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We investigate the use of quantum computing algorithms on real quantum hardware to tackle the 
computationally intensive task of feature selection for light-weight medical image datasets. Feature 
selection is often formulated as a k of n selection problem, where the complexity grows binomially 
with increasing k and n. Quantum computers, particularly quantum annealers, are well-suited for 
such problems, which may offer advantages under certain problem formulations. We present a 
method to solve larger feature selection instances than previously demonstrated on commercial 
quantum annealers. Our approach combines a linear Ising penalty mechanism with subsampling and 
thresholding techniques to enhance scalability. The method is tested in a toy problem where feature 
selection identifies pixel masks used to reconstruct small-scale medical images. We compare our 
approach against a range of feature selection strategies, including randomized baselines, classical 
supervised and unsupervised methods, combinatorial optimization via classical and quantum 
solvers, and learning-based feature representations. The results indicate that quantum annealing-
based feature selection is effective for this simplified use case, demonstrating its potential in high-
dimensional optimization tasks. However, its applicability to broader, real-world problems remains 
uncertain, given the current limitations of quantum computing hardware. While learned feature 
representations such as autoencoders achieve superior reconstruction performance, they do not offer 
the same level of interpretability or direct control over input feature selection as our approach.
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Medical imaging plays a crucial role in modern clinical practice, providing essential insights for diagnosis, 
treatment planning, and monitoring. However, the increasing complexity and volume of imaging data present 
significant challenges for manual analysis. Machine learning (ML), particularly deep learning (DL), has emerged 
as a transformative tool to automate tasks such as disease classification, segmentation, and outcome prediction1,2. 
By learning complex representations from large datasets, DL methods have substantially improved diagnostic 
performance. Nevertheless, most ML models, especially those involving high-dimensional inputs like images, 
scale computationally with both the number of samples and the number of features, leading to high resource 
demands.

Feature selection (FS) aims to mitigate these challenges by identifying a subset of relevant features that 
contribute most significantly to a target variable. Effective FS reduces input dimensionality, improves model 
interpretability, lowers computational complexity, and often enhances generalization performance3. In medical 
imaging, FS can also have direct clinical applications, such as minimizing radiation exposure by identifying the 
most informative measurements for acquisition4,5.

Traditional FS methods are categorized into filter methods, which evaluate features based on statistical 
metrics like mutual information (MI), and embedded methods, which incorporate FS into model training. In 
particular, MI quantifies the dependence between variables without assuming linearity, making it a widely used 
and theoretically justified criterion for supervised FS6,7.
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Identifying the optimal subset of features from a set of n candidates is combinatorially complex, requiring 

evaluation of 
(

n
k

)
 possible subsets for k selected features. To manage this intractability, FS can be reformulated 

as a quadratic unconstrained binary optimization (QUBO) problem, enabling the use of powerful combinatorial 
optimization techniques.

In our study, we systematically compare a range of feature selection strategies. As a baseline, we include 
random feature selection, which provides a lower-bound for performance. To leverage the spatial structure 
inherent in imaging data, we implement a sampling-based method selecting pixels equally spaced throughout 
the image. For information-theoretic selection, we formulate a MI-based QUBO and solve it using the classical 
heuristic solver qbsolv. Additionally, we consider unsupervised dimensionality reduction via Sparse Principal 
Component Analysis (SPCA)8, which aims to find sparse latent representations of the input data, and supervised 
feature selection using the Lasso9, which identifies features predictive of the target through ℓ1-regularization. 
Finally, we evaluate an autoencoder (AE) approach, where a bottleneck neural network is trained to learn a 
compact representation of the input without supervision. Together, these methods span randomized, statistical, 
sparsity-based, and learned paradigms, providing a comprehensive benchmark for evaluating quantum 
annealing-based FS approaches in medical imaging.

Notably, QUBO formulations are well-suited for emerging quantum computing methods, including adiabatic 
quantum computing (AQC), which leverage quantum phenomena to potentially explore large solution spaces 
more efficiently than classical approaches10,11. Quantum annealing (QA), a practical realization of AQC, solves 
QUBO problems by evolving a quantum system from an easily prepared ground state towards the ground 
state of a complex problem Hamiltonian12–14. Commercial quantum annealers, such as those developed by 
D-Wave Systems15, offer access to hundreds to thousands of qubits connected in sparse topologies suitable 
for optimization tasks. Although current quantum devices fall under the category of noisy intermediate-scale 
quantum (NISQ) hardware16 and remain limited in qubit count and precision, they provide an opportunity 
to explore QUBO-based FS at non-trivial problem scales. While QUBOs can, in principle, also be solved on 
gate-based quantum computers using the Quantum Approximate Optimization Algorithm (QAOA)17, such 
approaches remain infeasible at present due to limited qubit availability and hardware noise and are not 
investigated in this manuscript.

Recent work has investigated MI-based QUBO models for FS, executed on simulated and real quantum 
hardware18,19. D-Wave’s tutorial18 introduced a basic framework for MI-based FS on toy datasets. Building on 
this, Muecke et al.19 demonstrated MI-QUBO FS for MNIST and synthetic datasets, including image compression 
tasks. However, due to hardware limitations, these studies were restricted to very small problem sizes (n ≤ 34) 
on quantum devices. A recent study by Hellstern et al.20 also investigates quantum and classical methods for 
feature selection formulated as a QUBO problem, with a focus on determining the optimal number k of selected 
features. In contrast, our work assumes a fixed k and investigates how well various methods, including QA, can 
select informative subsets under this constraint for use in compression and reconstruction tasks. Further efforts 
have extended QA-based FS to areas such as hyperspectral image classification21, RNA sequencing data analysis22, 
recommendation systems23, and radiomics feature selection24. Beyond FS, QA has also been explored in medical 
imaging applications including tomographic reconstruction25–27, segmentation28, and super-resolution tasks29.

In this work, we explore how QA can be applied to FS in medical imaging using light-weight datasets. Our 
focus is on demonstrating FS at larger scales than previously achieved on real quantum hardware, by carefully 
adapting the QUBO construction to current architectural limitations. Specifically, our experiments are conducted 
on the MedMNIST benchmark30, which comprises standardized 28 × 28 pixel images across multiple imaging 
modalities. We treat each pixel as an individual feature, recognizing that pixels are not optimal descriptors but 
offering a manageable and standardized starting point for proof-of-concept experiments.

Our contributions are threefold: First, we implement MI-based QUBO FS on six light-weight medical 
imaging datasets and demonstrate feasibility on a classical solver. Second, we introduce hardware-aware 
adaptations including subsampling, thresholding, and a sparsity-preserving linear Ising penalty to enable 
embedding of larger QUBO instances on a QA system. Finally, we demonstrate the utility of the selected features 
by training a convolutional encoder for lossy image compression, illustrating potential applications of FS beyond 
classification. Although constrained by current hardware limitations, this study provides a proof of concept for 
applying quantum optimization methods to FS tasks in medical imaging. While this study focuses on a simplified 
toy problem, the approach could inform potential clinical applications such as radiation dose reduction during 
image acquisition4,5 and improved diagnostic interpretability by identifying key image regions.

Quantum annealing
We focus on the particular implementation of AQC known as QA, in which the problem to be solved is mapped 
to the minimization of an Ising Hamiltonian, in order to be embeddable in a quantum annealer. FS is also suitable 
for this technique since it can be formulated as a QUBO problem, which in turn can easily be mapped to an Ising 
system. QA operates on the fundamental concept of quantum tunneling and the quantum adiabatic theorem to 
explore the vast solution space of a problem in order to find the optimal solution of the Ising Hamiltonian, which 
corresponds to a global minimum of the optimization function. It is important to note that while QA has shown 
promise in a variety of fields31–38, it is not a universal quantum computing approach like gate-based quantum 
computers. Indeed, future gate-based quantum computers are versatile and capable of performing a wide range 
of computations, including optimization of QUBOs via algorithms such as the QAOA17. In contrast, quantum 
annealers are specialized devices tailored for optimization using adiabatic quantum evolution.

This is not a limitation for our analysis, as our problem can be cast into a form embeddable in a quantum 
annealer. The QA device we use in this study is developed by D-Wave Systems, featuring specialized hardware 
that generates and sustains the necessary quantum states. These devices use superconducting qubits and magnetic 
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fields to create controlled quantum environments where the annealing process takes place. In particular, we 
shall perform our analysis on the Advantage_system4.1 architecture15: this annealer contains 5627 qubits, 
connected in a Pegasus structure, but only has a total of 40279 couplings between them. This topology is depicted 
in Fig. 2.

The full Hamiltonian in QA comprises a time-dependent mixture of a known driver Hamiltonian, responsible 
for inducing quantum fluctuations, and a problem Hamiltonian, which encodes the classical Ising objective to be 
minimized. The original idea behind QA (and AQC more generally) is to begin in the ground state of the trivial 
system and adiabatically replace the trivial Hamiltonian with the problem Hamiltonian, while remaining in the 
ground state throughout. In particular, the mixed Hamiltonian takes the following form:

	
H = A(s)

∑
i

σx
i + B(s)

(∑
ij

Jijσz
i σz

j +
∑

i

hiσ
z
i

)
,� (1)

where i,j label the qubits, σz
i  are the z-spin Pauli matrices, and σx

i  are the transverse field components, while 
the couplings hi and Jij  between the qubits are set and kept constant. These couplings define the classical 
cost function and the part of the Hamiltonian multiplied by B(s). The parameter s(t) (with t being time) is 
a user-defined control-parameter that can be adjusted, while A(s) and B(s) describe the consequent change 
in the quantum characteristics of the annealer. The network of qubits starts in a global superposition over all 
possible classical states and, as s approaches a value of 1, the system localises into a single classical state once 
a measurement of σz

i  on all sites has been performed. The anneal schedule increases linearly with time, with 
s(0) = 0 and s(tf ) = 1, where tf  is the total annealing time. At early anneal times (s ≈ 0), the system is 
governed by the transverse field A(s), promoting quantum superposition and tunneling. As s approaches 1, 
the system transitions to the classical problem Hamiltonian. To solve the optimization problem, the problem is 
encoded into the classical component of the annealing Hamiltonian, specifically, the term multiplied by B(s) in 
Eq. (1). This term, referred to as the problem Hamiltonian HP , defines a classical energy landscape in the form 
of a generalized Ising model:

	
HP =

∑
ij

Jij µiµj +
∑

i

hi µi ,� (2)

where µi ∈ {−1/2, 1/2} are the eigenvalues of the spin operator σz
i . The coefficients Jij  and hi encode the 

binary quadratic objective function as Ising couplings and local fields, respectively. If the process remains 
adiabatic, the final state of the system corresponds to a lowest-energy configuration solving the original problem. 
Since real-world QA may not always reach the global minimum due to noise and non-adiabatic effects, the 
process is typically repeated many times to gather a distribution of solutions, from which the best one is selected.

Methods
Mutual information feature selection QUBO
The goal for our FS method is to define an optimization objective tailored to a QUBO and complying with the 
constraints introduced by the current hardware. Consider an image dataset consisting of square, two-dimensional 
images with width W , paired with their labels. The training dataset can be represented as D = {(Xi, yi)}i∈[N], 
where each Xi ∈ RW×W is an image, and yi ∈ N is its corresponding class label. By flattening the images, the 
dataset transforms into Df = {(xi, yi)}i∈[N], where xi ∈ Rn represents the n-dimensional vectorized data, 
and yi remains the class label.

While the class label yi is not used in the subsequent image reconstruction process, it plays a crucial role 
in feature selection. Specifically, we propose a model-agnostic FS task, where we want to maximize the mutual 
information (MI) of the features with the class label to determine feature relevance. The selected features are then 
used the image reconstruction task, independent of yi. In our simplified example, we will treat the image pixels 
as features and formulate the pixel selection problem as a QUBO model:

	
min(fQ(x̂)) = x̂T Qx̂ =

n∑
i=1

Qi,ix̂i +
n∑

i=1

n∑
j>i

Qi,jx̂ix̂j .� (3)

Here, x̂i indicates whether a feature is selected (1) or not (0), where x̂ ∈ {0, 1}n. The linear terms originate 
from the binary nature of x̂2

i = x̂i. In turn, our matrix Q ∈ Rn×n describes our optimization problem. In the 
subsequent steps, we show how we construct the QUBO matrix from the information contained in the image 
datasets. Intuitively, feature xi is more likely to be selected if Qi,i is low. Similarly, we can increase the chances 
of choosing feature xi and feature xj  together if the Qi,j  term is small. The diagonal elements Qi,i of the matrix 
Q encode the importance of each feature and are defined as the negative MI between feature xi and the class 
label y. The off-diagonal elements Qi,j  (for i ̸= j) represent the redundancy between features, calculated as the 
MI between features xi and xj . Together, these define a binary quadratic objective function that balances feature 
relevance and redundancy. This model closely resembles the form of an Ising problem, and in fact one can 
translate a QUBO into an Ising problem by mapping xi → µi + 1

2 , where µi is defined as in Eq. (2).
In FS, MI is widely used as it captures nonlinear dependencies and does not assume specific distributions6,7. 

We closely follow the MI FS QUBO described in18,19. To calculate MI, we estimate the joint and marginal 
probabilities of the features and labels. For efficient computation with continuous, real-valued features, this 
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requires discretization. We divide each feature dimension into nbins = 20 bins using quantiles, assigning each 
feature value to its corresponding bin. Labels, being discrete, do not require binning. This discretization and 
probability estimation allows for efficient computation of MI between features and labels. Please refer to19 for a 
detailed explanation of this method. From the discretized dataset D̂ = {(bi, yi)}i∈[N], the empirical joint and 
marginal probabilities are defined as follows:

	
p̂X,Y (b, y) = 1

N

N∑
j=1

�(bj = b ∧ yj = y) � (4)

	

p̂Xi,Xj (bi, bj) =
∑

y

∑
bk ̸=i,j

p̂X,Y (b, y) and p̂Xi,Y (bi, y) =
∑
bk ̸=i

p̂X,Y (b, y) � (5)

	

p̂Y (y) =
∑

bk

p̂(b, y) and p̂Xi (bi) =
∑

y

∑
bk ̸=i

p̂X,Y (b, y) � (6)

We initialize our linear QUBO terms with the negative MI of a feature with its class label, which we label as 
importance:

	
Qi,i = −Ii,i = −I(xi, y) ≈

∑
b

∑
y

p̂Xi,Y (b, y) log p̂Xi,Y (b, y)
p̂Xi (b)p̂Y (y) .� (7)

We want to avoid choosing features that share a lot of information. This is achieved by populating the off diagonal 
term Qi,j  with the MI between feature xi and xj . A high MI value for Qi,j  will increase the energy of the 
solution that selects both the xi and xj  features decreasing the probability of it being returned by the annealer.

	
Qi,j = Ri,j = R(xi, xj) ≈

∑
b

∑
b′

p̂Xi,Xj (b, b′) log
p̂Xi,Xj (b, b′)

p̂Xi (b)p̂Xj (b′) .� (8)

Finally, we have to enforce our constraint of choosing k of n features. To enforce such constraint, an option is to 
use a quadratic penalty α(

∑n

i=1 x̂i − k)2, where α must be tuned to weight the constraint appropriately. The 
quadratic constraint in the form of a QUBO C is constructed by Ci,i = 1 − 2k and Ci,j = −2n + 2, resulting 
in a fully connected problem graph. We construct our FS QUBO problem by additively combining the individual 
matrices: Q = −I + R + αC, where I is the diagonal importance matrix, R is the redundancy matrix filling 
the quadratic couplings, and C enforces the feature count constraint. The full procedure of creating the QUBO 
is depicted in Fig. 3 and an illustration of the quadratic constraint is shown in Fig. 4.

Mapping the problem to quantum hardware
In the previous section, we described how to construct a MI-based QUBO model for feature selection. While this 
formulation can be solved using classical algorithms such as simulated annealing or tabu search, executing it on a 
quantum annealer presents additional challenges due to the limited connectivity of current hardware. Specifically, 
although modern quantum annealers such as D-Wave’s Advantage system feature thousands of physical qubits, 
their underlying Pegasus topology imposes constraints on qubit-to-qubit connectivity, necessitating the use 
of embedding strategies. These embeddings often require multiple physical qubits to represent a single logical 
variable, creating an overhead that scales with the problem’s connectivity. To adapt our problem to the hardware, 
we applied a series of structured reductions aimed at decreasing both the dimensionality and the connectivity 
of the QUBO graph:

First, we partition the image into non-overlapping 2 × 2 neighborhoods and select the pixel with the 
highest MI with the class label from each block. This reduces the number of features from 28 × 28 = 784 to 
14 × 14 = 196 while preserving local spatial diversity and maximizing information retention. The block size 
of 2 × 2 was chosen as the smallest non-overlapping subsampling unit compatible with the original 28 × 28 
image size. It offers a trade-off between granularity and QUBO tractability: larger blocks would further reduce 
dimensionality but risk discarding important local information.

Despite the dimensionality reduction, the resulting QUBO remains densely connected due to the presence 
of pairwise redundancy terms between features. To address this, we apply a thresholding strategy that discards 
weak quadratic couplings, defined as those with low MI between feature pairs. Specifically, we retain the top 2000 
largest Qij  terms in absolute value. This threshold level was empirically determined to balance two competing 
objectives: maintaining enough pairwise structure to preserve problem fidelity, while reducing graph density to 
ensure embeddability within the limited connectivity of the hardware. The resulting sparsified QUBO retains 
essential interactions while substantially reducing embedding overhead.

Rather than using a fully connected quadratic penalty term to enforce the cardinality constraint 
∑

i
x̂i = k, 

which would reintroduce dense connectivity, we use a sparsity-preserving linear penalty approach. This introduces 
an adjustable weight αl on the diagonal of the QUBO, as described in the following section, and allows for 
consistent enforcement of the feature count constraint with reduced connectivity overhead. Together, these steps 
result in a QUBO instance that can be embedded in the D-Wave Advantage_system4.1 architecture. The 
final annealing parameters, including annealing time, number of reads, number of physical qubits and average 
chain length are described in the experimental section.
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Linear Ising penalties
To limit the connectivity of the QUBO model while still enforcing the constraint, we propose using a linear 
penalty term, 

∣∣∑n

i=1 x̂i − k
∣∣, similar to the approach presented in39,40. This linear penalty, denoted as L, 

introduces an offset αl on the diagonal of the QUBO matrix. The parameter αl is tuned to achieve the desired 
Hamming weight of the solution vector x̂, where the Hamming weight corresponds to the number of selected 
features in the solution.

For each dataset, we tune the linear penalty coefficient αl through a deterministic search procedure to 
ensure that the QUBO solution satisfies the hard constraint 

∑
i
xi = k. Starting from a small initial value, αl 

is incrementally increased until the returned solution has exactly k selected features. The resulting values are 
dataset-specific and remain fixed for all subsequent experiments.

When constructing the QUBO we substitute C for L: Q = −I + R + αlL. An overview and visual 
comparison of the constraint creation process for the QUBO is provided in Fig.  4. While the linear penalty 
constraint may be less effective for certain problem instances, our experiments show it consistently enforces the 
desired behavior.

Reconstruction decoder
Our experiment focuses on reconstructing images from the selected subset of pixels. Once the features are 
extracted for each dataset, we train a convolutional decoder to reconstruct the original image from the selected 
pixels. An illustration of the procedure in displayed in Fig. 1. The reconstruction network consists of a linear 
layer followed by two two-dimensional transposed convolutional layers, each followed by a ReLU activation 
function and then a sigmoid activation function.

Datasets
For our experiments, we used the MedMNIST dataset30, which contains 18 standardized datasets used for 
biomedical image classification. The collections compromise 12 two-dimensional and 6 three-dimensional 
datasets. The collection contains data scales from a few hundred to 100,000 and binary and multi-class 
classification tasks. In particular, the dataset collection should facilitate light-weight machine learning research 
in medical imaging without directly facing clinical challenges. Due to the size restrictions of our QA device, 
we only analyze the two-dimensional grayscale image datasets. We note that ChestMNIST, OCTMNIST, 
PneumoniaMNIST and BreastMNIST consist of images that are semi-registered. This plays an important role 
when discussing pixels as feature descriptors. The datasets analyzed are summarized in Table 1.

Results
Reconstruction experiment
We compare different FS methods for selecting subsets of features in our reconstruction experiments. The FS 
methods evaluated include: (1) a random sampling approach that selects k features at random, (2) a subsampled 
approach that evenly spreads the pixels across the image in a grid-like fashion, (3) supervised feature selection 
using Lasso regression, where features are selected based on their regression coefficients with respect to the 
target labels, (4) the full QUBO formulation solved using the classical tabu-search solver qbsolv41, (5) our 
proposed QA method, which solves a sparsified QUBO adapted for hardware constraints, (6) unsupervised 
feature compression using SPCA, which generates a sparse representation of the data without supervision, and 
(7) a learned feature extractor, specifically an AE with a latent dimension of k = 25, whose encoder resembles 
the presented decoder architecture.

Fig. 1.  Illustration of the feature selection process using quantum annealing to extract pixels and train a 
convolutional decoder for reconstruction. The image dataset is used to compute mutual information (MI) 
between pixels and class labels (for importance) and between pixels (for redundancy). These statistics define 
the linear and quadratic terms of the quadratic unconstrained binary optimization (QUBO) formulation. To 
make the problem compatible with quantum hardware, the QUBO is downsampled spatially and sparsified to 
reduce connectivity. A soft linear constraint enforces the selection of a fixed number of features, and the QUBO 
is then submitted to the quantum annealer. The selected pixels are treated as a compressed representation, 
which is used to train a decoder for image reconstruction.
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Beyond these approaches, numerous FS techniques exist, including random forest-based selection42, 
simulated annealing-based selection43 or exact solvers like Gurobi44. While these were not explicitly compared 
in our experiments, they represent alternative strategies for feature selection that may be explored in future work.

We trained a convolutional encoder, using feature sets of size k = 25, that takes the selected pixels as input 
to reconstruct the original image. The encoder was trained using the Adam optimizer with a learning rate of 
0.001 for 20 epochs, minimizing mean squared error (MSE) loss. Reconstruction performance was validated 
first on the MNIST dataset, showing results consistent with those reported by Muecke et al.19. The experiments 
were then extended to the MedMNIST dataset. Each selection and training process was repeated five times to 
calculate the mean and standard deviation. The reconstruction results, expressed in terms of MSE on the test set, 
are summarized in Table 2. Visual examples of reconstructed images for each dataset using QA-selected pixels 
are shown in Fig. 5.

Simulation and hardware experiments
In the classical simulation setup, we performed FS on the full QUBO of size 784 × 784, incorporating a quadratic 
constraint. The QUBO was solved using the qbsolv algorithm, which partitions the problem into smaller 
subproblems. From the generated sampleset, the solution with the lowest energy was selected. The runtime of 
qbsolv on the full size QUBO was 5.6 ± 0.56 s.

To validate the solutions on real quantum hardware, we executed the experiments on the D-Wave 
Advantage_system4.1 through LeapTM using the associated Ocean Python API45. As discussed above, we 
used a series of steps to reduce the size and connectivity of the QUBO model. The original QUBO was defined 
on a 28 × 28 pixel grid, resulting in a size of 784 × 784. To downscale this, we used a subsampling strategy, 

Fig. 3.  Feature selection pipeline: Images are flattened to compute the importance and redundancy terms, 
which are combined into the QUBO. The k of n constraint is enforced via a linear penalty or a quadratic 
constraint (Fig. 4). Then, the QUBO is solved using classical or quantum solvers.

 

Fig. 2.  (Left) A part of the Pegasus topology implemented in the quantum annealing D-Wave Advantage_
system4.1 architecture, where qubits (blue circles) are connected with couplings (black lines) to a 
maximum of 15 other qubits. (Right) General example of anneal schedule parameters, where A(s) and B(s) 
scale the transverse field and Ising contributions, respectively. These coefficients are functions of the parameter 
s ∈ [0, 1], which depends on the physical time t. In specific hardware implementations, like the D-Wave 
Advantage_system4.1, these parameters may take different forms.
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selecting the pixel with the highest MI from each 2 × 2 neighborhood in the image. This reduced the QUBO size 
to 196 × 196. Despite this reduction, the connectivity of the QUBO still exceeded the hardware’s constraints. 
To address this, we applied a thresholding technique that removed weaker quadratic couplings, retaining 2000 
couplings in the final problem representation. This sparsification step aligned with an observed average chain 

Dataset Random ×10−3 Sampled ×10−3 Lasso ×10−3 qbsolv ×10−3 QA ×10−3 AE ×10−3 SPCA ×10−3

ChestMNIST 6.7 ± 0.6 6.0 ± 0.0 9.3 ± 0.1 5.3 ± 0.2 5.5 ± 0.2 2.3 ± 0.0 3.0 ± 0.0
OCTMNIST 6.7 ± 1.8 5.9 ± 0.1 17.3 ± 0.1 4.7 ± 0.1 5.3 ± 0.5 1.4 ± 0.1 2.6 ± 0.0
PneumoniaMNIST 6.9 ± 0.5 5.9 ± 0.4 7.3 ± 0.2 5.5 ± 0.1 5.3 ± 0.2 3.1 ± 0.1 2.9 ± 0.0
BreastMNIST 22.3 ± 3.5 23.5 ± 1.3 22.1 ± 2.6 21.8 ± 3.0 21.2 ± 2.6 14.8 ± 1.7 4.5 ± 0.0
TissueMNIST 3.6 ± 0.2 3.1 ± 0.0 4.4 ± 0.0 3.3 ± 0.1 3.0 ± 0.1 1.6 ± 0.0 1.9 ± 0.0
OrganAMNIST 39.4 ± 0.9 37.2 ± 0.3 40.1 ± 0.1 40.3 ± 0.4 37.4 ± 0.5 24.7 ± 0.2 25.2 ± 0.0

Table 2.  Evaluation of the image compression task using selected pixels and learned features, measured 
via test set mean square error. Methods compared include random pixel selection, sampled pixel selection 
(uniform spacing over the image grid), supervised Lasso selection, solving the full QUBO with qbsolv, 
solving a sparsified QUBO with quantum annealing (QA), and compression using an autoencoder (AE) and 
sparse principal component analysis (SPCA). Results are reported as mean ± standard deviation over five 
independent runs. For QA experiments, sparsified QUBOs were used to match current hardware embedding 
constraints, while all classical methods, including qbsolv, operated on the full feature space.

 

Dataset (28 × 28) Modality Tasks (# Classes) # Samples Train/Test

ChestMNIST Chest X-ray Binary (2) 112,120 78,468/22,433

OCTMNIST Retinal OCT Multi (4) 109,309 97,477/1,000

PneumoniaMNIST Chest X-ray Binary (2) 5,856 4,708/624

BreastMNIST Breast ultrasound Binary (2) 780 546/156

TissueMNIST Microscope Multi (8) 236,386 165,466/47,280

OrganAMNIST Abdominal CT Multi (11) 58,830 34,561/17,778

Table 1.  MedMNIST v2 2D datasets used for the feature selection experiments in this manuscript. Table 
adapted from30.

 

Fig. 4.  Illustration of the conventional quadratic constraint to enforce selecting k of n features, which is 
infeasible due to limited connectivity on the annealer. When dealing with a sparsified QUBO, we propose a 
linear Ising penalty to enforce the constraint. The QUBO and its constraint are shown, along with a plot of the 
optimization energy (y-axis) against the Hamming weight (x-axis), indicating how many features are selected ∑

i
x̂i.
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length of 4.51 ± 0.36 physical qubits per logical variable and used around 883.17 ± 82.80 qubits on the QA 
hardware. The average chain length and qubit count was calculated as the mean over the six datasets with five 
idependent runs per sampling.

Minor embeddings were generated dynamically using the EmbeddingComposite from D-Wave’s Ocean 
SDK, employing heuristic algorithms to map logical variables to the Pegasus P16 topology. Chain strengths 
were automatically selected by the embedding composite, proportional to the problem QUBO coefficients, to 
maintain intra-chain consistency without manually tuning. Chain break resolution was handled via majority 
vote, where the most common qubit value within a chain determines the logical variable’s assignment.

The k of n constraint was enforced using a sparsity-preserving linear penalty, ensuring compatibility with 
the hardware while preserving the structure of the problem. The subsampled, thresholded, and linear Ising-
constraint-enforced QUBO was mapped to the annealing hardware, with the annealing time set to tf = 20 µs. 
We performed 1000 reads to form a sampleset and selected the solution with the lowest energy observed. The 
runtime on the quantum annealer was 260.84 ± 12.64 ms. Overhead times, such as queueing the problem to 
the quantum annealer and preparing the QUBO, were not included in the reported runtime, as these are shared 
with the qbsolv workflow.

Discussion
In this work, we presented a method to encode a FS problem that can be implemented on commercially available 
quantum computing hardware. Our approach focuses on selecting the k most important features, as measured by 
MI, from six light-weight medical image datasets. We evaluated the selected features by training a convolutional 
reconstruction decoder and measuring the MSE of reconstructed samples compared to ground truth test set 
images.

To address the limitations of quantum hardware connectivity, we enforced a linear penalty to reduce the 
connectivity of the problem graph. This allowed us to generate a subsampled, thresholded QUBO formulation, 
that reduces the connectivity and computational complexity of the problem. Despite these simplifications, the 
solutions obtained on the quantum hardware were quantitatively (see Table  2) and qualitatively (see Fig.  5) 
comparable to those derived from a simulated solver operating on the complete problem description. This 
demonstrates that our method effectively balances the trade-off between hardware limitations and solution 
quality. The performance of our quantum-based FS approach was comparable to that achieved using a classical 
solver. However, we note that the approximated QUBO may yield suboptimal global solutions due to discarded 
weak interactions, and future hardware developments or hybrid embedding strategies may alleviate this.

Our experiments showed that the QUBO-based FS method identified plausible features for training the 
reconstruction encoder. However, the effectiveness of FS was dataset-dependent. For medical imaging datasets 
with relatively aligned images, such as ChestMNIST, PneumoniaMNIST, BreastMNIST, and OCTMNIST, the 
method performed well, resulting in meaningful feature subsets that supported accurate reconstructions. In 
contrast, for datasets where the image content was misaligned or highly heterogeneous, such as cell images, 
or multi-organ images, the selected features did not outperform simple subsampling. This is consistent with 
existing knowledge that localized pixel features are suboptimal for these tasks, as they fail to capture global 
spatial or contextual information.

Beyond evaluating the QUBO-based FS method, we systematically compared it against a range of classical 
and learning-based FS strategies to establish a broader performance baseline. Random pixel selection served as a 
lower-bound baseline, providing a reference for performance without structured feature selection. Subsampling, 
based on uniformly spaced pixel selection, acted as a natural baseline for image tasks, maintaining spatial 
coverage while ignoring label information. Lasso regression, despite its strong performance in tabular settings, 
underperformed in our experiments, often selecting spatially clustered pixels without considering redundancy, 
leading to poor reconstruction quality. In contrast, qbsolv-based solutions consistently outperformed random 
and subsampling approaches across several datasets, highlighting the value of structured MI-based optimization 
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Fig. 5.  Visual comparison of images from the test set, overlayed with the selected pixels (top row) and the 
decoder reconstructed images from the selected pixels.
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even with heuristic solvers. Although global solvers such as Gurobi44 are not incorporated in the current study 
due to the computational complexity of solving the complete QUBOs with 784 binary variables, they remain an 
important benchmark for future work.

SPCA and AE based feature compression methods achieved the lowest reconstruction errors across all datasets. 
However, as noted by Hellstern et al.20, such unsupervised methods generate new transformed features rather 
than selecting existing ones, necessitating access to the full set of original features at deployment. This limitation 
highlights why neural networks, which excel at learning hierarchical and spatially invariant representations, are 
particularly effective for such tasks. Our QUBO-based method, by contrast, identifies explicit subsets of raw 
pixels, offering direct applicability to tasks such as optimizing imaging acquisition protocols, reducing radiation 
dose, and enhancing diagnostic interpretability. It is important to note that the objective of this study was not to 
propose a new feature extractor but rather to select a subset of features from a large set that adequately describes 
the data distribution. Learned feature descriptors, such as those produced by neural networks, offer unparalleled 
performance due to their ability to generalize across large datasets, but they often lack interpretability. In 
contrast, our QUBO-based approach provides interpretable FS grounded in statistical measures such as MI and 
redundancy, offering insights into the most relevant features for specific tasks.

Integrating learned feature representations with interpretable FS methods could present a powerful hybrid 
approach. For instance, features extracted from foundation models or other pre-trained neural networks 
could be used as inputs to our QUBO-based framework, combining the strengths of deep learning with the 
interpretability and sparsity benefits of quantum-inspired FS. This would enable both effective and interpretable 
solutions, bridging the gap between data-driven learning and human-comprehensible FS. Additionally, future 
work could investigate the incorporation of more advanced quantum algorithms or optimizing hardware 
configurations to further improve scalability and performance.

Conclusion
In this work, we provided an introduction to using quantum annealers for feature selection in an image 
compression task. We presented a method to perform feature selection on currently available quantum annealing 
hardware and applied it on light-weight medical imaging datasets. The method outperforms other simple feature 
selection techniques, but cannot compete against trainable deep learning based feature extractors. By leveraging 
an adapted QUBO formulation with thresholding, subsampling and hardware optimized constraints, we 
demonstrated how quantum hardware can be used effectively despite its current limitations. This work highlights 
potentials of quantum feature selection as a foundation for future explorations in interpretable and scalable 
feature selection methodologies, possibly combining deep learning based feature extractors and quantum based 
feature selection.

Data availability
The datasets analyzed during this work are publicly available and can be found at: https://medmnist.com/.
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