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Background: Research on temperature and respiratory hospitalizations is lacking in the southeastern U.S. where cold
weather is relatively rare. This retrospective study examined the association between cold waves and pneumonia
and influenza (P&I) emergency department (ED) visits and hospitalizations in three metro-Atlanta hospitals.
Methods:We used a case-crossover design, restricting data to the cooler seasons of 2009–2019, to determine whether
cold waves influenced ED visits and hospitalizations. This analysis considered effects by race/ethnicity, age, sex, and
severity of comorbidities.We used generalized additivemodels and distributed lag non-linearmodels to examine these
relationships over a 21-day lag period.
Results: The odds of a P&I ED visit approximately one week after a cold wave were increased by as much as 11%, and
odds of an ED visit resulting in hospitalization increased by 8%. For ED visits on days with minimum temperatures
>20 °C, there was an increase of 10–15% in relative risk (RR) for short lags (0–2 days), and a slight decrease in RR
(0–5%) one week later. For minimum temperatures <0 °C, RR decreased at short lags (5–10%) before increasing
(1–5%) one week later. Hospital admissions exhibited a similar, but muted, pattern.
Conclusion: Unusually cold weather influenced P&I ED visits and admissions in this population.
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Table 1
Patient frequencies for emergency department visits and inpatient admissions by
age, race, and sex.

Emergency Department Inpatient

Age
<65 16,258 (62.5%) 10,971 (54.3%)
>65 9759 (37.5%) 9244 (45.7%)

Race
White 6802 (26.1%) 7002 (34.6%)
Non-White 18,368 (70.6%) 13,134 (65.0%)

Sex
Female 13,484 (51.8%) 10,168 (50.3%)
Male 11,706 (45.0%) 10,021 (49.6%)

Severe Charlson Comorbidity Index 10,435 (40%) 12,372 (61.2%)
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1. Background

With human-induced climate change influencing global weather pat-
terns,(IPCC, 2021) it is important to understand how changes in the envi-
ronment may affect human health and to develop methods for adaptation
to these changes. Weather has been shown to affect human health in a va-
riety of ways, including through changes to the spread of infectious patho-
gens that impact the transmission of diseases.(Butler, 2012; Daily and
Ehrlich, 1996; Flahault et al., 2016; Myers and Patz, 2009) Respiratory dis-
eases, especially influenza and pneumonia, are a significant source of global
mortality and morbidity,(Global Health Estimates, 2019; GBD 2017
Influenza Collaborators, 2019) and their incidence and transmission appear
to be affected by environmental conditions.(Mirsaeidi et al., 2016; Morin
et al., 2018; Pica and Bouvier, 2012) A variety of meteorological factors
have been shown to correlate with influenza and pneumonia incidence,
hospitalization, and mortality, with cold, dry air tending to precede in-
creases in influenza-related incidence.(Chen et al., 2019; Davis and
Enfield, 2018; Davis et al., 2016; Jaakkola et al., 2014; Caini et al., 2018;
Liu et al., 2019; Murtas and Russo, 2019; Spiga et al., 2016; Zheng et al.,
2021) Research conducted in the laboratory setting has found that influ-
enza viruses survive better in environments with low temperatures and hu-
midity.(Lowen et al., 2007; Davidson et al., 2010) It is also hypothesized
that the human immune system may be impacted by weather conditions,
increasing susceptibility in cold, dry conditions.(Ference et al., 2020) As cli-
mate change influences weather variability, it is necessary to understand
how these fluctuations may impact the spread of respiratory diseases.

Research over the past decade that has elucidated linkages between
weather and influenza has emphasized influenza mortality in midlatitude
cities, where influenza severity is thought to drive the seasonality mortality
curve and its cold-season peaks.(Gasparrini et al., 2015; Reichert et al.,
2004; Davis et al., 2004) In an effort to provide a more complete under-
standing, other studies have examined these linkages in tropical and sub-
tropical locations, where cold, dry air is virtually nonexistent.(Davis et al.,
2016; Chan et al., 2009; Chong et al., 2015; Chong et al., 2020; Guo
et al., 2019; Monamele et al., 2017; Soebiyanto et al., 2015; Tamerius
et al., 2013) Comparatively little research has examinedweather and emer-
gency department visits and hospitalizations from influenza and other re-
spiratory diseases, particularly in the humid and temperate climate of the
southeastern United States. This region is interesting because cold, dry air
incursions are uncommon but not unprecedented, and respiratory disease
burden is nonetheless seasonal. To examine whether temperature plays a
role in the transmission of respiratory illnesses in an area of the U.S. with
less seasonally variable weather, this retrospective studymodelled the asso-
ciation between cold waves and emergency department visits and inpatient
admissions for pneumonia and influenza illnesses in a healthcare system in
metropolitan Atlanta.

2. Methods

Data on emergency department (ED) visits and inpatient (IP) admis-
sions for pneumonia and influenza (P&I) from 2009 to 2019 were collected
from the data warehouse at Emory Healthcare. Since the data were aggre-
gated and deidentified, the Emory University Institutional Review Board
did not require approval for this project. Three hospitals in the Emory
Healthcare system had IP data available for this period, and two had ED
data. The data collected included demographics, date of admission, Interna-
tional Classification of Disease, Ninth Revision (ICD-9) and Tenth Revision
(ICD-10) codes for admission, and Charlson Comorbidity Index scores.
(Charlson et al., 1987) Patients with ED visits and IP admissions with pri-
mary cases of pneumonia and influenza upon admission (ICD-9 codes
483–488; ICD-10 codes B25.0, B44.0, and J09-J18) were included together
in this analysis. Pneumonia and influenza are often combined in analyses
because their symptomology and treatment are similar, influenza diagnos-
tic testing is not always done, and mortality from influenza is coded as
pneumonia.(Noymer, 2008) Only those patients who lived in the 11
counties that the Atlanta Regional Commission outline as metro-Atlanta
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(Atlanta Regional Commission, n.d.) were included in analysis, based on
the zip code listed in their admission record.

The demographic data included the age, sex, race, and ethnicity of the
patients (Table 1). This analysis only included patients 18 years and
older. The patients in these hospitals were approximately 30% white and
70% non-white. Though most of the non-white patients identified as
“African American or Black,” there were a relatively small number of pa-
tients in each of the non-white race and ethnicity categories. Therefore,
the race variable in this study was dichotomous: non-white and white.
These two categories were determined from self-reported hospital-
collected race and ethnicity information. The former included patients
who selected “African American or Black,” “American Indian or Alaskan
Native,” “Asian,” “Hispanic or Latino,” “Multiple,” or “Native Hawaiian
or Other Pacific Islander.” The latter included those who selected “Cauca-
sian or White.” Those patients coded in the data as “Not Recorded,” “Pa-
tient Declines,” or “Unknown, Unavailable or Unreported” accounted for
less than 6% of total encounters and were not included in the subgroup
analysis of race and ethnicity.

The Charlson Comorbidity Index (CCI) is used to predict a patient's risk
of deathwithin one year of hospitalization for patients with specific comor-
bid conditions.(Charlson et al., 1987) This classification was chosen be-
cause it is the method the Emory Healthcare system uses to assess the risk
of mortality in patients. The Index is categorized into three grades: mild,
moderate, or severe. An individual with a score of 3 (or severe) was in
the high-risk group for this study. Details on the calculation of the CCI are
given in the supplementary material.

Atlanta is in the southeastern United States and has a humid subtropical
climate according to the Köppen climate classification, with warm, humid
summers and mild winters. Meteorological data from 2009 to 2019 were
collected from the weather station at the Atlanta Hartsfield Jackson Inter-
national Airport. The data included a variety of meteorological variables
with surface air temperature and humidity sampled four times per day
(0100, 0700, 1300, and 1900 Local Standard Time) for our analysis and
all other variables measured daily.

Air pollution data, which included daily average particulate matter
(PM2.5) and ozone, were collected from Environmental Protection Agency
Air Data website (https://www.epa.gov/outdoor-air-quality-data). All the
sites located within the Atlanta-Sandy Springs-Roswell (GA Metropolitan
Statistical Area, CBSA 12060) were mapped using R leaflet package (R
4.0.3), as shown in Fig. 1 below. Based on the map, the sites within Inter-
state Highway Circle 285 (I-285) were selected and a daily averagewas cre-
ated across sites for each day. On the days when data were missing from all
the sites within I-285, the area of the sites was broadened outside I-285
until data were found. The total ED visits and IP admissions for each day
were merged with the weather and air pollution variables.

2.1. Statistical analysis

2.1.1. Case-crossover
We first conducted a case-crossover analysis to determine whether ED

visits and IP admissions were elevated during, and immediately following,

https://www.epa.gov/outdoor-air-quality-data


Fig. 1. Sites Measuring a) PM2.5 and b) O3 within Atlanta-Sandy Springs-Roswell.
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cold waves (prolonged cold periods) as compared to control periods when
no cold waves occurred. Cold days were defined as those days in which
temperature was at least one standard deviation below the 30-year mean
(1981–2010) for that day. Cold waves were defined as a minimum of
three cold days, and a cold wave was terminated by two consecutive days
that did not exceed the cold threshold.(Davis and Novicoff, 2018) These
analyses were completed for the cool portion of the year only (October–
April). After exploring different weather parameters and definitions of
cold waves in this analysis, we chose minimum temperature to define
cold waves, but the results were similar when defined using mean temper-
ature (as shown in the Supplementary Material).

We examined the impact of cold waves on ED visits and IP admissions
using a time-stratified case-crossover analysis, inwhich time periods imme-
diately prior to the onset of the cold wave serve as controls. This approach
alleviates the need to control for time-varying factors, such as trends and
seasonality, by assuming that any temporal factors unrelated to weather
3

would only vary at longer time scales.(Fuhrmann et al., 2016; Semenza
and Ebi, 2019; Basu et al., 2012) Thus, each cold wave is associated with
a control periodwithin the same 28-day range, and that control period can-
not also include a different cold wave. We also matched the data on day of
the week. The sensitivity analysis for these factors is shown in the Supple-
mentary Material. Odds ratios were calculated using conditional logistic re-
gression via the “casecross” function in the “season” package in R 4.0.5 (R
Core Team, 2021). Because there is often a substantial time lag in the cold
season between a putative impactful weather event and any subsequent
morbidity, these analyses were extended out through a lag of 21 days. We
also conducted this analysis for different groups organized by race, sex,
age (<65 years, ≥65 years), and co-morbidity index by re-running the
model on each subset across the 21-day lag. After obtaining the odds ratios
for each subgroup, we compared them using a test of interaction at each lag
to determine whether there was a significant difference between sub-
groups.(Altman and Bland, 2003)

Image of Fig. 1


Table 2
Odds ratios and 95% confidence intervals for the case crossover analysis over a lag
of 21 days controlling for day of theweek. The odds ratio indicates the odds of an ED
visit or IP admission during a cold wave (lag day 0), or at a lag from the first day of
the cold wave (lag days 1–21), as compared to the odds of a visit or admission dur-
ing the control period.

Lag Day OR ED Visits
[Confidence Interval]

OR IP Admissions
[Confidence Interval]

0 0.92 [0.86,0.98]a 0.91 [0.85, 0.98]
1 0.93 [0.87,0.99] 0.95 [0.89, 1.03]
2 0.92 [0.87, 0.98] 0.99 [0.92, 1.06]
3 0.97 [0.91, 1.03] 1.03 [0.96, 1.11]
4 1.01 [0.95, 1.08] 1.00 [0.94, 1.08]
5 1.05 [0.99, 1.12] 1.03 [0.96, 1.04]
6 1.08 [1.02, 1.15] 1.03 [0.96, 1.10]
7 1.11 [1.04, 1.18] 1.08 [1.00, 1.15]
8 1.10 [1.04, 1.17] 1.07 [1.00, 1.15]
9 1.06 [1.00, 1.13] 1.04 [0.97, 1.11]
10 1.08 [1.01, 1.14] 1.07 [1.00, 1.15]
11 1.04 [0.98, 1.10] 1.05 [0.98, 1.13]
12 1.05 [0.99, 1.12] 1.07 [1.00, 1.15]
13 1.08 [1.01, 1.14] 1.12 [1.04, 1.20]
14 1.06 [1.00, 1.13] 1.08 [1.01, 1.16]
15 0.99 [0.93, 1.05] 1.01 [0.94, 1.09]
16 1.01 [0.95, 1.08] 1.04 [0.97, 1.12]
17 1.00 [0.94, 1.06] 1.02 [0.95, 1.10]
18 1.00 [0.94, 1.07] 1.04 [0.97, 1.12]
19 0.96 [0.90, 1.02] 1.01 [0.94, 1.09]
20 0.94 [0.88, 1.00] 1.00 [0.93, 1.08]
21 0.91 [0.85, 0.97] 1.00 [0.93, 1.07]

(a) Bolded ORs indicate significance at the 95% confidence level.
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2.1.2. GAM and DLNM analyses
We further explored the relationship between temperature and ED visits

and IP admissions using generalized additive models (GAMs) and distrib-
uted lag non-linear models (DLNMs). We developed GAMs to estimate the
relative risk of ED visits and IP admissions related to weather. In the GAM
framework, smoothing cubic splines are fit to potential predictor variables
to model the temporal behavior in these variables. Other factors are in-
cluded as categorical variables in a fashion similar to dummy variables in
multiple least-squares regression.(Gasparrini, 2011; Guo et al., 2016; Lee
et al., 2018) Our GAMs examined the total effect over a 21-day lag (day
of observation and subsequent three weeks). Specifically, our GAMs were
structured as follows:

Yt ¼ aþ bTt,l þ S trend, 11∗4ð Þ þ cDOWt þ dHolidayt þ eTPMt,l þ fOZt,l (1)

where “Y” is the daily predicted count (ED or IP), “t” is time (daily time
step), “l” is the lag day, “T” is minimum temperature, “S” is a natural cubic
spline with 4 degrees of freedom, “DOW” is a nominal variable for day of
week, “Holiday” is a binary variable to account for morbidity changes im-
pacted by the Thanksgiving and Christmas holidays, “TPM” is log-
transformed PM2.5, and “OZ” is ozone, “a” is the y-intercept, and “b”–”f”
are fitted coefficient vectors. A quasi-Poisson link function accounts for po-
tential over-dispersion in themorbidity variables. Thefinal model shown in
Eq. 1 was selected through systematic testing of a suite of different predic-
tors and varying degrees of freedom, comparing the adjusted r-squared
values, the generalized coefficient of variation, and the lag one autocorrela-
tion (see Supplementary Materials). We used four equally spaced knots to
fit a natural cubic spline to the temperature and trend terms.

To determine the likelihood of elevated or reducedmorbidity at specific
lags, a distributed lag non-linear model (DLNM) was employed. The DLNM
provides estimates of the relative risk as a function of predictor (minimum
temperature) and lag.(Gasparrini, 2011; Guo et al., 2016; Lee et al., 2018)
Since in most cases there is some time lag between a weather event and
the potential health outcome, our models were run from day zero (no lag)
through day 21 to account for possible delayed effects in IP admissions
and ED visits. The results shown below are the non-cumulative effects, or
the relative risk on each lag day.

Output of both the GAM and DLNM is the relative risk (RR) of morbid-
ity. The RR was centered on the value corresponding to the minimum risk.
These models were run on the entire dataset, January–December, to assess
the impacts of temperature throughout the annual cycle. The cold season,
October–April, was compared to the warm season, May–September, in a
separate analysis to assess whether there were differences between the
two seasons, but the warm season results are not included herein as there
was not a clear influence of cold weather on warm season respiratory
hospitalizations.

3. Results

Over the 11-year analysis period, there were a total of 26,017 ED visits
and 20,215 IP admissions for influenza and pneumonia. ED visits were
highest in the months of December through February, with a daily average
of 8.6 visits (Supplementary Materials Fig. S1). ED visits were lowest in the
months of June through September, with a daily average of 4.7 visits. The
highest number of daily ED visits throughout the analysis period was 42
in December of 2019. Average IP admissions followed a similar pattern,
with a daily average of 6.1 admissions in December through February,
and a daily average of 4.1 admissions in June through September. Themax-
imum number of admissions throughout the analysis period was 25 on De-
cember 22, 2010. The patient characteristics are outlined in Table 1.

We identified 43 cold waves, an average of 3.9 per year, based on
a− 4.9 °C departure (1 standard deviation) from the 30-year average min-
imum temperature for each day. 192 days out of a total of 2333 cold season
days in the data set (8%) occurred within a cold wave. The longest cold
wave was 13 days and occurred in January 2010. The minimum tempera-
ture throughout the analysis period was −14.4 °C on January 7, 2014. In
4

2010, there were ten cold waves, the highest annual frequency throughout
the 11-year period. In both 2012 and 2016, there was only one cold wave.

The odds of an ED visit during a cold wave were decreased by 7–8% as
compared to the odds during the control periods (Table 2). However, the
odds of an ED visit approximately one week after the cold wave were in-
creased by as much as 11% compared to the odds during the control pe-
riods. The odds of IP admission did not differ at the start of a cold wave
but were increased by 8% about a week after the cold wave and as much
as 12% two weeks after cold-wave onset.

Cold waves appeared to differentially impact ED visits across demo-
graphic groups and comorbidity status (Figure 2). At the start of a cold
wave, ED visits decreased for the non-white, female, and male groups, as
well as for those with a high comorbidity index (an index of 3 for this anal-
ysis). One week after a cold wave, the odds of an ED visit increased for the
non-white and male groups, and for those with a high comorbidity index
score. While we found significant effects for certain demographic groups
at specific lags, using a test of interaction, we found that there were not sta-
tistically significant differences between the groups (Supplemental Mate-
rial).

IP admissions were also differentially impacted across groups
(Figure 3). At the beginning of a cold wave, IP admissions were decreased
for the non-white, female, and high comorbidity index groups. At a one-
week lag from a cold wave, the odds of an IP admission increased for the
male, white, and high comorbidity index groups. IP admissions were also
more likely to increase around 12 days after the start of cold wave for the
non-white group. Similar to the pattern with ED visits, we found that
there were not statistically significant differences between the demo-
graphic groups (Supplemental Material).

Next, we examine the results of the GAM and DLNM analyses. Given
that cold waves appear to have influenced ED visits and IP admissions,
we ran GAMs to examine the relationship between minimum temperature
and hospital data. We also included the daily-average PM2.5 and ozone con-
centrations in the model to account for potential effects of these variables
on ED visits and hospital admissions for respiratory illness (Eq. 1). The
GAM models showed that minimum temperature appeared to influence
RR for ED visits and IP admission. We therefore ran DLNMs controlling
for air pollution, day of week, and holiday effects, over a lag period of



Fig. 2.Odds ratios (OR) and 95% confidence intervals for emergency department visits for ED visits and IP admissions, and by various subgroups across a 21-day lag period.
Statistically significant OR are represented by shaded squares and ORs that are not statistically significant are represented by open circles.
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21 days to assess the overall effect of minimum temperature on RR and to
examine the effect throughout the lag. The RR for ED visits increases on
days with higher minimum temperatures, peaking around 21 °C, a temper-
ature at which the risk is about 30% higher than when the minimum tem-
perature is −10 °C (Figure 4). For IP admissions, the effect of weather
exhibits a peak around−5 °C, when the risk is elevated by about 30% rel-
ative to the minimum temperature.

For ED visits, at high minimum temperatures (around 15–25 °C), there
was an increase of approximately 10–15% in relative risk (RR) for short
lags and a slight decrease in RR (0–5%) around one week later (Figure 5).
For low minimum temperatures (less than −10 °C), there was a decrease
in RR of ED visits at short lags by approximately 5–10%. However, the
RR increased 1–5% starting about one week after the cold period onset
and continuing through about 14 days at which point, the RR decreases
again through 21 days. IP admissions exhibited a similar, though slightly
muted, pattern, with admissions increasing at a shorter lag period and de-
creasing again around 8 days after the cold event.

To better understand these effects by season, we repeated this analysis
using a similar model for the warm and cold seasons separately and found
5

that the overall relationship shown in Figure 4 is similar to that of the
cold season only (not shown). The warm season pattern was dominated
by high RR associated with a few unusually cold days in May that were re-
sponsible for the increase in ED visits and hospitalizations at short lags. This
analysis suggests that the environmental effects on ED visits and IP admis-
sions is being driven largely by the cold season effects.

4. Discussion

Cold weather appears to have influenced ED visits and IP admissions for
P&I illness from 2009 to 2019 within the Emory Healthcare hospitals in-
cluded in this analysis. Generally, at the beginning of cold waves, ED visits
and IP admissions decrease. However, around one week after a cold wave,
visits and admissions increase. This could be an effect of individuals decid-
ing not to come to the hospital during the coldest days, resulting in an in-
crease following the cold wave. This trend aligns with other research
showing the lagged effect of cold weather on respiratory diseases, which
is more likely related to the latency and incubation periods of respiratory
viruses.(Spiga et al., 2016; Zheng et al., 2021; Dai et al., 2018; Zhen

Image of Fig. 2


Fig. 3.Odds ratios (OR) and 95% confidence intervals for in-patient admissions by various subgroups across a 21-day lag period. Statistically significant OR are represented
by open circles and ORs that are not statistically significant are represented by shaded circles.
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et al., 2013) If the likelihood of viral transmission is higher during cold
waves, we would expect to see an increase in incidence at a lag aligning
with the typical incubation period of respiratory viruses of 1–6 days,
(Lessler et al., 2009; CDC, 2018)with possible additional lag days for severe
symptoms to appear requiring an ED visit or hospital admission. Given that
the increase in ED visits and IP admissions occurred around a week follow-
ing a coldwave, the results of this analysis alignwith the transmission time-
line for respiratory viruses.
Fig. 4. The overall effect of minimum temperature on the relative risk of ED visits (left
centered on the temperature corresponding to the minimum risk, and 95% confiden
distribution of observations.

6

Winters inAtlanta are generallywarm, and coldwaves are relatively un-
common. What is considered a cold wave in Atlanta may be a warm winter
day in another location. This begs the question of whether the temperature
itself, or the rapid change in temperature, is driving the increase in ED visits
and IP admissions. Studies in other subtropical climates have found that un-
usually cold, dry periods tend to precede increased influenza incidence,
hospitalizations, and mortality.(Davis et al., 2016; Liu et al., 2019; Chan
et al., 2009; Guo et al., 2019; Davis and Novicoff, 2018) In a study
) and IP admissions (right) at Emory hospital averaged over a 21-day lag. Plots are
ce intervals are shown by gray shading. Tick marks along the x-axis indicate the

Image of Fig. 3
Image of Fig. 4


Fig. 5. Heat maps showing the relative risk of a) ED visits and b) IP admissions at various minimum temperatures as a function of lag. Note that the color scale key differs
between plots.
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conducted in a similar climate in Texas, the risk of respiratory emergency
hospitalizations increased below a certain temperature threshold.(Chen
et al., 2019) Research in temperate climates has similarly found that low
temperature and humidity is associatedwith increased influenza incidence,
often at a lag of around a week.(Caini et al., 2018; Spiga et al., 2016; Park
et al., 2020) Although the impact of humidity on respiratory illness may dif-
fer between climate zones, low temperatures appear to increase respiratory
transmission across climate zones.(Chong et al., 2020) Some research has
found a U-shaped relationship between temperature and respiratory illness
in subtropical and tropical climates, with peaks at the lowest and highest
temperatures.(Chan et al., 2009; Guo et al., 2019; Dai et al., 2018; Wang
et al., 2017) Similar to the present analysis, peaks at the lowest tempera-
tures appear at a lag, while peaks at the highest temperatures appear at
day 0.(Dai et al., 2018) The impact of temperature on respiratory illness
has even been found in subarctic regions, with the decrease in temperature
driving the increase in illness rather than the low temperature and humid-
ity.(Jaakkola et al., 2014) These studies point to the possibility that rapid
decreases in temperature, regardless of what those temperatures are, may
be more impactful than low temperature alone.

The impact of cold weather on ED visits and IP admissions appears to
vary between different populations based on race and sex, though the dif-
ferences between the groups were not significant. Males experienced an in-
creased risk of an ED visit or IP admission approximately one week
following a cold wave. One study conducted on the impact of meteorolog-
ical changes on respiratory illness in people over the age of 65 similarly
found a differential effect by gender, with illness increasing for males and
not females.(Zhen et al., 2013) A study conducted on the association be-
tween low temperature and humidity on influenza in children found equiv-
alent effects on males and females, perhaps indicating a differential effect
by age.(Guo et al., 2019) There does not seem to be a clear hypothesis for
why these effects may differ based on sex. The impact of a cold wave on
white and non-white individuals differed between the ED and IP admis-
sions, with the non-white group having a higher likelihood of an ED visit
one week after a cold wave, and the white group having a higher likelihood
of an IP admission one week after a cold wave. The odds of IP admission for
the non-white group did also increase between 12 and 14 days after a cold
wave. Perhaps this trend is related to differences in utilization of the
healthcare system. This analysis did not find an increased risk of ED visits
or IP admissions for individuals over age 65, differing from some other re-
search in this area.(Chen et al., 2019; Li et al., 2018) Though, research on
other environmental factors, such as diurnal temperature range, have sim-
ilarly found no difference in hospitalizations between young and elderly in-
dividuals.(Phosri et al., 2020)

A strength of this analysis is the varied statistical modelling methods
used to examine the data, which allows us to better conceptualize the im-
pact of cold waves on respiratory admissions. The analysis also included
11 years of data, which helped to reduce biases that might result from sam-
pling a population during an unrepresentative time period. Although
7

11 years of data were included, only three hospitals had data for the entire
time period, decreasing our ability to generalize our results to other geo-
graphic contexts and demographic groups. We did compare the demo-
graphic data for the included hospitals and for metro Atlanta over this
period and found that the hospitals are representative of the larger popula-
tion in terms of sex, race, and ethnicity, though they may be under repre-
sentative of the Hispanic population in the metro area. There are also
many other factors that play a role in whether an individual requires an
ED visit or hospital admission for a respiratory illness, including vaccina-
tion status, school schedules, and the indoor environment. These other fac-
tors were outside the scope of the current analysis, and therefore could not
be accounted for in our models.

This analysis provides further evidence that cold weather, specifically
cold waves, impact pneumonia and influenza hospitalizations and ED visits
in a temperate climate that does not typically experience large fluctuations
in temperature. This knowledge will allow our healthcare system to better
prepare for the impact that cold waves may have on staffing needs, by in-
creasing staffing during the cold season when cold waves are predicted.
The ability to flexibly adjust staffing capacity to predictable seasonal and
environmental factors should allow hospitals to better treat patients with
respiratory issues, a consideration that is especially important when those
affected individuals may experience comorbidities that make immediate
care evenmore important. Because coldwaves appear to impact respiratory
illnesses in this population, future research will focus on the impact of fluc-
tuations in temperature on a small timescale, i.e., daily fluctuations, to de-
termine whether there is an impact of large fluctuations in temperature on
respiratory admissions. Future studies may also expand beyond the three
hospitals included in this analysis to gain a better understanding of the en-
vironmental impacts on respiratory visits and admissions in other popula-
tions in Atlanta.
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