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Abstract 

The restoration of blue carbon ecosystems is becoming increasingly recognised as a 

potentially important tool towards sustainable development because of their capac-

ity to store carbon. However, the spatial and temporal variability of organic carbon 

storage is high, and the drivers regulating that variability remain poorly defined. This 

makes it difficult to plan habitat restoration with blue carbon objectives. Here, we 

quantified spatial and temporal variability of carbon storage in mangrove forests in 

northern Vietnam, comparing between old-growth forests, forests that have sponta-

neously naturally regenerated, and areas of intentional restoration. We found that 

sedimentation rates have increased over the past 25–50 years, but this did not trans-

late to a general increase in carbon accumulation, suggesting a decrease in carbon 

burial efficiency. An exception was higher carbon burial in the restored mangrove 

area since the 1960s, followed by a decline since the 1990s. Microalgae were a con-

sistent source (more than 50%) of the buried organic carbon, except in the post-1960 

restored mangrove sediments - where the majority of the carbon originated from 

the mangroves and estuarine particulates. This suggests a shift in ecological struc-

ture towards a ‘closed loop’ of carbon recycling. Carbon burial spatial and temporal 

dynamics were well aligned to coastal land-use change, upstream dam construc-

tion and dry-wet climatic variability. These results suggest that both old-growth and 

restored mangrove forests are important carbon stores. Importantly, we show that 

mangrove re-establishment can have positive effects on carbon storage – supporting 
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the application of habitat restoration for blue carbon-based sustainable development. 

However, this benefit can be transient if environmental conditions (because of natural 

or human factors) do not facilitate the development of ‘normal’ ecological function-

ing, emphasising the need for a holistic approach towards multiple conservation 

objectives.

Introduction

Coastal marine ecosystems are known to sequester and subsequently lock up 
significant quantities of carbon in their underlying sediments [1]. This so-called “blue 
carbon” is becoming increasingly recognised as a potentially important nature-based 
solution (NBS) for climate change mitigation [2], facilitated by a wide range of coastal 
ecosystems [3,4]. Together with geoengineering, harnessing organic carbon sedi-
ment storage could help to reduce atmospheric carbon dioxide whilst also providing 
multiple ecological and socioeconomic co-benefits such as improved ecosystem 
health, increased biodiversity, and income diversification [5,6], progressing us 
towards sustainable development. Our understanding of blue carbon dynamics has 
significantly increased in recent years, but the majority of research remains focused 
on quantifying sediment standing stocks. However, we know that organic carbon sed-
iment storage can be highly variable across time and space, driven by changes and 
differences in landscape morphology, ecosystem function, prevailing climates, and 
local to regional land-use (e.g., [7–12]). Whilst knowledge of carbon standing stocks 
is important for present-day carbon accounting, this information cannot resolve or 
explain spatio-temporal variability in organic carbon sediment storage [2], limiting our 
ability to refine and optimise blue carbon-based conservation objectives.

Mangrove forests are considered one of the most important blue carbon ecosys-
tems, in terms of global distribution and their carbon storage capacity – with signifi-
cant potential as a national and regional scale NBS tool [13]. In addition, the success 
of regeneration and restoration efforts is high compared to other marine ecosystems 
[14]. Mangroves are therefore a promising option for achieving local-regional blue 
carbon policy objectives [8,15] with significant blue carbon finance potential, with a 
return on investment of ∼US$3.7 billion per year [16]. This may help to overcome 
the current community hesitancy towards mangrove restoration [17]. Southeast Asia 
is a global hotspot for mangrove forests (where 34% of the world’s mangroves are 
located, c.a. 45 500 km2) [18]. However, the region has also experienced the greatest 
loss over the past few decades [18,19].

Vietnam historically supported some of the largest mangrove extents (408,500 ha 
in 1943), but over 60% of its past mangrove forest cover has been lost since then 
due to human conflicts, coastal development, and environmental change [20–22]. In 
particular, the second Indochina war (1955–1975) [22] and economic revitalisation 
initiatives for shrimp aquaculture development in the 1980s [23] has led to signifi-
cant mangrove loss throughout Vietnam’s coastline. In recognition of the ecological 
and socioeconomic detriment of mangrove loss, community-led initiatives since the 
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mid-1990s to conserve, regenerate and restore Vietnam’s mangrove forests, have resulted in an annual 6.4% increase in 
mangrove distribution, bucking trends seen in other parts of the world [24]. This has created a heterogeneity in Vietnam’s 
mangrove forest maturity and composition, with concomitant variability in blue carbon “value”. Mangrove restoration and 
regeneration is known to promote positive outcomes for blue carbon-relevant metrics such as above-ground biomass 
[25,26], sediment accretion rates [27] and sediment organic carbon content [28,29]. Integration of shrimp farms within 
mangrove forests is known to have significant negative impacts on blue carbon release around the world [30,31]. How-
ever, this also holds potential for realising sustainability objectives, such as regenerating mangrove in abandoned pond 
areas [30], promoting local carbon capture [29,32] and reducing aquaculture-derived nutrient pollution [33]. The major-
ity of the organic carbon stored within mangrove forests is within the underlying sediment (up to 98% and 90% of total 
storage in estuarine and oceanic sites, respectively), with temporal accumulations of sediment organic carbon driven by 
carbon inputs, sediment characteristics and above-ground productivity [34]. Therefore, knowledge of organic carbon burial 
dynamics over time and space is essential for blue carbon-based conservation of mangrove ecosystems [10,29]. How-
ever, this knowledge remains limited in southeast Asia, despite recent commitments to blue carbon policies [35].

To resolve these knowledge gaps, here we investigated variation in organic carbon sediment storage in mangrove 
sediments over the past 300 years within the Red River delta, northern Vietnam. We compared the source and quantity of 
carbon buried between areas with different land use histories – including past mangrove loss, aquaculture development, 
natural spontaneous regeneration and contemporary intentional habitat restoration. Sediment cores from different man-
grove forest types were dated using 210Pb and their sediment organic carbon (SOC) isotopic composition and carbon to 
nitrogen (C/N) ratios determined to generate spatially resolved time series of SOC stock, OC source and C/N time series, 
informed by contemporary terrestrial/marine source end‐members.

Methods

Study system & core sampling

Sediment cores were collected from three sites (n = 3 cores per site) within the Red River delta, northern Vietnam in May 
2019 (S1 Fig), representing three different mangrove types: (1) old-forest: established mangrove situated within intermediate- 
intensity shrimp farm ponds in the centre of the delta, (2) regenerated: mangrove that has undergone natural spontaneous 
regeneration (dominated by mangrove species Kandelia obovata, Sonneratia caseolaris, Aegiceras corniculatum, and 
Rhizophora stylosa) towards the east of the delta, and (3) restored: mangrove that has been artificially restored with active 
mangrove seedling planting of K. obovata intermixed with S. caseolaris and R. stylosa at a planting density of around 20,000 
trees ha-1 on the southern edge of the delta. Sediment cores were collected at low tide using a two-metre Geo-slice NM4 
corer [36]. Core lengths ranged from 85 – 135 cm (see dataset for details of each core length). Cores were taken with the 
permission and support from of Management Board of Xuan Thuy National Park, Vietnam.

Core horizon sample preparation

Cores were sectioned into 5 cm horizons in the field immediately upon collection and then frozen at -20°C within 1 hour of 
collection. On return to the laboratory, samples were dried at 60°C until mass loss was stable. Bulk density (g cm-3) was 
calculated as: mass of the dry horizon (g) / volume of the horizon (cm3). Once dry, each horizon was ground into a fine 
powder.

Core chronologies

Core horizons were analysed for 210Pb, 226Ra, 137Cs and 241Am by direct gamma assay using ORTEC HPGe GWL series 
well-type coaxial low background intrinsic germanium detectors. Lead-210 was determined via its gamma emissions at 
46.5keV, and 226Ra by the 295keV and 352keV gamma rays emitted by its daughter isotope 214Pb following three weeks 
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storage in sealed containers to allow radioactive equilibration. Cesium-137 and 241Am were measured by their emissions 
at 662 keV and 59.5 keV, respectively. The absolute efficiencies of the detector were determined using calibrated sources 
and sediment samples of known activity. Corrections were made for the effect of self-absorption of low energy gamma 
rays within the sample [37]. Lead-210 chronologies were calculated using the CRS (constant rate of 210Pb supply) dating 
model [38], informed by the horizon bulk densities. Carbon accumulation rates were calculated by multiplying carbon con-
centrations (wt%) with sedimentation rates (g cm-2 y-1; calculated from horizon dry mass, horizon year intervals and corer 
cross-sectional area). Poor 137Cs and 241Am records precluded their use for chronology validation.

End member sampling for isotopic calibration

End-member samples of mangrove roots (from the cores) and locally caught fish were collected at the sample sites to 
enable fingerprinting of the SOC source. Samples were frozen within an hour of collection and kept frozen for transport to 
the laboratory where they were freeze-dried and ground to a fine powder. Additional end-member data was acquired from 
previously published isotopic studies from the local area (references [39–43]) – see S1 Table for details.

Stable isotope analysis

δ13C and δ15N were determined for all end-member samples and for each 5 cm horizon, providing a resolution of 
12.0 ± 8.2 years. δ13C and δ15N stable isotope analyses were conducted at the SUERC Stable Isotope Ecology Facility to 
identify the primary source(s) of organic matter in each sediment horizon. This enabled discrimination between terrestrial 
/ marine inputs and trophic levels via comparison to the end-member samples. Since marine organisms are distinctly less 
cellulosic but more proteinaceous than terrestrials, C/N ratios have also been widely used for reflecting physical mixing 
of sediment material composited by distinct end-member sources. A marine algal dominated source of sediment material 
is represented by C/N ratios of 4–10 [44], while C/N ratios >12 represent terrestrial vascular plant end-member sources 
[45]. All analyses were carried out using a Delta Plus XP continuous flow isotope ratio mass spectrometer (Thermo Fisher 
Scientific) coupled to a Pyrocube Elemental Analyser (Elementar). Three laboratory standards (Gelatine, Alanine/Gelatine 
and Glycine/Gelatine) were analysed for every 10 unknowns and used to correct for instrument drift during each analyt-
ical run, which typically lasts 16 hr. Four aliquots of USGS40 were analysed each day (average and standard deviation 
(SD) for USGS 40 over six analytical runs, spanning a period of 6 months (n = 24) was δ13C −26.35 ± 0.13‰ and δ15N 
−4.60 ± 0.20‰, accepted values are −26.39 ± 0.04‰ and −4.52 ± 0.06‰ respectively).

Calculation of C stock

Sediment organic carbon accumulated in each horizon (g C m-2) was quantified by:

	 SOChorizon = Sr× Hi× C	

Where S
r
 = sedimentation rate (g cm-2 y-1), H

i
 = horizon year interval (years) (both obtained from core chronologies), and 

C = carbon content (wt%), scaled up to m2. Total carbon stocks (kg C m-2) were calculated by summing carbon accumu-
lated within in each horizon, for the past 40 cm and the past 100 years of accumulation. Error in accumulated carbon was 
propagated from the vertical accretion rates, obtained from the Pb-210 chronologies.

Microalgal counts

Water samples (100 mL) were collected at the three sampling sites in glass bottles, preserved with 1% acidic Lugols solu-
tion and kept in the cool and dark until analysis around a week later. Sub-samples (1 mL) from the well mixed preserved 
samples were enumerated in a plastic Sedgewick Rafter counting cell with glass cover slip under an inverted light micro-
scope (x200). Initial examination of the samples determined that the diatom Skeletonema was highly abundant and so 
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this diatom was counted in either a single or double row of the counting cell (i.e., from 50 or 100 µL, respectively); all other 
taxa were counted from the full chamber.

Isotope mixing model and statistics

Data analysis was conducted in R version 4.3.2 [46] in RStudio version 2023.09.1 [47]. The relative proportion of the 
different carbon sources found in the sediments was quantified using “simmr” V0.5.1.216 – a Markov Chain Monte Carlo 
(MCMC)-based Bayesian Stable Isotope Mixing Model [48]. simmr was run in R version 4.3.1 in RStudio version 2023.06.2. 
Contributions are expressed as posterior probability distributions, with a generalist prior (1:1). Both δ13C and δ15N were 
used as isotopic markers. Successful MCMC convergence was confirmed using the simmr “diagnostic” statistics (all = 1), 
and model fit was confirmed using the “posterior predictive check”. MCMC algorithm parameters employed were: itera-
tions = 10,000; burn in = 1,000; thin = 10; and chains = 4. Faunal end-members (excluding polychaetes which had a distinct 
isotopic signature) were combined a posteriori into an ‘Other fauna’ end-member group for data interpretation.

One-way ANOVAs were used to investigate differences in carbon parameters between sampling sites. Where signif-
icant site effects were found, post hoc Tukey test comparisons were used to determine differences between sites. Data 
met assumptions for parametric testing. Volumetric counts of microalgae were Log(X + 1) transformed for calculation of 
Bray-Curtis similarity in PRIMER 7 (v.7.0.23) and analysed with a non-metric Multi-Dimensional Scaling ordination (2D 
stress = 0.08). Statistical differences between microalgae counts for abundant taxa were assessed in SigmaStat v4.0 
through Holm-Sidak t-tests.

Results

Sedimentation rates

Vertical accretion rates in the regenerated and restored mangroves were stable at <1 cm y-1 until around the year 2000, 
after which vertical accretion rates accelerated to >1 cm y-1 (Fig 1a). Vertical accretion rates in the shrimp farm-associated 
old-forest mangroves were similarly low and stable until ~1980, after which vertical accretion rates accelerated to >4 cm 
y-1. Contemporary vertical accretion rates were higher in the old-forest mangrove than the restored or regenerated man-
groves. A similar pattern of recent increases in sedimentation rates were also observed (Fig 1b), preceded by decadal-
scale ‘waves’ of higher sedimentation rates around 1940 (regenerated mangrove area only) around 1990 at all three sites 
(Fig 1b). No significant differences in sedimentation between mangrove types was identified, for the top 40 cm of sediment 
(F

2,21
 = 0.634, p = 0.540) nor the past 100 years of deposition (F

2,21
 = 0.904, p = 0.414) (Fig 1c).

Organic carbon content

Total organic carbon (TOC) was relatively stable at 0.6-0.9 wt% in the old-forest and regenerated mangroves through-
out the time series, excepting an enrichment in the surface horizon of the regenerated mangrove (Fig 2a). The restored 
mangrove had comparable TOC content until ~1960, after which TOC rapidly increased to a peak of 1.8 wt% in the 1990s 
(Fig 2a), coinciding with the mangrove restoration efforts. The elevated TOC content translated to higher carbon accu-
mulation in the restored mangrove that were maintained for around 20 years (Fig 2b). Total carbon accumulated in recent 
years was significantly higher in the restored mangroves compared to the other mangrove types, both in the top 40 cm 
(F

2,21
 = 6.297, p = 0.007) and over the past 100 years – where the regenerated mangroves were also significantly lower 

than the old-forest mangrove (F
2,21

 = 98.72, p < 0.001; Fig 2c).

Source of organic carbon

C/N elemental ratios lay at the transition between terrestrial plants and marine algal signals with no clear temporal pat-
terns (Fig 3a). Average C/N ratios were slightly elevated in the restored mangrove (throughout the whole time series; Fig 
3a), suggesting a higher contribution of plant-derived carbon. δ13C variation over time was generally stable around -20‰ 
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in both the old-forest and regenerated mangroves (Fig 3b). δ13C was similar in the restored mangrove until ~1960, after 
which a distinct decline in δ13C was observed; this temporal shift was consistent across all cores (Fig 3b). δ15N variation 
over time was generally stable over time (between ~3–5‰ at all sites) with no clear temporal groupings (Fig 3c). Baseline 
end-members provided clear δ13C/ δ15N distinction between marine/ terrestrial inputs, and across trophic levels (Fig 3d).

Fig 1.  Sedimentation in the mangroves over time. (a) vertical accretion rate (cm y-1) and (b) sedimentation rate (g cm-2 y-1) over time from restored, 
naturally regenerated and old-forest mangrove types (n = 3 cores per mangrove type), and (c) average sedimentation rate in the top 40 cm (n = 8 hori-
zons; black bars) and over the past 100 years (n = 10-16 horizons; grey bars). Data presented as mean±range (a,b) and mean±SE (c).

https://doi.org/10.1371/journal.pstr.0000197.g001

https://doi.org/10.1371/journal.pstr.0000197.g001
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In the old-forest mangrove, regenerated and pre-1960 restored mangroves, benthic microalgae contributed 
>50% of the sedimentary organic carbon (Figs 4 and S2). Non-polychaete fauna and macroalgae accounted for 
another 35–37% of the organic carbon in the old-growth and pre-1960 artificially restored mangroves (Figs 4 

Fig 2.  Total organic carbon (TOC) within mangrove sediments. (a) sedimentary TOC (wt%) over time and (b) carbon accumulation (g C m-2) over 
time from restored, naturally regenerated and old-forest mangrove types (n = 3 cores per mangrove type), and (c) total TOC in the top 40 cm (n = 8 hori-
zons; grey bars) and over the past 100 years (n = 10-16 horizons; black bars). Letters over the bars in (c) represent significantly different groupings. Data 
presented as mean±SE.

https://doi.org/10.1371/journal.pstr.0000197.g002

https://doi.org/10.1371/journal.pstr.0000197.g002
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and S2). In the spontaneously regenerated mangroves, fauna (polychaetes + other) accounted for another 33%, 
with mangrove (6%) and macroalgae (4%) providing minor contributions (Figs 4 and S2). However, organic 
carbon from post-1960 sediments in the restored mangrove was characterised by a distinctly different source 
origin (Figs 3, 4 and S2). The source of this organic carbon was more diverse, consisting of: inland-derived 
particulate organic matter (28%), mangrove (21%), benthic microalgae (21%), polychaetes (19%) and other 
fauna (9%) (Figs 4 and S2).

Microalgae and protist communities

Site-specific microalgal and protist communities were observed at all sites (Fig 5). The greatest distinction was observed 
in the old-forest mangrove (Fig 5), driven by a significantly lower abundance of diatoms (Fig 5). Skeletonema spp. 
accounted for 99% of the diatom microalgae at all sites; other marine and freshwater diatom taxa (e.g., Navicula, Cyclo-
tella, Achanthes) represented <2% of total counts. Other numerically abundant taxa included small protists such as plank-
tonic ciliates (mostly Strombidiida), and the Euglenoids (freshwater flagellates) (S3 Fig). These microalgae groups did not 
statistically differ between mangrove types.

Discussion

The storage of organic carbon in coastal ecosystems is becoming recognised as a useful nature-based tool to achieve 
sustainability, with substantial co-benefits. Here, we identify that the high spatiotemporal variation in carbon stored in 
mangrove forests in northern Vietnam is driven by local coastal development, upstream dam construction and long-term 
climatic change. We identify two priority areas for blue-carbon focused sustainability policy: the preservation of old-forest 
mangrove as a persistent organic carbon sediment store, and the sensitivity of mangrove restoration success to external 
human or climatic forcings.

Fig 3.  Source of sedimentary organic carbon. Time series of (a) C/N ratio, (b) δ13C (‰) and (c) δ15N (‰), and (d) δ13C against δ15N (‰) of sedimen-
tary organic material from each core horizon from restored, naturally regenerated and old-forest mangrove types (n = 3 cores per site), and contemporary 
end-members (isotopic values from the literature and this study - see S1 Table). POM = particulate organic matter. Data presented as mean±SE.

https://doi.org/10.1371/journal.pstr.0000197.g003

https://doi.org/10.1371/journal.pstr.0000197.g003
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Delta-wide increase in sedimentation rates over the past 50 years

Sediment accretion is a major factor for future survival of mangrove forests due to submergence risk from sea level rise [49]. 
For the majority of our record, sedimentation rates in the mangrove sites were consistently less than 1 cm y-1, which is com-
parable to previous studies on bulk carbon storage in Vietnam mangroves [50]. From around 2010, sedimentation rates in the 
regenerated and restored mangroves have accelerated, aligning with mangrove re-establishment in these areas. Mangrove 

Fig 4.  Mean proportional contribution from each end-member group across the mangrove types.

https://doi.org/10.1371/journal.pstr.0000197.g004

Fig 5.  Microplankton community composition of surface waters. Ordination (nMDS) of community composition by mangrove type, and (inset) total 
diatom abundance (99% Skeletonema spp.). Letters above bars indicate significantly (p < 0.01) different groups based on Holm-Sidak t-tests. Note that 
the relative distance between samples in the nMDS relates to the percentage (dis-)similarity in community composition.

https://doi.org/10.1371/journal.pstr.0000197.g005

https://doi.org/10.1371/journal.pstr.0000197.g004
https://doi.org/10.1371/journal.pstr.0000197.g005


PLOS Sustainability and Transformation | https://doi.org/10.1371/journal.pstr.0000197  September 25, 2025 10 / 14

re-establishment therefore appears to have had a positive effect on sediment stabilisation and particulate entrainment. This 
effect is amplified in the shrimp-farm associated old-forest mangrove: sedimentation rates began to increase in the 1980s 
(when shrimp farm intensification started), and sedimentation rates have since been consistently double that of the regener-
ated and restored mangrove areas – suggesting that the shrimp farms provide a higher source of particulates for entrainment 
within the mangroves. Sustainable associations between sediment-producing aquaculture and mangrove forests may there-
fore provide respite from the submergence threat posed by projected climate change [49]. This supports the emerging integra-
tion of mangroves with aquaculture for ecosystem-based management with greater ecological co-benefits [51–53].

The source and storage of carbon is mostly stable over time

Although sedimentation rates in the shrimp-farm associated mangroves have been consistently higher since the 1980s, 
this did not translate to higher amounts of stored organic carbon – suggesting the shrimp farm-derived particulates are 
low in carbon content and/ or there was lower carbon burial efficiency, perhaps because of higher mineral proportions in 
the sediment, surface remineralisation and carbon dioxide flux [54]. This provides local support to global observations 
that mangroves with high sediment loads and/ or strong tidal flushing accumulate smaller carbon stocks [55]. Sediment 
carbon storage was comparable to other areas in Vietnam [25,50] and was within the global range (86–729 Mg C ha−1) 
[55]. Surprisingly, the development of shrimp farms did not change the source of the buried carbon, suggesting ‘natural’ 
carbon burial dynamics were maintained. The source of organic carbon, as determined by C/N ratios and δ13C - δ15N, 
were consistently characteristic of a marine flora/fauna mix for at least the past 125 years. The isotopic signatures were 
particularly characteristic of microalgal-derived carbon (albeit with differing contemporary compositions between sites), 
accounting for around half of the organic carbon origin. Contemporary microalgal abundance suggests this may derive 
especially from the bloom-forming diatoms Skeletonema spp., at least in the restored and regenerated mangroves. The 
only deviation to this was a peak in δ13C in the early-mid 1800s (estimated from chronology extrapolation; S4 Fig) in the 
old-forest mangrove, suggesting a temporary increase in macroalgal-derived carbon and accompanied by lower car-
bon accumulation. This occurred after a prolonged period of reduced rainfall and repeated drought events in northern 
Vietnam [56,57] – driven by the 18th century Indochina “mega-drought” and El Niño-like elevation of sea surface tem-
peratures in the tropical Pacific [58]. A return to lower sea surface temperatures and higher rainfall (and concomitant 
increase in river discharge) may have (1) promoted favourable conditions for macroalgal blooms within the Red River 
delta and (2) reduced allochthonous carbon supply due to reduced river flow.

Mangrove re-establishment increases autochthonous carbon storage

A distinct and more persistent shift in carbon dynamics was identified in the regenerated mangrove from the 1960s – 
characterised by an increase in the amount of carbon stored and a shift in where that carbon came from (evidenced from 
both the C/N and stable isotope ratios). This indicates an increase in carbon burial efficiency due to increased recalcitrant 
carbon supply [59], perhaps due to (1) an increase in autochthonous carbon supply (mangroves) and (2) an increase in 
mineral-associated organic matter (inland POM). Post-1960 carbon standing stock in the restored mangrove area was 
subsequently higher than the other mangrove regions, suggesting a temporarily positive effect on carbon storage. How-
ever, the elevated carbon trend has been lost since the 1990s – coinciding with the operation of the Hoa Binh dam and 
a 61% decline in sediment flux towards the Red River delta [60]. By 2021, upstream damming had contributed to a 91% 
reduction in annual sediment load [61]. Although re-establishment of mangroves seems to result in comparable carbon 
storage [11], this can take 10 + years [62]. However, our results show that decadal persistence of mangrove carbon can be 
highly affected by aquatic developments hundreds of kilometres away (e.g., upstream river damming), placing the carbon 
benefits of re-establishment efforts at risk. The increased proportion of mangrove-derived carbon suggests that the eco-
logical dynamics of this area may have been affected, creating a ‘closed loop’ of carbon recycling, with more plant-derived 
carbon and less external carbon input.
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Conclusions: Implications for habitat restoration and blue carbon policy

Spatiotemporal variability in carbon storage in blue carbon ecosystems, and the drivers of those changes are important 
considerations for current and future blue carbon sustainability policies. In particular, our results indicate that land-use 
change appears to have significant effects on sedimentation rates, the amount of carbon to be stored, and the source 
of that carbon. Importantly, these effects appear to be persistent to at least decadal timescales. Quantification of the 
complete carbon budget would place this carbon storage in a wider biogeochemical context – although the impact from 
methane emissions appears to be less important in mangrove forests than previously thought [8]. Most notably though 
is the potential transiency of carbon storage benefits from mangrove restoration because of external drivers. This has 
important implications for restoration strategies and blue carbon sustainability policy. Firstly, our results support the con-
tinued conservation of old-forest mangrove as a carbon store that is stable and persistent over decadal-centennial scales, 
accompanied by a myriad of other co-benefits. Secondly, a closure of the carbon recycling loop to external inputs during 
mangrove restoration creates an opportunity for well-defined conservation objectives that work with local to cross-border 
development. However, this apparent change in ecological habitat function also raises questions about the scope of asso-
ciated co-benefits. In the context of blue carbon sustainability policy, this should be taken into account when, for example, 
valuing blue carbon credits for areas of new mangrove restoration vs preservation of old-forest mangrove. Consideration 
alongside other blue carbon habitats, and also taking into account their long-term spatiotemporal dynamics, will provide 
a holistic coastal-wide opportunity for widescale implementation of blue carbon policy with environmental, societal and 
economic benefits.
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