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Abstract

The UCLWI team participated in the Automatic Evaluation of LLMs
(AEOLLM) task of the NTCIR-18 [2]. We propose an efficient evalu-
ation pipeline for Retrieval-Augmented Generation (RAG) systems
tailored for low-resource settings. Our method uses ensemble sim-
ilarity measures combined with a logistic regression classifier to
assess answer quality from multiple system outputs using only
the available queries and replies. Experiments across diverse tasks
demonstrate competitive accuracy and reasonable correlation with
ground truth rankings, establishing our approach as a reliable met-
ric.
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1 Introduction

Retrieval-augmented generation (RAG) synergizes large language
models (LLMs) with dedicated retrieval mechanisms to generate text
that is both contextually relevant and factually grounded [6]. This
paradigm has shown notable versatility in applications such as open-
domain question answering and conversational agents. However,
the evaluation of RAG systems remains a significant challenge.
Traditional text generation metrics often fail to capture the nuances
of factual accuracy and retrieval quality, while manual annotation
methods can be prohibitively time-consuming and subjective.
Recent research has introduced evaluation strategies tailored
specifically for RAG systems. These approaches typically combine
automatic metrics, such as BLEU, ROUGE, and BERTScore, with
retrieval-specific measures (e.g., precision, recall, and F1 score)
or leverage LLM-based evaluations [1, 7, 8, 10]. Although these
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methods have advanced the field, their reliance on extensive com-
putational resources and large annotated corpora limits their appli-
cability in resource-constrained settings.

In this study, we address the challenge of RAG evaluation in low-
resource environments, where neither additional corpora nor GPUs
are available. Our pipeline, developed within the NTCIR AEOLLM
framework, processes single queries answered by multiple RAG
systems [2]. By leveraging an ensemble strategy that analyzes the
similarity between generated answers and their corresponding
queries, our method not only achieves the highest agreement but
also attains the second-best accuracy relative to the ground truth.
These results underscore its potential as an efficient and effective
evaluation strategy for RAG systems.

2 Background

2.1 Retrieval-Augmented Generation Systems

Retrieval-augmented generation (RAG) systems integrate large lan-
guage models with external retrieval components to produce out-
puts that are both contextually coherent and factually grounded.
Lewis et al. [6] introduced a RAG framework that augments lan-
guage models with a retrieval mechanism to tackle knowledge-
intensive tasks. Building upon this paradigm, Guu et al. [4] pro-
posed the REALM approach, which incorporates retrieval during
pre-training and Izacard and Grave [5] further demonstrated the
benefits of fusing retrieval with generative models in open-domain
question answering,.

2.2 Evaluation of RAG Systems

Evaluating RAG systems poses unique challenges as it requires
assessing both the quality of the generated text and the effective-
ness of the retrieval process. Standard automatic metrics, including
BLEU [8], ROUGE [7], and BERTScore [10], have been widely used
to evaluate text generation quality. However, these metrics often
fall short in measuring retrieval performance and factual correct-
ness. To overcome these limitations, recent work has explored the
use of retrieval-specific metrics and even leveraged LLM-based
evaluations [1] to provide a more comprehensive assessment.

2.3 Ensemble Methods in System Evaluation

Ensemble methods have been effectively used to enhance the reli-
ability and performance of various machine learning systems by
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Algorithm 1 RAG Evaluation Score Prediction

Require: o A set of queries Q = {q1,92,...,qm}
e For each query g, a set of nreplies R = {r1,r2,...,rn}.
e A similarity function sim(:,-) to compute similarity be-
tween texts.
e A classifier function Classifier(-) that predicts a score s
from input features.
Ensure: A set S containing tuples (g, r,s) for each query-reply
pair.
:S«—0
2: for each query q € Q do
3 for each reply r € R do

4 Fe0 > Initialize feature vector for reply r
5 for each reply r; € Rdo
6: fi < sim(r,rj)
7: F — FU{fj}
8 end for
9: fq < sim(q,r)
10: F — FU{fy}
11: s « Classifier(F)
12: S—Su{(grs)}
13: end for
14: end for
return S

combining multiple models to offset individual weaknesses. In the
context of RAG evaluation, ensemble strategies offer a promising av-
enue to integrate diverse evaluation signals, thereby yielding more
robust quality predictions. Dietterich [3] provides a foundational
overview of ensemble techniques, illustrating how aggregating mul-
tiple models can lead to significant performance gains—a concept
that has influenced this work.

3 Design and Rationale

As described in Sections 1 and 2, this study evaluates replies from
multiple RAG systems addressing the same query under low com-
putational cost and without additional corpus access. We adopt an
ensemble approach based on the assumption that the quality of an
RAG’s reply can be gauged by its similarity to other replies.

As shown in Fig. 1, the AEOLLM setting provides only the queries
and the corresponding replies from each RAG system. We compute
similarity scores between each reply and the original query and
then use these scores as features in a classifier to predict the final
quality of each reply.

Algorithm 1 details the process of our proposed model. In the
next section, we provide further details on its implementation.

4 Details of implementation
4.1 Model Components

In this section, we detail the two main components of our pipeline:
the similarity model and the classifier.
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4.2 Similarity Model

To minimize computational cost while effectively calculating simi-
larities, we utilize static-similarity-mrl-multilingual-v1* from sentence-
transformers [9]. Unlike Transformer-based models (e.g., all-MiniLM-
L6-v2%), this static model encodes text chunks into 1024-dimensional
vectors, offering a balance between performance and computational
efficiency. In our study, we compute similarities by obtaining embed-
dings for text chunks and measuring the cosine similarity between
them.

4.3 Classifier

Logistic Regression Classification Implementation. The classifier
employs a multinomial logistic regression model to predict answer
quality on a 5-point scale (1-5). For each prediction, the input
feature vector is 8-dimensional, comprising seven components rep-
resenting the similarity scores between the candidate reply and
each of the other replies (fi, . . ., f7), along with one component
capturing the similarity between the reply and the query (f;). The
feature matrix F € R™8 is standardized to have zero mean and
unit variance.

The model is configured for multi-class classification using the
multinomial scheme with the "Ibfgs’ optimizer, running for a maxi-
mum of 1000 iterations. Given n samples, the model learns weight
matrices W € R3%® and bias terms b € R, with each row corre-
sponding to a score class. The probability of assigning class k to an
input x is computed as:

exp(Wrx + by)
Z;zl exp(Wjx + bj) '
The model parameters are optimized by maximizing the multino-
mial log-likelihood, and the final prediction is determined by:

Py=k|x) =

g= argm]?x P(y=k|x).

The trained model assigns discrete scores (1-5) to new answers
based on their similarity features. These scores are subsequently
converted to dense ranks, with equal scores receiving the same rank
and subsequent ranks assigned consecutively, ensuring a consistent
ordering of answer quality within each question group.

5 Results

Task Accuracy Kendall’s Tau Spearman

Dialogue Generation 0.7044 0.4913 0.5527
Text Expansion 0.5340 0.2758 0.3019
Summary Generation 0.7494 0.6114 0.6418
Non-Factoid QA 0.6905 0.4090 0.4311
Overall 0.6696 0.4468 0.4819

Table 1: Performance of our pipeline on the test set.

Our proposed pipeline performed comparable on both the test
and final sets. On the test set, we obtained an overall accuracy of
0.6696, with agreement levels (above 0.4) observed in three out
!https://huggingface.co/sentence- transformers/static- similarity-mrl-multilingual-

vl
2https://huggingface.co/sentence-transformers/all- MiniLM-L6-v2


https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1
https://huggingface.co/sentence-transformers/static-similarity-mrl-multilingual-v1
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Figure 1: Overall structure of this work.
Task Accuracy Kendall’s Tau Spearman One notable observation from Section 5 is the significant vari-
Dialogue Generation 0.7756 0.5798 0.6426 ance in performance across tasks, which appears to stem from
Text Expansion 0.5266 0.3482 0.3815 inherent differences in each task’s characteristics. Table 3 presents
Summary Generation  0.7273 0.5432 0.5763 the average lengths of queries and replies for each task, revealing
Non-Factoid QA 0.6853 0.4105 0.4291 marked disparities. When comparing Table 3 with Table 2, a clear
Overall 0.6787 0.4704 0.5074 trend emerges: tasks with longer queries and shorter replies tend

Table 2: Performance of our pipeline on the final set.

of four tasks. Similarly, on the final set, we achieved an overall
accuracy of 0.6787, with agreement levels similar to those on the
test set.

At the task level, performance was consistent across all four
tasks. In particular, Dialogue Generation and Summary Generation
yielded relatively higher performance, followed by Non-Factoid
QA, while Text Expansion consistently demonstrated the lowest
performance.

At the time of writing, our approach attained the second-best
overall accuracy and the highest Kendall’s Tau and Spearman cor-
relation scores on the final AEOLLM set.

In the next section, we analyze the performance and underlying
models in further detail.

6 Analysis and Conclusion

Task Avg Q Length Avg R Length
Dialogue Generation 506.22 84.47
Text Expansion 131.5 1793.17
Summary Generation 1091.98 407.43
Non-Factoid QA 51.93 1142.0

Table 3: Average Query and Reply Lengths by Task
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to yield higher accuracy and better agreement in our pipeline.

This trend can be interpreted from two perspectives. On one
hand, generation-based systems benefit from richer contextual in-
formation provided by longer queries, often leading to more ac-
curate responses. On the other hand, the nature of the task itself
plays a significant role. For instance, Summary Generation tasks
require condensing text into concise, less diverse outputs, whereas
Text Expansion tasks—where systems generate narratives from a
given theme—tend to produce more varied responses. Consequently,
the similarities among summaries are generally higher than those
among expanded texts. This observation underscores a limitation
of our pipeline: it relies on surface-level similarity metrics rather
than a deeper semantic understanding to rank replies.

6.1 Weights in Classifier

Since all similarity scores have been standardized, the weights
learned by the classifier on the training set can be directly inter-
preted as reflecting the relationship between these similarity mea-
sures and the corresponding quality scores. This makes it meaning-
ful to analyze the classifier weights. Table 4 presents these weights,
where each row includes 8 weights and 1 bias. The first 7 weights
correspond to reply-to-reply similarity scores, and the 8th weight
corresponds to the query-to-reply similarity score. In the first 5
rows for each task (corresponding to scores 1 to 5), the largest
weight values are highlighted in bold and the smallest values are
underlined. Because scores 4 and 5 are considered indicative of
higher quality, we sum their corresponding weights to form an ad-
ditional (sixth) row for each task; in this combined row, the largest
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Table 4: Logistic Regression Parameters with Highlighted Extreme Features

Task Class RR1 RR2 RR3 RR4 RR5 RR6 RR7 OR3 Bias
0 1 -0.1068®  0.0402@  -0.0808® -0.0998® -0.4810© -0.8308® -0.69107 | 0.27670D | -1.3944

2 -0.0276® 016920 -0.0295%  0.0654® -0.3904©®) -0.41550) -0.5905®) | 0.1629) | -0.4121

3 0.2796® 021153  -0.1400®  0.3743  0.1336@  -0.0601©  0.25990) | -0.07487) | 0.6842

4 03030 0.3505@  0.2772® 022697  0.1491® 0.4298)  0.0788© | -0.3810® | 1.0157

5 -0.4481®  -0.43300  -0.0269%) -0.1131©)  0.5887®)  0.8766® 0.94290 | 0.0162%9 | 0.1066

4+5 11 9 9 13

8 3 7 12

-0.0392®  0.1869® 0.3192D)  -0.35230©)
-0.475000  0.3982(0  -0.1815%)  0.2952(2)
01024 0.1224@  -0.1319©®) 0.2898()
0.1586® -0.3755(®)  -0.1548()  0.2395(!)
0.25324 033200 0.1491®  -0.4721®

[ N

-0.5888®)  -0.1947®)  -0.41947 | 0.0949®) | -0.0831
0.0488%  0.0572®  -0.5739®) | -0.4675©) | 0.7544
-0.29697  0.0610®  -0.4028® | 0.1205® | 1.2505
0.1249®)  -0.0113@  -0.1395® | -0.1735() | 0.8596
0.7119®  0.0878©  1.5356() | 0.4256 | -2.7813

4+5 6 15 11 9

5 10 6 10

WW W W W WINN NN NRR R R R RO © O O

1 2031990 071970 -0.2809@ -1.0161® -0.0895® 0.6461D -0.82947 | 0.3223® [ -3.3305
2 0.1056®  0.2139%  -04705)  0.5948@ 0.8959)  0.5169®) -0.3934) | -0.6836® | -0.6081
3 -0.9310® 029133 0.1482¢)  0.4319® 013630 0.13520)  0.4732 | -0.09157) | 1.1871
4 0.49453)  0.2438@  -0.0024) -0.0347® -0.4248() -0.7874®)  0.5358® | 0.6535() | 1.8194
5 0.65090) 002920 0.6056®  0.0241@ -0.5178® -0.51087  0.2139®) | -0.2007® | 0.9321
4+5 4 9 7 10 15 15 5 7

1 -0.6849®)  -0.2905®  -0.51077)  0.0474@  0.55870D  -0.0972®)  -0.25410) | -0.2317@ | -3.0199
2 2053107 0.4316)  -0.6630®  0.1053®  0.2557®  0.0374@ -0.32570) | -0.5171) | -1.8783
3 0.32140)  -0.5570®)  0.24564 -0.39207 -0.1086() -0.3317® -0.0901® | 0.1840@ | 0.7111
4 -0.053000  0.23720)  0.7890)  0.2925¢)  -0.3305®)  0.4501®  0.2963®) | 0.21000) | 1.9498
5 0.94750 017874 0.13910  -0.0531)  -0.3753®)  -0.0586)  0.3737® | 0.35480) | 2.2374
445 3 9 6 10 16 9 5 9

weight is also highlighted in bold. With classifiers trained sepa-
rately for each task, the performance of individual RAG systems
can be discussed in detail.

Co-occurrence of Extreme Weights: An interesting observation
is that extreme weight values tend to co-occur. Across 28 RAG-
task pairs, there are 40 extreme values (maximums and minimums),
yet only 18 RAG-task pairs exhibit extreme weights in the indi-
vidual scores (1 through 5). Of these, only 6 cases have a single
extreme weight, while the remaining 12 cases show multiple ex-
treme weights. This pattern aligns with the intuition that if a RAG
system has a high likelihood of achieving a certain score, it corre-
spondingly has a lower chance of attaining other scores. Therefore,
if we define scores 4 and 5 as representing "better" performance,
then the rank of their weights can serve as an indicator of a RAG
system’s propensity for higher quality outputs. For example, assum-
ing the order of RAGs in both the training and final sets remains
unchanged, our analysis suggests that for task 0 (Dialogue Genera-
tion), RAG systems 6, 7, and 5 would perform best. Similarly, for
task 1 (Text Expansion), RAG systems 7, 5, and 1 are likely to excel;
for task 2 (Summary Generation), RAG systems 1, 7, and 3 would
be preferable; and for task 3 (Non-Factoid QA), RAG systems 7, 3,
and 1 are anticipated to deliver superior performance.

Influence of Query-to-Reply Similarity: Another notable observa-
tion is the impact of query-to-reply similarity weights. In tasks with
longer queries, the query-to-reply similarity component plays a
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more critical role, as evidenced by the more extreme weight values.
This alignment between the weights of query-to-reply similarity
and the performance trends observed in Section 5 suggests that
richer query contexts significantly contribute to the overall effec-
tiveness of our evaluation pipeline.

6.2 Conclusion and Future Work

In summary, our study presents a comprehensive evaluation of RAG
systems through a novel pipeline that leverages similarity metrics
and classifier-based scoring. The analysis of task-level performance,
classifier weights, and the role of query-to-reply similarities pro-
vides valuable insights into the strengths and limitations of our
approach. While the reliance on similarity metrics offers compu-
tational efficiency, it also highlights the need for incorporating
deeper semantic understanding in future work. Moving forward,
we plan to explore advanced models that integrate both similarity
and semantic understanding to further enhance the evaluation of
RAG systems.
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