
µ → Ω0(gP )

k−1,α
µ−2 is isomor-

phic to the direct sum of the Lie algebra stabilisers Stab(A∞
i ) at each singular point pi. In

particular, the operator is invertible if and only if every framing connection A∞
i is irreducible.

To prove this, we need to understand the indicial roots of the Laplacian:

Lemma 5.4. Let d∗AdA be the Laplace operator defined above. Then:

(i) The set of indicial roots is given by

D(d∗AdA) =
m⋃
i=1

{
ν ∈ R

∣∣∣ ν(ν + n− 2) is an eigenvalue of d∗A∞
i
dA∞

i

}
.

In particular, D(d∗AdA) ∩ (−n+ 2, 0) = ∅.

(ii) The value ν = 0 is an indicial root if and only if A∞
i is reducible for some i.

(iii) Moreover, d(0) =
∑

i dimStab(A∞
i ).

Proof. (i) Suppose ν ∈ D(d∗AdA). Then, there exists a singular point pi and h ∈ Ω0(gP∞
i
)

such that d∗A∞
i
dA∞

i
(rνh) = 0. Expanding this gives

d∗A∞
i
dA∞

i
(rνh) = rν−2

Ä
d∗A∞

i
dA∞

i
h− ν(ν + n− 2)h

ä
.

(ii) Setting ν = 0, we want to count solutions d∗A∞
i
dA∞

i
h = 0, which corresponds to h gener-

ating an infinitesimal gauge symmetry of A∞
i , i.e. h ∈ Stab(A∞

i ).
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(iii) This is equivalent to showing there are no logj(r) contributions to the kernel of d∗A∞
i
dA∞

i
.

From Lemma 5.2, we know that this kernel coincides with that of dA∞
i
, and the claim

follows from Lemma 3.19.

Proof (of Proposition 5.3). Since P = d∗AdA is formally self-adjoint, we have coker(P )µ =

ker(P )2−n−µ. In particular, Ind 2−n
2
(P ) = 0. From part (i) of the lemma above, it follows

that Indδ(P ) = 0 for δ ∈ (−n+ 2, 0). Now, the index change formula (52) implies

− coker(P )µ = Indµ(P ) = −d(0) ,

and parts (ii) and (iii) of the lemma above finish the proof.

Thus, for the gauge slice construction to work, we must enlarge our gauge group to account for

the presence of reducible framing connections. For each singular point pi, let χi be a smooth

cut-off function satisfying

χi(x) =

1 if ρ(x) < ε
10 ,

0 if ρ(x) > 2ε
10 ,

for some small ε > 0. Define the finite-dimensional subspace

Vi = {χig0 | g0 ∈ stab(A∞
i )} ,

where stab(A∞
i ) is the Lie algebra of the stabiliser of the framing connection near the singularity

pi, and we identify g0 ∈ Ω0(Σ, gP ) with its pullback to the cone. We then define the extended

Hölder Lie algebra

Ω̂0(gP )
k+1,α
µ := Ω0(gP )

k+1,α
µ ⊕

⊕
i

Vi.

Remark 5.5. Although the spaces Vi depend on the choice of cut-off function χi, the total space

Ω̂0(gP )
k+1,α
µ is independent of these choices.

The following proposition is now a direct consequence of our previous work.

Proposition 5.6. We have:

(i) The space ◊�Ω0(gP )
k+1,α
µ carries a Lie algebra structure, with Ω0(gP )

k+1,α
µ a Lie ideal.

(ii) There is an associated Hilbert Lie group Ĝk+1,α
µ , which acts smoothly on the space of

connections Ak,α
µ−1.

(iii) The map d∗AdA : ◊�Ω0(gP )
k+1,α
µ → Ω0(gP )

k−1,α
µ−2 is surjective. Its kernel is given by the Lie

algebra of the stabiliser of the connection A.

Proof. Statement (i) follows from above, as does the associated Hilbert Lie group construction.

In order to see that it acts smoothly on Ak,α
µ−1, it suffices to notice that the map

dA : Vi → Ω1(gP )
k,α
µ−1
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is well-defined. Indeed,

dA(χig0) = dχig0 + χidAg0 = dχig0 + χi(dA − dA∞
i
)g0 , (55)

where we used that g0 ∈ stab(A∞
i ) and so dA∞

i
g0 = 0, and we have omitted the principal bundle

framing morphism to lighten notation. Now, the first term in (55) lies in Ω1(gP )
k,α
µ−1 since we

took χ ≡ 1 in a neighbourhood of pi. The condition that the second term lies in Ω1(gP )
k,α
µ−1 is

precisely asking that A converges to A∞
i at rate at least µ.

For (iii), surjectivity of d∗AdA follows from the construction and Proposition 5.3. Indeed, for

any g0 ∈ stab(A∞
i ), we have

d∗AdA(χig0) = ∆χig0 + 2⟨dχi, dAg0⟩+ χid
∗
AdAg0 ,

where the rightmost term is not in the image of the original gauge Lie algebra Ω0(gP )
k,α
µ

under the map d∗AdA. This confirms that the extended terms account for the missing cokernel

directions.

Finally, let f ∈ ◊�Ω0(gP )
k+1,α
µ ∩ ker(d∗AdA). As in the proof of Lemma 5.2, f is constant, and

must take values in
⋂
i stab(A

∞
i ). So f is an infinitesimal gauge transformation preserving A,

as needed.

We have now arrived at

Theorem 5.7 (Slice theorem). Let A ∈ Ak,α
µ−1 be an irreducible connection and consider the

map d∗A : Ω1(gP )
k,α
µ−1 → Ω0(gP )

k−1,α
µ−2 . Then Ak,α

µ−1 is locally diffeomorphic to ker(d∗A)× Ĝk+1,α
µ in

a neighbourhood of A.

Now that we have identified a suitable gauge slice, we can proceed to study the deformation

theory of instantons with isolated conical singularities. We focus on irreducible Spin(7) and

G2-instantons. The relevant moduli space is defined as

M(A∞)k,αµ :=
{A ∈ Ak,α

µ−1| A is an irreducible ∗ Ω−instanton}
Ĝk+1,α
µ

,

where A∞ = (A∞
1 , . . . A

∞
m ) are the framing connections.

From Section 1, we know that the Coulomb gauge condition, together with the linearised in-

stanton equation, fit into an elliptic complex. This complex provides a framework for analysing

the deformation problem by applying the Inverse Function Theorem 3.13 in weighted Banach

spaces. We obtain a Kuranishi model for the moduli space in a neighbourhood of a given

instanton A. We have a pair of finite-dimensional spaces:

• The infinitesimal deformation space I(A,µ) := H1
A,µ, representing solutions to the lin-

earised problem modulo infinitesimal gauge transformations;

• The obstruction space O(A,µ) := H2
A,µ, capturing the failure of surjectivity of the lineari-

sation;
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where H i
A,µ are the cohomology groups associated to the corresponding deformation complex

and implicitly depend on k and α. The Kuranishi map F : H1
A,µ → H2

A,µ determines the local

structure of the moduli space as detailed in Theorem 3.13. More precisely, if the map F vanishes,

a neighbourhood of A in Mk,α
A will be diffeomorphic to a neighbourhood of 0 ∈ I(A,µ). Thus,

the virtual dimension of the moduli space is defined as dimvirM = dimI(A,µ) − dimO(A,µ).

As in the compact case, we have the following regularity result:

Proposition 5.8. For k large enough and µ generic, the inclusion map M(A∞)k+1,α
µ ↪→

M(A∞)k,αµ is a homeomorphism.

Proof. The proof in the compact case (cf. [DK90, Prop. 4.2.16]) carries over to this case, using

the elliptic regularity estimates of Theorem 3.17.

In particular, we may consider the limit of k large and drop the implicit dependency of k and

α in the previous discussion, and consider the moduli M(A∞)µ.

In the Spin(7)-case, the elliptic complex we are considering is the 3-term complex

0 →◊�Ω0(gP )
k+1,α

µ
dA−→ Ω1(gP )

k,α
µ−1

π⊥◦ dA−−−−→ Ω2
7(gP )

k−1,α
µ−2 → 0 , (56)

We can compute its virtual dimension using the Atiyah–Patodi–Singer index Theorem 3.25:

Theorem 5.9. Let A be an irreducible admissible conically singular Spin(7)-instanton on a

principal U(k)-bundle E, with model singularities A∞. Then the instanton moduli space has

virtual dimension

MA
µ =

∫
M

ch(E)Â(M) +
ηA∞(0)− d(0)

2
−

∑
λ∈(0,5/2)

d(λ) ,

where, setting DA(α) = ∗(ψ ∧ dAα), we have

d(λ) =
∑
i

dim
{
α ∈ Ω1(Σ7

i , gP )
∣∣∣ DA∞

i
α = λα

}
for λ > 0,

and

d(0) =
∑
i

dim
{
α ∈ Ω1(Σ7

i , gP )
∣∣∣ DA∞

i
α = 0

}
+ dim stab(A∞

i ) .

Proof. We can identify the complex (56) with the twisted Dirac operator

D̂A : Ω1(gP )
k,α
µ−1

(d∗A , π⊥◦ dA)
−−−−−−−−→

(
Ω0 ⊕ Ω2

7

)
(gP )

k−1,α
µ−2 . (57)

By Theorem 5.7 and the discussion above, we have that dimvirMµ = Indµ(DA). From Theorem

3.25, we have

Ind−7/2(D̂A) =

∫
M

ch(E)Â(M) +
d(0) + ηA∞(0)

2
.

Using the index change formula (52) from Theorem 3.24, we need a count of the indicial roots

of this operator between −7/2 and µ− 1. By Lemma 2.24, the claim follows.

51



In the G2 case, it is convenient first to consider the moduli space of G2-monopoles. These are

pairs (f,A) ∈ (Ω0(gP )×A)k,αµ−1 solving the monopole equation

dAf + ∗(FA ∧ ψ) = 0 . (58)

We investigate the expected or virtual dimension of their moduli space. As in the previous

case, the deformation problem can be identified with the twisted Dirac operator D̂A (cf. Equa-

tion (17)), acting on pairs of sections:

D̂A :
(
Ω0 ⊕ Ω1

)
(gP )

k,α
µ−1 →

(
Ω0 ⊕ Ω1

)
(gP )

k−1,α
µ−2 (59)

(f, α) 7→
Ä
d∗Aα, dAf + ∗(ψ ∧ dAα)

ä
.

Therefore, we have

Theorem 5.10. Let A be an irreducible conically singular G2-instanton with model singularities

A∞. The moduli space of irreducible G2-monopoles has virtual dimension

MA
µ = −

∑
i

∑
λ∈[0,2)

diλ ,

where d(λ) are defined as in Theorem 5.9.

Proof. Since DA is formally self-adjoint, we have

Ind−3(D̂A) = ker(D̂A)−3 − ker(D̂A
∗
)−3 = 0 .

Using the index change formula (52) from Theorem 3.24, we need a count of the indicial roots

of this operator between −3 and µ− 1. By Lemma 2.32, the claim follows.

Akin to the compact case, we have

Proposition 5.11. Let (M7, φ) be a holonomy G2-manifold with isolated conical singularities.

The forgetful map (f,A) 7→ A takes G2-monopoles to G2-instantons and is surjective. The fibres

are the stabiliser of the connection A.

The proof is the same as in the compact case, since we can integrate by parts by Lemma 3.16.

Remark 5.12. In both the Spin(7)-instanton and G2-monopole cases, the analytic correction

term is bounded above, in absolute value, by the sum
∑

i IndA∞
i
+NulA∞

i
by Corollaries 2.19

and 2.30 respectively; where IndA∞
i

and NulA∞
i

are the Yang–Mills index and nullity of A∞
i ,

defined in Equation (8).
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Hitchin functionals

We move to study the geometry of conifolds with special holonomy. We are motivated by the

work on G2-conifold moduli spaces, which have been studied extensively by Karigiannis and

Lotay [KL20]. A similar discussion is expected in the case of Spin(7), although the details have

not been fully worked out. Partial results corresponding to the asymptotically conical (AC)

case can be found in [Leh21].

We have the following definition, in the spirit of Definition 3.4.

Definition 5.13. Consider (Mn, g) a manifold with ICS; with singularities p1, . . . , pm,rates

ν1, . . . , νm with νi > 0 and links Σ1, . . . ,Σm. We say (M, g) is a holonomy G2 manifold with

ICS if M is equipped with torsion-free G2-structure φM compatible with the metric g, and such

that the cones C(Σi) carry a compatible torsion-free G2-structures φi satisfying

|∇k(Ψ∗
i (φM )− φi)|= O(rνi−k)

on (0, ε)× Σi for each i, where Ψi are the diffeomorphisms of Definition 3.4.

In particular, as discussed in Section A.3, the links (Σi, g) carry a nearly Kähler structure.

The definitions for the holonomy G2 asymptotically conical and holonomy Spin(7) cases follow

the same logic. Using the techniques from Section 3, Karigiannis and Lotay [KL20] constructed

the moduli spaces of ICS and AC holonomy G2-manifolds and computed its virtual dimension:

Proposition 5.14 ([KL20] Cor. 5.35, Prop. 6.4 & Proposition 6.11). Let (M,φ) be an AC

manifold with holonomy G2, of generic rate ν ∈ (−3, 0) and link (Σ, ω, ρ). Then the moduli

space of AC G2-structures of rate ν has dimension

dim Mν = b3cs(M) + dim (imΥ3) +
∑

λ∈(−3,ν)

dim E(Σ, ω, ρ, λ) ,

where b3cs(M) is the dimension of compactly supported harmonic 3-forms and Υ3 : H3(M,R) →
H3(Σ,R) is the map induced by the smooth embedding Σ ↪→M , and

E(Σ, ω, ρ, λ) =
{
β ∈ Ω2

8,coclosed| ∆β = (λ+ 3)(λ+ 4)β
}
.

Let (M,φ) be holonomy G2 manifold with ICS; with singularities p1, . . . , pn, modelled on Σ1, . . . ,Σn.

Fix ν > 0 sufficiently close to 0. Then, there is a similar formula to the one above for the vir-

tual dimension of the moduli space Mν . Moreover, the dimension of the obstruction space O is

bounded above by

dim(O) ≤ n− 1 +
n∑
i=1

∑
λ∈(−3,0)

dim E(Σi, ω, ρ, λ) .
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With the same approach, Lehmann constructs the moduli spaces of AC Spin(7) manifolds and

computes their virtual dimension in [Leh21]. We are not aware of the corresponding computation

for CS Spin(7) manifolds, but one expects it to be similar to Proposition 5.14.

Proposition 5.15 ([Leh21] Thm. 4.23). Let (M,Φ) be an AC Spin(7) manifold of generic

rate ν ∈ (−4, 0) and link (Σ, φ). Then the moduli space of AC Spin(7)-structures of rate ν has

dimension

dimMν = b−cs + dim(imΥ4) +
∑

λ∈(−4,ν)

dimE(Σ, φ, λ) ,

where b−cs(M) is the dimension of compactly supported anti-self-dual harmonic 4-forms, Υ:H4(M,R) →
H4(Σ,R) is the map induced by the smooth embedding Σ ↪→M and

E(Σ, ω, ρ, λ) =
{
χ ∈ Ω4

27,exact| d ∗ χ = −(λ+ 4)χ
}
.

As expected, the virtual dimension formulae are comprised of two parts. On the one side,

we have a topological term that depends exclusively on the cohomology of the conifold M .

On the other side, we have an analytic term that records solutions to an elliptic PDE on the

link of each cone singularity, and corresponds to the contributions of the indicial roots of the

deformation operator that one considers when constructing the moduli space. In Section 6 of

[KL20], Karigiannis and Lotay prove that

Proposition 5.16. If there are no solutions to E(λ) for λ ∈ (−3, 0], the moduli space of ICS

G2-structures is smooth.

We provide a geometric interpretation of the spaces E in terms of the spectrum of the second

variation of Chern-Simons type functionals and relate them to the Morse index of a related class

of functionals.

6 Stable forms and Hitchin functionals

In the early 2000s, Nigel Hitchin [Hit00] [Hit01] showed how certain geometric structures can be

realised as critical points of suitable functionals over a class of generic forms known as stable:

Definition 6.1. Let V n be an n-dimensional real vector space. A form w ∈ Λp(V ∗) is stable if

the orbit of w under the induced GL(V )-action is open. The set of stable forms is denoted by

Λp+(V
∗).

Hitchin classified all the possible cases in his original papers. Whenever the stabiliser of a stable

form is a subgroup of SL(V ), there is an invariant volume form associated with the stable form.

Similarly, if the stabiliser is compact, there is an invariant inner product associated with it.

Let w ∈ Λp+(V
∗) and assume that Stab(w) ⊆ SL(V ) for the remainder of the section. Assigning a

stable form its invariant volume form defines a GL(V )-invariant map vol : Λp+(V
∗) → Λn+(V

∗) ∼=
R∗. For any µ ∈ R, this map satisfies

vol(µpw) = µn vol(w) .
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In other words, vol is homogeneous of degree n/p. Its derivative defines an invariant element

ŵ ∈ (ΛpV ∗)∗ ⊗ ΛnV ∗ ∼= Λn−pV ∗,
δ

δα
vol(w) = α ∧ ŵ . (60)

We call ŵ the Hitchin dual of w. Using Euler’s formula, we obtain the relation

w ∧ ŵ =
n

p
vol(w) . (61)

This discussion extends naturally to the setting of smooth manifolds. For convenience, we will

reduce our discussion to the case where M is a closed, oriented manifold. We say a smooth

p-form ρ ∈ Ωp(M) is stable if it is pointwise stable. The existence of smooth stable forms is

only obstructed by the reduction of the frame bundle to the corresponding stabiliser. The open

space of stable forms will be denoted by Ωp+(M).

The induced volume map above extends to a smooth map vol : Ωp+(M) → Ωn(M), and we can

define the corresponding volume functional V : Ωp+ → R by integrating against the fundamental

class of the manifold. We refer to this functional as a Hitchin functional.

Since stable forms form an open set, one can study the variational properties of the functional

V . The main result, due to Hitchin, is an application of Stokes’ theorem.

Theorem 6.2 ([Hit00]). A closed stable form ρ ∈ Ωp+(M) is a critical point of V within its

cohomology class if and only if its Hitchin dual is closed; i.e. dρ̂ = 0.

Let us look at two concrete instances of the Hitchin functional, described in detail in [Hit00].

Example 6.3 (Dimension 6, complex case, [Hit00]). Let ρ be a stable 3-form on a 6-manifold

with stabiliser SL(3,C). This form corresponds to the existence of a locally decomposable complex

volume form ρ+ iρ̂. This complex 3-form defines an almost complex structure on the manifold.

The critical point condition for the Hitchin functional implies that the complex volume form is

closed, i.e., d(ρ + iρ̂) = 0, which in turn implies the induced almost complex structure is inte-

grable. Therefore, critical points correspond to complex manifolds equipped with a holomorphic

volume form.

Example 6.4 (Dimension 7 [Hit00]). Let φ be a stable 3-form on a 7-manifoldM with stabiliser

G2. The 3-form φ defines a Riemannian metric gφ on M via the relation gφ(X,Y ) volφ =
1
6(X⌟φ) ∧ (Y ⌟φ) ∧ φ, where volφ is the volume form determined by φ.

The critical points of the corresponding Hitchin functional correspond to φ being both closed

and co-closed, i.e. dφ = 0 = d∗φ. In this case, the metric gφ has holonomy contained in G2.

Moreover, these critical points are local maxima of the Hitchin functional.

These examples illustrate the interest in studying these Hitchin functionals. As a further mo-

tivation, one can examine the gradient flow of the volume functional for G2-structures along a

fixed cohomology class. The corresponding flow is called the G2-Laplacian flow. Bryant and Xu

[BX11] proved the short-time existence and uniqueness of this flow. It remains a central object

of study in special holonomy.

In the examples above, there is the critical assumption that the cohomology class over which we

are trying to optimise is non-trivial. Otherwise, critical points cannot exist by standard Hodge

theory.
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If one wants to restrict to stable exact forms, one needs to impose a further non-degeneracy

condition in the form of a Lagrange multiplier. In dimensions 6 and 7, Hitchin [Hit01] obtained

two new functionals for the exact stable case and showed that the critical points of these

functionals are nearly Kähler and nearly parallelG2-structures, respectively. These notes further

study these functionals and their variations, comparing them to two new examples of Hitchin-

like functionals.

7 The nearly Kähler case

We adapt the previous discussion to realise and study nearly Kähler metrics as critical points

of Hitchin-like functionals.

7.1 The nearly Kähler Hitchin functional

Let M6 be a closed spinable manifold, so it admits an SU(3)-structure. In 6-dimensions, we

have a non-degenerate pairing between Ω3
exact and Ω4

exact, defined as follows:

P : Ω3
exact × Ω4

exact → R

(γ, χ) 7→
∫
M
β ∧ χ = −

∫
M
γ ∧ ξ ,

where dβ = γ and dξ = χ. This pairing follows from the Stokes’ theorem and the identification

Ω3/Ω3
closed

∼= Ω4
exact. With it, one can construct an indefinite inner product on Ω3

exact × Ω4
exact

given by {(γ1, χ1), (γ2, χ2)} := P (γ1, χ2) + P (γ2, χ1) .

Let R ⊆ Ω3
exact × Ω4

exact be the space of stable exact forms (ρ, σ), with ω = σ̂ positive with

respect to ρ, that is ω(·, Jρ ·) ≥ 0, where Jρ is the almost complex structure induced by ρ.

In [Hit01], Hitchin introduced the functional that plays the analogue role for nearly Kähler

structures as the examples in the previous section:

L : R → R

(ρ, σ) 7→ 3

∫
M

volρ+4

∫
M

volσ −12P (ρ, σ) .
(62)

Hitchin showed that critical points of L are nearly Kähler structures. Let δρ = γ = dη ∈ Ω3
exact

and δσ = χ = dξ ∈ Ω4
exact. Then δ volρ = γ ∧ ρ̂ and δ volσ = χ ∧ σ̂ = χ ∧ ω, so

δL = −3

∫
M

(ρ̂+ 4β) ∧ γ + 4

∫
M

(ω − 3α) ∧ χ = −3

∫
M

(dρ̂+ 4σ) ∧ η − 4

∫
M

(dω − 3ρ) ∧ ξ ,

where dα = ρ and dβ = σ. Thus, the Euler–Lagrange equations are

dρ̂ = −4σ dω = 3ρ . (63)

Proposition 7.1 (Thm. 6 [Hit01]). The critical points of L are nearly Kähler structures.

Proof. First, we need to check that Equations (63) imply that (ω, ρ) satisfy the SU(3)-conditions.

Indeed, we have

ω ∧ ρ =
1

3
ω ∧ dω =

1

3
dσ =

−1

12
d2ρ̂ = 0 ,
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so ω is of type (1, 1) with respect of the complex structure defined by ρ. Similarly, we have

ω3

3!
=

1

3
ω ∧ σ =

−1

12
ω ∧ dρ̂ =

−1

12

Ä
d(ω ∧ ρ̂)− dω ∧ ρ̂

ä
=

1

4
ρ ∧ ρ̂ .

Thus, (ω, ρ) define an SU(3)-structure. The fact that the SU(3)-structure is a nearly Kähler

structure follows from Proposition A.42.

We find it convenient to work with the gradient flow of L with respect to the pairing {·, ·},
rescaled by (1/3, 1/4):

∂σ

∂t
= − (dρ̂+ 4σ)

∂ρ

∂t
= (dω − 3ρ) . (64)

We have no compelling argument for this rescaling beyond the fact that it possesses some

desirable properties and enables us to motivate the study of this functional. Notice that a

global rescaling can be obtained by suitably rescaling L (or the inner product {·, ·}). However,
the relevance of the rescaling lies in its distinction between 3-forms and 4-forms. We have

Proposition 7.2. The rescaled gradient flow preserves the SU(3)-condition.

Proof. Recall the decomposition of the intrinsic torsion τ into irreducible SU(3)-representations

given in Proposition A.40.

Since 0 = dω2/2 = ω ∧ dω, it follows that τ1 = π6(dω) = π6(dσ) = 0. Similarly, since ρ is exact,

we have “τ1 = π6(dρ̂) = Jπ6(dρ) = 0. Thus

∂

∂t
(ω ∧ ρ) = ∂

∂t
ω ∧ ρ+ ω ∧ ∂

∂t
ρ = − ∗ (π6(dρ̂)) ∧ ρ+ π6(dω) ∧ ω = 0 ,

proving the condition ω ∧ ρ = 0 is preserved. Now, by Equation (61), we have volρ = 1
2ρ ∧ ρ̂

and volσ = 2
3σ ∧ ω = 1

3ω
3. Thus, it suffices to check that volρ = volσ is preserved under the

flow. By Equation (60), we have

∂

∂t
volρ =

∂ρ

∂t
∧ ρ̂ = (dω − 3ρ) ∧ ρ̂ = −dρ̂ ∧ ω − 3ρ ∧ ρ̂

=
∂σ

∂t
∧ ω + 4σ ∧ ω − 3ρ ∧ ρ̂ =

∂

∂t
volσ +6 (volσ − volρ) .

The main result that motivates our study of the Hitchin functions is its relation to metric cones

with special holonomy. Explicitly, we have

Proposition 7.3. Let (ρ(t), σ(t)), t ∈ (a, b), be a family of exact stable forms on M6 defining

a family of SU(3)-structures, with associated metric g(t), and set r = et. The metric g =

dr2 + r2g(log(r)) in (ea, eb) ×M has holonomy inside G2 if and only if the SU(3)-structures

satisfy the rescaled gradient evolution equations.

Proof. Given an SU(3)-structure on Σ, we get a G2-structure on the cone C(Σ) by setting

φ = dr ∧ r2ω + r3ρ and ψ = ∗φ = −dr ∧ r3ρ̂+ r4σ . The condition Hol(gφ) ⊆ G2 is equivalent

to the 3-form φ being closed and coclosed. Thus, by differentiating, we get

0 = dφ = −dr ∧ r2dΣω + 3r2dr ∧ ρ+ r3dr ∧ ∂ρ

∂r
=⇒ r ∂ρ∂r = dΣω − 3ρ

0 = dψ = dr ∧ r3dΣρ̂+ 4r3dr ∧ σ + r4dr ∧ ∂σ

∂r
=⇒ r ∂σ∂r = −dΣρ̂− 4σ .

57



where dΣ is just the restriction of the exterior differential d along Λ∗T ∗Σ and we used that

dΣρ = dΣσ = 0. This condition corresponds precisely to the rescaled gradient flow equations

under the change of variables r = et. The converse follows.

Remark 7.4. Theorem 8 in [Hit01] is very similar to the above propositions. The method is

essentially the same, but Hitchin applies it to a different functional and considers an unweighted

family of metrics, g = dt2+ gΣ(t). It is worth comparing the two. We can replace our Lagrange

multiplier from 12 to 12λ and consider the metric cone with cone angle 2πλ, with G2-structure

given by φ = dr
λ r

2ω + r3ρ and metric gλ =
Ä
dr
λ

ä2
+ r2gΣ. The condition that the cone has

holonomy in G2 is then equivalent to the rescaled gradient flow that now depends on λ. In this

case, the required relation between r and t becomes r = eλt. The resulting metric is conformal

to the metric dt2 + gΣ by a factor of e2λt. After suitable rescaling, the limiting metric λ → 0

recovers Hitchin’s result.

Remark 7.5. In his proof, Hitchin considers a Hamiltonian flow induced by the symplectic

pairing induced by P rather than the gradient flow approach. With the Hamiltonian approach,

one can see the vanishing condition ω ∧ ρ = 0 as the vanishing of the moment map induced by

the action of the diffeomorphism group. This approach would have worked equally well in our

setup.

We now focus on the second variation of L:

Proposition 7.6. Let (γ1, χ1), (γ2, χ2) ∈ Ω3
exact×Ω4

exact, with γi = dηi and χi = dξi for i = 1, 2.

The second variation of L is given by

δ2L =

∫
M

−3(dIγ2 + 4χ2) ∧ η1 − 4(dKχ2 − 3γ2) ∧ ξ1 ,

where I and K are the linearisation of the Hitchin dual maps from Proposition A.46. In par-

ticular the Hessian of L at a critical point with respect to the pairing {·, ·} is

HL(γ, χ) =
Ä
4dKχ− 12γ,−3dIγ − 12χ

ä
.

Proof. By Proposition A.46, if δρ = γ, then δρ̂ = Iγ and if δσ = χ, then δω = Kχ. Combining

this with our formula for the first variation yields the desired formula. The computation of the

Hessian with respect to the pairing {·, ·} is now immediate.

We want to study the spectral properties of HL. More concretely, the equations

−3dIγ = (µ+ 12)χ (65a)

4dKχ = (µ+ 12)γ , (65b)

for γ ∈ Ω3
exact and σ ∈ Ω4

exact. Since the functional L is invariant under the action of the

diffeomorphism group, it is convenient to work on a slice to the orbit of the diffeomorphism

group. We use the same strategy as Foscolo in [Fos17].

Let (ω, ρ) be a nearly Kähler structure not isometric to the round S6 and O be the orbit of

Diff0(M) in Ω3
exact×Ω4

exact going through (ω, ρ). The tangent space to this orbit is spanned by
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(LXρ,LXσ), for X ∈ aut⊥ ⊆ Ω1, where aut is the space of vector fields preserving the nearly

Kähler structure, and the complement is taken with respect to the L2 metric. Using the Hodge

decomposition of Theorem A.58, we can parametrise (γ, χ) ∈ Ω3
exact × Ω4

exact explicitly by

γ = LXρ+ d(fω) + γ0 χ = LY σ + d(gρ̂) + χ0 ;

with f, g ∈ Ω0, X,Y ∈ aut⊥, γ0 ∈ Ω3
12,exact and χ0 ∈ Ω4

8,exact. In particular, it follows that

taking X = 0 or Y = 0 defines a complement to the tangent space of the diffeomorphism action.

Let

W = {(d(fω) + γ0,LY σ + d(gρ̂) + χ0)} ⊆ Ω3
exact × Ω4

exact ,

for f, g ∈ Ω0 , Y ∈ aut⊥, γ0 ∈ Ω3
12,exact and χ0 ∈ Ω4

8,exact. Taking the appropriate Hölder norm

completions, we get

Proposition 7.7 ([Nor08] Theorem 3.1.4 & 3.1.7). There exists a slice to the diffeomorphism

group action in Ω3
exact × Ω4

exact, whose tangent space is given by W.

We can now study the spectral properties of the second variation of the functional L. We have

Proposition 7.8. Assume (M6, ω, ρ) is not isometric to the round 6-sphere. Under the Hodge

decomposition, Equations (65) are equivalent to

−8g = (µ+ 12)f , (66a)

−9f = (µ+ 12)g , (66b)

Y +
1

3
dg =

µ+ 12

12
X , (66c)

X − 1

4
df =

µ+ 12

12
Y , (66d)

d ∗ γ0 =
(µ+ 12)

3
χ0 , (66e)

d ∗ χ0 = −(µ+ 12)

4
γ0 . (66f)

Proof. Let

γ = LXρ+ d(fω) + γ0 = LXρ+ df ∧ ω + 3fρ+ γ0 ,

χ = LY σ + d(gρ̂) + χ0 = LY σ + dg ∧ ρ̂− 4gσ + χ0 ,

with f, g ∈ Ω0, X,Y ∈ aut⊥, γ0 ∈ Ω3
12,exact and χ0 ∈ Ω4

8,exact, by virtue of Theorem A.58. By

the definition of I and K, and Lemma A.47, we get

Iγ = LX ρ̂+ Jdf ∧ ω + 3f ∧ ρ̂− ∗γ0 Kχ = LY ω + dg⌟ρ− 2gω − ∗χ0 .

Now, since (ω, ρ) define a nearly Kähler structure , we get

dIγ = −4LXσ + d(Jdf ∧ ω) + d(3f ∧ ρ̂)− d ∗ γ0 = −4LX− 1
4
dfσ + d(3f ∧ ρ̂)− d ∗ γ0 ,

dKχ = 3LY ρ+ d(dg⌟ρ)− d(2gω)− d(∗χ0) = 3LY+ 1
3
dgρ− d(2gω)− d(∗χ0) .

Plugging these back in (65) and since the Hodge decomposition is orthogonal, the system (66a)-

(66f) follows.
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Proposition 7.9. The eigenforms of HL are multiples of
Ä
ρ,±

√
2 σ
ä
and solutions to

∆γ =
(µ+ 12)2

12
γ (67)

for γ ∈ Ω3
12,exact. In particular, the spectrum of HL is discrete and has finite multiplicity for

each µ.

Proof. First, equations (66a) and (66b) imply 72fg = (µ + 12)2fg. The only solution to this

equation with fg ̸= 0 corresponds to µ = −12 ± 6
√
2. If we further impose the gauge fixing

condition X = 0, equations (66c) and (66d) become

Y +
1

3
dg = 0 3df ± 6

√
2Y = ±

√
2

2

Å
Y − 1

3
dg

ã
= 0 ,

since f = ∓2
√
2

3 g by equation (66b). Thus, Y = df = dg = 0, so f and g = ±3
√
2

4
f must be

constant, with associated eigenvalue µ = 12 ± 6
√
2. We have reduced our spectral problem to

the PDE system (66e)-(66f)

d ∗ γ0 =
(µ+ 12)

3
χ0 d ∗ χ0 = −(µ+ 12)

4
γ0 , (68)

with (γ0, χ0) ∈ Ω3
12,exact×Ω4

8,exact. If µ = −12, (γ0, χ0) are harmonic exact forms and thus zero.

Thus, we may assume µ ̸= 12. In this case, this PDE system is equivalent to (67). If γ0 satisfies

(68), then

∆γ0 = dd∗γ0 = −(µ+ 12)

3
d ∗ χ0 =

(µ+ 12)2

12
γ0 .

Conversely, if γ0 satisfies (67) and µ ̸= −12, the pair (γ0,
3

(µ+12)d ∗ γ0) satisfies (68):

d ∗ χ0 =
3

(µ+ 12)
d ∗ d ∗ γ0 =

−3

(µ+ 12)
∆γ0 = −(µ+ 12)

4
γ0 .

Remark 7.10. The case µ = 0 corresponds to the nullity of HL, i.e. infinitesimal deformations

of the nearly Kähler structure. As expected, we recover the result of [MNS08] and [Fos17] on

infinitesimal deformations of nearly Kähler structures.

7.2 The closed Hitchin functional

The Euler–Lagrange equations associated with the functional L resemble the first variation of

a Hamiltonian functional. This similarity suggests a natural approach: to seek out and analyse

Lagrangians that correspond to the Hitchin functional L when interpreted in a Hamiltonian

framework. In particular, we will treat the exact 3-form ρ as the moment variable within this

setting. To formalise this approach, consider the map

Cl : Ω2 → Ω3 × Ω4

ω 7→
Ä1
3
dω,

1

2
ω2
ä
,
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and let U := Cl−1(R) be the preimage of exact stable forms (ρ, σ). The pullback of the Hitchin

functional L under Cl will be the corresponding Lagrangian functional.

The space U is a priori quite mysterious. In particular, important questions to answer are under

which conditions the space is non-empty, whether it is path-connected or simply connected. The

following key result shows that U has a very natural geometric description:

Proposition 7.11. There is a one-to-one map between U and the set of SU(3)-structures with

torsion (cf. Proposition A.40) supported in the classes τ0 = ef , τ̂1 and τ̂2, with f ∈ C∞(M). In

particular, there is a well-defined map F : U → Met(M).

This connection with SU(3)-structures justifies the choice of ρ as the moment variable, rather

than σ, for which a result like Proposition 7.11 is not available.

Proof. Let ω ∈ U . Then the 3-form ρ̃ := 1
3dω is stable and satisfies ω ∧ ρ̃ = 1

6dω
2 = 0 since

ω ∈ U . Thus, the pair (ω, ρ̃) defines a U(3)-structure. Let u = ef ∈ C∞(M) be the unique

function such that
ω3

3!
=

1

4u2
ρ̃ ∧ ̂̃ρ =

1

4

ρ̃

u
∧
’Å ρ̃
u

ã
.

Then the pair (ω, ρ) = (ω, 1u ρ̃) = (ω, 1
3udω) defines an SU(3)-structure. It follows easily that

the torsion of this SU(3)-structure is given by τ0 = u = ef , τ̂1 = −df and τ̂2.

Conversely, given an SU(3)-structure (ω, ρ) with these torsion classes, it is clear that dω = 3τ0ρ

is stable, provided τ0 is everywhere nonzero.

In particular, closed SU(3)-structures are a closed subset of U , obtained by enforcing f = 0.

Thus, one could think of U as some analogue of conformally closed SU(3)-structures.

Let us study the pullback of the Hitchin functional under the map Cl. We denote this pullback

by Q. We have

Q = Cl∗L = 3

∫
M
vol1/3dω + 8

∫
M
volω − 12P

Ä1
3
dω,

ω2

2

ä
=

1

3

∫
M

voldω −4

∫
M

volω , (69)

where used the fact that volσ = 2volω as a straightforward application of (61). Similarly, we

can pull back the inner product. Let [·, ·] = 1
2Cl

∗{·, ·}. For α, β ∈ TU , we have

[α, β] =
1

3

∫
M
α ∧ β ∧ ω =

1

3

∫
M
α ∧ K−1(β) ,

where K : Ω4 → Ω2 is the linearisation of the Hitchin dual map from Proposition A.46 with

respect to the SU(3)-structure from Proposition 7.11. This follows from noticing that, for any

4-form χ, the 2-form K(χ) is the unique form that satisfies K(χ) ∧ ω = χ.

The following result further motivates the interest in the functional Q.

Proposition 7.12. Consider the map Ŝ = F ∗S the pullback of the Einstein–Hilbert action

(145) under the map F : U → Met(M) from Proposition 7.11.

The Hitchin functional Q is bounded below by Ŝ. Moreover, the two functionals coincide if and

only if the SU(3)-structure is a constant rescaling of a nearly Kähler structure.
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Proof. Using the formula for the scalar curvature in Lemma A.45, the pulled-back Einstein–

Hilbert action (145) can be written as:

Ŝ(ω) = 1

5

∫
M
sg − 20 volg =

1

5

∫
M

Å
30τ20 − 1

2
|“τ2|2ã− 20 volg =

∫
M

6τ20 − 4− 1

10
|“τ2|2volg .

Similarly for Q, we have dω = 3τ0ρ, and so, voldω = (3τ0)
2 volρ. Substituting in the definition

of Q:

Q =
1

3

∫
M

voldω −4

∫
M

volω =

∫
M

6τ20 − 4 volg ,

where we used volg =
1
2 volρ = volω . It follows that Ŝ ≤ Q.

For the equality case, it is clear that one has “τ2 = 0. Thus, from Proposition A.40, we have

dρ̂ = −2efω2 − df ∧ ρ̂ .

Differentiating one more, since dω2 = 0, we have

0 = −2efdf ∧ ω2 + df ∧ dρ̂ = −4efdf ∧ ω2

which implies df = 0, as needed.

Let us study the variational properties of the Lagrangian functional Q. The first variation of

Q along β is

δQ =

∫
M

1

3
dβ ∧ d̂ω − 4

ω2

2
∧ β = −1

3

∫
M

Ä
d(d̂ω) + 12

ω2

2

ä
∧ β .

The gradient flow of Q with respect to the pairing [·, ·] is ∂tω = −K(d(d̂ω) − 6ω . This flow

becomes slightly more enlightening if we consider the induced flow for σ = ω2

2 :

∂σ

∂t
= −d(‘d ∗ σ)− 12σ = dd∗σ − 12σ = ∆σ − 12σ , (70)

since d̂ω = ∗dω. We refer to this flow as the nearly Kähler Laplacian flow.

Proposition 7.13. The critical points of Q are nearly Kähler structures.

Proof. With respect to the induced SU(3)-structure, the fixed points of the gradient flow are

0 = ∆σ − 12σ = −3d(τ0ρ̂)− 12σ = 12τ20σ − 3τ0“τ2 ∧ ω − 12σ ,

which implies that the torsion of the underlying SU(3)-structure is τ0 = 1 and “τ2 = “τ1 = 0, as

needed.

The second variation of Q at a nearly Kähler structure is given by

∂2Q
∂α∂β

=
1

3

∫
M
dα ∧ Idβ − 12ω ∧ α ∧ β =

−1

3

∫
M
α ∧ (dIdβ + 12ω ∧ β) . (71)

We can associate a symmetric endomorphism HQ to the second variation via the pairing [·, ·],
which we refer to as the Hessian of Q. Before studying the spectral properties of HQ, it is

convenient to get a more manageable description of TωU .
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Proposition 7.14. There is an isomorphism TωU ∼= K(Ω4
exact)

Proof. Recall that U = Cl−1(R) = {ω ∈ Ω2| ω is stable, dω is stable, ω2 is exact}. The stability
and positivity conditions are open, so we only need to study the constraint of ω2 being exact.

Its linearisation along δω = α is given by δω2 = 2ω ∧ α = 2K−1(α).

Since K is a pointwise linear isomorphism, we will instead study the spectral properties of

HQ
:= K−1 ◦ HQ ◦ K : Ω4

exact → Ω4
exact. Explicitly, we want to solve the equation

dIdKχ = −(µ+ 12)χ (72)

for µ ∈ R and χ ∈ Ω4
exact. Since the functional Q is invariant under the action of the diffeomor-

phism group, it is convenient to work on a slice to the orbit of the diffeomorphism group. Let

ω ∈ U be a nearly Kähler structure and O be the orbit of Diff0(M) in TU going through ω.

The tangent space to this orbit is spanned by LXω, for X ∈ aut⊥ ⊆ Ω1, where aut is the set of

vector fields preserving the nearly Kähler structure, and the complement is taken with respect

to the L2 metric. Under the isomorphism of Proposition 7.14, the image of the tangent space

of the orbit is spanned by K−1(LXω) = LXσ, for X ∈ aut⊥ ⊆ Ω1, where we used Lemma A.47.

By Theorem A.58, we can parametrise χ ∈ Ω4
exact by χ = LXσ + d(fρ̂) + χ0 , where f ∈ Ω0,

X ∈ aut⊥ and χ0 ∈ Ω4
8,exact. In particular, takingX = 0, we get thatW = {d(fρ̂)+χ0} ⊆ Ω4

exact

is a complement to the tangent space of the diffeomorphism orbit. Arguing as before and taking

the appropriate Hölder norm completions, we can integrate W into a gauge slice, and we can

prove

Theorem 7.15. Assume (M6, ω, ρ) is not isometric to the round 6-sphere. Under the Hodge

decomposition and gauge fixing, Equation (72) is equivalent to

(µ+ 6)f = 0 , (73a)

df = 0 , (73b)

∆χ0 = (µ+ 12)χ0 ; (73c)

where f ∈ Ω0 and χ0 ∈ Ω4
8,exact. Solutions are f = C with C ∈ R for µ = −6 and the solutions

to

∆χ0 = (µ+ 12)χ0 dχ0 = 0 .

In particular, the spectrum is discrete and has finite multiplicities.

Proof. Let

χ = LXσ + d(fρ̂) + χ0 ,

with f ∈ Ω0, X ∈ aut⊥ and χ0 ∈ Ω4
8,closed. As in the proof of Proposition 7.8, we have

dKχ = 3LXρ+ d(df⌟ρ)− d(2fω)− d(∗χ0) = 3LX+ 1
3
dfρ− 2df ∧ ω − 6f ∧ ρ− d(∗χ0) .

Since χ0 is closed, d(∗χ0) ∈ Ω3
12, by Corollary A.52. Thus, acting by I, we get

IdKχ = 3LX+ 1
3
df ρ̂− 2Jdf ∧ ω − 6fρ̂+ ∗d(∗χ0) ,
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and finally, acting by d once more, we get

dIdKχ = −12LX+ 1
3
dfσ − d(2Jdf ∧ ω)− 6d(fρ̂) + d ∗ d(∗χ0) = −12LX+ 1

2
dfσ − 6d(fρ̂)−∆χ0 .

Plugging this back in, and since the Hodge decomposition is unique, the system follows.

As before, the case µ = 0 recovers the infinitesimal deformations of the SU(3)-structure. More-

over, the following is a straightforward corollary of Proposition 7.9:

Proposition 7.16. There is a correspondence between the eigenforms of HL and HQ.

This result motivates the following definition:

Definition 7.17. Let (M6, ω, ρ) be a nearly Kähler manifold. We define the Hitchin index

of the nearly Kähler structure Ind(ω,ρ) as the number of negative eigenvalues of the Hessian

endomorphism HQ : W → W at (ω, ρ) minus one.

Remark 7.18. The Hitchin index does not account for constant rescalings on the structure,

which always correspond to a negative eigenvalue of the Hessian. This justifies why we sub-

tracted one from the count of the index of HQ in the definition above. In particular, notice that

Ind(ω,ρ) ≥ 0.

If we let E(λ) =
{
β ∈ Ω2

8,coclosed | ∆β = λβ
}
, the Hitchin index is

Ind(ω,ρ) =
∑

λ∈(0,12)

dim E(λ) . (74)

Notice that a priori, this definition of the index is different from the usual Morse definition as

the index of the quadratic form δ2Q, since the pairing used to define the endomorphism HQ is

indefinite. However, we will show that the two quantities are connected in this case. We prove

Proposition 7.19. The Morse co-index of the second variation δ2Q restricted to Ω4
8,exact is

equal to the Hitchin index.

Proof. Evaluate δ2Q(β, β) for β ∈ TωU . Equation (71) and Proposition 7.14 yield

δ2Q = −1

3

∫
M

K(χ) ∧ (dIdK(χ) + 12χ) , (75)

for χ ∈ Ω4
exact. Fixing the diffeomorphism slice, we can take χ = d(fρ̂) + χ0 for f ∈ Ω0 and

χ ∈ Ω4
8,closed. By the computations of the proof of Proposition 7.8, we have

δ2Q = −1

3

∫
M
⟨∆χ0 − 12χ0, χ0⟩ − 48

∫
M
f2 volg +2

∫
M
(df⌟ρ) ∧ [d(Jdf ∧ ω)− df ∧ ρ̂]

= −1

3

∫
M
⟨∆χ0 − 12χ0, χ0⟩+ 8

∫
M
⟨∆f − 6f, f⟩ .

Thus, the second variation has two distinct behaviours on the two subspaces of W = {d(fρ̂)}⊕
Ω4
8,exact, similar to the Einstein–Hilbert case (cf. Theorem C.1). Notice that the first subspace

corresponds to conformal deformations of the metric, as expected.
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An interesting first result is the Hitchin stability of the homogeneous examples.

Theorem 7.20. Let (M6, ω, ρ) be one of the four homogeneous nearly Kähler manifolds. Then

Ind(ω,ρ) = 0 .

The main tools we need are a version of the Peter-Weyl theorem for naturally reductive homo-

geneous spaces and a comparison between the Hodge Laplacian and the canonical Laplacian.

On a nearly Kähler structure, besides the Levi-Civita connection, there exists another metric

connection, called the canonical connection, with the property that Hol (∇can) ⊆ SU(3). The

relationship between these two connections is given explicitly by

∇can = ∇LC − 1

2
ρ̂ . (76)

The canonical Laplacian is the connection Laplacian associated with this connection, ∆can =

(∇can)∗∇can. Both results above are due to Moroianu and Semmelmann. They are collected

in [MS10; MS11] in their investigation of infinitesimal nearly Kähler and Einstein deformations

of nearly Kähler manifolds.

Lemma 7.21. [MS11, Prop. 4.5] Let (M6, ω, ρ) be a nearly Kähler manifold, ∆can the induced

canonical Laplacian. For β ∈ Ω2
8, we have the Weitzenböck-type formula:

(∆−∆can)β = (Jd∗β)⌟ρ .

In particular, both Laplacians coincide on coclosed forms of type Ω2
8.

Proposition 7.22. [MS10, Lemmas 5.2 & 5.4] Let (G/H,ω, ρ) be a naturally reductive nearly

Kähler manifold and consider ρ : H → aut(E) a representation of H, and EM = G ×ρ E the

induced vector bundle. Then, the Peter-Weyl formalism and Frobenius reciprocity imply

L2(EM) =
⊕

γ∈Irr(G)

Vγ ×HomH(Vγ , E) ,

where Irr(G) denotes the set of irreducible representations of G. Under this decomposition, the

canonical Laplacian is given by ∆can = −12CasGγ , where CasGγ is the Casimir of the represen-

tation Vγ, computed with respect to the Killing form.

Proof of Theorem 7.20. Using the computations of Moroianu and Semmelmann in [MS10], Ka-

rigiannis and Lotay [KL20, Prop. 6.3] showed that the homogeneous nearly Kähler structures

on CP 3 ∼= SO(5)/U(2), S3 × S3 ∼= SU(2)3/∆SU(2) and the flag manifold F1,2
∼= SU(3)/T2 are

stable. Thus, only the case of the round sphere S6 ∼= G2/SU(3) remains. We start by com-

puting the Casimir operator of G2. Let ω1 and ω2 be the short and long fundamental weights

respectively, so V1,0 is the fundamental 7-dimensional G2-representation and V0,1 is its adjoint

representation.

Since G is simple, the Freudenthal formula (cf. [MS10]) allows us to compute the value of the

Casimir operator on a representation of highest weight γ. We have CasGγ = −⟨γ, γ+2ρ⟩B, where
ρ is the half-sum of positive roots and ⟨·, ·⟩B is the Killing form. In the case of G2-structure,
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ρ = ω1 + ω2, and so, for an irreducible representation of highest weight (λ, µ), its Casimir

operator is given by

CasG2(λ, µ) = −λ(λ+ 2)||ω1||2B+µ(µ+ 2)||ω2||2B+2(λµ+ λ+ µ)⟨ω1, ω2⟩B

= − 1

12
(λ(λ+ 2) + 3µ(µ+ 2) + 3(λµ+ λ+ µ)) .

Therefore, by virtue of Lemma 7.21 and Proposition 7.22, the Hodge Laplacian on coclosed

forms of type Ω2
8 is given by

∆β =
∑

(λ,µ)∈Irr(G)

(λ(λ+ 2) + 3µ(µ+ 2) + 3(λµ+ λ+ µ))πγ(β) .

In particular, the only highest weight for which the eigenvalue of the canonical Laplacian is

smaller than 12 is (1, 0), the fundamental 7-dimensional representation. The space of primitive

(1, 1)-forms can be identified with the adjoint representation of SU(3). By dimensional reasons

it is clear that HomSU(3) (V1,0, su(3)) = 0, and so (S6, ground) is stable.

Remark 7.23. Notice that a priori, this computation is only valid if one defines the Hitchin

index using Equation (74) since the gauge slice is not valid in the round sphere case. However,

one can retrace the proof of Theorem A.58 and show that the discussion can be adapted without

significant changes. We omit the details.

The next natural question is the study of the Hitchin functionals and the index problem for the

remaining two known examples of nearly Kähler structures, due to Foscolo and Haskins [FH17].

We devote the final chapter of the thesis to this endeavour, where we prove

Theorem 7.24 (Thm. 12.6). Consider (S3×S3, gFH , ωFH , ρFH) the cohomogeneity one nearly

Kähler structure on S3 × S3 constructed by Foscolo and Haskins in [FH17]. Its Hitchin index

is bounded below by 1, and the Einstein co-index is bounded below by 4.

Finally, we outline the connection between the Hitchin functionals and the study of G2-conifolds

that we discussed at the start of the chapter, focusing on the Hitchin index. We conjecture there

is an analogous discussion for Spin(7)-conifolds.

The expectation is that the Hitchin index acts as the stability index for conically singular G2

manifolds. That is, the index measures the codimension of the singularity in the moduli space

of conically singular G2 manifolds. A first indication of this is the dimension bound of the

obstruction space for G2-conifold deformation that we saw in the introduction:

Proposition 7.25 ([KL20, Prop. 6.11]). Let (M,φ) be a conically singular G2-manifold with

singularities p1, . . . , pn, modelled on the Σ1, . . . ,Σn. The dimension of the obstruction space to

the deformation problem is bounded above by

dim(O/W) ≤ n− 1 +
n∑
i=1

Ä
IndΣi

ä
; .

Moreover, if IndΣi = 0 for all i, the remaining obstruction space is ineffective.
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To further pursue this discussion, it would be useful to study manifolds with both asymptotically

conical (AC) and isolated conically singular (ICS) ends. Although Karigiannis and Lotay do not

directly address this case, their methods should extend with minimal difficulty. In particular,

for a manifold with only one conically singular point and an asymptotically conical end, we

expect that the difference of the Hitchin indices will give the virtual dimension of the moduli

space.

This expectation can be motivated by treating L as an analogue of the Chern–Simons functional

in instanton Floer theory. Consider a family of SU(3)-structures (ρ(t), σ(t)) on Σ, evolving with

the gradient flow of L and connecting two of its critical points. Proposition 7.3 implies there is

an associated G2 conifold with one ICS and an AC end. Following the Chern–Simons analogy,

the virtual dimension of the moduli space of such conifold should be given by the spectral flow

of the family of SU(3)-structures. In view of Proposition 7.16 (cf. Prop. 7.9), this corresponds

to the index difference of the two nearly Kähler structures.

8 The nearly parallel G2 case

We adapt the discussion from Section 6 to realise and study nearly parallel G2-metrics as critical

points of Hitchin-like functionals.

8.1 The nearly parallel G2 Hitchin functional

Let M7 be a closed spinable manifold, so it admits a G2-structure. In dimension seven, we have

a non-degenerate quadratic form on Ω4
exact:

Q : Ω4
exact → R (77)

dγ 7→
∫
M
dγ ∧ γ ,

induced by the isomorphism (Ω4
exact)

∗ ∼= Ω4
exact.

We consider the space V = Ω4
+ ∩ Ω4

exact of stable exact 4-forms. Given a stable 4-form ψ and a

fixed orientation on M , we consider the associated volume form volψ = 4
7ψ ∧ ψ̂ and denote its

Hitchin dual by φ = ψ̂. Comparing with the identity φ ∧ ψ = 7volg, we get volg = 1
4 volψ. In

[Hit01], Hitchin introduced the functional

P : V → R

ψ 7→
∫
M

volψ −2Q(ψ) , (78)

and showed that its critical points correspond to nearly parallel G2-structures. Indeed, we have

Proposition 8.1. The Euler–Lagrange equation of P is dφ − 4ψ = 0 . In particular, critical

points are nearly parallel G2-structures. The gradient of P induced by Q is given by ∂tψ =

dφ− 4ψ.

Proof. Let δψ = χ = dη ∈ Ω4
exact. Then δ volψ = χ ∧ ψ̂ = χ ∧ φ and so

δL =

∫
M
χ ∧ φ− 4

∫
M
η ∧ ψ =

∫
M
η ∧ (dφ− 4ψ) .

67



Again, we have a nice geometric interpretation of the gradient flow in terms of the induced

metric.

Proposition 8.2. Fix an orientation on M and let ψ(t), t ∈ (a, b), be a family of stable exact

4-forms and g(t) the associated metric and set r = et. The induced metric g = dr2+r2g (log(r))

on (ea, eb)×M has holonomy contained in Spin(7) if and only if ψ(t) satisfies the gradient flow

equation of P.

Proof. From Proposition A.14, the condition Hol(gφ) ⊆ Spin(7) is equivalent to the 4-form

Φ = dr ∧ r3φ+ r4ψ being closed (and coclosed since it is self-dual). Thus, we get

0 = dΦ = −dr ∧ r3dMφ+ 4r3dr ∧ ψ + r4dr ∧ ∂ψ

∂r
=⇒ r

∂ψ

∂r
= dMφ− 4ψ ,

where dM is just the restriction of the exterior differential d along Λ∗T ∗M and we used that

dMψ = 0, which is the gradient flow equations under the change of variables r = et. The

converse follows.

By replacing our Lagrange multiplier from 2 to 2λ and considering the limit as λ → 0 of the

induced conformal metric e2λt(dt2 + gΣ(t)), we recover the result of Hitchin for Spin(7)-metrics

in [Hit01], as in the nearly Kähler case.

Similarly, we compute the second variation of P.

Proposition 8.3. Let χ1, χ2 ∈ Ω4
exact and ηi such that dηi = χi. The second variation of L

with respect to χ1, χ2 is

δ2P =

∫
M
(dJχ2 − 4χ2) ∧ η1 ,

where J : Ω4 → Ω3 is the linearisation of the Hitchin map from Lemma A.23. The Hessian of

P with respect to the indefinite inner product induced by Q is given by

HP(χ) = dJχ− 4χ .

Proof. By Proposition A.23, if δψ = χ, then δψ̂ = δφ = Jχ. Combining this with our formula

for the first variation and integrating it by parts, the expression follows.

We study the spectral properties of HP . Since the functional L is invariant under the action of

the diffeomorphism group, it is convenient to work on a slice to the orbit of the diffeomorphism

group.

Let (M7, ψ) be a nearly parallel G2-structure that is not isometric to the round S7 and O be

the orbit of Diff0(M) in Ω4
exact going through ψ. The tangent space to this orbit is spanned by

LXψ, for X ∈ Ω1.

Using the Hodge decomposition of Theorem A.34, we can parametrise χ ∈ Ω4
exact explicitly by

χ = LXψ + d(fφ) + χ0 ;

with f ∈ Ω0, X ∈ aut⊥, and χ0 ∈ Ω4
8,exact. In particular, it follows that taking X = 0 defines a

complement to the tangent space of the diffeomorphism action. As before, let

W = {d(fφ) + χ0} ⊆ Ω4
exact ,
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for f ∈ Ω0 and χ0 ∈ Ω4
27,exact. Taking the appropriate Hölder norm completions, we get

Proposition 8.4 ([Nor08] Theorem 3.1.4 & 3.1.7). There exists a slice to the diffeomorphism

group action in Ω3
exact × Ω4

exact, whose tangent space is given by W.

Going back to the study the spectral properties of HP , we have

Proposition 8.5. Assume (M7, ψ) is not isometric to the round 7-sphere. Under the Hodge

decomposition, the eigenvalue problem for the Hessian is equivalent to

3f = (µ+ 4)f , (79a)

µX − df = 0 , (79b)

d ∗ χ0 = −(µ+ 4)χ0 . (79c)

for f ∈ Ω0, X ∈ aut⊥ and χ0 ∈ Ω4
27,exact.

Proof. As above, let

χ = LXψ + d(fφ) + χ0

with f ∈ Ω0, X ∈ aut⊥ and χ0 ∈ Ω4
27,exact, by virtue of Theorem A.34. By the definition of J

and Lemma A.24, we get

Jχ = LXφ+ ∗(df ∧ ψ) + 3fφ− ∗χ0 .

Now, since the G2-structure is nearly parallel, we get

dJχ = 4LXψ − d(df⌟ψ) + 3d(fφ)− d(∗χ0) = 4LX− 1
4
dfψ + 3d(fφ)− d(∗χ0) .

Now, substituting this in HP , and since the Hodge decomposition is orthogonal, we get the

required system of equations.

The case µ = 0 corresponds to the nullity of HP , i.e. infinitesimal deformations of the nearly

parallel G2-structure. As expected, we recover the result of [AS12] on infinitesimal deformations

of nearly parallelG2-structures (cf. [NS21]). Notice that our functional approach does not detect

the infinitesimal deformations arising from Killing fields that do not preserve the G2-structure,

that is, those arising from symmetries of the Sasaki-Einstein or 3-Sasaki structures (cf. Table

6).

8.2 The new G2 Hitchin functional

We want to construct an analogue of the closed Hitchin functional. However, in this case, we

cannot exploit any symplectic structure as in the case of the nearly Kähler Hitchin functional.

Instead, we make a proposal imitating Proposition 7.12.

Recall that V is the space of stable exact 4-forms in M7. Given a fixed orientation on M , the

4-form defines a G2-structure on M , with torsion dφ = τ0ψ + ∗τ3. We define

T : V →R (80)

ψ 7→
∫
M

7τ20 − 5

4
volψ .
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Proposition 8.6. Let G : V → Met(M) be the map taking a G2-structure to its underlying

metric. Consider Ŝ = G∗(S) the pullback of the Einstein–Hilbert action. The Hitchin functional

T satisfies T ≥ Ŝ, with equality if and only if the G2-structure is a nearly parallel G2-metric,

up to rescaling and orientation.

Proof. By Lemma A.22, we have

Ŝ =
1

6

∫
M

Å
42τ20 − 1

2
|τ3|2

ã
− 30 volg =

∫
M

7τ20 − 5− 1

12
|τ3|2volg .

Using the relation 7 volg = φ ∧ ψ = 7
4 volψ, the claim follows.

Let us study the variations of T . We have

Proposition 8.7. The Euler–Lagrange equation of T is

τ0J dφ+
1

2
J (dτ0 ∧ φ)−

7τ20 + 5

4
φ = 0, (81)

where J : Ω4 → Ω3 is the linearisation of the Hitchin dual map from Proposition A.23.

In particular, the critical points of T are nearly parallel G2-structures, up to orientation. The

gradient flow with respect to the quadratic form Q is

∂tψ = d

ï
τ0J dφ+

1

2
J (dτ0 ∧ φ)−

7τ20 + 5

4
φ

ò
. (82)

First, we need the following technical result

Lemma 8.8. The variation of τ0 along δψ = χ is

δτ0 volψ =
1

7
[d(Jχ ∧ φ) + 2dφ ∧ Jχ]− τ0φ ∧ χ . (83)

Proof. Let δψ = χ. Then δφ = Jχ by Proposition A.23. Let us compute the variation of τ0.

By definition, we have dφ ∧ φ = 4τ0ψ ∧ φ = 7τ0 volψ. Taking the variation of this identity, we

get

7δτ0 volψ +7τ0φ ∧ χ = dJχ ∧ φ+ dφ ∧ Jχ .

By the Leibniz rule, the claim follows.

Proof of Proposition 8.7. Using the lemma above, we have

δT =
1

4

∫
M

14τ0δτ0 volψ +
(
7τ20 − 5

)
φ ∧ χ

=
1

4

∫
M

4τ0dφ ∧ Jχ− 2dτ0 ∧ Jχ ∧ φ−
(
7τ20 + 5

)
φ ∧ χ

=

∫
M
χ ∧

Å
τ0J dφ+

1

2
J (dτ0 ∧ φ)−

7τ20 + 5

4
φ

ã
, (84)

and the Euler–Lagrange equation follows. Let us study the critical points of T . Using the

torsion decomposition dφ = 4τ0ψ + ∗τ3, it is clear that τ3 = 0 and τ0 = C ∈ R. We get an

equation for τ0:

12τ20 −
(
7τ20 + 5

)
= 0 ,
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with solutions τ0 = ±1. The case τ0 = 1 is the nearly parallel G2-structure condition. For

τ0 = −1, we obtain a nearly parallel G2-structure for the reversed orientation. The formula for

the gradient flow follows from taking χ = dη and integrating by parts.

Notice that, unlike the case of nearly Kähler structures, the flow depends explicitly on the

torsion τ0 and its derivatives. In particular, the flow is third order in ψ and thus non-parabolic.

Before studying the second variation, we have the following technical computation

Lemma 8.9. Let (M,ψ) be a nearly parallel G2-structure, and consider a variation δψ = χ =

fψ +X ∧ φ+ χ0. We have

δτ0 =
1

7
d∗X − 1

4
f .

Proof. From Equation (83), we get

δτ0 volψ =
1

7
[d(Jχ ∧ φ) + 2J (4ψ) ∧ χ]− φ ∧ χ =

1

7
(d(Jχ ∧ φ) + 6φ ∧ χ)− φ ∧ χ

=
1

7
[d(∗(X ∧ φ) ∧ φ)− fψ ∧ φ] = −1

7
(4d ∗X + fψ ∧ φ) =

Å
1

7
d∗X − 1

4
f

ã
volψ ,

where we used the relation 7 volg = φ ∧ ψ = 7
4 volψ once more.

Proposition 8.10. The second variation of T along δψi = χi = fiψ +Xi ∧ φ+ (χ0)i is given

by

δ2T =

∫
M
χ1 ∧

ï
J dJχ2 − 4Jχ2 +

1

14
∗
ï
d

Å
d∗X2 −

7

4
f2

ã
∧ φ
ò
− 1

14

Å
d∗X2 −

7

4
f2

ã
φ

ò
. (85)

In particular, the Hessian with respect to the pairing Q defined in Equation (77) is given by

HT (χ) = d

ï
J dJχ− 4Jχ+

1

14
∗
ï
d

Å
d∗X − 7

4
f

ã
∧ φ
ò
− 1

14

Å
d∗X − 7

4
f

ã
φ

ò
.

Proof. Notice that directly taking the variation of (84) would require us to understand the

variation δJ . We avoid this by noticing that we can rewrite δT as

δT =

∫
M

Jχ ∧
Å
τ0dφ+

1

2
(dτ0 ∧ φ)−

7τ20 + 5

4
J −1φ

ã
=

∫
M

Jχ ∧
Å
τ0dφ+

1

2
(dτ0 ∧ φ)−

7τ20 + 5

3
ψ

ã
.

So the right-hand side can be viewed as the variation of T for δφ = δψ̂ = Jχ ∈ Ω3. Thus,

δ2T =

∫
M

Jχ1 ∧
ï
τ0dJχ2 + δτ0dφ+

1

2
(dδ0τ0 ∧ φ)−

14

3
τ0δτ0ψ − 7τ20 + 5

3
χ2

ò
=

∫
M

Jχ1 ∧
ï
dJχ2 −

2

3
δτ0ψ +

1

2
(dδτ0 ∧ φ)−

7τ20 + 5

3
χ2

ò
.

Using the lemma, we can rewrite this as (85). From the definition of Q, the expression of the

Hessian is straightforward.
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Let us study the spectrum of the Hessian. By Proposition 8.4, we can restrict ourselves to the

tangent of a slice to the diffeomorphism orbit W = {d(fφ) + χ0} ⊆ Ω4
exact with χ0 ∈ Ω4

27,exact.

We have

Proposition 8.11. Let (M,ψ) be a nearly parallel G2-manifold that is not isometric to the

round S7. The eigenvalue problem (HT − µ) : W → W is equivalent to the PDE

∆χ0 + 4d ∗ χ0 = µχ0 (86)

for χ0 ∈ Ω4
27,exact whenever µ ̸= −5/2. For µ = −5/2, the eigenforms are additionally given by

multiples of ψ.

Proof. As in the proof of Proposition 8.5, we can take χ ∈ W ⊆ Ω4
exact as

χ = d(fφ) + χ0 = 4fψ + df ∧ φ+ χ0

with f ∈ Ω0 and χ0 ∈ Ω4
27,exact, by virtue of Theorem A.34, and Proposition 8.4. We compute

the four terms of the second variation separately. First,

dJχ = d (∗(df ∧ φ) + 3fφ− ∗χ0) = 3d(fφ)− d(df⌟ψ)− d(∗χ0) = 3d(fφ)− Ldfψ − d(∗χ0) .

Thus, we have

dJ dJχ = dJ [3d(fφ)− Ldfψ − d(∗χ0)] = d [3 ∗ (df ∧ φ) + 9fφ− Ldfφ+ ∗d ∗ χ0]

= 9d(fφ)− 7Ldfφ+∆χ0 .

Similarly, using the identity d ∗ (X ∧ φ) = −LXψ once more, the third term in (85) becomes

1

14
d ∗ [d (∆f − 7f) ∧ φ] = − 1

14
Ld(∆f−7f)ψ .

The fourth term is simply − 1
14d [(∆f − 7f)φ]. Putting all of these together and using the fact

that the Hodge decomposition of A.34 is orthogonal, we have

− 1

14
(∆f − 7f)− 3f = µf

− 1

14
d (∆f − 7f)− 3df = 0

∆χ0 + 4d ∗ χ0 = µχ0 ,

Now, if df ̸= 0, the first two equations combine to yield µ = 0, which implies f = 0 since (∆−7)

is strictly positive, by Obata’s theorem [Oba62]. If f = C ∈ R, it follows that µ = −5/2.

Definition 8.12. Let (M7, φ) a nearly parallel G2-manifold. We define the index of the nearly

parallel G2-structure Indφ as the number of negative eigenvalues of the Hessian endomorphism

HT : W → W at ψ minus one.

Remark 8.13. As in the nearly Kähler case, the Hitchin index does not account for constant

rescalings on the structure, which always correspond to a negative eigenvalue of the Hessian. In

particular, notice that Indφ ≥ 0.
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First, the following lemma shows that the index is well-defined.

Lemma 8.14. The spectrum of HT is bounded below by −4. In particular, the index is well-

defined.

Proof. Let χ ∈ Ω4
exact an eigenvalue of HT . If µ ̸= −5/2, we know that χ ∈ Ω4

27, by Proposition

8.11. Taking the L2-norm of d ∗ χ+ 2χ, we get

0 ≤ ⟨d ∗ χ+ 2χ, d ∗ χ+ 2χ⟩ = ⟨d ∗ d ∗ χ+ 4d ∗ χ, χ⟩+ 4||χ||2= ⟨HT (χ), χ⟩+ 4||χ||2 .

Moreover, we have a relation between the spectrum of the Hessians HP and HT :

Proposition 8.15. Solutions to (HP−λ)χ = 0 with λ ∈ R for χ ∈ Ω4
exact are in correspondence

with solutions to HT (χ) = µχ with µ ≥ −4. Moreover, the range λ ∈ (−4, 0) is in two-to-one

correspondence with the range µ ∈ (−4, 0), excluding multiples of the 4-form ψ.

Proof. First, multiples of the canonical 4-form ψ are solutions to (HP − λ)χ = 0 for λ = −1

and to (HT − µ)χ = 0 for µ = −5/2. Thus, we may assume that χ ∈ Ω4
27,exact.

First, let χ be a solution to d ∗ χ = −(λ+ 4)χ. Then

HT (χ) = −(λ+ 4)d ∗ χ− 4(λ+ 4)χ = [(λ+ 4)2 − 4(λ+ 4)]χ ,

which is negative in the interval λ ∈ (−4, 0). Conversely, assume χ satisfies HT (χ) = µχ with

µ ≥ −4. Let γ± = d ∗ χ − λχ, for λ± = −2 ±
√
µ+ 4. Clearly, γ ∈ Ω4

27,exact. If γ± = 0, we

are done. Otherwise, we need to show that γ± is a non-trivial element of the kernel of HP − λ.

Substituting γ± in HT (χ)− µχ, we have

0 = ∆χ+ 4d ∗ χ− µχ = d ∗ (γ + λχ) + 4(γ + λχ)− µχ = d ∗ γ + (λ+ 4)γ + (λ2 + 4λ− µ)χ .

Our chosen values of λ are the roots of the rightmost term, so γ satisfies HP(γ) = λγ, as

needed.

In particular, we have

Corollary 8.16. Let (M,φ) be a nearly parallel G2-manifold, and consider the spaces

E(λ) =
{
χ0 ∈ Ω4

27| d ∗ χ0 = λχ0

}
.

The Hitchin index of the nearly parallel G2-structure is given by

Indφ =
∑

λ∈(−4,0)

dim E(λ) .

One could try to relate this to the Morse co-index of T , as we did for the Hitchin index of nearly

Kähler structures in Proposition 7.19. However, a moment of thought suffices to realise that

both the index and the co-index of T are infinite, even when restricted to Ω4
27. Indeed, taking

E as above, we have

δ2T
∣∣∣
E(λ)

=

∫
M
χ1 ∧ [(λ+ 4) ∗ χ2] = (λ+ 4)⟨χ1, χ2⟩ .
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As we did for the nearly Kähler structures, one could investigate the index of the known examples

since they all possess some symmetry that would allow us to reduce the PDE to a simpler

problem. We do not work out any examples explicitly, but provide an outline of how to compute,

or rather bound, the Hitchin index.

(i) Homogeneous examples: The Peter-Weyl formalism for reductive spaces described

above carries over verbatim. The case of nearly parallel G2-structures is slightly more

challenging since the differential operator is not simply a Laplacian. Thus, computations

become more tedious. Some computations in this direction were carried out by Alexandrov

and Semmelmann in [AS12] and Lehmann in [Leh21].

(ii) Sasaki-Einstein examples: Recall that the inclusion SU(4) ⊂ Spin(7) implies that every

Sasaki-Einstein manifold carries a natural nearly parallel G2-structure. Let us assume that

the underlying Sasaki structure is quasi-regular, so the Reeb field integrates into an S1

action. In this case, the PDE

∆χ+ 4d∗χ = µχ

is S1-equivariant. Thus, one can try to use the Peter-Weyl (Fourier) formalism along the

fibres to reduce this problem to a complex PDE on the leaf space and obtain a bound for

the index in terms of Hodge numbers of the complex orbifold base, using the results of

Nagy’s PhD thesis [Nag01].

The added difficulty in this case is that, while the PDE above is S1-invariant, the under-

lying G2-structure is not (and thus neither is Ω4
27), so one would need to check that the

forms constructed above had the correct type.

When the Sasaki-Einstein is irregular, there is a higher-dimensional torus acting isometri-

cally on the manifold. One might then try to generalise this approach, but the geometry

of the orbit space becomes significantly more intricate and less tractable.

(iii) Squashed examples: The squashed nearly parallel G2 metrics are constructed by rescal-

ing the fibres of a 3-Sasaki manifold. In particular, the squashed metric has an isometric

action by SU(2) with a 4-dimensional orbifold leaf space.

Thus, one can follow the same strategy of reducing the PDE to the 4-orbifold by using the

Peter-Weyl formalism along the fibres. Similar ideas were presented in a recent preprint

by Nagy and Semmelmann [NS23].
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Cohomogeneity one nearly Kähler

structures

We now turn to the study of the Hitchin and Einstein indices for the two known inhomogeneous

nearly Kähler structures, constructed by Foscolo and Haskins [FH17].

Throughout this chapter, we consider 6-dimensional manifolds (M6, ω, ρ) that admit a coho-

mogeneity one action by a compact Lie group G ⊆ Aut(M,ω, ρ), such that the generic G-orbit

has codimension one. These generic orbits, known as principal orbits, are diffeomorphic to the

homogeneous space G/K, where K is the isotropy subgroup at a point on the orbit.

Since M will be a closed manifold with finite fundamental group, the general theory of coho-

mogeneity one manifolds (cf. [Bre72, Chapter IV, Theorem 8.2]) implies that the orbit space

M/G is homeomorphic to a closed interval [0, T ]. The preimage of the interior (0, T ) is an

open dense subset M∗ ⊂ M that is G-equivariantly diffeomorphic to (0, T ) × G/K. At the

endpoints of the interval [0, T ], the orbits degenerate to lower-dimensional submanifolds known

as singular orbits, with isotropy subgroups H0, HT ⊂ G respectively. These satisfy K ⊂ Hi,

and the quotient spaces Hi/K are diffeomorphic to spheres.

The motivation for imposing a cohomogeneity one symmetry assumption is that it provides a

dimensional reduction of the PDE into a system consisting of two parts: An algebraic problem

on the space of invariant tensors, and an ODE on the orbit space [0, T ], that becomes singular

at the endpoints.

We begin by reviewing the geometry of cohomogeneity one SU(3)-structures and the key el-

ements of the Foscolo—Haskins construction. This includes their method of glueing nearly

Kähler “halves” across a maximal volume orbit to obtain complete, inhomogeneous nearly

Kähler manifolds. With this background, we then examine the eigenvalue problem associated

with the Hitchin index under the assumption of a cohomogeneity one symmetry.

9 Cohomogeneity one SU(3)-structures

We study the structure induced on the principal orbits by the SU(3)-structure on M . By

the work of Conti–Salamon [CS07], the frame bundle of any orientable hypersurface Σ5 ↪→M6

admits a reduction to a principal SU(2)-bundle. This is equivalent to the existence of a nowhere-

vanishing 1-form η and a triple of 2-forms (ω1, ω2, ω3) satisfying the conditions

(i) η ∧ ωi ∧ ωj = 2δij volΣ,
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(ii) X⌟ω1 = Y ⌟ω2 =⇒ ω3(X,Y ) ≥ 0.

The forms ωi pointwise span a subbundle of Λ2, which we denote as Λ2
+. Its orthogonal com-

plement within ker(η) will be denoted by Λ2
−. This notation is justified by observing that the

Hodge star restricted to ker(η) acts as ± Id on Λ2
±. Let ν denote the positive unit normal vector

field to Σ. The induced SU(2)-structure on Σ is given explicitly by

η = ν⌟ω ω1 = ω |Σ ω2 + iω3 = ν⌟ (ρ̂− iρ) .

Conversely, given one parameter family of SU(2)-structures, we can define an SU(3)-structure

on Σ× (a, b) by taking

ω = η ∧ dt+ ω1 ρ+ iρ̂ = (ω2 + iω3) ∧ (η + idt) , (87)

where t is the coordinate on the interval (a, b).

By the work of Podestà and Spiro [PS10], the only interesting cases of cohomogeneity one nearly

Kähler manifolds occur when G ∼= SU(2)2, and the principal orbit is always diffeomorphic to

S2 × S3 ∼= N1,1 = SU(2) × SU(2)/△U(1). Thus, we are interested in parametrising the set of

invariant SU(2)-structures on it. On N1,1, we have a distinguished invariant SU(2) structure:

the Sasaki-Einstein structure coming from the Calabi-Yau conifold V (z21 + z22 + z23 + z24) ⊆ C4.

We will denote the associated basis of invariant forms by ηse ∈ Ω1, ωse0 ∈ Ω2
− and ωse1 , ω

se
2 , ω

se
3 ∈

Ω2
+, satisfying

dηse = −2ωse1 dωse2 = 3ηse ∧ ωse3 dωse3 = −3ηse ∧ ωse2 dωse0 = 0 .

With respect to the Sasaki-Einstein structure, the space of invariant SU(2)-structures on S2×S3

is parametrised by R+×R+× SO0(1, 3). Given (λ, µ,A) ∈ R+×R+× SO0(1, 3), the associated

SU(2)-structure is given by

η = ληse ωi = µAωsei .

Remark 9.1. The (left-invariant) Reeb field generates the subgroup of inner automorphisms

of SU(2) × SU(2) that fixes ∆U(1). In terms of the invariant SU(2)-structure, the Reeb field

induces a rotation in the (ωse2 , ω
se
3 )-plane.

We get the following formula from the structure equations for the Sasaki-Einstein metric. Let

(λ, µ,A) denote an invariant SU(2)-structure. Then,

dη = −2λωse1 dωi =
µ

λ
η ∧ TAωsei d(η ∧ ωi) = dη ∧ ωi = −2λµ⟨Aωi, ωse1 ⟩ volse , (88)

where T ∈ End(R1,3) is given by T (ωse0 ) = T (ωse1 ) = 0, T (ωse2 ) = 3ωse3 and T (ωse3 ) = −3ωse2 .

Remark 9.2. Formula (2.17) in [FH17] contains two typos, which are corrected above.

9.1 Local nearly Kähler conditions

We can ask under what conditions a family of SU(2)-structures on Σ gives rise to a nearly

Kähler structure on Σ × (a, b). Using the definition of a nearly Kähler structure and (87), the
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SU(3)-structure will be a nearly Kähler structure if and only if the SU(2)-structure satisfies the

equations

dω1 = 3η ∧ ω2 d(η ∧ ω3) = −2ω2
1 , (89)

as well as the evolution equations

∂tω1 = −3ω3 − dη ∂t(η ∧ ω2) = −dω3 ∂t(η ∧ ω3) = dω2 + 4η ∧ ω1 . (90)

An SU(2)-structure (η, ω1, ω2, ω3) satisfying Equations (89) is called a nearly hypo SU(2)-

structure. Equations (90) are called nearly hypo evolution equations. When restricting to

the case of cohomogeneity one, Foscolo and Haskins introduce a change of variables to ob-

tain an ODE system rather than a mixed differential and algebraic system. Their results are

summarised in the following proposition:

Proposition 9.3 ([FH17, Prop. 3.9]). Let Ψ(t) = (λ, u, v) be a solution of the ODE system

λ∂tu0 + 3v0 = 0 , (91a)

λ∂tu1 + 3v1 = 2λ2 , (91b)

λ∂tu2 + 3v2 = 0 , (91c)

∂tv0 − 4λu0 = 0 , (91d)

∂tv1 − 4λu1 = 0 , (91e)

∂tv2 − 4λu2 = −3
u2
λ
, (91f)

λ|u|2∂tλ2 − ∂tu
2
2 = −λ4u1 (91g)

defined on an interval (a, b) ⊆ R u2 < 0, λ, µ2 > 0 and u1v2−u2v1 > 0. Moreover, assume that

there exists some t0 ∈ (a, b) for which the quantities

I1(t) = ⟨u, v⟩ I2(t) = λ2|u|2−u22 I3(t) = λ2|u|2−|v|2 I4(t) = v1 − |u|2 (92)

all vanish. Then ψλ,µ,A with µ = |u| and

A =
1

λµ2

á
u1v2 − v1u2 λµu0 0 µv0

u0v2 − u2v0 λµu1 0 µv1

u1v0 − v1u0 λµu2 0 µv2

0 0 −λµ2 0

ë
=

á
w0 x0 0 y0

w1 x1 0 µ
λ

w2 −λ 0 y2

0 0 −1 0

ë
(93)

defines an SU(2)2-invariant nearly Kähler structure on (a, b)×N1,1.

Remark 9.4. The vanishing of I1, I2, I3 and I4 correspond to ω1 ∧ ω3 = 0, ω2
1 = ω2

2, and

ω2
1 = ω2

3 and the second equation of (89) respectively. The ODE (91g) implies the vanishing of

I = (I1, I2, I3, I4) is a conserved quantity of the ODE.

Corollary 9.5 ([FH17, Cor. 2.46]). Let Ψλ,µ,A be an invariant nearly hypo structure on N1,1

such that w1 = 0 = w2. Then, it is an invariant hypersurface of the sine-cone over the invariant

Sasaki-Einstein.
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The ODE system (91) is invariant under various symmetries. Three of them will be key in the

discussion ahead: time translation t 7→ t+ t0, for t0 ∈ R and the following two involutions:

τ1 :(λ, u0, u1, u2, v0, v1, v2, t) 7→ (λ,−u0,−u1, u2, v0, v1,−v2,−t) , (94a)

τ2 :(λ, u0, u1, u2, v0, v1, v2, t) 7→ (λ, u0,−u1, u2,−v0, v1,−v2,−t) . (94b)

A complete list of the symmetries of the ODE (91) and their geometric interpretation can be

found in [FH17, Prop. 3.11].

There are four explicit examples of solutions to the ODE system (91): the three homogeneous

examples S6, CP 3 and S3 ×S3; and the sine-cone over the homogeneous N1,1 with its homoge-

neous Sasaki-Einstein structure.

Example 9.6 (The sine cone).

λ = sin(t) µ = sin2(t) A =

á
1 0 0 0

0 cos(t) 0 sin(t)

0 − sin(t) 0 cos(t)

0 0 −1 0

ë
(95)

Example 9.7 (Homogeneous nearly Kähler on S3 × S3).

λ = 1 µ =
2
√
3

3
sin(

√
3t)

µA =

à
2
3

Ä
sin2(

√
3t) + 1

ä √
3
3 sin(2

√
3t) 0 2

3

Ä
2 sin2(

√
3t)− 1

ä
2
3 sin

2(
√
3t)

√
3
3 sin(2

√
3t) 0 4

3 sin
2(
√
3t)

−2
3 cos(

√
3t) −2

√
3

3 sin(
√
3t) 0 2

3 cos(
√
3t)

0 0 −2
√
3

3 sin(
√
3t) 0

í
(96)

We collect some formulae and relations for general cohomogeneity one nearly Kähler manifolds:

Lemma 9.8. Let (M6, ω, ρ) be a cohomogeneity one nearly Kähler manifold, and let (η, ωi) =

ψλ,µ,A (ηse, ωsei ) the associated SU(2)-moving frame. Then, we have the following relations

(i) dη = 2λw1
µ ω0 − 2λx1µ ω1 − 2ω3,

(ii) dω0 = −3w2
λ η ∧ ω2,

(iii) d(η ∧ ω0) = −2λw1
µ ω2

1,

(iv) dω2 = −3w2
λ η ∧ ω0 − 3η ∧ ω1 +

3y2
λ η ∧ ω3,

(v) dω3 = −3y2λ η ∧ ω2,

(vi) ∂tη = ∂t log(λ)η,

(vii) ∂tω0 = ∂t log(µ)ω0 − 2λw1
µ ω1 − 3w2

λ ω3,

(viii) ∂tλ = 3y2 − 2λ
2

µ x1,

(ix) ∂tµ = 2λx1.
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where the functions wi, xi and yi are the components of the moving frame matrix A defined in

Equation (93).

Proof. All the identities follow from the above formulae and the fact that A−1 = JAtJ for

J = diag(−1, 1, 1, 1), since A ∈ SO0(1, 3). We give the full details of the derivation of (vii). We

have

∂tω0 = (µA)′ωse0 = log(µ)′ω0 + (AtJA′)ω0 = log(µ)′ω0 + ⟨w′, w⟩ω0 + ⟨w′, x⟩ω1 + ⟨w′, y⟩ω3 ,

where ⟨·, ·⟩ is the standard inner product in R1,3. Using that A ∈ SO(1, 3), we know that

⟨w,w⟩ = −1, ⟨w, x⟩ = ⟨w, y⟩ = 0. First, ⟨w,w⟩ = −1 implies ⟨w′, w⟩ = 0. For the ω1

component, we have

⟨w′, x⟩ = −⟨w, x′⟩ = − 1

µ
⟨w, (µx)′⟩ = − 1

µ
⟨w, u′⟩ = − 1

µ
(−3⟨w, v⟩+ 2λw1) = −2

λ

µ
w1 ,

where we used the structure ODE (91a) - (91c) and the fact that ⟨w, v⟩ = 0 = ⟨w, u⟩. Similarly,

⟨w′, y⟩ = −⟨w, y′⟩ = − 1

λµ
⟨w, (λµy)′⟩ = − 1

λµ
⟨w, v′⟩ = − 1

λµ

(
4λ⟨w, v⟩ − 3

u2
λ
w2

)
= −3

w2

λ
.

where we used (91d) - (91f), the fact that ⟨w, u⟩ = 0 and u2 = −µλ on the last step.

Similar relations could be obtained for the remaining forms, but are omitted since they are not

needed in our discussion.

Lemma 9.9. Let (M6, ω, ρ) be a cohomogeneity one nearly Kähler structure, and let (η, ωi) the

associated SU(2)-moving frame. Then, the first column of A from Equation (93) satisfies the

evolution equations

∂tw0 = −2
λx0
µ
w1 − 3

y0
λ
w2 (97a)

∂tw1 = −2
λx1
µ
w1 − 3

µ

λ2
w2 (97b)

∂tw2 = 2
λ2

µ
w1 − 3

y2
λ
w2 (97c)

Proof. From the computations of Lemma 9.8, we know that

⟨w′, w⟩ = 0 ⟨w′, x⟩ = −2
λ

µ
w1 ⟨w′, y⟩ = −3

w2

λ
.

In other words, we have A−1w′ =

Ö
0

−2λµw1

−3w2
λ

è
, and the claim follows by matrix multiplication.
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9.2 Smooth extensions over the singular orbit

To construct complete nearly Kähler manifolds, Foscolo and Haskins first construct two families

of desingularisations of the cone singularity over N1,1. We will refer to these as nearly Kähler

halves and denote them by Ψa(t) and Ψb(t). In both cases, the parameter measures the size of

the singular orbit.

Let us revise how the desingularising families are constructed. Due to the work of Eschenburg

and Wang [EW00], we have a good understanding of the necessary and sufficient conditions for

a cohomogeneity one tensor to extend smoothly over a singular orbit. In our case, this reduces

to the following lemma:

Lemma 9.10 ([FH17, Lemma 4.1] and [PS10, Prop. 6.1]). Let ω = F (t)ηse ∧ dt+G0(t)ω
se
0 +

G1(t)ω
se
1 +G2(t)ω

se
2 +G3(t)ω

se
3 an SU(2)2-invariant 2-form on (0, T )×N1,1. Then

(i) ω extends over a singular orbit SU(2)2/SU(2)×U(1) ∼= S2 at t = 0 if and only if

(a) G0, G1, G2, G3 are even and F is odd;

(b) G2(0) = G3(0) = 0 and G0(t)−G1(t) = −∂tF (0)t2 +O(t4).

(ii) ω extends over a singular orbit SU(2)2/△SU(2) ∼= S3 at t = 0 if and only if

(a) G0, G1, G2 are odd and G3, F are even;

(b) G0(t) +G2(t) = O(t3), G3(t) = O(t2) and G1(t) = 2F (0)t+O(t3).

Under the conditions of the lemma, the ODE system (91) gives rise to a singular ODE initial

value problem. Foscolo and Haskins argue the existence and uniqueness of the solution to the

ODE by formally solving it in terms of a power series and then applying a contraction mapping

fixed point argument.

Theorem 9.11 ([FH17, Thm. 4.4 & 4.5]). For each a > 0, there exists a unique solution

to (91) that extends smoothly over the singular orbit SU(2)2/SU(2) × U(1), denoted by Ψa(t).

Similarly, for each b > 0, there exists a unique solution to (91) that extends smoothly over the

singular orbit SU(2)2/△SU(2), denoted by Ψb(t).

The first terms of each of the Taylor expansions were worked out by Foscolo and Haskins and

are collected in Appendix D for convenience.

9.3 Complete nearly Kähler solutions

Once we have nearly Kähler halves, we need to match two such halves to construct a complete

solution. In that direction, we have

Proposition 9.12 ([FH17, Prop. 5.15]). Let Ψ(t) be a solution to (91) which extends smoothly

over the singular orbit. Then, Ψ(t) has a unique maximal volume orbit: a unique T∗ exists for

which the nearly hypo structure on N1,1, corresponding to Ψ(T∗), has mean curvature zero.
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Thus, it is reasonable to match two nearly Kähler halves along their maximum volume orbits.

Let Ψ1 and Ψ2 = ‹Ψ be two solutions for the system (91) with maximum volume orbit at time

T 1
∗ and T 2

∗ , and assume that the two maximal volume orbits coincide, so
(
λ(T 1

∗ ), µ(T
1
∗ )
)
=Ä

λ̃(T 2
∗ ), µ̃(T

2
∗ )
ä
. In particular, the two solutions must coincide on the maximum volume orbit

up to the action of the involutions (94). Acting by a time translation τ = T1 + T2 − t and τ1 or

τ2, we consider

Ψ±
2 (t) =

Ä
λ̃(τ),∓ũ0(τ),−ũ1(τ), ũ2(τ),±ṽ0(τ), ṽ1(τ),−ṽ2(τ)

ä
.

We define the two solutions

Ψ(t) =

Ψ1(t) 0 ≤ t ≤ T1

Ψ+
2 (t) T1 ≤ t ≤ T1 + T2

, (98a)

Ψ(t) =

Ψ1(t) 0 ≤ t ≤ T1

Ψ−
2 (t) T1 ≤ t ≤ T1 + T2

. (98b)

If either solution is smooth, we will have a complete nearly Kähler manifold. The following

lemmas outline the conditions necessary for this to occur.

Lemma 9.13 (Doubling lemma, [FH17, Lemmas 5.19 & 8.4]). Let a ∈ (0,∞) and consider

Ψa(t) the corresponding nearly Kähler half with singular orbit S2. Denote by Ta the time of

maximum volume orbit.

(i) If w1(Ta) = 0, then (98b) with Ψ1 = Ψ2 = Ψa defines a smooth nearly Kähler structure

on CP 3.

(ii) If w2(Ta) = 0, then (98a) with Ψ1 = Ψ2 = Ψa defines a smooth nearly Kähler structure

on S2 × S4.

Similarly, let b ∈ (0,∞) and consider Ψb(t) the corresponding nearly Kähler half with singular

orbit S3. Denote by Tb the time of maximum volume orbit. If w1(Tb) = 0 (resp. w2(Tb) = 0),

then (98b) (resp. (98a)) with Ψ1 = Ψ2 = Ψb defines a smooth cohomogeneity one nearly Kähler

structure on S3 × S3.

Lemma 9.14 (Matching lemma, [FH17, Lemma 5.20, 8.4]).

(i) Suppose that there exist a < a′ ∈ (0,∞) such that (w1(Ta), w2(Ta)) = ± (w1(Ta′),−w2(Ta′)).

Set Ψ1 = Ψa and Ψ2 = Ψa′. Then either (98a) defines a smooth nearly Kähler on S2×S4

or (98b) defines one on CP 3.

(ii) Suppose that there exist b < b′ ∈ (0,∞) such that (w1(Tb), w2(Tb)) = ± (w1(Tb′),−w2(Tb′)).

Then either (98a) or (98b) defines a smooth nearly Kähler structure on S3 × S3 for

Ψ1 = Ψb and Ψ2 = Ψb′.

(iii) Suppose that there exist a, b ∈ (0,∞) such that (w1(Ta), w2(Ta)) = ± (w1(Tb),−w2(Tb)).

Then either (98a) or (98b) defines a smooth nearly Kähler structure on S6 for Ψ1 = Ψa

and Ψ2 = Ψb.
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We outline the proof of Foscolo and Haskins on the existence of an inhomogeneous nearly Kähler

structure on S3 × S3 using the result in Lemma 9.13. Consider the curve

β : (0,∞) → R2

b 7→
Ä
wb1(Tb), w

b
2(Tb)

ä
,

For small b, the nearly Kähler half converges to the sine-cone, so lim
b→0

β = (0, 0). The homoge-

neous nearly Kähler structure on S3 × S3 corresponds to b = 1 and β(1) =
Ä√

3
3 , 0

ä
. Foscolo

and Haskins prove

Theorem 9.15 ([FH17, Thm. 7.12]). There exists b∗ ∈ (0, 1) such that β(b∗) = (0, w2(b∗)).

By Lemma 9.13, the nearly Kähler solution (98b) with Ψ1 = Ψ2 = Ψb∗ defines a smooth nearly

Kähler structure on S3 × S3.

Their proof strategy first involves relating the zeros of w1 and w2 with those of v0 and u0,

respectively. The functions u0 and v0 satisfy the system (91a)-(91d)

λ∂tu0 = −3v0 ∂tv0 = 4λu0 .

In particular, they are amenable to a Sturm comparison argument with the Legendre Sturm-

Liouville problem

sin(t)∂tû = −3v̂ ∂tv̂ = 4 sin(t)û ,

which is the linearisation of the system (91) on the sine-cone. In their proof, Foscolo and Haskins

can only prove that the curve β must cross the w1 = 0 axis in the range b ∈ (0, 1) but cannot

establish whether such crossing is unique, although they numerically conjecture this to be the

case.

In any case, there exists b∗ ∈ (0, 1) for which the curve β crosses the vertical axis for the last

time before arriving at the homogeneous structure. For the remainder of the notes, we will

refer to the corresponding Ψb∗ (and its complete double) as the inhomogeneous nearly Kähler

structure on S3 × S3. We conclude this section by characterising this inhomogeneous nearly

Kähler structure, which will be helpful when studying its index. Although we do not have an

explicit expression for w1(t) and w2(t), we can characterise their qualitative behaviour.

Proposition 9.16. Let Ψb∗(t) be the nearly Kähler half corresponding to the inhomogeneous

nearly Kähler structure on S3 × S3 described in [FH17] with maximal volume orbit at time T∗.

Then

(i) w1(t) > 0 for t ∈ (0, T∗), and

(ii) w2(T∗) > 0.

Proof. The solution Ψb∗ corresponds to the last time the family β(b) crosses the axis w1 = 0

before the homogeneous solution (96). Since the homogeneous solution satisfies w1(t) > δ > 0

for t ∈ (0, π
√
3

6 ] and δ > 0; it follows that wb∗1 (t) > 0 for t ∈ (0, T∗), which implies that w1(T∗)

is a zero with a non-positive slope. Thus, Equation (97b) reduces to

∂tw1

∣∣∣∣
T∗

= −3
µ

λ2
w2 ≤ 0 ,
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which implies w2(T∗) ≥ 0. If it were zero, we would have w1(T∗) = w2(T∗) = 0, and we would

be on the sine cone by Corollary 9.5, so w2(T∗) > 0, as needed.

10 Hitchin functional in the cohomogeneity one setting

We consider the reduction of the closed nearly Kähler Hitchin functional introduced in Section

7.2 to the cohomogeneity one setting. Recall that this functional is defined as

Q : U → R

ω 7→ 1

3

∫
M

voldω −4

∫
M

volω ,

with U = {ω ∈ Ω2| dω stable, ω stable and positive, ω2 exact}. It is instructive to investigate

how the set U and the Hitchin functional Q restrict to the cohomogeneity one case. Consider

ω = ληse ∧ dt + uωse a stable cohomogeneity one 2-form. The stability of ω corresponds to

λ|u|2 ̸= 0, and one obtains similar open conditions for the stability of dω and the positivity of ω

with respect to the induced almost complex structure. Finally, we find it convenient to weaken

the condition of ω2 being exact to dω2 = 0. This corresponds to the evolution equation

∂t|u|2= 4λu1 , (99)

since ω2 = 2|u|2volseh +2λuηse ∧ dt ∧ ωse, and the claim follows by differentiation.

Proposition 10.1. Let ω = λ(t)ηse ∧ dt + u(t)ωse be a cohomogeneity one 2-form satisfying

the evolution equation (99). The functional Q restricted to cohomogeneity one forms becomes

Q(1)(λ, u) = C

∫
I
4λ3 + λ|∂tu|2−4λ2∂tu1 +

9

λ
(u22 + u23)− 12λ|u|2dt ,

for C ∈ R a constant and I the interval on which our tuple (λ(t), u(t)) is defined.

Proof. As above, let ω = ληse ∧ dt+ uωse. Then

dω = −2λdt ∧ ωse1 + (∂tu) dt ∧ ωse + 3u2η
se ∧ ωse3 − 3u3η

se ∧ ωse2 .

By Proposition 7.11, ω ∈ U defines a natural associated SU(3)-structure, and d̂ω = ∗dω will be

given by

d̂ω = 2λ2ηse ∧ ωse1 + (∂tu0)λη
se ∧ ωse0 −

3∑
i=1

(∂tui)λη
se ∧ ωsei + 3

u2
λ
dt ∧ ωse3 − 3

u3
λ
dt ∧ ωse2 .

Thus, we have

voldω = 2

Å
4λ3 + λ|∂tu|2−4λ2∂u1 +

9

λ

(
u22 + u23

)ã
ηse ∧ dt ∧ volseh .

Using that volω is proportional to λ|u|2, the claim follows from the definition ofQ and integration

along the N1,1 fibres.

83



It is convenient to introduce a change of basis. Recall that the Reeb field induces a rotation

in the span ⟨ωse2 , ωse3 ⟩ (cf. Remark 9.1). Thus, we find it suitable to introduce the new basis

(û, θ) = (û0, û1, û2, θ), related to u by

û0 = u0 û1 = u1 û2 = u2 cos(θ) û3 = u2 sin(θ) . (100)

Since there is no risk of confusion, we abuse notation and set u = û from now on. Under this

change of variables and rescaling, the functional Q(1) becomes

Q(1)(λ, u, θ) =

∫
I
4λ3 + λ|∂tu|2+λ(u2∂tθ)2 − 4λ2∂tu1 +

9

λ
u22 − 12λ|u|2dt , (101)

with u = (u0, u1, u2) ∈ C∞(I,R1,2).

Proposition 10.2. The Euler-Lagrange equations for Q(1) are

δQ(1)

δλ
=⇒ 12λ2 + |∂tu|2−8λ∂tu1 −

9

λ2
u22 − 12|u|2= 0 (102a)

δQ(1)

δu0
=⇒ ∂t(λ∂tu0) + 12λu0 = 0 (102b)

δQ(1)

δu1
=⇒ ∂t(λ∂tu1) + 12λu1 − 4λ∂tλ = 0 (102c)

δQ(1)

δu2
=⇒ ∂t(λ∂tu2) + 12λu2 −

9

λ
u2 − λ(∂tθ)

2u2 = 0 (102d)

δQ(1)

δθ
=⇒ ∂t

(
λu22∂tθ

)
= 0 (102e)

By the Principle of Symmetric Criticality of Palais [Pal79], solutions to these Euler–Lagrange

equations correspond to cohomogeneity one nearly Kähler solutions on S2×S3×I. In particular,

together with Equation (99), they should be equivalent to the system of Foscolo and Haskins

[FH17] above. We show this to be the case. First, we have

Lemma 10.3. Equations (102b)-(102e) are equivalent to the system (91a)-(91f) of Foscolo–

Haskins.

Proof. First, Equation (102e) directly implies λu22∂tθ = C for some C ∈ R, but boundary

conditions force C = 0, from which it follows that ∂tθ = 0. So, we can choose θ(t) = 0 as

in [FH17]. The converse is immediate. Differentiation by t of λ∂tui implies that Equations

(91a)-(91f) are equivalent to Equations (102b)-(102d).

Thus, we are left with showing that Equation (102a) and the condition ∂t|u|2= 4λu1 are equiv-

alent to (91g). Instead, we will show that the Euler-Lagrange equations are equivalent to the

conservation of the quantities Ii(t) from (92). We have the following:

Proposition 10.4. Under Equations (102b)- (102d) and ∂t|u|2= 4λu1, the conditions I1(t) =

0 and I4(t) = 0 are automatically satisfied. Moreover, Equation (102a) is equivalent to the

conditions I2(t) = 0. The remaining condition I3(t) = 0 follows from I2 = 0 = I4.

Before we prove the proposition, we introduce the following auxiliary calculation.
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Lemma 10.5. Under Equations (102b)- (102d) and ∂t|u|2= 4λu1, we have

|∂tu|2= 2λ∂tu1 + 12|u|2− 9

λ2
u22 .

Proof. The proof is a combination of the Leibniz rule and the aforementioned equations.

|∂tu|2 = ∂t⟨u, ∂tu⟩ − ⟨u, ∂t
1

λ
(λ∂tu)⟩ = ∂t(2λu1) + (2λu1)

∂tλ

λ
− 1

λ
⟨u, ∂t(λ∂tu)⟩

= 2λ∂tu1 + 4u1∂tλ− 1

λ

î
− 12λ|u|2+4λu1∂tλ+

9

λ
u22
ó
= 2λ∂tu1 + 12|u|2− 9

λ2
u22 .

Proof of Proposition 10.4. We start by showing that the conditions I1(t) = 0 = I4(t) are auto-

matically satisfied. First, we have

−3I1(t) = −3⟨u, v⟩ = −λu0∂tu0 + λu1∂tu1 + 2λ2u1 + λu2∂tu2 =
λ

2
∂t|u|2+2λ2u1 = 0 ,

by Equation (99). Similarly, for I4, we have

3I4(t) = 3(v1 − |u|2) = 2λ2 − λ∂tu1 − 3|u|2 .

Differentiating, and using Equations (102c) and (99), we have

3∂tI4 = 4λ∂tλ− ∂t(λ∂tu1)− 3∂t|u|2= 12λf1 − 3(4λf1) = 0 .

Thus, I4(t) is a constant, which must again be zero by the boundary conditions. Let us now

study the relation between the Euler-Lagrange equation for λ and I2. Using the Lemma 10.5,

we have

δQ(1)

δλ
= 12λ2 + |∂tu|2−8λ∂tu1 −

9

λ2
u22 − 12|u|2= 12λ2 − 6λ∂tu1 −

18

λ2
u22

= 6
î
2λ2 − λ∂tu1 −

3

λ2
u22
ó
= 6I4(t) + 18λ2I2(t) .

Similarly, for I3 we have

I3(t) = λ2|u|2−|v|2= λ2|u|2−λ
2

9

î
|∂tu|2−4λ∂tu1 + 4λ2

ó
,

and so, by a direct substitution in Equation (102a), we get

δQ(1)

δλ
+

9

λ2
I3(t) =

(
8λ2 − 4λ∂tu1 − 12|u|2

)
+

Å
9|u|2− 9

λ2
u22

ã
= 8I4(t) +

9

λ2
I2(t) .

Therefore, I3(t) will vanish if and only if I2 (and I4) vanishes, as needed.

11 The Hitchin index in the cohomogeneity one setting

We now return to studying the eigenvalue problem associated with the Hitchin index, as in-

troduced in Definition 7.17. Given a nearly Kähler manifold (M6, ω, ρ), we are interested in

2-forms β ∈ Ω2
8 satisfying

∆β = νβ d∗β = 0 , (103)
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for 0 < ν < 12, with the limiting case ν = 12 corresponding to infinitesimal deformations of the

nearly Kähler structure. There is a one-to-one correspondence with solutions to the 1st-order

PDE system

dβ =
Λ

4
γ d∗γ =

Λ

3
β , (104)

with γ ∈ Ω3
12 and Λ =

√
12ν. We restrict to the positive branch of the square root, so Λ > 0. If

(β, γ) were a solution to (104) for Λ, then (β,−γ) is a solution for −Λ giving rise to the same

solution of (103).

We will focus on the first-order PDE system (104) for Λ ∈ (0, 12). While finding the complete

set of solutions to this system seems currently out of reach, even in the cohomogeneity one case,

we can restrict ourselves to finding solutions to the PDE system with the same cohomogeneity

one symmetry as the underlying nearly Kähler structure. In other words, we are computing the

Hitchin index of the functional Q(1) introduced above.

For the remainder of the section, (M6, ω, ρ) will denote a cohomogeneity one nearly Kähler

manifold. Let us start by characterising cohomogeneity one forms of type 8 and 12.

Lemma 11.1. Let (M,ω, ρ) be a cohomogeneity one nearly Kähler structure and let η(t), ωi(t)

be the associated moving frame for the underlying SU(2) structure on N1,1. Cohomogeneity one

forms of type β ∈ Ω2
8 are parametrised by two functions, h0 and h1, so

β = h0ω0 + h1(2η ∧ dt− ω1) .

Similarly, cohomogeneity one forms of type γ ∈ Ω3
12 are parametrised by four functions, f0, f2, f3

and g0, so

γ = f0η ∧ ω0 + g0dt ∧ ω0 + f2(η ∧ ω2 + dt ∧ ω3) + f3(η ∧ ω3 − dt ∧ ω2) .

Proof. Let β = hi(t)ωi + V (t)η ∧ dt be an arbitrary cohomogeneity one 2-form. The condition

that β is of type 8 is equivalent to ω ∧ β = − ∗ β. By direct computation, we have

∗β = −h0η ∧ dt ∧ ω0 +
V

2
ω2
1 +

3∑
i=1

hiη ∧ dt ∧ ωi

ω ∧ β = h0η ∧ dt ∧ ω0 + (h1 + V ) η ∧ dt ∧ ω1 + h2η ∧ dt ∧ ω2 + h3η ∧ dt ∧ ω3 + h1ω
2
1 ,

which implies h2 = h3 = 0 and V = −2h1, as needed. Similarly, let γ = fi(t)η ∧ ωi + gidt ∧ ωi
be an arbitrary cohomogeneity one 3-form. The condition that γ is of type 12 is equivalent to

γ ∧ ω = 0 and γ ∧ ρ = 0 = γ ∧ ρ̂. Again, by direct computation, we have

ω ∧ γ = f1η ∧ ω2
1 + g1dt ∧ ω2

1 ρ ∧ γ = ∗(f3 + g2) ρ̂ ∧ γ = ∗(g3 − f2) ,

so, f1 = g1 = 0, f2 = g3 and f3 = −g2, as needed.

We compute dβ and d∗γ = − ∗ d ∗ γ. Using Lemma 9.8, the defining equations (89) and the
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evolution equations (90), we can compute the exterior derivative of β:

dβ = ∂th0dt ∧ ω0 + h0(dω0 + dt ∧ ∂tω0)− ∂th1dt ∧ ω1 + h1(2dη ∧ dt− dω1 − dt ∧ ∂tω1)

=

Å
∂t(µh0)

µ
+ 6

λw1

µ
h1

ã
dt ∧ ω0 −

Å
∂th1 + 2h0

λw1

µ
+ 6h1

λx1
µ

ã
dt ∧ ω1

−
Å
3w2

λ
h0 + 3h1

ã
(dt ∧ ω3 + η ∧ ω2) .

Similarly, for γ ∈ Ω3
12 of cohomogeneity one, one computes

∗γ = −f0dt ∧ ω0 + g0η ∧ ω0 + f2(dt ∧ ω2 − η ∧ ω3) + f3(dt ∧ ω3 + η ∧ ω2) .

Again, using Lemma 9.8 and equations (89) and (90), we compute the exterior derivative

d ∗ γ =f0dt ∧ dω0 + ∂tg0dt ∧ η ∧ ω0 + g0 (dt ∧ ∂t(η ∧ ω0) + d(η ∧ ω0))

+ ∂tf2η ∧ dt ∧ ω3 − f2 (dt ∧ dω2 + d(η ∧ ω3) + dt ∧ ∂t(η ∧ ω3))

− ∂tf3η ∧ dt ∧ ω2 − f3 (d(η ∧ ω2) + dt ∧ ∂t(η ∧ ω2)− dt ∧ dω3)

=−
(
∂tg0 + g0∂t log(λµ) + 6f2

w2

λ
+ 3f3

w2

λ

)
η ∧ dt ∧ ω0

+

Å
2g0

λw1

µ
− 2f2

ã
η ∧ dt ∧ ω1 +

(
3f0

w2

λ
− ∂tf3 − 6f3

y2
λ

)
η ∧ dt ∧ ω2

+
(
3g0

w2

λ
+ ∂tf2 + 6f2

y2
λ

− 3f3
y2
λ

)
η ∧ dt ∧ ω3 +

Å
2f2 − 2g0

λw1

µ

ã
ω2
1

Since Λ ̸= 0, we immediately get f0 = 0 = f3. Thus, the PDE system (104) reduces to

∂t(µh0) + 6h1λw1 =
Λ

4
µg0 , (106a)

∂th1 + 2h0
λw1

µ
+ 6

λx1
µ
h1 = 0 , (106b)

∂t(λµg0) + 6µw2f2 = −Λ

3
λµh0 , (106c)

3
w2

λ
g0 + ∂tf2 + 6

y2
λ
f2 = 0 , (106d)

3
w2

λ
h0 + 3h1 +

Λ

4
f2 = 0 , (106e)

2
λw1

µ
g0 − 2f2 −

Λ

3
h1 = 0 . (106f)

We distinguish two classes of equations. Equations (106a)-(106d) form a first order ODE system

for h0, h1, g0, f2 whilst Equations (106e)-(106f) are of order zero and linear in h1 and f2. In

particular, for Λ ̸=
√
72, we can rewrite them as

h1(t) =
1

Λ2 − 72

Å
72
w2

λ
h0 + 6Λ

λw1

µ
g0

ã
, (107a)

f2(t) =
−1

Λ2 − 72

Å
12Λ

w2

λ
h0 + 72

λw1

µ
g0

ã
. (107b)

Since the last two equations are of order zero, it is reasonable to define the quantities

Θ1(t) = 3
w2

λ
h0 + 3h1 +

Λ

4
f2 , (108a)

Θ2(t) = 2
λw1

µ
g0 − 2f2 −

Λ

3
h1 . (108b)
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As expected, these quantities Θi are conserved quantities of the system, so the system (106) is

not overdetermined. More concretely, we have

Proposition 11.2. Let (h0, h1, g0, f2) be a solution to (106a)-(106d) such that Θ1(t0) = 0 =

Θ2(t0) for some time t0. Then Θ1(t) = 0 = Θ2(t) for all time that (h0, h1, g0, f2) is defined.

First, we state the following technical computation:

Lemma 11.3. We have

∂t

(w2

λ
h0

)
=

Λ

4

w2

λ
g0 − 6

w1w2

µ
h1 + 2

λw1

µ
h0 − 6

y2w2

λ2
h0 , (109a)

∂t

Å
λw1

µ
g0

ã
= −Λ

3

λw1

µ
h0 − 6

w1w2

µ
f2 − 6

λ2x1w1

µ2
g0 − 3

w2

λ
g0 . (109b)

Proof. By direct computation,

∂t

(w2

λ
h0

)
=
w2

λµ
∂t(µh0) + h0

Å
1

λ
∂tw2 −

w2

λ2
∂tλ− w2

λµ
∂tµ

ã
=

Λ

4

w2

λ
g0 − 6

w1w2

µ
h1 + h0

ïÅ
2
λ

µ
w1 − 3

y2w2

λ2

ã
− w2

λ2

Å
3y2 − 2

λ2

µ
x1

ã
− 2

w2

µ
x1

ò
=

Λ

4

w2

λ
g0 − 6

w1w2

µ
h1 + 2

λw1

µ
h0 − 6

y2w2

λ2
h0 ,

where we used Lemmas 9.8 and 9.9 in the second line. Similarly,

∂t

Å
λw1

µ
g0

ã
=
w1

µ2
∂t(λµg0) + g0

Å
λ

µ
∂tw1 − 2

w1λ

µ2
∂tµ

ã
= −Λ

3

λw1

µ
h0 − 6

w1w2

µ
f2 + g0

ïÅ
−2

λ2x1
µ2

w1 − 3
w2

λ

ã
− 4

λ2x1
µ2

w1

ò
= −Λ

3

λw1

µ
h0 − 6

w1w2

µ
f2 − 6

λ2x1w1

µ2
g0 − 3

w2

λ
g0 .

Proof of Proposition 11.2. We start with Θ1. Using the previous lemma and Equations (106b)

and (106d), we have

1

3
∂tΘ1 = ∂t

(w2

λ
h0

)
+ ∂th1 +

Λ

12
∂tf2 = − 6

µ
(w1w2 + λx1)h1 − 6

y2w2

λ2
h0 −

Λ

2

y2
λ
f2

= − 6

µ

(
w1w2 + λx1 −

µy2
λ

)
h1 − 2

y2
λ
Θ1 = −2

y2
λ
Θ1 .

In the last line, we used that w1w2 + λx1 − µy2
λ vanishes since it is the inner product of the

second and third rows of the matrix A ∈ SO0(1, 3). Similarly, for Θ2, we have

1

2
∂tΘ2 = ∂t

Å
λw1

µ
g0

ã
− ∂tf2 −

Λ

6
∂th1 =

6

µ
(
µy2
λ

− w1w2)f2 − 6
λ2x1w1

λ2
h0 + Λ

λx1
µ
h1

=
6

µ

(µy2
λ

− w1w2 − λx1

)
f2 − 3

λx1
µ

Θ2 = −3
λx1
µ

Θ2 .

Thus, we can reduce ourselves to study the ODE system for H = (µh0, λµg0, h1, f2):

∂tH =

à
0 Λ

4λ −6λw1 0

−Λλ
3 0 0 −6µw2

−2λw1
µ2

0 −6λx1µ 0

0 −3 w2
λ2µ

0 −6y2λ

í
H (110)

88



with suitable initial conditions H(t0) satisfying (106e)-(106f). To lighten the notation and given

the shape of the ODE system (110), we make the following change of variables for the remainder

of the discussion:

ξ = µh0 χ = λµg0 .

Our ODE problem closely resembles the local nearly Kähler system (91), with the conserved

quantities Ii(t) = 0 replaced by Θi(t) = 0. This naturally raises the question of whether these

Θi admit a geometric interpretation analogous to that of the Ii in the nearly Kähler case.

Unfortunately, we do not currently have a satisfactory answer to this question.

To solve (110), we follow the same strategy for nearly Kähler structures: We solve (110) on a

nearly Kähler half Ψ and then find suitable matching conditions along maximum volume orbits.

First, it is instructive to study the limiting case of the sine-cone, Example 9.6. In this case, the

condition w1(t) = w2(t) = 0 and the conserved quantities yield the reduced system

∂t

Ç
ξ

χ

å
=

(
0 Λ

4 sin(t)
Λ sin(t)

3 0

)Ç
ξ

χ

å
(111)

with h1 = f2 = 0 whenever Λ ̸=
√
72. When Λ =

√
72, the system reduces to the ODE above

but with f2 = −
√
2h1(t) = C sin6(t).

The ODE (111) is the Legendre Sturm-Liouville problem under the change of variables u =

sin(t). In particular, Λ = 2 and 6 are eigenvalue solutions to the Sturm-Lioville problem, each

with a 2-dimensional eigenspace given by the corresponding Legendre polynomial of the first

and second kind.

Notice that these solutions give rise to 2-forms β solving Equation (103), and decaying at rate

−2, which is precisely the rate one would expect to see if we were trying to construct a solution

close to the sine-cone, as it is the rate of harmonic forms on the Stenzel metric on T ∗S3 and

the small resolution O(−1)⊕O(−1) (cf. [FH17, Thm. 2.27]).

Remark 11.4. The value Λ = 12 is also a solution to the Sturm-Liouville problem, correspond-

ing to infinitesimal deformations of the nearly Kähler structure on the sine cone. Foscolo and

Haskins used this for their Sturm comparison argument, discussed in Theorem 9.15.

Existence of solutions over Nearly Kähler halves

We aim to solve the ODE system (110) on the nearly Kähler halves Ψa and Ψb discussed above.

Explicitly, we want to find 2-forms

β = −h0ω0 + h1 (ω1 − 2η ∧ dt) = −2λh1η
se ∧ dt+

2∑
i=0

(−wiξ + uih1)ω
se
i

that extend smoothly over the singular orbits. The conserved quantities, Equations (106e) and

(106f), guarantee the smoothness of the 3-form γ. By virtue of Lemma 9.10 and the Taylor

expansions in Lemmas D.1 and D.2, we have the following:

Proposition 11.5.
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(i) The 2-form β extends over the singular orbit SU(2)2/U(1)× SU(2) ∼= S2 if and only if ξ

is odd and h1 is even. Equations (106e) and (106f) force f2 to be even and χ to be odd.

Their Taylor expansions are

ξ = 6At+O(t3) χ = −AΛt3+O(t5) h1 = −2
√
3

3a
A+O(t2) f2 = Bt2+O(t4)

for A,B ∈ R.

(ii) The 2-form β extends over the singular orbit SU(2)2/△SU(2) if and only if ξ and h1 are

even. Equations (106e) and (106f) imply χ is odd and f2 is even. Their Taylor expansions

are

ξ = AΛt2 +O(t4) χ = 8bAt+O(t3) h1 = Bt2 +O(t4) f2 =
2A

b
+O(t2)

for A,B ∈ R.

Proof.

(i) By Lemma 9.10, when the singular orbit is diffeomorphic to S2, the coefficient functions Gi

must be even, and F is odd. Since wi(t) are odd, ξ is odd too. Now, λ is odd, so h1 is even,

which is compatible with ui being even. The conditions G2(t) = G3(t) = 0 are immediate

from Lemma D.1. Finally, we have the condition G1(t) − G0(t) = ∂tF (0)t
2 + O(t4). Let

ξ = At + O(t3) and h1 = B + O(t2). By the Taylor expansion in Lemma D.1, this last

condition is equivalent to

3

2
B +

√
3

2a
A = −3B =⇒ B = −

√
3

9a
A ,

as needed. Now, Equations (106e) and (106f) imply the parity of f2 and χ. Let χ =

Ct3 + O(t5) and f2 = D + O(t2), then the first term of the Taylor expansion of (106e)

and (106f) are, respectively,

−Λ

4
D = 3B +

√
3

3a
A = 0 C =

Λ

6

√
3

9a
B = −Λ

6
A .

(ii) Similarly, in the case where the singular orbit is diffeomorphic to S3, Lemma 9.10 implies

that the coefficient functions Gi must be odd and F even. By the same argument as

above, we conclude that ξ and h1 must be even and have Taylor expansions of the form

ξ = At2 +O(t4) and h1 = Bt2 +O(t4) for A,B ∈ R.

As before, Equations (106e) and (106f) imply the parity and decay of f2 and χ. Let

χ = Ct+O(t3) and f2 = D+O(t2). Then the first term of the Taylor expansion of (106e)

and (106f) are, respectively,

−Λ

4
D = 3

Å
− 1

6b

ã
A =⇒ D =

2

Λb
A C = 4b2D =

8b

Λ
A .

We solve the ODE (110) such that these conditions are satisfied. To achieve this, we use the

following technical result.
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Proposition 11.6. Consider the singular initial value problem

∂ty(t) =
1

t
A−1y(t) +A(t)y(t) y(0) = y0 , (112)

where y takes values in Rk, A−1 is a k × k matrix, and A(t) is a k × k matrix whose entries

depend smoothly on t near 0. Then, the problem has a unique smooth solution whenever y0 lies

in the cone spanned by the eigenvectors of A−1 with non-negative eigenvalues. Furthermore, the

solution y(t) depends continuously on A−1, A(t) and y0.

Proof. First, note that one could appeal to the general theory of first-order singular initial value

problem (c.f. [FH17, Thm. 4.7]). However, we can solve the problem directly since our ODE is

linear.

Let A(t) = 1
tA−1 + A(t), so we can rewrite Equation(11.6) as ∂ty = Ay. The solution to this

ODE problem is simply y(t) = exp
Ä∫ t
t0
A(t)

ä
y0. In the neighbourhood of 0, B(t) =

∫ t

t0

A(s)ds

can be put in Jordan canonical form B = S−1JS, so expA(t) = S−1 (exp J)S. For simplicity,

let us assume that A(t) is already diagonalised in a neighbourhood of 0; the general case follows.

Then

y(t) = exp

Å∫ t

t0

A(t)dt

ã
y0 =

á
tλ1 0 ... 0

0 tλ2 ... 0

. . .

0 0 0 tλn

ë
exp

Å∫ t

t0

A(t)dt

ã
y0 ,

where λi are the eigenvalues of A−1. Since A(t) is smooth near 0, y(t) will be smooth if and

only if Y (t) =
∑

i t
λiyi0 is, where yi0 are the coordinates of y0 in the suitable eigenvector basis.

The functions tλi are smooth around 0 only if λi ≥ 0. Therefore, picking the initial condition

y0 orthogonal to the negative eigenspace of A−1 is sufficient for y(t) to be smooth. Continuous

dependence on the parameters follows from standard ODE theory.

We prove the main result of this section.

Theorem 11.7. Let a, b > 0, and consider the nearly Kähler halves Ψa and Ψb of Foscolo and

Haskins [FH17], with singular orbits S2 and S3, respectively. Then, for every Λ ∈ (0,∞), there

exists a unique (up to scale) solution to the ODE system (110) on the nearly Kähler half Ψa

(resp. Ψb). Moreover, the solution depends continuously on the parameters a (resp. b) and Λ.

Proof. We consider the two cases separately.

Desingularisation over S2: In view of Proposition 11.5, it is useful to considerH =
(
ξ, χ, h1, f2

)
=(

t−1ξ, t−3χ, h1, t
−2f2

)
. Under this reparameterisation, the ODE system (110) becomes

∂tH =

à
−1
t

Λ
4λ t

2 −6λw1
t 0

−Λλ
3t2

−3
t 0 −6µw2

t

−2λw1
µ2
t 0 −6λx1µ 0

0 −3 w2
λ2µ

t 0 −6y2λ − 2
t

í
H .
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Using the Taylor expansions in Lemma D.1, it is straightforward to check that we are under

the hypotheses of Proposition 11.6, with singular term

A−1 =

à
−1 0 −3

√
3a 0

−Λ
2 −3 0 0

−
√
3

3a 0 −3 0

0 −2
√
3

9a 0 −6

í
.

The matrix A−1 has three distinct negative eigenvalues: −6,−4 and −3, and a one-dimensional

kernel, spanned by
Ä
6,−Λ,−2

√
3

3a ,
√
3Λ

27a

ä
.

Desingularisation over S3: As before, we considerH =
(
ξ, χ, h1, f2

)
=
(
t−2ξ, t−1χ, t−2h1, f2

)
.

Under this reparameterisation, the ODE system (110) becomes

∂tH =

à
−2
t

Λ
4λt −6λw1 0

−Λλ
3 t −1

t 0 −6µw2

t

−2λw1
µ2

0 −6λx1µ − 2
t 0

0 −3 w2
λ2µ

t 0 −6y2λ

í
H .

Using the Taylor expansions in Lemma D.1, the singular term is

A−1 =

á
−2 Λ

4b 0 0

0 −1 0 4b2

− 1
2b 0 −5 0

0 1
2b2

0 −2

ë
.

The matrix A−1 has three distinct negative eigenvalues: −5,−3 and −2, and a one dimensional

kernel, spanned by
(
Λ, 8b,− Λ

10b ,
2
b

)
.

The statement follows from Proposition 11.6.

Doubling and matching

We derive conditions under which our solutions over each nearly Kähler half can be matched

along the maximum volume orbit to produce an element for the cohomogeneity one example.

A pair (β, γ) ∈ Ω2
8 × Ω3

12 solving the PDE (104) is given by

β = −2λh1η
se ∧ dt+

2∑
i=0

(wiξ + uih1)ω
se
i

γ =

2∑
i=0

(wiχ+ vif2) η
se ∧ ωsei − µf2dt ∧ ωse3 .

Recall from the discussion in Section 9.3, the cohomogeneity one complete nearly Kähler struc-

ture is constructed by matching a solution Ψ(t) with another solution Ψ±(t), which is defined

by a time translation and the appropriate action of the involutions (94). First, we have

Lemma 11.8. Under the symmetries τ1 and τ2 we haveÖ
w0 u0 v0

w1 u1 v1

w2 u2 v2

è
τ1===⇒

Ö
w0 −u0 v0

w1 −u1 v1

−w2 u2 −v2

è Ö
w0 u0 v0

w1 u1 v1

w2 u2 v2

è
τ2===⇒

Ö
w0 u0 −v0
−w1 −u1 v1

w2 u2 −v2

è
.
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We want to find conditions for which the pair (β, γ) can be matched along the maximum volume

orbit in the doubling case. We need to understand how a solution H(t) = (ξ, χ, h1, f2) behaves

under these symmetries.

Proposition 11.9. Let H(t) be a solution over a nearly Kähler half Ψ(t) solving (110) for

Λ ∈ R. Then

(i) The tuple H+(t) = (−ξ, χ, h1, f2) is a solution to (110) over the nearly Kähler half Ψ+(t).

(ii) The tuple H−(t) = (ξ,−χ, h1, f2) is a solution to (110) over the nearly Kähler half Ψ−(t).

Proof. Straightforward computation.

We are now ready to match two solutions in the case of doubling a nearly Kähler half. Let

β+(t) (resp. γ+(t)) be the image of β (resp. γ) under the symmetry τ1. Along the maximal

volume orbit, i.e., at t = T∗, the functions w2, u0, u1 and v2 vanish, and so we have

β(T∗) = −2λh1η
se ∧ dt+ (ξw0)ω

se
0 + (ξw1)ω

se
1 + (h1u2)ω

se
2 ,

β+(T∗) = −2λh1η
se ∧ dt− (ξw0)ω

se
0 − (ξw1)ω

se
1 + (h1u2)ω

se
2 ,

γ(T∗) = (w0χ− v0f2)η
se ∧ ωse0 + (w1χ− v1f2)η

se ∧ ωse1 − µf2dt ∧ ωse3 ,

γ+(T∗) = (w0χ− v0f2)η
se ∧ ωse0 + (w1χ− v1f2)η

se ∧ ωse1 − µf2dt ∧ ωse3 .

It follows that the equation (β, γ) = α(β+, γ+) has two non-trivial solutions:

α = 1 =⇒ ξ(T∗) = 0 α = −1 =⇒ χ(T∗) = h1(T∗) = f2(T∗) = 0 .

Similarly, let β−(t) and γ−(t) be the images of β and γ under the involution τ2. Along the

maximal volume orbit, the functions w1, u1, v0 and v2 vanish, and so we have

β(T∗) = −2λh1η
se ∧ dt+ (ξw0 + u0h1)ω

se
0 + (ξw2 + u2h1)ω

se
1 ,

β−(T∗) = −2λh1η
se ∧ dt+ (ξw0 + u0h1)ω

se
0 + (ξw2 + u2h1)ω

se
1 ,

γ(T∗) = (w0χ)η
se ∧ ωse0 + (v1f2)η

se ∧ ωse1 + (w2χ)η
se ∧ ωse2 − µf2dt ∧ ωse3 ,

γ−(T∗) = −(w0χ)η
se ∧ ωse0 + (v1f2)η

se ∧ ωse1 +−(w2χ)η
se ∧ ωse2 − µf2dt ∧ ωse3 .

As before, the equation (β, γ) = α(β−, γ−) has two non-trivial solutions:

α = 1 =⇒ χ(T∗) = 0 α = −1 =⇒ ξ(T∗) = h1(T∗) = f2(T∗) = 0 .

Thus, we have proved

Proposition 11.10. Let Ψb∗ be the nearly Kähler half corresponding to the inhomogeneous

nearly Kähler structure in S3 × S3 of Foscolo and Haskins. A solution to (110) extends to the

whole S3 × S3 if and only if χ(T∗) = 0 or ξ(T∗) = h1(T∗) = f2(T∗) = 0.

We can simplify the matching conditions by using the conserved quantities (106e) and (106f).

Lemma 11.11. Assume that the nearly Kähler half doubles under τ2, so w1(T∗) = 0. Then
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• If h1(T∗) = 0, we have ξ(T∗) = f2(T∗) = 0.

• If Λ ̸= 0 and f2(T∗) = 0, we have ξ(T∗) = h1(T∗) = 0.

• If Λ ̸=
√
72 and ξ(T∗) = 0, we have h1(T∗) = f2(T∗) = 0.

A similar statement holds for the involution τ1.

Proof. We only show the details for the case w1(T∗) = 0. The constraints (106e)-(106f) at

t = T∗ reduce to

3
w2

λµ
ξ + 3h1 +

Λ

4
f2 = 0 , (113a)

−2f2 −
Λ

3
h1 = 0 . (113b)

If h1(T∗) = 0, the claim follows directly, since w2(T∗) ̸= 0, as otherwise we would be on the

sine-cone by Corollary 9.5. If Λ ̸= 0 and f2(T∗) = 0, the second equation implies h1(T∗) = 0,

and so ξ(T∗) = 0. Finally, the determinant of the matrixÇ
3 Λ

4
Λ
3 2

å
is nonzero whenever Λ ̸=

√
72, and the final claim follows.

Similarly, one can investigate the matching conditions when the two halves are not isometric,

as is the case for the inhomogeneous S6 case. However, in this case, the matching conditions

will depend on the values of Ψ(T∗) on the maximum volume orbits, which are not explicit in

the case of the inhomogeneous nearly Kähler structure on S6. We do not investigate this case

further here.

12 The index of the inhomogeneous nearly Kähler S3 × S3

We study the Hitchin index of the inhomogeneous nearly Kähler structure on S3×S3 constructed

in [FH17] and discussed in Section 9.3. We will prove that in the eigenvalue range Λ ∈ (0,
√
72),

there exists a complete solution to Equation (110). In particular, the nearly Kähler Hitchin

index is at least one.

We prove the claim by performing an analysis of the zeros of the functions ξ(t,Λ), χ(t,Λ), h1(t,Λ)

and f2(t,Λ), in the same spirit to the one used in Proposition 9.16 and using the intermediate

value theorem. First, we exploit the dependence of the conserved quantities on Λ when restricted

to the maximum volume orbit. We have

Lemma 12.1. Let Ψb∗ be the nearly Kähler half corresponding to the inhomogeneous nearly

Kähler structure, with maximum volume orbit time T∗. Then,

(i) the functions h1(T∗,Λ) and f2(T∗,Λ) always have opposite signs;
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(ii) the functions ξ(T∗,Λ) and f2(T∗,Λ) have the same sign if Λ <
√
72 and have opposite

signs for Λ >
√
72.

Proof. Since w1(T∗) = 0, the conserved quantities on the maximum volume orbit evaluate to

w2

λµ
ξ = −h1 −

Λ

12
f2 =

Å
Λ2

72
− 1

ã
h1 , (114a)

f2 = −Λ

6
h1 . (114b)

Thus, (i) follows. By Proposition 9.16 (ii), w2(T∗) > 0, and the second claim follows.

We prove a crucial result that will allow us to prove the main theorem of this section. The key

idea is that Λ =
√
72 is a degenerate value for the conserved quantities that acts as a barrier.

Proposition 12.2. Let H(t,Λ) = (ξ, χ, h1, f2) be a non-trivial solution to (110) over Ψb∗.

(i) At Λ =
√
72, we have ξ(T∗,

√
72) = 0 and f2(T∗,

√
72) ̸= 0.

(ii) The zero of ξ(T∗,Λ) at Λ =
√
72 is transverse. In particular χ(T∗,

√
72) ̸= 0.

(iii) The function ξ(T∗,Λ) has no zeros for Λ ∈ (0,
√
72).

Proof. On the maximum volume orbit, the system (110) evaluates to

∂tξ
∣∣∣
T∗

=
Λ

4λ
χ , (115a)

∂tχ
∣∣∣
T∗

= −Λλ

3
ξ − 6µw2f2 , (115b)

∂th1

∣∣∣
T∗

= 0 , (115c)

∂tf2

∣∣∣
T∗

= −3
w2

λ2µ
χ , (115d)

where all the functions on the right-hand side are evaluated at the maximum volume orbit time.

(i) By Equation (114a) we have ξ(T∗,
√
72) = 0. If f2(T∗,

√
72) = 0, one of the two zeros

would have to be degenerate by Lemma 12.1. If ξ (resp. f2) had a non-transverse zero,

Equation (115a) (resp. Equation (115d)) would imply χ(T∗,
√
72) = 0, so H(T∗,

√
72) = 0.

Since T∗ is a smooth point of a linear first-order ODE for H, the uniqueness of solutions

would force the solution to be trivial, leading to a contradiction.

(ii) By the previous item, ξ(T∗,Λ) changes sign at
√
72. Thus, ∂tξ

∣∣∣
T∗

= 0 would force ∂2t ξ
∣∣∣
T∗

=

0, By Equation (115a) and (115b), we have

∂2t ξ
∣∣∣
T∗

=
Λ

4λ
∂tχ = −3Λ

2λ
µw2f2 ̸= 0 .

(iii) Assume we had Λ ∈ (0,
√
72) such that ξ(T∗,Λ) = 0. Then, the conserved quantities

would also force f2(T∗,Λ) = h1(T∗,Λ) = 0. By Lemma 12.1, ξ(T∗,Λ) and f2(T∗,Λ) have

the same sign for Λ ∈ (0,
√
72), the slopes at their zeros must have the same sign. Since

w2(T∗) > 0 by Proposition 9.16 (ii), Equations (115a) and (115d) force χ(T∗,Λ) = 0.

Therefore H(T∗,
√
72) = 0, which is a contradiction as above.
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Let us study the behaviour of these functions for small Λ. First, we have

Lemma 12.3. The function χ(t,Λ) is strictly positive for t ∈ (0, T∗] and Λ small.

Proof. For Λ = 0, corresponding to the harmonic case, the ODE system totally decouples. In

particular, χ(t, 0) is a solution to the singular ODE:

∂tχ = −6
w1w2

µ
χ . (116)

The asymptotics in Proposition 11.5 imply that χ(t, 0) > 0 for any small time. Since Equation

(116) is linear, χ(t, 0) > 0 for all time. In particular, since χ(t,Λ) is continuous on Λ, we have

χ(t,Λ) > 0 for Λ small.

We can use this result to refine the last statement of Proposition 12.2:

Proposition 12.4. The function ξ(T∗,Λ) is strictly positive for Λ ∈ (0,
√
72).

Proof. By virtue of Proposition 12.2 (iii), it suffices to prove this for Λ small enough. We

argue by contradiction. Assume that ξ(T∗,Λ) < 0 for some small Λ. Lemma 12.1 implies

h1(T∗,Λ) > 0. By the smoothness conditions in Theorem 11.7, h1(t,Λ) < 0 for t small enough.

In particular, there exists T < T∗ for which h1(T,Λ) = 0. Assume T is the smallest time for

which this happens. Thus, h1 has a non-negative slope at T . By Equation (106b), we have

∂th1

∣∣∣
T
= −2

λw1

µ2
ξ ≥ 0 ,

By Proposition 9.16 (i), w1(t) > 0 for t ∈ (0, T∗), so ξ(T ) ≤ 0. Again, by the smoothness

conditions, ξ(t,Λ) > 0 for t small and so, there exists T ≤ T such that ξ(T ,Λ) = 0 and

∂tξ |T≤ 0. But Equation (106a) would imply

∂tξ
∣∣∣
T
=

Λ

4λ
χ− 6λw1h1 > 0 ,

since χ(t,Λ) > 0 by the above lemma and h1 ≤ 0 since T ≤ T , which is a contradiction, and so

we must have ξ(T∗,Λ) > 0 for Λ small.

We have the tools to prove the existence of a complete solution for Λ ∈ (0,
√
72).

Proposition 12.5. On the inhomogeneous nearly Kähler structure in S3 × S3 of Foscolo and

Haskins, there exists a cohomogeneity one solution to Equation (104) for Λ ∈ (0,
√
72).

Proof. Since ξ(T∗,Λ) is strictly positive for Λ ∈ (0,
√
72), the transverse zero at Λ =

√
72 from

Proposition 12.2 (i) must have strictly negative slope, so χ(T∗,
√
72) < 0 by Equation (115a).

By Lemma 12.3, χ(T∗, 0) > 0, and by continuity on Λ, there exists Λ∗ ∈ (0,
√
72) such that

χ(T∗,Λ∗) = 0.

The doubling conditions in Proposition 11.10 imply that H(t,Λ∗) doubles to a solution of the

system (106) on the whole manifold.

Our main theorem is now straightforward.
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Theorem 12.6. The Hitchin index of the inhomogeneous nearly Kähler structure on S3 × S3

is bounded below by 1. The Einstein co-index is bounded below by 4.

Proof. Due to the relation between the PDEs (103) and (104), the proposition above implies

that there exists a cohomogeneity one 2-form β ∈ Ω2
8,coclosed solving ∆β = νβ for ν ∈ (0, 6).

The claim for the bound on the Hitchin index follows.

The Einstein co-index bound follows from the computation in Prop. C.3:

IndEH = b2(M) + b3(M) + 3
∑

ν∈(0,2)

dim E(ν) + 2
∑

ν∈(2,6)

dim E(ν) +
∑

ν∈(6,12)

dim E(ν) , (117)

where E(ν) are the corresponding eigenspaces; E(ν) =
{
β ∈ Ω2

8 | d∗β = 0 , ∆β = νβ
}
.
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Appendix

A G-structures

We collect some well-known results and identities for G-structures. On a smooth manifold M ,

a G-structure corresponds to a reduction of the frame bundle of M to a principal G-bundle.

We restrict to the cases where G ⊆ SO(n), so a choice of G-structure always includes a choice

of metric. With it, we canonically identify the space of 1-forms with smooth vector fields.

Similarly, we consider the contraction on a k-form γ by an l-form α as

α⌟γ = ∗(∗γ ∧ α) , (118)

which extends the usual vector field contraction.

We present two types of results. First, we have a collection of results in representation the-

ory. The reduction of the frame bundle to a principal G-bundle means TM and all the as-

sociated vector bundles via natural constructions inherit an induced G-action so that they

can be decomposed into irreducible G-representations. We will be interested in the bundles

Λ∗T ∗M =
⊕

k Λ
kT ∗M and Sym2(T ∗M).

Recall that we have an induced action of End(TM) on the space of forms given by

S∗(Ω)(X1, . . . , Xk) = −
k∑
i=1

Ω(X1, . . . , S(Xi), . . . Xk) . (119)

for Ω ∈ ΛkT ∗M . Under the metric, we identify Sym2(T ∗M) ⊆ T ∗M ⊗T ∗M ∼= End(TM), so we

get an induced action of Sym2(T ∗M) on Λ∗T ∗M . In particular, if Ω is an G-invariant k-form,

it induces a map between G-representations of ΛkT ∗M and Sym2(T ∗M).

The decompositions above will carry over to the spaces of smooth sections of each of the bun-

dles. We denote an irreducible G-representation of dimension m in ΛkT ∗M as ΛkmT
∗M , and

analogously Ωkm := Γ(Λkm). In all cases of interest, any two representations of the same dimen-

sion are isomorphic as representations, so there are no ambiguities arising from our choice of

notation.

The second class of results concerns differential identities on G-structures with reduced torsion.

In particular, we will be interested in G-structures that correspond to (Ricci-flat) cones.

Recall that, on the frame bundle ofMn, π : P →M , we have a canonical 1-form θ ∈ Ω1(P, TM),

given by the differential of the projection map π. Thus, given h a connection on a reduced frame

bundle P , with structure group G ⊆ SO(n), we have a natural 2-form “Θ = dhθ = dθ ◦ h.
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Since π is G-invariant, we have θ is G-equivariant, and we can identify ”Θh with a 2-form on

the base Θh ∈ Ω2(M,TM), the torsion of the connection h. The space of connections on P

is an affine space modelled on Ω1(M, gP ), so if we were to pick a different connection h′, the

difference Θh′ −Θh would be a section of Λ1(M)⊗ g. Thus, the class

τ = [Θ] ∈ Ω1(M)⊗ Ω2(M)

Ω1 ⊗ Γ(g)
∼= Ω1 ⊗ Γ(g⊥) (120)

is independent of the choice of connection. The section τ is known as the intrinsic torsion of

P , and it precisely captures the obstruction to the existence of a torsion-free connection on

P , measuring the failure of the Levi-Civita connection to have holonomy contained in G (cf.

[Bry87]).

Equivalently, the intrinsic torsion can be used to measure the failure of the bundles Λkm of being

parallel for the Levi-Civita connection. For example, on 2-forms, one has the map

α : Γ(TM)⊗ Γ(g) → Γ(g⊥) (121)

(X,β) 7→ projg⊥ (∇Xβ) .

An easy computation shows

Lemma A.1 ([Rey98, Lemma 6]). For X ∈ Γ(TM), we have

αX(β) = projg⊥ ([τX , β]) . (122)

Finally, we collect some useful Riemannian geometry identities. Since the Levi-Civita connection

is a metric connection, we have

2∇X = LXg + dX , (123)

where we are interpreting X either as a 1-form or a vector field, as needed. Because the Levi-

Civita connection is torsion-free, for any tensor S, we have

LXS −∇XS = (∇X)∗S (124)

If S is a G-invariant tensor, then, by the definition of the torsion, we have ∇XS = (τX)∗S.

Lemma A.2. Consider a G-structure characterised by a family of G-invariant tensors S1, . . . , Sn.

A vector field X is an infinitesimal automorphism of the G-structure if and only if X is Killing

and

(2τX + dX)∗ Si = 0 (125)

for every G-invariant tensor Si.

Proof. Since the G-structure is characterised by the S1, . . . , Sn, we must have LXSi = 0 for all

i ∈ 1, . . . n. The claim follows from combining Equations (123) and (124) and noticing that

2τX + dX ∈ Ω2 whilst LXg ∈ Γ
(
Sym2

)
.
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Special holonomy metrics

Given a G-structure on M with metric g, we say that g is special holonomy whenever τ = 0.

In this case, the subbundles Λ∗
p are parallel: for β ∈ Ωp, we have that ∇β ∈ Γ(T ∗M ⊗ Λp).

Composing with the alternating map, we get that d splits as a sum of first-order differential

operators dpq : Ωp → Ωq, that coincide with their symbol. These will satisfy some second-order

relations induced by the condition d2 = 0.

If g has non-vanishing torsion, the operators dpq are modified by zero-order terms that depend

on the torsion. We will compute the exact form of dpq for nearly Kähler and nearly parallel

G2-structures in Sections A.2 and A.3.

On a manifold with special holonomy, the following result, originally due to Chern [Che57] (cf.

[Sam73]), holds.

Theorem A.3. Let (Mn, g) be a closed manifold equipped with a special holonomy metric.

The space of harmonic forms is compatible with the induced G-representations described above.

That is, every harmonic form splits as a sum of harmonic forms, each of which belongs to an

irreducible G-representation Ωp. Moreover, if Λkp
∼= Λlp, then we have an induced isomorphism

at the level of harmonic forms, Hk
p
∼= Hl

p.

Proof.(Sketch). The classic Weitzenböck formula for k-forms is

∆ = ∇∗∇+ R̃ , (126)

where R̃ is an endomorphism associated to the Riemann curvature tensor. The proof follows

by checking that the linear map R̃ is a morphism of G-representations.

We have the following result, which we attribute to Bonan [Bon66]:

Theorem A.4. Let (M, g) be Riemannian manifold with holonomy contained in either SU(n), G2

or Spin(7). Then its Ricci curvature vanishes.

Remark A.5. Alternatively, one has that any manifold carrying a parallel spinor must be

Ricci-flat. By the work of McKenzie Wang [Wan89], these are precisely the cases considered

above.

A useful extension of this is the following result:

Proposition A.6. Let (Mn, g) be a manifold carrying a G-structure for G = SU(n), G2 or

Spin(7). Then the Ricci curvature of g is fully determined by its intrinsic torsion.

The cases of G2 and SU(3)-structures were worked out explicitly by Bryant [Bry05] and Bedulli

and Vezzoni [BV07], respectively.

One may study infinitesimal deformations of special holonomy metrics by using Lemma A.2,

where we recover

Proposition A.7. Let (Mn, g) be a closed Ricci-flat special holonomy manifold. Then

aut(M,G) ∼= isom(M, g) ∼= {X ∈ Ω1(M)| ∇X = 0} ∼= H1 ,

where aut(M,G) is the infinitesimal automorphsims of the special holonomy metrics.
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Proof. The isomorphisms isom(M, g) ∼= {X ∈ Ω1(M)| ∇X = 0} ∼= H1 follows from the well-

known Weitzenböck identity

∆X = ∇∗∇X +Ric(X) = 2 div div∗(X) + 2Ric(X)− dd∗X . (127)

It is clear that aut(M,G) ⊆ isom(M, g) since G ⊆ SO(n) by assumption, and equality follows

from Lemma A.2 since τ = 0.

In particular, closed irreducible Ricci-flat manifolds must be infinitesimally rigid by applying

the Cheeger-Gromoll splitting principle to the universal cover.

Links of special holonomy cones

Consider the case where we have a G-structure on (Σn−1, g), whose metric cone (C(Σ), gC) =

(R≥0 × Σ, dr2 + r2gΣ) is a special holonomy manifold.

We discuss the analogous properties to the ones described above. Theorem A.3 in this case

becomes:

Proposition A.8. Let (Σn−1, g) be a closed manifold whose cone is a special holonomy mani-

fold. The space of harmonic forms is compatible with the induced G-representations.

The proof follows from a case-by-case analysis for nearly parallel G2 (Prop.A.35) , nearly Kähler

(Prop. A.59) and Sasaki ([BG08, Thm. 7.2.6 & Prop. 7.4.14] cases. Although we expect a

general proof to exist, we have not yet been able to find one.

Remark A.9. In this case, the bundles themselves are not parallel, so it is not true that, if

Λkp
∼= Λlp, we have an induced isomorphism Hk

p
∼= Hl

p.

Similarly, we can study the Lie algebra aut(M,G) of infinitesimal deformations of the G-

structure. We outline a general result for these infinitesimal deformations, which is proved

in detail on a case-by-case basis in later sections. Recall that if (Σn−1, g) is the link of a special

holonomy cone from Berger’s list (cf. Table 2), the cone admits an associated invariant 4-form

Ω, which induces an invariant 3-form ∗Ξ on Σ. The existence of this invariant 3-form Ξ defines

a map

LΞ : Λ1 →Λ2

X 7→X⌟ ∗ Ξ = ∗(Ξ ∧X).

In all cases listed in Table 2, the torsion tensor can be identified with ∗Ξ; that is,

τX = C X⌟ ∗ Ξ = C ∗ (Ξ ∧X),

for some universal constant C ∈ R. As before, we expect a general proof of this fact to exist,

although we have not found one.

Let X ∈ Ω1, the dual of a Killing field. From Lemma A.2, we will have X ∈ aut(M,G) if and

only if [2C ∗ (Ξ ∧X) + dX]∗S = 0, for all invariant tensors S. Acting by the dual map to LΞ,

β 7→ ∗(β ∧ Ξ), it follows that
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Proposition A.10. Let (Σn−1, g) be the link of a special holonomy cone. The 1-form X will

correspond to an infinitesimal automorphism of the induced G-structure only if it is an eigenform

of the curl operator curl(X) = (−1)n ∗ (dX ∧ Ξ) introduced in (1).

In the case where the cone is Ricci-flat, the condition above becomes an if and only if condition;

and the 1-form X must be of eigenvalue (−2), i.e.

Proposition A.11 (Prop. A.29, Lemma A.53 & Prop. A.68). Let (Σn, g) be the link of a

special holonomy Ricci-flat cone. Then

aut(Σ, G) ∼= {X ∈ Ω1| curl(X) = −2X} . (128)

We move on to analyse each particular case of interest in detail.

A.1 Spin(7)-structures

We recall some well-known results on Spin(7)-structures. All results are classic and have been

collected for convenience. We refer the interested reader to the detailed notes of Salamon and

Walpuski [SW17] for further details.

Definition A.12. A Spin(7)-structure on a manifold M8 is a reduction of its frame bundle to

a Spin(7)-principal bundle. A manifold equipped with a choice of frame reduction is called a

Spin(7)-manifold 4.

Since Spin(7) ⊆ Spin(8) is the stabiliser of any nonzero vector v ∈ R8 ∼= O, a Spin(7)-structure

is equivalent to the choice of a spin structure together with a nowhere vanishing spinor.

We have the following decomposition into Spin(7)-representations:

Lemma A.13. Let (M8, g,Φ) be a Spin(7)-manifold. The spaces Λ0 and Λ1 are irreducible

with respect to the induced Spin(7)-action. The spaces Λ2, Λ3 and Λ4 decompose orthogonally

as

Λ2 = Λ2
7 ⊕ Λ2

21 Λ3 = Λ3
8 ⊕ Λ3

48 ,

Λ4 = Λ4
+ ⊕ Λ4

− , Λ4
+ = Λ4

1 ⊕ Λ4
7 ⊕ Λ4

27 , Λ4
− = Λ4

35 .

They are described by

Λ2
7 ={β ∈ Λ2| ⋆ (Φ ∧ β) = 3β} ,

Λ2
21 ={β ∈ Λ2| ⋆ (Φ ∧ β) = −β} ∼= spin(7) ,

Λ3
8 ={X⌟Φ| X ∈ Γ(TM)} ,

Λ3
48 ={γ ∈ Λ3| γ ∧ Φ = 0} ,
Λ4
1 =⟨Φ⟩ ,

Λ4
7 ={ξ∗(Φ)| ξ ∈ spin(7)⊥ ⊆ so(8)} ,

Λ4
35 ={S∗(Φ)| S ∈ Sym2

0(T
∗M)} ,

where Sym2
0(T

∗M) are the traceless symmetric endomorphisms. The remaining terms follow

from the relation Λk = ∗Λ8−k.

4The term Spin(7)-manifold is sometimes reserved in the literature to manifolds carrying a metric with holon-

omy contained in Spin(7).
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Now, we have the following identification of the intrinsic torsion.

Proposition A.14 ([Fer86]). Let (M8, g,Φ) be a Spin(7)-structure. The intrinsic torsion τ is

a section of Ω2
7 ⊗ Ω1 ∼= Ω3 ∼= Ω3

8 ⊕ Ω3
48. In particular, there exists forms τ1 ∈ Ω1 and τ3 ∈ Ω3

48

that fully characterize the intrinsic torsion τ of the Spin(7)-structure. They satisfy

dΦ = τ1 ∧ Φ+ ∗τ3 . (129)

Proof. The isomorphism Ω2
7 ⊗Ω1 ∼= Ω3 is a representation theory computation. Now, Equation

(129) follows from the metric compatibility of the Levi-Civita, d = Alt ◦∇.

A.2 G2-structures

We recall some well-known results on G2-structures and nearly G2-manifolds. Most of these

results are classic and have been collected for convenience. The main new result is the discussion

about the Dirac operator and Hodge decomposition at the end of the section (cf. [DS23]).

Definition A.15. A G2-structure on a manifold M7 is a reduction of its frame bundle to a

G2-principal bundle. A manifold equipped with a choice of frame reduction is a G2-manifold 5.

Equivalently, M7 is equipped with a smooth stable differential form φ ∈ Ω3(M). Similarly, we

could have chosen a stable 4-form ψ, where φ and ψ will be Hitchin duals to each other (cf.

Equation (63)).

Moreover, since G2 ⊂ Spin(7) is the stabiliser of any nonzero vector v ∈ R7 ∼= Im(O), a G2-

structure is equivalent to the choice of a spin structure together with a nowhere vanishing

spinor.

Since G2 ⊆ SO(8), the G2-structure fully characterises the metric on M : for X,Y ∈ Γ(M), we

define the associated metric gφ : Sym2(TM) → R as

gφ(X,Y ) volφ =
1

6
(X⌟φ) ∧ (Y ⌟φ) ∧ φ .

It is worth noting that, in some cases, the opposite orientation convention is chosen. We follow

the same convention as Bryant [Bry05], Joyce [Joy00], Salamon and Walpuski [SW17] and

Dwivedi and Singhal [DS23]. Bryant-Salamon [BS89], Harvey-Lawson [RL82] and Karigiannis

and Lotay[KL20] follow the opposite convention.

Lemma A.16. Let (M7, φ) be a G2 manifold. The spaces Λ0T ∗M ∼= R and Λ1T ∗M ∼= R7 are

irreducible with respect to the induced G2 action. The spaces Λ2 and Λ3 decompose orthogonally

as

Λ2 = Λ2
7 ⊕ Λ2

14 Λ3 = Λ3
1 ⊕ Λ3

7 ⊕ Λ3
27 .

5The term G2-manifold is sometimes reserved for manifolds carrying a metric with holonomy contained in G2.
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They are described by

Λ2
7 ={X⌟φ| X ∈ Γ(TM)} = {β ∈ Λ2| ⋆ (φ ∧ β) = 2β} ,

Λ2
14 ={β ∈ Λ2| β ∧ ψ = 0} = {β ∈ Λ2| ⋆ (φ ∧ β) = −β} ∼= g2 ,

Λ3
1 =Λ0 ∼= ⟨φ⟩ ,

Λ3
7 ={X⌟ψ| X ∈ Γ(TM)} ,

Λ3
27 ={γ ∈ Λ3| γ ∧ ψ = 0, γ ∧ φ = 0} ∼= {S∗(φ)| S ∈ Sym2

0(T
∗M)} .

The decomposition for Λk for k > 3 follows from Λk = ⋆Λ7−k.

Using the metric we identify Λ2
7 and Λ3

7 with Λ1 using the maps X 7→ X⌟φ and X 7→ X⌟ψ. By

Schur’s Lemma, these maps are homotheties. The following lemma gives a precise characteri-

sation:

Lemma A.17. Let X,Y be 1-forms, then the following holds:

(i) ∗(φ ∧ ∗(φ ∧X)) = −4X,

(ii) ψ ∧ ∗(φ ∧X) = 0,

(iii) ∗(ψ ∧ ∗(ψ ∧X)) = 3X,

(iv) φ ∧ ∗(ψ ∧X) = 2ψ ∧X.

These statements are pointwise in nature, so it suffices to verify them in local coordinates. The

corresponding computations are straightforward, involving only linear algebra, and are therefore

omitted. Similarly, we have

Lemma A.18. Let β be 2-form, then:

(i) ∗(φ ∧ ∗(φ ∧ β) = 2β + ∗(φ ∧ β);

(ii) ∗(ψ ∧ ∗(ψ ∧ β)) = β + ∗(φ ∧ β).

In this case, the intrinsic torsion satisfies the following

Proposition A.19. Let (M7, φ) be a G2-structure. The intrinsic torsion τ is a section of

Ω2
7 ⊗ Ω1 ∼= Ω2 ⊕ Ω3. In fact, the Ω2

7 and Ω3
7 terms coincide.

Explicitly, there exists forms τ0 ∈ Ω0, τ1 ∈ Ω1, τ2 ∈ Ω2
14 and τ3 ∈ Ω3

27 that fully characterise the

intrinsic torsion of the G2-structure. They satisfy

dφ = τ0ψ + 3τ1 ∧ φ+ ∗τ3
dψ = 4τ1 ∧ ψ + τ2 ∧ φ

We characterise the torsion of a G2-structure on the link of a Spin(7)- holonomy cone.

Proposition A.20. Let C(Σ) be a metric cone whose holonomy is contained in Spin(7). Then

the G2-structure on the link Σ has vanishing torsion except for τ0 = 4.
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Proof. From Proposition A.14, the condition for C(Σ) to have holonomy in Spin(7) can be

rewritten as dΦ = 0, where Φ = r3dr ∧ φ + r4ψ is the characteristic 4-form of the Spin(7)-

structure. Thus,

0 = dΦ = r3dr ∧ (4ψ − dφ) + r4dψ .

Definition A.21. A G2-structure with vanishing torsion except for τ0 = 4 is called a nearly

parallel G2-structure.

From Proposition A.6, one can compute the following expression for the scalar curvature.

Lemma A.22 ([Bry05, Eq. (4.28)]). Let (M,φ) be a G2-structure. The scalar curvature of the

associated metric is given by

sg = 42τ20 + 12d∗τ1 + 30|τ1|−
1

2
|τ2|2−

1

2
|τ3|2 .

Finally, we have an explicit formula for the linearisation of Hitchin’s duality map (cf. (60)) in

terms of irreducible representations.

Proposition A.23 ([Hit00, Lemma 20], [Bry05, Sect. 6]). Given ψ ∈ Ω4(M) defining a G2-

structure, consider χ = χ1 + χ7 + χ27 ∈ Ω4 and consider ψt = ψ + tχ. For t small, ψt is still a

stable 4-form. Then the image χ̂ of χ under the linearisation of Hitchin’s duality map at ψ is

δφ = ∂t“ψt := J (χ) =
3

4
∗ χ1 + ∗χ7 − ∗χ27 .

Similarly, the metric gφ changes by

δgφ =
1

2
χ1 +

1

2
ιφ(χ27) ,

where ιφ : Ω3
27 → Γ(Sym2

0(TM)) is the inverse of the map S 7→ S∗(φ).

The following lemma is a useful consequence of this result in combination with the Lie derivative.

Lemma A.24. Let J : Ω4 → Ω3 be the linearisation of the Hitchin dual map defined above.

For any X ∈ Ω1, we have

LXφ = JLXψ LXg =
1

2
π1(LXφ)g +

1

2
ιφ [π27(LXφ)] . (130)

Proof. Take δψ = LXψ. Then, by the Proposition A.23, we get δφ = JLXψ. However, by the

definition of the Lie derivative, this must be equal to LXφ. Similarly, one computes the metric

variation.

Nearly parallel G2 identities

We now restrict ourselves to the case where the G2-structure is a nearly parallel G2-structure.

We derive some useful identities for the exterior differential between the different irreducible

representations, i.e. the operators dpq mentioned above. We provide a coordinate-free proof.

A coordinate derivation of some of the same identities can be found in [DS23], following the

approach of [KL20].
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Since a nearly parallel G2-manifold is the link of a special holonomy manifold, we have a curl-like

operator (cf. Eq. (1)).

curl : Ω1 → Ω1

X 7→ ∗(dX ∧ ψ) .

It was originally introduced in [Kar10], although the focus there is on metrics with holonomy

G2.

Proposition A.25. Let f ∈ C∞ and X ∈ Ω1. We have

(i) dX = 1
3curl(X)⌟φ+ π14(dX);

(ii) d∗curl(X) = 0;

(iii) curl(df) = 0;

(iv) curl(curl(X)) = d∗dX + 4curl(X).

Proof. Items (ii) and (iii) follow from the definition of the curl. To show (i), we have that

π7(dX) = Y ⌟φ. But, by virtue of Lemma A.17, we have

curl(X) = ∗(dX ∧ ψ) = ∗(π7(dX) ∧ ψ) = ∗(Y ⌟φ ∧ ψ) = 3Y .

Finally, for (iv), we have

curl(curl(X)) = ∗ (ψ ∧ d ∗ (ψ ∧ dX)) = ∗d ∗ ∗(ψ ∧ ∗(ψ ∧ dX)) = d∗ [dX + ∗(dX ∧ φ)]
= d∗dX + 4 ∗ (dX ∧ ψ)) .

Similarly, for 2-forms, we get

Proposition A.26. Let β = X⌟φ + β0 for X ∈ Ω1 and β0 ∈ Ω2
14. We get the following

identities

(i) d(X⌟φ) = −3
7(d

∗X)φ+
(
1
2curl(X)− 3X

)
⌟ψ + 2iφ(LXg),

(ii) d∗(X⌟φ) = curl(X)

(iii) dβ0 =
1
4d

∗β0⌟ψ + γ0 for some γ0 ∈ Ω3
27,

where ιφ : Γ(Sym2
0(TM)) → Ω3

27 from Lemma A.16.

Proof. Wedging d(X⌟φ) with ψ and using Lemma A.17, we get

d(X⌟φ) ∧ ψ = d(X⌟φ ∧ ψ) = 3d(∗X) = −3d∗X .

Using that φ ∧ ψ = 7 vol, we get the π1-term. For the π7, we can wedge with φ and use the

Leibniz rule,

d(X⌟φ) ∧ φ = d(X⌟φ ∧ φ)− 4X⌟φ ∧ ψ = 2d(X ∧ ψ)− 12 ∗X = 2 ∗ curl(X)− 12 ∗X .
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Using the identity ⟨X ∧φ, Y ∧φ⟩ = 4⟨X,Y ⟩, we get π7(d(X⌟φ)). Now, for the Ω3
27-component,

we use Proposition A.23. Let δφ = χ = LXφ. Thus, δg = 2π1(LXφ) + 1/2ιφ [π27(LXφ)]. By

the definition of the Lie derivative, we must also have δg = LXg. Thus,

π27(d(X⌟φ) = π27(LXφ) = 2iφ(δg) = 2ιφ(LXg) .

For (ii), we have

d∗(X⌟φ) = ∗d ∗ (X⌟φ) = ∗(dX ∧ ψ) = curl(X) .

Finally, for (iii), we have dβ0 ∧ψ = 0 by the Leibniz rule again. Wedging with φ and using the

Leibniz rule, we get

dβ0 ∧ φ = d(β0 ∧ φ) = −d ∗ β0 .

Finally, for 3-forms,

Proposition A.27. For every γ = fφ+∗(X∧φ)+γ0 with f ∈ C∞(M), X ∈ Ω1 and γ0 ∈ Ω3
27,

we get

(i) d(fφ) = df ∧ φ+ 4fψ;

(ii) d∗(fφ) = − ∗ (df ∧ ψ) = −df⌟φ;

(iii) dπ7(γ) = d ∗ (X ∧ φ) = 4
7(d

∗X)ψ + (12curl(X) +X) ∧ φ+ 2 ∗ iφ(LXg);

(iv) d∗π7(γ) = − ∗ d(X ∧ φ) = ∗
[
(23curl(X) + 4X) ∧ ψ

]
+ β0 for some β0 ∈ Ω2

14;

(v) π7(d
∗γ0) =

4
3π7(dγ0).

Proof. Statements (i) and (ii) require no discussion. Let us prove (iii). Using Lemma A.24 and

Cartan’s magic formula, we get

d ∗ (X ∧ φ) = −d(X⌟ψ) = −LXψ = −J −1LXφ = −J −1[d(X⌟φ) + 4X⌟ψ] .

Now, using Proposition A.26, we get

d ∗ (X ∧ φ) = 4

7
(d∗X)ψ −

î
− (

1

2
curl(X)− 3X)− 4X

ó
∧ φ+ π27d(X⌟φ) .

For (iv), we use Proposition A.25. We have

d(X ∧ φ) = dX ∧ φ− 4X ∧ ψ =

Å
1

3
curl(X)⌟φ+ π14(dX)

ã
∧ φ− 4X ∧ ψ .

Multiplying by minus the Hodge star, we get

− ∗ d(X ∧ φ) = ∗
Ä
(
2

3
curl(X) + 4X) ∧ ψ

ä
+ β0 .

where we used Lemma A.17 once again.
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To prove (v), we combine Lemma A.24 with integration by parts:

4

∫
M
⟨X,π7(dγ0)⟩ =

∫
M
⟨X ∧ φ, dγ0⟩ =

∫
M
dγ0 ∧ ∗(X ∧ φ) = −

∫
M
γ0 ∧ LXψ =

=

∫
M
⟨γ0, dX⌟φ⟩ =

∫
M
⟨d∗γ0 ∧ ∗(X ∧ ψ)⟩ = 3

∫
M
⟨X,π7(d∗γ0)⟩ ,

where J −1 just acted as (−1) since γ0 ∈ Ω3
27. Since X was arbitrary, the statement now

follows.

From the two lemmas above, we have the following corollary:

Corollary A.28. For β0 ∈ Ω2
14,coclosed we have dβ0 ∈ Ω3

27. Similarly, for γ0 ∈ Ω3
27,coclosed we

have dγ0 ∈ Ω4
27.

Finally, we have the following characterisation of Killing fields on a nearly parallel G2-manifold.

Lemma A.29. Let X be a Killing field for (M,φ). Then either curl(X) = −2X or curl(X) =

6X. Moreover, X ∈ aut(M, g, φ), it preserves the G2-structure, if and only if curl(X) = −2X.

Proof. The Killing field statement is proved in Proposition 2.10. It follows from combining the

Bochner characterisation of Killing 1-forms with Lemma A.25 (v).

Now, LXψ = d ∗ (φ ∧X) and the claim follows from Lemma A.27 (iii).

Remark A.30. The space {X ∈ Ω1| curl(X) = 6X} appeared in [AS12] under the label D1,

corresponding to one of the pieces of infinitesimal deformation of the nearly parallel G2 structure

(cf. Table 6).

Dirac operator and Hodge decomposition

The purpose of this section is to obtain a Hodge-type decomposition of forms on nearly G2

manifolds. We obtain it by studying a Dirac-type operator and its mapping properties. The

results of this section closely follow the ideas in [Fos17]. In [DS23], Dwivedi and Singhal also

use twisted Dirac operators to obtain Hodge-like decompositions. The twisted Dirac here is

different, and we obtain a different Hodge decomposition that is more suitable for our purposes.

The choice of a G2-structure is equivalent to the choice of a spin structure, together with the

choice of a unit spinor. By the work of Bär[Bär93], from the point of view of spin geometry,

the nearly parallel condition can be rephrased as the unit spinor Φ satisfying the real Killing

spinor condition:

∇XΦ =
1

2
X · Φ , (131)

where · denotes Clifford multiplication and ∇ is the connection induced by the Levi-Civita

connection on the spinor bundle.

In terms of G2-representations, we can identify the real spinor bundle /S with Λ0 ⊕ Λ1, where

the isomorphism follows is given by

(f,X) 7→ fΦ+X · Φ .
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Let us compute the Dirac operator /D under this isomorphism. Since Φ satisfies (131), /DΦ =

−7
2Φ. Thus,

/D(fΦ) = −7

2
fΦ+∇f · Φ ,

and

/D(X · Φ) =
7∑
i=1

ei · ∇eiX · Φ−X · Φ−X · /DΦ = dX · Φ+ (d∗X)Φ +
5

2
X · Φ .

To complete this computation, we need to understand the Clifford action of 2-forms.

Lemma A.31. For any 2-form β = Y ⌟φ+ β0, we have

β · Φ = 3Y · Φ .

Proof. First, we have that β0 · Φ = 0. Now, using Section 4.2 from [Kar10], we get

(Y ⌟φ) · Φ = −1

2
(Y · φ+ φ · Y ) · Φ = 3Y · Φ .

Using that dX = 1
3curl(X)⌟φ+ π14(dX), and collecting the computations above, we get

/D(fΦ+X ·Ψ) = (d∗X − 7

2
f)Φ + (curl(X) + df +

5

2
X) · Φ . (132)

Now, consider the operator

Ď : Ω3
1 ⊕ Ω3

7 → Ω4
1 ⊕ Ω4

7

γ = (fφ,X⌟φ) 7→ (π1(dγ), π7(dγ)) .

Using the identities in Lemma A.27, we identify Ď with the operator D : Ω0 ⊕ Ω1 → Ω0 ⊕ Ω1

D(f,X) =

Å
4

7
d∗X + 4f, df +

1

2
curl(X) +X

ã
.

First, notice that D is an elliptic self-adjoint operator since D and /D coincide up to rescaling

and a self-adjoint term of order zero. We compute its kernel.

Proposition A.32. Let (M7, φ) be a complete nearly parallel G2–manifold that is not isometric

to the round 7–sphere. Then ker(D) = aut(M, g, φ) = {X ∈ Ω1| curl(X) = −2X}.

Proof. Let (f,X) ∈ ker(D). Then

d∗X = −7f df = −1

2
curl(X)−X .

Acting by d∗ on the right equation and combining with the left one, we arrive at

∆f = −d∗X = 7f .

By Obata’s theorem, f = 0 under the assumption that (M7, φ) is not isometric to (S7, ground).

The remaining equation is curl(X) = −2X, which we know corresponds to an infinitesimal

automorphism of the G2-structure by Lemma A.29.
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Remark A.33. For the round 7–sphere, the kernel of D consists of elements of the form

(f,X −∇f), where X satisfies LXφ = 0 and f satisfies ∆f = 7f .

Now, since D is a self-adjoint elliptic operator, we have the usual Hodge-type decomposition:

Theorem A.34. Let (M7, ψ) be a nearly parallel G2-manifold that is not isometric to the round

7-sphere. The following holds.

(i) Ω4 = {X ∧ φ| X ∈ aut(M,φ)} ⊕ dΩ3
1⊕7 ⊕ Ω4

27. More concretely, for every χ ∈ Ω4, there

exists unique X ∈ aut(M,φ), Y ∈ aut(M,φ)⊥, f ∈ Ω0 and χ0 ∈ Ω4
27 such that

χ = (X ∧ φ) + d(fφ+ ∗(Y ∧ φ) + χ0 ,

where aut(M,φ)⊥ is the L2-complement to infinitesimal automorphism of the G2-structure.

(ii) There is an L2-orthogonal decomposition Ω4
exact = dΩ3

1⊕7 ⊕ Ω4
27,exact.

Proof. Statement (i) follows from the identification of Ď with /D up to 0th order terms and

Proposition A.32. Now, (ii) follows from (i). Notice that, for X an infinitesimal automorphism,

we have d∗(X ∧φ) = −∗LXψ = 0, so {X ∧φ| X ∈ aut(M,φ)} is L2-orthogonal to exact forms

and pointwise to Ω4
27. Orthogonality follows from Corollary A.28, in that if χ0 is closed, then

d∗χ0 ∈ Ω3
27.

We conclude by proving

Proposition A.35 ([DS23, Thm 3.8 & Thm 3.9]). Harmonic 2-forms are of type 14 and

harmonic 3-forms of type 27.

Proof. Let β = X⌟φ+ β0 a harmonic 2-form. Then Lemma A.26 implies

d∗X = 0 curl(X) + d∗β0 = 0
1

2
curl(X)− 3X +

1

4
d∗β0 = 0 .

Together, they imply that X is harmonic by (iv) in Lemma A.25, which forces X = 0 by Myers’

theorem.

Similarly, consider γ a harmonic 3-form. We can assume that (M7, ψ) is not diffeomorphic to

S7, since there are no non-trivial harmonic 3-forms in that case. Let γ be a closed and coclosed

3-form. By Theorem A.34, we have

γ = ∗(X ∧ φ) + d∗χ+ γ0 ,

for X ∈ aut(M,φ), χ ∈ Ω4
1⊕7 and γ0 ∈ Ω3

27. The condition d∗γ = 0 implies that d∗γ0 =

∗d(X ∧ φ) = −4X⌟φ− π14(dX), and so we have

⟨d∗γ0, X⌟φ⟩ = ⟨γ0, d(X⌟φ)⟩ = −4⟨γ0, X⌟ψ) = 0 ,

So X = 0 = d∗γ0 and so dγ0 ∈ Ω4
27, by Corollary A.28. Now, the condition dγ = 0 implies

0 = ⟨dγ, χ⟩ = ⟨γ, d∗χ⟩ = ||d∗χ||2+⟨dγ0, χ⟩ = ||d∗χ||2 ,

and so d∗χ = 0 as needed.
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A.3 SU(3)-structures

We recall some well-known results on SU(3)-structures and nearly Kähler manifolds. These

results are classic and have been collected for convenience.

Definition A.36. An SU(3)-structure on a manifold M6 is a reduction of its frame bundle to

an SU(3) principal bundle. A manifold equipped with a choice of frame reduction is called an

SU(3)-manifold.

Equivalently, M6 is equipped with a pair of stable differential forms (ω, ρ) ∈ Ω2(M) × Ω3(M)

satisfying the following algebraic constraints:

ω ∧ ρ = 0
1

3!
ω3 =

1

4
ρ ∧ ρ̂ . (133)

Moreover, ω is positive with respect to the almost complex structure induced by ρ. Here we mean

stability in the sense of Hitchin (cf. 6), so their orbit under the induced GL(6,R) is open. The 3-
form ρ̂ = ∗ρ is the Hitchin dual of ρ, as defined by Equation (63). The algebraic constraints and

positivity of ω guarantee that the stabiliser of the pair is precisely SU(3) = Sp(6,R)∩ SL(3,C).
Similarly, one could have chosen a pair (ρ, σ) ∈ Ω3×Ω4 with Hitchin dual σ̂ = ω and satisfying

the above conditions.

Moreover, since SU(3) ⊂ SU(4) ∼= Spin(6) is the stabiliser of any v ∈ C4\{0}, an SU(3)-structure

is equivalent to the choice of a spin structure on M , together with a nowhere vanishing spinor.

As before, SU(3) ⊂ SO(6) and the metric on M can be reconstructed explicitly from the SU(3)-

structure as follows. Let J be the almost complex structure induced by ρ. Then the condition

ω ∧ ρ = 0 is equivalent to ω is of type (1, 1) with respect to J . Then, since ω is positive, we

have that g := ω(·, J ·) defines our metric, and its induced volume form coincides with 1
3!ω

3.

The decomposition of Λ∗T ∗M is well-known and most commonly phrased in terms of the (p, q)-

decomposition of the complexification Λ∗T ∗M ⊗ C, induced by the almost complex structure

J . However, we find it more convenient to work with the real irreducible representations.

Lemma A.37. Let (M,J, ω, ρ) be an SU(3)-manifold. The spaces Λ2T ∗M and Λ3T ∗M decom-

pose orthogonally as

Λ2 = Λ2
1 ⊕ Λ2

6 ⊕ Λ2
8 Λ3 = Λ3

1+1 ⊕ Λ3
6 ⊕ Λ3

12 .

They can be characterised by

Λ2
1 = ⟨ω⟩ ,

Λ2
6 = {X⌟ρ | X ∈ TM} = {β ∈ Λ2| ∗ (β ∧ ω) = β} ,

Λ2
8 = {β ∈ Λ2| β ∧ ω2 = 0 = β ∧ ρ} ∼= {β ∈ Λ2| ∗ (β ∧ ω) = −β}
∼= {S∗(ω)| S ∈ Sym2

+(T
∗M)} ,

Λ3
1⊕1 = ⟨ρ, ρ̂⟩ ,
Λ3
6 = {X ∧ ω | X ∈ TM} ,

Λ3
12 = {γ ∈ Λ3| γ ∧ ω = 0 = γ ∧ ρ} = {S∗(ρ)| S ∈ Sym2

−(T
∗M)} .
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The symmetric endomorphisms splits as Sym2 ∼= R ⊕ Sym2
+⊕Sym2

−, with Sym2
+ = {S ∈

Sym2
0(TM) | JS = SJ} and Sym2

− = {S ∈ Sym2(TM) | JS = −SJ}. As before, we get

the decomposition for the remaining Λk using the identification Λk ∼= ∗Λ6−k.

We identify Λ2
6 and Λ3

6 with Λ1 via the maps X 7→ X⌟ρ and X 7→ X ∧ ω respectively. We have

the following identities:

Lemma A.38. In the decomposition of the previous lemma, the Hodge-∗ operator is given by:

(i) ∗ω = 1
2ω

2;

(ii) ∗(X⌟ρ) = −JX ∧ ρ = X ∧ ρ̂;

(iii) ∗X = JX ∧ ω2

2 ;

(iv) ∗(X ∧ ω) = 1
2X⌟ω2 = JX ∧ ω;

(v) ∗ρ = ρ̂ and ∗ρ̂ = −ρ;

(vi) ∗ (S∗ρ) = −S∗ρ̂ = (JS)∗ρ;

From this lemma, one can characterise the different types of forms in terms of algebraic condi-

tions and the Hodge star. The following two lemmas give the precise characterisation:

Lemma A.39. Let β = λω +X⌟ρ+ β0 ∈ Ω2 with β0 ∈ Ω2
8, then the following holds:

(i) ∗(β ∧ ω) = −β0 + 2λω +X⌟ρ;

(ii) ∗(β ∧ β ∧ ω) = − |β0|2 + 6λ2 + 2|X|2;

(iii) ∗(β ∧ ρ) = 2JX and ∗(β ∧ ρ̂) = −2X;

(iv) ∗
(
β ∧ ω2

)
= 6λ;

(v) ∗(ρ̂ ∧ ∗(ρ̂ ∧ β)) = ∗(ρ ∧ ∗(ρ ∧ β)) = β + ∗(β ∧ ω)− ∗(β ∧ ω2

2 )ω.

Similarly, let γ = λρ+ µρ̂+X ∧ ω + γ0 ∈ Ω3 with X ∈ Ω1 and γ0 ∈ Ω3
12. The following holds:

(i) ∗(γ ∧ ω) = 2JX;

(ii) ∗(γ ∧ ρ) = −4µ;

(iii) ∗(γ ∧ ρ̂) = 4λ.

The proofs of both these lemmas are purely local and can be verified using local coordinates;

we omit them for brevity.

For an SU(3)-structure, the characterisation of its intrinsic torsion was carried out by Gray and

Hervella in [GH80] (cf. [CS02]). We have the following:
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Proposition A.40. Let (M6, g, ω, ρ) be an SU(3)-structure. Then the intrinsic torsion is a

section of

Ω1 ⊗ Ω2
1+6

∼= Ω0 ⊕ Ω0 ⊕ Ω1 ⊕ Ω1 ⊕ Ω2
8 ⊕ Ω2

8 ⊕ Ω3
12 .

That is, there exists forms τ0, τ̂0 ∈ Ω0, τ1, τ̂1 ∈ Ω1, τ2, τ̂2 ∈ Ω2
8 and τ3 ∈ Ω3

12 that fully charac-

terise the torsion of the SU(3)-structure. They satisfy

dω = 3τ0ρ+ 3τ̂0ρ̂+ τ1 ∧ ω + τ3 ,

dρ = 2τ̂0ω
2 + τ̂1 ∧ ρ+ τ2 ∧ ω ,

dρ̂ = −2τ0ω
2 + τ̂1 ∧ ρ̂+ τ̂2 ∧ ω .

Given an SU(3)-structure, we are interested in the induced G2-structures on its metric cone. In

particular, we will be interested in the following three classes of SU(3)-structures.

Definition A.41. Let (Σ6, g, ω, ρ) be an SU(3)-manifold and consider (C(Σ), φ) = (Σ×R+, r
2dr∧

ω + r3ρ) the associated cone carrying a G2-structure. Then

(i) Σ carries a closed SU(3)-structure if the G2-structure on the cone is closed.

(ii) Σ carries a coclosed SU(3)-structure if the G2-structure on the cone is coclosed.

(iii) Σ carries a nearly Kähler structure if the G2-structure on the cone is parallel.

Using the torsion decomposition of Gray and Hervella, we can phrase these conditions in terms

of their intrinsic torsion.

Proposition A.42. We have

(i) The torsion of a closed SU(3)-structure vanishes except for τ0 = 1 and τ̂2.

(ii) The torsion of a coclosed SU(3)-structure vanishes except for τ0 = 1, τ̂0 and τ2 and τ3.

Moreover, we have dτ̂0 = −3π6(dτ3) and 2dτ̂0 = Jd∗τ2.

(iii) A nearly Kähler structure vanishes except for τ0 = 1.

Proof. Given an SU(3)-structure (ω, ρ) on M6, the metric cone (M ×R+, dt
2 + t2gM ) carries a

G2-structure given by

φ = r2dr ∧ ω + r3ρ ∗ φ = ψ = −r3dr ∧ ρ̂+ r4
ω2

2
.

Thus, if the SU(3)-structure is closed, we have

0 = dφ = r2dr ∧ (3ρ− dω) + r3dρ

which implies

dω = 3ρ dρ = 0 .

By Proposition A.40, the claim follows. Similarly, if the SU(3)-structure is coclosed,

0 = dψ = r3dr ∧ (dρ̂+ 4
ω2

2
) + r4d

ω2

2
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which implies

dρ̂ = −2ω2 dω2 = ω ∧ dω = 0 .

Substituting in Proposition A.40, we get the first part of the claim. Differentiating the first and

second equations on Proposition A.40 and using Lemma A.38 completes the claim.

Finally, combining conditions (i) and (ii), the last claim follows by Proposition A.19.

Remark A.43. The coclosed SU(3) condition in terms of the torsion appears to be overly

complicated. One would expect τ̂0 = C ∈ R and so τ2 = − ∗ dτ3. However, we have not been

able to prove this.

Remark A.44. Closed SU(3)-structures have been studied by physicists in the context of string

theory, under the name of LT-structures, in [LT05]. They are a subclass of half-flat SU(3)-

structures (cf. [MS13]).

From Propositon A.6, we get

Lemma A.45 ([BV07, Thm 3.4]). Let (M,ω, ρ) be an SU(3)-structure. The scalar curvature

of the associated metric is given by

sg = 30(τ20 + “τ02) + 2d∗(τ1 + “τ1)− |τ1|2+4⟨τ1,“τ1⟩ − 1

2

(
|τ2|2+|“τ2|2+|τ3|2

)
.

We have an explicit formula for the linearisation of Hitchin’s duality map from Section 6 in

terms of irreducible representations. We collect the result here as it is useful for computations

in the next section:

Proposition A.46 ([Hit00] Section 3.3). Given (ρ, σ)defining an SU(3)-structure, consider

χ = χ1 + χ6 + χ8 ∈ Ω4 and γ = γ1⊕1 + γ6 + γ12 ∈ Ω3. Then

(i) The derivative of the Hitchin dual map at σ in the direction of χ is

d

dt
ÿ�(σ + tχ)

∣∣∣
t=0

:= K(χ) =
1

2
∗ χ1 + ∗χ6 − ∗χ8 .

(ii) The derivative of the Hitchin dual map at ρ in the direction of γ is

d

dt
ÿ�(ρ+ tγ)

∣∣∣
t=0

:= I(γ) = ∗γ1⊕1 + ∗γ6 − ∗γ12 .

As a straightforward corollary, we get

Lemma A.47. Let I : Ω3 → Ω3 and K : Ω4 → Ω2 be the maps defined in Proposition A.46.

For any X ∈ Ω1, we have LX ρ̂ = ILXρ and LX σ̂ = KLXσ.

Nearly Kähler identities

We now restrict ourselves to the case where the SU(3)-structure is nearly Kähler. Most of the

identities that follow are well-known and have been compiled here for convenience. The main

reference is [Fos17]. The curl operator introduced in Equation 1 in the nearly Kähler case reads

curl : Ω1 → Ω1

X 7→ − ∗ (dX ∧ ρ) .
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Proposition A.48. Let X ∈ Ω1. We have

(i) d∗X = − ∗ (dJX ∧ ω2

2 );

(ii) dX = 1
3d

∗(JX)ω − 1
2Jcurl(X)⌟ρ+ π8(dX);

(iii) curl(X) = Jcurl(JX) + 4X;

(iv) d∗(curl(X)) = 0 and d∗(Jcurl(JX)) = 4d∗X;

(v) curl(df) = 0;

(vi) curl(curl(X)) = d∗dX + 3curl(X) + Jdd∗(JX).

Proof. To get (i), differentiate the identity ∗Y = JY ∧ ω2

2 . Now, the first term in (ii) follows

from wedging by ω2 and using (i). The term π6(dX) follows Lemma A.58.

The identity in (iii) follows from differentiating the identity X ∧ ρ = JX ∧ ρ̂. We get

curl(X) = −∗ (dX∧ρ) = −∗d(JX∧ ρ̂) = −∗ (d(JX)∧ ρ̂)−4∗
Å
JX ∧ ω2

2

ã
= Jcurl(JX)+4X ,

where ∗(d(JX) ∧ ρ̂) = −Jcurl(JX) by Lemma A.39. The identities in (iv) follow from acting

by d∗ in the definition of curl and the previous identity. Similarly, item (v) follows from the

definition. Finally,

curl(curl(X)) = ∗(ρ ∧ d ∗ (ρ ∧ dX)) = − ∗ d ∗ ∗(ρ ∧ ∗(ρ ∧ dX) = d∗ ∗ (ρ ∧ ∗(ρ ∧ dX) .

Using (vi) in Lemma A.39, we get

curl(curl(X)) =d∗dX − ∗d(dX ∧ ω)− d∗[d∗(JX)ω]

=d∗dX − 3 ∗ (dX ∧ ρ) + ∗
Å
dd∗(JX) ∧ ω2

2

ã
=d∗dX + 3curl(X) + Jdd∗(JX) .

Similarly, for 2-forms, we get

Proposition A.49. Let β = fω +X⌟ρ + β0 for f ∈ C∞(M), X ∈ Ω1 and β0 ∈ Ω2
8. We get

the following identities

(i) d(fω) = 3fρ+ df ∧ ω,

(ii) d∗(fω) = Jdf ,

(iii) d(X⌟ρ) = −(12curl(X) +X) ∧ ω − 1
2(d

∗X)ρ− 1
2d

∗(JX)ρ̂+ γ0, with γ0 ∈ Ω3
12,

(iv) d∗(X⌟ρ) = −curl(JX),

(v) dβ0 =
1
2Jd

∗β0 ∧ ω + γ′0, for some γ′0 ∈ Ω3
12.
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Proof. Property (i) follows directly from the structure equations. For (ii), we get

d∗(fω) = − ∗ d
Ä
f
ω2

2
) = − ∗ (df ∧ ω2

2
) = Jdf .

For (iii), we can obtain the π1⊕1 by wedging with ρ̂ and ρ respectively:

d(X⌟ρ) ∧ ρ = d(X⌟ρ ∧ ρ) = −2d ∗ (JX) ,

d(X⌟ρ) ∧ ρ̂ = d(X⌟ρ ∧ ρ̂) = 2d ∗ (X) .

The claim now follows from the fact that ρ ∧ ρ̂ = 4vol. Similarly, for the π6 term, we consider

d(X⌟ρ) ∧ ω = d(X⌟ρ ∧ ω)− 3X⌟ρ ∧ ρ = −
(
dJX ∧ ρ+ 3X ∧ ω2

)
,

From Lemmas A.38 and A.39, we get

−π6 (d(X⌟ρ)) =
1

2
Jcurl(JX) + 3X =

1

2
curl(X) +X ,

where the last equality follows from Lemma A.48. For (iv), we need to use Lemma A.38 and

the definition of curl:

d∗(X⌟ρ) = ∗d(JX ∧ ρ) = −curl(JX) .

Finally, for (v), we can differentiate the identity (β0 ∧ ω) = −∗ β0. The statement follows from

Lemma A.39.

Finally, for 3-forms,

Proposition A.50. For every f, g ∈ C∞(M), X ∈ Ω1 and γ0 ∈ Ω3
12, we get

(i) d(fρ+ gρ̂) = −4g ω
2

2 + (Jdf + dg) ∧ ρ̂;

(ii) d∗(fρ+ gρ̂) = 4fω + (Jdg − df)⌟ρ;

(iii) d(X ∧ ω) = 2
3(d

∗JX)ω
2

2 −
Ä
1
2Jcurl(X) + 3JX

ä
∧ ρ̂+ π8(dX) ∧ ω

(iv) d∗(X ∧ ω) = 2
3(d

∗X)ω − (12curl(X) +X)⌟ρ+ π8(dJX) ∧ ω,

(v) π6(d
∗γ0) = −Jπ6(∗dγ0).

Proof. Properties (i) and (ii) follow from direct computation and the use of the structure equa-

tions. For (iii), we use (ii) from Proposition A.48. Similarly, (iv) follows from (iii) by using

∗(X ∧ ω) = JX ∧ ω. Let us prove (v). Using integration by parts and Lemma A.47

2

∫
M
⟨X,π6(∗dγ0)⟩ =

∫
M
⟨X⌟ρ, ∗dγ0⟩ =

∫
M
dγ0 ∧ (JX⌟ρ) =

∫
M
γ0 ∧ LJXρ

= −
∫
M
γ0 ∧ ∗LJX ρ̂ = −

∫
M
⟨γ0, d(JX⌟ρ̂)⟩ = −

∫
M
⟨d∗γ0, ∗(JX⌟ρ)⟩

= −2

∫
M
⟨JX, π6(d∗γ0)⟩ .

Since X was arbitrary, we get π6(d
∗γ0) = −Jπ6(∗dγ0). Notice that from the first to the second

line, we used that K acts as (−1) on Ω3
12.
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Moreover, using Lemma A.47 once more, we get

Lemma A.51. For every X ∈ Ω1, we have

d(X⌟ρ) = (curl(X) + 2X) ∧ ω − d∗Xρ− d∗(JX)ρ̂+ d∗(JX ∧ ρ̂) .

Proof. Expanding the right and left-hand sides of LX ρ̂ = ILXρ from Lemma A.47 into irre-

ducible parts, we get the desired claim.

Combining the previous results, we have the following interesting corollary:

Corollary A.52. For β0 ∈ Ω2
8,coclosed we have dβ0 ∈ Ω3

12 and for γ0 ∈ Ω3
12,coclosed we have

dγ0 ∈ Ω4
8.

Finally, we have the following characterisation of Killing fields on a nearly Kähler manifold.

Lemma A.53. Let (M, g, ω, ρ) be a nearly Kähler manifold and consider the spaces Eλ =

{α ∈ C| curl(α) = λα}. Assume that (M, g, ω, ρ) is not locally isometric to the round sphere

(S6, ground). Then, isom(M, g) ∼= aut(M,ω, ρ) ∼= E−2.

Proof. As argued in [MNS05, Corollary 3.2], any Killing field must preserve the almost complex

structure and thus the corresponding SU(3)-structure. The statement follows from enforcing

LXρ = d(X⌟ρ) = 0 and Proposition A.49.

In the case of the round sphere (S6, ground), we have

E−2
∼= g2 E5 ⊆ g⊥2 ,

where the complement is taken as a subspace of so(7). Proving the equality in the latter case

is equivalent to proving isom(S6, ground) ⊂ C. Since the round sphere is a symmetric space, this

claim could be easily verified via representation theory (cf. Theorem 7.20). However, we have

not carried out this computation.

Dirac operator and Hodge decomposition

The purpose of this section is to obtain a Hodge-type decomposition of 2-forms and 3-forms

on nearly Kähler manifolds, which will be key in studying the second variations of the Hitchin

functionals. Such decomposition is obtained by studying a Dirac-type operator and its mapping

properties. The main decomposition result is due to Verbitsky [Ver11], although we present the

proof given by Foscolo in [Fos17].

Recall that the choice of an SU(3)-structure is equivalent to the choice of a spin structure,

together with the choice of a unit spinor, as discussed above. By the work of Bär[Bär93], from

the point of view of spin geometry, the nearly Kähler condition can be rephrased as the unit

spinor Φ satisfying the real Killing spinor condition:

∇XΦ =
1

2
X · Φ , (134)
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where · denotes Clifford multiplication and ∇ is the connection induced by the Levi-Civita

connection on the spinor bundle. Clifford multiplication by the volume form vol yields a second

Killing spinor, since X · vol ·Φ = − vol ·X · Φ, so

∇X(vol ·Φ) = −1

2
X · (vol ·Φ) .

In terms of SU(3) representations, we can identify the real spinor bundle /S with Λ0 ⊕Λ0 ⊕Λ1,

where the isomorphism follows is given by

(f, g,X) 7→ fΦ+ g vol ·Φ+X · Φ .

Let us compute the Dirac operator /D under this isomorphism. Since Φ satisfies (134), /DΦ =

−3Φ and /D(vol ·Φ) = 3vol ·Φ. Thus,

/D(fΦ+ g vol ·Ψ) = −3fΦ+ 3g vol ·Φ+ (∇f − J∇g) · Φ ,

since JX · Φ = vol ·X · Φ = −X · vol ·φ . Similarly, we have

/D(X · Φ) =
6∑
i=1

ei · ∇eiX · Φ−X · Φ−X · /DΦ = dX · Φ+ (d∗X)Φ + 2X · Φ .

To complete this computation, we need to understand the Clifford action of 2-forms.

Lemma A.54. For any 2-form β = fω + Y ⌟ρ+ β0, we have

β · Φ = 3fΦ+ 2JY · Φ .

Proof. First, we have that β0 ·Φ = 0. Now, we can write ω =
∑3

i=1 ei∧Jei, with {ei, Jei}i=1,2,3

an SU(3)-adapted orthonormal frame. Thus

ω · Φ =

3∑
i=1

(ei ∧ Jei) · Φ =

3∑
i=1

ei · Jei · Φ = −
3∑
i=1

ei · ei · vol ·Φ = 3vol ·φ .

Now, using Lemmas 1 and 2 from [CH16], we get

(Y ⌟ρ) · Φ = (JY ⌟ρ̂) = −1

2
(JY · ρ̂+ ρ̂ · JY ) · Φ = 2JY · Φ .

Thus, using that dX = 1
3d

∗(JX)ω − 1
2Jcurl(X)⌟ρ + π8(dX), and collecting the computations

above, we get

/D(fΦ+ g vol ·Φ+X ·Ψ) = (d∗X − 3f)Φ + (d∗(JX) + 3g) vol ·Φ (135)

+(∇f − J∇g + curl(X) + 2X) · Φ .

Consider the operators

D+ : Ω2
1⊕6 ⊕ Ω4

1 → Ω3
1⊕1⊕6Å

fω +X⌟ρ, g
ω2

2

ã
7→ π1⊕1⊕6

ï
d(fω −X⌟ρ) + d∗

Å
gω2

2

ãò
.
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and D− : Ω3
1⊕1⊕6 → Ω4

1⊕6 ⊕ Ω2
1 given by D−(σ) = (π1⊕6(dσ), π1(d

∗σ)). By Propositions A.49

and A.50, both these operators can be identified with the operator

D : Ω0 ⊕ Ω0 ⊕ Ω1 → Ω0 ⊕ Ω0 ⊕ Ω1

(f, g,X) 7→
Ä
d∗X + 6f, d∗(JX)− 6g,

1

2
curl(X) +X + df + Jdg

ä
by choosing appropriate identifications of Ω2

1⊕6⊕Ω4
1 and Ω3

1⊕1⊕6 with Ω0⊕Ω0⊕Ω1. The results

we are interested in follow from the mapping properties of D. First, we have

Proposition A.55. The operator D is an elliptic self-adjoint operator.

This follows since, by Equation (135), D and /D coincide up to a self-adjoint term of order zero.

Proposition A.56. Let (M6, ω, ρ) be a complete nearly Kähler 6–manifold that is not isometric

to the round 6–sphere. Then ker(D) ∼= aut(M, g, ω, ρ) ∼= {X ∈ Ω1| curl(X) = −2X}.

Proof. Let (f, g,X) ∈ ker(D). Then

1

2
curl(X) + df − Jdg +X = 0 (136)

d∗X + 6f = 0 (137)

d∗(JX)− 6g = 0 (138)

Acting by d∗◦J and d∗ on (136) and using (137) and (138), we get ∆g+18g = 0 and ∆f−6f = 0.

By Obata’s theorem, we get f = g = 0, since M6 is not isometric to the round sphere. The

remaining equation is curl(X) + 2X = 0, and the claim follows from Lemma A.53.

Remark A.57. For the round 6–sphere, the kernel of D consists of elements of the form

(f, 0, X −∇f), where X satisfies LXω = 0 = LXρ and f satisfies ∆f = 6f .

As in the nearly parallel G2 manifold case, the Hodge decomposition for the elliptic operator

yields:

Theorem A.58 ([Fos17] Proposition 3.22). Let (M6, ω, ρ) be a nearly Kähler manifold that is

not isometric to the round 6-sphere, and denote by aut = aut(M, g, ω, ρ) the set of infinitesimal

automorphisms of the nearly Kähler structure. The following holds:

(i) Ω3 = {X ∧ ω| X ∈ aut} ⊕ dΩ2
1⊕6 ⊕ d∗Ω4

1 ⊕ Ω3
12.

(ii) There is an L2-orthogonal decomposition Ω3
exact = dΩ2

1⊕6 ⊕ Ω3
12,exact.

(iii) Ω4 = {X ∧ ρ̂| X ∈ aut} ⊕ dΩ3
1⊕1⊕6 ⊕ Ω4

8.

(iv) For every χ ∈ Ω4, there exists unique X ∈ aut, Y ∈ aut⊥, f ∈ Ω0 and χ0 ∈ Ω4
8 such that

χ = (X ∧ ρ̂) + d(JY ∧ ω + fρ̂) + χ0 ,

where aut⊥ is the space L2 complement to aut.

(v) There is an L2-orthogonal decomposition Ω4
exact = dΩ3

1⊕6 ⊕ Ω4
8,exact.
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Proof. The first (resp. third) statement follows from the identification of D+ (resp. D−) with

D and Proposition A.56. Item (ii) follows from (i), since for X ∈ aut,

0 = ∗LXω2 = 2d∗(X ∧ ω).

Therefore, by standard Hodge theory, the space {X ∧ ω | X ∈ aut} ⊕ d∗Ω4
1 is L2-orthogonal to

exact forms, and pointwise orthogonal to Ω3
12. The orthogonality follows from Proposition A.50:

if γ0 ∈ Ω3
12 is closed, then d∗γ0 ∈ Ω2

8.

For (iv), observe that every 4-form χ can be uniquely written as

χ = X ∧ ρ̂+ d(JY ∧ ω − gρ+ fρ̂) + σ0,

with X ∈ aut, Y ∈ aut⊥. This decomposition determines (X,Y, f, g, χ0) uniquely, up to pre-

scribing d∗(JY ∧ ω − gρ + fρ̂) ∧ ω2. Now, for every pair (f, Y ′), we can set g′ = 1
6d

∗(JY ), so

that every solution (f, g, Y ) to D(f, g, Y ) = (f ′, g′, Y ′) satisfies g = 0.

Finally, (v) follows from (iii) and (iv) by the same argument as above.

We conclude by proving

Proposition A.59. Harmonic 2-forms are of type 8, and harmonic 3-forms are of type 12.

Proof. If M6 is diffeomorphic to S6, then there are no non-trivial p-forms for 1 ≤ p ≤ 5. Hence,

we may assume we are under the hypotheses of Theorem A.58. By part (iv) of the theorem,

any closed and coclosed 2-form β can be written as

β = X⌟ρ+ d∗γ + β0,

with X ∈ aut, γ ∈ Ω3
1⊕6, and β0 ∈ Ω2

8. Since β is coclosed, we have

d∗β0 = −d∗(X⌟ρ) = 6JX.

Now, we have

6∥X∥2= ⟨d∗β0, JX⟩ = ⟨β0, d(JX)⟩ = −3⟨β0, X⌟ρ⟩ = 0,

since X ∈ aut, and hence X = 0, so d∗β0 = 0. By Proposition A.49, this implies dβ0 ∈ Ω3
12.

Therefore,

0 = ⟨dβ, γ⟩ = ⟨β, d∗γ⟩ = ⟨β0, d∗γ⟩+ ∥d∗γ∥2.

Analogously, by Theorem A.58 (i), any closed and coclosed 3-form γ can be written as

γ = X ∧ ω + dβ + d∗(fω2) + γ0,

with X ∈ aut, β ∈ Ω2
1⊕6, and γ0 ∈ Ω3

12. First, observe that X ∧ ω is L2-orthogonal to d∗(fω2):

⟨X ∧ ω, d∗(fω2)⟩ = ⟨d(X ∧ ω), fω2⟩ = ⟨dX ∧ ω − 3X ∧ ρ, fω2⟩ = 0.

Since γ is closed, we have:

0 = ⟨γ, d∗(fω2)⟩ = ∥d∗(fω2)∥2+⟨dγ0, fω2⟩ = ∥d∗(fω2)∥2 .
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Again, by closedness, dγ0 = −d(X ∧ ω). Using X ∈ aut and Proposition A.49, we have that

π6(dγ0) = 4X ∧ ρ. Thus,

4∥X∥2= ⟨dγ0, X ∧ ρ⟩ = ⟨γ0, d∗(X ∧ ρ)⟩ = ⟨γ0, d(X⌟ρ)⟩ = 0,

since X ∈ aut, and so X = 0 and dγ0 = 0. Again by Proposition A.49, this implies d∗γ0 ∈ Ω2
8.

Finally, using this and the fact that γ is closed:

0 = ⟨γ, dβ⟩ = ⟨d∗γ0, dβ⟩+ ∥dβ∥2= ∥dβ∥2,

so dβ = 0, as required.

A.4 U(k)× 1-structures

We recall some well-known results on U(k)×1-structures and Sasakian manifolds. Most of these

results are classic and have been collected for convenience. A general reference for this material

is the book of Boyer and Galicki [BG08].

Definition A.60. An almost contact structure or U(k) × 1-structure on a manifold M2k+1 is

a reduction of its frame bundle to an U(k)-principal bundle. A manifold equipped with a choice

of frame reduction is called an almost contact manifold6.

Equivalently, we may describe the U(k)× 1-structure M2k+1 in terms of its invariant tensors.

Lemma A.61 ([BG08, Proposition 6.3.2]). An almost contact structure on M2k+1 is equivalent

to a triple (g,R,Φ), where g is a metric, R is a nowhere vanishing vector field, and Φ is an

endomorphism on TM . They satisfy the relations

Φ2 = −1 +R⊗ η Φ∗ = −Φ ,

where η = g(R, ·) is the dual 1-form to R and Φ∗ is the adjoint map to Φ with respect to Φ.

The condition that R, called the Reeb field, has no zeroes means that M2k+1 is equipped with

a one-dimensional foliation carrying a transverse U(n)-structure in the sense of Molino [Mol88],

so we have a short exact sequence of bundles

0 → ⟨R⟩ → TM → H → 0 .

We refer to H as the horizontal subbundle of the almost contact structure. By taking the wedge

of the previous short exact sequence, we have

0 → ΛkH → ΛkM → η ∧ Λk−1H → 0 .

We abbreviate ΛkH by Λkh, and refer to its sections as horizontal forms. As in the Kähler

case, since Φ∗ = −Φ, we have an associated 2-form ω := g( ·,Φ ·), with maximal rank. The

reduction of the structure group to U(k)×1 leads to a decomposition of Λ∗(T ∗M) into irreducible

representations of U(k), as usual.

6The term almost contact can be slightly ambiguous. In the literature, the definition above corresponds to

strict almost contact metric structures (cf. [BG08]).
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Lemma A.62. Let (M2k+1, g, η,Φ) be an almost contact manifold. Then for each k

Λk = η ∧ Λk−1
h ⊕ Λkh .

Moreover, for each k we have the usual (p, q)-decomposition

Λkh ⊗ C ∼=
⊕
p+q=k

Λp,q

from almost complex geometry.

As in the previous case, we have some identities involving these decompositions and the Hodge

star, and they follow from the standard identities for (p, q)-forms.

As in the previous cases, one could study the intrinsic torsion of a U(k)×1-structure and relate

it to the covariant derivative of its defining tensors (g,R,Φ). We omit this discussion and focus

exclusively on the classes that interest us.

Definition A.63. Let (Σ2k+1, g) be a closed Riemannian manifold, and consider its metric

cone (Σ× R+, dr
2 + r2g). We say (Σ, g) is

(i) Sasaki if the induced metric cone has holonomy contained in U(k + 1);

(ii) Sasaki-Einstein if the induced metric cone has holonomy contained in SU(k + 1);

(iii) and 3-Sasaki if the induced metric cone has holonomy contained in Sp
(
k+1
2

)
.

In particular, the chain of group inclusions Sp
(
k+1
2

)
⊆ SU(k + 1) ⊆ U(k + 1) implies that any

3-Sasaki manifold is Sasaki-Einstein, and that both are Sasaki. Similarly, if n = 4, the inclusion

SU(4) ⊆ Spin(7) implies that every Sasaki-Einstein 7-manifold carries a nearly G2-structure.

A detailed discussion between the relations of 3-Sasaki and Sasaki-Einstein and the induced

G2-geometries can be found in [AS12, Sect. 4].

Finally, since Calabi-Yau manifolds are Ricci-flat, we have, as the name suggests, the following

Lemma A.64. A Sasaki manifold M2k+1 is Sasaki-Einstein if and only if it is Einstein with

scalar curvature 2k(2k + 1).

Let us examine the structure of these manifolds in some more detail. Since the cone has

holonomy included in U(n), it carries certain parallel tensors that induce a geometric structure

on the link by restriction. In particular, if we denote by I the complex structure on the cone,

we can consider the vector field R := I(r∂r). Such a vector field is constant in r, and so, it

induces a nowhere-vanishing vector field onM , known as the Reeb vector field. Moreover, since

I is parallel and r∂r is a constant length Killing field, so is the Reeb field R.

Therefore, the flow induced by the Reeb field integrates to a smooth path in Isom0(M, g), which

we denote by Φt. By the Myers-Steenrod theorem, Isom0(M, g) is a compact Lie group, so the

compactification of the family Φt is a torus of a certain rank r, which allows us to distinguish

two main classes of Sasaki manifolds.

If r ≥ 2, we say that the Sasaki structure is irregular. If r = 1, it means that ΦT = Id for

some T > 0, so the orbits of the Reeb flow are closed. By the structure theorem of Molino on
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Riemannian foliations, almost all orbits have the same length and the orbit space X is an orbifold

of dimension 2n with cyclic singularities. These are called quasi-regular Sasaki manifolds. If

there are no orbifold singularities, i.e. the S1-action is free, the Sasaki structure is said to be

regular.

Going back to the structures on M , the 1-form dual to the Reeb field, denoted by η, satisfies

dη = 2ω, where ω is the pullback to M of the Kähler form on the cone.

Finally, in the Sasaki-Einstein case, we can also pull back the holomorphic volume Ω on the

cone. Denote it by Ω̃. We have

Lemma A.65. The k-form Ω̃ satisfies the equation LRΩ̃ = i(k + 1)Ω̃.

Proof. The holomorphic volume form on the cone is a homogeneous form given by

Ω = (dr + irη) ∧ rkΩ̃ ,

where Ω̃ ∈ Ωkh. Now, since Ω is holomorphic, it is closed. Differentiating, we get

dΩ = (idr ∧ η + 2irω) ∧ rkΩ̃− (dr + irη) ∧ rk−1
Ä
kdr ∧ Ω̃ + rdΩ̃

ä
= i(k + 1)rkdr ∧ η ∧ Ω̃− rkdr ∧ dΩ̃ .

Since Ω̃ is horizontal, the claim follows.

Let us conclude by saying a few words on the Killing fields of a Sasaki-Einstein manifold. First,

recall the notion of a foliate vector field:

Definition A.66. A horizontal field X ∈ Γ(H) is called foliate if LRX = [R,X] ∈ ⟨R⟩.

Lemma A.67. Let X = fη +X be the dual of a foliate Killing field, with X ∈ Ω1
h.

(i) If curl(X) = 2kX, then f = C ∈ R and X = 0.

(ii) If curl(X) = −2X, then X is a Killing field for the transverse metric gT .

(iii) Conversely, given X a Killing field for the transverse metric gT , there exists X a foliate

Killing field solving curl(X) = −2X.

(iv) If X satisfies curl(X) = −2X, then X preserves the Sasaki structure.

Proof. The foliate condition on X is equivalent to LRX = R⌟dX = 0, so

curl(X) = ∗
ñ(
df ∧ η + 2fω + dX

)
∧ ωk−1

(k − 1)!

ô
= −Jdf + (2kf + d∗(JX))η .

Then curl(X) = AX becomes the system

−Jdf = AX (2kf + d∗(JX)) = Af . (139)

Using the Kähler identities, we have

∆X = −Jdd∗JX = A(A− 2k)X .
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If A = 2k, X is basic harmonic and therefore zero by Bochner’s argument. From the first

equation in (139), we get that f is a constant.

Now, if A = −2, X is a basic coclosed 1-form solving ∆X = 4(k+ 1)X. Since RicT = 2(k+ 1),

it follows that X is a Killing field for gT .

Conversely, given a vector field X preserving the horizontal component of the metric g, we need

to find a basic function f such that df = −2JX. By Hodge theory, we need [JX]b ∈ H1
b (M)

in basic cohomology to vanish. But H1
b (M) = 0 by Bochner’s argument (cf. [BG08, Theorem

8.1.8]).

Finally, if a Killing vector field preserves the transverse metric gT , it must preserve the Reeb

field η. Using the relation dη = 2g( · ,Φ ·), it must also preserver Φ.

Conversely, suppose X is an infinitesimal automorphism of the Sasaki structure. In that case, X

is always a foliate vector field since for X ∈ aut(M, g, η,Φ, ρ) we must have LXR = [X,R] = 0.

Thus, we have

aut(M, g, η,Φ) ∼= {X ∈ Ω1| curl(X) = −2X} ⊕ η . (140)

As usual, we consider the eigenspaces Eλ = {X ∈ Ω1| curl(X) = λX}.
From Lemma A.65 and Proposition A.10, we get the desired characterisation of aut(M, g, η,Φ);

and from [BG08, Thm. 8.1.18 & Thm. 13.4.4], we have a comparison between the Lie algebras

aut(M, g, η,Φ) and isom(M, g) depending on the holonomy of the cone. Putting this together,

we have the following:

Proposition A.68. Let (Σ2k+1, g, η,Φ) be a Sasaki-Einstein manifold. Then aut(M, g, η,Φ, ρ) ∼=
E−2 and either

(i) (Σ2k+1, g) has constant sectional curvature, so it is covered by (S2k+1, ground),

(ii) (Σ2k+1, g) is a (strict) 3-Sasaki manifold and dim E2k = 3 , or

(iii) (Σ2k+1, g) is a (strict) Sasaki-Einstein manifold and E2k = ⟨η⟩ .

In the round sphere case (S2k+1, ground), we have

E−2
∼= su(k + 1) E2k ⊆ su(k + 1)⊥ , (141)

where the complement is taken as a subspace of so(2n+ 2), so dim E2k ≤ k2 + k + 1.

Proving the equality in this case is equivalent to proving isom(S2k+1, ground) ⊂ C. Since the

round sphere is a symmetric space, this claim could be easily verified via representation theory

(cf. Theorem 7.20). However, we have not carried out this computation.

Finally, in the 7-dimensional case, one may compare the two spaces of infinitesimal automor-

phisms through their curl operators. In the Sasaki-Einstein case, the associated 4-form is given

by ψ = −η ∧ ρ̂+ ω2

2 , and so

curlψ(η) = ∗
ïÅ

−η ∧ ρ̂+ ω2

2

ã
∧ 2ω

ò
= 6η .

Since aut(M, g, η, ρ) ⊆ aut(M, g, φ) ⊆ isom(M, g), we see that the former inclusion is an equality.
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Somewhat surprisingly, in the 3-Sasaki case, one of the Reeb additional Reeb fields induces an

automorphism of the nearly parallel G2, so Eψ6 = {X ∈ Ω1| curlψ(X) = 6X} has dimension

two. The proof follows from [AS12, Thm. 4.2]. Combining this with Lemma A.29, we get the

following relation between the holonomy of a nearly parallel G2-cone and the dimensions of Eψ6
and Eω

2/2
6 , assuming Equation (141) holds.

Hol(C(Σ7, g)) Spin(7) SU(4) Sp(2) {1}
dim Eψ6 0 1 2 7

dim Eω
2/2

6 - 1 3 ≤ 13

Table 6: Multiplicity of the eigenvalue 6 for the operators curlψ(X) = ∗(ψ ∧ dX) and

curlω2/2(X) = ∗
Ä
ω2

2 ∧ dX
ä
depending on the holonomy of the metric cone for (Σ7, g).

B Non parabolicity of the nearly Kähler Laplacian flow

We investigate the nearly Kähler gradient flow introduced in Section 7.2:
∂tσ = ∆σσ − 12σ + LV (σ)σ

dσ = 0

σ(0) = σ0 ,

with the Hitchin dual ofσ0 in U =
{
ω ∈ Ω2(Σ) | dω is stable, ω is stable and positive, ω2 is exact

}
.

We show that this flow is not strictly parabolic, even after using a DeTurck-type trick. There-

fore, one cannot guarantee the short-time existence and uniqueness of solutions to the flow

using standard techniques. In particular, the symbol of the nearly Kähler Laplacian flow (70)

resembles the G2 Laplacian coflow, introduced by Karigiannis, McKay, and Tsui in [KMT12]

(cf. [Gri13]).

We begin by constructing suitable DeTurck vector fields, following the exposition of [BX11].

We then compute the symbol of the flow, modified by a suitable DeTurck field.

B.1 The DeTurck vector fields

We use the same recipe that DeTurck used for the Ricci flow, or Bryant and Xu [BX11] for the

G2 Laplacian flow. Let M be a manifold and g a metric, ∇ its Levi-Civita connection and ∇0

a fixed torsion-free connection (e.g. the Levi-Civita of a background metric). The difference

T = ∇−∇0

is a well-defined section of Sym2 TM∗ ⊗ TM . Identifying TM with TM∗ via the metric, and

using the decomposition Sym2 TM = TM⊕Sym2
0 TM , T is a section of TM⊕TM⊗Sym2

0 TM .

We construct two vector fields from T , one from the first term of the decomposition, labelled

V1, and the other by contracting TM and Sym2
0 TM , labelled V2. Therefore, whenever we have
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a G-structure on TM with G ⊆ SO(n), there is at least a two-dimensional family of vector fields

associated with it, called the DeTurck field.

The linearisation of these vector fields depends exclusively on the variation of the metric g. Let

gt be a family of metrics with g0 = g, and h = ∂tgt at t = 0. By the Koszul formula,

g

Å
∂T

∂h
(X,Y ) , Z

ã
=

1

2
[(∇Xh)(Y, Z) + (∇Y h)(X,Z)− (∇Zh)(X,Y )] .

Using the trace decomposition for h, h = fg + h0, we get (cf. [BX11, Sect. 2.2])

V1∗(h) = grad(f) V2∗(h) = div(h0) .

In our case of interest, the SU(3)-structure induces the further decomposition Sym2
0
∼= Sym2

+⊕Sym2
−

into traceless J-invariant and J-anti-invariant symmetric maps. Thus, we obtain a 3-dimensional

family of suitable DeTurck vector fields. We only consider the trace and the J-invariant vector

fields for order reasons.

Fix (ρ, σ) an SU(3)-structure. Using the isomorphisms from Lemma A.37, Λ4
1
∼= R and Sym2

+
∼=

Λ4
8, it follows that there exists a universal constant A such that a variation of σ, δσ = fσ+X ∧

ρ̂+ χ0, the induced variation of the metric is given by

δg =
1

2
fg +Aι(χ0) ,

where ι : Ω4
8 → Sym2

+ is the inverse map to the endomorphism action S 7→ S∗(
ω2

2 ). We need to

compute div
(
ι−1(χ0)

)
. We have the following lemma.

Lemma B.1. Let χ ∈ Λ4
8. There is a universal constant B for which

dχ = B ∗ div [ι(χ0)] + l.o.t ,

where l.o.t is some 5-form depending smoothly on χ and the torsion of the SU(3)-structure.

Proof. AssumeM carries a torsion-free SU(3)-structure (i.e. Calabi-Yau). Consider the diagram

Sym2
+ TM ⊗ Λ1 Λ4

8

Λ1 Λ1

ι⊗1

c ∗ ◦ Alt

where Alt denotes skewsymmetrization and c denotes contraction by the metric. By Schur’s

lemma, there exists a universal constant B that completes the square, that is

∗Alt(χ⊗ α) = Bc
(
ι−1(χ)⊗ α

)
.

Now, we have d(χ) = Alt ◦∇(χ) and since ∇ preserves the Calabi-Yau structure, it commutes

with the map ι, proving the statement for the torsion-free case. The torsion of the SU(3)-

structure will modify the identity involving only zeroth-order terms.
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Lemma B.2. Let (ρ, σ) be an SU(3)-structure. Then the DeTurck procedure outlined above

allows us to construct two vector fields, W1(ρ, σ) and W2(ρ, σ), depending smoothly on the

SU(3)-structure, whose linearisation along a variation δσ = χ = fσ +X ∧ ρ̂+ χ0 is given by

W1∗(χ) = df W2∗(χ) = ∗dχ0 + l.o.t .

We have rescaled our vector fields to eliminate all the constants and lighten the notation. Since

they are universal, there are no ambiguities in us doing so. If we restrict ourselves to SU(3)-

structures where the 4-form σ = ω2

2 is closed, we can further rewrite our DeTurck fields.

Proposition B.3. Let (ρ, σ) be a SU(3)-structure such that dσ = 0. Then, the DeTurck fields

can be chosen, so that

V1∗(χ) = df V2∗(χ) = curl(X) + l.o.t .

Proof. We need to prove that a linear combination ofW1∗ andW2∗ is equal to V2∗, up to zeroth

order terms. Linearising the condition dσ = 0, we have

dχ = df ∧ σ − dJX ∧ ρ+ dχ0

= df ∧ σ − curl(X) ∧ σ + dχ0 + l.o.t = 0 ,

by Lemma A.48. Take V2 =W2 +W1.

B.2 The nearly Kähler Laplacian flow

Let us study the parabolicity of the nearly Kähler Laplacian flow (142), modified by the DeTurck

term: 
∂tσ = ∆σσ − 12σ + LV (σ)σ

dσ = 0

σ(0) = σ0 ,

(142)

for V (σ) = 3V1(σ) + 2V2(σ), with Vi given in Proposition B.3.

We compute the linearisation of P = ∆σσ− 12σ+LV (σ)σ along χ = fσ+X ∧ ρ̂+χ0 ∈ Ω4
closed.

Since σ is closed, ∆σσ = −d ∗ d ∗ σ and LV σ = d(V ⌟σ) and so

DσP (χ) = −d ∗ dKχ+ d(V∗(χ)⌟σ) = −d ∗ d(2fω +X⌟ρ− ∗χ0) + d ((3V1∗ − 2V2∗)⌟σ) .

Similarly, we can compute ∆σχ = dd∗χ = −d ∗ d(fω +X⌟ρ+ ∗χ0). By Lemma A.51, we have

DσP (χ) + ∆σχ =− d ∗ d(3fω + 2X⌟ρ) + d ((3V1∗ − 2V2∗)⌟σ)

=− d ∗ [3df ∧ ω + 2 (curl(X) ∧ ω − d∗Xρ− d∗(JX)ρ̂+ d∗(JX ∧ ρ̂)]
+ d (3Jdf − 2curl(X)) ∧ ω + l.o.t.

=− d [(3Jdf + 2Jcurl(X)) ∧ ω − 2d∗Xρ̂+ 2d∗(JX)ρ] + d (3Jdf − 2Jcurl(X)) ∧ ω + l.o.t.

=2 [dd∗X − Jdd∗(JX)] ∧ ρ̂+ l.o.t .

In particular, we have proved
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Proposition B.4. The linearization of the operator P = ∆σσ+LV (σ)σ along a closed 4-form

χ = fσ +X ∧ ρ̂+ χ0 is given by

DσP (χ) = −∆σχ+ 2(dd∗X − Jdd∗JX) ∧ ρ̂+ dF (χ)

where F (χ) is a 3-form-valued algebraic function of χ that depends on the torsion of the SU(3)-

structure. In particular, its principal symbol in the direction ξ satisfies

⟨Sξ(DσP )(χ), χ⟩ = −|ξ|2|χ|2+4
(
⟨ξ,X⟩2 + ⟨ξ, JX⟩2

)
,

which is not coercive, so the flow is not parabolic.

Proof. Only the symbol computation remains. Since we know that Sξ(d) = ξ∧ and Sξ(d
∗) = ξ⌟,

the computation follows from the identity ⟨X ∧ ρ̂, Y ∧ ρ̂⟩ = 2⟨X,Y ⟩.

The term dd∗X − Jdd∗(JX) cannot be reabsorbed by an additional term of the shape LW (σ)σ

for a different choice of field W (σ). Indeed, the linearized operator for W (σ)⌟σ along χ =

fσ+X ∧ ρ̂+χ0 will be a linear combination of curl(X), curl(JX), df and Jdf , plus lower order

terms.

One could attempt to modify the flow further to make it elliptic, following Grigorian’s con-

struction of the modified G2 Laplacian coflow [Gri13]. The idea is to construct second-order

operators depending on σ, whose linearisation cancels out the terms dd∗X and Jdd∗(JX). In

that direction, we have a first partial result.

Recall that τ0(σ) =
1
3 ∗ (dω ∧ ρ̂) is the 1-dimensional part of the torsion of σ, and it satisfies

1

3
σ ∧ ω =

τ−2
0

4
dω ∧ d̂ω . (143)

Lemma B.5. The first order variation along χ = fσ +X ∧ ρ̂+ χ0 of τ0 is given by

∂χτ0 = −1

2
d∗X + l.o.t .

Proof. We differentiate Equation (143) with respect to χ:

(δχτ0)ρ ∧ ρ̂ = d(δχω) ∧ ρ̂+ l.o.t. = d(δχω ∧ ρ̂) + l.o.t

= d(X⌟ρ ∧ ρ̂) + l.o.t = −1

2
(d∗X)ρ ∧ ρ̂+ l.o.t .

We can introduce a first modification to the flow to remove one of the positive terms in the

symbol.

Corollary B.6. For C ∈ R, consider the flow for σ ∈ Ω4(M)
∂tσ = ∆σσ − 12σ + LV (σ)σ + d [(4τ0 + C)ρ̂]

dσ = 0

σ(0) = σ0 ,

(144)

with V (σ) as before and ρ̂ the associated 3-form as usual. The principal symbol of this flow

satisfies

⟨Sξ(DσP )(χ), ξ⟩ = −|ξ|2χ+ 4⟨ξ, JX⟩2 .

The question arises of whether we can further modify the flow (144) to obtain a parabolic flow.
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C The Einstein–Hilbert action

Recall that Einstein metrics, solving the differential equation Ricg = λg, are critical points of

the Einstein–Hilbert action:

S : Met(Mn) → R

g 7→ 1

n− 1

∫
M
sg − λ(n− 2) dvolg ,

(145)

where Met(Mn) is the space of metrics on Mn for n ≥ 2, and sg is the scalar curvature of the

metric g.

Since nearly Kähler and nearly parallel G2 manifolds are the links of Ricci-flat cones, they are

Einstein for λ = n − 1. In particular, they are critical points of the Einstein–Hilbert action.

We investigate the relation between the second variation of the Hitchin functionals and the

Einstein–Hilbert functional.

For the remainder of the section, assume (Mn, g) is not isometric to the round sphere. At

a point g ∈ Met(M), we identify the tangent space of Met(M) with symmetric 2-tensors

Γ
(
Sym2(T ∗M)

)
. As in the case of the Hitchin functionals, the functional S is diffeomorphism

invariant. Thus, it is convenient to study variations orthogonal to the diffeomorphism orbit.

We have an L2-orthogonal decomposition:

Γ
(
Sym2(T ∗M)

)
= Rg ⊕ C∞

0 (M)g ⊕ Γ(TM)⊕ TT ;

where the first and second terms correspond to constant rescalings and infinitesimal confor-

mal deformations of the metric, respectively. The identification of the component Γ(TM) in

Sym2(TM) is given by the map X 7→ LXg and corresponds to the orbit of the diffeomorphism

group. The term TT corresponds to the traceless and transverse symmetric 2-tensors:

TT (M, g) =

{
h ∈ Γ(Sym2(T ∗M)| tr(h) = 0, div(h) = −

∑
i

ei⌟∇eih = 0

}
.

By Ebin’s slice theorem, this formal complement to the orbit of the diffeomorphism group is

the tangent space to a genuine slice of the diffeomorphism orbit in a given conformal class.

Theorem C.1. [Koi79, Thm 2.4 & Thm. 2.5] Let (Mn, g) be an Einstein metric with constant

λ. Then, when restricted to conformal variations, the second variation is given by

δ2Sg(f, f ′) =
n− 2

2

∫
M

〈
∆f − nλ

n− 1
f, f ′

〉
dvol . (146)

When restricted to tt-tensors, it is given by

δ2Sg(h, h′) = − 1

n− 1

∫
M

〈
∆Lh− 2λh, h′

〉
dvol = − 1

n− 1

〈
Q(h), h′

〉
L2 . (147)

for h, h′ ∈ TT (M, g).

If λ = n − 1, the operator (∆ − n)f is strictly positive for f ∈ C∞
0 (M), by Obata’s theorem

[Oba62]. The term ∆Lh is the Lichnerowicz Laplacian

∆L = ∇∗∇+ q(R) ,
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where q(R) =
∑

i<j(ei ∧ ej)∗ (R(ei, ej))∗ is the standard curvature endomorphism induced by

the Riemannian curvature tensor R. One defines the co-index of an Einstein metric as the

maximal subspace along which Sg|TT is positive definite. Since the operator ∆Lh − 2λh is a

strongly elliptic operator, the co-index is guaranteed to be finite.

Let us study the Einstein co-index of nearly Kähler and nearly parallel G2-structures.

Nearly Kähler manifolds

We consider the case where (M, g) is a nearly Kähler manifold. Since its metric cone is Ricci-flat,

the metric g is Einstein with λ = 5. By Lemma A.37, we have an isomorphism

Φ : Sym2
0 T

∗M → Ω2
8 ⊕ Ω3

12

h = (h+, h−) 7→
(
h+∗ (ω), h

−
∗ (ρ)

)
,

with h± = 1/2 (h± JhJ) the J-commuting and J-anti-commuting parts of a traceless symmetric

2-tensor. Thus, ∆ = Φ ◦∆L ◦ Φ−1 is a Laplacian-type operator on Ω2
8 ⊕ Ω3

12.

The key result, due to Moroianu and Semmelmann [MS11, Section 5] (cf. [Sch22]), allows us

to transform the eigenvalue problem for Sg|TT to an eigenvalue problem for the Laplacian on

forms:

Proposition C.2 ([Sch22, Lemma 3.1]). Let (M6, ω, ρ) be a nearly Kähler manifold, not iso-

metric to the round sphere. For λ < 16, the operator Q(h) = λh for h ∈ TT (M) is identified

via the map Φ to

∆β + 4β + d∗γ = λβ

∆γ + 6γ + 4dβ = λγ ,

with (β, γ) ∈ ΩTT = Ω2
8,coclosed × Ω3

12,closed.

Now, the operator above commutes with the Laplacian acting on Ω2
8,coclosed, so they admit a

common basis of eigenvectors. It is a linear algebra problem to compare the eigenvalues of the

two operators, which Schwahn carried out in [Sch22]:

Proposition C.3 ([Sch22, Lemma 3.2]). Let (M6, ω, ρ) be a nearly Kähler manifold, not iso-

metric to the round sphere. Consider the eigenspaces

E(λ) =
{
β ∈ Ω2

8 | d∗β = 0 , ∆β = λβ
}
.

The Einstein index of (M, g) is given by

IndEH = b2(M) + b3(M) + 3
∑

λ∈(0,2)

dim E(λ) + 2
∑

λ∈(2,6)

dim E(λ) +
∑

λ∈(6,12)

dim E(λ) . (148)

By comparing this formula with Equation (74), we immediately have

Corollary C.4. The Einstein co-index is bounded below by the Hitchin index.
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Nearly parallel G2 manifolds

We now consider the case where (M, g) is a nearly parallel G2 manifold. Since its metric cone

is Ricci-flat, the metric g is Einstein with λ = 6. By Lemma A.16 we have an isomorphism

Φ : Γ
(
Sym2

0

)
→ Ω3

27 given by S 7→ S∗φ. The Laplacian comparison formula needed in this case

is due to Alexandrov and Semmelmann.

Proposition C.5 ([AS12, Prop. 6.1]). Under the map Φ, the operator

Q(h) = ∆Lh− 12h

on h ∈ TT (M) is identified with “Q = ∆γ + 2 ∗ dγ − 8γ (149)

acting on ΩTT = {γ ∈ Ω3
27| π7(dγ) = 0}.

The proof strategy is the same as that of nearly Kähler structures. Let us study the eigenvalue

problem for “Q.

Proposition C.6. Let (M7, g, φ) be a nearly parallel G2 manifold. Consider the eigenspaces

E(λ) =
{
γ ∈ Ω3

27| ∗ dγ = λγ
}

F(λ) =
{
γ ∈ Ω3

27| dd∗γ = λγ
}
.

The Einstein index of (M, g) is given by

IndEH = b3(M) +
∑

λ∈(−4,0)∪(0,2)

dim E(λ) +
∑

λ∈(0,8)

dim F(λ) . (150)

Proof. The operator “Q commutes with the self-dual operator ∗d on Ω3
27. Thus, we can find a

common base of eigenforms. Let µ ∈ R and consider the spaces E(µ) and F(µ) defined above.

If γ ∈ E(µ) for µ ̸= 0, we have ∗dγ = µγ, and substituting in Equation (149), we have that γ is

an eigenform of “Q with eigenvalue λ = µ2 + 2µ − 8. If µ = 0, γ is closed, and Equation (149)

reduces to ∆γ = dd∗γ = (λ+ 8)γ, which concludes the proof of Equation (150).

Remark C.7. The purely topological bound IndEH ≥ b3(M) appeared in [SWW22].

By comparing this formula with Corollary 8.16, we immediately have

Corollary C.8. The Einstein co-index is bounded below by the Hitchin index.
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D Taylor expansions for cohomogeneity one nearly Kähler

metrics

Lemma D.1 ([FH17]). The first few terms of the Taylor expansion of Ψa are

λ(t) =
3

2
t− 2a2 + 3

12a2
t3 +O(t5) ,

µ(t) =
√
3at+

√
3

9a
(3− 7a2)t3 +O(t5) ,

u0(t) =a
2 − 3a2t2 +O(t4) ,

u1(t) =a
2 − 3

2
(2a2 − 1)t2 +O(t4) ,

u2(t) =− 3
√
3

2
at2 +

√
3(16a2 − 3)

12a
t4 +O(t6) ,

v0(t) =3a2t2 −
Å
1

4
+

14

3
a2
ã
t4 +O(t6) ,

v1(t) =3a2t2 +

Å
2− 14

3
a2
ã
t4 +O(t6) ,

v2(t) =
3
√
3

2
at2 −

√
3(34a2 − 3)

12a
t4 +O(t6) ,

w0(t) =

√
3

3
at−1 −

√
3

54a

(
64a2 − 39

)
t+O(t3) ,

w1(t) =

√
3

3
at−1 − 2

√
3

27a

(
16a2 − 3

)
t+O(t3) ,

w2(t) =
1

2
t+

9− 76a2

54a2
t3 +O(t5) .

Lemma D.2 ([FH17]). The first few terms of the Taylor expansion of Ψb are

λ(t) =b− 9

10

b2 − 1

b
t2 +O(t4) ,

µ(t) =2bt+
1

10b
t3 +O(t5) ,

u0(t) =2b2t− 1

5
(17b2 + 3)t3 +O(t5) ,

u1(t) =2bt− 23b2 − 3

5b
t3 +O(t5) ,

u2(t) =− 2b2t+
1

5
(17b2 − 12)t3 +O(t5) ,

v0(t) =− 2

3
b3 + 4b3t2 +O(t4) ,

v1(t) =4b2t2 +
2

5
t4 +O(t6) ,

v2(t) =
2

3
b3 − b(4b2 − 3)t2 +O(t4) ,

w0(t) =
b

3
t−1 − 16b2 − 29

15b
t+O(t3) ,

w1(t) =t+O(t3) ,

w2(t) =− b

3
t−1 +

32b2 − 13

30b
t+O(t3) .
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