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Abstract

This thesis examines conical singularities in the context of special holonomy and gauge theory,

with a focus on both analytical and variational aspects.

In the first chapter, we study instantons on metric cones and establish a new relation between
the instanton deformation operator and the Bourguignon stability operator on the corresponding
link. This framework is used to study instantons with isolated conical singularities, yielding an
analytical construction of their moduli spaces. As a result, we give an explicit formula for their

virtual dimension.

In the second chapter, we investigate generalisations of Hitchin’s functionals, whose critical
points correspond to nearly Kahler and nearly parallel Ga-structures. We study the gradient
flow of these functionals and perform a spectral decomposition of their Hessians relative to
natural indefinite inner products. This study leads to the definition of the Hitchin index, a
Morse-like invariant that provides a lower bound for the Einstein co-index. We investigate the
connection of this index with the deformation theory of G2 and Spin(7)-conifolds.

In the third chapter, we investigate nearly Kéhler manifolds under a cohomogeneity one sym-
metry assumption. This enables us to study and bound the cohomogeneity one contributions
to the Hitchin index by reducing the PDE eigenvalue problem to an ODE eigenvalue problem.
We focus our analysis on the inhomogeneous nearly Kéhler structure on S3 x S3 constructed
by Foscolo and Haskins, and obtain non-trivial lower bounds for both the Hitchin and Einstein
indices of the manifold, thereby addressing an open question posed by Karigiannis and Lotay.
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Impact statement

This thesis contributes to the understanding of conical singularities in special holonomy and
gauge theory. This work deepens our understanding of geometric analysis on singular spaces,
particularly those exhibiting special holonomy, and provides concrete analytic tools for studying
moduli spaces of instantons with isolated conical singularities, including a precise formula for
their virtual dimension. These results address a gap in the literature relative to the relatively
extensively studied cases of conical singularities in special holonomy metrics and calibrated
submanifolds. These results create new pathways for exploring geometric structures with sin-
gularities, which play a central role in the mathematics underlying string theory and M-theory.
In particular, the methods developed have applications to the analytic study of Calabi—Yau, G2
and Spin(7) manifolds.

Another contribution is the introduction of the Hitchin index, a new invariant that captures the
stability properties of critical points of Hitchin-type functionals. Its relationship to the Einstein
co-index creates a framework for understanding rigidity and deformation in special holonomy
geometries, which opens up new avenues in the Morse-theoretic approach to moduli spaces and
their topology.

In a different direction, the use of cohomogeneity one symmetry to reduce partial differen-
tial equations to non-explicit ordinary differential equations, while still being able to prove
interesting results, demonstrates that there remains considerable scope for investigating and

establishing new results under a cohomogeneity one assumption.

Although the research is purely mathematical, its findings may influence future developments
in other areas. The structures studied are relevant to theoretical physics, particularly in the
pursuit of a unified framework for gravity and quantum field theory in the context of M-theory
and string theories. The analytic tools developed could aid in modelling singularities that
appear in those theories and in constructing compactification schemes for extra dimensions.
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Introduction

The study of manifolds with special holonomy plays a central role in modern differential geom-
etry and geometric analysis, with deep connections to topology, global analysis, and theoretical
physics. These manifolds are distinguished by having a Riemannian holonomy group that is
strictly smaller than the full orthogonal group. The resulting geometric structures often possess
remarkable properties, such as Ricci-flatness or the existence of parallel differential forms, which

lead to rich geometric structures.
The work by Berger in 1955 [Ber55| laid the foundation for the theory of special holonomy,
identifying the possible holonomy groups that can arise in irreducible, simply connected, non-

locally symmetric Riemannian manifolds:

Hol(g) dim(M) | Type of manifold | Curvature | Parallel 4-form
SO(n) n Orientable - -
U(n) n Kiihler — o
SU(n) 2n Calabi—Yau Ricci-flat “’72

Sp(n) 4dn Hyperkéahler Ricci-flat %% ,%3 7%%

Sp(n) - Sp(1) 4n Quaternion-Kéahler | Einstein A\ # 0 Q
Go 7 Holonomy G Ricci-flat 0
Spin(7) 8 Holonomy Spin(7) Ricci-flat o

Table 1: Berger’s list of possible holonomy groups

The list, which has since been refined and confirmed through the construction of explicit ex-
amples, remains a guiding framework in the field. An additional candidate, Spin(9), was later
shown by Alekseevski [Ale68] and Brown and Gray [BG72| to only occur as locally symmetric
spaces. For the remaining groups, both compact and non-compact examples have been con-
structed, thanks notably to the contributions of Yau [Yau77| [Yau78|, Bryant [Bry87|, Bryant
and Salamon |[BS89] and Joyce |[Joy96a] [Joy96b], amongst many others.

As noted in Table [1] all special holonomy manifolds admit a natural parallel 4-form €2, due to
their structure group being connected and contained in the normaliser of a semisimple Lie group
(cf. Appendix . The holonomy reduction ensures that the 4-form is parallel with respect to
the Levi-Civita connection and therefore harmonic.

While the classical theory focuses mainly on smooth complete manifolds, modern developments

—vparticularly those in geometric analysis, string theory, and gauge theory — require an exten-

sion of this framework to singular spaces, and in particular to manifolds with conical singulari-



ties. These spaces arise naturally as degenerations of smooth manifolds in moduli problems and
therefore play a major role in compactifications of moduli spaces, glueing constructions, and as
geometric flow singularities.

These considerations naturally lead to the central themes of this thesis: the analysis of conically
singular spaces with special holonomy and the study of associated gauge-theoretic problems on
such spaces. These problems not only retain many of the features of their smooth counterparts
but also present new phenomena due to the singular geometry. In particular, the presence of
a conical singularity affects the behaviour of differential operators, the moduli space structure
of geometric objects like instantons, and the analytic techniques required to study them. An
analogue study for calibrated submanifolds can be carried out and will be outlined in the
introduction, but will not be examined in detail in the thesis.

An isolated conical singularity, in its simplest form, is a metric degeneration where a neighbour-
hood of a singular point is modelled on a metric cone

(C(2),90) = (Rp x "1 dr?* +1%gx) |

where (X"7! g5) is a Riemannian manifold called the link (cf. Definition and r is the
obvious coordinate in the Ry factor. In this thesis, we will only deal with the case where X is

closed.

The geometry of the cone (C(X),gc) is intimately related to that of its link (X,¢). If C(X)
admits a G-structure, then ¥ naturally inherits an H-structure, with H = Stab®(rd,). When
the cone metric is irreducible, its tangent space is an irreducible G-representation, and one has
the identification

G/H = Grt(l,n) = "1

The metric cone carries a natural R -action
t:C(X) xRy — C(X),
((7’, 1}), )‘) A ()‘Ta .’E),
which induces an action on smooth differential forms. A form is said to be homogeneous of rate

A € R if it has weight A under this action. Equivalently, a homogeneous k-form v € QF(C(X))

of weight \ can be expressed as
A ( k—1 d k
y=r"(r rAha + 17 5) )

where o € QF~1(X) and 8 € QF(X). Such homogeneous forms will play a central role in our
analysis (see Section [3)).

In the special holonomy setting, a cone C'(X) with special holonomy carries a canonical parallel
4-form Q (see Table |1)) that is invariant under dilations. The link ¥ then inherits a pair of
associated forms = € Q" 4(¥) and T € Q"5(X), defined by

*CQ:r”“‘(%ATjLE),

where *¢ denotes the Hodge star on the metric cone The fact that €2 is parallel for the Levi-
Civita connection on the cone induces specific differential relations between = and Y.



Hol(gc) H dim(X) | Type of manifold Y B
SO(n) SO(n—1)| n-1 — — —
Uk+1) | Uk | 26+1 Sasaki n A Gy P
SU(k+1) | SU(k) 2% + 1 Sasaki Einstein | nA gy o
Sp(k+1) Sp(k) 4k + 3 3-Sasaki ni A % (122,;)!2 (wZ 2 (k) Wi A5 A 77k)
G2 SU(3) 6 Nearly Kéahler w p
Spin(7) G2 7 Nearly parallel G @ P

Table 2: Berger’s list on metric cones

The notation for these induced forms on the link varies with the holonomy of the cone; for
convenience, we summarise the most common conventions in Table

The existence of the (n — 4)-form Z induces a first order differential operator on ¥7~!:
curlz : Q' — Q! (1)
X = (-1)"*(dX NE),
generalising the usual 3-dimensional curl. We prove

Proposition (Prop. & Prop. [A.11). Let (3, g) be a closed Riemanninan manifold equipped
with an H-structure admitting a compatible (n—3)-form ZE. If Z is closed, then the curl operator
1s self-adjoint and fits in the complex

000 40t s gt @500 0, 2)

Let & = {X € QY curl=(X) = AX}. If (X, 9) is the link of a special holonomy Ricci-flat cone,
then

(i) the Lie algebra of the automorphism group of the H-structure auto(M, H) is given by

auto(M,H) = E_o

(ii) the Lie algebra of the isometry group of the metric isom(M, g) satisfies

isom(M,g) = E 2D Er—2,

The current proof of the last claim requires a case-by-case discussion and forces one to exclude
spaces of constant sectional curvature. However, we believe the result should extend to sphere
quotients and admit a general proof that does not require case-by-case considerations.

Remark. The complex s, in general, not elliptic. The condition for the complex above
to be elliptic is equivalent to the 3-form *xZ inducing a cross product, so it can only occur for
n—1=3and n—1="7. However, in the nearly Kahler and Sasaki cases, the complex still
has finite cohomology H° = H? = R and H' = H? = 0 and all eigenvalues but one have finite
multiplicity. In all cases, the curl operator can be viewed as part of the corresponding Dirac

operator on .



Variational problems and special holonomy

Variational principles are foundational to modern differential geometry and mathematical physics.
Many of the most geometrically significant structures can be realised as critical points of natural
functionals. These functionals encode intrinsic or extrinsic geometric quantities, and their criti-
cal loci are characterised by a partial differential equation (PDE) known as the Euler—Lagrange
(E-L) equation.

Let M™ denote a complete smooth manifold of dimension n. Among the most well-known
examples of such variational problems are:

(i) Assume M is compact and n > 3. The Einstein-Hilbert functional

S :Met(M) —- R
1
n—1

g / Sg — A(n —2)dvoly ,
M

where Met(M) is the space of smooth metrics on M and s, is the scalar curvature of the
metric g (cf. Appendix . The E-L equation of S is Ricy = Ag, and critical points are
Einstein metrics of constant .

(ii) Let N* be a closed manifold. The area functional
YV :Imm(N, M) —

R
u—>/ " (dvoly) ,
N

where Imm(V, M) is the space of immersions of N k¥ into M, equipped with a metric g.
Critical points of V are called minimal submanifolds, and the E-L equation is H> = 0,
the vanishing of the mean curvature.

(iii) For a principal U(k)-bundle P over (M, g), the Yang-Mills functional is
IM:A—=R

1
Al—>/ ||Fal[*dvol, ,
2 /m

where A(P) denotes the space of connections on P, and Fj is the curvature of the con-
nection A. The critical points are called Yang—Mills connections and they satisfy the E-L
equation d% F'y = 0.

The Euler-Lagrange equations of these functionals are second-order elliptic PDEs (modulo
gauge symmetries), and their solutions encode deep geometric and topological information of
the underlying manifold.

In certain favourable situations, the geometric structure of M allows us to reduce these second-
order PDEs to first-order PDEs. These reductions occur most notably when M admits a special
holonomy structure. In this case, the existence of parallel differential forms (equivalently parallel
spinors) allows one to rephrase the variational problem in terms of calibrated geometry or gauge-

theoretic instanton equations.



Euler-Lagrange Equation Critical points Symmetry group
Einstein-Hilbert Ricg = Ag A - Einstein metrics Diff (M)
Area functional H* =0 Minimal submanifolds Diff (%)
Yang-Mills d4Fa=0 Yang-Mills connections Aut(P)

Table 3: Variational problems, their Euler-Lagrange equations and symmetries

For example, if M has holonomy contained in G C SO(n), where G is a semisimple group from
Berger’s list (i.e., G is either SU(n), Sp(n), G2 or Spin(7)), then the Ricci-flat condition is
automatically satisfied. Furthermore, in the G2 case, one may view the holonomy condition as
the critical point condition of a Hitchin-type functional on 3-forms. A more thorough discussion
of this viewpoint is presented in Section [0}

Let us now consider a special holonomy manifold (M, g) equipped with a parallel calibrating
form 6 € QF. That is, 0 (p) < voly(r(p)) for any k-plane m C T,,M. The standard requirement
that 6 is closed follows from 6 being parallel. Associated with 6, and for a fixed cohomology
class @ = [N] € Hy(M,Z), we have the topological charge

co(la]) = (eea, [0]) .

The calibrating condition implies that any immersion representing this homology class satisfies
the inequality cg([a]) < V(¢). An immersion ¢ is called a calibrated submanifold if it realises
the equality above, and so calibrated submanifolds are absolute area minimisers within their
homology class.

A similar situation arises in the context of gauge theory on special holonomy manifolds. Given
a closed Riemannian manifold (M, g) with special holonomy and a principal bundle P over it,
one defines the charge

1
CQ(P) = —Q/MTI‘(FA/\FA)/\*Q,

where €2 is the associated parallel 4-form from Table [I By Chern-Weil theory, it follows that
cq is a topological invariant of the principal bundle P. In all cases (cf. Section, one can show
that cq(P) < Y M. Connections for which equality is satisfied are called Q-instantons, and are
absolute minimisers of the Yang—Mills functional.

Remark. For minimal submanifolds, one can consider the more general setup of harmonic
maps, where the area functional gets replaced by the energy functional

E:C®(N,M)—=R
u»—>/ |du|*dvol,, ,
M

for a pair of closed Riemannian manifolds (M, g) and (N, h). In the context of special holonomy,
the notion of calibrated submanifolds is replaced by holomorphic maps in the Kdhler case, and
Smith maps (cf. [CKM25]) in general.

An alternative approach to this discussion would be from a spinorial perspective, but we will

not explore it in this thesis.



Metric cones and Chern—Simons functionals

The previous discussion focused on variational problems in the compact setting, where the
charges cg([a]) and cq(P) are well-defined topological invariants. In the non-compact setting,
the discussion becomes more complicated and requires the introduction of Chern—Simons type
functionals that account for boundary contributions. We outline the calibrated submanifold
case below. The instanton case is treated in detail in Section [2, and an analogue to this setup
for G2 and Spin(7) holonomy cones is the primary focus of Sections m and [§| respectively.

Let © € Q%(C(X)) be a homogeneous parallel calibrating k-form on the cone, so it is given by
d

@:Tk<r/\7'+(9> (3)
r

with 7 € Q¥1(X) and § € QF(X). Fix a suitable reference immersion ¢; € Imm(N*¥—1, ¥n=1),
and consider Path, (Imm(N, X)) the space of (smooth) paths in the space of immersions, based
at t1. We define the functional:

C : Pathy (Imm(N,¥)) - R

L — 11 (©) .
Nx[1,T)
This corresponds to the calibration charge cy above evaluated over the compact manifold with
boundary N/ = [1,T] x N C Ry x X, but it is no longer a topological invariant. In particular,
if we consider an infinitesimal variation of the boundary end-point, we obtain a Chern—Simons

1-form functional:

Lemma. The Chern—-Simons 1-form functional associated to C at an immersion v is

C, : I(Nor'™))

— R
Xn—>/ £szk/ X0,
t(N) t(N)

where Nor*™) denotes the normal bundle of ((N) C X and 7,60 € Q*(X) are given by Equation
(3)-

Notice that this discussion is quite similar to the one outlined in Section 2 of Donaldson—Segal
[DS11], where they consider cylinder metrics over special holonomy links (¥, gx), Cyl(X) =
(R x %, dt? + gs2). In the Donaldson—Segal case, the Chern—Simons functional is the 1-form of a
locally defined functional, whereas in our case, the functional C is globally well-defined modulo
gauge.

We say that an immersion ¢ is a critical point of C if C, vanishes for all vector fields. One might
expect that critical points correspond to calibrated links and that gradient flows for C represent

calibrated submanifolds on the metric cone.

While this holds in the nearly parallel Go case, it fails in the cases where (X, g) is a nearly
Kahler or a Sasaki manifold, and is related to the lack of ellipticity of the curl complex . For
instance, if N is a horizontal totally real submanifold of a Sasaki manifold, then C will vanish,



but it is not the link of a holomorphic cone inside C'(X). This mismatch suggests the need for
additional geometric constraints.

To remedy this in the instanton case, we introduce a cone constraint. Importantly, we show
that this constraint is preserved under gradient flow in all cases of interest, allowing us to
recover the expected characterisation of instantons. While the geometric justification for the
cone constraint remains case-dependent, it offers a coherent framework that is likely to extend
to the calibrated submanifold case.

At a critical point ¢ of the Chern—Simons c functional, its second variation characterises in-
finitesimal deformations of the calibrated cone condition. Along the linearised cone constraint
and up to gauge fixing, the second variation can be identified with a Dirac-type operator ﬁb.
Therefore, it has a discrete unbounded spectrum with finite multiplicities.

If 19 and ¢ are two distinct critical points of Candyisa gradient flow line connecting them, the
associated spectral flow of the family lA?L provides a virtual count of the expected dimension of
the moduli space of calibrated submanifolds asymptotic to the calibrated cones on each end. In
analogy with finite-dimensional Morse theory, one would hope to define an index-like geometric
quantity K, such that the spectral flow of the family of Dirac operators ]3” satisfies the relation

SpecFlow(ﬁLt) =K,

Loo

- K

Lo -

In the case of special Lagrangian and coassociative cones, we expect that this spectral index is
related to the stability indices introduced by Joyce |Joy04] and Lotay [Lot07], respectively.

Summary of results and overview

This thesis investigates the analytic and variational aspects of instantons and special holonomy
structures with isolated conical singularities (ICS). The overarching goal is to develop and
understand a coherent deformation and moduli theory for such objects, extending the well-
established compact theory to the singular setting. Ultimately, this work aims to provide tools
that could contribute to the construction of new invariants and the development of enumerative
theories in gauge theory and special holonomy metric, as well as laying the groundwork for
understanding more geometric objects with higher codimension conical singularities.

Chapter I - Conically singular instantons

The first part of the thesis focuses on instantons with ICS, with particular emphasis on nearly
parallel G2 and nearly Kahler geometries. We begin with a review of instanton theory in general,
highlighting new contributions and clarifications.

A first result concerns the ellipticity of the deformation complexes introduced by Reyes-Carrién
[Rey98]. We provide a short and conceptual proof that these complexes are indeed elliptic under
mild hypotheses (cf. Theorem [I.11]). In addition, we present a new rigidity-type result as an

application of the instanton charge:

Proposition (Prop. [1.9). Let (M™, g,) be a manifold carrying an admissible N(H) structure
with associated 4-form Q) closed, and let E — M a Hermitian vector bundle admitting an §2-
instanton. Let T* be a flat torus of dimension k and denote by m : M x T* — M the trivial

7
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fibration. Assume the product metric on M x T admits an N(H)-structure with characteristic
4-form , compatible with N(H) and such that the difference Q — 7*(2) is ezxact.

Then the moduli spaces of irreducible instantons are related by
ME (x*(B)) = M(B) x T"

where T denotes the torus dual to T. In particular, to every Q-instanton on ™ (F) we can

associate an Q-instanton on E — M.

This result extends earlier work of Wang [Wan18b|, who treated only the case kK = 1. Notably,
our proof relies on a direct argument using the topological charge, which is significantly shorter

and more transparent than Wang’s approach to the question.

Turning to metric cones, we introduce a Floer—type functional whose critical points coincide with
instantons, thereby providing a variational framework naturally adapted to conical geometries.
In this context, we define the notion of the cone bundle L, and establish a key link between the
Hessians of the Yang—Mills functional S4 and the Floer—type functional D 4:

Proposition (Prop. . Let A be an Y-instanton and L the associated cone bundle. There

exists constants C; € R such that

Sa(@) = Di(a) = (n = 4)Dae) =i 3 Ci (w1 (dao))

where Lf form the direct sum decomposition of irreducible N (H)-representations of L+ and mp

1s the bundle projection map to the corresponding bundle B.

This result generalises a formula of Waldron [Wal22] in the case of nearly parallel Ga-instantons.
Building on this variational framework, we then move to the setting of connections with isolated
conical singularities. We first establish that the instanton charge extends naturally to the ICS
case. Using weighted analysis on conically singular manifolds, we generalise the Uhlenbeck
gauge slice construction to an appropriate weighted gauge group. With this in hand, we can
apply the implicit function theorem and obtain a natural description of the moduli spaces of
instantons with isolated singularities.

We conclude the chapter with a virtual dimension formula for these moduli spaces, which
decomposes into contributions from the geometry of the link and the global geometry of the
manifold.

Chapter II - Hitchin Functionals and their index

The second part of the thesis focuses on Hitchin’s functionals in dimensions six and seven. These
functionals realise nearly Kéhler and nearly parallel G5 structures as their critical points, and
they admit a natural interpretation as Chern—Simons-type functionals for the cone. Motivated
by this perspective, we introduce two new Hitchin-type functionals, denoted © and 7, which
are defined on spaces of stable and exact forms carrying natural SU(3)— and Ga—structures,
respectively. We summarise their main properties in the following two theorems:



Theorem (Prop. Prop. |7.13, Prop. & Prop. [B.4). Let X% be a closed spinnable
6-manifold. Consider the space

U={we Q(2) | dw is stable, w is stable and positive, w* is ezact} .
The new Hitchin functional Q : U — R satisfies the following:

(i) Critical points are nearly Kihler structuresﬂ

(i) The Einstein—Hilbert action is a lower bound for Q. The two only coincide along rescalings

of nearly Kahler structures.
(i7i) The associated gradient flow is not parabolic, even after a DeTurck trick.

(iv) Critical points have a well-defined index with respect to a natural indefinite inner product,
called the Hitchin indez.

(v) The index provides a lower bound for the Einstein co-indez.

(vi) The index corresponds to the count of solutions to the eigenvalue problem

A A
SA:{(@'Y)ES)%XQ?Q dﬁzz’Y ) d*’YZS/B}
for A € (0,12).

(vii) There is an explicit connection between the spectrum of the second variation of Q and the
spectrum of the second variation of Hitchin’s original functional.

Theorem (Prop. Prop. Lemma & Prop. [8.15). Let X7 be a closed spinnable

7-manifold, with a given orientation. Consider V = {1 € Q4(2) | v is stable and exact}. The
new Hitchin functional T : V — R satisfies the following:

(i) Critical points are nearly parallel Gy structures, up to orientation.

(i) The Einstein—Hilbert action is a lower bound for T. The two only coincide along rescalings
of mearly parallel Go structures.

(iii) The associated gradient flow is third-order, in particular, not parabolic.

(iv) Critical points have a well-defined index with respect to a natural indefinite inner product,
called the Hitchin index.

(v) The index provides a lower bound for the Einstein co-index.
(vi) The index corresponds to the count of solutions to the eigenvalue problem
&= {XGQ%A dxx+Ax =0}

for A € (0,4).

Tn general, a nearly Kihler structure is viewed as a pair of forms (w, p) € Q% x Q3 satisfying a PDE. In our
case, the 3-form p is determined by the 2-form w.



(vii) There is an explicit connection between the spectrum of 6>T and the spectrum of the second

variation of Hitchin’s original functional.

The main motivation for introducing new Hitchin functionals and defining the Hitchin index
was to provide a bridge between variational methods in Gy and Spin(7) geometries and analytic
contributions to moduli space formulas. More precisely, the idea was to relate the Hitchin index
to the CS/AC analytic term appearing in the expected dimension formula for moduli spaces.
From this perspective, the Hitchin index serves as a measure of instability. It plays a part in Go
and Spin(7) geometries similar to Joyce’s stability index for special Lagrangians and Lotay’s in-
dex for coassociatives. In each of these settings, the index captures the instability of its singular
model; model structures with a higher index should be regarded as less generic, appearing only
in higher—codimension strata of the boundary of the moduli space. Thus, the Hitchin index, a
variational invariant, becomes an object directly relevant to deformation problems and to the

formulation of counting invariants.

Chapter III - A Cohomogeneity one computation

The final part of this thesis focuses on the study of the Hitchin index, introduced in Chapter II,
in the context of the cohomogeneity one examples constructed by Foscolo and Haskins [FH17].
Building on their framework, we aim to construct cohomogeneity one solutions to the PDE
associated with the Hitchin index. After recalling the general setup of Foscolo and Haskins, we
derive the ODE system obtained from our PDE under the cohomogeneity one ansatz. We

then establish the following existence result:

Theorem (Thm. . Let a,b > 0, and consider the nearly Kdhler halves U, and Uy of
Foscolo and Haskins [FH17], with singular orbits S* and S®, respectively. Then, for every
A € (0,00), there exists a unique (up to scale) solution to the ODE system on the nearly
Kahler half W, (resp. Wy). Moreover, this solution depends continuously on the parameters a
(resp. b) and A.

By analysing the global behaviour of the ODE and applying an intermediate value argument,

we prove:

Theorem (Thm. [12.6). The Hitchin index of the inhomogeneous nearly Kdihler structure on
53 x 83 is bounded below by 1. The Einstein co-index is bounded below by 4.

The proof of this result is quite intricate, since the ODE, though linear, depends on the under-
lying nearly Kéhler structure, which is itself determined by non-explicit functions.

The question of whether these bounds are sharp remains open and out of reach beyond the use of
numerical methods. Similarly, there appears to be no clear path for treating the inhomogeneous
S0 case beyond numerical methods. This result stands in sharp contrast with the homogeneous
nearly Kéhler manifolds, all of which have vanishing Hitchin index. It remains an open question
whether these bounds are sharp, and whether similar methods can be successfully applied to
the inhomogeneous nearly Kéhler structure on S, which appears to require a new analytic

approach or numerical tools.
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Outlook

The developments in this thesis, ranging from Floer-type functionals on cones and weighted
analysis for conical instantons to the introduction of new Hitchin functionals and the Hitchin
index, provide a comprehensive toolkit for making gauge theory and special holonomy metrics
with singularities more analytically tractable. These methods are expected to play a key role
in refined glueing constructions. We briefly list some open questions that naturally arise from

this work.

On the gauge theory side, it is crucial to understand further the geometric and analytic con-
straints imposed by conical singularities, the cone condition, as well as to understand stabil-
ity conditions for such singularities. Further understanding the virtual dimension of Spin(7)-
instantons, in analogy with the algebraic side of Hermitian—Yang—Mills connections, remains a
central problem. Constructing explicit examples of instantons with ICS via glueing construc-
tions is a promising avenue, through glueing anti-self-dual connections along associative 3-folds
or Cayley 4-folds, with singularities expected to appear at points where the Fueter section
vanishes transversely, extending the early work of [Wall7].

In the direction of special holonomy and Hitchin-type functionals, one may ask whether a
natural functional exists in the Calabi—Yau setting. More broadly, extending the work of Kari-
giannis-Lotay to the Spin(7) case and to manifolds having both CS and AC ends would advance
understanding of the Hitchin functional and its spectral flow properties, while potentially offer-
ing new insights into the treatment of unstable singularities.

Finally, several natural directions emerge for the study of eigenvalue problems under a coho-
mogeneity one symmetry assumption. One may further investigate the stability of the Fos-
colo—Haskins nearly Kahler examples, potentially avoiding reliance on numerical methods, and
more generally, extend the approach to other cohomogeneity one structures, such as Einstein

manifolds and minimal submanifolds.
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Gauge Theory

In 1997, Donaldson and Thomas [DT9§| (cf. [DS11]) proposed a program to construct geometric
invariants of exceptional holonomy manifolds in dimensions 7 and 8 using ideas from gauge
theory in dimensions 3 and 4. The original proposal stems from Thomas’ PhD thesis, where
he introduced the Donaldson-Thomas (DT) invariants for compact Calabi-Yau threefolds as a
holomorphic analogue of the three-dimensional Casson invariant.

The main obstacle to Donaldson and Thomas’ proposal is that we are far from understanding
how to compactify the moduli spaces of instantons in high dimensions. In particular, this is why
DT invariants were defined using algebraic tools rather than analytic ones. In 2001, Tian [Tia00]
published an influential paper outlining the main challenges one faces when constructing suit-
able compactifications for these moduli spaces: bubbling and singularity formation. Bubbling
corresponds to an L2-energy concentration. According to the work of Uhlenbeck (cf. [Weh04]),
this process occurs in codimension four. In [Tia00|, Tian showed that bubbling occurs along

()-calibrated currents.

By singularity formation, we mean any other process for which the limit (up to a subsequence)
of a sequence of connections {A, }, whose curvature is bounded in L?-norm might not exist. In
[Tia00], Tian proved that this phenomenon must occur in codimension at least 5 for a sequence
of Yang—Mills connections and conjectured that the codimension bound can be improved to
6 in the 2-ASD case. We will concern ourselves with the case where singularities arise in
codimension n, i.e. point singularities. In 2003, Baozhong Yang, a student of Tian, proved the
first results on how these singularities behave.

Theorem 0.1 ([Yan03, Thm. 1 & 2]|). Let (M",g) be a complete Riemannian manifold with
n > 5. Let A be a smooth, stationary Yang—Mills connection on the bundle E over M \ z¢ and
let Eoo — S™ 1 be the induced bundle by the restriction of E in a neighbourhood of xy. Assume
that there exists a neighbourhood U of g and a constant C > 0 such that

|Fal(z) < Cr—2,

where r = dist(x, xg), the distance to the singularity. Then, the tangent cone of A exists and
is unique and up to gauge. That this, there exists a smooth Yang—Mills connection A and a

gauge transformation goo 0N Eoo around xy such that

(g5 (A)(r) = Aco) ll g (sn-1)< Cillog(r)[*

for some C) > 0 and o depending on A. Furthermore, assume that Ag is integrable, in the

sense that every infinitesimal deformation of Ag belongs to a one-parameter family of Yang-
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Mills connections. Then one can drop the requirement of A being stationary, and the stronger
estimate
(g5 (A)(r) = A) or(gn-1)< Cpr 1 F

holds, for some different Cy, > 0 and .

In contrast to the general setting, the behaviour of singularities of Hermitian Yang—Mills (HYM)
is far better understood, due to the deep interaction between differential and algebraic ge-
ometry. The foundational result of Bando and Siu[BS94] shows that conically singular HYM
connections correspond precisely to reflexive sheaves, a natural class of coherent sheaves that ex-
tend holomorphic bundles. Their result extends the well-known analytic-algebraic Donaldson—
Uhlenbeck—Yau correspondence. Consequently, moduli spaces of smooth HYM connections can
be compactified via reflexive sheaves.

The theory of Hermitian Yang-Mills (HYM) connections on reflexive sheaves has been exten-
sively developed, particularly through the works of Chen and Sun |CS21] and Jacob, S& Earp,
and Walpuski [JSW18|, among others. We refer the reader to their contributions for a compre-
hensive treatment of this subject. In light of these results, our focus shifts to the study of Go
and Spin(7)-instantons, where the analytical framework is less well understood and there is no
algebraic correspondence available.

It is worth noting that the natural inclusion SU(4) C Spin(7) requires any theory of Spin(7)-
instantons to be compatible with the case of reflexive sheaves on Calabi—Yau fourfolds, which
leads to the consideration of DT'4-invariants in the algebraic geometry literature. These sheaves
provide a rich and well-understood class of examples against which we can test our constructions.
However, we prove (cf. Proposition and Corollary that topological rigidity results imply
we cannot get genuine Spin(7)-instantons on these singular holomorphic bundles associated with
the reflexive sheaves.

1 Instantons

Let (M™,g) be an n-dimensional Riemannian manifold without boundary, G a compact Lie
group with Lie algebra g, and let 7 : P — M a principal G-bundle. We assume throughout
that G = U(n) for simplicity. We denote by gp the vector bundle with fibre g, associated to P
via the adjoint representation.

Recall that a connection H on P is the choice of a complement to the fibres of the tangent space
of the G-orbits, i.e. a choice of splitting of the short exact sequence of vector bundles.

0—-TG—TP—TM — 0.

Alternatively, a connection can be thought of as a 1-form 6 € Q! (P, gp) satisfying some G-
equivariance properties, and such that H = ker 6.

One can ask whether a connection H is integrable, i.e. whether a submanifold in P whose
tangent space is H locally exists. By Frobenius’ theorem, the integrability failure is measured
by the curvature 2-form F' = dp60 := 0 o h, where h : TP — H is the projection map.

13



Theorem 1.1 (Structure equation and Bianchi identity). Let 6 be a connection in P and F' its
curvature. Then, it satisfies

F:d9+%[0,9], (@)

where [0,0](X,Y) = [0(X),0(Y)] and the bracket is induced by Lie bracket in g under the

pointwise identification TG = g. Moreover, F' is covariantly closed, i.e. dpF = 0.

Equation is known as the Maurer—Cartan Equation or structure Equation. The condition
of the curvature being closed is known as the (differential) Bianchi identity.

The G-equivariance of the connection and curvature forms allows us to (locally) identify them
with objects in the base M. Thus, we have the following:

Proposition 1.2. Let U C M an open set over which the principal bundle P trivialises.

(i) A connection 6 € Q(P) can be identified with a linear connection on the associated bundle
ap. Thus, it can locally be identified with a 1-form A € QY (U, gp), where U is as above
and the connection acts on QF(U,gp) as da = d + AA.

(ii) The space of connections is naturally an affine space A modelled on Q' (M, gp).

(i1i) Under this identification, the curvature F' is mapped to a (globally defined) 2-form F4 €
O*(M, gp).

The space of connections carries a natural action by principal bundle automorphisms. These
form a group under composition, called the gauge group of P and denoted by G. In the same
spirit as above, its Lie algebra can be identified with Q°(M, gp). For g € G, the action on a
connection is given by da.,o = g~ 'da (g). In particular, the curvature 2-form Fy transforms as
a tensor under the gauge group action, F4.q = g 'F4g. Finally, recall the Yang-Mills functional

YM:A—R
1
A 0—>/ Tr(FA N *FA)
2 Jm
from the introduction. Its first variation is given by
)
—IM = | Tr(daaA*Fa) , (5)
oo »
By Stokes’ theorem, the corresponding Euler-Lagrange equation is
daFa=0, (6)

called the Yang—Mills equation. The second variation is

52
5adf3

VM = / Tr (daa A %daB + a A BA%Fs) = (8, (dhdaa + {Fa,a}) | (7)
by

where {F4,a} = *[xF4,a). The second variation operator Sa(a) = d%daa+ {Fa,a} is called
the stability operator (cf. [BL81]).
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The Yang—Mills functional is invariant under gauge transformations, which implies that both the
Yang—Mills equation and its associated stability operator possess an infinite-dimensional kernel
arising from the action of the gauge group. To obtain a well-posed variational problem, it is
necessary to restrict our attention to a suitable complement of the gauge orbits. The standard
approach is to impose a gauge-fixing condition, selecting a representative in each gauge orbit.
The standard choice is the Coulomb gauge, where one restricts to the L?-orthogonal complement
of the infinitesimal gauge orbit T4G C TuA = QY (M,gp). Explicitly, this corresponds to
imposing the condition d%a = 0 for a € Q1(M, gp).

More conceptually, this procedure corresponds to working locally in the quotient space A/G.
The slice theorem (cf. [FU84, Thm. 3.2.]) guarantees that near any irreducible connection A,
the quotient A/G is modelled locally as the product ker(d%) x G. We prove a slice theorem
adapted to the conically singular case in Section

Under the Coulomb gauge, the Yang—Mills equation and the stability operator become elliptic.
In particular, the operator

§A(a) = SA(Oé) + dAdZOé = Ao+ {FA,a}

is strongly elliptic, so its eigenvalues are discrete, have finite multiplicity and are bounded below.
In particular, the finite-dimensional notions of index and nullity generalise:

Inds = Y dim {a e O (gp)| Su(a) = )\a} (8a)
A<0
Nuly = dim {a e Ol (gp)| Sa(a) = o} (8h)

Instantons are an attempt to reduce the Yang—Mills equation above from a second-order PDE
to a first-order PDE by exploiting some geometrical structure of the underlying base manifold
(M, g). They were initially considered in the physics literature in the 4-dimensional case. In this
case, the instanton equation reads F4 = £ % F4 and is known as the (anti)-self-dual equation.
The study of solutions to the ASD equation led to numerous breakthroughs in low-dimensional
topology in the 1980s through the works of Donaldson, Taubes, and Uhlenbeck, among others
(cf. [DK90]).

We aim to explore higher-dimensional analogues of the ASD equation. The idea is to find such
equations to exploit a reduction of the frame bundle of M. That is, we consider manifolds
carrying a G-structure for some suitable group G (cf. Appendix. This approach was initially
systematised by Reyes-Carrién in [Rey98]. Harland and Nolle introduced a different approach
using spin geometry in [HN12]. We follow the former approach throughout. First, we need the
following technical result.

Proposition 1.3. Let H be a semisimple subgroup of SO(n) with connected normaliser N(H).
Consider M™ a smooth manifold carrying an N(H)-structure. Then, there is a splitting

AT*M =hdht,
where § is the associated N(H )-vector bundle with fibres the Lie algebra of H.

Proof. The Lie algebra of the normaliser N (h) splits as the direct sum of h and its centraliser
C(h). Since N(H) is connected, its action preserves this decomposition. O
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The idea is to consider connections whose curvature F4 is a section of h ® gp. In other words,
we are interested in solving the equation 7=+ (F4) = 0, where 7t : A2 = ht. Thus, we need to
characterise the subbundles h and h'. Since we assumed H is semisimple, its Killing form is an
element of S2h, invariant under N (H), so it extends to a section S?(h) C S2Q?(M). Therefore,
it naturally defines a 4-form 2 by composing with the alternating map Alt : S2Q?(M) — Q*(M).
We now assume that H is simple, rather than just semisimple. The discussion could be easily
adapted to the semisimple case. However, we are not aware of any case of interest where the
group H is semisimple but not simple.

Given the 4-form  there is an induced N (H )-equivariant map on 2-forms Aq(83) = *(5 A *Q).
Since H is simple, by Schur’s Lemma, the subbundle b is an eigenbundle of Aq(B) of eigenvalue
u € R. Assuming u # 0, we can rescale §2 to ensure u = —1 as needed. In all cases of interest,

the following is true.

Lemma 1.4. Let H be a group from Table[f Then,

(i) The bundle b is the unique (—1)-eigenbundle of Ag.

(ii) All remaining eigenbundles of Aq have non-negative eigenvalues.

The proof is a case-by-case linear algebra exercise that we omit.

n H K Q Geometry

4 SU(2) SO(4)) vol -

2k SU(k) U(k) “’72 Almost hermitian

4k Sp(k) Sp(k) M Almost hyperhermitian

4k Sp(k) | Sp(k)Sp(1) Q Almost quaternionic hermitian

7 G e (0 Go

8 Spin(7) | Spin(7) P Spin(7)
2k+1 | SU(k) 1 x U(k) “’72 Transverse almost hermitian
4k +3 | Sp(k) | 13 x Sp(k) M Transverse almost hyperhermitian

Table 4: Admissible geometries

More generally, we are unaware of any general criteria or argument that establishes which
geometries the statement above holds for. Now that we have our candidate instanton equation,
we can verify under which conditions it implies the Yang—Mills equation. Let A be a connection

whose curvature satisfies the equation
FA—I—*(FA/\*Q):O. (9)

By the Bianchi identity, the Yang—Mills equation for a connection satisfying Equation @ re-
duces to
dy * (FA) = —dA(FA/\*Q) =—FaNd*xQ.

Therefore, we define
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Definition 1.5. Let (M, g,2) be a Riemannian manifold endowed with an N (H )-structure with

associated 4-form Q. Moreover, assume that
T(h) C{Be|BAdxQ=0} . (10)

Then Equation @ will be referred to as the Q-instanton equation. A connection satisfying the

Q-instanton equation will be called an Q-instanton.

In particular, if the 4-form is coclosed, Lemma [1.4] implies

Proposition 1.6. If H is one of the groups of Table [{] and Q2 is coclosed, Q-instantons are
global minima of the Yang—Mills functional.

To prove this, it is convenient to introduce the {2-charge of the principal bundle P:
1
CQ(P) = —/ TI‘(FA /\FA) A %€ .
2 u

Chern-Weil theory implies that co(P) = 1o ((c}(P) — 2c2(P)) U [%Q)], [M]) is a topological

1672

quantity.

Proof. Let —1 = \g < A\; < ... < A\; be the eigenvalues of Ag = *(- A xQ2) by virtue of Lemma
and 7; : A2°T*M — A?T*M the projection to the eigenbundle corresponding to A;. Then

ca(P) = (Fa,x(Fa A%Q)) 2 = - Nillmi(Fa)l[72> —[[Fall7: -

7

Thus, HFAH%QZ co(P), with equality if and only if 7;(F4) = 0 for ¢ > 1, as needed. O

If the manifold carries multiple N(H )-reductions, we can define the charge difference, allowing
us to obtain topological rigidity statements. The idea was first introduced by Lewis in his PhD
thesis [Lew98|. Assume that (M, g) admits two compatible reductions, with groups H; C Hs
from Table 4| and such that d(22 — 1) = 0. We define the relative charge of a bundle as

D(P) = /M Te(Fa A Fa) A (Q — Q1) . (11)

Once more, Chern-Weil theory guarantees that D(P) is a well-defined topological quantity. If
both €; are closed, then D is simply the difference of charges cq,(P) — cq, (P). As a corollary,

we have

Proposition 1.7. Let P be a principal bundle such that D(P) = 0. Then, Qq-instantons and

O -instantons coincide.

Proof. Since we assumed the reductions were compatible, all Hs-representations carry an in-
duced Hi-representation, and the symmetric operator d(5) = *(8 A x(Q2 — Q1)) can be decom-
posed into irreducible Hi-representations d(8) =Y, puimi(53).

If B is a (—1)-eigenform for Q9, then the u; that contribute to d(3) are all strictly positive, since
(—1) is the smallest eigenvalue for both Aq,, by (i) in Lemma
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Thus, if D(P) =0 and A is an Qs-instanton, we have

0=D(P)= meFA)sz 0,

so ||mi(Fa)||>= 0, and A must be an Q-instanton. The converse is straightforward. O

These topological rigidity statements are common in the literature, and they all follow a similar
argument, for instance [DW19, Prop. 7.1] and [Joy00, Thm. 10.6.1] in the context of calibrated
submanifolds and special holonomy, respectively. We give two applications of Proposition
The first one is straightforward:

Corollary 1.8 ([Lew98, Thm. 3.1]).

(i) Let (M?, g,w,p) be a Calabi-Yau fourfold, and E — M a vector bundle admitting a
Hermite—Yang—Mills (HYM) connection. Then all Spin(7)-instantons on E are HYM.

(ii) Let (M*" g,w;) be a hyperkihler manifold and E — M a vector bundle admitting a hyper-
Hermite—Yang-Mills (hRHYM) connection. Then all HYM connections on E are hHYM.

Proposition 1.9. Let (M™,g,Q) be a manifold carrying an admissible N(H) structure with
associated 4-form §2 closed, and let E — M a Hermitian vector bundle admitting an 2-instanton.
Let T* be a flat torus of dimension k and denote by m : M x T* — M the trivial fibration.
Assume the product metric on M x T admits an N(I/'{\)—structure with characteristic 4-form Q,
compatible with N(H) and such that the difference Q — 7%() is ezact.

Then the moduli spaces of irreducible instantons are related by
Mgred (F*(E)) ~ Mgred(E) < T* ’

where T™* denotes the torus dual to T'. In particular, to every Q-instanton on ™ (F) we can

associate an Q-instanton on E — M.

A particular case of this Proposition is the main topic of Yuanqi Wang’s paper [Wanl18b|, where
he considers the cases CY'3 x S' and Go x S'. Other cases of interest, that have not appeared
in the literature as far as we are aware, are CYn x T2 and K3 x T3.

Proof. Consider O and 7*(2)-instantons on M x T*. Since Q- () is assumed to be exact,
D(7*(FE)) vanishes and Proposition [1.7/implies that the two instanton conditions are equivalent,
so Mg = My-(q).

Let df; € Q'(T) denote a basis of parallel 1-forms on the torus 7%. We have an injective map
Mq(E) = Mzxq)(7*(E)) induced by pullback. More concretely, we have the map

MGTUE) x T* — MIIE (7 (E))

k
(A, i) = 7 (A) +0 > pido; .
=1
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We construct an inverse to this map, assuming the connection A is irreducible. Let A be an
irreducible 7*(€2)-instanton and &; be the dual vector fields to df;, which are Killing since df;
are parallel and the torus is flat. We have that & F4 from 7*(€2)-instanton equation.

Let é the horizontal A-lift of &;, each of which generates an R-action on P, so together they
generate an abelian subgroup K inside the gauge group G since [5,5} =F A(é,g) = 0. The
group K preserves the connection A since

L-A=&.F4=0. (12)

We need to understand the obstruction to the K-action inducing a T*-action. For each of the
generators §;, we have an associated gauge transformatio gy € G fixing A, which will act by
multiplication e for ;i € R*. The connection A = A — i2§:1 widf; also satisfies ,CgA =0,

and for each j we have g7 = idg, so A descends to a connection on E — M , as needed. O

1.1 Instanton deformation theory

We now turn to the deformation theory of Yang—Mills connections and instantons. Let A
be a Yang-Mills connection (respectively an instanton). We want to understand under what
conditions, for a perturbation «, the connection A + « is again a Yang-Mills connection (resp.

an instanton)?

The general approach is to apply the Implicit Function Theorem (IFT) for Banach Manifolds (cf.
Theorem [3.13)) after choosing appropriate Banach completions of the domain and co-domain.

In the Yang-Mills case, we are interested in the map f(A) = d%(Fa). At a Yang-Mills connec-

tion, we can use the structure equation to write f as
1 1
f(A+a) =d4(Fa+daa+ §[a,a]) = dhdaa + gdjl([a,oz]) )

where the linear and quadratic terms are clear. To apply the IFT, we need the linear part to
be Fredholm, which is false due to the gauge invariance of f. However, we have

Lemma 1.10. Let A be a Yang—Mills connection. The map dydac fits in the elliptic complex
0 da. 1 dida 1 N
0—Q%(gp) — Q' (gp) —— QU (gr) —> Q(gp) = 0.

The proof is standard and well-known. Notice that this complex is self-dual, so that any
deformations will be a priori obstructed, and so one would expect generic moduli spaces to
consist of points. However, if A happens to be an instanton, we can generally hope to have a

moduli space of positive virtual dimension, as we will discuss now.

In the instanton case, we want to consider f(A) = 71 (F4). As before, the structure equation
implies that, at an instanton A, we have

F(A+a) = m-(Fy + daa + %[a, a]) = - (daa) + %WL([Q, a]) .

Thus, we must prove that the map 7+ (d 4« ) is Fredholm. We have the following result, stemming
from the work of Reyes-Carrién |[Rey9§]:

2This corresponds to the notion of broken gauge transformation in [Wan18b)|
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Theorem 1.11. Let (M",g,Q) be an n-dimensional Riemannian manifold with an N(H)-
structure, where H satisfies Lemma and corresponding associated 4-form ). Denote by
H C Q*(M) the (graded) ideal generated by sections of b and assume it is a differential ideal,
i.e. df]\ C E Then, for any Q-instanton A:

(i) The differential of f(A) = w+(Fa) is given by df | 4(a)) = 7t (dac). It fits into the complex

7t oda

0= 0%gp) & Ol (gp) 2%, 02 /p(gp) T2, (13)

(i) The complex is elliptic.

The first claim is a main result of Reyes-Carrion [Rey98|, whose proof we will sketch. The
second claim is proved in many cases of interest in the literature (cf. [Rey98|) by a case-by-case
computation. We present a short and simple general proof that, to the best of our knowledge,

has not appeared in the literature before.

Proof. The first claim is premsely the discussion from Section 2 in [Rey98|. The idea is that
the differential condition dh C f) is necessary and sufficient to have a short exact sequence of

complexes

0— (h,d) = (U(M),d) — (¥ (M)/p, 7 0d) = 0. (14)

Explicitly, this corresponds to

0 > 0 0 y T(h) ——— T(HAAY) ———= T(hAAY) — ...
L | l l
0—— 0 4y 4,02 4,0 o ... (15)

RN i

0 —— 0 4o ot =2 pphy T2d p((h A AL T2 T((h A A2 T2

Suppose one twists the previous complexes by an -instanton A. In that case, the bottom
complex remains a complex, since d4 = F4 € I'(h) C bh by assumption, and is precisely the
complex we are interested in. We refer the reader to [Rey98| for further details.

To show ellipticity, we need to show that the complex of vector spaces (A*(T *M)/ b, mt &N ))

is exact whenever £ # 0, where 6 is the ideal generated by h. From the short exact sequence of
complexes , we have

— (66N ) = (NT*MEN ) — (A*T*M/b, 7 (EA)) = 0.

Using the 2-to-3 property, the claim is equivalent to proving that the leftmost term, (6,5 A,
is exact. By induction, it suffices to check that the map b A3 M is injective for £ # 0,

i.e. h has no decomposable elements.

Indeed, let f = & A a € b decomposable, so f A S = 0. Since b is the (—1)-eigenbundle of Ag,

we have

0=BABAQ=(8,Aa(B)) = -8 O
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The remaining question is under what conditions on the N(H)-structure do we have
(i) that the ideal b is differential and,
(ii) that every 8 € b satisfies A d* Q =0,

ensuring instantons are Yang—Mills connections. The following is an immediate first result:

Proposition 1.12. If (M™,g,Q) has holonomy contained in N(H), conditions (i) and (i)

above are satisfied.

Proof. The holonomy condition implies that € is parallel, so d * @ = AltoV(xQ) = 0, and
condition is trivially satisfied. Similarly, the bundle b will be parallel, and differentiability
of the ideal /h\ follows by the same argument. O

For a systematic approach to these questions, it is convenient to consider the intrinsic torsion
associated with the N(H)-structure, discussed in the Appendix Using Lemma Reyes-

Carrién proves

Proposition 1.13 ([Rey98, Prop. 8]). The obstruction to the ideal H being closed under the
exterior derivative is given by the map

0:1(h) ' w0 A 08 TS ((hAAlt) |

which depends only on the intrinsic torsion T of the N (H)-structure.

We conclude the section by considering how the deformation complex looks in three special
holonomy instances: when the holonomy is contained in Spin(7), G, and U(k), the latter being
simply Kéahler manifolds.

The case of Spin(7)-holonomy was first studied in detail in the PhD thesis of Lewis [Lew98].
Let ® denote the associated parallel 4-form. The deformation complex is

d 7td
0— Q%gp) = Q' (gp) — Q3(gp) — 0, (16)

where the projection map can be written down explicitly as 7+(8) = %[ﬁ +x(®AB)]. As
already remarked by Lewis, this can be identified with the twisted Dirac operator D4. Since
this is a 3-term complex, the virtual dimension of the moduli space of instantons coincides with

minus the index of the complex .
For the G4 case, let ¢ denote the parallel 4-form. The deformation complex is

d mtd mtd
0— Qo(gp) 4 Ql(gp) L o4, Q%(gp) L4, Q‘{’(gp) — 0.

Using the isomorphisms Q2 2 Q! and QF = Q° (cf. Lemma|A.16]), one shows it is isomorphic to
d *(PAda- d
0 9°(gp) 4 0 (gp) "% 0 (gp) 2 0%(gp) 0. (17)
The complex above can be thought of as the linearisation of the Ga-monopole equation

«(FAAU) +daf =0 (18)

for a connection A and a Higgs field f. Akin to the case of 3-dimensional monopoles, we have
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Lemma 1.14. Let M7 be a closed 7-manifold and consider ¢ € Q3 a coclosed G-structure
(dip = 0) on M. Then the forgetful map (f, A) — A mapping Ga-monopoles to Ga-instantons
is surjective, and its fibre can be identified with infinitesimal automorphisms of A.

Proof. Acting by d% on the monopole equation, we get Ayf = 0. Integrating by parts the
condition (Aaf, f)r2 =0, we get daf = 0 as needed. O

Finally, for the Kihler setting, let w be the Kihler form and A : QF — QF=2 the adjoint to
wedging with w, A(8) = *(w A x3). The deformation complex can then be written as

(2,0) (4, 2(3,0) (4 5.
0 — Q%gp) 5 0l (gp) T A HAAL 0 20+02) () @ 0%(gp) © (W) LAl CZ7ONN
After complexification and using the Ké&hler identities, one finds that the complex above is
isomorphic to the twisted Dolbeault complex:

0= 0%gp) 24 010, 1)(gr) 245 002 (gp) 245 QO3 (gp) = ... (19)

In the context of gauge theory, this first appeared in Kim’s PhD thesis [Kim85|. In all the cases
above, it will be useful to consider the “rolled-up” operator to the deformation complex, which
coincides with the natural Dirac E| operator twisted by A.

2 Instantons over cones

We now focus on studying the model version of our conically singular problem, instantons on
a cone. For the remainder of the section, we take (X"~!, g) a closed Riemannian manifold with
n >4, (C(X), gc) its associated metric cone and P a principal G-bundle over C'(X). We assume
throughout that G = U(k) for simplicity, as before. Since R is contractible, we can identify P
with a principal G-bundle over X, Py, (cf. Section [3]) via a principal bundle isomorphism.

Given a connection A on P, we say that A is in temporal gauge if the local connection 1-form of
A has no dr component, A, = 0, under the principal bundle isomorphism identification above.
Given any connection on P, we can always find a family of bundle isomorphisms for which A
is in a temporal gauge, by parallel transporting the gauge along the R direction. To do so, it
suffices to find a gauge transformation g solving the ODE

g o9+ A, =0.

For the remainder of this section, we will assume all connections are in temporal gauge. A
connection A in temporal gauge should be interpreted as a family of connections Ay (r) on Px.

The curvature of A in temporal gauge is
0A
Fao=drAN—+ Fyu,
or

where Fy is the curvature of A as a connection over Ps; for each r. A connection A on Ps can
be pulled back to a connection on P. In the temporal gauge, it should be viewed simply as the

3Recall that Spin(7) and G2 manifolds carry a natural spin structure, and Kihler manifolds carry a natural
spin‘-structure, so they all carry an associated Dirac operator.
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constant path. This connection on the cone will be locally represented by a (—1)-homogeneous
1-form, and its curvature will be a (—2)-homogeneous 2-form, as defined in the introduction (cf.

Definition .

Let us now study the instanton equation in the cone. We will assume that the cone C(X)
carries an admissible frame bundle reduction and that the associated 4-form €2 is co-closed.
The reduction of the cone frame bundle induces an N (H )-reduction on the link X.

Recall that the (n — 4)- form *Q can be written as
#Q = 4 (dr/\'f—i—5> ,
T
with T € Q"3(¥""1) and = € Q" 4(¥"~!). The condition d * 2 = 0 on the cone reduces to
dY = (n—4)= d= =0, (20)

where the former condition implies the latter since n > 4.

The Q-instanton equation xc(Fa A xc§2) = —F4 in temporal gauge becomes
x(ropA) =EANFa, (21a)
—THANE=*xF4+FoaNT. (21b)

In particular, we can combine the two to obtain the constraint:
Fa++(FaNT)=%x(ZA*(ZAFy)) . (22)

This identity is purely linear, forcing a pointwise condition on the curvature. In other words,
Equation forces the curvature F4 to be a section of the bundle

L={BeNX)|B++(BAY)=xEA*(ZAB))}. (23)

We refer to L as the cone bundle and say that its sections satisfy the cone constraint.

We lack a priori geometric intuition for the role this subbundle plays in general and can only
justify it through a case-by-case analysis. However, we have the following general observation,
using the map:

LE:A1—>A2
a— *(2Aa)

Lemma 2.1. Assume that A' does not contain any N(H)-representations isomorphic to b.

Then the cone bundle L in satisfies h C L C h @ Lz(Al).

Proof. The map Az : A? — A! given by B +— *(Z A B) is the adjoint to Lz, up to a constant.
By the assumption, we have that § must be contained in the kernel A=, so h C L.

Similarly, consider the decomposition A2 = h @ L=(A') @ V, with V = [L=(A!) @ h]*. Then,
it follows that Az(V) = 0. The claim follows from the N(H)-equivariance of the maps Az and
Av. O
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In all three cases of interest, one has L =2 b @ Lz(A%).

If we assume that A is a (—1)-homogeneous connection on P, the instanton equations
reduce to

#«(FaNT)=—Fa, (24a)
FAANE=0. (24b)

Under Equation (24a)) and the cone-closedness condition dY = (n — 4)=, Equation (24b]) is
equivalent to the Yang—Mills equation on >:

dZFAZ—*dA*FA:*dA(FA/\T)Z(n—4)*<FA/\E):O.

In particular, we have that a (—1)-homogeneous solution to Equation is a xY-instanton.
Using the (n—4)-form E on X, we can define a Chern-Simons—type functional. Fix a background

connection Ag, and for a connection A, let « = A — Ay. We define

1
CSE(A):/CSO(A,AO)/\E: /T&«(Fj—Fj AT, (25)
p) n—4Js 0

with CSy(A, Ag) = Tr (a A (FA + %dAOOz + %a Aa A a)) the classical Chern-Simons 3-form.
Notice that the functional is well-defined modulo gauge, unlike the 4-dimensional (cf. [Don02])
and cylinder case (cf. [DS11]).

The Chern-Simons functional had appeared in the literature for the nearly Kéhler (|Xu09]) and
nearly parallel Go (|[Wal22]) cases, but their treatment is not as detailed as the one here. The
first result that motivates the interest in this functional is the following:

Proposition 2.2.
(i) The gradient flow of C'Sz in is given by A = (—1)" x (Fa A E).
Assume further that the cone constraint s preserved under the gradient flow.

(ii) A connection A on C(X) is an Q-instanton if and only if the induced family A(r) on the
link % evolves under the gradient flow of the Chern Simons, with the change of variable

t =log(r).
(iii) In particular, Y-instantons are the critical points of C'Sz that satisfy the constraint .

Remark 2.3. All relevant examples satisfy the condition that the cone constraint is preserved
under the gradient flow. However, we have not succeeded in removing this assumption altogether

or replacing it with a more geometrically natural condition.
Proof.

(i) The first variation of C'Sz is given by

0 1
5= =0

4/2Tr(d14a/\FA/\T):<a,(—1)”*(FA/\E)> .
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(ii) Under the cone constraint (22)), Equation (21a) implies (21B). The claim follows by
considering the Chern-Simons flow under the change of variables t = log(r). O

At a critical point, one may study the second variation of the Chern-Simons and Yang—Mills
functionals. First, recall

Lemma 2.4. Let A be an Y-instanton on (X, g). Then

52
sad3

CS= :/ Tr(BAdaaNE) = (B,(—=1)" % (daa A E)) , (26)
b
Thus, we consider the associated endomorphisms
Dy(a) = (=1)" % (daa A E) (27a)
Sala) = dydac+ {Fa,a} . (27b)
They satisfy the following relation:

Proposition 2.5. Let A be an Y-instanton, and consider the space
C={ac Q' (gp)| daa € L},
the space of infinitesimal deformations satisfying the cone condition . For a € C, we have

Sa(a) = Di(a) = (n—4)Da(a) . (28)
In particular, we have the bound Salc> — (%‘4)2, and the index and nullity of the gauged fized

operator E’Z = 5S4 + dad’y satisfies the lower bounds

Indy > ) dy Nuly > do + dp_y - (29)
Ae(0,n—4)

with dy = dim{«a € C| Da(a) = A, diya =0} .

Proof. The proof is a straightforward computation using the Leibniz rule, the cone condition
dY = (n — 4)E and the cone constraint (22). Expanding D%, we have

D%(a) =% (EANdg* (EAdga)) = (-
=d} [daa + (T ANdaa)] = dydaa+ (—1)" x da(T N dac)
=dfdaa+ (=1)"(n —4) x (EANdaa) — * (T A [Fa,al)
=dhdaa+ (—1)"(n —4) * (EANdaa) + * ([xFa, o))
=S4+ (n—4)Dy,

D" xdgx*x(EN*(ENdaa)

where we used the linearised cone constraint, i.e o € C, from the first to the second line and
the Y-instanton condition in the second to last line. The lower bound for S4 follows from
completing the square.

When restricted to C, the operators D4 and S4 commute by the above computation, and so
they admit a common basis of eigenvectors. The index and nullity estimates are simply the

index and nullity of S A restricted to C via the eigenvalue count of Dy. O

25



We have the following, more general computation:

Proposition 2.6. Let A be an Y-instanton. There exists constants C; € R such that

Sa(@) = Di(a) = (n = 4)Da0) =i Y Ci (w1 (dao)) (30)

where Lf- form the direct sum decomposition of irreducible N (H)-representations of L+ and g

1s the bundle projection map to the corresponding bundle B.

Proof. The proof is again an application of Schur’s Lemma. Since both maps (T A -) and
*(E A -) are N(H)-equivariant, there exist constants C; such that for any 8 € A?

*(EAKEND) =B+x(TAB)+ > Cimpi(B).
Now, substituting in the previous proof, we have

Di(a) = diy |daa + +(X Ndaa) + Y Cimpi (dac)

)

The proof follows by reproducing the computations above. ]

Remark 2.7. The results above can be further generalised to arbitrary Yang—Mills connections
by adding terms of the form (1 + X)) {m;Fa,a}, where m; are the projections to the irreducible

representations orthogonal to by and \; is the corresponding eigenvalue under the map (T A -).

Along C, the above computations read like Weitzenbock formulae between A 4 and (D A — ”774)2.
This compares to the case when the manifold carries a special holonomy metric, and the
Weitzenbock formulae relate A 4 and D124. For example, if we consider holomorphic deformations
of a HYM connection, we have

Sa(e) = 205, a.

The challenge is therefore, going from C to Q'(gp) and finding a way of working with the
generalised Weitzenbock formula of Equation (30). We do not know any general criteria or
strategy for doing so, and so our discussion comes down to a case-by-case study of Table
(cf. Table . Before proceeding, we present two additional applications of our Weitzenbock

Geometry b L
Sasakian A((]l’l) nAAY@ ALY
Nearly Kahler A% A% &) A%
Nearly parallel Go A2, A?

Table 5: Characteristic bundles associated to special holonomy cones

formula. An interesting first corollary of the previous discussion arises by combining the results
for the trivial connection with a Bochner—Weitzenbdck identity. To this end, we first introduce
the following operator.
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Definition 2.8. Let (X" ! g) be a closed Riemannian manifold. The divergence operator is

div : Sym? — Q!
h+—c oVh,

where ¢ : Q' ® Sym? — Q' is the usual contraction map.

The adjoint to the divergence is div*(X) = —%ﬁ x9g. We have the following identities

Lemma 2.9 (Bochner formula). Let (X"71 g) be a closed Riemannian manifold. Then the

Hodge Laplacian on 1-forms satisfies
AX = V*VX + Ric(X) = 2divdiv*(X) + 2 Ric(X) — dd* X . (31)

Proposition 2.10. Let (X", g, Y, =) be the closed link of a special holonomy Ricci-flat cone,
s0 Ric(g) = (n — 2)g and the condition *(EA ) =0 for B € L* holds. Let

Ex ={a el curl(a) = Aa} .
Then,

(i) For A\ #0, &, C Q! 4 and we have & = dQ°.

coclose
(ii) For A € (—2,n —2)\ {0}, we have £\ = 0.

(iii) We have E_9 & E,—o = isom(M,g) NC.

Proof. Recall that the curl operator respects the splitting C®C* since curl : C — C by definition
of C, and since it is self-adjoint, we must have curl : Ct — C+. If X # 0, the coclosed condition
follows by direct differentiation, Ad*a = *d(Z A da)) = 0.

From Proposition it follows that ker(curl) C C. Now, Equation implies that, for
a€ &y CC,

d*da = D*(a) — (n —4)D(a)+ = [N> = (n —4)N] a.
If A = 0, we have ||da||?= 0, and so a € d2°, since H'(X) = 0 by Myers’ theorem. If X\ # 0, «
is coclosed and taking norms on Equation , we get
A2 — (n—4)\

=D (9]l

1 ok
exglP= lldiv*(@)|P= |

Solving for A, the second claim follows.

Finally, « € C is dual to a Killing field if and only if it solves the equation d*da = 2(n—2)a, and
the claim E_o ® &, 2 = isom(M, g) N C follows from the Weitzenbock formula again. O

The fact that infinitesimal isometries are divided into two classes raises the question of the
significance of each class. Indeed, we have the following:

Proposition 2.11 (Prop. |A.11)). Under the assumptions of Proposition the space €_o

corresponds to aut(X, g, T, =), the Lie algebra of infinitesimal automorphisms.
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A case-by-case discussion and proof are included in the Appendix for nearly Ké&hler, nearly
parallel G5 and Sasaki-Einstein structures in Lemma Lemma and Proposition
respectively. Moreover, from that discussion, one can further conclude

Proposition 2.12. Under the assumptions of Proposition if (3,g) does not have constant
sectional curvature,
isom(M,g) = E 2B Er—2 .

The argument for this result is somewhat unsatisfactory, and we believe there should exist a
general, direct proof that isom(M, g) C C. However, we have not been able to find one.

Similarly, we can consider the following generalisation of Simons’ result. For a connection A,
consider the 1-forms given by a.F4 € QY(%, gp) for a € QL.

Lemma 2.13. Let A be a Yang—Mills connection. The 1-form aaF 4 satisfies the Coulomb gauge
condition whenever « is closed. Similarly, if A is an instanton, it suffices that doo € T'(hr) .

Proof. Using the condition d’ F)y = 0, we have
d5(aFa) = (1) 2 s dy (xFa Aa) = (=1)" 2% (xF4 Ada) = (=1)""2(Fy, da) .
If dao = 0, the claim is clear. If A is an instanton for an N(H)-structure, F4 € I'(h @ gp). O

Let A be an T-instanton and « € Qilosed, and set & = auFy. By direct computation using the

Leibniz rule, we have

)
D" Ve dal(asE) AFa]l = (1)1 (LaZE A Fa)
)" [(VaZE + Loag), E A Fy

)" % (@AY AFL) + (=) % [(L209), EA Fa]
= —aux (T AFa) + (=1)" " % [(L209), E A Fal

= a+ (—1)"" % [(L209), EAFA]

where we used the identity Lx= — Vx= = (VX), in the third line, and the fact that links of
special holonomy cones satisfy Vx= = —X A T in the fourth line.

Therefore, we are interested in the space

GCK = {a € QY ..a(Z" Y| (Lag)sE = fE for f € Q)

closed
of generalised conformal Killing fields. We have proved that:

Proposition 2.14. Let a € GCK. Then Da(&) = —a.

In particular, if we further assume & € C, it follows that Sa(a) = (5 —n)a.

This recovers the well-known Yang-Mills stability result |[BL81, Thm. 7.11] of Simons on the
round sphere S"~! for n > 6 by taking o a conformal Killing field.
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Of course, one would like to have a direct proof that @ € C for all @ € GCK. We could not
find a general proof, but a proof for the nearly parallel G and nearly Kéhler cases follows from
Corollaries and respectively.

One might wonder whether our discussion leads to new examples. Unfortunately, the following

result due to Obata is rather discouraging:

Proposition 2.15 (|Oba7l]). Let (X" 1, g) be either a nearly parallel Go, nearly Kihler or
Sasaki manifold with non-trivial conformal Killing fields. Then X is isometric to the round
sphere S 1.

In the nearly parallel G, we have GCKC = CKC, so there is nothing else to be done. In the nearly
Kaéahler and Sasaki cases, the space Sym%(TM ) splits into multiple irreducible pieces, some of
which act trivially on =, so one might hope that GCK is in general non-trivial in these cases.
We conclude this section with one final application of Proposition 28] Assume the cone
constraint is preserved under the gradient flow of the Chern—Simons functional. Consider
A(r) a gradient flow line with well defined Y-instanton limits Ay = lim, 0 A(r) and Ay =
lim, oo A(r). We make the following definition:

Definition 2.16. The spectral flow of the family A(r) around k is the algebraic intersection
number (with multiplicity) of the spectrum of the operator D,y — k with the zero axis. We
denote it by SpecFlow (A, k).

Then we have the following result:

Proposition 2.17 ([KMO7, Prop. 14.2.1]). The virtual dimension of the moduli space of Q-
instanton at A = A(r) with the same asymptotics is equal to SpecFlow(A,0).

By direct application of Proposition we have
Indij’loo - Imdi0 = SpecFlow(A, 0)—SpecFlow (A, n—4) = dimy;, (Mq(A))—SpecFlow(A,n—4) ,
where Inch is the Yang—Mills index of A restricted to the subspace C. Thus, we ask

Question 1. Does the shifted spectral flow SpecFlow(A,n — 4) carry any natural geometric

significance?

We proceed to specialise the preceding discussion to three cases of interest: nearly parallel G,
nearly Kéhler and Sasaki structures. We focus on the former two and include the latter as it

presents some interesting differences.

2.1 Holonomy Spin(7) cones

We start with the case where the cone has holonomy contained in Spin(7), so (X7, g) carries
a nearly Go-structure. Let A be a Go-instanton on 3. To be consistent with the existing Ga-
geometry literature, the 3-form Y will be denoted by ¢ and the 4-form = as i for the remainder
of this section (cf. Table . The Spin(7)-cone case is straightforward due to the following

observation.
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Proposition 2.18. The cone constraint s trivial. In particular, it is trivially preserved
by the Chern-Simons gradient flow and Equations (24a) and (24b)) are equivalent.

Proof. In the terminology of Section we have T = ¢ € Q3(X7) and Z = ¢ = xp € Q7).
Then, the cone constraint become B+ (8 A @) = (1 A x(¢ A )), which is the identity in
Lemma [A.1§ O

In particular, we have

Corollary 2.19. The stability operator Sy is fully characterised by D4 via the relation
Sa(a) = D%4(a) —4Dy() . (32)

The index and nullity of §A = Sa +dad}y are given by the equality case of Equation .

Remark 2.20. The relation was first introduced in [Wal22] with a typo.

To conclude this case, let us study the mapping properties of the deformation operator D A =

(d*,m70da) : Q' (gp) — Q°%(gp) ©N2(gp) on the cone. These computations were carried out in
[Gho24| from a spinorial point of view. First, we need the following technical lemmas:

Lemma 2.21. Let 3: rdr A o+ 128 be a homogeneous 2-form on a Spin(7)-cone. The map

702, (C)— Q%)

homo

~ 4~
Brs —da=—"0,.3

is surjective, and 2-forms of type 21 span its kernel. Moreover, it is a homothety on the image

by a factor of 1/4, i.e. we have

1.
Imz(B)lIe= IR B
where m7(8) = 1[B + *(® A B)] is the projection map.

Proof. Clearly, the map is surjective. By dimensional count, its kernel has dimension 21. The
map t(a) = rdr A a + 72 % (1 A @) is a right inverse for 7 up to a constant; so it suffices to
prove that its image is contained in Q2(C). From Lemma this is equivalent to proving
that *c(® A t(a)) = 3i(a). Indeed

%0 (B A () = *c[(r3dr Ao 4+ ') A (rdr A a4 1% % (P A Q)]
=xc [rPdr A (@ Ax(h Aa) + ¥ Aa) + 10 Ax(h A )]
:3(rdr/\a+r2*(1/1/\a)) ,

where the last line follows from the G identities (iii) and (iv) in Lemma Finally, by
Lemma once more, we have

le(@)[[&= llod[S+H [+ A @)l [E= 4l]al; - ]
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Remark 2.22. Notice that the choice of constant —4 has no a priori geometric significance but
1s helpful to make D manifestly self-adjoint.

Using this identification, we can prove the following:

Proposition 2.23. Let & = r* (fdr + ra) be a A-homogeneous section of Q*(C, gp), with A a
Go instanton on the link. Then, under the identification above, we have

b\A : QO S Ql(z’gp) - QO D Ql(zng)

—(A+7) a f
(f’a)H< da —*(1/1Ad1¢3—()\+1)) <a) (33)

Proof. From Lemma [3.2] we have

daa = r*H! {d’r

" A(()\+1)adAf)+dAOé:|

dha ="t (da— A+ T7)f) .
Using the Cayley 4-form ® = r3dr A ¢ + r*4, we have
xo (P Adad) = ¢ [(r?’dr Ap+ r4¢) A (r/\_ld'r AN+ 1Da—daf) + T’\dAa)]

=50 [ A G Adaa+ 6 A3+ Da— daf)) + 6 A dacl

d
= pAHl [% Ax(p Ndaa) +* (@ Adga+ P AN[(A+ 1)a — dAf])}
Now, using the identification from Lemma [2.21] we have
momr(daa) =daf — (A4 1)a— (1 Adaa) . O

The following gives a natural geometric interpretation of the kernel of D 4 in a certain range.

Lemma 2.24. Let A be a Go-instanton on ¥. For A € (=7, 1), if @ = r\(fdr + ra) is a \-
homogeneous section in the kernel of ﬁA, then f =0 and a is an eigenvector of Dy = x(1 Ady-)
of eigenvalue —(A + 1).

If A is the trivial connection, the same applies in the range \ € (—8,0) with the difference that

for \=0, f can be constant.

Proof. By Equation , we need to solve
dya=MN+T7)f, daf =+ Ndaa)+ (A +1)a.
Acting by d¥ on the equation on the left and substituting the right one, we have
Apaf=—*(WA[Fa,a])+ A+ 1Ddha=AN+1)A+7)f,

where we used the instanton condition F4 A 1) = 0, so the curvature term vanishes. The claim
follows from the positivity of the Laplacian. If A is trivial, the improved bound is a corollary
of Obata’s theorem (cf. |[Oba62]). O

Notice that the previous lemma is essentially a twisted version of Prop.

31



2.2 Holonomy G, cones

We now move on to the case where C'(X) is a metric cone with holonomy contained in G2, so
(X, g) carries a nearly Kéhler structure, considered previously in the literature by [Xu09] and
[CH16|. To be consistent with the existing literature on nearly Kéhler manifolds, the 2-form T
will be denoted by w and the 3-form Z as p for the remainder of this section (cf. Table . We
also set p = xp, its Hodge dual, to maintain consistent notation with the rest of the thesis (cf.
Section @ From Lemma we have

Lemma 2.25. The cone bundle is L = {8 € Q*(gp)| w? AN\B=0} 2 Q2 O = (w)*.

Proposition 2.26. The Chern-Simons gradient flow preserves the cone constraint.

Proof. The gradient flow is ;A = — % (F4 A p). By the Maurer-Cartan formula, it follows that
O Fa = —dy * (Fa A p). Thus,
;(FA Nw?) = —dax (Fanp) Aw? = —da(x (Fanp) Aw?) = da(Fahp) = —2Fa Aw? . (34)

In particular, the cone constraint is preserved by the flow. O

We give a more geometrically satisfactory interpretation of the cone constraint.

The base manifold X is even-dimensional and carries a closed (n — 2)-form w?/2, so the space
of connections is naturally equipped with a symplectic structure:
w2
W(a, ) = / Tr(a A B) A - (35)
by
This symplectic structure is preserved by the action of the gauge group G on the space of
connections A. In particular, it admits a well-known G-equivariant moment map
I A _>96(M7 gP) = QO(Ma gP)*
» (36)
A—FA N — .
2
One can also consider a second Chern-Simons-type functional
CSs(A) = / CSo(A, Ag) N p .
bX
Proposition 2.27. The cone constraint in the nearly Kdhler case corresponds to the
vanishing of the moment map p in FEquation . Over u=1(0), the instanton equation on the

cone reduces to the Hamiltonian flow of CSj.

Proof. The first statement follows immediately from Lemma [2.25] The first variation of C'Sj is

) .
MCSﬁ—/ETT(aAFA)Ap.

Thus, the Hamiltonian flow with respect to W will be
2

(%A—*(L;/\*(FA/\ﬁ)) =—Jx(FaNp)=—x(FaNp),
where we used Lemmas [A.38 and [A.39] O
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As in the previous case, we have

Lemma 2.28. The nearly Kdhler instanton equations (24a) and (24b) are equivalent. In par-
ticular, critical points of the Chern-Simons functional CS, are automatically nearly Kdhler
nstantons.

Proof. We need to show that the equations
*(FaANw)=—Fyu, Fanp=0

are equivalent. The first directly implies the second (cf. Lemma [A.38]). Now, the second is
equivalent to mg(F4) = 0, and thus to Fq4 A p = 0. Differentiating and using the Bianchi
identity, we have F4 A w? = 0, and the claim follows. ]

Finally, let us discuss what happens at the level of second variations. Since the cone bundle L
corresponds to the kernel of the contraction operator A : Q?(gp) — Q%(gp), we have

Lemma 2.29. Let A be a nearly Kdhler instanton. The linearisation of the cone constraint is
d5(Ja) =0 and C+ = {Jdaf| f € Q%gp)}. Moreover, the subspace C* is an eigenspace of the
operator D 4 with eigenvalue 4.

Proof. The first two claims are straightforward. Let us prove that C' is an eigenspace of Dy.
We have:

DA(JdAf) = — % (dAJdAf /\p) = *dA(dAf /\/3)
2
= «([Fa A7) + 4 (daf £ D)
=4Jdaf,

where we used the relationship JX A p = —X A p in the first line and the instanton condition
on the third. (cf. Proposition |A.48)). O

Thus, Proposition [2.6] takes the following form in the nearly Kéhler case:

Corollary 2.30. Let A be a nearly Kihler instanton. Let & = o+ Jdaf € Q' (gp) with a € C.
Then
(Sa(@), &) = (D3(a) = 3D a(), @) + 4|ldaf|[*+||A(daTda )| (37)

The index and nullity of §A = S+ dad’y are given by the equality case of Equation .

Proof. Since C* is an eigenspace of D 4, it follows easily that (S4(c), Jdaf) = 0. Thus, we only
need to compute (Sa(Jdaf), Jdaf). From Proposition and Lemma we have

(Sa(Jdaf), Jdaf) = (D%(Jdaf) — 3Da(Jdaf), Jdaf) + ||[AdaJdaf|
= 4||daf|*+||A(daTdaf)|]?

where the second line simply follows from Jd 4 f being an eigenform of D4 with eigenvalue 4.

Since S4(Jdaf) is non-negative, and S4(Jdaf) = 0 implies d4f = 0, the eigenspaces of non-
positive eigenvalue are contained in C, and the claim follows. O
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Again, we finish with the study of the mapping properties of the deformation operator D Al
Qgp) @ Q(gp) — Q% gp) N (gp) on the cone. As in the Spin(7)-case, the computation was
carried out in [Dri21] from a spinorial point of view. Using the identification

Omega'(C) = Q°(2) @ QLX) (38)
we prove:

Proposition 2.31. Let f: ™ f € Q%gp) and @ = r (gdr + ra) be A\-homogeneous sections
of Q°(C,gp) and Q(C, gp) respectively. Then, DA(]?, Q) is given by

Dy: e a4 (S, gp) > Q@@ QNS gp)

0 —(A+6) di f
(fig,a) = | X 0 dayJ g (39)
da —Jdy —x(pANda)+ N+ 1)J a

Proof. As in the previous case, from Lemma [3.2] we know
dad =1 [% AN A+ 1o —dag) +daca| ,
dha = (dha — (A +6)g)
daf =1 [Afcf + dAf} :

Plugging in v = —r3dr A p+ 7“4%2, we have

2
xc (Y AN daQ) = *¢ Kr?’dr Ap+ 7‘4602> A (TA_ldr AN+ 1)a—dag) + ’I“AdAOé):|

2 2

:T)\+4*C [‘f/\((";A[(A+1)a—dAg]—ﬁAdAa>+O;/\dAoz}
2 2

= (jnr/\*<w/\dAoz>+*<w2/\[(A-i-l)a—dAg]_PA/\dAO‘)}

2
d

— {T /\d*A(Ja) + ()\—i— 1Ja—Jdag — * (ﬁAdAO‘)}
r

where we used identities from Lemma and Proposition in the last line. O

As in the previous case, we have

Lemma 2.32. Let A be a nearly Kahler instanton and (ﬁ a) € Q@ Ql(gp) be A\-homogeneous
solutions to 514(]?, a). Under the identification (f, a) = (f,g,a) from Equation , we have
that g = 0 for A\ € (—6,—1), and f =0 for A € (=5,0). Moreover, if A € (—5,—1), then « is
an eigenvector of Da = — *x (p A da) of eigenvalue —(A + 1).
If A is the trivial connection, g =0 for A € (=7,0)\ {—6,—1}, f =0 for A € (—=6,1) \ {—5,0}
and « will be an eigenvector of D4 in the range A € (—6,0).
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Proof. By Equation , we need to solve

dya=(A+6)g, (40a)
diyJa = —Af, (40b)
daf —Jdag=*(pANdaa) — (A+ 1) Ja. (40c¢)

Acting by d% and by d%.J on the last equation, we have

Apgf =xda(pANdaa) — A+ 1D)dy(Ja)

2
:—4*<g/MMa)—*@AHﬁ¢@—%A+1MZQa) (41a)
=—(A+5)d;y(Ja),
Apg=—xda(pANdaa) + A+ 1D)da=*(pA[Fa,a]) + (A + 1)d%(a)
=M+ 1)dja . (41Db)

where we use Lemma [A239] and the observation that, for any function h,

2
dyddah = (d3)2(h) = = (14 0 A ) =0,

since F4 is an instanton. Similarly, we have pA[F4, o] = 0 = pA[F4, . Substituting Equations

(40al) and (40b)) above, we get
Apg=A+1)(A+6)g and Apaf =XA+5)f .

The first claim follows from the positivity of the Laplacian. If both f and g vanish, Equation
(40c) reduces to x(pAdaa) = (A+1)Ja. Acting by J and using Lemma we see « satisfies
Da(a) = —*(pANdaa) = —(A+ 1)a, as needed.

If A is trivial, the improved bounds are a corollary of Obata’s theorem (cf. [Oba62]). O

2.3 Kahler cones

Finally, let us discuss the case where the metric cone C(X) carries a Kihler metric, so (X241, g)
carries a Sasaki structure (g,n,w, R, ®), as defined in Appendix In the notation of Sasakian

geometry, we have T =n A % and = = %; and we verify

First, we have

Lemma 2.33. The cone constraint corresponds to the curvature being a section of the
(2,0)+(0,2) )" o 1 L1~ 1 1,1
subbundle (A EnpANHOAY Z2nANNMNH (W) Ay .

Proof. Let 3 € Q2. We can write it in terms of its irreducible representation components:
B=nna+ fo+ 2+ b,
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with 820 € Q20+0.2) and g, € Q(l)’l. Then, using the identities in a Sasaki manifold, we have

*<5AT>=*(ﬁMA(:i;!) = (k—1)fw+ 8*° - B
wk—1 wk—1 !
*(EA*(ENP)) = * (l{:l)!/\*(ﬂ/\(kl)!)l :*(M/\(Ja+kfn))
=nAhNa+kfw.

Collecting the terms, it follows that the cone constraint is equivalent to 26%Y = 0, as needed. [

As in the previous cases, we have

Proposition 2.34. The Chern—Simons flow preserves the cone constraint.

Proof. Denote by 720 : A2 — AR0+02) the projection to the (2,0) + (0,2) component. We
need to show that 70 (9;F4) = 0 assuming 72°(Fy4). Again, by the Maurer-Cartan Equation,
we have O F 4 = dp0yA = dg *x (EN Fy).

Assume that at time ¢, F'4 satisfies the cone constraint, so it admits the decomposition Fq =
n A a+ fw+ Pg. Thus, we need to check that the following term vanishes:

1208, Fp) = 720 [dg % (EAF)] = 720 [dg (Ja + kfn)] = 720 (daJa) .
Now, from the Bianchi identity, we have
daFpy =2wANa—nANdaa+daf ANw+dafy=0.

Now, looking at the irreducible (p, q)-parts, it follows that 72°(d ) = 0. But this is equivalent
to m20(daJa) = 0, as needed. O

Let us now focus on studying the critical points of the Chern-Simons flow. In contrast to the
previous cases, the critical points of the Chern-Simons functional will not necessarily be Sasaki
instantons if the cone constraint is dropped. This raises the question of whether general critical
points of C'S= have some geometric interpretation or significance. We have

Lemma 2.35. Chritical points of C'S= are transverse connections with respect to the Reeb foli-

ation.

Proof. Let A be a critical point of C'S=. We need to show that R_F4 = 0. Now, since = = %
is horizontal (in fact, basic), we have that 0 = Ru(F4 A Z) = (R1F4) A Z, and the claim follows

since Lz : A' — A%*~1 is an isomorphism. O

Thus, locally, we can think of A as a constant connection along the leaves. If the foliation were
quasi-regular, with orbifold base X', then A = 7*(B) — %77, where B is a connection on the base
x and k is the monodromy of the connection along the S'-fibres. The following proposition is
straightforward.

Proposition 2.36. Let M be a quasi-reqular Sasaki manifold and A = 7*(B) — gn be a trans-

verse connection. Then
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(i) The cone constraint is equivalent to B being a holomorphic connection.

(i) The connection A is a critical point of CS= if AFp is constant. In this case k is the degree
of B, deg(B) = 5 (Fp,w).

(iii) The connection A is a Sasaki instanton if and only if B is a Hermite—Yang—Mills connec-
tion.

Proof. The curvature of A will be Fy = 7*(Fg) — kw — 2dk A n. Thus,

(i) The cone condition becomes 0 = 739 (Fp), which is equivalent to B being a holomorphic

connection.

wk—1

(ii) Critical points of C'Sz correspond to (7*(Fpg) — kw) A = = 0. Contracting with w and
using the definition of the degree of F, the claim follows.

(iii) The two conditions above are precisely the Hermite—Yang—Mills equation. O

Even when the Sasaki structure is irregular, one can still make sense of the notions of A being
transverse holomorphic. In all cases, one has a transverse analogue of the Hitchin—Kobayashi
correspondence, as proved by [BH22|.

3 Conical singularities and weighted Banach spaces

We describe the analytic framework necessary to study the deformation problems of interest.
While standard analytical techniques on compact Riemannian manifolds break down in the
non-compact setting, they can be adapted by prescribing appropriate behaviour near the non-
compact ends. The key idea is to introduce weighted versions of the classical Hélder and Sobolev
spaces. On those, we can define a suitable notion of (uniformly) elliptic operators. These will
enjoy similar properties to their counterparts in the compact setup, including nice Fredholm
and index theory, as well as good regularity properties. We begin by motivating this work by
considering the study of harmonic forms on a Riemannian metric cone. We follow the approach
outlined in [Che79] (cf. [FHN21, Appendix A)).

Recall the notion of homogeneous k-forms from the introduction:

Definition 3.1. We will say a smooth k-form ~ on the cone is homogeneous of rate X\ if there
exist a € QF71(X) and B € Q¥(X) such that

y=r " dr Aa+1rFB) .

Equivalently, A-homogeneous k-forms are elements of the representation of weight A under the

natural induced R -action.

Denote by * and ¢ the Hodge star operator on (X, g) and (C(X),gc) respectively. We are
interested in understanding the mapping properties of the associated Laplace operator Ag =
dd*¢ + d*¢d. The obvious approach to this problem is by separation of variables.
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Let v = r/\*’k(% A a+ ) a A-homogeneous k-form. We have the relation

L dr

rory = P (*a +(-FA *5) , (43)

where n is the dimension of the cone. Using this, we get

Lemma 3.2. Let v = TA—HC(% A a+ ) be a \-homogeneous k-form. Then

dy =tk (Cff“ AN+ E)B —da) + dﬁ) (44a)
d*Cry =pATh=2 (—‘i’" ANd*a+d* B+ (k—\—n) a) (44b)
Aoy :MHH% AAa—A+Ek—=2)A+n—k)a—2d*6) (44c)

+ME 2 (AB — A+ K) A~k +n - 2)8 — 2da) .

Thus, one could try to solve the eigenvalue problem Acy = %y by considering forms of the
type v = >, fi(t)vi, where f;(t) belong to a suitably chosen family of smooth functions and ~;
are homogeneous forms to solve. From the Lemma above, this leads to

n—1
Ac(fivi) = fidey — fi'vi — Tf{%’ =12 fi; . (45)

Choosing ~; to be eigenforms of the operator A¢ leads to a Bessel-type equation for f. Thus,
one should take f;(r) to be suitably rescaled multiples of the Bessel functions J,(r). In the
case of harmonic form, v = 0, it suffices to consider functions f of the form f(r) = r*log*(r),
rather than general Bessel functions. More concretely, we have the following result:

Theorem 3.3 ([FHN21, Thm. A.2, Prop. A.6]). Let v = 37" ; (log(r))? with Vo A-
homogeneous k-form. If Acy = 0 then Acvy; = 0 for all j and either m = 0 or m = 1 and
A= 177" Each ~; = rAtk (% Aa+ ﬁ) solves the elliptic eigenvalue problem on the link:

A—(k—2)n+1—-k) —2d* a\) B o)
( 2 A_k(n_k_l)>(ﬁ>_)\(/\+n 1>(6). (46)

Given the discussion above, we see that although it makes no sense to count solutions Agy = 0
in general, one can do so if one prescribes the behaviour of the k-form at either infinity or the
cone singularity. In that case, only finitely many A will contribute, with the multiplicities given
by the multiplicity of solutions in Equation . This behaviour of the Laplacian on the metric
cone carries over to the case where we have a Riemannian manifold with singularities modelled

on a metric cone.

The rigorous theory to treat problems of this nature was initially introduced in the works of
Lockhart and McOwen |[LOS85|, Bartnik [Bar86], and Lockhart |[Loc87]. We will cover the main
results of these papers, adapted to our context. Their study is carried out in the asymptotically
cylindrical case, where the metric near the end converges (in a sense that will be made precise
later) to (R x 3, dt? + gs). We are interested in the case where the metric converges to that of a
cone, (Ry x ¥, dr? +r2gs). Since the two are conformally equivalent under the change t > e,
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up to a global factor e?!, their results carry over to our case. A comprehensive discussion of
their work and its adaptation to the conical case can be found in Marshall’s PhD thesis [Mar02].

The section is organised as follows. We begin by defining the objects of interest, namely,
manifolds and connections with conical singularities. We then discuss weighted Banach spaces
and conclude with a review of the Fredholm properties of (uniform) elliptic operators between
these Banach manifolds.

Manifold with conical singularities

Throughout this section, we assume M" is a non-compact smooth n-manifold and ¥ is a closed
(n — 1)-dimensional manifold. We say M is a manifold with end ¥ if there exists a compact
submanifold M C M and a diffeomorphism f : M \ M — (a,b) x 2.

The idea is to furnish the manifold with ends that have a Riemannian structure resembling a
metric cone on each end. We focus on a particular family of examples.

Definition 3.4. Consider M a compact connected Hausdorff topological space and p1, ..., pm €
M such that M = M \ {p1,...,pm} carries a smooth n-dimensional Riemannian manifold
structure, with metric g.

We say (M, g) is a Riemannian manifold with isolated conically singularities (ICS), with sin-
gularities at p1,...,pm with rates vy, ...,Vy, such that v; > 0, if the following is satisfied for
each i € {1,...,m}: There exist € > 0, open disjoint neighbourhoods of p;, U;, Riemannian
cones C(%;) = (Ry x %, gc) over closed Riemannian manifolds (7', gs) and diffeomor-
phisms U; : (0,€) x X; — U; \ {pi} such that

IVE (W5 9) = 91) lge, = O ") as 1 =0, (47)

2

for k > 0, where r; is the radial coordinate of the cone and V; is the induced Levi-Civita

connection on the cone.

We say M is of rate v if each p; is a conical singularity of rate v. The Riemannian manifold
(X, g) is called the link of the singularity p;.

Remark 3.5. Given any closed Riemannian n-manifold M, one can produce an ICS manifold
by removing any collection of points {p1,...,pm}. In this case, the link of each singular point
is modelled on (S™ 1, ground)-

Similarly, we can define the related notion of an asymptotically conical Riemannian manifold.

Definition 3.6. Let (M™, g) be a complete Riemannian n-manifold. We say (M, g) is asymptot-
ically conical (AC) of rate v < 0 if there exists a compact set K C M, R > 0 and a Riemannian
cone C(X) = (Ry x 3, gc) over a closed Riemannian manifold (X"1, gs) such that there exists
a diffeomorphism ¥ : [R,00) X ¥ — M \ K satisfying

IVE(W(9) = 9)lge=O("™*)  asr — o0, (48)
for all k > 0, and terms as above.
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Conically singular spaces admit a natural class of principal bundles. We state all definitions for
the case of an ICS manifold. Analogue definitions follow for the AC case.

Definition 3.7. Let P — M be a principal G-bundle over an ICS space M. We will say P is
an admissible bundle if, for each p;, there exist principal G-bundles Q; over ¥; and principal

bundle isomorphisms
Fi:miQ = 97 (Pluagp) »
where m; @ C(X;) — X; are the natural projection map and V; are the diffeomorphisms of

Definition 3.4, In this case we say P is framed by (Q;, F;).

This definition extends naturally to vector bundles. Given a framing, we can define the corre-
sponding admissible objects, like bundle metrics and connections:

Definition 3.8. Let (E,h,V) be a vector bundle E with a bundle metric h and a metric con-
nection V over an 1CS manifold. We will say the triple (E,h,V) is admissible of rate v > 0
if £ is framed by E; — ¥; and there exist bundle metrics h{® and metric connections Vi° on
each E; such that

VE(FF(B) = 1) lgeane= O ™F) [V (FF (V) = V°) |gowne= O(r} ") as ;> 0,

(2
where F; are the induced bundle isomorphisms from Definition[3.7.

Remark 3.9. One may define an admissible connection without choosing a metric; all that is

needed is the choice of a compatible metric at the framing.

As in the case of smooth Riemannian manifolds, smooth connections can be viewed as admissible

connections, where the framing connection is the trivial one.

3.1 Weighted spaces

To study the Fredholm properties of various differential operators on M, we need to introduce
suitable Banach spaces on which the operators act. For the remainder of this section, M will
denote an n-dimensional ICS manifold and ¥ — M an admissible vector bundle. We start
by defining the usual and the weighted Banach spaces on sections of F, in the same spirit of
[LO85|. First, we define a radius function to lighten the notation.

Definition 3.10. Let M be an ICS manifold. We say p: M — (0,1] is a radius function if we

have constants 0 < ¢; < 1 < co such that for each i, we have

cari < Ui(p) < cory (49)
on (0,€) x X;, where ¥; are the diffeomorphisms from Definition .
By using partitions of unity, it is clear that all ICS manifolds admit a radius function.

Definition 3.11. Let (E,h,V) be an admissible triple over M and p a radius function. For all
p>1,keN, ae(0,1) and p € R, we define the weighted Sobolev space W,]f’p and the weighted
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Hoélder space C’,]j’a of sections of E as the norm completion of C°(M, E) with respect to the
norms
1/p

k
el = Z / Vgl " dvol lellege=Dl10Velloot [ovHe]
Jj=0

where the Holder seminorm [-]o is defined using V-parallel transport to locally identify the fibres
of E.

Some authors (cf. [Mar02]) prefer to consider the multi-index p € R™ to allow different decay
rates at each singularity. We find no relevant advantage in working with these spaces, so we

will always assume that the decay rate is the same around all singularities.
Notice that we have an isomorphism W%” & [P, If we drop the Holder seminorm, we get the

usual spaces C'Zf. Similarly, we set C° :p mkeNCZf . By Definition it is clear that different
choices of radius function yield equivalent norms. As in the compact case, we get an analogue
of the Sobolev embedding theorems, by adapting the results from Bartnik |[Bar86, Thm. 1.2]
and Lockhart and McOwen |[LO85, Lemma 7.2].

Theorem 3.12 (Sobolev embeddings for weights spaces). Let M be an n-dimensional ICS
manifold, equipped with an admissible triple (E,h,V). Let p,q > 1, a, 5 € (0,1), k,l € N and
consider the associated Sobolev and Holder spaces of sections. Then:

1. Ifk>1, k— > l— L p<qandp>, there is a continuous embedding W#’p — W ba.
2. If u>p' and k — 5 =+ a, the embeddings Whp sy C,lja — Wl’,q are continuous.
3. If u>p and k+«a > 1+ B3, the embeddings Cﬁ“ — C — Cl Fey CZ/ are continuous.

4. If p1 + pe > p, the multiplication of smooth section extends to a continuous map

k.« k,a k,a
Cpl(B) x Cp(E) = Cp*(E®E) .

The main purpose of introducing these weighted spaces is to make the Implicit Function Theo-
rem for Banach spaces available to us, which we now recall:

Theorem 3.13 (Implicit Function Theorem (IFT), [Lan83, Thm. 2.1]). Let X,Y be Banach
spaces and let f : X — Y be a Fredholm map: its derivative D, f is a Fredholm linear operator

for all x, so the vector spaces K = ker(D, f) and C = coker(D, f) are finite-dimensional.
Fiz a point xy € X, with yo = f(xo). Let L = Ty, f be the derivative of f at xo. There are
charts (U, k) for X, (V,k) for Y and a vector space B such that

k:U—>BoK k:V—o>BaC,

such that k(x¢) = 0, &(zo) = 0 and the map F = ko forx™ ' : B& K — B® C is given by
F(b,n) = (L(b),®(b,n)) on an open neighbourhood W C B ® K, with ® : W — C a smooth
map.

The map @ is called the Kuranishi map or obstruction map. It essentially encodes the non-linear
information of f. Since it holds that f~!(yo) = F~1(0,0) = ®~1(0), if the obstruction map
vanishes we get that f~!(yo) is diffeomorphic to a neighbourhood of 0 in K.
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3.2 Asymptotically conical operators

Let us now consider the relevant class of operators that possess good Fredholm and regularity
properties, similar to those of their counterparts in compact manifolds.

Definition 3.14. Let P : T'(E) — I'(F) be an elliptic operator of order k between sections of
admissible vector bundles over an ICS manifold. Let P : T'(ES®) — T'(F7°) elliptic operators
on the corresponding cone. We will say P is an admissible elliptic operator asymptotic to P
if there exists p > 0 such that for each i and every ! >0

Vi [F7 (Pu) = P (F7w)] = O(~)
for every smooth section u of E on U; \ p;, where F; are the maps from Definition [3.7,

A moment’s thought suffices to realise that the set of admissible elliptic operators forms an
algebra under composition. For instance, consider V : I'(E) — I'(T*M ® E) an admissible
connection (cf. Definition . Then any differential operator given by the composition of
Ve T(E) - T(FT*M ® E) with a bundle map T'(®*T*M ® E) — I'(F) with constant
coefficients is an admissible elliptic operator. In particular, it follows that

Proposition 3.15. Let A be an admissible connection. Then, the associated twisted Dirac
operator D4 and twisted Laplacian A 4 operators are admissible elliptic operators.

Let us study some basic properties of admissible elliptic operators. First, integration by parts
and Stokes’ theorem yield

Lemma 3.16. Let P : I'(E) — ['(F') be an admissible operator of order one and P* : T'(F) —
I'(E) its formal adjoint. Then for u € W,}’Q and v € VV;,’2 with u+ p' > 1 —n, we have

(Pu,v)r2 = (u, P*v) 2 .

Secondly, many of the local estimates for elliptic operators in R™ carry over to the ICS case, by
adapting the scaling argument of Bartnik |[Bar86, Thm. 1.2, which uses the uniform ellipticity
property. The argument is the following.

Consider the compact set K = p~1([¢,00)). For € > 0 small enough, we can identify the
complement of K with the disjoint collection {0 < r; < €} in C(%;) and P with its asymptotic
model P>, up to a small error.

The region {0 < 7; < €} can be decomposed into the annuli {27%~1e < r; < 27%¢} for k € N. On
each annulus, the weighted norms are all equivalent, up to a factor, to the norms on the standard
annulus {1/2 < r; < 1} for each singularity. The desired inequalities follow by applying the
standard inequalities in the rescaled annuli and rescaling back. For instance, this yields the
weighted version of the standard elliptic regularity estimates.

Theorem 3.17 (Elliptic regularity). Let P : T'(E) — I'(F) be an admissible elliptic operator
of order k. Suppose that u, f € L2 _ such that u solves Pu = f in the weak sense. If u € Li(E)
and f € Cifk(F), then u € C’LJrk’a(E) and u solves Pu = f in the strong sense. Moreover, we
have the estimate

a< «@
lellggenns © (11Pulloto, +lollzs ) (50)

for C' > 0 independent of u.
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Now, let us deal with the mapping properties of admissible elliptic operators. The idea is that
the operators will mimic the behaviour of the model operator on the cone, as in the case of the
Laplacian outlined before. Thus, we make the following definitions:

Definition 3.18. Let C(X) be a metric cone and a hermitian vector bundle (E*°, h*°) — C(X).

(i) We say a section u € T'(E*) is A\-homogeneous if |u|pee is a homogeneous function of rate

(or weight) \.
Let P>* :T'(E®) — I'(ES°) be a (formally) self-adjoint elliptic operator on the cone C(X).

(11) We say that A € R is an indicial root if there exists v € I'(ES®) such that u is -
homogeneous and satisfies P>°(u) = 0. We denote the indicial roots of P° by D(PF).

(111) For A € D(P®), consider the space KCx(Pf°) of sections u € ker(P°) of the form u =

> ito r*log? (r)uj, with each u; a A\-homogeneous section.

(iv) For an admissible elliptic operator P on an ICS, a rate A € R is called a critical rate if A
lies in D(P7°) for some i. Set

D(P) = | D(P) and d()) =) dim K(P) .
i=1 =1

In general, one must allow for complex values of the critical rates. However, we will almost
exclusively consider formally self-adjoint operators of order one, which guarantees that the
critical rates are all real (cf. proof of Lemma [3.19)).

The following lemma rules out the appearance of log terms in ker(P*°) and will be useful to us

later on.

Lemma 3.19. Let P : T'(E) — T'(E) be an admissible self-adjoint operator of order one,

asymptotic to P°. Letu=73"", r*log? (r)u; € ker(P™®). Then m = 0.

In particular, dim KCx(P2°) is equal to the multiplicity of X\ as an indicial root.

Proof. Let u=3""" r*log? (r)uj with u; A-homogeneous. Let P, the operator induced on the
link by P, i.e P = 0, + 2 Ps,. The condition that PP (u) = 0 is equivalent to Py, (u;) = Au;.
Now, collecting the log™(r) and log” !(r) terms of P (u) = 0, we have

Py, () = Aup, Py, (Um—1) + mpm = AMipm—1 -
Projecting the latter equation to u,, and using the fact that P, is self-adjoint, we have
m|]um\|2 = Mum—1,Um) — (P, (Um-1), tm) = Mum—1,Um) = (Um—1, Py, (um)) =0,
so m = 0, as needed. ]

We can now extend the regularity result Theorem to obtain an improved decay estimate

for our solutions.
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Proposition 3.20. Let P : I'(E) — I'(F) be an admissible elliptic operator of order k and
assume we have u and f as in Theorem[3.17 Moreover, let i/ > p such that [p, /'] ND(P) = 0,
so there are no indicial roots of P contained in the interval. Then there exists C > 0 such that

lullges € (I1Pullore +lullzz) 61)

Proof. For a large enough compact set, one can study the boundary value problem P(u—wv) =0
on M \ K with u = v on 0K with v € O(r*) and u € O(r#). Since there are no indicial roots
in [¢/, p], one can prove (cf. [LO85|) the estimate

[ul | g < C <||pu||cl,a +||u||ck,a) .
w w—k H
Combined with the elliptic regularity theorem above, the claim follows. O

As an immediate corollary, we have

Corollary 3.21. The kernel of Pﬁ“’a : C,]f+l’a — Cfﬁk is independent of k (and thus «).
Moreover, the kernel is also invariant from the decay rate p, as long as we stay away from
critical rates. That is ker(P), = ker(P),s as long as [u, pf'] N D(P) = 0.

We can now state the main result that motivated this discussion

Theorem 3.22 ([LO85, Thm. 1.1]). Let P : I'(E) — I'(F) be an admissible elliptic operator of
order k. Then the set D(P) is discrete and the corresponding map P,]fH’a is Fredholm whenever
w ¢ D(P). If u € D(P), the operator P,]f—H’a fails to be Fredholm only because its image is not
closed.

A detailed proof can be found in [LO85] and |[Mar02]. The theorem above implies, in particular,
that we can make sense of the index of Pﬁ“’a for generic u. As in the compact case, we have

a version of the Fredholm Alternative:

Theorem 3.23. Let P : I'(E) — I'(F') be an admissible elliptic operator of order k, and P*
its formal adjoint. Take X\ ¢ D(P), so P,]fH’a : C’,’f“’a — C’l]jf‘k is Fredholm. Then, there is an
isomorphism coker(P), = ker(P*)y_n_,.

Notice that ker(P*);—,—, will be contained in the codomain of P,]fH’O‘ whenever p < k — 5. In
this case, the isomorphism is an equality.
A natural question is how to compute the index of PZf *. We give two results in that direction.

First, as in the cone case, the change of the index between two non-critical rates is accounted
for by counting the solutions to the corresponding model problem on the cone:

Theorem 3.24 (|[LO85|). Let P : I'(E) — I'(E) be an admissible elliptic operator of order k
and consider p, ' € R\ D(P), with ¢/ > p. The indez of the Fredholm operators P,lja does not
depend on |l or a, and

Ind,(P) —Ind,(P) =~ Y  d()). (52)
AeD(P)

44



Therefore, we are interested in computing Ind, (P) for some value p and the set of indical roots
D(P). If P = D4 is a twisted Dirac operator, we get the following result by adapting the
Atiyah—Patodi—Singer index theorem:

Theorem 3.25 (cf. [APS75, Thm. 4.2]). Let E — M be an admissible hermitian operator over
an ICS manifold with singularities {p1,...,pm}. Consider A an admissible unitary connection
on E, framed by A® = (A°,..., AY). Then the twisted Dirac operator D4 is admissible, and

satisfies
—~ ~ d(0 (0
Indi_.. (D) :/ ch(E)A(M) + UJ“;?"‘() : (53)
M
where ch(E) and X(M) denote the Chern character of E and the g—genus of M respectively;

and nge is the meromorphic continuation of the eta function

na=(s) = > sign(M)A™". (54)

XeD(D4)

Proof. (Idea). The standard L?-index theorem of Atiyah, Patodi and Singer (APS) applies to
manifolds with boundary, where we have a cylindrical collar I X Y on the boundary, and the
operator P takes the shape P = 9, + Py on the collar.

In our case, our conical ends are conformal to cylindrical ends. Since the index of the Dirac
operator is a conformal invariant, the APS index theorem carries over to our case for the weight
o = 1_7”, which corresponds to L?-sections under the conformal rescaling of the metric. A
detailed discussion of how the result is adapted from the cylindrical to the conical setting is

provided in [Mool7]. O

Remark 3.26. If = I_T” is an indicial root, one needs to take closed images to compute the

index, since the operator is not Fredholm.

4 Instantons over spaces with conical singularities

We study instantons on spaces with isolated conical singularities (ICS). The asymptotically
conical case has been previously treated for Spin(7)-instantons in |[Pap22; Gho24|, and for Ga-
instantons in [Dri21]. Related results in the more general setting of conically singular spaces
were also obtained by Yuanqgi Wang [Wanl8a; Wan19)|, using non-standard weighted function
spaces. Our approach offers a more accessible framework that simplifies some aspects of his

analysis.

For the remainder of this section, we consider a compact manifold (M™", g) of dimension n > 4,
with isolated conical singularities (ICS) at points {pi,...,pm}, and equipped with a closed
(n—4)-form *Q. Let P — M \ {p1,...,pm} be an admissible principal G-bundle with fixed
framing connections AJ° near each singularity. We denote by p a radius function as in Definition
310

We focus on connections on P that are asymptotic to the framing connections A$° at rate
1. Analogously to the compact setting, the space of such connections forms an affine space,

denoted A,,_1, modelled on the vector space Q!(gp),—1. Throughout this chapter, we fix ;1 > 0
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sufficiently small so that all admissible elliptic operators we encounter have no indicial roots in
the interval (0, p).

In the compact case, we proved the existence of a topological charge associated with a principal
bundle P and a closed (n—4)-form *Q. This charge ensured that instantons are absolute minima
of the Yang-Mills functional and provided specific topological rigidity results. This framework
extends naturally to the conically singular setting. Specifically, we have the following:

Proposition 4.1. Let A € A,,_1 be a connection on P asymptotic to the framing connections
A at rate . Then:

(i) There exists a well-defined topological charge cq(P,A).
(it) The charge is independent of the choice of connection within the class A, —1.
(111) The charge is independent of the framing connections A°.

(i) If (M™, g) carries multiple suitable closed n—4 forms *Q, then there exists a well-defined
charge difference D(P, A), which only depends on the principal bundle P.

Proof. Let A€ A,—1. For e >0, let Uc = {z € M| p(x) > €} and consider

co(P) =limc§(P) =lim [ F3A%Q.

e—0 e—0 U,
(i) Since A is in A,_1, we have that |F4|= O(p~2) and p=2 € L*(M) since n > 4.

(ii) Now, let A, B € A,_1. We know that F3 — F3 = dCS(A, B), the Chern-Simons 3-form.
As *Q2 is closed by assumption, Stokes’ theorem implies

5 (P)(A) — ¢&(P)(B) = / Tr (F2 — F2) A +Q = oS4 B) A0,

Since A, B € A,_1, we have the estimate |CS(A, B)|{,=q < Ce 12 and so
[ (P)(4) = c(P)(B)|< [CS(A, B)|gp=eyvol(p~' (€)) < Cenm 2
for € > 0 small enough.

(iii) Assume A and B are framed by A$° and B respectively. As above, we need to bound
|CS(A, B)|{p=e;- If € > 0 is small enough, we have

[CS(A, B)l(p=q < |CS(A, A (pmey HIOS (A, BY)(pmey HICS (B, B)|(p=q < Ce ™.
(iv) The arguments used in items (i) — (7i7) carry verbatim for the charge difference. O

In particular, we have the following immediate corollary.

Corollary 4.2. The topological rigidity statements in Proposition hold in the case of a
manifold with 1CS.
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Remark 4.3. In the case of AC manifolds, one cannot define analogue quantities co(P) and
D(P), but one can still make sense of the differences cq(P, A)—cq(P, B) and D(P,A)—D(P, B),
provided A, B € A,_1 for u < 4_7". In particular, this is enough to obtain the rigidity analogues
of Proposition[1.7}(cf. [Pap23] and [MW?2])).

We have the following result to complete the parallelism with the compact case.

Proposition 4.4. Assume M™ is a smooth manifold with n > 5 and P is an admissible ICS
principal bundle, with structure group G = SU(2). Then cz(P) is well defined in H*(M,R), and
the charge cq(P) above coincides with the topological charge (ca(P) U [xQ], [M])

Proof. If P extends to a smooth principal bundle, there is nothing to prove. Otherwise, since
m;(SU(2)) is a torsion group for all i > 4, there are only finitely many SU(2)-bundles over
S"~1. So, we can perform a surgery to change the admissible bundle P to a smooth bundle
that will not change c2(P) in real cohomology. Alternatively, by Mayer-Vietoris, we have
HY(M,R) = HY(M \ {p;},R).

The standard Chern—Weil argument implies that the topological invariant ca(P) computed
using a connection on the admissible bundle agrees with the one defined from a topological
perspective; as both represent the same cohomology class in H*(M,R). O

5 A deformation problem

We now focus on the deformation theory of instantons modelled on the configuration space
k’ Y k?
A = {A—i— a ‘ a€ Ql(gp)#fl} ,

where A is an admissible connection asymptotic to the framing connections A at each singular
point.

To understand the local structure of the moduli space, we begin by studying the action of the
gauge group and establishing a suitable slice theorem. Since the framing is fixed, we require the
gauge transformations to act trivially at the singularities. Therefore, the space of infinitesimal

k+1,a
I

gauge transformations is taken to be Q°(gp) . As we shall see later, this is not the most

suitable space to consider. For now, we have

Proposition 5.1. The space Qo(gp)ﬁH’Q carries a natural Lie algebra structure under the
pointwise bracket. Moreover, it is the Lie algebra of a Hilbert Lie group g,’j“’“ of gauge trans-

formations acting smoothly on Aﬁ’fl.
Proof. By the Sobolev embeddings in Theorem [3.12] we have a continuous map
k+17 [7]
Q%gp)i e x Q%gp) it — (Q%(gp) ® QO(GP))M 5 QO (gp) it

So the space Q%(g p)ﬁ’a inherits the structure of a Lie algebra from g.

The remainder of the statement is to prove that the (usual) exponential map is well-defined and

defines a smooth group action; and that gﬁ“‘" acts smoothly on Afb’fl. The remainder of the
proof is verbatim to that of Freed and Uhlenbeck [FU84, Prop. A.2, A.3]. O
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We now construct a slice for the action of the gauge group in Coulomb gauge, defined by
k.«

41, we want to find a gauge

the condition d%a = 0. That is, given a perturbation a € A

transformation g € g,’j“"’ such that

Sa(g,a) :==dy (g7 dag + g 'ag) = 0.

The standard strategy is to apply the Implicit Function Theorem (Theorem [3.13]) to solve this
equation. The linearisation at (id, 0) is

054 = d%da(0g) + da.

To apply the IFT, we need the operator d’ds to be invertible. We begin by showing it is
injective.

k—1,«

Lemma 5.2. The operator d*d4 : Qo(gp)ﬁﬂ’a — Qo(gp)#_2

18 injective.

Proof. For k > 2, let f € Qo(gp)ﬁ’a lie in the kernel of d*d4. Then, by integration by parts
(Lemma [3.16), we have that ||d,4f]|%2: (d%daf,f)r2 = 0, so f is constant. Since pu > 0, we
have | f|— 0 near the singularities, and so f = 0. O

However, this operator is generally not surjective. We compute its cokernel

Proposition 5.3. The cokernel of the operator d'd : Qo(gp)ﬁH’Q — Qo(gp)ﬁ:é’a is isomor-
phic to the direct sum of the Lie algebra stabilisers Stab(A°) at each singular point p;. In
particular, the operator is invertible if and only if every framing connection A is irreducible.

To prove this, we need to understand the indicial roots of the Laplacian:

Lemma 5.4. Let d%yda be the Laplace operator defined above. Then:

(i) The set of indicial roots is given by

D(dyda) = U {I/ eR ‘ v(v+n—2) is an eigenvalue of dZQOdA;?O} .
i=1

In particular, D(d%da) N (—n +2,0) = 0.
(i1) The value v =0 is an indicial root if and only if AS® is reducible for some i.

(iii) Moreover, d(0) =), dim Stab(A$®).

Proof. (i) Suppose v € D(d%da). Then, there exists a singular point p; and h € Qo(gpiw)
such that djjedaz(rh) = 0. Expanding this gives

oo daze (r'h) = 12 (dyedazoh — v(v + 1 — 2)h) .

ii) Setting ¥ = 0, we want to count solutions d%.da~h = 0, which corresponds to h gener-
A€ i
ating an infinitesimal gauge symmetry of A%°, i.e. h € Stab(A°).

(]
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(iii) This is equivalent to showing there are no log?(r) contributions to the kernel of d%od A%
From Lemma we know that this kernel coincides with that of dax, and the claim
follows from Lemma [3.19 O

Proof (of Proposition . Since P = d%dy is formally self-adjoint, we have coker(P), =
ker(P)a—p—y. In particular, Ind%Tn(P) = 0. From part (i) of the lemma above, it follows
that Inds(P) = 0 for 6 € (—n + 2,0). Now, the index change formula implies

— coker(P), = Ind,(P) = —d(0) ,
and parts (ii) and (iii) of the lemma above finish the proof. O

Thus, for the gauge slice construction to work, we must enlarge our gauge group to account for
the presence of reducible framing connections. For each singular point p;, let x; be a smooth
cut-off function satisfying

1 if p(z) < 15,
0 if p(z) > 2,

for some small € > 0. Define the finite-dimensional subspace

xi(z) =

Vi = {xig0] g0 € stab(A°)},

where stab(A$°) is the Lie algebra of the stabiliser of the framing connection near the singularity
pi, and we identify go € Q°(X, gp) with its pullback to the cone. We then define the extended
Hoélder Lie algebra

S/)\o(gp)k—l-l a . Qo k+1 @ g @V

Remark 5.5. Although the spaces V; depend on the choice of cut-off function x;, the total space
Qo(gp)ZJrl’a 1s independent of these choices.

The following proposition is now a direct consequence of our previous work.

Proposition 5.6. We have:

et 4 Lie ideal.

(i) The space Q°(gp) ﬁ“’a carries a Lie algebra structure, with Q°(gp);

Sk+1,a

(i1) There is an associated Hilbert Lie group G, , which acts smoothly on the space of

connections Au_l

(111) The map d*da : Qo(gp) MrLe _, 00(g )u ;’a is surjective. Its kernel is given by the Lie

algebra of the stabiliser of the connection A.

Proof. Statement (i) follows from above, as does the associated Hilbert Lie group construction.

In order to see that it acts smoothly on AP it suffices to notice that the map

p—1

da:Vi— Q' (QP)M 1
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is well-defined. Indeed,

da(xig0) = dxigo + Xidago = dxigo + Xi(da — daz)go , (55)

where we used that go € stab(A7°) and so daxgo = 0, and we have omitted the principal bundle

framing morphism to lighten notation. Now, the first term in (55) lies in Q'(g p)ﬁ’f‘l since we
k,a

took x = 1 in a neighbourhood of p;. The condition that the second term lies in Q'(gp) o 18

precisely asking that A converges to A2 at rate at least p.

For (ii1), surjectivity of d%da follows from the construction and Proposition Indeed, for
any go € stab(Ag°), we have

dada(xigo) = Axigo + 2{dxi,dago) + xidadago

where the rightmost term is not in the image of the original gauge Lie algebra Qo(gp)ﬁ’a

under the map d%d4. This confirms that the extended terms account for the missing cokernel

directions.

Finally, let f € Q%(gp) ﬁ“’a Nker(d%da). As in the proof of Lemma f is constant, and
must take values in (), stab(A$°). So f is an infinitesimal gauge transformation preserving A,
as needed. O

We have now arrived at

Theorem 5.7 (Slice theorem). Let A € Azfl be an irreducible connection and consider the
map ¥ : Ql(gp)Z’fl — Q%gp)* =L Then AZ’fl is locally diffeomorphic to ker(d) x éﬁ“’a in

n—2
a neighbourhood of A.

Now that we have identified a suitable gauge slice, we can proceed to study the deformation
theory of instantons with isolated conical singularities. We focus on irreducible Spin(7) and
Go-instantons. The relevant moduli space is defined as

{4 € Aﬁ’f‘ﬂ A is an irreducible x Q—instanton}

oo\ k,a
M%), - ,
o
where A% = (A$°,... A7) are the framing connections.

From Section (I, we know that the Coulomb gauge condition, together with the linearised in-
stanton equation, fit into an elliptic complex. This complex provides a framework for analysing
the deformation problem by applying the Inverse Function Theorem [3.13|in weighted Banach
spaces. We obtain a Kuranishi model for the moduli space in a neighbourhood of a given

instanton A. We have a pair of finite-dimensional spaces:

e The infinitesimal deformation space I(A,pu) = H}L .+ Tepresenting solutions to the lin-

earised problem modulo infinitesimal gauge transformations;

e The obstruction space O(A, ) := H,%l, ,» capturing the failure of surjectivity of the lineari-

sation;
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where Hf4’ . are the cohomology groups associated to the corresponding deformation complex
and implicitly depend on k£ and «. The Kuranishi map F' : Hfll, u HEL u determines the local
structure of the moduli space as detailed in Theorem More precisely, if the map F' vanishes,
a neighbourhood of A in MEe " will be diffeomorphic to a neighbourhood of 0 € I(A, 11). Thus,
the virtual dimension of the moduli space is defined as dimyi;M = dimI (A, u) — dimO(A, ).
As in the compact case, we have the following regularity result:

Proposition 5.8. For k large enough and p generic, the inclusion map M(Aoo)fjﬂ’o‘ s
M(A®)E is 4 homeomorphism.

Proof. The proof in the compact case (cf. [DK90, Prop. 4.2.16]) carries over to this case, using
the elliptic regularity estimates of Theorem [3.17] O

In particular, we may consider the limit of k£ large and drop the implicit dependency of k and
« in the previous discussion, and consider the moduli M(A>),,.

In the Spin(7)-case, the elliptic complex we are considering is the 3-term complex

mtoda

k‘+1,0¢ dA 2
0= 0%gp), QN ap)S T Qep), 5" 0, (56)
We can compute its virtual dimension using the Atiyah—Patodi-Singer index Theorem [3.25

Theorem 5.9. Let A be an irreducible admissible conically singular Spin(7)-instanton on a
principal U(k)-bundle E, with model singularities A*°. Then the instanton moduli space has
virtual dimension

M= /Mch(E)E(M)+”A°°<2_ - Y d

2e(0,5/2)

where, setting D () = *(¢ A dac), we have

= Zdim{a c Q2! ap) ‘ Dpea = Aa}  for A >0,

and
= Zdim {ae QL= ap) ‘ Dy = 0} + dim stab(A5°) .

Proof. We can identify the complex (56|) with the twisted Dirac operator

—_ o (d , o dy)
Dy : QY (gp)he, —22 2 22

i (2" & Q2) (gp) 5" . (57)

By Theorem and the discussion above, we have that dimy;;M, = Ind, (D). From Theorem

3.25, we have

Tnd_ (D) = /M eh(E)A(n) + L0 Fna=(0)

2
Using the index change formula from Theorem we need a count of the indicial roots
of this operator between —7/2 and u — 1. By Lemma the claim follows. O
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In the G2 case, it is convenient first to consider the moduli space of Ga-monopoles. These are
pairs (f, A) € (Q%gp) x A)Z’f‘l solving the monopole equation

daf +*(Fany)=0. (58)

We investigate the expected or virtual dimension of their moduli space. As in the previous
case, the deformation problem can be identified with the twisted Dirac operator D4 (cf. Equa-
tion ([L7))), acting on pairs of sections:

Da: (2@ QY (ap)5, — (2° @ Q1) (ap)i )" (59)
(f.0) = (dha,daf ++( A daa)) .

Therefore, we have

Theorem 5.10. Let A be an irreducible conically singular Go-instanton with model singularities
A, The moduli space of irreducible Go-monopoles has virtual dimension

M=oY Y,
)

i A€[0,2

where d()\) are defined as in Theorem [5.9
Proof. Since D 4 is formally self-adjoint, we have
Ind_3(D4) = ker(DA)_3 — ker(Da )3 =0

Using the index change formula from Theorem we need a count of the indicial roots
of this operator between —3 and p — 1. By Lemma the claim follows. O

AXkin to the compact case, we have

Proposition 5.11. Let (M7, ¢) be a holonomy Go-manifold with isolated conical singularities.
The forgetful map (f, A) — A takes Ga-monopoles to Ga-instantons and is surjective. The fibres
are the stabiliser of the connection A.

The proof is the same as in the compact case, since we can integrate by parts by Lemma [3.16

Remark 5.12. In both the Spin(7)-instanton and Ga-monopole cases, the analytic correction
term is bounded above, in absolute value, by the sum ), Indas +Nulgee by Corollaries
and |2.3(] respectively; where Indae and Nulaee are the Yang-Mills index and nullity of AF®,
defined in Equation .
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Hitchin functionals

We move to study the geometry of conifolds with special holonomy. We are motivated by the
work on (G2-conifold moduli spaces, which have been studied extensively by Karigiannis and
Lotay |KL20|. A similar discussion is expected in the case of Spin(7), although the details have
not been fully worked out. Partial results corresponding to the asymptotically conical (AC)
case can be found in |Leh21].

We have the following definition, in the spirit of Definition

Definition 5.13. Consider (M™,g) a manifold with ICS; with singularities p1,...,pm,rates
Vly..o Uy with v; > 0 and links ¥q,...,%,. We say (M,g) is a holonomy Go manifold with
ICS if M is equipped with torsion-free Ga-structure pp; compatible with the metric g, and such

that the cones C(X;) carry a compatible torsion-free Go-structures @; satisfying
IVE(W5 (om) — i) |= O F)
on (0,e) x 3; for each i, where V; are the diffeomorphisms of Definition .

In particular, as discussed in Section the links (X;, g) carry a nearly Kéhler structure.

The definitions for the holonomy G asymptotically conical and holonomy Spin(7) cases follow
the same logic. Using the techniques from Section Karigiannis and Lotay [KL20| constructed
the moduli spaces of ICS and AC holonomy Gs-manifolds and computed its virtual dimension:

Proposition 5.14 ([KL20] Cor. 5.35, Prop. 6.4 & Proposition 6.11). Let (M,p) be an AC
manifold with holonomy Ga, of generic rate v € (=3,0) and link (X,w,p). Then the moduli

space of AC Ga-structures of rate v has dimension
dim M, = b (M) + dim (im Y?) + )~ dim £(T,w,p,N) ,
Ae(—=3,v)

where b2,(M) is the dimension of compactly supported harmonic 3-forms and Y3 : H3(M,R) —
H3(3,R) is the map induced by the smooth embedding ¥ — M, and

g(zawa Ps )‘) = {B € Qg,coclosed| Aﬂ = ()‘ + 3)(/\ + 4)5} :
Let (M, @) be holonomy Go manifold with ICS; with singularities p1, . .., pn, modelled on 3y, ..., %,.
Fiz v > 0 sufficiently close to 0. Then, there is a similar formula to the one above for the wvir-
tual dimension of the moduli space M,,. Moreover, the dimension of the obstruction space O is
bounded above by

dim(0) <n -1+ Y dimE(Si,w,p, \) .
i=1 Ae(—3,0)
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With the same approach, Lehmann constructs the moduli spaces of AC Spin(7) manifolds and
computes their virtual dimension in [Leh21]. We are not aware of the corresponding computation
for CS Spin(7) manifolds, but one expects it to be similar to Proposition

Proposition 5.15 (|Leh21] Thm. 4.23). Let (M,®) be an AC Spin(7) manifold of generic
rate v € (—4,0) and link (X, ). Then the moduli space of AC Spin(7)-structures of rate v has
dimension
dimM,, = bz, + dim(im T*4) + Z dim&(X, ¢, A) ,
Ae(—4,v)
where b, (M) is the dimension of compactly supported anti-self-dual harmonic 4-forms, T H*(M,R) —
H*(2,R) is the map induced by the smooth embedding ¥ — M and

8(2;0‘17/’7 A) = {X € Q%?,exact’ dxx = _(A + 4)X} .

As expected, the virtual dimension formulae are comprised of two parts. On the one side,
we have a topological term that depends exclusively on the cohomology of the conifold M.
On the other side, we have an analytic term that records solutions to an elliptic PDE on the
link of each cone singularity, and corresponds to the contributions of the indicial roots of the
deformation operator that one considers when constructing the moduli space. In Section 6 of
[KL20], Karigiannis and Lotay prove that

Proposition 5.16. If there are no solutions to E(\) for A € (=3,0], the moduli space of ICS

Go-structures is smooth.

We provide a geometric interpretation of the spaces £ in terms of the spectrum of the second
variation of Chern-Simons type functionals and relate them to the Morse index of a related class
of functionals.

6 Stable forms and Hitchin functionals

In the early 2000s, Nigel Hitchin [Hit00] [Hit01] showed how certain geometric structures can be
realised as critical points of suitable functionals over a class of generic forms known as stable:

Definition 6.1. Let V™ be an n-dimensional real vector space. A form w € AP(V*) is stable if
the orbit of w under the induced GL(V')-action is open. The set of stable forms is denoted by
A (V™).

Hitchin classified all the possible cases in his original papers. Whenever the stabiliser of a stable
form is a subgroup of SL(V), there is an invariant volume form associated with the stable form.
Similarly, if the stabiliser is compact, there is an invariant inner product associated with it.

Let w € A (V*) and assume that Stab(w) C SL(V) for the remainder of the section. Assigning a

~Y

stable form its invariant volume form defines a GL(V)-invariant map vol : AR (V*) — A% (V*) &
R*. For any p € R, this map satisfies

vol(pPw) = p" vol(w) .
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In other words, vol is homogeneous of degree n/p. Its derivative defines an invariant element
w € (APV*)* @ A"V* =2 A"PV*,

0
o vol(w) = a AW . (60)
We call @ the Hitchin dual of w. Using Euler’s formula, we obtain the relation
WAD =2 vol(w) . (61)
p

This discussion extends naturally to the setting of smooth manifolds. For convenience, we will
reduce our discussion to the case where M is a closed, oriented manifold. We say a smooth
p-form p € QP(M) is stable if it is pointwise stable. The existence of smooth stable forms is
only obstructed by the reduction of the frame bundle to the corresponding stabiliser. The open
space of stable forms will be denoted by QF (M).

The induced volume map above extends to a smooth map vol : QF (M) — Q™(M), and we can
define the corresponding volume functional V' : QO — R by integrating against the fundamental
class of the manifold. We refer to this functional as a Hitchin functional.

Since stable forms form an open set, one can study the variational properties of the functional
V. The main result, due to Hitchin, is an application of Stokes’ theorem.

Theorem 6.2 ([Hit00]). A closed stable form p € QF (M) is a critical point of V within its
cohomology class if and only if its Hitchin dual is closed; i.e. dp = 0.

Let us look at two concrete instances of the Hitchin functional, described in detail in [Hit00].

Example 6.3 (Dimension 6, complex case, [Hit00]). Let p be a stable 3-form on a 6-manifold
with stabiliser SL(3, C). This form corresponds to the ezistence of a locally decomposable complex
volume form p+ip. This complex 3-form defines an almost complex structure on the manifold.
The critical point condition for the Hitchin functional implies that the complex volume form is
closed, i.e., d(p +ip) = 0, which in turn implies the induced almost complex structure is inte-
grable. Therefore, critical points correspond to complex manifolds equipped with a holomorphic
volume form.

Example 6.4 (Dimension 7 [Hit00]). Let ¢ be a stable 3-form on a 7-manifold M with stabiliser
Go. The 3-form ¢ defines a Riemannian metric g, on M via the relation g,(X,Y’)vol, =
(X 2p) A (Yp) A @, where vol, is the volume form determined by .

The critical points of the corresponding Hitchin functional correspond to ¢ being both closed
and co-closed, i.e. dp =0 = d*p. In this case, the metric g, has holonomy contained in Gs.
Moreover, these critical points are local maxima of the Hitchin functional.

These examples illustrate the interest in studying these Hitchin functionals. As a further mo-
tivation, one can examine the gradient flow of the volume functional for Gy-structures along a
fixed cohomology class. The corresponding flow is called the Go-Laplacian flow. Bryant and Xu
[BX11] proved the short-time existence and uniqueness of this flow. It remains a central object
of study in special holonomy.

In the examples above, there is the critical assumption that the cohomology class over which we
are trying to optimise is non-trivial. Otherwise, critical points cannot exist by standard Hodge

theory.
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If one wants to restrict to stable exact forms, one needs to impose a further non-degeneracy
condition in the form of a Lagrange multiplier. In dimensions 6 and 7, Hitchin [Hit01] obtained
two new functionals for the exact stable case and showed that the critical points of these
functionals are nearly K&hler and nearly parallel Go-structures, respectively. These notes further
study these functionals and their variations, comparing them to two new examples of Hitchin-
like functionals.

7 The nearly Kahler case

We adapt the previous discussion to realise and study nearly K&hler metrics as critical points
of Hitchin-like functionals.

7.1 The nearly Kahler Hitchin functional

Let M® be a closed spinable manifold, so it admits an SU(3)-structure. In 6-dimensions, we

have a non-degenerate pairing between Q3 ,, and Q2 ,,, defined as follows:

.03 4
P Qe:vact X Qemact —+R

(%X)H/MB/\X:—/MVA&

where df = v and d§ = x. This pairing follows from the Stokes’ theorem and the identification
Q3/Q3 =0 4
closed — “‘“exact* exact

given by {(71, x1), (72, x2)} = P(71, x2) + P(72, x1) -

Let R C Q2,0 ¥ Q2. be the space of stable exact forms (p, o), with w = & positive with

With it, one can construct an indefinite inner product on Q2. ., x Q

respect to p, that is w(-,J, -) > 0, where J, is the almost complex structure induced by p.

In [Hit01], Hitchin introduced the functional that plays the analogue role for nearly Kéahler
structures as the examples in the previous section:

L:R—R

(62)
(p,o) — 3/ vol, +4/ vol, —12P(p,0) .
M M

3
exact

Hitchin showed that critical points of £ are nearly Kéhler structures. Let dp =y = dn € Q
and do = y = d¢ € ;. Then vol, =y Apand dvol, = Y AT = x Aw, s0

(5£——3/M(ﬁ+45)/\'y+4/M(w—3a)/\X_—3/

(dﬁ+40)/\77—4/ (dw—3p) NE,
M M

where da = p and df8 = 0. Thus, the Euler-Lagrange equations are
dp = —4o dw = 3p . (63)

Proposition 7.1 (Thm. 6 [Hit01]). The critical points of L are nearly Kdhler structures.

Proof. First, we need to check that Equations imply that (w, p) satisfy the SU(3)-conditions.
Indeed, we have
1

_1 9~
glo = 7 d’p=0,

1
w/\p:§w/\dw:
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so w is of type (1,1) with respect of the complex structure defined by p. Similarly, we have

w1 -1 —1 . SO B

y—gw/\a ﬁw/\dp 12(d(w/\p)—dw/\p)—1p/\p.
Thus, (w,p) define an SU(3)-structure. The fact that the SU(3)-structure is a nearly Kéahler
structure follows from Proposition O

We find it convenient to work with the gradient flow of £ with respect to the pairing {-,-},
rescaled by (1/3,1/4):
oo
— =—(dp+4
gt =~ (dptio) at

We have no compelling argument for this rescaling beyond the fact that it possesses some

= (dw —3p) . (64)

desirable properties and enables us to motivate the study of this functional. Notice that a
global rescaling can be obtained by suitably rescaling £ (or the inner product {-,-}). However,

the relevance of the rescaling lies in its distinction between 3-forms and 4-forms. We have

Proposition 7.2. The rescaled gradient flow preserves the SU(3)-condition.

Proof. Recall the decomposition of the intrinsic torsion 7 into irreducible SU(3)-representations
given in Proposition [A740]
Since 0 = dw?/2 = w A dw, it follows that 71 = 7s(dw) = 76(do) = 0. Similarly, since p is exact,
we have 71 = mg(dp) = Jmg(dp) = 0. Thus
0 0 ~
a(w/\p) 8tw/\p+w/\atp:—*(7r6(dp))/\p+7r6(dw)/\w:0,
proving the condition w A p = 0 is preserved. Now, by Equation (6 , we have vol, = %p Ap

and vol, = %a ANw = 3w3 Thus, it suffices to check that vol, = vol, is preserved under the
flow. By Equation , we have

0 _Op

N 1 — —_— :— p—

5 VOl = 3, Ap = (dw —3p) A dpAw—3pAp
oo 0
E/\w—l—40/\w—3p/\p:avolg—i—ﬁ(volg—volp). O

The main result that motivates our study of the Hitchin functions is its relation to metric cones

with special holonomy. Explicitly, we have

Proposition 7.3. Let (p(t),c(t)), t € (a,b), be a family of exact stable forms on MS defining
a family of SU(3)-structures, with associated metric g(t), and set r = e'. The metric § =
dr? + r2g(log(r)) in (e%,eb) x M has holonomy inside G if and only if the SU(3)-structures
satisfy the rescaled gradient evolution equations.

Proof. Given an SU(3)-structure on ¥, we get a Ga-structure on the cone C(X) by setting
o =dr Ar*w+13p and ¢ = xp = —dr Ar3p+ ro . The condition Hol(g,) C G is equivalent
to the 3-form ¢ being closed and coclosed. Thus, by differentiating, we get

0
0=dp= —dr/\erzw+37“2dr/\p+r3dr/\a—i == a—p dyw — 3p
. 0 .
0=di=dr ArPdsp+ardr No 4 rtdr A SE = rBE = —dsp—do.
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where dx; is just the restriction of the exterior differential d along A*T*Y and we used that
ds,p = dyo = 0. This condition corresponds precisely to the rescaled gradient flow equations
under the change of variables r = ef. The converse follows. O

Remark 7.4. Theorem 8 in [Hit01)] is very similar to the above propositions. The method is
essentially the same, but Hitchin applies it to a different functional and considers an unweighted
family of metrics, g = dt? + gs(t). It is worth comparing the two. We can replace our Lagrange

multiplier from 12 to 12X\ and consider the metric cone with cone angle 2w\, with Ga-structure

2
given by ¢ = d—)erw +73p and metric gy = (d—;) + 1r2gs. The condition that the cone has

holonomy in G is then equivalent to the rescaled gradient flow that now depends on A. In this

case, the required relation between r and t becomes r = e

2t

. The resulting metric is conformal
to the metric dt* + gs by a factor of e**. After suitable rescaling, the limiting metric A — 0

recovers Hitchin’s result.

Remark 7.5. In his proof, Hitchin considers a Hamiltonian flow induced by the symplectic
pairing induced by P rather than the gradient flow approach. With the Hamiltonian approach,
one can see the vanishing condition w A\ p = 0 as the vanishing of the moment map induced by
the action of the diffeomorphism group. This approach would have worked equally well in our

setup.

We now focus on the second variation of L:

Proposition 7.6. Let (717 X1)7 (72, X2) € Qg)uzct x Qg:cacb with Vi = dT/Z and x; = d§; fori=1,2.

The second variation of L is given by
8L = / —3(dZ~s + 4X2) A — 4(d/CX2 —3v2) A&,
M

where T and K are the linearisation of the Hitchin dual maps from Proposition [A.46 In par-

ticular the Hessian of L at a critical point with respect to the pairing {-,-} is
H(y,x) = (4dICX — 12, —3dZ~ — 12)() :

Proof. By Proposition if §p =, then ép = Z~ and if o = x, then dw = KLyx. Combining
this with our formula for the first variation yields the desired formula. The computation of the
Hessian with respect to the pairing {, -} is now immediate. ]

We want to study the spectral properties of H~. More concretely, the equations

—3dIy = (p+12)x (65a)
4dx = (n+12)y, (65b)
for v € Q2,,: and o € Q2 ;. Since the functional £ is invariant under the action of the

diffeomorphism group, it is convenient to work on a slice to the orbit of the diffeomorphism

group. We use the same strategy as Foscolo in [Fos17].

Let (w,p) be a nearly Kihler structure not isometric to the round S° and O be the orbit of
Diffo(M) in Q3

ETACI

, x Q going through (w, p). The tangent space to this orbit is spanned by

exact
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(Lxp,Lxo), for X € autt C Q! where aut is the space of vector fields preserving the nearly
Kéhler structure, and the complement is taken with respect to the L? metric. Using the Hodge
decomposition of Theorem we can parametrise (v, X) € Q2,0 X Qe explicitly by

v =Lxp+d(fw)+ X = Lyo +d(gp) + xo ;

with f,g € Q%) X,Y € aut!, 4y € Q%Z,ewact and xo € Q§76$a0t. In particular, it follows that
taking X = 0 or Y = 0 defines a complement to the tangent space of the diffeomorphism action.
Let

W = {(d(fw) + 70, Ly + d(gP) + x0)} € Lot X Leacr -

for f,g € Q.Y € auth, 4 € Q%Zeamct and xo € ngemct. Taking the appropriate Hélder norm
completions, we get

Proposition 7.7 ([Nor08] Theorem 3.1.4 & 3.1.7). There exists a slice to the diffeomorphism

group action in Q2. ., x QL . whose tangent space is given by W.

We can now study the spectral properties of the second variation of the functional £. We have

Proposition 7.8. Assume (M5, w, p) is not isometric to the round 6-sphere. Under the Hodge
decomposition, Equations are equivalent to

—8g = (n+12)f, (66a)
—9f = (u+12)g, (66b)
1 o+ 12
Y—i-gdg— 13 X, (66¢)
1 w412
X — —df = Y
==Y (66d)
+12
anno= B, (66¢)
+12
d*xo = _et12) 1 )’Yo : (66f)

Proof. Let

y=Lxp+d(fw)+v=Lxp+df N w+3fp+0,
X =Lyo+d(gp)+ xo=Lyo +dgANp—4g90 + xo »

with f,g € Q°, X,V € auth, o € Q?{Zemct and xo € Qéemd, by virtue of Theorem m By
the definition of Z and K, and Lemma [A:47] we get

Iy =Lxp+Jdf N\w+3f Np—x*vy Kx = Lyw+dgap — 2gw — *Xo -
Now, since (w, p) define a nearly Kéhler structure , we get
dIv = —4ALxo +d(Jdf Nw) +d(Bf ANp) —d*x~y) = _4£X—idfa +d(BfAp)—dx*o,
dKx = 3Ly p + d(dgp) — d(2gw) — d(xx0) = 3Ly, 1 490 — d(2gw) — d(*x0) -

Plugging these back in and since the Hodge decomposition is orthogonal, the system (66a))-
follows. O
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Proposition 7.9. The eigenforms of H- are multiples of (,0, +v2 O‘) and solutions to

p+12)2
Ay = 20 D E (67)

for v € Q?Qmad. In particular, the spectrum of H” is discrete and has finite multiplicity for
each .

Proof. First, equations and imply 72fg = (1 + 12)2fg. The only solution to this
equation with fg # 0 corresponds to u = —12 4 64/2. If we further impose the gauge fixing

condition X = 0, equations (66¢c|) and become

1 2 1
Y+ 3dg =0 3df16\/§Y:i\2[<Y—3dg>:0,
since f = F=5=g by equation . Thus, Y =df =dg=0,s0 f and g = j:Tf must be

constant, with associated eigenvalue 1 = 12 4 61/2. We have reduced our spectral problem to

the PDE system —

+ 12 + 12
dx* o = (M?))Xo dx* xo = —(M47)’Yo ; (68)
with (70, x0) € Q?Q’exact X Qéewct. If u = —12, (70, x0) are harmonic exact forms and thus zero.

Thus, we may assume g # 12. In this case, this PDE system is equivalent to . If g satisfies

, then
+12 +12)2
BH12) )= 127

3 12
Conversely, if o satisfies and p # —12, the pair (7, ﬁd % 7yp) satisfies :

Ayy =dd*yp = —

-3 (n+12)

d*d*%:mA%:—T’Yo- O

ANTEST)

Remark 7.10. The case . = 0 corresponds to the nullity of H~, i.e. infinitesimal deformations
of the nearly Kdihler structure. As expected, we recover the result of [MNSO8] and [Fos17] on
infinitesimal deformations of nearly Kdhler structures.

7.2 The closed Hitchin functional

The Euler-Lagrange equations associated with the functional £ resemble the first variation of
a Hamiltonian functional. This similarity suggests a natural approach: to seek out and analyse
Lagrangians that correspond to the Hitchin functional £ when interpreted in a Hamiltonian
framework. In particular, we will treat the exact 3-form p as the moment variable within this
setting. To formalise this approach, consider the map

Cl: 0% = Q3 x O

w (%dw, %wQ) ,
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and let U := CI~(R) be the preimage of exact stable forms (p, o). The pullback of the Hitchin
functional £ under CI will be the corresponding Lagrangian functional.

The space U is a priori quite mysterious. In particular, important questions to answer are under
which conditions the space is non-empty, whether it is path-connected or simply connected. The
following key result shows that I/ has a very natural geometric description:

Proposition 7.11. There is a one-to-one map between U and the set of SU(3)-structures with
torsion (cf. Proposition supported in the classes o = e/, 7 and T2, with f € C>°(M). In
particular, there is a well-defined map F : U — Met(M).

This connection with SU(3)-structures justifies the choice of p as the moment variable, rather
than o, for which a result like Proposition [7.11]is not available.

Proof. Let w € U. Then the 3-form p = %dw is stable and satisfies w A p = %de = 0 since
w € U. Thus, the pair (w,p) defines a U(3)-structure. Let u = e/ € C®°(M) be the unique
function such that

3 N
w 1 . ~ 1p <p)
= —Ap==En(E).
3L~ 22?7 4y u
Then the pair (w,p) = (w,1p) = (w, 3-dw) defines an SU(3)-structure. It follows easily that
the torsion of this SU(3)-structure is given by 70 = u = e/, 7| = —df and 7.

Conversely, given an SU(3)-structure (w, p) with these torsion classes, it is clear that dw = 371pp

is stable, provided 7y is everywhere nonzero. O

In particular, closed SU(3)-structures are a closed subset of U, obtained by enforcing f = 0.

Thus, one could think of U as some analogue of conformally closed SU(3)-structures.

Let us study the pullback of the Hitchin functional under the map Cl. We denote this pullback
by Q. We have

1 2 1
Q=Cl"'L = 3/ voly /34, + 8/ voly, — 12P(fdw, w—) = / vOlgu, —4/ vol, ,  (69)
M M 3 2 3 m M

where used the fact that vol, = 2vol, as a straightforward application of . Similarly, we
can pull back the inner product. Let [-,] = $CI*{-,-}. For a, 8 € TU, we have

[a,ﬁ]:;/Ma/\ﬁ/\w:;/Ma/\lC_l(ﬁ),

where K : Q* — Q2 is the linearisation of the Hitchin dual map from Proposition with
respect to the SU(3)-structure from Proposition This follows from noticing that, for any
4-form x, the 2-form K(y) is the unique form that satisfies K(x) A w = x.

The following result further motivates the interest in the functional Q.

Proposition 7.12. Consider the map S = F*S the pullback of the Einstein—Hilbert action
(145) under the map F : U — Met(M) from Proposition |7.11.

The Hitchin functional Q is bounded below by S. Moreover, the two functionals coincide if and

only if the SU(3)-structure is a constant rescaling of a nearly Kdhler structure.
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Proof. Using the formula for the scalar curvature in Lemma [A45] the pulled-back Einstein—
Hilbert action (145 can be written as:

1 1 1 1
S(w) = / sg — 20 voly = / (307’3—|7’2|2> —QOvolg:/ 67-3—4— —|Tg\2volg )
5 )M 5 Jm 2 M 10

Similarly for Q, we have dw = 379p, and so, volg, = (379)? vol,. Substituting in the definition

of O: .
Q:/ VOldw—4/ VOlw:/ 673—4V0197
3 Jm M M

where we used vol, = %volp = vol,, . It follows that S < Q.

For the equality case, it is clear that one has 75 = 0. Thus, from Proposition we have
dp=—2ef? —df N p.
Differentiating one more, since dw? = 0, we have
0=—2eldf Aw? +df Ndp = —4eldf A w?
which implies df = 0, as needed. O

Let us study the variational properties of the Lagrangian functional Q. The first variation of
Q along g is

1 — w? 1 — w?
5Q=/M3dﬁAdw—42A5=—3/M (d(dw)+127)/\ﬁ.

The gradient flow of Q with respect to the pairing [-,-] is Ow = —K(d(gu\)) — 6w . This flow

becomes slightly more enlightening if we consider the induced flow for o = w?

R
a:—d(d*a)—ma:dd0—12J:A0—120, (70)
since dw = *dw. We refer to this flow as the nearly Kéahler Laplacian flow.

Proposition 7.13. The critical points of Q are nearly Kdhler structures.

Proof. With respect to the induced SU(3)-structure, the fixed points of the gradient flow are
0= Ao — 120 = —3d(1p) — 120 = 12730 — 31972 Aw — 120,

which implies that the torsion of the underlying SU(3)-structure is 7o = 1 and 75 = 71 = 0, as
needed. O

The second variation of Q at a nearly Kahler structure is given by

’Q 1 -1
aaaﬁ—?)/Mda/\Idﬁ—le/\a/\B—3/Ma/\(dId5+12w/\ﬂ). (71)

We can associate a symmetric endomorphism H€ to the second variation via the pairing [, ],
which we refer to as the Hessian of Q. Before studying the spectral properties of H<, it is
convenient to get a more manageable description of T,,U.
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e:vact)

Proposition 7.14. There is an isomorphism T U = K (2

Proof. Recall that U = C17}(R) = {w € Q2| w is stable, dw is stable,w? is exact}. The stability
and positivity conditions are open, so we only need to study the constraint of w? being exact.
Its linearisation along dw = « is given by dw? = 2w A a = 2K~ 1(a). O

Since K is a pointwise linear isomorphism, we will instead study the spectral properties of
HS =K loH0oK: QL et — Q2. Explicitly, we want to solve the equation

ETACI

dZdKx = —(pu+ 12)x (72)

for p € R and y € Q2. Since the functional Q is invariant under the action of the diffeomor-

phism group, it is convenient to work on a slice to the orbit of the diffeomorphism group. Let
w € U be a nearly Kéahler structure and O be the orbit of Diffo(M) in TU going through w.
The tangent space to this orbit is spanned by £xw, for X € aut™ C Q', where aut is the set of
vector fields preserving the nearly Kéahler structure, and the complement is taken with respect
to the L? metric. Under the isomorphism of Proposition the image of the tangent space
of the orbit is spanned by K1 (Lxw) = Lxo, for X € autt C Q!, where we used Lemma

By Theorem we can parametrise x € Q2 ., by x = Lxo +d(fp) + xo , where f € Q°,
X € aut and xo € 9 0 In particular, taking X = 0, we get that W = {d(fp)+x0} € Qepacr
is a complement to the tangent space of the diffeomorphism orbit. Arguing as before and taking
the appropriate Holder norm completions, we can integrate W into a gauge slice, and we can

prove

Theorem 7.15. Assume (M5, w,p) is not isometric to the round 6-sphere. Under the Hodge
decomposition and gauge fixing, Equation is equivalent to

(n+6)f=0, (73a)
df =0, (73Db)
Axo = (p+12)x0 ; (73c)

where f € Q° and xo € Q%,ezact' Solutions are f = C with C € R for i = —6 and the solutions
to

Axo = (1 +12)x0 dxo=0.

In particular, the spectrum is discrete and has finite multiplicities.

Proof. Let
X =Lxo+d(fp) + X0,

with f € Q° X € aut® and yo € Qg’cwsed. As in the proof of Proposition E we have
dKx = 3Lxp + d(df up) — d(2fw) — d(*xx0) = 3[,X+%dfp —2df Nw—6f A p—d(*xxo) -
Since Yo is closed, d(*xo) € 935, by Corollary [A.52| Thus, acting by Z, we get
ZdKx = 3ﬁx+%dfﬁ— 2Jdf Nw —6fp+ *d(*x0) ,
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and finally, acting by d once more, we get
dZdKx = _12[’X+§df‘7 —d(2Jdf Nw) —6d(fp) + d=*d(*x0) = _12[’X+%df0 —6d(fp) — Axo -
Plugging this back in, and since the Hodge decomposition is unique, the system follows. O

As before, the case pr = 0 recovers the infinitesimal deformations of the SU(3)-structure. More-
over, the following is a straightforward corollary of Proposition

Proposition 7.16. There is a correspondence between the eigenforms of H and HE.

This result motivates the following definition:

Definition 7.17. Let (M® w,p) be a nearly Kdihler manifold. We define the Hitchin index
of the nearly Kdhler structure Ind, ,) as the number of negative eigenvalues of the Hessian
endomorphism HS : W — W at (w, p) minus one.

Remark 7.18. The Hitchin index does not account for constant rescalings on the structure,
which always correspond to a negative eigenvalue of the Hessian. This justifies why we sub-
tracted one from the count of the index of HC in the definition above. In particular, notice that
Ind(, ) > 0.

If we let £(\) = {B € Q%,coclosed | AB = )\B}, the Hitchin index is
Indg, )= Y  dim & (74)
A€(0,12)

Notice that a priori, this definition of the index is different from the usual Morse definition as
the index of the quadratic form §2Q, since the pairing used to define the endomorphism H€ is
indefinite. However, we will show that the two quantities are connected in this case. We prove

Proposition 7.19. The Morse co-index of the second variation 62Q restricted to Qéemd is
equal to the Hitchin index.

Proof. Evaluate 62Q(8,8) for 8 € T,,U. Equation and Proposition yield

529 =— / K(x) A (dZdK(x) + 12x) , (75)
for x € Q2 ..;. Fixing the diffeomorphism slice, we can take xy = d(fp) + xo for f € Q° and
X € Q&closed. By the computations of the proof of Proposition W we have

1
52Q = —/ (Axo — 12x0, X0) — 48/ f?vol, +2/ (df ap) A [d(Jdf ANw) —df A p)
3 M M

- _% /M<AX0 — 12x0, X0) +8/M(Af —6f, f).

Thus, the second variation has two distinct behaviours on the two subspaces of W = {d(fp)} &
Q%,ezact’ similar to the Einstein-Hilbert case (cf. Theorem . Notice that the first subspace
corresponds to conformal deformations of the metric, as expected. O

64



An interesting first result is the Hitchin stability of the homogeneous examples.

Theorem 7.20. Let (M, w, p) be one of the four homogeneous nearly Kdhler manifolds. Then
Ind(va) =0.

The main tools we need are a version of the Peter-Weyl theorem for naturally reductive homo-
geneous spaces and a comparison between the Hodge Laplacian and the canonical Laplacian.
On a nearly Kéahler structure, besides the Levi-Civita connection, there exists another metric
connection, called the canonical connection, with the property that Hol (V") C SU(3). The
relationship between these two connections is given explicitly by

1
vean — VLC _ 5[/0\ (76)

The canonical Laplacian is the connection Laplacian associated with this connection, A" =
(Veamy* yean Both results above are due to Moroianu and Semmelmann. They are collected
in [MS10; |[MS11] in their investigation of infinitesimal nearly Kéhler and Einstein deformations

of nearly Kéhler manifolds.

Lemma 7.21. [MS11, Prop. 4.5] Let (M®,w, p) be a nearly Kihler manifold, A“™ the induced
canonical Laplacian. For 3 € Q2, we have the Weitzenbéck-type formula:

(A= A“")B = (Jd"B)p .
In particular, both Laplacians coincide on coclosed forms of type Q3.

Proposition 7.22. [MS10, Lemmas 5.2 & 5.4] Let (G/H,w, p) be a naturally reductive nearly
Kdhler manifold and consider p : H — aut(E) a representation of H, and EM = G x, E the
induced vector bundle. Then, the Peter-Weyl formalism and Frobenius reciprocity imply

L*(EM)= €P VyxHomg(V,,E),
velrr(G)

where Irr(G) denotes the set of irreducible representations of G. Under this decomposition, the

canonical Laplacian is given by A" = —12 Casg,

tation V,, computed with respect to the Killing form.

where Cas,cy" s the Casimir of the represen-

Proof of Theorem[7.20. Using the computations of Moroianu and Semmelmann in [MS10], Ka-
rigiannis and Lotay [KL20, Prop. 6.3] showed that the homogeneous nearly Kéhler structures
on CP3 = 80(5)/U(2), S% x §% = SU(2)3/ASU(2) and the flag manifold F} 5 = SU(3)/T? are
stable. Thus, only the case of the round sphere S® 22 G5/SU(3) remains. We start by com-
puting the Casimir operator of G2. Let w; and wy be the short and long fundamental weights
respectively, so V¢ is the fundamental 7-dimensional G-representation and Vj ; is its adjoint

representation.

Since G is simple, the Freudenthal formula (cf. [MS10]) allows us to compute the value of the
Casimir operator on a representation of highest weight v. We have Cass = —(v,7+2p) B, where
p is the half-sum of positive roots and (-, -)p is the Killing form. In the case of Ga-structure,
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p = w1 + wo, and so, for an irreducible representation of highest weight (A, u), its Casimir
operator is given by

Casgy (A, 1) = =M +2) |wrl[B+alp + 2)||lw2B+2(M + A + ) (w1, w2) 5

—1g AO+2) 43 +2) + 3+ A+ ) -

Therefore, by virtue of Lemma and Proposition the Hodge Laplacian on coclosed
forms of type Q% is given by

AB= > (AMA+2)+3p(u+2) + 30+ A+ ) 74(8) -
(A, p)€elrr(G)

In particular, the only highest weight for which the eigenvalue of the canonical Laplacian is
smaller than 12 is (1,0), the fundamental 7-dimensional representation. The space of primitive
(1,1)-forms can be identified with the adjoint representation of SU(3). By dimensional reasons

it is clear that Homgy(s) (V1,0,5u(3)) = 0, and so (S8, ground) is stable. O

Remark 7.23. Notice that a priori, this computation is only valid if one defines the Hitchin
ndex using Equation since the gauge slice is not valid in the round sphere case. However,
one can retrace the proof of Theorem[A.58 and show that the discussion can be adapted without

significant changes. We omit the details.

The next natural question is the study of the Hitchin functionals and the index problem for the
remaining two known examples of nearly Kéhler structures, due to Foscolo and Haskins [FH17).

We devote the final chapter of the thesis to this endeavour, where we prove

Theorem 7.24 (Thm. . Consider (53 X S?’,gFH, wrH, prH) the cohomogeneity one nearly
Kdhler structure on S x S3 constructed by Foscolo and Haskins in [FH17]. Its Hitchin index
18 bounded below by 1, and the Finstein co-index is bounded below by 4.

Finally, we outline the connection between the Hitchin functionals and the study of G2-conifolds
that we discussed at the start of the chapter, focusing on the Hitchin index. We conjecture there

is an analogous discussion for Spin(7)-conifolds.

The expectation is that the Hitchin index acts as the stability index for conically singular Go
manifolds. That is, the index measures the codimension of the singularity in the moduli space
of conically singular GGo manifolds. A first indication of this is the dimension bound of the
obstruction space for Ga-conifold deformation that we saw in the introduction:

Proposition 7.25 ([KL20, Prop. 6.11)). Let (M, ) be a conically singular Ga-manifold with
singularities p1, ..., pn, modelled on the X1, ...,%,. The dimension of the obstruction space to

the deformation problem is bounded above by

dim(O ) <n—1+ z": (Ind&) ;.
=1

Moreover, if Ind™ = 0 for all i, the remaining obstruction space is ineffective.
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To further pursue this discussion, it would be useful to study manifolds with both asymptotically
conical (AC) and isolated conically singular (ICS) ends. Although Karigiannis and Lotay do not
directly address this case, their methods should extend with minimal difficulty. In particular,
for a manifold with only one conically singular point and an asymptotically conical end, we
expect that the difference of the Hitchin indices will give the virtual dimension of the moduli
space.

This expectation can be motivated by treating £ as an analogue of the Chern—Simons functional
in instanton Floer theory. Consider a family of SU(3)-structures (p(t),o(t)) on 3, evolving with
the gradient flow of £ and connecting two of its critical points. Proposition implies there is
an associated G conifold with one ICS and an AC end. Following the Chern—Simons analogy,
the virtual dimension of the moduli space of such conifold should be given by the spectral flow
of the family of SU(3)-structures. In view of Proposition (cf. Prop. , this corresponds
to the index difference of the two nearly Kéhler structures.

8 The nearly parallel G5 case

We adapt the discussion from Section[6]to realise and study nearly parallel Go-metrics as critical

points of Hitchin-like functionals.

8.1 The nearly parallel G; Hitchin functional

Let M7 be a closed spinable manifold, so it admits a Ga-structure. In dimension seven, we have

4 .
exact*

Q : Qixact — R (77)
dy H/ dy ANy,
M

* ~v ()4
- Qe:cact‘

a non-degenerate quadratic form on €2

exact )

We consider the space V = Qi nod

exrac

induced by the isomorphism (2

; of stable exact 4-forms. Given a stable 4-form 1) and a
fixed orientation on M, we consider the associated volume form voly, = %w A 1} and denote its
Hitchin dual by ¢ = {Z)\ Comparing with the identity ¢ A ¢ = 7voly, we get vol, = %vollb. In
[Hit01], Hitchin introduced the functional

P:V—-NR
. / voly, —2Q(¢) , (78)
M

and showed that its critical points correspond to nearly parallel Ga-structures. Indeed, we have

Proposition 8.1. The FEuler-Lagrange equation of P is dp — 49 = 0 . In particular, critical
points are nearly parallel Go-structures. The gradient of P induced by Q is given by Oxp =

dp — 4.

Proof. Let &) = x = dn € QO Then5v01¢zquzzx/\<pandso

exact*

5£:/Mx/\<p—4/Mn/\z/J:/Mn/\(dcp—41/1). O
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Again, we have a nice geometric interpretation of the gradient flow in terms of the induced
metric.

Proposition 8.2. Fiz an orientation on M and let 1(t), t € (a,b), be a family of stable exact

t. The induced metric g = dr?+r2g (log(r))

4-forms and g(t) the associated metric and set r = e
on (e, e?) x M has holonomy contained in Spin(7) if and only if 1(t) satisfies the gradient flow

equation of P.

Proof. From Proposition the condition Hol(g,) C Spin(7) is equivalent to the 4-form
® = dr A r3p 4 r*1p being closed (and coclosed since it is self-dual). Thus, we get

9 o _
o = TE—dMSO_Zl@b,

where dps is just the restriction of the exterior differential d along A*T*M and we used that

0=d® = —dr Ar3dyre + 4r3dr A + ridr A

dytp = 0, which is the gradient flow equations under the change of variables » = e'. The
converse follows. O

By replacing our Lagrange multiplier from 2 to 2\ and considering the limit as A — 0 of the
induced conformal metric e?(dt? 4 gs(t)), we recover the result of Hitchin for Spin(7)-metrics
in [Hit01], as in the nearly Kéahler case.

Similarly, we compute the second variation of P.
Proposition 8.3. Let x1,x2 € Q% ... and n; such that dn; = x;. The second variation of L
with respect to x1, X2 18

82p :/ (dT x2 —4x2) A,
M

where J = Q* — Q3 is the linearisation of the Hitchin map from Lemmal[A.23 The Hessian of
P with respect to the indefinite inner product induced by Q is given by

HP(X) =dJx — 4x .

Proof. By Proposition if 51 = x, then 6{!)\ = dp = Jx. Combining this with our formula
for the first variation and integrating it by parts, the expression follows. O

We study the spectral properties of H”. Since the functional £ is invariant under the action of
the diffeomorphism group, it is convenient to work on a slice to the orbit of the diffeomorphism
group.

Let (M7,%) be a nearly parallel Go-structure that is not isometric to the round S” and O be
the orbit of Diffo(M) in Q2.
Lx, for X € QL.

Using the Hodge decomposition of Theorem we can parametrise y € Q2 . explicitly by

going through 1. The tangent space to this orbit is spanned by

X = Lx+d(fe)+xo;

with f € QY X € aut!, and xp € le,emct. In particular, it follows that taking X = 0 defines a
complement to the tangent space of the diffeomorphism action. As before, let

W = {d(fso) + XO} - ngact ’
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for f € QY and xg € Q%Zemd. Taking the appropriate Holder norm completions, we get

Proposition 8.4 ([Nor08] Theorem 3.1.4 & 3.1.7). There exists a slice to the diffeomorphism

group action in Q3. % Q2. whose tangent space is given by W.

Going back to the study the spectral properties of H”, we have

Proposition 8.5. Assume (M%) is not isometric to the round 7-sphere. Under the Hodge

decomposition, the eigenvalue problem for the Hessian is equivalent to

3 = (u+4)f (790)
uX —df =0, (79b)
d*xo=—(pp+4)xo0 - (79¢)

for f€QY, X € autt and xo € Q%?,ewact‘
Proof. As above, let

X = Lx¥+d(fe)+ xo

with f € Q0 X € aut’ and xo € Q%Zemd, by virtue of Theorem m By the definition of J
and Lemma we get

TIx = Lxp+*(df NY) +3fp—*xo .

Now, since the Go-structure is nearly parallel, we get
dTx = 4LxY — d(df ) + 3d(fp) — d(xx0) = 4Ly 149 + 3d(fp) — d(*x0) -

Now, substituting this in H?, and since the Hodge decomposition is orthogonal, we get the

required system of equations. O

The case 1 = 0 corresponds to the nullity of H”, i.e. infinitesimal deformations of the nearly
parallel Ga-structure. As expected, we recover the result of [AS12] on infinitesimal deformations
of nearly parallel Ga-structures (cf. [NS21]). Notice that our functional approach does not detect
the infinitesimal deformations arising from Killing fields that do not preserve the Go-structure,

that is, those arising from symmetries of the Sasaki-Einstein or 3-Sasaki structures (cf. Table

[6).
8.2 The new G, Hitchin functional

We want to construct an analogue of the closed Hitchin functional. However, in this case, we
cannot exploit any symplectic structure as in the case of the nearly Kéhler Hitchin functional.
Instead, we make a proposal imitating Proposition [7.12}

Recall that V is the space of stable exact 4-forms in M7. Given a fixed orientation on M, the
4-form defines a Go-structure on M, with torsion dyp = 19t + *73. We define

T:V =R (80)

2 _
sz/ 7704 5v01¢, .
M
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Proposition 8.6. Let G : V — Met(M) be the map taking a Ga-structure to its underlying
metric. Consider 8 = G*(S) the pullback of the Einstein—Hilbert action. The Hitchin functional
T satisfies T > g, with equality if and only if the Ga-structure is a nearly parallel Go-metric,
up to rescaling and orientation.

Proof. By Lemma [A.22] we have

~ 1 1 1
S = 6 /M (42702 - 2]7’3|2> —30voly, = /M e —5— E|7—3|2V01‘g .
Using the relation 7vol; = @ Ay = %VO]¢, the claim follows. O

Let us study the variations of 7. We have

Proposition 8.7. The Euler—Lagrange equation of T is
T8+ 5
4
where J : Q* — Q3 is the linearisation of the Hitchin dual map from Proposition [A.23,

In particular, the critical points of T are nearly parallel Go-structures, up to orientation. The

1
T()jdgo + 5;7(617’0 VAN (,D) — =0, (81)

gradient flow with respect to the quadratic form @ is

1 718+ 5
oy =d | 10T dp + §j(d70 Ap)— 04 go} . (82)
First, we need the following technical result
Lemma 8.8. The variation of 79 along 61 = x is
1
drovoly, = ?[d(Jx/\go)+2dap/\j)d —Top A X - (83)

Proof. Let 01p = x. Then dp = Jx by Proposition Let us compute the variation of 7.
By definition, we have dp A ¢ = 4191) A ¢ = T1gvoly. Taking the variation of this identity, we
get

Totovoly +Trop Ax =dIx N +de NTx .

By the Leibniz rule, the claim follows. O
Proof of Proposition[8.7. Using the lemma above, we have
1 2
0T = 1 14719070 voly, + (77’0 - 5) wAX
M

1
:4/ 4Tod<p/\jx—2dToij/\<p—(7702—1-5)@/\)(
M

T8+ 5
4 <)0 )

1
= / X A <Tojd90 + Qj(dﬂ) Ap)— (84)
M

and the Euler-Lagrange equation follows. Let us study the critical points of 7. Using the
torsion decomposition dy = 4719y + *73, it is clear that 73 = 0 and 79 = C' € R. We get an
equation for 7y:

1275 — (775 +5) =0,
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with solutions 79 = +1. The case 79 = 1 is the nearly parallel Ga-structure condition. For
70 = —1, we obtain a nearly parallel Ga-structure for the reversed orientation. The formula for
the gradient flow follows from taking x = dn and integrating by parts. O

Notice that, unlike the case of nearly Ké&hler structures, the flow depends explicitly on the
torsion 7y and its derivatives. In particular, the flow is third order in ¢ and thus non-parabolic.

Before studying the second variation, we have the following technical computation

Lemma 8.9. Let (M,v) be a nearly parallel Go-structure, and consider a variation 61 = x =
fo+ X Ao+ xo. We have

1 1
=—d'X —-f.
070 7d 4f

Proof. From Equation , we get

1 1
oo voly = Z[d(TX A @) + 2T () Ax] — ¢ Ax = o (dTXx A @) +6p AX) =0 A X
1 1 1 1
= §[d(*(X/\go)/\gp)—fw/\<p] :—?(4d*X—i—fw/\go): (?d*X—Zf)Volw,
where we used the relation 7vol, = p A1) = Evolw once more. O

Proposition 8.10. The second variation of T along 0v; = xi = fitv + Xi Ao + (x0)i is given
by

1 " 7 1 N 7
527—/ X1 A {deX2—4\7X2+ﬂ* [d (d Xy — Zf2> Acp} ~ 1 <d Xy — Zf2> @} . (85)
M
In particular, the Hessian with respect to the pairing Q defined in Equation (77)) is given by

1 ) o) =7 (ex-11) o
T _ _ - * ' o * 0
H(X)—d{jdjx 4Jx+14*[d<dX 4f A 7 ' X 4f ol -
Proof. Notice that directly taking the variation of would require us to understand the
variation 6. 7. We avoid this by noticing that we can rewrite §7 as

77-5 + 5 -1 )

1 J e

245

).

1
(57-:/ jX/\(Tod(p—i-*(dTo/\gO)—
M 2

1
=/ TX N (Tod@Jr(dToAsO)—
o 2

So the right-hand side can be viewed as the variation of T for dp = 67:&\ = Jx € Q3. Thus,

1 14 T8 +5
82T = / JIx1 N |:’7'0de2 + d1odyp + §(d507'0 Ap)— ?7'057'0’(/) — T03 X2:|
M
2 1 T8 +5
:/ JIx1 N |:de2—*(57'0w+*(d(57'0/\80)_ 0 X2:| .
M 3 2 3

Using the lemma, we can rewrite this as . From the definition of (), the expression of the
Hessian is straightforward. O
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Let us study the spectrum of the Hessian. By Proposition [8.4] we can restrict ourselves to the
tangent of a slice to the diffeomorphism orbit W = {d(f¢) + x0} € Qepaee With X0 € Q57 cper-
We have

Proposition 8.11. Let (M,1)) be a nearly parallel Gy-manifold that is not isometric to the
round S”. The eigenvalue problem (HT — p) : W — W is equivalent to the PDE

Axo +4d * xo = pxo (86)

for xo € Q%Zemct whenever p # —5/2. For p = —5/2, the eigenforms are additionally given by
multiples of .

Proof. As in the proof of Proposition we can take y € W C Q1 . as

X =d(fe)+xo=4fY+df Ao+ xo

with f € Q° and xo € Q%Zemct, by virtue of Theorem and Proposition We compute
the four terms of the second variation separately. First,

dTx = d(x(df N) +3fp —*x0) = 3d(fp) — d(df sp) — d(xx0) = 3d(f¢) — Lagp — d(*x0) -
Thus, we have

dJdTx = dJ [3d(fe) — Lagtp — d(xx0)] = d[3* (df Np) +9fp — Lo + *d * x0]
= 9d(f¢) — TLarp + Axo -

Similarly, using the identity d * (X A ¢) = —Lx1 once more, the third term in becomes

1 1
ﬁd * [d(Af=Tf)Np] = —ﬁﬁd(Af—m@/) :

The fourth term is simply —ﬁd [(Af —7f)¢]. Putting all of these together and using the fact
that the Hodge decomposition of [A:34] is orthogonal, we have

1
—E(Af—7f)—3f=lif
1
——d(Af—Tf) ~3df =0
Axo + 4d * xo = pxo

Now, if df # 0, the first two equations combine to yield p = 0, which implies f = 0 since (A —7)
is strictly positive, by Obata’s theorem [Oba62|. If f = C € R, it follows that = —5/2. O

Definition 8.12. Let (M7, ) a nearly parallel Go-manifold. We define the index of the nearly
parallel Ga-structure Ind, as the number of negative eigenvalues of the Hessian endomorphism
HT - W = W at ¢ minus one.

Remark 8.13. As in the nearly Kdhler case, the Hitchin index does not account for constant
rescalings on the structure, which always correspond to a negative eigenvalue of the Hessian. In

particular, notice that Ind, > 0.
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First, the following lemma shows that the index is well-defined.

Lemma 8.14. The spectrum of M’ is bounded below by —4. In particular, the index is well-
defined.

Proof. Let x € Q2. an eigenvalue of H7. If y # —5/2, we know that x € Q4 by Proposition
Taking the L2-norm of d * x + 2x, we get

0< (dx+2x,d*x+2x) = (dxd*y+4d*x,x) +4]x][2= (HT (), ) +4llx|?. O

Moreover, we have a relation between the spectrum of the Hessians H” and #H7 :

Proposition 8.15. Solutions to (H” —\)x = 0 with A € R for x € Q... are in correspondence

exac

with solutions to H' (x) = ux with pu > —4. Moreover, the range A € (—4,0) is in two-to-one
correspondence with the range p € (—4,0), excluding multiples of the 4-form 1.

Proof. First, multiples of the canonical 4-form 1 are solutions to (H” — A)x = 0 for A = —1
and to (HT — p)x = 0 for 4 = —5/2. Thus, we may assume that y € Q%Zemd.

First, let x be a solution to d x x = —(A +4)x. Then
HT(x) = —(A+4)d*x —4A+4)x = [(A+4) —4(A +4)]x,

which is negative in the interval A € (—4,0). Conversely, assume Y satisfies H7 (x) = px with
> —4. Let y& = dxx — Ay, for A = =24+ /u+4. Clearly, v € qumd. If v+ =0, we
are done. Otherwise, we need to show that v is a non-trivial element of the kernel of ¥ — .
Substituting v+ in H7 (x) — px, we have

0=Ax+ddsx —px=d*(Y+A) +4(y+ ) —px =d*xv+ A+ 47+ (A2 +4)\ — p)x .

Our chosen values of A are the roots of the rightmost term, so « satisfies H” (y) = v, as
needed. O

In particular, we have

Corollary 8.16. Let (M, ) be a nearly parallel Go-manifold, and consider the spaces

EN) = {x0€ Q3 d*x0=Mx0} -

The Hitchin index of the nearly parallel Go-structure is given by

Indy, = > dim £()).
Ae(—4,0)

One could try to relate this to the Morse co-index of T, as we did for the Hitchin index of nearly
Kéhler structures in Proposition [7.19] However, a moment of thought suffices to realise that
both the index and the co-index of 7 are infinite, even when restricted to 937. Indeed, taking

£ as above, we have
7] :/ XA O+ 4) % va] = O+ 4)(x1, xo) -
EN) M
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As we did for the nearly Kéahler structures, one could investigate the index of the known examples

since they all possess some symmetry that would allow us to reduce the PDE to a simpler

problem. We do not work out any examples explicitly, but provide an outline of how to compute,

or rather bound, the Hitchin index.

(i)

(iii)

Homogeneous examples: The Peter-Weyl formalism for reductive spaces described
above carries over verbatim. The case of nearly parallel Ga-structures is slightly more
challenging since the differential operator is not simply a Laplacian. Thus, computations
become more tedious. Some computations in this direction were carried out by Alexandrov
and Semmelmann in [AS12] and Lehmann in [Leh21].

Sasaki-Einstein examples: Recall that the inclusion SU(4) C Spin(7) implies that every
Sasaki-Einstein manifold carries a natural nearly parallel Go-structure. Let us assume that
the underlying Sasaki structure is quasi-regular, so the Reeb field integrates into an S*
action. In this case, the PDE

Ax + 4d*x = px

is S'-equivariant. Thus, one can try to use the Peter-Weyl (Fourier) formalism along the
fibres to reduce this problem to a complex PDE on the leaf space and obtain a bound for
the index in terms of Hodge numbers of the complex orbifold base, using the results of
Nagy’s PhD thesis [Nag01].

The added difficulty in this case is that, while the PDE above is S'-invariant, the under-
lying Go-structure is not (and thus neither is Q3.), so one would need to check that the
forms constructed above had the correct type.

When the Sasaki-Einstein is irregular, there is a higher-dimensional torus acting isometri-
cally on the manifold. One might then try to generalise this approach, but the geometry
of the orbit space becomes significantly more intricate and less tractable.

Squashed examples: The squashed nearly parallel G2 metrics are constructed by rescal-
ing the fibres of a 3-Sasaki manifold. In particular, the squashed metric has an isometric
action by SU(2) with a 4-dimensional orbifold leaf space.

Thus, one can follow the same strategy of reducing the PDE to the 4-orbifold by using the
Peter-Weyl formalism along the fibres. Similar ideas were presented in a recent preprint
by Nagy and Semmelmann [NS23].
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Cohomogeneity one nearly Kahler

structures

We now turn to the study of the Hitchin and Einstein indices for the two known inhomogeneous
nearly Kéhler structures, constructed by Foscolo and Haskins [FH17].

Throughout this chapter, we consider 6-dimensional manifolds (M9, w, p) that admit a coho-
mogeneity one action by a compact Lie group G C Aut(M,w, p), such that the generic G-orbit
has codimension one. These generic orbits, known as principal orbits, are diffeomorphic to the
homogeneous space G/K, where K is the isotropy subgroup at a point on the orbit.

Since M will be a closed manifold with finite fundamental group, the general theory of coho-
mogeneity one manifolds (cf. [Bre72, Chapter IV, Theorem 8.2]) implies that the orbit space
M /G is homeomorphic to a closed interval [0,7]. The preimage of the interior (0,7") is an
open dense subset M* C M that is G-equivariantly diffeomorphic to (0,7) x G/K. At the
endpoints of the interval [0, 7], the orbits degenerate to lower-dimensional submanifolds known
as singular orbits, with isotropy subgroups Hy, Hr C G respectively. These satisfy K C H;,
and the quotient spaces H;/K are diffeomorphic to spheres.

The motivation for imposing a cohomogeneity one symmetry assumption is that it provides a
dimensional reduction of the PDE into a system consisting of two parts: An algebraic problem
on the space of invariant tensors, and an ODE on the orbit space [0, 7], that becomes singular

at the endpoints.

We begin by reviewing the geometry of cohomogeneity one SU(3)-structures and the key el-
ements of the Foscolo—Haskins construction. This includes their method of glueing nearly
Kahler “halves” across a maximal volume orbit to obtain complete, inhomogeneous nearly
Kahler manifolds. With this background, we then examine the eigenvalue problem associated

with the Hitchin index under the assumption of a cohomogeneity one symmetry.

9 Cohomogeneity one SU(3)-structures

We study the structure induced on the principal orbits by the SU(3)-structure on M. By
the work of Conti-Salamon [CS07], the frame bundle of any orientable hypersurface ¥° < M
admits a reduction to a principal SU(2)-bundle. This is equivalent to the existence of a nowhere-
vanishing 1-form 7 and a triple of 2-forms (w;,ws,ws) satisfying the conditions

(1) NAw; ANwj = 25@' voly,
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(ii) Xiw =Y iwy = wg(X,Y) > 0.

The forms w; pointwise span a subbundle of A%, which we denote as A%r. Its orthogonal com-
plement within ker(n) will be denoted by A%. This notation is justified by observing that the
Hodge star restricted to ker(n) acts as +Id on AZ. Let v denote the positive unit normal vector
field to X. The induced SU(2)-structure on ¥ is given explicitly by

n=viw wi=wly wo +iws =vi(p—ip) .

Conversely, given one parameter family of SU(2)-structures, we can define an SU(3)-structure
on ¥ x (a,b) by taking

w=nAdt+ w; p+ip = (w2 +iws) A (n+idt), (87)

where ¢ is the coordinate on the interval (a,b).

By the work of Podesta and Spiro [PS10], the only interesting cases of cohomogeneity one nearly
Kihler manifolds occur when G 22 SU(2)2, and the principal orbit is always diffeomorphic to
5% x §3 2 Nyj = SU(2) x SU(2)/AU(1). Thus, we are interested in parametrising the set of
invariant SU(2)-structures on it. On Nj 1, we have a distinguished invariant SU(2) structure:
the Sasaki-Einstein structure coming from the Calabi-Yau conifold V(2% + 23 + 23 + 27) C C*.

We will denote the associated basis of invariant forms by n*¢ € Q!, w§® € Q% and wj¢

w5, w3’ €
0?2, satisfying

dn®® = —2wi®  dw3® =3n*° Awy® dw3® = =30 Awy® dwi©=0.
With respect to the Sasaki-Einstein structure, the space of invariant SU(2)-structures on S? x §3

is parametrised by R™ x RT x SO¢(1,3). Given (\, i, A) € RT x R* x SO¢(1, 3), the associated
SU(2)-structure is given by

n=n* w; = pAw® .

Remark 9.1. The (left-invariant) Reeb field generates the subgroup of inner automorphisms
of SU(2) x SU(2) that fires AU(1). In terms of the invariant SU(2)-structure, the Reeb field

induces a rotation in the (w5, w5®)-plane.

We get the following formula from the structure equations for the Sasaki-Einstein metric. Let
(A, p, A) denote an invariant SU(2)-structure. Then,

dn = -2 \wi®  dw; = %77 ANTAw®  d(nAw;) =dnAw; = =2 Apu(Aw;, wic) vol** ,  (88)
where T € End(R!?) is given by T(w§¢) = T(w;®) = 0, T(w5¢) = 3ws® and T (wi¢) = —3wse.

Remark 9.2. Formula (2.17) in [FH17] contains two typos, which are corrected above.

9.1 Local nearly Kahler conditions

We can ask under what conditions a family of SU(2)-structures on ¥ gives rise to a nearly
Kéhler structure on ¥ x (a,b). Using the definition of a nearly K&hler structure and , the
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SU(3)-structure will be a nearly Kéahler structure if and only if the SU(2)-structure satisfies the
equations
dwi = 31 A ws d(n Aws) = —2wi | (89)

as well as the evolution equations
Ow1 = —3ws — dn O (N N\ wy) = —dws (N Aws) =dwy+4n Aws . (90)

An SU(2)-structure (n,wi,ws,ws) satisfying Equations is called a nearly hypo SU(2)-
structure. Equations are called nearly hypo evolution equations. When restricting to
the case of cohomogeneity one, Foscolo and Haskins introduce a change of variables to ob-
tain an ODE system rather than a mixed differential and algebraic system. Their results are
summarised in the following proposition:

Proposition 9.3 ([FH17, Prop. 3.9]). Let U(t) = (A, u,v) be a solution of the ODE system

AOyug + 3v9 =0, (91a)
Nopuy + 3y = 207, (91Db)
AOpug + 3v9 = 0, (91c)
Oy — 4 ug = 0, (91d)
o1 — 4 u; =0, (91e)
Bpvs — Aug = —3% : (91f)
Mu2oA? — du3 = =Xy (91g)

defined on an interval (a,b) C R uz < 0, )\,,u2 > 0 and uyve —ugvy > 0. Moreover, assume that

there exists some to € (a,b) for which the quantities
Li(t) = (w,v) L(t) = N|uf*~uj I3(t) = N?|uf*~[v]? Iy(t) = vi — [ul*  (92)

all vanish. Then 1y, o with p = |u| and

uivg —viug Apug 0 pg wo xo 0 o

A % UgU2 — UV AU 0 T | w om 0o £ (93)
AL ULV — VUG AU 0 U2 wy —A 0 o
0 0 -2 0 0 0 -1 0

defines an SU(2)%-invariant nearly Kdhler structure on (a,b) x Ni 1.

Remark 9.4. The vanishing of 11, Is, Is and Iy correspond to wi A ws = 0, w% = w%, and
wi= wg, and the second equation of respectively. The ODE (91g)) implies the vanishing of
I = (I, I, I3, 1) is a conserved quantity of the ODE.

Corollary 9.5 ([FH17, Cor. 2.46]). Let W) , a be an invariant nearly hypo structure on Ni
such that wy = 0 = we. Then, it is an invariant hypersurface of the sine-cone over the invariant
Sasaki-Finstein.
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The ODE system (91]) is invariant under various symmetries. Three of them will be key in the
discussion ahead: time translation t — ¢ + tg, for t9 € R and the following two involutions:

71 :()\7 Uugp, U1, U2, Vg, V1, U2, t) = ()\7 —Ug, —Uu1, u2,vo, V1, —V2, _t) ) (94&)
T2 :()\7 ’l,L()7 Ul, ’l,LQ, 'UO, 'Ul, 'UQ, t) — (>\7 UO, —Ul, UQ, —'UO, vlu —V2, _t) . (94b)
A complete list of the symmetries of the ODE (91)) and their geometric interpretation can be

found in [FH17, Prop. 3.11].

There are four explicit examples of solutions to the ODE system : the three homogeneous
examples S¢, CP? and S2 x S3; and the sine-cone over the homogeneous N7, with its homoge-

neous Sasaki-Einstein structure.

Example 9.6 (The sine cone).

1 0 0 0
. . 0 cos(t 0 sin(t
A = sin(?) = sin’(t) A= 0 _ sn(l(i) 0 cos((t)) (95)
0 0 -1 0
Example 9.7 (Homogeneous nearly Kihler on S3 x S3).
A=1 w= 2\3/3 sin(v/3t)
2 (sin®(V3t) +1)  Lsin(2v/31) 0 2 (2sin?(v/3t) — 1) 06)
A = 2 sin?(v/3t) ? sin(2+/3t) 0 2 sin?(v/3t)
—2 cos(V/3t) —zij)ﬁ sin(v/3t) 0 2 cos(V/3t)
0 0 — 203 gin(v/3t) 0

We collect some formulae and relations for general cohomogeneity one nearly Kéahler manifolds:

Lemma 9.8. Let (M%, w, p) be a cohomogeneity one nearly Kdhler manifold, and let (n,w;) =

Yapa (N7 wi€) the associated SU(2)-moving frame. Then, we have the following relations

(i) dn = 2%04) - Z%wl — 2ws,
(ii) dwy = —3%2n A wa,
(iii) d(n A wy) = =220,
(iv) dwy = —3%77 Awg—3nAwi + 3%77 A ws,
(v) dws = —3%n A wy,
(vi) Oim = O log(M)n,
(vii) Opwy = O log(p)wo — Q%wl — 3 ws,
(viii) O\ = 3y — 2% a1,

(iz) Oipn = 2 xy.

78



where the functions w;, x; and y; are the components of the moving frame matrix A defined in

FEquation .

Proof. All the identities follow from the above formulae and the fact that A=! = JA!J for
J =diag(—1,1,1,1), since A € SOp(1,3). We give the full details of the derivation of (vii). We
have

Orwo = (nA) Wit = log () wo + (A*JA"wy = log(p)'wo + (W', w)wo + (W', z)wr + (W', y)ws ,

where (-,-) is the standard inner product in RY3. Using that A € SO(1,3), we know that
(wywy = =1, (w,z) = (w,y) = 0. First, (w,w) = —1 implies (w',w) = 0. For the w;
component, we have

(0/s3) = =(u') = = . (') = ') = = (=B ) + 2hwn) = =21

where we used the structure ODE (91a]) - (91c)) and the fact that (w,v) =0 = (w, u). Similarly,
1 1 1
(W) = ~(w,y') = =t Quay)') = =) = =3 (43w, 0) = 35w ) = 372
where we used (91d) - (911), the fact that (w,u) = 0 and uy = —p on the last step. O

Similar relations could be obtained for the remaining forms, but are omitted since they are not
needed in our discussion.

Lemma 9.9. Let (M5 w, p) be a cohomogeneity one nearly Kdhler structure, and let (n,w;) the
associated SU(2)-moving frame. Then, the first column of A from Equation satisfies the

evolution equations

Oywg = _2>\;Uow1 — S%wg (97a)
A

Oywy = —2%11)1 — 3%102 (97b)
2

8,521)2 = 2211}1 — 3%’[1)2 (97C)

Proof. From the computations of Lemma [9.8] we know that

A w2
"Lw) =0 Lx) = —2% "y)y=—-3—=.
(w',w) (!, ) = —2 7 (w',y) = -3
0
In other words, we have A~ w' = —2%w1 , and the claim follows by matrix multiplication.
_gw2
A

d
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9.2 Smooth extensions over the singular orbit

To construct complete nearly Kéhler manifolds, Foscolo and Haskins first construct two families
of desingularisations of the cone singularity over Ny ;. We will refer to these as nearly Kéahler
halves and denote them by W,(t) and Wy(t). In both cases, the parameter measures the size of
the singular orbit.

Let us revise how the desingularising families are constructed. Due to the work of Eschenburg
and Wang [EWO00], we have a good understanding of the necessary and sufficient conditions for
a cohomogeneity one tensor to extend smoothly over a singular orbit. In our case, this reduces
to the following lemma:

Lemma 9.10 ([FH17, Lemma 4.1] and [PS10, Prop. 6.1]). Let w = F(t)n®*¢ A dt + Go(t)w§® +
G1(t)ws® + Ga(t)ws® + Gs(t)wi¢ an SU(2)%-invariant 2-form on (0,T) x Ny1. Then

(i) w estends over a singular orbit SU(2)%/SU(2) x U(1) = S? at t = 0 if and only if
(a) Go,G1,G2,G3 are even and F' is odd;
(b) G2(0) = G3(0) = 0 and Go(t) — G1(t) = —0:F(0)t? + O(t*).

(ii) w extends over a singular orbit SU(2)2/ASU(2) =2 S at t = 0 if and only if

(a) Go,G1,Gq are odd and Gs, F' are even;
(b) Go(t) + Ga(t) = O(t?), G3(t) = O(t?) and G1(t) = 2F(0)t + O(3).

Under the conditions of the lemma, the ODE system gives rise to a singular ODE initial
value problem. Foscolo and Haskins argue the existence and uniqueness of the solution to the
ODE by formally solving it in terms of a power series and then applying a contraction mapping
fixed point argument.

Theorem 9.11 ([FH17, Thm. 4.4 & 4.5]).  For each a > 0, there exists a unique solution
to that extends smoothly over the singular orbit SU(2)?/SU(2) x U(1), denoted by W,(t).
Similarly, for each b > 0, there exists a unique solution to that extends smoothly over the
singular orbit SU(2)%/ASU(2), denoted by Wy(t).

The first terms of each of the Taylor expansions were worked out by Foscolo and Haskins and
are collected in Appendix [D| for convenience.
9.3 Complete nearly Kahler solutions

Once we have nearly Kéahler halves, we need to match two such halves to construct a complete
solution. In that direction, we have

Proposition 9.12 ([FH17, Prop. 5.15]). Let ¥(t) be a solution to (91)) which extends smoothly
over the singular orbit. Then, VU(t) has a unique mazimal volume orbit: a unique Ty exists for

which the nearly hypo structure on Ny, corresponding to W(T%), has mean curvature zero.
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Thus, it is reasonable to match two nearly Kéahler halves along their maximum volume orbits.
Let U1 and U2 = ¥ be two solutions for the system with maximum volume orbit at time
T! and T?, and assume that the two maximal volume orbits coincide, so ()\(T*l), M(T*l)) =
(S\(Tf), ﬂ(Tf)) In particular, the two solutions must coincide on the maximum volume orbit
up to the action of the involutions . Acting by a time translation 7 =T} + 715 —t and 7 or

T, we consider
WE(t) = (A7), Fiio(7), —ia (7). iia(7), £00(7), 1 (), —a(7)) -
We define the two solutions

Wy (t 0<t<T;
U(t) = i() = = , (98a)
\112(25) T <t<Ti+Ty

WUy (t 0<t<T;
U(t) = 1) == . (98b)
\Ifg_(t) W <t<Ti+1T5

If either solution is smooth, we will have a complete nearly Kéhler manifold. The following
lemmas outline the conditions necessary for this to occur.

Lemma 9.13 (Doubling lemma, |[FH17, Lemmas 5.19 & 8.4]). Let a € (0,00) and consider
WU, (t) the corresponding nearly Kihler half with singular orbit S?. Denote by T, the time of

mazximum volume orbit.

(i) If wi(T,) = 0, then (98b) with ¥y = Wy = U, defines a smooth nearly Kdhler structure
on CP3.

(ii) If wa(T,) = 0, then with ¥ = Uy = U, defines a smooth nearly Kdahler structure
on 82 x S4.

Similarly, let b € (0,00) and consider Wy(t) the corresponding nearly Kdhler half with singular
orbit S3. Denote by Ty, the time of mazimum volume orbit. If w1 (Ty) = 0 (resp. wa(Ty) = 0),
then (resp. ) with W1 = Wy = Wy, defines a smooth cohomogeneity one nearly Kdahler
structure on S3 x S3.

Lemma 9.14 (Matching lemma, [FH17, Lemma 5.20, 8.4]).

(i) Suppose that there exist a < a’ € (0,00) such that (w1 (T,), w2(T,)) = £ (w1 (Ty), —wa2(Tyr)).
Set W1 =V, and Wy = W,. Then either defines a smooth nearly Kihler on S? x S*
or (O8B) defines one on CP3.

(ii) Suppose that there existb < b’ € (0,00) such that (w1 (Tp), wa(Tp)) = £ (w1 (Ty ), —wa2(Ty)).-
Then either (98a)) or (98b) defines a smooth nearly Kihler structure on S® x S® for
\1’1 = \Ifb and ‘112 = \Ifb/.

(11i) Suppose that there exist a,b € (0,00) such that (w1 (Ty), w2(Ts)) = £ (w1 (Tp), —w2(Tp)).
Then either or (98b) defines a smooth nearly Kdihler structure on S® for ¥y = ¥,
and Wy = Uy,
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We outline the proof of Foscolo and Haskins on the existence of an inhomogeneous nearly Kahler
structure on S3 x S2 using the result in Lemma Consider the curve

B:(0,00) = R?
b (wi(Th), wh(Th))

For small b, the nearly Kéahler half converges to the sine-cone, so ll)in% B = (0,0). The homoge-
—

neous nearly Kihler structure on S% x S3 corresponds to b = 1 and (1) = (@, 0). Foscolo
and Haskins prove

Theorem 9.15 ([FH17, Thm. 7.12]). There exists b, € (0,1) such that B(bs) = (0,w2(by)).
By Lemma the nearly Kdhler solution (98b|) with W1 = We = Wy, defines a smooth nearly
Kdihler structure on S x S3.

Their proof strategy first involves relating the zeros of w; and wy with those of vy and wug,
respectively. The functions ug and v satisfy the system (91al)-(91d))

/\atuo = —3’1)() 8,51)0 = 4)\’11,() .

In particular, they are amenable to a Sturm comparison argument with the Legendre Sturm-
Liouville problem
sin(t)0yu = —30 Oy = 4sin(t)a ,

which is the linearisation of the system on the sine-cone. In their proof, Foscolo and Haskins
can only prove that the curve 5 must cross the w; = 0 axis in the range b € (0,1) but cannot
establish whether such crossing is unique, although they numerically conjecture this to be the

case.

In any case, there exists b, € (0,1) for which the curve  crosses the vertical axis for the last
time before arriving at the homogeneous structure. For the remainder of the notes, we will
refer to the corresponding ¥, (and its complete double) as the inhomogeneous nearly Kéhler
structure on S3 x S3. We conclude this section by characterising this inhomogeneous nearly
Kahler structure, which will be helpful when studying its index. Although we do not have an
explicit expression for wi(¢) and wa(t), we can characterise their qualitative behaviour.

Proposition 9.16. Let U, (t) be the nearly Kdhler half corresponding to the inhomogeneous
nearly Kdihler structure on S3 x S3 described in [FH17] with mazimal volume orbit at time T.
Then

(1) wi(t) >0 fort e (0,Ty), and

(i1) wa(Ty) > 0.
Proof. The solution ¥y corresponds to the last time the family §(b) crosses the axis w; = 0
before the homogeneous solution . Since the homogeneous solution satisfies wi(t) > 6 > 0

for t € (0, ”T?’] and 6 > 0; it follows that wy*(t) > 0 for ¢t € (0,7%), which implies that w(7%)
is a zero with a non-positive slope. Thus, Equation (97b)) reduces to

8tw1 = —3%11}2 S 0 N
T A
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which implies wa(T%) > 0. If it were zero, we would have w;(T}) = wa(T%) = 0, and we would
be on the sine cone by Corollary so wa(Ty) > 0, as needed. O

10 Hitchin functional in the cohomogeneity one setting

We consider the reduction of the closed nearly Kéhler Hitchin functional introduced in Section
to the cohomogeneity one setting. Recall that this functional is defined as

Q:U—R

1
w»—>/ VOldw—4/ voly, ,
3 m M

with U = {w € Q2| dw stable, w stable and positive, w? exact}. It is instructive to investigate
how the set U and the Hitchin functional Q restrict to the cohomogeneity one case. Consider
w = An*® A dt + uw®® a stable cohomogeneity one 2-form. The stability of w corresponds to
A|u|?#£ 0, and one obtains similar open conditions for the stability of dw and the positivity of w
with respect to the induced almost complex structure. Finally, we find it convenient to weaken
the condition of w? being exact to dw? = 0. This corresponds to the evolution equation

Or|u)?= 4y (99)
since w? = 2|u|?volf +2 un®® A dt A w*®, and the claim follows by differentiation.

Proposition 10.1. Let w = A(t)n° A dt + u(t)w’® be a cohomogeneity one 2-form satisfying

the evolution equation . The functional Q restricted to cohomogeneity one forms becomes

OO (A u) = C /I NP+ M| Ghul?— 420 + %(u% +ul) — 120|uf2dt

for C € R a constant and I the interval on which our tuple (\(t),u(t)) is defined.
Proof. As above, let w = An®¢ A dt + uw®®. Then
dw = =2 dt N wi® + (Oru) dt A w*® + 3uan®® A wi® — 3usn® A ws® .

By Proposition w € U defines a natural associated SU(3)-structure, and dw = *dw will be
given by

3
dw = 2X20°¢ A Wi + (Byug) A A wi® — Z (Opu;) An®C A wyi® + 3
i=1

U2

A

u3

thw§E—3/\

dt A w3 .

Thus, we have
9
volg, = 2 (4)\3 + AOpu*—4X20u; + X (u% + u%)) n*¢ Adt A\ vols? .

Using that vol,, is proportional to A|u|?, the claim follows from the definition of Q and integration
along the Nj; fibres. O
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It is convenient to introduce a change of basis. Recall that the Reeb field induces a rotation
in the span (w5 w3®) (cf. Remark [9.1). Thus, we find it suitable to introduce the new basis
(4, 0) = (to, u1, U, 0), related to u by

g = Ug U1 = uq Qg = ug cos(h) U3 = ug sin(f) . (100)

Since there is no risk of confusion, we abuse notation and set u = 4 from now on. Under this

change of variables and rescaling, the functional Q) becomes
QWA u,0) = /4/\3 + AOru 24N (u20:0)? — 4X20puy + %u% — 12\|u)?dt , (101)
I

with u = (ug, u1,uz) € C®(I,R%2).

Proposition 10.2. The Euler-Lagrange equations for QW) are

QM) 9
S = 1202 + |Opu|* —8Adpuy — ﬁug — 12uf’=0 (102a)
soM
5u — at()\at’LLo) + 12 \ug =0 (102b)
0
soM
s = 0(A\0u) + 12w — A\ =0 (102¢)
1
(1)
55Q = 8t()\8tu2) + 12 \ug — §UQ — /\(8159)2102 =0 (102d)
U2
(1)
5?0 = 0, (\u3o) =0 (102e)

By the Principle of Symmetric Criticality of Palais [Pal79|, solutions to these Euler-Lagrange
equations correspond to cohomogeneity one nearly Kéhler solutions on S2 x S% x I. In particular,
together with Equation , they should be equivalent to the system of Foscolo and Haskins
[FH17] above. We show this to be the case. First, we have

Lemma 10.3. FEquations (102b))-(102€) are equivalent to the system (91a)-(91f) of Foscolo—

Haskins.

Proof. First, Equation (102€) directly implies Au30,0 = C for some C € R, but boundary
conditions force C' = 0, from which it follows that 9,0 = 0. So, we can choose 0(t) = 0 as
in [FH17]. The converse is immediate. Differentiation by ¢ of Adyu; implies that Equations

(91a)-(911)) are equivalent to Equations (102b))-(102d]). O

Thus, we are left with showing that Equation (102a)) and the condition d;|u|?>= 4\u; are equiv-
alent to (91g). Instead, we will show that the FEuler-Lagrange equations are equivalent to the
conservation of the quantities I;(t) from (92). We have the following:

Proposition 10.4. Under Equations (102b)- (102d) and 0;|u|*= 4\uq, the conditions I1(t) =
0 and I4(t) = 0 are automatically satisfied. Moreover, Equation (102a) is equivalent to the
conditions I3(t) = 0. The remaining condition I3(t) = 0 follows from I = 0 = Iy.

Before we prove the proposition, we introduce the following auxiliary calculation.

84



Lemma 10.5. Under Equations (102b)- (102d)) and O;|u|?>= 4\u1, we have
9
|Ou|>= 2X0puy + IQ\QIQ—FU% .

Proof. The proof is a combination of the Leibniz rule and the aforementioned equations.

1 oA 1
[Orul? = 0y {w, By = (s Dyy (AO)) = 9y (2h) + (2Xn) == = S {u, A (AOyw))

1 9 9
= 2 \0u1 + du )\ — X [ - 12)\|g|2—|—4)\u18t)\ + Xu%} = 2 O + 12|@|2—ﬁu% . O

Proof of Proposition[10.4 We start by showing that the conditions I1(t) = 0 = I4(t) are auto-

matically satisfied. First, we have
=311 (t) = —=3(u,v) = —Aupug + Auidu; + 202Uy + MugOpus = g@tm\z—i—%\Qul =0,
by Equation . Similarly, for I, we have
314(t) = 3(v1 — |u)?) = 20* — Ayuy — 3|ul? .
Differentiating, and using Equations and , we have
30; Iy =AM\ — Oy (NOyu1) — 30 ul>= 120 f1 — 3(4\f1) =0 .

Thus, I4(t) is a constant, which must again be zero by the boundary conditions. Let us now
study the relation between the Euler-Lagrange equation for A and I5. Using the Lemma
we have
soM
oA

9 18
= 12)\% + |Opu|* —8\Dpuy — ﬁu% — 12Ju?= 120% — 6A9,u; — ﬁug
3
= 6[2)\7 — Ayus — Fu%} = 614(t) + 18X2 15 (1) .

Similarly, for I3 we have
2 2 2 2 2 )‘2 2 2
Is(t) = A|u)®—|v>= \|u| —§[|atgy — N0y +4N7] |

and so, by a direct substitution in Equation (102al), we get

5o 9
sh T2

9
I3(t) = (8A\% — 4AXJyuy — 12|ul?) + <9yu|2—u§>

— 8IL(1) + %12@) .

Therefore, I3(t) will vanish if and only if I (and I4) vanishes, as needed. O

11 The Hitchin index in the cohomogeneity one setting

We now return to studying the eigenvalue problem associated with the Hitchin index, as in-
troduced in Definition Given a nearly Kihler manifold (M®, w,p), we are interested in
2-forms 3 € Qg satisfying

AB=vp ap=0, (103)
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for 0 < v < 12, with the limiting case v = 12 corresponding to infinitesimal deformations of the
nearly Kéahler structure. There is a one-to-one correspondence with solutions to the 1st-order

PDE system
A . A
df = 7 dy=38, (104)

with v € Q3, and A = v/12v. We restrict to the positive branch of the square root, so A > 0. If
(8,7) were a solution to (104) for A, then (5, —7) is a solution for —A giving rise to the same

solution of .

We will focus on the first-order PDE system for A € (0,12). While finding the complete
set of solutions to this system seems currently out of reach, even in the cohomogeneity one case,
we can restrict ourselves to finding solutions to the PDE system with the same cohomogeneity
one symmetry as the underlying nearly Kahler structure. In other words, we are computing the
Hitchin index of the functional Q(l) introduced above.

For the remainder of the section, (M®,w,p) will denote a cohomogeneity one nearly Kihler
manifold. Let us start by characterising cohomogeneity one forms of type 8 and 12.

Lemma 11.1. Let (M,w, p) be a cohomogeneity one nearly Kihler structure and let n(t),w;(t)
be the associated moving frame for the underlying SU(2) structure on Ny 1. Cohomogeneity one
forms of type B € Q% are parametrised by two functions, hg and hi, so

B = howo +h1(2n A dt —wy) .

Similarly, cohomogeneity one forms of type v € Q35 are parametrised by four functions, fo, f2, f3
and gg, SO

v = fon Awo + godt Awo + fa(n Awe + dt Aws) + f3(n Aws — dt Aws) .

Proof. Let 5 = h;i(t)w; + V(t)n A dt be an arbitrary cohomogeneity one 2-form. The condition
that 3 is of type 8 is equivalent to w A 8 = — x 8. By direct computation, we have

3
v
8= —hon Adt Awo + —wi + > hn Adt Aw;
2 =1

WA B =honAdt Awy+ (h1 4+ V)0 Adt Awy + hon A dt A w4+ han A dt A ws + hiw? |
1

which implies hg = hg = 0 and V = —2hy, as needed. Similarly, let v = f;()n A w; + g;dt A\ w;
be an arbitrary cohomogeneity one 3-form. The condition that v is of type 12 is equivalent to
YyAw=0and yAp=0=vyAp. Again, by direct computation, we have

wAy = fin Awi + grdt Awi p Ay =*(f3+ g2) pAy=x*(g3— f2),
so, fi = g1 =0, fa = g3 and f3 = —go, as needed. 0

We compute df and d*y = — x d * v. Using Lemma the defining equations and the
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evolution equations , we can compute the exterior derivative of §:

dB = Orhodt N\ wg + ho(d&)@ +dt A atLL)O) — Othidt A w1 + h1(2d’l’] Adt — dwy — dt N 8tw1)

h
— (&(,u 0) +6)\w1h1) dt N\ wg — <(9th1 + 2710M +6h1)\xl> dt A\ wy
7 7 K K
— <31;\)2h0+3h1> (dt Nws+nAws) .

Similarly, for v € 3, of cohomogeneity one, one computes
xy = — fodt A wo + gon Awo + fo(dt ANwy —n Aws) + f3(dt Aws +n Aws) .
Again, using Lemma and equations and , we compute the exterior derivative

d 7y = fodt N\ dwy + Oygodt A n A wy + go (dt A Or(n A wp) + d(n A wo))
+ Oy fon Ndt Aws — fa (dt A dwa + d(n A ws) + dt Ad(n Aws))
— Oefsm Adt ANwa — f3 (d(n A LOQ) + dt A 8,5(77 A OJQ) —dt A dw;z,)

w w
=— (&:go + 900 log(Ap) + 6f272 + 3f372> nAdt Awy

A
+ (2903’1 —2f2>nAdt/\w1+ (3f0%—atf3—6f3%)mdtw2

w2 Y2 g Y2 _ le) 2
+<3go h +8tf2+6f2)\ 3f3)\)77/\dt/\w3+<2f2 290 p wi
Since A # 0, we immediately get fo = 0 = f3. Thus, the PDE system (104} reduces to
A
I (pho) + 6hiAwy = 1190 (106a)
A A
By + 2ho 2L 4 62y =0, (106b)
7 7
A
Oc(Apgo) + 6pws fo = —g)\/iho , (106¢)
3200+ Oufa + 6512 =0, (106d)
A
3%% +3h+ =0, (106e)
A A
22 G — 25 — gh=0. (106f)
L

We distinguish two classes of equations. Equations (106a))-(106d)) form a first order ODE system

for hg, h1, go, fo whilst Equations (106€])-(106f) are of order zero and linear in h; and fo. In
particular, for A # /72, we can rewrite them as

hi(t) = ﬁ (72%/10 + 6A/\Iuwlgo> : (107a)
falt) = A2_7—172 (12/\%110 + 72AZ’190> . (107b)
Since the last two equations are of order zero, it is reasonable to define the quantities
O1(t) = 3%110 4 3hy + % o (108a)
Os(t) = 2)\;[]190 —2f2 — %hl - (108b)
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As expected, these quantities ©; are conserved quantities of the system, so the system (106 is
not overdetermined. More concretely, we have

Proposition 11.2. Let (ho, h1, go, f2) be a solution to (106a))-(106d) such that ©1(tp) = 0 =
O2(tg) for some time tg. Then O1(t) = 0 = Oa(t) for all time that (ho, h1,go, f2) is defined.

First, we state the following technical computation:

Lemma 11.3. We have

wo A wo w1 wWo Aw Yaw2
8(—11):—— ey L oA, Y22, 109
e\ o 19 p 1+ " 0 2w (109a)
A AN 22
e B A LS (109b)
w 3w I p A

Proof. By direct computation,

1
O (%ho) = f—;&g(uho) + ho <X5tw2 - %&‘)\ - ;i@;z)

A A AQ
=222 0 — 6w1w2 h1 + ho [(2*101 - 3y2w2> 2 <3y2 — 2—901) — 2@@}
Y I M I

a0 A2 \2
A wo w1 W2 Awq Yoo

=——2¢g9 — hi + 2 ho — h
i) go— 6 1+ p 0o—6 \2 0

where we used Lemmas [9.8) and [0.9]in the second line. Similarly,
Aw w A w1

O (ilk%) = %@(NA%) + 9o (*atwl - 2%&&#)

7 M u 7

A X A2 A2
= 262 4 gy [(_2 7 _3%> —4 xlwl}
3 I I A I

2
w
f2= 65 90— 3200 - O

Proof of Proposition[I1.3. We start with ©. Using the previous lemma and Equations (106b])
and (106d)), we have

1 w9 A 6
g@t@l =0 <7h0) + Oth1 + Eé?th = —;(wlwg + /\Hfl)hl —6

yawa,  Ays
a2 0T N

_ 6 e Vg _ 0
——M(wlwg—l—)\xl— )x)hl 2)\61— 2)\@1.

In the last line, we used that wiws + Ax; — % vanishes since it is the inner product of the
second and third rows of the matrix A € SOq(1,3). Similarly, for ©,, we have

1 Awq A 6, puyo A2z Az
-0,0 —8( )—6 — —0thy = —(—= — -6 ho+A—nh
5002 =0 (= =9 1 f2 e M( 3 wiws) f2 2 ot L
6 A A
= — (@ —wi1wy — )\l‘l) f2 — 3£@2 = —3£@2 . O
BN A Iz Iz
Thus, we can reduce ourselves to study the ODE system for H = (uhg, Augo, b1, f2):
0 & =6 My 0
AX
-5 0 0 —6uws
3
oOH = _gluy 0 _gAm 0 H (110)
Iz 1
0 —Sﬁ 0 —64
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with suitable initial conditions H (t() satisfying —. To lighten the notation and given
the shape of the ODE system , we make the following change of variables for the remainder
of the discussion:
§ = pho X = Ango -

Our ODE problem closely resembles the local nearly Kahler system , with the conserved
quantities I;(t) = 0 replaced by ©;(t) = 0. This naturally raises the question of whether these
O; admit a geometric interpretation analogous to that of the I; in the nearly Kahler case.
Unfortunately, we do not currently have a satisfactory answer to this question.

To solve , we follow the same strategy for nearly Kahler structures: We solve (110) on a
nearly Kéhler half ¥ and then find suitable matching conditions along maximum volume orbits.

First, it is instructive to study the limiting case of the sine-cone, Example In this case, the
condition w1 (t) = wa(t) = 0 and the conserved quantities yield the reduced system

¢ 0 @) (&
(o )9

with h; = fo = 0 whenever A # V72. When A = \/ﬁ, the system reduces to the ODE above
but with fo = —v/2h1(t) = C'sin®(¢).

The ODE ((111]) is the Legendre Sturm-Liouville problem under the change of variables u =
sin(t). In particular, A = 2 and 6 are eigenvalue solutions to the Sturm-Lioville problem, each
with a 2-dimensional eigenspace given by the corresponding Legendre polynomial of the first

and second kind.

Notice that these solutions give rise to 2-forms f solving Equation (103]), and decaying at rate
—2, which is precisely the rate one would expect to see if we were trying to construct a solution

close to the sine-cone, as it is the rate of harmonic forms on the Stenzel metric on 7*S% and
the small resolution O(—1) & O(—1) (cf. [FH17, Thm. 2.27]).

Remark 11.4. The value A = 12 is also a solution to the Sturm-Liouville problem, correspond-
ing to infinitesimal deformations of the nearly Kdahler structure on the sine cone. Foscolo and
Haskins used this for their Sturm comparison arqument, discussed in Theorem [9.15.

Existence of solutions over Nearly Kahler halves

We aim to solve the ODE system ((110)) on the nearly Kéhler halves ¥, and ¥, discussed above.
Explicitly, we want to find 2-forms

2
B = —howo + hy (w1 — 2n A dt) = —2Xhan** Adt + D (—wi€ + uih) wi®
1=0

that extend smoothly over the singular orbits. The conserved quantities, Equations (106e) and
(1061)), guarantee the smoothness of the 3-form ~. By virtue of Lemma and the Taylor
expansions in Lemmas and we have the following:

Proposition 11.5.
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(i) The 2-form B extends over the singular orbit SU(2)2/U (1) x SU(2) = S? if and only if £
is odd and hy is even. Equations (106e]) and (106f) force fa to be even and x to be odd.
Their Taylor expansions are

£ =6At+0O(t%) x = —AAP +O() hy = —£A+O( t2) fo = B2 +0(t")

for A,B € R.

(i) The 2-form 3 extends over the singular orbit SU(2)?/ASU(2) if and only if & and hy are
even. Equations (106€) and (L06f) imply x is odd and fa is even. Their Taylor expansions

are
2 4 3 2 4 24 2
E=AMP+O(tY)  x=8At+0(°)  m=BE+O()  fr=" +0(F)
for A,B € R.
Proof.

(i) By Lemma when the singular orbit is diffeomorphic to S2, the coefficient functions G;
must be even, and F is odd. Since w;(t) are odd, & is odd too. Now, X is odd, so h; is even,
which is compatible with w; being even. The conditions Ga(t) = G3(t) = 0 are immediate
from Lemma Finally, we have the condition G1(t) — Go(t) = 0, F(0)t? + O(t*). Let
¢ = At + O(t®) and hy = B + O(#?). By the Taylor expansion in Lemma this last
condition is equivalent to

§B+£A:—BB — Bz—ﬁA,

2 2a 9a
as needed. Now, Equations and imply the parity of fy and x. Let y =
Ct3 + O(t%) and fo = D + O(t?), then the first term of the Taylor expansion of

and (L06f]) are, respectively,

A V3 A f A
——D=3B+—A=0 C= =——A.
4 + 3a 6 9a 6
(ii) Similarly, in the case where the singular orbit is diffeomorphic to S, Lemma implies
that the coefficient functions G; must be odd and F even. By the same argument as
above, we conclude that & and h; must be even and have Taylor expansions of the form

¢ = At? + O(t*) and hy = Bt?> + O(t*) for A, B € R.

As before, Equations ([106€)) and (106f) imply the parity and decay of fo and y. Let
x = Ct+O(t?) and fo = D+O(t?). Then the first term of the Taylor expansion of (106

and (106f]) are, respectively,

A ( 1 ) 2, 8
o Ab C b*D =X O

We solve the ODE ([110]) such that these conditions are satisfied. To achieve this, we use the
following technical result.
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Proposition 11.6. Consider the singular initial value problem

Ow(t) = TA () + AW(E)  ¥(O0) =0 (12)

where y takes values in RF, A_y is a k x k matriz, and A(t) is a k x k matriz whose entries
depend smoothly on t near 0. Then, the problem has a unique smooth solution whenever yq lies
in the cone spanned by the eigenvectors of A_1 with non-negative eigenvalues. Furthermore, the

solution y(t) depends continuously on A_1, A(t) and yp.

Proof. First, note that one could appeal to the general theory of first-order singular initial value
problem (c.f. [FH17, Thm. 4.7]). However, we can solve the problem directly since our ODE is
linear.

Let A(t) = %A_l + A(t), so we can rewrite Equation(11.6) as d;y = Ay. The solutior; to this
ODE problem is simply y(t) = exp (j;i Z(t)) yo- In the neighbourhood of 0, B(t) = / A(s)ds

to

can be put in Jordan canonical form B = S~1JS, so exp A(t) = S~! (exp J) S. For simplicity,
let us assume that A(t) is already diagonalised in a neighbourhood of 0; the general case follows.

Then
™ 0 .. 0

v = ([A0a)w= [ O 0 Yo ([ awa)u,

to to
0 0 0 ¢tM
where \; are the eigenvalues of A_;. Since A(t) is smooth near 0, y(¢) will be smooth if and
only if V() = 3, t*iy} is, where y are the coordinates of yo in the suitable eigenvector basis.
The functions t* are smooth around 0 only if A; > 0. Therefore, picking the initial condition
yo orthogonal to the negative eigenspace of A_; is sufficient for y(¢) to be smooth. Continuous

dependence on the parameters follows from standard ODE theory. O

We prove the main result of this section.

Theorem 11.7. Let a,b > 0, and consider the nearly Kdihler halves VU, and Wy, of Foscolo and
Haskins [FH17], with singular orbits S* and S3, respectively. Then, for every A € (0,00), there
exists a unique (up to scale) solution to the ODE system on the nearly Kdhler half ¥,
(resp. Wy,). Moreover, the solution depends continuously on the parameters a (resp. b) and A.

Proof. We consider the two cases separately.

Desingularisation over $?: In view of Proposition it is useful to consider H = (Z, X, hi, ﬁ) =
(t‘lf, t73x, h1, t_2f2). Under this reparameterisation, the ODE system ((110]) becomes

1 A 42 A
5% Y
_ o 0 —GLz
O H = s ! ! H.
‘ —2%e 0 —6in 0
Y 2
0 -3t 0 —6%-3%

91



Using the Taylor expansions in Lemma [D.] it is straightforward to check that we are under
the hypotheses of Proposition [11.6] with singular term

-1 0 -=3v3a 0

A
u 2 3 0 0
- of -3 0
2v3
0 - 0 -6

The matrix A_; has three distinct negative eigenvalues: —6, —4 and —3, and a one-dimensional

2V3 \/§A)
3a ’ 27a )

Desingularisation over S3: As before, we consider H = (E, X, hi1, E) = (t*2£, t=Ix, t2hy, f2)
Under this reparameterisation, the ODE system (110]) becomes

kernel, spanned by (6, —A, -

—2 > —6Aw, 0
Tl 22 0 A2 0 ‘
0 =33t 0 —6%

Using the Taylor expansions in Lemma the singular term is
A
-2 5% 0 0
0 -1 0 4
1
-5 0 =5 0
1
0 5z 0 =2
The matrix A_; has three distinct negative eigenvalues: —5, —3 and —2, and a one dimensional

kernel, spanned by (A, 8b, —%b, %)
The statement follows from Proposition [11.6 O

Doubling and matching

We derive conditions under which our solutions over each nearly Kéahler half can be matched
along the maximum volume orbit to produce an element for the cohomogeneity one example.
A pair (8,7) € Q2 x O3, solving the PDE ([104) is given by
2
B= =20 Adt+ > (wi + uihy) wi®
i=0
2

V= Z (wix + vif2) n°¢ A wi® — pfadt N w3® .
i=0

Recall from the discussion in Section the cohomogeneity one complete nearly Kahler struc-
ture is constructed by matching a solution W(t) with another solution W¥*(¢), which is defined
by a time translation and the appropriate action of the involutions . First, we have

Lemma 11.8. Under the symmetries 71 and 1o we have

wo Up Vo wo —Uup Yo wo uUp Yo wo Uuo —Vo
T1 T2

wp ur v — w1 —Ul V1 wp ur v — —wp —Uul V1

w2 U2 V2 —w2 U2 —U2 w2 U2 V2 w2 U2 —U2
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We want to find conditions for which the pair (3, 7) can be matched along the maximum volume
orbit in the doubling case. We need to understand how a solution H(t) = (&, x, h1, f2) behaves
under these symmetries.

Proposition 11.9. Let H(t) be a solution over a nearly Kdihler half ¥(t) solving (110) for
A eR. Then

(i) The tuple H*(t) = (=&, X, h1, f2) is a solution to (110)) over the nearly Kdhler half ¥ (t).

(ii) The tuple H=(t) = (£, —x, h1, f2) is a solution to (110) over the nearly Kdhler half ¥~ (t).
Proof. Straightforward computation. O

We are now ready to match two solutions in the case of doubling a nearly Kahler half. Let
BT(t) (resp. vt (t)) be the image of 8 (resp. ) under the symmetry 77. Along the maximal
volume orbit, i.e., at t = T, the functions ws, ug, u1 and vo vanish, and so we have

) = —2>\h17786 A dt + (ﬁwo)wée + (fwl)offe + (h1u2)w§6 ,
BH(Te) = =20 A dt — (Ewo)wi® — (§wr)wi® + (hiug)ws®
) = (wox — vofo)n™ Awp® + (wix — v1f2)n* Awi® — pfadt Aws®,
) = (wox — vof2)n™ A wy® + (wix — v1 f2)n™ Awi® — pfadt A ws® .
It follows that the equation (8,7v) = a(B81,~v") has two non-trivial solutions:

a=1 = £T.)=0 a=-1 = X(T.)=hi(T.) = fo(T,) = 0.

Similarly, let 57 (t) and v~ (¢) be the images of § and ~ under the involution 72. Along the
maximal volume orbit, the functions w1, u1, vo and v vanish, and so we have

B(Ty) = =2Xhin* Adt + (Ewo + uohy)wy® + (§wz + ughy )wi®
BT (Ty) = —2Xhan® A dt + (§wo + uohi)wi® + (Ewa + ughy)wi®
Y(T%) = (wox)n*® A wg® + (v1.f2)n™ Awi® + (wax)n™ Aws® — pfadt A ws®
v (Th) = —(wox)n™ A wi® + (V1 fa)n™ Awi® + —(wax)n™ Aws® — pfadt A ws®

As before, the equation (3,7) = a(f~,7) has two non-trivial solutions:
a=1 = x(Ty) =0 a=-1 = {T) =mh(Ty) = fo(Ty) =0.
Thus, we have proved

Proposition 11.10. Let Wy« be the nearly Kdhler half corresponding to the inhomogeneous
nearly Kdhler structure in S® x S% of Foscolo and Haskins. A solution to (110) extends to the
whole S x S2 if and only if x(Ty) = 0 or £(T) = hi(T) = f2(T) = 0.

We can simplify the matching conditions by using the conserved quantities (106€) and (106f)).

Lemma 11.11. Assume that the nearly Kdihler half doubles under 2, so wi(Ty) = 0. Then
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o If hi(Ty) =0, we have {(Ty) = f2(Ty) = 0.

o IfA#0 and fo(Ty) =0, we have §(Ty) = hi(Ty) = 0.

o If A # /T2 and &(Ty) =0, we have hi(Ty) = f2(Ty) = 0.
A similar statement holds for the involution Ty.

Proof. We only show the details for the case wq(7y) = 0. The constraints (106€])-(106f) at
t = T, reduce to

w9 A
h a— 11
3)\Mf+3 1+4f2 0, (113a)
A
—2fy — §h1 =0. (113b)

If hy(Ts) = 0, the claim follows directly, since wo(Ty) # 0, as otherwise we would be on the
sine-cone by Corollary If A # 0 and fo(T%) = 0, the second equation implies hi(7%) = 0,
and so {(T,) = 0. Finally, the determinant of the matrix

A
3 2
is nonzero whenever A # /72, and the final claim follows. O

Similarly, one can investigate the matching conditions when the two halves are not isometric,
as is the case for the inhomogeneous S% case. However, in this case, the matching conditions
will depend on the values of ¥(7}) on the maximum volume orbits, which are not explicit in
the case of the inhomogeneous nearly Kihler structure on S®. We do not investigate this case

further here.

12 The index of the inhomogeneous nearly Kihler 53 x S3

We study the Hitchin index of the inhomogeneous nearly Kahler structure on 53 x .83 constructed
in [FH17] and discussed in Section We will prove that in the eigenvalue range A € (0,v/72),
there exists a complete solution to Equation . In particular, the nearly Ké&hler Hitchin
index is at least one.

We prove the claim by performing an analysis of the zeros of the functions £(¢, A), x(¢, A), hq(t, A)
and f2(t, A), in the same spirit to the one used in Proposition and using the intermediate
value theorem. First, we exploit the dependence of the conserved quantities on A when restricted
to the maximum volume orbit. We have

Lemma 12.1. Let ¥y, be the nearly Kdhler half corresponding to the inhomogeneous nearly

Kdhler structure, with mazimum volume orbit time Ty. Then,

(i) the functions hy (T, A) and fo(Ty, A) always have opposite signs;

94



(ii) the functions &(Ty,A) and fo(Ty, A) have the same sign if A < /72 and have opposite
signs for A > \/72.

Proof. Since w;(Ty) = 0, the conserved quantities on the maximum volume orbit evaluate to

wa A (A2 )
)\qu 1— 2=\ 1, (114a)
A
fo= —ghl . (114b)
Thus, (¢) follows. By Proposition (43), wa(Ty) > 0, and the second claim follows. O

We prove a crucial result that will allow us to prove the main theorem of this section. The key
idea is that A = /72 is a degenerate value for the conserved quantities that acts as a barrier.

Proposition 12.2. Let H(t,A) = (&, x, h1, f2) be a non-trivial solution to (110) over Wy, .

(i) At A = /72, we have £(Ty,/72) = 0 and fo(Tx,/72) # 0.
(ii) The zero of £(Ty,A) at A = /72 is transverse. In particular x(Ty,/72) # 0.

(i4i) The function &(T., A) has no zeros for A € (0,4/72).

Proof. On the maximum volume orbit, the system (110)) evaluates to

A
= — 11
atf T, 4)\X ) ( 5&)
AN
2/5% T = —?f — Gpwa fo , (115b)
Oth1| =0, (115c¢)
w2
O fa T = —3WX ’ (115d)

where all the functions on the right-hand side are evaluated at the maximum volume orbit time.

(i) By Equation (114al) we have &(Tx,v72) = 0. If fo(Ty,v/72) = 0, one of the two zeros
would have to be degenerate by Lemma If £ (resp. f2) had a non-transverse zero,

Equation ((115a]) (resp. Equation (115d))) would imply x (7%, v72) = 0, so H(T,/72) = 0.
Since T} is a smooth point of a linear first-order ODE for H, the uniqueness of solutions
would force the solution to be trivial, leading to a contradiction.

(ii) By the previous item, £(T%, A) changes sign at v/72. Thus, ;¢ o= 0 would force 92¢ =
0, By Equation (T15a) and (T155), we have ’ ’

A 3A
335 o ﬁ&sx = —ﬁlﬂl&fé #0.

(iii) Assume we had A € (0,4/72) such that &(Ts,A) = 0. Then, the conserved quantities
would also force fo(Ty,A) = h1(T,A) = 0. By Lemmam &(Ty,A) and fo(Ty, A) have
the same sign for A € (0,+/72), the slopes at their zeros must have the same sign. Since

wa(T) > 0 by Proposition (i), Equations (115a) and (115d) force x(Ti, A) = 0.
Therefore H (T, /72) = 0, which is a contradiction as above. O
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Let us study the behaviour of these functions for small A. First, we have

Lemma 12.3. The function x(t,\) is strictly positive for t € (0,Ty] and A small.

Proof. For A = 0, corresponding to the harmonic case, the ODE system totally decouples. In
particular, x(¢,0) is a solution to the singular ODE:

wiw2

Oyx = —6 (116)
The asymptotics in Proposition imply that x(¢,0) > 0 for any small time. Since Equation
(116) is linear, x(¢,0) > 0 for all time. In particular, since (¢, A) is continuous on A, we have
x(t,A) > 0 for A small. O

We can use this result to refine the last statement of Proposition [12.2}

Proposition 12.4. The function £(T, A) is strictly positive for A € (0,1/72).

Proof. By virtue of Proposition (7i1), it suffices to prove this for A small enough. We
argue by contradiction. Assume that (7%, A) < 0 for some small A. Lemma implies
hi(Ty,A) > 0. By the smoothness conditions in Theorem hi(t,A) < 0 for ¢ small enough.
In particular, there exists T < T} for which h;(T,A) = 0. Assume T is the smallest time for
which this happens. Thus, h; has a non-negative slope at T. By Equation (106bf), we have
Awq

112
By Proposition (1), wi(t) > 0 for t € (0,T%), so &(T) < 0. Again, by the smoothness
conditions, £(t,A) > 0 for ¢ small and so, there exists T < T such that £(T,A) = 0 and

0¢€ |7< 0. But Equation (106a) would imply

Ouh| = -2-5€ >0,

A
ag‘f: X~ 6w >0,

since x(t,A) > 0 by the above lemma and h; < 0 since T < T, which is a contradiction, and so
we must have (T, A) > 0 for A small. O

We have the tools to prove the existence of a complete solution for A € (0,+/72).

Proposition 12.5. On the inhomogeneous nearly Kihler structure in S x S3 of Foscolo and
Haskins, there exists a cohomogeneity one solution to Equation (104) for A € (0,v/72).

Proof. Since &(T, A) is strictly positive for A € (0,1/72), the transverse zero at A = /72 from

Proposition (7) must have strictly negative slope, so x(T%, v 72) < 0 by Equation ((115a]).
By Lemma m X(T%,0) > 0, and by continuity on A, there exists A, € (0,1/72) such that
X(Tx,Ay) = 0.

The doubling conditions in Proposition [11.10| imply that H (¢, A,) doubles to a solution of the
system ({106]) on the whole manifold. O

Our main theorem is now straightforward.
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Theorem 12.6. The Hitchin index of the inhomogeneous nearly Kdhler structure on S% x S3
1s bounded below by 1. The FEinstein co-index is bounded below by 4.

Proof. Due to the relation between the PDEs (103) and ([104)), the proposition above implies
that there exists a cohomogeneity one 2-form § € Q% coclosed Solving AB = v for v € (0,6).
The claim for the bound on the Hitchin index follows.

The Einstein co-index bound follows from the computation in Prop.

Ind?? = > (M) + b3 (M) +3 > dimEw)+2 Y dimE)+ >  dimé&(y), (117)
ve(0,2) vE(2,6) ve(6,12)

where £(v) are the corresponding eigenspaces; £(v) = {B €M |d*B=0, AB= V,B}. O
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Appendix

A (G-structures

We collect some well-known results and identities for G-structures. On a smooth manifold M,
a G-structure corresponds to a reduction of the frame bundle of M to a principal G-bundle.
We restrict to the cases where G C SO(n), so a choice of G-structure always includes a choice
of metric. With it, we canonically identify the space of 1-forms with smooth vector fields.
Similarly, we consider the contraction on a k-form v by an I-form « as

ary =x(xyAa), (118)

which extends the usual vector field contraction.

We present two types of results. First, we have a collection of results in representation the-
ory. The reduction of the frame bundle to a principal G-bundle means TM and all the as-
sociated vector bundles via natural constructions inherit an induced G-action so that they
can be decomposed into irreducible G-representations. We will be interested in the bundles
AN*T*M = @, A*T*M and Sym?*(T*M).

Recall that we have an induced action of End(7'M) on the space of forms given by

k
S (X1, Xp) == > QUXy,...,S(Xi),... Xp) . (119)
i=1
for Q € A¥T*M. Under the metric, we identify Sym?(T*M) C T*M @ T*M = End(T'M), so we
get an induced action of Sym?(T*M) on A*T*M. In particular, if € is an G-invariant k-form,
it induces a map between G-representations of A¥T*M and Sym?(T*M).

The decompositions above will carry over to the spaces of smooth sections of each of the bun-
dles. We denote an irreducible G-representation of dimension m in A*T*M as A¥ T*M, and
analogously QF :=T'(Ak ). In all cases of interest, any two representations of the same dimen-
sion are isomorphic as representations, so there are no ambiguities arising from our choice of

notation.

The second class of results concerns differential identities on G-structures with reduced torsion.
In particular, we will be interested in G-structures that correspond to (Ricci-flat) cones.
Recall that, on the frame bundle of M™, 7 : P — M, we have a canonical 1-form § € Q' (P, TM),
given by the differential of the projection map 7. Thus, given h a connection on a reduced frame
bundle P, with structure group G C SO(n), we have a natural 2-form 0= dpd =df o h.
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Since 7 is G-invariant, we have 6 is G-equivariant, and we can identify é; with a 2-form on
the base O, € Q?(M,TM), the torsion of the connection h. The space of connections on P
is an affine space modelled on Q'(M, gp), so if we were to pick a different connection h’, the
difference O — ©;, would be a section of A'(M) ® g. Thus, the class

QL (M) ® Q*(M)

T oE e

~ '@ T'(gh) (120)

is independent of the choice of connection. The section 7 is known as the intrinsic torsion of

P, and it precisely captures the obstruction to the existence of a torsion-free connection on

P, measuring the failure of the Levi-Civita connection to have holonomy contained in G (cf.

[Bry87)).

Equivalently, the intrinsic torsion can be used to measure the failure of the bundles A¥, of being

parallel for the Levi-Civita connection. For example, on 2-forms, one has the map
a:T(TM)®T(g) = I'(gh) (121)

(X, B) = projgi (VxB).

An easy computation shows

Lemma A.1 ([Rey98, Lemma 6]). For X € T'(T'M), we have
ax(B) = projg. ([7x, A]) - (122)

Finally, we collect some useful Riemannian geometry identities. Since the Levi-Civita connection
is a metric connection, we have

IVX = Lxg+dX , (123)

where we are interpreting X either as a 1-form or a vector field, as needed. Because the Levi-

Civita connection is torsion-free, for any tensor .S, we have
LxS—VxS=(VX).S (124)
If S is a G-invariant tensor, then, by the definition of the torsion, we have VxS = (7x).S.

Lemma A.2. Consider a G-structure characterised by a family of G-invariant tensors Si, ..., Sy.
A wvector field X is an infinitesimal automorphism of the G-structure if and only if X is Killing
and

(27x +dX), S =0 (125)

for every G-invariant tensor S;.

Proof. Since the G-structure is characterised by the Sy, ..., Sy, we must have Lx5; = 0 for all
i € 1,... n. The claim follows from combining Equations (123 and (124) and noticing that
27x +dX € Q% whilst Lxg €T (SymZ). O
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Special holonomy metrics

Given a G-structure on M with metric g, we say that g is special holonomy whenever 7 = 0.
In this case, the subbundles A} are parallel: for 8 € €2, we have that V3 € I'(T*"M ® Ay).

Composing with the alternating map, we get that d splits as a sum of first-order differential
operators dj : ), — €, that coincide with their symbol. These will satisfy some second-order

relations induced by the condition d? = 0.

If g has non-vanishing torsion, the operators dj are modified by zero-order terms that depend

on the torsion. We will compute the exact form of d4 for nearly Kéhler and nearly parallel
Go-structures in Sections and

On a manifold with special holonomy, the following result, originally due to Chern [Che57] (cf.
[Sam73]), holds.

Theorem A.3. Let (M",g) be a closed manifold equipped with a special holonomy metric.
The space of harmonic forms is compatible with the induced G-representations described above.
That is, every harmonic form splits as a sum of harmonic forms, each of which belongs to an
irreducible G-representation §2,. Moreover, if A]; = Aé, then we have an induced isomorphism

at the level of harmonic forms, ’HI; = ’H]lg.

Proof. (Sketch). The classic Weitzenbock formula for k-forms is

A=V*'V+R, (126)
where R is an endomorphism associated to the Riemann curvature tensor. The proof follows
by checking that the linear map Risa morphism of G-representations. O
We have the following result, which we attribute to Bonan [Bon66):

Theorem A.4. Let (M, g) be Riemannian manifold with holonomy contained in either SU(n), Gy

or Spin(7). Then its Ricci curvature vanishes.

Remark A.5. Alternatively, one has that any manifold carrying a parallel spinor must be
Ricci-flat. By the work of McKenzie Wang [Wan89], these are precisely the cases considered

above.

A useful extension of this is the following result:

Proposition A.6. Let (M"™,g) be a manifold carrying a G-structure for G = SU(n),Gy or
Spin(7). Then the Ricci curvature of g is fully determined by its intrinsic torsion.

The cases of Gy and SU(3)-structures were worked out explicitly by Bryant [Bry05] and Bedulli
and Vezzoni [BV07], respectively.

One may study infinitesimal deformations of special holonomy metrics by using Lemma

where we recover

Proposition A.7. Let (M",g) be a closed Ricci-flat special holonomy manifold. Then
aut(M, G) = isom(M, g) = {X € Q' (M)| VX =0} = H! |

where auwt(M, G) is the infinitesimal automorphsims of the special holonomy metrics.
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Proof. The isomorphisms isom(M, g) = {X € Q}(M)| VX = 0} = H! follows from the well-
known Weitzenbdck identity

AX = V*VX + Ric(X) = 2divdiv*(X) + 2Ric(X) — dd* X . (127)

It is clear that aut(M,G) C isom(M,g) since G C SO(n) by assumption, and equality follows
from Lemma since 7 = 0. O

In particular, closed irreducible Ricci-flat manifolds must be infinitesimally rigid by applying
the Cheeger-Gromoll splitting principle to the universal cover.

Links of special holonomy cones

Consider the case where we have a G-structure on (X"~!, g), whose metric cone (C(X),gc) =
(R>g x ¥, dr? 4+ 1?gs) is a special holonomy manifold.
We discuss the analogous properties to the ones described above. Theorem in this case

becomes:

Proposition A.8. Let (X" 1, g) be a closed manifold whose cone is a special holonomy mani-

fold. The space of harmonic forms is compatible with the induced G-representations.

The proof follows from a case-by-case analysis for nearly parallel G2 (Prop , nearly Kéhler
(Prop. [A.59) and Sasaki (|[BGO8, Thm. 7.2.6 & Prop. 7.4.14] cases. Although we expect a
general proof to exist, we have not yet been able to find one.

Remark A.9. In this case, the bundles themselves are not parallel, so it is not true that, if
A]; = Aﬁ,, we have an induced isomorphism ng = H]lg.

Similarly, we can study the Lie algebra aut(M,G) of infinitesimal deformations of the G-
structure. We outline a general result for these infinitesimal deformations, which is proved
in detail on a case-by-case basis in later sections. Recall that if (X"7!, g) is the link of a special
holonomy cone from Berger’s list (cf. Table , the cone admits an associated invariant 4-form
), which induces an invariant 3-form *Z on Y. The existence of this invariant 3-form Z defines
a map

L=: Al —>A2
X =X +xE=%EANX).
In all cases listed in Table [2 the torsion tensor can be identified with *=; that is,
x =CX,1+xE=Cx(EANX),

for some universal constant C € R. As before, we expect a general proof of this fact to exist,
although we have not found one.

Let X € Q! the dual of a Killing field. From Lemma we will have X € aut(M,G) if and
only if 2C x (EA X) + dX].S = 0, for all invariant tensors S. Acting by the dual map to Lz,
B+ x(B A E), it follows that
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Proposition A.10. Let (X" 1, g) be the link of a special holonomy cone. The 1-form X will
correspond to an infinitesimal automorphism of the induced G-structure only if it is an eigenform
of the curl operator curl(X) = (—1)" % (dX A E) introduced in (L.

In the case where the cone is Ricci-flat, the condition above becomes an if and only if condition;
and the 1-form X must be of eigenvalue (—2), i.e.

Proposition A.11 (Prop. Lemma & Prop. [A.68)). Let (X", g) be the link of a

special holonomy Ricci-flat cone. Then
aut(3, G) =2 {X € Q! curl(X) = —2X} . (128)

We move on to analyse each particular case of interest in detail.

A.1 Spin(7)-structures

We recall some well-known results on Spin(7)-structures. All results are classic and have been
collected for convenience. We refer the interested reader to the detailed notes of Salamon and

Walpuski [SW17] for further details.

Definition A.12. A Spin(7)-structure on a manifold M® is a reduction of its frame bundle to

a Spin(7)-principal bundle. A manifold equipped with a choice of frame reduction is called a
Spin(7)-manifold E|
Since Spin(7) C Spin(8) is the stabiliser of any nonzero vector v € R® 22 Q, a Spin(7)-structure
is equivalent to the choice of a spin structure together with a nowhere vanishing spinor.
We have the following decomposition into Spin(7)-representations:
Lemma A.13. Let (M8, g,®) be a Spin(7)-manifold. The spaces A° and A' are irreducible
with respect to the induced Spin(7)-action. The spaces A%, A% and A* decompose orthogonally
as
A =A@ A3, A’ =A@ A,
A=At o AL, AL = AT @ AT @ AS, AT =A%

They are described by

A7 ={B e N’| (2N B) =35},

A3y ={B € A*| % (DA B) = —B} = spin(T)

A ={X.®| X eT(TM)},

Ajs ={y e A’|yn @ =0},

AY =(2)

A7 ={&(®)] € € spin(7)" Cs0(8)}

Azs ={S.(®)] S € Sym3(T* M)},
where Sym%(T*M) are the traceless symmetric endomorphisms. The remaining terms follow
from the relation A¥ = «A87F.

“The term Spin(7)-manifold is sometimes reserved in the literature to manifolds carrying a metric with holon-
omy contained in Spin(7).
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Now, we have the following identification of the intrinsic torsion.

Proposition A.14 ([Fer86|). Let (M8, g, ®) be a Spin(7)-structure. The intrinsic torsion T is
a section of Q% Q=03 = Qg <) Qig. In particular, there exists forms 7 € Q' and 73 € Qis
that fully characterize the intrinsic torsion T of the Spin(7)-structure. They satisfy

dD =71 AP+ %73 . (129)

Proof. The isomorphism Q2 ® Q! 22 O3 is a representation theory computation. Now, Equation
(129)) follows from the metric compatibility of the Levi-Civita, d = AltoV. O

A.2 (Gj-structures

We recall some well-known results on Ga-structures and nearly Go-manifolds. Most of these
results are classic and have been collected for convenience. The main new result is the discussion

about the Dirac operator and Hodge decomposition at the end of the section (cf. [DS23]).

Definition A.15. A Ga-structure on a manifold M" is a reduction of its frame bundle to a

Go-principal bundle. A manifold equipped with a choice of frame reduction is a Go-manifold E|

Equivalently, M7 is equipped with a smooth stable differential form ¢ € Q3(M). Similarly, we
could have chosen a stable 4-form 1, where ¢ and ¢ will be Hitchin duals to each other (cf.
Equation (63)).

Moreover, since Gio C Spin(7) is the stabiliser of any nonzero vector v € R7 = Im(Q), a Ga-
structure is equivalent to the choice of a spin structure together with a nowhere vanishing
spinor.

Since G2 C SO(), the Ga-structure fully characterises the metric on M: for X, Y € T'(M), we
define the associated metric g, : Sym?(TM) — R as

1
9o (X, Y) vol, = E(X_up) ANYap)ANe.

It is worth noting that, in some cases, the opposite orientation convention is chosen. We follow
the same convention as Bryant [Bry05|, Joyce [Joy00], Salamon and Walpuski [SW17] and
Dwivedi and Singhal [DS23|. Bryant-Salamon [BS89], Harvey-Lawson |[RL82] and Karigiannis
and Lotay[KL20] follow the opposite convention.

Lemma A.16. Let (M7, p) be a G2 manifold. The spaces A°T*M =R and A'T*M = R" are
irreducible with respect to the induced Gy action. The spaces A* and A3 decompose orthogonally
as

A =A2@ A3 N =AoA oA, .

5The term Ga-manifold is sometimes reserved for manifolds carrying a metric with holonomy contained in Gs.
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They are described by

A? ={Xop| X € T(TM)} = {B € A’ x (o1 B) =268},

A, ={BeNBAp=0y={BeN x(pAB)=—B} g,
A=A = (g),

A ={X | X eT(TM)},

ASr ={y € |y AP =0,y A =0} = {S.(¢)| S € Symg(T*M)} .

The decomposition for A* for k > 3 follows from A*¥ = xA77F,

Using the metric we identify A2 and A2 with A! using the maps X + X .o and X — X . By
Schur’s Lemma, these maps are homotheties. The following lemma gives a precise characteri-

sation:

Lemma A.17. Let X,Y be 1-forms, then the following holds:
(1) #(e Ax(p A X)) = —4X,
(ii) ¥ Ax(p A X) =0,

(iii) (v Ax(p AN X)) = 3X,

(iv) e ANx(Pp ANX) =2 NX.

These statements are pointwise in nature, so it suffices to verify them in local coordinates. The
corresponding computations are straightforward, involving only linear algebra, and are therefore

omitted. Similarly, we have

Lemma A.18. Let 8 be 2-form, then:

(1) #(e Ax(p A B) =28+ (o AB);
(i) *(p AN+ AB)) =B+ (e A PB).
In this case, the intrinsic torsion satisfies the following

Proposition A.19. Let (M7,¢) be a Ga-structure. The intrinsic torsion T is a section of
VPO 20?0 Q3. In fact, the Q2 and Q3 terms coincide.
Ezxplicitly, there exists forms 19 € Q°, 71 € QY 9 € O3, and 73 € Q3. that fully characterise the

intrinsic torsion of the Go-structure. They satisfy

de =101+ 371 A\ p + *73
dip =41 Np+ 12 A
We characterise the torsion of a Ga-structure on the link of a Spin(7)- holonomy cone.

Proposition A.20. Let C(X) be a metric cone whose holonomy is contained in Spin(7). Then

the Ga-structure on the link 3 has vanishing torsion except for g = 4.
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Proof. From Proposition the condition for C'(X) to have holonomy in Spin(7) can be
rewritten as d® = 0, where ® = r3dr A ¢ + %) is the characteristic 4-form of the Spin(7)-
structure. Thus,

0 =d® = r3dr A (4 — dy) + ridy . O

Definition A.21. A Ga-structure with vanishing torsion except for 1o = 4 is called a nearly

parallel Go-structure.

From Proposition one can compute the following expression for the scalar curvature.

Lemma A.22 ([Bry05, Eq. (4.28)]). Let (M, ) be a Ga-structure. The scalar curvature of the
associated metric is given by

. 1 1
sg = 4273 +12d" 7y + 30|ma| — 5 |m2f* 5 I3[

Finally, we have an explicit formula for the linearisation of Hitchin’s duality map (cf. ) in
terms of irreducible representations.

Proposition A.23 ([Hit00, Lemma 20], [Bry05, Sect. 6]). Given ¢ € Q*(M) defining a Ga-
structure, consider x = x1 + X7 + xor € Q* and consider ¥y = 1 + tx. Fort small, ¥y is still a
stable 4-form. Then the image X of x under the linearisation of Hitchin’s duality map at 1) is

—~ 3
dp = Opiy izj(X):Z*XlﬂL*X?**XZ?-

Similarly, the metric g, changes by

1

1
0gp = Jx1t §L¢(X27) ,

where 1, : Q3. — T(Sym3(TM)) is the inverse of the map S +— Si ().
The following lemma is a useful consequence of this result in combination with the Lie derivative.
Lemma A.24. Let J : Q* — Q3 be the linearisation of the Hitchin dual map defined above.

For any X € Q', we have

1 1
Lxo=JTLxy Lxg= §W1(£X¢)9 * 5k [m27(Lxp)] (130)

Proof. Take §1) = Lx1. Then, by the Proposition [A:23] we get dp = JLx1. However, by the
definition of the Lie derivative, this must be equal to Lx . Similarly, one computes the metric
variation. O

Nearly parallel G5 identities

We now restrict ourselves to the case where the Ga-structure is a nearly parallel Go-structure.
We derive some useful identities for the exterior differential between the different irreducible
representations, i.e. the operators dj mentioned above. We provide a coordinate-free proof.
A coordinate derivation of some of the same identities can be found in [DS23|, following the
approach of [KL20].
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Since a nearly parallel Ga-manifold is the link of a special holonomy manifold, we have a curl-like
operator (cf. Eq. (T])).

curl : QF - OF

X > #(dX A1) .

It was originally introduced in [Karl0], although the focus there is on metrics with holonomy

Ga.

Proposition A.25. Let f € C® and X € Q'. We have
(i) dX = eurl(X) e + ma(dX);
(ii) d*curl(X) = 0;

(i1i) curl(df) = 0;

(iv) curl(curl(X)) = d*dX + 4curl(X).

Proof. Ttems (ii) and (iii) follow from the definition of the curl. To show (i), we have that
m7(dX) =Y Jp. But, by virtue of Lemma we have

curl(X) = *(dX AN ) = *(m7(dX) ANp) = «(Yop Ap) =3Y .
Finally, for (iv), we have

curl(curl( X)) =+ (Y Ad* (P ANdX)) = #d * x(p A x( AdX)) =d* [dX + #(dX N )]
— "X + 4% (dX AD)) . O

Similarly, for 2-forms, we get

Proposition A.26. Let f = X.up + By for X € Q! and By € O3,. We get the following

tdentities
(i) d(X p) = =2(d*X)p + (ewl(X) — 3X) ¢ + 2i,(Lxg),
(ii) d*(Xap) = curl(X)
(iii) dBo = id*ﬁon + Yo for some g € 937,
where 1, : T(Symd(TM)) — Q3, from Lemma .
Proof. Wedging d(X ap) with ¢ and using Lemma we get
dXap) AN =d(Xop ANYp) =3d(xX) = —=3d* X .

Using that ¢ A ¢ = 7 vol, we get the mi-term. For the 77, we can wedge with ¢ and use the

Leibniz rule,
AdXip)Np=d(XspNp) —4X 1o ANp =2d(X NY) =12 X =2xcurl(X) — 12 % X .
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Using the identity (X A, Y A ) = 4(X,Y), we get m7(d(X 1p)). Now, for the Q3,-component,
we use Proposition Let 0p = x = Lx¢. Thus, 0g = 2m(Lxy) + 1/2u, [m27(Lx)]. By
the definition of the Lie derivative, we must also have dg = Lxg. Thus,

T (d(X ) = ma7(Lx ) = 2i,(0g) = 21,(Lxg) -

For (ii), we have
d* (X Lp) = xd * (X 2p) = *x(dX Np) = curl(X) .

Finally, for (iii), we have dfBy A ¥ = 0 by the Leibniz rule again. Wedging with ¢ and using the
Leibniz rule, we get
dBo N =d(Bo N p) =—dx P .

Finally, for 3-forms,

Proposition A.27. For every v = fo+*(X Ap)+70 with f € C®(M), X € Q' and yo € 03,
we get

(i) d(fe) =df Np+4fi;

(it) d*(fo) = — = (df Np) = —df sp;

(iii) dr7(y) =d* (X Ap) = 2(d*X)p + (Gewl(X) + X) Ao+ 2 xi,(Lxg);

(iv) d*m7(v) = — * d(X A p) = * [(Beurl(X) +4X) A ] + By for some By € Q3y;
(v) 77(d*0) = 377(dvo).-

Proof. Statements (i) and (ii) require no discussion. Let us prove (iii). Using Lemma and

Cartan’s magic formula, we get

dx (X Np)=—d(X ) = —Lxv=—-T 'Lxp=—-T d(Xp) +4X ] .
Now, using Proposition we get
&

dx (X Ag) = 2 (dX)y — [ - (%curl(X) —3X) —4X] A + mard(X )

For (iv), we use Proposition We have
1
AdXNp)=dX N —4X N = <3cur1(X)_|<p+7r14(dX)> Np—4X N .
Multiplying by minus the Hodge star, we get

—xd(X No) = *((%curl(X) +4X) AY) + fo -

where we used Lemma [A.T7] once again.
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To prove (v), we combine Lemma with integration by parts:
4/ (X, m7(dv0)) :/ (X N p,dvyo) :/ dyo N *(X N ) = —/ YoNLxy =
M M M M
- / (70, dX 2p) = / (@90 A (X A ) = 3/ (X, 7r(d ) |
M M M

where J~! just acted as (—1) since 79 € Q3.. Since X was arbitrary, the statement now
follows. 0

From the two lemmas above, we have the following corollary:

Corollary A.28. For 5y € 9%4 coclosed W€ have dfy € Q3. Similarly, for vy € 93’7 coclosed WE
have dryo € Q3.

Finally, we have the following characterisation of Killing fields on a nearly parallel G2-manifold.

Lemma A.29. Let X be a Killing field for (M, ). Then either curl(X) = —2X or curl(X) =
6X. Moreover, X € aut(M, g, ), it preserves the Ga-structure, if and only if curl(X) = —2X.

Proof. The Killing field statement is proved in Proposition It follows from combining the
Bochner characterisation of Killing 1-forms with Lemma (v).

Now, Lx9 = d* (p A X) and the claim follows from Lemma (731). O

Remark A.30. The space {X € Q'] curl(X) = 6X} appeared in [AS12] under the label Dy,

corresponding to one of the pieces of infinitesimal deformation of the nearly parallel Go structure

(cf. Table[6).

Dirac operator and Hodge decomposition

The purpose of this section is to obtain a Hodge-type decomposition of forms on nearly Go
manifolds. We obtain it by studying a Dirac-type operator and its mapping properties. The
results of this section closely follow the ideas in [Fos17]. In [DS23|, Dwivedi and Singhal also
use twisted Dirac operators to obtain Hodge-like decompositions. The twisted Dirac here is

different, and we obtain a different Hodge decomposition that is more suitable for our purposes.

The choice of a Ga-structure is equivalent to the choice of a spin structure, together with the
choice of a unit spinor. By the work of Béar[Bar93|, from the point of view of spin geometry,
the nearly parallel condition can be rephrased as the unit spinor ® satisfying the real Killing

spinor condition:

Vid = %X D (131)

where - denotes Clifford multiplication and V is the connection induced by the Levi-Civita
connection on the spinor bundle.

In terms of G-representations, we can identify the real spinor bundle $ with A? @ A!, where

the isomorphism follows is given by
(f,X)— fO+X-D.
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Let us compute the Dirac operator I) under this isomorphism. Since ® satisfies (131), P® =
—%@. Thus,

P(f2)= 1[0+ V] @,

and

7
lD(X-@):Zei-veinb—X-(ﬁ—X-lD@dewIH—(d*X)(IH—gX-CI).

i=1

To complete this computation, we need to understand the Clifford action of 2-forms.

Lemma A.31. For any 2-form 3 =Y ap + By, we have
B-®=3Y .
Proof. First, we have that 8y - ® = 0. Now, using Section 4.2 from |[Karl0], we get

1
Y o+ V) =37 0. 0

Yap) @ = )

Using that dX = %curl(X )u + ma(dX), and collecting the computations above, we get

D(fo+X V)= (d*X — ;f)<1> + (curl(X) + df + gX) i (132)

Now, consider the operator

D:-Ba0 -0 o0
v = (fo, Xap) = (m1(dy), m7(dy)) -

Using the identities in Lemma we identify D with the operator D : Q0 & Q' — Q% ¢ Q!
4 1
D(f,X) = <?d X +4f,df + icurl(X) —|—X> )

First, notice that D is an elliptic self-adjoint operator since D and P coincide up to rescaling
and a self-adjoint term of order zero. We compute its kernel.

Proposition A.32. Let (M7, ¢) be a complete nearly parallel Go—manifold that is not isometric
to the round 7-sphere. Then ker(D) = aut(M, g, ¢) = {X € Q] curl(X) = —2X}.

Proof. Let (f, X) € ker(D). Then
d'X =-7f df = —%curl(X) -X.
Acting by d* on the right equation and combining with the left one, we arrive at
Af=—-d'X=17f.

By Obata’s theorem, f = 0 under the assumption that (M7, ) is not isometric to (S, ground)-

The remaining equation is curl(X) = —2X, which we know corresponds to an infinitesimal
automorphism of the Ga-structure by Lemma O

109



Remark A.33. For the round 7-sphere, the kernel of D consists of elements of the form
(f, X —Vf), where X satisfies Lxp =0 and f satisfies Af =Tf.

Now, since D is a self-adjoint elliptic operator, we have the usual Hodge-type decomposition:

Theorem A.34. Let (M7 1)) be a nearly parallel Go-manifold that is not isometric to the round
7-sphere. The following holds.

(i) U ={X Np| X € aut(M,p)} ® dQ34; ® Q3,. More concretely, for every x € Q4, there
exists unique X € aut(M,p), Y € auwt(M, o)1, f € Q° and xo € Q37 such that

X=XA@)+d(fe+*Y Np)+Xxo,
where aut(M, )= is the L?-complement to infinitesimal automorphism of the Go-structure.

(ii) There is an L*-orthogonal decomposition Q4. = d¥er & V37 poes-

Proof. Statement (i) follows from the identification of D with I up to Oth order terms and
Proposition [A.32] Now, (ii) follows from (i). Notice that, for X an infinitesimal automorphism,
we have d*(X Ap) = —x Lx1 =0, s0 {X Ap| X € aut(M, ¢)} is L?-orthogonal to exact forms
and pointwise to Q‘é?. Orthogonality follows from Corollary in that if xo is closed, then
d*xo € Q3. O]

We conclude by proving

Proposition A.35 (|[DS23, Thm 3.8 & Thm 3.9]). Harmonic 2-forms are of type 14 and
harmonic 3-forms of type 27.

Proof. Let f = X 1o + o a harmonic 2-form. Then Lemma implies
1 1
X =0 cul(X)+dBo=0 §CUI‘1(X) —-3X + Zd*ﬁo =0.

Together, they imply that X is harmonic by (iv) in Lemma which forces X = 0 by Myers’
theorem.

Similarly, consider v a harmonic 3-form. We can assume that (M7, ) is not diffeomorphic to
S7, since there are no non-trivial harmonic 3-forms in that case. Let v be a closed and coclosed
3-form. By Theorem we have

y=x(XAp)+dx+7,

for X € aut(M,¢), x € Qfy; and 9 € Q3;. The condition d*y = 0 implies that d*yy =
*d(X A p) = —4X 1 — m4(dX), and so we have

(d" 70, X p) = (70, d(X ) = —4(70, X)) = 0,
So X =0 = d*yy and so dyy € Q3,, by Corollary Now, the condition dy = 0 implies
0 = {dy, x) = {v,d"x) = [|d"x|I*+({dvo, x) = lld"x|* ,
and so d*y = 0 as needed. O

110



A.3 SU(3)-structures

We recall some well-known results on SU(3)-structures and nearly Kéhler manifolds. These
results are classic and have been collected for convenience.

Definition A.36. An SU(3)-structure on a manifold M® is a reduction of its frame bundle to
an SU(3) principal bundle. A manifold equipped with a choice of frame reduction is called an
SU(3)-manifold.

Equivalently, M® is equipped with a pair of stable differential forms (w, p) € Q2(M) x Q3(M)

satisfying the following algebraic constraints:

1 1 R
wAp=0 iwgzzp/\p. (133)

Moreover, w is positive with respect to the almost complex structure induced by p. Here we mean
stability in the sense of Hitchin (cf. [6)), so their orbit under the induced GL(6, R) is open. The 3-
form p = *p is the Hitchin dual of p, as defined by Equation . The algebraic constraints and
positivity of w guarantee that the stabiliser of the pair is precisely SU(3) = Sp(6,R) N SL(3, C).
Similarly, one could have chosen a pair (p, o) € Q3 x Q* with Hitchin dual & = w and satisfying
the above conditions.

Moreover, since SU(3) C SU(4) = Spin(6) is the stabiliser of any v € C*\ {0}, an SU(3)-structure
is equivalent to the choice of a spin structure on M, together with a nowhere vanishing spinor.
As before, SU(3) € SO(6) and the metric on M can be reconstructed explicitly from the SU(3)-
structure as follows. Let J be the almost complex structure induced by p. Then the condition
w A p =0 1is equivalent to w is of type (1,1) with respect to J. Then, since w is positive, we
have that g :== w(+, J-) defines our metric, and its induced volume form coincides with %w?’.

The decomposition of A*T™M is well-known and most commonly phrased in terms of the (p, q)-
decomposition of the complexification A*T*M ® C, induced by the almost complex structure

J. However, we find it more convenient to work with the real irreducible representations.

Lemma A.37. Let (M, J,w, p) be an SU(3)-manifold. The spaces A°T*M and A>T*M decom-

pose orthogonally as
A=A @A D A; A=A 0NN, .
They can be characterised by
A% = <w> )
A ={Xap| X eTM} ={BeN’| x(BAw) =B},
AF={BeN|BA?=0=BAp} ={B €| x(BAw)=—F}
= (S.(w)| § € Sym? (T M)} |

A?EBI = <p7ﬁ>7
A ={XAw|XeTM},
Ay ={y e M’[yAw=0=7Ap}={S.(p)| S € Sym? (T"M)} .
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The symmetric endomorphisms splits as Sym? = R & Symi@Sym%, with Symi ={S €
Sym3(TM) | JS = SJ} and Sym? = {S € Sym*(TM) | JS = —SJ}. As before, we get
the decomposition for the remaining A* using the identification A* = xS,

We identify AZ and A} with A! via the maps X — X ip and X + X A w respectively. We have

the following identities:
Lemma A.38. In the decomposition of the previous lemma, the Hodge-x operator is given by:
(i) *w = %wQ;
(i) *(Xup)=—-JX Np=XAp;
(iii) *X = JX N
(iv) *(X ANw) =1 X w? = JX Aw;
(v) *p = p and xp = —p;
(vi) *(Sep) = =Sup = (JS)up;

From this lemma, one can characterise the different types of forms in terms of algebraic condi-

tions and the Hodge star. The following two lemmas give the precise characterisation:

Lemma A.39. Let B = w + Xp + Bo € Q2 with By € Q%, then the following holds:

(1) #(BAw) ==+ 2w+ Xp;
(ii) #(B A B Aw) = —|Bo|” +6X* + 2| X|%;
(iii) *(B A p) = 2JX and *(B A p) = —2X;
(i) * (B Aw?) = 6);
(v) «(pA+(pAB)) =*(p Ax(pAB)) =B+ +(BAw) —*(BA %G )w.
Similarly, let v = Ap+ pp+ X Aw + 0 € Q3 with X € Q' and vy € O3,. The following holds:
(i) *(yAw) =2JX;
(i) *(y A p) = —4p;
(iii) *(y A p) = 4.

The proofs of both these lemmas are purely local and can be verified using local coordinates;
we omit them for brevity.

For an SU(3)-structure, the characterisation of its intrinsic torsion was carried out by Gray and
Hervella in |[GH80] (cf. [CS02]). We have the following:
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Proposition A.40. Let (MY, g,w,p) be an SU(3)-structure. Then the intrinsic torsion is a

section of
Qe ~20a0’a0'a0'00le0ien,.

That is, there exists forms 79,70 € 20, 71,71 € Q, 70,72 € Q2 and 75 € O3, that fully charac-
terise the torsion of the SU(3)-structure. They satisfy

dw =319p+3T0p+ 11 ANw + T3,

dp = 2?()&)24-?1/\/)4—7'2 ANw,

di)\: —27’0&)2 + 7/'\1 A ,/0\—|— 7/'\2 ANw .

Given an SU(3)-structure, we are interested in the induced Gs-structures on its metric cone. In

particular, we will be interested in the following three classes of SU(3)-structures.

Definition A.41. Let (X%, g, w, p) be an SU(3)-manifold and consider (C(X), p) = (SxR, r2drA

w4 13p) the associated cone carrying a Ga-structure. Then

(i) X carries a closed SU(3)-structure if the Ga-structure on the cone is closed.
(ii) 3 carries a coclosed SU(3)-structure if the Ga-structure on the cone is coclosed.

(iii) ¥ carries a nearly Kdhler structure if the Go-structure on the cone is parallel.

Using the torsion decomposition of Gray and Hervella, we can phrase these conditions in terms

of their intrinsic torsion.

Proposition A.42. We have

(i) The torsion of a closed SU(3)-structure vanishes except for 7o =1 and 7.

(i) The torsion of a coclosed SU(3)-structure vanishes except for 1o = 1, 7y and 15 and 3.

Moreover, we have d7y = —3mg(d73) and 2d7y = Jd*To.

(iii) A nearly Kdhler structure vanishes except for 1o = 1.

Proof. Given an SU(3)-structure (w, p) on M%, the metric cone (M x R, dt? +t2gy;) carries a
Go-structure given by

2
o =r2dr Nw+1r3p *ap:w:—r3drAﬁ+r4%.

Thus, if the SU(3)-structure is closed, we have
0=dyp =r’dr A (3p—dw) + r3dp

which implies
dw = 3p dp=20.

By Proposition the claim follows. Similarly, if the SU(3)-structure is coclosed,

2 2
0=dip = ridr A (dp + 4%) + r4d%
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which implies
dp = —2uw? dw? =wAdw=0.
Substituting in Proposition we get the first part of the claim. Differentiating the first and
second equations on Proposition and using Lemma, completes the claim.
Finally, combining conditions (i) and (ii), the last claim follows by Proposition O

Remark A.43. The coclosed SU(3) condition in terms of the torsion appears to be overly
complicated. One would expect 79 = C € R and so 70 = — x d13. However, we have not been

able to prove this.

Remark A.44. Closed SU(3)-structures have been studied by physicists in the context of string
theory, under the name of LT-structures, in (LT05]. They are a subclass of half-flat SU(3)-
structures (cf. [MS15]).

From Propositon we get

Lemma A.45 ([BV07, Thm 3.4]). Let (M,w,p) be an SU(3)-structure. The scalar curvature
of the associated metric is given by

Y N ~ —~ 1 -
8g = 30(7’3 + T02) + 2d (7‘1 + 7'1) — ‘T1‘2+4<7'1,7'1> — 5 (‘TQ‘Z—HTQ‘Q—HTg‘Q) .

We have an explicit formula for the linearisation of Hitchin’s duality map from Section [6] in
terms of irreducible representations. We collect the result here as it is useful for computations

in the next section:

Proposition A.46 ([Hit00] Section 3.3). Given (p,o)defining an SU(3)-structure, consider
X=X1+X6+Xxs € QY and v = v1g1 + 76 + 112 € Q®. Then

(i) The derivative of the Hitchin dual map at o in the direction of x is

1
dt(UHX)L =K(X) = 5 * X1+ *X6 — *X5 -

=0 2

(i) The derivative of the Hitchin dual map at p in the direction of v is

d
a(P + t’Y)L:O =Z(y) = *Y1e1 + *Y6 — *712 -

As a straightforward corollary, we get

Lemma A.47. Let T : Q3 — Q3 and K : Q* — Q2 be the maps defined in Proposition .
For any X € Q', we have Lxp = TILxp and Lx5 = KLxo.

Nearly Kahler identities

We now restrict ourselves to the case where the SU(3)-structure is nearly Kéhler. Most of the
identities that follow are well-known and have been compiled here for convenience. The main
reference is [Fos17]. The curl operator introduced in Equation |1{in the nearly Kéhler case reads

curl : O —» OF

X = —%x(dXAp).
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Proposition A.48. Let X € Q'. We have
(i) d*X = —x (dJX NL);
(i) dX = 1d*(JX)w — JJcurl(X)op + ms(dX);
(iii) curl(X) = Jeurl(JX) +4X;
(iv) d*(curl(X)) =0 and d*(Jeurl(JX)) = 4d* X ;
(v) curl(df) =0;
(vi) curl(curl(X)) = d*dX + 3curl(X) + Jdd*(JX).

Proof. To get (i), differentiate the identity *Y = JY A “’72 Now, the first term in (ii) follows
from wedging by w? and using (i). The term 7g(dX) follows Lemma

The identity in (iii) follows from differentiating the identity X A p = JX A p. We get

2
curl(X) = —*(dX Ap) = —*xd(JX Np) = —* (d(JX)N\p) —4x (JX/\ (,02) = Jeurl(JX)+4X ,

where *(d(JX) A p) = —Jcurl(JX) by Lemma The identities in (iv) follow from acting
by d* in the definition of curl and the previous identity. Similarly, item (v) follows from the

definition. Finally,
curl(curl(X)) = x(p Ad*x (pANdX)) = —xdxx(pAx(pANdX)=d" x (pAx(pNdX) .
Using (vi) in Lemma we get
curl(curl(X)) =d*dX — *d(dX AN w) — d*[d*(JX)w]
=d*dX — 3% (dX A p) + * (dd*(JX) A uj)

=d*dX + 3curl(X) + Jdd* (JX) . 0

Similarly, for 2-forms, we get

Proposition A.49. Let f = fw+ X.p+ By for f € C®°(M), X € Q' and By € Q2. We get

the following identities

(i) d(fw) =3fp+df Aw,

(ii) d*(fw) = Jdf,
(iti) d(Xp) = —(Aewrl(X) + X) Aw — 2(d*X)p — 3d*(JX)p + o, with o € 3,
(iv) d*(X 1p) = —curl(JX),

(v) dBy = $Jd*Bo Aw +~, for some 7y € Q3.
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Proof. Property (i) follows directly from the structure equations. For (ii), we get

w2 w2
d*(fw) = —*d(f?) = (df A7) = Jdf -

For (iii), we can obtain the 7141 by wedging with p and p respectively:
dXap)Np=d(X_pAp)=—-2dx(JX),
d(Xup)ANp=d(XpAp)=2dx*(X).

The claim now follows from the fact that p A p = 4vol. Similarly, for the 7g term, we consider
d(Xp) Aw=d(XpAw)—3XpAp=—(dJX Np+3X Aw?),
From Lemmas and we get
—76 (d(X up)) = %qurl(JX) +3X = %curl(X) +X,

where the last equality follows from Lemma For (iv), we need to use Lemma and
the definition of curl:
d* (X 1p) = #d(JX A p) = —curl(JX) .

Finally, for (v), we can differentiate the identity (8o Aw) = — * Bp. The statement follows from
Lemma [A.39] O

Finally, for 3-forms,

Proposition A.50. For every f,g € C®(M), X € Q' and v € 35, we get

(i) d(fp+9p) = —4g% + (Jdf +dg) A p;

(i) d*(fp+ gp) = Afw + (Jdg — df ) p;
(iii) d(X Aw) = 2(d*JX)% — (§Jewrl(X) +3JX) A p+ ms(dX) Aw
(iv) d*(X Aw) = 2(d*X)w — (Aewrl(X) + X)op + m(dJX) A w,

(v) T6(d*y0) = —J 6 (+d0).

Proof. Properties (i) and (ii) follow from direct computation and the use of the structure equa-
tions. For (iii), we use (ii) from Proposition Similarly, (iv) follows from (iii) by using
*(X ANw) =JX Aw. Let us prove (v). Using integration by parts and Lemma

2 [ (Xomstod) = [ (Xopsdn) = [ ann (Xm0 = [ qnnoxe
= [ qonstixi=— [ 0dIX ) == [ (@0 4(X00)
= —2/ (JX,m6(d"0)) -
M

Since X was arbitrary, we get m(d*v9) = —J7me(*dvo). Notice that from the first to the second
line, we used that K acts as (—1) on Q3. O
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Moreover, using Lemma [A.47] once more, we get

Lemma A.51. For every X € Q', we have
d(X 1p) = (curl(X) +2X) Aw —d* Xp —d*(JX)p+d* (JX A p) .

Proof. Expanding the right and left-hand sides of Lxp = ZLxp from Lemma into irre-
ducible parts, we get the desired claim. ]

Combining the previous results, we have the following interesting corollary:

Corollary A.52. For 5y € Q% coclosed We have dBy € O3, and for v € Q?Q coclosed We have
dvyo € Qé

Finally, we have the following characterisation of Killing fields on a nearly Kéhler manifold.

Lemma A.53. Let (M,g,w,p) be a nearly Kdihler manifold and consider the spaces &) =
{a € C] curl(a) = Aa}. Assume that (M,g,w,p) is not locally isometric to the round sphere
(‘S’Gaground)' Then, isom(M, g) = aut(MawnO) =& .

Proof. As argued in [MNSO05, Corollary 3.2], any Killing field must preserve the almost complex
structure and thus the corresponding SU(3)-structure. The statement follows from enforcing
Lxp=d(X_.p) =0 and Proposition O

In the case of the round sphere (S8, ground), we have
E 2= go & C gy,

where the complement is taken as a subspace of s0(7). Proving the equality in the latter case
is equivalent to proving isom(SG, Jround) C C. Since the round sphere is a symmetric space, this
claim could be easily verified via representation theory (cf. Theorem . However, we have
not carried out this computation.

Dirac operator and Hodge decomposition

The purpose of this section is to obtain a Hodge-type decomposition of 2-forms and 3-forms
on nearly Kéhler manifolds, which will be key in studying the second variations of the Hitchin
functionals. Such decomposition is obtained by studying a Dirac-type operator and its mapping
properties. The main decomposition result is due to Verbitsky [Verll], although we present the
proof given by Foscolo in [Fos17].

Recall that the choice of an SU(3)-structure is equivalent to the choice of a spin structure,
together with the choice of a unit spinor, as discussed above. By the work of Bar[Bar93|, from
the point of view of spin geometry, the nearly Kéhler condition can be rephrased as the unit

spinor ® satisfying the real Killing spinor condition:

Vid = %X s (134)
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where - denotes Clifford multiplication and V is the connection induced by the Levi-Civita
connection on the spinor bundle. Clifford multiplication by the volume form vol yields a second
Killing spinor, since X - vol-® = —vol-X - ®, so

1
Vx(vol-®) = —§X - (vol-®) .

In terms of SU(3) representations, we can identify the real spinor bundle $§ with A° @ A° @ A,
where the isomorphism follows is given by

(f,g,X) = fO&+gvol - &+ X - &,

Let us compute the Dirac operator I under this isomorphism. Since ® satisfies (134), PP =
—3® and IP(vol -®) = 3vol -®. Thus,

D(f®+ gvol - W) = —3f® + 3gvol-® + (Vf— JVg) - &,
since JX - ® =vol-X -® = —X -vol-p . Similarly, we have
6
DX -®)=) € Ve, X ®-X - 0—-X -DP>=dX >+ (d'X)>+2X D

i=1

To complete this computation, we need to understand the Clifford action of 2-forms.

Lemma A.54. For any 2-form = fw+ Y _p + By, we have

B-®=3fP+2JY -D.
Proof. First, we have that 5y-® = 0. Now, we can write w = Z?Zl ei N Jej, with {e;, Jej}i=123
an SU(3)-adapted orthonormal frame. Thus

3

3 3
W(I):Z(el/\']el)(I):Zel']elCI):—ZQZGZVOlq):gVOIQO
=1 i=1 i=1

Now, using Lemmas 1 and 2 from [CH16|, we get
1
(Yop) - @ = (JY ) = =5 (JY - ot p- JY) - @ =2]Y - @ O

Thus, using that dX = $d*(JX)w — 3Jcurl(X)op + ms(dX), and collecting the computations
above, we get
D(f®+gvol-®+ X -¥)= (d*X —3f)® + (d*(JX) + 3g) vol -® (135)
+(Vf—JVg+curl(X) +2X)- .

Consider the operators

+ .02 4 3
D™ Vg © N — Ygiae
2

(4 X0 ) = mionse [d(e - Xop) + @ (2]
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and D™ : Q35106 — Qg ® U given by D™ (0) = (mige(do), m1(d*o)). By Propositions
and both these operators can be identified with the operator

D: a0 502000t
1
(f.9.X) ~ ("X +6f,d"(JX) — 6g, Seml(X) + X +df + Jdg)

by choosing appropriate identifications of Qi ® Q] and Q35,6 with Q@ Q%@ Q. The results
we are interested in follow from the mapping properties of D. First, we have

Proposition A.55. The operator D is an elliptic self-adjoint operator.

This follows since, by Equation (135]), D and Ip coincide up to a self-adjoint term of order zero.

Proposition A.56. Let (M, w, p) be a complete nearly Kdihler 6-manifold that is not isometric
to the round 6-sphere. Then ker(D) = aut(M, g, w, p) = {X € Q| curl(X) = —2X}.

Proof. Let (f,g,X) € ker(D). Then

1
icurl(X) +df —Jdg+X =0 (136)
X +6f=0 (137)
d*(JX) — 6g =0 (138)

Acting by d*oJ and d* on ([136]) and using (137]) and (138)), we get Ag+18g = 0 and Af—6f = 0.
By Obata’s theorem, we get f = g = 0, since MY is not isometric to the round sphere. The
remaining equation is curl(X) 4+ 2X = 0, and the claim follows from Lemma O

Remark A.57. For the round 6-sphere, the kernel of D consists of elements of the form
(f,0,X — V), where X satisfies Lxw =0= Lxp and f satisfies Af =6f.

As in the nearly parallel GG3 manifold case, the Hodge decomposition for the elliptic operator
yields:

Theorem A.58 (|Fos17] Proposition 3.22). Let (MS w, p) be a nearly Kdihler manifold that is
not isometric to the round 6-sphere, and denote by aut = aut(M, g, w, p) the set of infinitesimal
automorphisms of the nearly Kahler structure. The following holds:

(i) @ ={X Aw| X € aut} & d3 ¢ ® d*Q} & Q3.
(ii) There is an L*-orthogonal decomposition 23, = dQigs & Qg pact-
(iti) Q' ={X A p| X € aut} @ dQ3 46 S Q4.
(iv) For every x € Q*, there exists unique X € aut, Y € aut™, f € Q° and xo € Qi such that
X = (XAp)+dJY Nw+ fp)+ X0,
where aut™ is the space L? complement to aut.

A ® O

(v) There is an L?-orthogonal decomposition Q2. = 8.exact-
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Proof. The first (resp. third) statement follows from the identification of DT (resp. D™) with
D and Proposition [A.56] Item (ii) follows from (i), since for X € aut,

0 =*Lyw? =2d"(X Aw).

Therefore, by standard Hodge theory, the space {X Aw | X € aut} @ d*Q} is L?-orthogonal to
exact forms, and pointwise orthogonal to Q3,. The orthogonality follows from Proposition
if 49 € Q35 is closed, then d*yy € Q2.

For (iv), observe that every 4-form x can be uniquely written as
x=XAp+dJY ANw—gp+ fp) + oo,

with X € aut, Y € autt. This decomposition determines (X,Y, f, g, xo) uniquely, up to pre-
scribing d*(JY Aw — gp + fp) Aw?. Now, for every pair (f,Y’), we can set ¢’ = %d*(JY), SO
that every solution (f,g,Y) to D(f,9,Y) = (f',¢',Y’) satisfies g = 0.

Finally, (v) follows from (iii) and (iv) by the same argument as above. O

We conclude by proving

Proposition A.59. Harmonic 2-forms are of type 8, and harmonic 3-forms are of type 12.

Proof. If M® is diffeomorphic to S%, then there are no non-trivial p-forms for 1 < p < 5. Hence,
we may assume we are under the hypotheses of Theorem By part (iv) of the theorem,
any closed and coclosed 2-form § can be written as

B=X.p+dy+ b,
with X € aut, v € Q:{’E%, and By € Q2. Since J is coclosed, we have
d*fy = —d*(Xip) =6JX.

Now, we have

6/ X 2= (d*Bo, JX) = (B0, d(J X)) = —3(Bo, X 1p) = 0,

since X € aut, and hence X = 0, so d*6y = 0. By Proposition this implies dfy € Q3,.
Therefore,

0= (dB,v) = (B,d"y) = (Bo,d"y) + | d™y*
Analogously, by Theorem (i), any closed and coclosed 3-form  can be written as

v =X Aw+dB +d*(fw?) + 0,
with X € aut, 8 € O34, and 7o € Q3,. First, observe that X Aw is L?-orthogonal to d*( fw?):
(X Aw, d*(fw?)) = (d(X Aw), fw?) = (dX Aw —3X A p, fw?) = 0.
Since 7 is closed, we have:
0= (v, d*(fw?)) = [ld" (fw?)II*+{dro, fuw?) = [ld"(fu?)]* .

120



Again, by closedness, dyp = —d(X Aw). Using X € aut and Proposition we have that
m6(dyo) = 4X A p. Thus,

4| X|*= (dyo, X A p) = (0. d* (X A p)) = {0, d(X p)) = 0,

since X € aut, and so X = 0 and dyy = 0. Again by Proposition this implies d*yo € Q2.
Finally, using this and the fact that 7 is closed:

0= (7,dB) = (d*,dB) + ||dB|*= ||dB|]%,

so df = 0, as required. O

A.4 U(k) x 1-structures

We recall some well-known results on U(k) x 1-structures and Sasakian manifolds. Most of these
results are classic and have been collected for convenience. A general reference for this material
is the book of Boyer and Galicki [BGOS].

Definition A.60. An almost contact structure or U(k) x 1-structure on a manifold M*+ s
a reduction of its frame bundle to an U(k)-principal bundle. A manifold equipped with a choice
of frame reduction is called an almost contact manifolcﬁ.

Equivalently, we may describe the U (k) x 1-structure M2?**! in terms of its invariant tensors.

Lemma A.61 ([BGO8, Proposition 6.3.2]). An almost contact structure on M**! is equivalent
to a triple (g, R, ®), where g is a metric, R is a nowhere vanishing vector field, and ® is an
endomorphism on T M. They satisfy the relations

P?=—-14+R®n P* = -,
where n = g(R, ) is the dual 1-form to R and ®* is the adjoint map to ® with respect to P.

The condition that R, called the Reeb field, has no zeroes means that M2**1 is equipped with
a one-dimensional foliation carrying a transverse U (n)-structure in the sense of Molino [Mol88|,
so we have a short exact sequence of bundles

0—-(R)-TM - H—0.

We refer to H as the horizontal subbundle of the almost contact structure. By taking the wedge

of the previous short exact sequence, we have
0= A*H 5 A*M - npAATH S 0.

We abbreviate A*H by A¥, and refer to its sections as horizontal forms. As in the Kéhler
case, since ®* = —®, we have an associated 2-form w = g( -, ® ), with maximal rank. The
reduction of the structure group to U (k) x 1 leads to a decomposition of A*(7* M) into irreducible
representations of U(k), as usual.

5The term almost contact can be slightly ambiguous. In the literature, the definition above corresponds to
strict almost contact metric structures (cf. [BGOS]).
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Lemma A.62. Let (M?**! g,n,®) be an almost contact manifold. Then for each k
A =n AN AL
Moreover, for each k we have the usual (p, q)-decomposition
AoC= P AP
ptq=k

from almost complex geometry.

As in the previous case, we have some identities involving these decompositions and the Hodge
star, and they follow from the standard identities for (p, ¢)-forms.

As in the previous cases, one could study the intrinsic torsion of a U (k) x 1-structure and relate
it to the covariant derivative of its defining tensors (g, R, ®). We omit this discussion and focus

exclusively on the classes that interest us.

Definition A.63. Let (X2*1 g) be a closed Riemannian manifold, and consider its metric
cone (¥ x Ry, dr? +r%g). We say (,9) is

(i) Sasaki if the induced metric cone has holonomy contained in U(k + 1);

(ii) Sasaki-Einstein if the induced metric cone has holonomy contained in SU(k + 1);
.. . . . . k41

(71i) and 3-Sasaki if the induced metric cone has holonomy contained in Sp (T)

In particular, the chain of group inclusions Sp (#) C SU(k + 1) € U(k + 1) implies that any

3-Sasaki manifold is Sasaki-Einstein, and that both are Sasaki. Similarly, if n = 4, the inclusion

SU(4) C Spin(7) implies that every Sasaki-Einstein 7-manifold carries a nearly Ga-structure.

A detailed discussion between the relations of 3-Sasaki and Sasaki-Einstein and the induced

Go-geometries can be found in |[AS12, Sect. 4].

Finally, since Calabi-Yau manifolds are Ricci-flat, we have, as the name suggests, the following

Lemma A.64. A Sasaki manifold M?**' is Sasaki-Einstein if and only if it is Einstein with
scalar curvature 2k(2k 4 1).

Let us examine the structure of these manifolds in some more detail. Since the cone has
holonomy included in U(n), it carries certain parallel tensors that induce a geometric structure
on the link by restriction. In particular, if we denote by I the complex structure on the cone,
we can consider the vector field R := I(rd,). Such a vector field is constant in r, and so, it
induces a nowhere-vanishing vector field on M, known as the Reeb vector field. Moreover, since
I is parallel and 79, is a constant length Killing field, so is the Reeb field R.

Therefore, the flow induced by the Reeb field integrates to a smooth path in Isomg (M, g), which
we denote by ®;. By the Myers-Steenrod theorem, Isomg(M, g) is a compact Lie group, so the
compactification of the family ®; is a torus of a certain rank r, which allows us to distinguish
two main classes of Sasaki manifolds.

If » > 2, we say that the Sasaki structure is irregular. If » = 1, it means that &7 = Id for
some 1" > 0, so the orbits of the Reeb flow are closed. By the structure theorem of Molino on
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Riemannian foliations, almost all orbits have the same length and the orbit space & is an orbifold
of dimension 2n with cyclic singularities. These are called quasi-regular Sasaki manifolds. If
there are no orbifold singularities, i.e. the S'-action is free, the Sasaki structure is said to be
regular.

Going back to the structures on M, the 1-form dual to the Reeb field, denoted by 7, satisfies
dn = 2w, where w is the pullback to M of the Kahler form on the cone.

Finally, in the Sasaki-Finstein case, we can also pull back the holomorphic volume €2 on the
cone. Denote it by Q. We have

Lemma A.65. The k-form Q satisfies the equation L= i(k+ 1)@
Proof. The holomorphic volume form on the cone is a homogeneous form given by
Q = (dr +irn) ArFQ
where () € QZ Now, since 2 is holomorphic, it is closed. Differentiating, we get
dQY = (idr A + 2irw) ATFQ — (dr + irn) A rF1 (k:dr AQ+ rdﬁ)
—i(k+1)r*dr A AQ—1rFdr A dQ .

Since Q is horizontal, the claim follows. O

Let us conclude by saying a few words on the Killing fields of a Sasaki-Einstein manifold. First,
recall the notion of a foliate vector field:

Definition A.66. A horizontal field X € T'(H) is called foliate if LrX = [R, X] € (R).
Lemma A.67. Let X = fn+ X be the dual of a foliate Killing field, with X € Q,ll

(i) If curl(X) = 2k X, then f = C € R and X = 0.

(ii) If curl(X) = —2X, then X is a Killing field for the transverse metric gr.

(iii) Conversely, given X a Killing field for the transverse metric gr, there exists X a foliate
Killing field solving curl(X) = —2X.

(iv) If X satisfies curl(X) = —2X, then X preserves the Sasaki structure.

Proof. The foliate condition on X is equivalent to LrX = R.dX =0, so

k—
curl(X) =« | (df An+2fw+dX) A (k_lly = —Jdf + (2kf +d"(JX))n .
Then curl(X) = AX becomes the system
—Jdf = AX (2kf + d*(JX)) = Af . (139)

Using the Kahler identities, we have
AX = —Jdd"JX = A(A— 2k)X .
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If A = 2k, X is basic harmonic and therefore zero by Bochner’s argument. From the first
equation in ([139)), we get that f is a constant.

Now, if A = —2, X is a basic coclosed 1-form solving AX = 4(k + 1)X. Since Ricy = 2(k + 1),
it follows that X is a Killing field for g7

Conversely, given a vector field X preserving the horizontal component of the metric g, we need
to find a basic function f such that df = —2JX. By Hodge theory, we need [JX], € H} (M)
in basic cohomology to vanish. But H} (M) = 0 by Bochner’s argument (cf. [BG08, Theorem
8.1.8)).

Finally, if a Killing vector field preserves the transverse metric g, it must preserve the Reeb
field 7. Using the relation dn = 2g( -, ® -), it must also preserver ®. ]

Conversely, suppose X is an infinitesimal automorphism of the Sasaki structure. In that case, X
is always a foliate vector field since for X € aut(M, g,n, P, p) we must have Lx R = [X, R] = 0.
Thus, we have

aut(M, g,n,®) = {X € Q| curl(X) = —2X} @7 . (140)
As usual, we consider the eigenspaces £, = {X € Q! curl(X) = A X }.

From Lemma and Proposition we get the desired characterisation of aut(M, g,n, ®);
and from [BGO8, Thm. 8.1.18 & Thm. 13.4.4], we have a comparison between the Lie algebras
aut(M, g,n, ®) and isom(M, g) depending on the holonomy of the cone. Putting this together,
we have the following;:

Proposition A.68. Let (X2**1 g, n, ®) be a Sasaki-Einstein manifold. Then aut(M, g,n, ®, p) =
E_9 and either

(i) (2211, g) has constant sectional curvature, so it is covered by (S, ground),
(ii) ($2K+1 g) is a (strict) 3-Sasaki manifold and dim Eop, = 3, or
(iii) (X2KF1 ) is a (strict) Sasaki-Einstein manifold and Ey, = (n) .
In the round sphere case (S?**1, g,ouna), We have
E o2 su(k+1) Eop Csu(k+ 1)+, (141)

where the complement is taken as a subspace of s0(2n + 2), so dim &y < k? + k + 1.

Proving the equality in this case is equivalent to proving iﬁom(SzkH, Jround) C C. Since the
round sphere is a symmetric space, this claim could be easily verified via representation theory
(cf. Theorem [7.20)). However, we have not carried out this computation.

Finally, in the 7-dimensional case, one may compare the two spaces of infinitesimal automor-

phisms through their curl operators. In the Sasaki-Einstein case, the associated 4-form is given
R 2

by ¥ = —n A p+ -, and so

2
curly(n) = * K—n/\ p+ %) A Zw} =6n.

Since aut(M, g,n, p) C aut(M, g,¢) C isom(M, g), we see that the former inclusion is an equality.
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Somewhat surprisingly, in the 3-Sasaki case, one of the Reeb additional Reeb fields induces an
automorphism of the nearly parallel G, so Eg} = {X € Q! curly(X) = 6X} has dimension
two. The proof follows from |[AS12, Thm. 4.2]. Combining this with Lemma we get the
following relation between the holonomy of a nearly parallel Go-cone and the dimensions of Sép
and €g */ 2, assuming Equation holds.

Hol(C(X7,9)) || Spin(7) | SU4) | Sp(2) | {1}
dim &Y 0 1 2 7
dim £/ - 1 3 | <13

Table 6: Multiplicity of the eigenvalue 6 for the operators curly(X) = *(¢ A dX) and
curl,2 /o(X) = * (‘*’72 A dX) depending on the holonomy of the metric cone for (X7, g).

B Non parabolicity of the nearly Kahler Laplacian flow

We investigate the nearly Kahler gradient flow introduced in Section

oo = Ngo — 120 + Ly ()0
do=0

o(0) = o0,

with the Hitchin dual ofog inif = {w € Q%(X) | dw is stable, w is stable and positive, w? is exact} .
We show that this flow is not strictly parabolic, even after using a DeTurck-type trick. There-
fore, one cannot guarantee the short-time existence and uniqueness of solutions to the flow
using standard techniques. In particular, the symbol of the nearly Kahler Laplacian flow ((70))
resembles the G2 Laplacian coflow, introduced by Karigiannis, McKay, and Tsui in [KMT12]
(cf. [Gril3]).

We begin by constructing suitable DeTurck vector fields, following the exposition of [BX11].
We then compute the symbol of the flow, modified by a suitable DeTurck field.

B.1 The DeTurck vector fields

We use the same recipe that DeTurck used for the Ricci flow, or Bryant and Xu [BX11] for the
G Laplacian flow. Let M be a manifold and g a metric, V its Levi-Civita connection and V°
a fixed torsion-free connection (e.g. the Levi-Civita of a background metric). The difference

T=vV-V

is a well-defined section of Sym? TM* @ TM. Identifying TM with TM* via the metric, and
using the decomposition Sym? TM = TM @Symg TM, T is asection of TM ®TM ® Sym(z) TM.
We construct two vector fields from T', one from the first term of the decomposition, labelled
V1, and the other by contracting 7'M and Sym% T M, labelled V5. Therefore, whenever we have
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a G-structure on T'M with G C SO(n), there is at least a two-dimensional family of vector fields
associated with it, called the DeTurck field.

The linearisation of these vector fields depends exclusively on the variation of the metric g. Let
gt be a family of metrics with gg = ¢, and h = 0:g; at t = 0. By the Koszul formula,

(7 xv) 2) -

o (Vxh)(Y,Z)+ (Vyh)(X,Z) — (Vzh)(X,Y)] .

1
2
Using the trace decomposition for h, h = fg + hg, we get (cf. [BX11] Sect. 2.2])

Vi (h) = grad(f) Va,(h) = div(hg) .

In our case of interest, the SU(3)-structure induces the further decomposition Sym% = Symi @® Sym?
into traceless J-invariant and J-anti-invariant symmetric maps. Thus, we obtain a 3-dimensional
family of suitable DeTurck vector fields. We only consider the trace and the J-invariant vector
fields for order reasons.

Fix (p, o) an SU(3)-structure. Using the isomorphisms from Lemma[A.37, A1 2 R and Sym? =
A, it follows that there exists a universal constant A such that a variation of o, jo = fo+ X A

0 + Xo, the induced variation of the metric is given by
1
o9 = 5fg+ Aulxo)

where ¢ : Qf — Symi is the inverse map to the endomorphism action S — S*(%Q) We need to
compute div (L_I(X())). We have the following lemma.

Lemma B.1. Let x € Ag. There is a universal constant B for which
dx = B *div [t(x0)] + l.o.t,
where l.o.t is some 5-form depending smoothly on x and the torsion of the SU(3)-structure.

Proof. Assume M carries a torsion-free SU(3)-structure (i.e. Calabi-Yau). Consider the diagram

Sym2 TM & A} —EL, A4

lc l* o Alt

Al Al

where Alt denotes skewsymmetrization and ¢ denotes contraction by the metric. By Schur’s
lemma, there exists a universal constant B that completes the square, that is

* Alt(x ® o) = Be (L_l(x) ®a) .

Now, we have d(x) = AltoV(x) and since V preserves the Calabi-Yau structure, it commutes
with the map ¢, proving the statement for the torsion-free case. The torsion of the SU(3)-

structure will modify the identity involving only zeroth-order terms. O
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Lemma B.2. Let (p,0) be an SU(3)-structure. Then the DeTurck procedure outlined above
allows us to construct two vector fields, Wi(p,o) and Wa(p,o), depending smoothly on the
SU(3)-structure, whose linearisation along a variation o = x = fo + X A p+ xo is given by

Wi (x) = df Wa,(x) = *dxo + l.o.t .

We have rescaled our vector fields to eliminate all the constants and lighten the notation. Since
they are universal, there are no ambiguities in us doing so. If we restrict ourselves to SU(3)-

structures where the 4-form o = ”72 is closed, we can further rewrite our DeTurck fields.

Proposition B.3. Let (p,0) be a SU(3)-structure such that do = 0. Then, the DeTurck fields

can be chosen, so that
Vi(x) = df Vou(x) = curl(X) + Lot .

Proof. We need to prove that a linear combination of Wi, and Wha, is equal to Vs, up to zeroth
order terms. Linearising the condition do = 0, we have

dx=df No—dJX N p+ dxo
=df No —curl(X) Ao +dxo+1l.ot=0,

by Lemma Take Vo = Wy + W1. O

B.2 The nearly Kahler Laplacian flow

Let us study the parabolicity of the nearly Kéhler Laplacian flow (142]), modified by the DeTurck
term:
oo = Ago — 120 + Ly (50

do =0 (142)
o(0) = oy,
for V(o) = 3Vi (o) 4+ 2Va(0), with V; given in Proposition

We compute the linearisation of P = Ayo —120 + Ly (50 along x = fo+ X Ap+xo € 0l

closed’
Since o is closed, Ay0 = —d *xd * o and Lyo = d(V o) and so

D,P(x) = —d*dKx + d(Vi(x)a0) = =d* d(2fw + X 1p — *x0) + d ((3V14 — 2Va,)10) .
Similarly, we can compute A,x = dd*x = —d x d(fw + X 1p + *x0). By Lemma[A.51] we have

D,P(x)+ Asx =—d*d(3fw+2X1p) + d((3V1, — 2Va,)10)
=—dxBdf N\ w+2(curtl(X) Aw —d*Xp —d*"(JX)p+d* (JX A p)]
+d (3Jdf —2curl(X)) Aw + L.o.t.

= —d[(3Jdf + 2Jcurl(X)) Aw — 2d* X p + 2d*(J X )p] + d (3Jdf — 2Jcurl(X)) Aw + l.o.t.

=2[dd*X — Jdd*(JX)| N p+lot.
In particular, we have proved
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Proposition B.4. The linearization of the operator P = Ayo + Ly (0)o along a closed 4-form
X = fo+X Ap+ xo is given by

DyP(x) = —Ayx +2(dd* X — Jdd* JX) A p+ dF(x)

where F(x) is a 3-form-valued algebraic function of x that depends on the torsion of the SU(3)-
structure. In particular, its principal symbol in the direction & satisfies

(Se(DsP)(x): x) = —IEPIXIP4+4 ({6, X)? + (£, T X)?)

which is not coercive, so the flow is not parabolic.

Proof. Only the symbol computation remains. Since we know that S¢(d) = {A and S¢(d*) = €.,
the computation follows from the identity (X A p,Y A p) = 2(X,Y). O

The term dd*X — Jdd*(JX) cannot be reabsorbed by an additional term of the shape Ly ()0
for a different choice of field W (o). Indeed, the linearized operator for W(o).io along y =
fo+ X A p+ xo will be a linear combination of curl(X), curl(JX), df and Jdf, plus lower order

terms.

One could attempt to modify the flow further to make it elliptic, following Grigorian’s con-
struction of the modified Gy Laplacian coflow [Gril3]. The idea is to construct second-order
operators depending on o, whose linearisation cancels out the terms dd*X and Jdd*(JX). In
that direction, we have a first partial result.

Recall that 79(0) = % * (dw A p) is the 1-dimensional part of the torsion of o, and it satisfies

—2

1 —
39 ANw = TOwa Adw . (143)

Lemma B.5. The first order variation along x = fo + X A p+ xo of 1o is given by

1
aXT() = —id*X + lOt .

Proof. We differentiate Equation (143) with respect to x:
(0xT0)p A p = d(6yw) A p+lot. =d(6w A p) + Lot
1
:d(X_:p/\[))+l.o.t:—§(d*X),0/\,E)—|—l.o.t. O

We can introduce a first modification to the flow to remove one of the positive terms in the
symbol.
Corollary B.6. For C € R, consider the flow for o € Q*(M)
010 = Ayo — 120 + Ly ()0 + d [(410 + C) ]
do =0 (144)
o(0) =09,

with V(o) as before and p the associated 3-form as usual. The principal symbol of this flow
satisfies
(Se(DoP)(x), €) = —[€l*x +4(¢, TX)* .

The question arises of whether we can further modify the flow (144]) to obtain a parabolic flow.
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C The Einstein—Hilbert action

Recall that Einstein metrics, solving the differential equation Ric, = Mg, are critical points of
the Einstein—Hilbert action:

S : Met(M"™) - R
(145)

g / 5 — A(n —2)dvoly ,
M

n—1
where Met(M™) is the space of metrics on M™ for n > 2, and s, is the scalar curvature of the
metric g.

Since nearly Kéhler and nearly parallel Go manifolds are the links of Ricci-flat cones, they are
Einstein for A = n — 1. In particular, they are critical points of the Einstein—Hilbert action.
We investigate the relation between the second variation of the Hitchin functionals and the
Einstein—Hilbert functional.

For the remainder of the section, assume (M",g) is not isometric to the round sphere. At
a point g € Met(M), we identify the tangent space of Met(M) with symmetric 2-tensors
r (Sym2 (T*M)). As in the case of the Hitchin functionals, the functional S is diffeomorphism
invariant. Thus, it is convenient to study variations orthogonal to the diffeomorphism orbit.

We have an L?-orthogonal decomposition:
[ (Sym*(T*M)) =Rg &C°(M)g @ T(TM) e TT;

where the first and second terms correspond to constant rescalings and infinitesimal confor-
mal deformations of the metric, respectively. The identification of the component I'(T'M) in
Sym?(TM) is given by the map X — Lxg and corresponds to the orbit of the diffeomorphism
group. The term 1T corresponds to the traceless and transverse symmetric 2-tensors:

1

TT(M,g) = {h € T(Sym*(T*M)| tr(h) =0, div(h) = =) €;2Veh = o} .

By Ebin’s slice theorem, this formal complement to the orbit of the diffeomorphism group is

the tangent space to a genuine slice of the diffeomorphism orbit in a given conformal class.

Theorem C.1. [K0i79, Thm 2.4 & Thm. 2.5] Let (M™,g) be an Einstein metric with constant

A. Then, when restricted to conformal variations, the second variation is given by

-2 A
328, (f, f) = = / <Af ) f’> dvol . (146)
2 M n—1
When restricted to tt-tensors, it is given by
1 1
2
6°Sy(h, 1) = e /M <ALh — 2\h, h’>dvol =——3 <Q(h),h’>L2 . (147)

for h,h' € TT(M,g).

If A = n — 1, the operator (A —n)f is strictly positive for f € Cg°(M), by Obata’s theorem
[Oba62]. The term Aph is the Lichnerowicz Laplacian
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where ¢(R) = >_,_;(ei Aej)« (R(ei, €5)), is the standard curvature endomorphism induced by
the Riemannian curvature tensor R. One defines the co-index of an Einstein metric as the
maximal subspace along which Sy|7r is positive definite. Since the operator Aph — 2A\h is a
strongly elliptic operator, the co-index is guaranteed to be finite.

Let us study the Einstein co-index of nearly Kéahler and nearly parallel Ga-structures.

Nearly Kahler manifolds

We consider the case where (M, g) is a nearly Kahler manifold. Since its metric cone is Ricci-flat,
the metric g is Einstein with A = 5. By Lemma we have an isomorphism

®:Sym2 T*M — Q2 @ O3,
h=(h"07) = (hf(w),he (p))

with h* = 1/2 (h & JhJ) the J-commuting and .J-anti-commuting parts of a traceless symmetric
2-tensor. Thus, A = ® o A o @1 is a Laplacian-type operator on Q% ® 03,

The key result, due to Moroianu and Semmelmann [MS11, Section 5] (cf. [Sch22]), allows us
to transform the eigenvalue problem for Sy|77 to an eigenvalue problem for the Laplacian on
forms:

Proposition C.2 ([Sch22, Lemma 3.1]). Let (M%,w, p) be a nearly Kdihler manifold, not iso-
metric to the round sphere. For A < 16, the operator Q(h) = Ah for h € TT(M) is identified
via the map ® to

AB+ 4B+ d*y = \B
Ay + 6y + 4dB = My,
with (67 ’Y) € QTT = Q%,eoelosed X Q?Q,closed'

2

Now, the operator above commutes with the Laplacian acting on Qg . ., ..

so they admit a
common basis of eigenvectors. It is a linear algebra problem to compare the eigenvalues of the
two operators, which Schwahn carried out in [Sch22]:

Proposition C.3 ([Sch22, Lemma 3.2]). Let (M®, w,p) be a nearly Kdihler manifold, not iso-
metric to the round sphere. Consider the eigenspaces

EN={BeQ}|dB=0, AB=)3} .
The Finstein index of (M, g) is given by

md®" = (M) + b3 (M) +3 > dimEN)+2 Y dimEN)+ Y dimE(N) . (148)
A€(0,2) AE(2,6) A€(6,12)

By comparing this formula with Equation , we immediately have

Corollary C.4. The Einstein co-index is bounded below by the Hitchin index.
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Nearly parallel G manifolds

We now consider the case where (M, g) is a nearly parallel Gy manifold. Since its metric cone
is Ricci-flat, the metric ¢ is Einstein with A = 6. By Lemma [A16] we have an isomorphism
oI (Symg) — Q3. given by S ~ S.p. The Laplacian comparison formula needed in this case
is due to Alexandrov and Semmelmann.

Proposition C.5 (|[AS12, Prop. 6.1]). Under the map ®, the operator
Q(h) = Aph —12h
on h € TT(M) is identified with
G Ay+2edy—8n (149)
acting on Qpr = {vy € O3-| m7(dy) = 0}.

The proof strategy is the same as that of nearly Kahler structures. Let us study the eigenvalue

problem for @

Proposition C.6. Let (M7, g, ) be a nearly parallel Go manifold. Consider the eigenspaces
EN) ={y €| xdy =Xy} FA) = {r e Q3 dd*y = X} .
The Finstein indezx of (M, g) is given by

md"? =p}(M)+ > dimEN)+ Y dim F(N). (150)
Ae(—4,0)U(0,2) A€(0,8)

Proof. The operator /Q\ commutes with the self-dual operator xd on 3. Thus, we can find a
common base of eigenforms. Let p € R and consider the spaces £(u) and F(u) defined above.

If v € E(u) for p # 0, we have xdy = py, and substituting in Equation (149)), we have that v is
an eigenform of Q with eigenvalue A = p? + 2u — 8. If = 0, 7 is closed, and Equation (149)
reduces to Ay = dd*y = (X + 8)~, which concludes the proof of Equation ((150)). O

Remark C.7. The purely topological bound Ind®H > b3(M) appeared in [SWW22].

By comparing this formula with Corollary we immediately have

Corollary C.8. The Einstein co-index is bounded below by the Hitchin index.
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D Taylor expansions for cohomogeneity one nearly Kahler

metrics

Lemma D.1 ([FH17]). The first few terms of the Taylor expansion of ¥, are

3 20°+3

At) =5t = =5 3+ 0(t°)
u(t) =V3at + £(3 —~ 7%t} + O0(t)

up(t) =a® — 3at> + O(th)

uy(t) =a® — %(2@2 ~ D2+ 0(th,

_ 3V3 5, V3(16a® - 3) 4 6
vo(t) =3a?t? — (i - 134a2) tt+0(t%

14
v1(t) =3a*t* + <2 - §a2> tt+ 0% ,

:3\/§ e V3(34a? — 3)

va(t) 5 194 t'+0(t%,
wo (t) :\fat—l - gﬁ (64a* — 39) t + O(t%)
wy (t) :\/fat_l — 22\7/5 (16a® — 3) t + O(t%) ,
wo(t) :%t + Q;J;Cﬁt?’ +O(t°) .

Lemma D.2 ([FH17]). The first few terms of the Taylor expansion of Uy, are
9w
10 b

1
=2 — 43 :
p(t) =2bt + o5 +0(t),

1
uo(t) =202t — g(17b2 +3)t* +0(t°),
23b% — 3

A(t) =b 2+ 0(th

uy (t) =2bt — 3+ 0(t°)

us(t) = — 2%t + é(mﬁ —12)2 + O(t7) ,
wo(t) = — §b3 LB 4 O(tY)

vy (t) =4b%t% + §t4 +0(t% ,

v (t) :%b?’ —b(4b? — 3)2 + O(1) |

16b% — 29 3
S t+O(t%)
320% — 13
+ -

e 3
3 300 t+0(t°) .
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