
Computers and Chemical Engineering 186 (2024) 108681

A
0

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/cace

A black-box adversarial attack on demand side management
Eike Cramer a,b,∗, Ji Gao c,b

a Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany
b Institute for Energy and Climate Research – Energy Systems Engineering (IEK-10), 52428 Jülich, Forschungszentrum Jülich, Germany
c School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA

A R T I C L E I N F O

Dataset link: https://transparency.entsoe.eu/

Keywords:
Chemical production
Energy systems
Demand side management
Adversarial attacks
Machine learning

A B S T R A C T

Demand side management (DSM) contributes to the industry’s transition to renewables by shifting electricity
consumption in time while maintaining feasible operations. Machine learning is promising for DSM with
reasonable computation times and electricity price forecasting (EPF), which is paramount to obtaining the
necessary data. Increased usage of machine learning makes production processes susceptible to so-called
adversarial attacks. This work proposes a black-box attack on DSM and EPF based on an adversarial surrogate
model that intercepts and modifies the data flow of load forecasts and forces the DSM to result in financial
losses. Notably, adversaries can design the data modifications without knowledge of the EPF model or the DSM
optimization model. The results show how barely noticeable modifications of the input data lead to significant
deterioration of the decisions by the optimizer. The results implicate a significant threat, as attackers can
design and implement powerful attacks without infiltrating secure company networks.
1. Introduction

Digitalization and Industry 4.0 initiatives have introduced machine
learning and data science into chemical production (Lee et al., 2018;
Schweidtmann et al., 2021). The increased usage of machine learning
and digitalized decision-making in chemical engineering and produc-
tion opens up new possibilities for external attackers to intervene
and manipulate process operations or alternate process designs. In
particular, increased usage of machine learning can lead to errors in
human-AI interaction (Wen et al., 2023) but also opens the door to
adversarial attacks (Koay et al., 2023). Adversarial attacks aim to dete-
riorate the output of machine learning models to force wrong, inferior,
or even dangerous decisions (Xu et al., 2020). Adversarial attacks can
designed either using white-box or black-box approaches, i.e., with or
without knowledge about the details of the machine learning models
under attack. Such adversarial attacks pose a threat to production
companies with high levels of automation and machine learning-based
decision-making (Koay et al., 2023). Most decision-making in chemical
engineering and production is based on data. For instance, demand side
management (DSM) shifts production in time to gain financial advan-
tages by trading on the auction-based electricity markets (Zhang and
Grossmann, 2016). To make profitable decisions, schedulers and their
scheduling optimization problems need data to base their decisions on.
If this data, e.g., electricity price forecasts, is compromised in a targeted
adversarial manner, the potential ramifications of using this data can
be catastrophic.

∗ Corresponding author at: Process Systems Engineering (AVT.SVT), RWTH Aachen University, 52074 Aachen, Germany.
E-mail address: eike.cramer@alumni.tu-berlin.de (E. Cramer).

The field of adversarial attacks originated in computer science,
but the increased usage of machine learning has led to interest in
engineering as well. In particular, there are a number of works dis-
cussing adversarial attacks on cyber–physical systems, fault detection
systems, control, and electrical systems. These works include Gomez
et al. (2022), who discuss the robustness of anomaly detection models
in industrial systems. Zhuo et al. (2023) discuss attack and defense
strategies in fault detection and classification systems for the Tennessee
Eastman process. They conclude that black-box attacks are as potent as
white-box attacks when applied to attack fault detection devices. For
control applications, Fazlyab et al. (2022) propose a modified training
algorithm for improved model and controller robustness towards ad-
versarial attacks. They propose a semidefinite program for the safety
verification of neural networks. Since the work by Chen et al. (2019),
there are a number of examples of adversarial attacks in electrical
engineering. These examples include inducing grid failures in smart
grids (Bor et al., 2019; Cui et al., 2020) and attacks on reinforcement
learning for scheduling problems (Zeng et al., 2022; Hao and Tao,
2022). Other use cases like load monitoring (Wang and Srikantha,
2021), solar power forecasts (Tang et al., 2021), and wind power fore-
casts (Heinrich et al., 2023) have been investigated as well. Heinrich
et al. (2023) discuss untargeted and semi-targeted attacks for wind
power forecasts using different neural network architectures. They find
LSTM models to be comparably robust compared to convolutional
vailable online 12 April 2024
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neural networks that proved to be very vulnerable. Heinrich et al.
(2023) further observe that defensive strategies such as adversarial
training (Bai et al., 2021) improve the robustness of neural network-
based forecasts but only to a certain extent. In general, adversarial
training, i.e., including adversarial data in the training dataset (Bai
et al., 2021) appears to be the most common approach to defend against
adversarial attacks. However, there are some exceptions, e.g., Maiti
et al. (2023) that implement invariant checkers, i.e., Boolean opera-
tors that only switch in case of unusual actions, for the defense of
cyber–physical systems.

The field of process systems engineering (PSE) has seen increased
usage of machine learning (Schweidtmann et al., 2021), but adversarial
machine learning and the threat to chemical processes are largely miss-
ing from the PSE literature. Some exceptions that allude to adversarial
machine learning are Tan and Wu (2024), who enforce a Lipschitz
constraint to their neural networks to promote robustness, and Addis
et al. (2023), who use adversarial dataset augmentation to diversify
their training data to better describe the input–output relation of a
membrane.

The field of EPF is well established and receives contributions from
economics (Weron, 2014; Weron and Ziel, 2019) and engineering (Lago
et al., 2021; Cramer et al., 2023). Notably, recent advances in EPF rely
on modern machine learning methods like artificial neural networks to
find improved prediction quality (Jedrzejewski et al., 2022). Among
machine learning methods, artificial neural networks and time series
neural networks such as Long Short-Term Memory (LSTM) models serve
as the primary methods (Kapoor and Wichitaksorn, 2023; Trebbien
et al., 2023b). The majority of works on forecasting day-ahead elec-
tricity prices rely on a sequential forecasting methodology by using
autoregressive models (Lago et al., 2021; Bozlak and Yaşar, 2024).
Notably, this approach contrasts with the actual process of determin-
ing prices in day-ahead bidding markets, where all 24 hourly price
intervals are established simultaneously (European Power Exchange,
2021). Multivariate forecasting aligns with the underlying structure of
the day-ahead market. Ziel and Weron (2018) compare univariate and
multivariate forecasting, noting enhanced performance for multivariate
forecasting. Ehsani et al. (2024) use neural network-based multivari-
ate forecasting in a sliding window approach to predict electricity
prices in Ontario. In our previous work Cramer et al. (2023), we used
multivariate probabilistic forecasting to predict the distributions of
intraday electricity prices. Other works in EPF investigate the impact of
external factors on the price realizations (Wolff and Feuerriegel, 2017;
Trebbien et al., 2023a; Shen et al., 2024). Among the different works on
impact factors, Trebbien et al. (2023a) present the most rigorous study
relying on explainable artificial intelligence to obtain generalizable
conclusions.

Most works researching adversarial attacks in industrial systems
consider attacks on the lowest level of operation, e.g., in control. How-
ever, adversarial attacks can target higher-level planning and schedul-
ing as well. In this work, we investigate how adversarial attacks in-
fluence the solution scheduling problems aiming to find optimal DSM
schedules. In particular, we investigate the combined decision-making
process of electricity price forecasting (EPF) and DSM. Here, we con-
sider a case where the true decision-making process is hidden from
the attackers in a black-box attack scenario. To attack the full process,
our proposed attack intercepts the data pipeline with the residual
load forecasts and manipulates the data before entering the company
network. The manipulated data then deteriorates the decisions aiming
to induce financial losses for the company. DSM describes the process
of shifting production in time to take advantage of these variable
electricity prices (Zhang and Grossmann, 2016). Decisions on produc-
tion schedules are often made using optimization problems that aim
at cost minimization while maintaining process feasibility (Zhang and
Grossmann, 2016; Schäfer et al., 2019). Here, knowledge of electricity
prices is critical to make feasible and profitable decisions and EPF is
2

an omnipresent task to support DSM. The combined decision-making
process first predicts the day-ahead electricity prices based on day-
ahead residual load forecasts and then solves a subsequent scheduling
optimization problem to determine the trading decisions for DSM. In
our black-box case, the attacker has no information about the EPF
model or the scheduling optimization model. Instead, we sample histor-
ical combinations of the EPF input data and trading decisions and train
a simple neural network that works as an emulator of the combined
decision-making process. We call the resulting model an adversarial
surrogate model (ASM) that we then use to design adversarial attacks.

The effects of the attacks are analyzed for two optimization case
studies. The first case study is a linear grid-scale electricity storage
problem. The second case study considers a mixed-integer linear prob-
lem of a chlorine production plant (Brée et al., 2019). In our evaluation,
we benchmark the proposed black-box ASM attack against a white-
box attack, where the attacker has full knowledge of the EPF model.
Both attacks are implemented using two attack heuristics that follow
untargeted and targeted strategies, respectively. Using the untargeted
attack, we aim to push the prediction away from the true realization.
For the targeted attack, we distinguish between the white-box and
black-box attacks. in both cases, we aim to dampen, i.e., flatten, the
outputs of the models under attack to prevent the scheduling optimizer
from making informed decisions. Here, the white-box attack flattens
the EPF prediction and the black-box attack directly targets the trading
decisions, as the black-box attacker has no access to the EPF forecasts.

The results show that our adversarial attacks lead to significant
financial losses. In case of the grid-scale electricity storage, attacks
with small data modifications can turn profitable operations into a loss.
Notably, the losses induced by the black-box attack are as high as the
losses induced by the white-box attacks, i.e., the black-box attack is
as potent as the white-box benchmark. The effectiveness of the black-
box attack means that potential attackers can launch powerful attacks
without having access to the company network.

The remainder of this paper is organized as follows: Sections 2 and
3 introduce the EPF scheme and the considered DSM processes for this
work. Next, Section 4 introduces the concept of adversarial attacks and
proposes the white-box and black-box attack heuristics. In Section 5, we
show an additional evaluation, where we apply the white-box attacks
to investigate the effects on the electricity price forecasts. Section 6
analyzes the effects of white-box and black-box attacks on two DSM
case studies. Finally, Section 7 concludes this work.

2. Multi-period electricity price forecasting

The day-ahead electricity market is an auction-based market with
24-hourly trading intervals that are settled simultaneously for all 24
intervals (European Power Exchange, 2021). Thus, the machine learn-
ing perspective can view day-ahead electricity prices as 24-dimensional
data points and the vector of 24 price values can be predicted using
multi-period forecasting approaches (Ziel and Weron, 2018; Lago et al.,
2021) that output a 24-dimensional vector of day-ahead electricity
prices 𝐏DA = [𝑃DA

𝑡 ∀𝑡 ∈ [1, 2,… , 24]]𝑇 based on a set of input features
𝐱.

Trebbien et al. (2023a) investigate the feature-importance of exter-
nal input features for day-ahead price realizations and find that the
day-ahead forecasts of the residual loads, i.e., renewable electricity
production and load demands, have the most significant impact. Based
on their findings, we use day-ahead forecasts of the residual loads as
input features, i.e., the day-ahead forecasts for photovoltaic 𝐖DA

PV , wind
nshore 𝐖DA

Wind, on, wind offshore 𝐖DA
Wind, off, and load demand 𝐖DA

Load.
urthermore, the day-ahead electricity prices of the previous day 𝐏DA

prior
re included in the input features. Using a multivariate regression
odel 𝐓, the forecasting problem then reads:
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Fig. 1. Predicted day-ahead electricity prices using multi-period LASSO, fully connected, and convolutional regression models. Data for the test month of July 2019.
I
𝑊
𝛥
t
P
a
i
a
o

3

o
t
(
T

Table 1
Train and test MSE for the three multi-period
forecasting models.

Train Test

LASSO 0.42 0.41
Fully Connected 0.02 0.07
Convolutional 0.01 0.05

Multi-period forecasting schemes have proven to be effective for
ay-ahead forecasting (Ziel and Weron, 2018) and forecasting of elec-
ricity prices (Cramer et al., 2023). Furthermore, the multi-period
cheme aligns with the simultaneous realization of the day-ahead elec-
ricity prices (Lago et al., 2021; European Power Exchange, 2021). This
ork uses three different model architectures to perform the multi-
eriod EPF. The three models are a LASSO regression model (Ziel et al.,
015), i.e., a linear model with 𝑙1-penalties on the scale factors, a

fully connected neural network, and a convolutional neural network.
All models are implemented using the python-based machine learning
library TensorFlow (Abadi and Agarwal, 2015) trained on data from
anuary 2019 to December 2020. The month of September 2019 is set
side as a test set.

Table 1 lists the training and test losses for the three different
odels. The two neural networks achieve the most accurate results with

rain and test losses about an order of magnitude lower than the LASSO
odel. The test losses for the neural networks indicate low levels of

verfitting. However, the test losses still outperform the LASSO model.
Fig. 1 shows the day-ahead electricity prices in comparison to the

redicted prices from the multi-period LASSO, fully connected, and
onvolutional regression models for the test month of July 2019. All
odels recover the general trends of the day-ahead electricity prices.
he two neural networks show accurate results, including days with
igh or low price peaks. The LASSO model fails to give accurate
redictions for days with peak behavior which is resulting from the
ASSO penalty restricting the model’s output to be dominated by the
ias vector.

For more detailed information on the different models and their
raining, including 5-fold cross-validation, see Appendix A.

. Scheduling optimization problems for DSM

Many industrial processes offer a certain amount of flexibility that
llows their operation to shift to times with lower electricity prices.
SM uses mathematical modeling and optimization to find operation

chedules for industrial processes such that the costs for resources like
lectricity are minimized (Zhang and Grossmann, 2016). This Section
riefly introduces the two case studies considered in this work. The
irst case study called ‘Storage Trader’ considers the scheduling of
rid interactions of a grid-scale electricity storage. The second case
tudy investigates a Mode Switching Chlorine production based on
3

t

the work by Brée et al. (2019). Both DSM problems are implemented
using the python-based modeling library pyomo (Hart et al., 2017) and
solved using the gurobi optimization software (Gurobi Optimization,
LLC, 2023).

3.1. Storage trader

First, we consider the optimal scheduling of the charging and dis-
charging actions of grid-scale electricity storage referred to as the
‘Storage Trader’ problem. This Storage Trader problem is a linear
optimization problem that maximizes profits by solving for optimal
operation based on electricity price forecasts for the day-ahead period.
Due to the linearity of the problem, any changes to the input data,
e.g., under adversarial attacks, directly translate to changes in the
decisions by the optimizer. Thus, the Storage Trader problem allows
for an unbiased interpretation of the results.

The storage can store electricity for short periods of time such
that the operators can charge during low-price hours and discharge
during high-price hours. The storage is a grid-scale battery storage with
a storage capacity of 1.200 MWh (Colthorpe, 2021). The maximum
charging and discharging rates are 300 MW. The linear optimization
problem reads:

max
𝑊 𝑜𝑢𝑡

𝑡 ,𝑊 𝑖𝑛
𝑡

=
24
∑

𝑡=1
𝑃DA
𝑡

(

𝑊 𝑜𝑢𝑡
𝑡 −𝑊 𝑖𝑛

𝑡
)

𝛥𝑡

s.t. 𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 −
1
𝜂
𝑊 𝑜𝑢𝑡

𝑡 + 𝜂𝑊 𝑖𝑛
𝑡

0 ≤ 𝑆𝑂𝐶𝑡 ≤ 𝑆𝑂𝐶𝑚𝑎𝑥

𝑆𝑂𝐶𝑡=24 = 𝑆𝑂𝐶𝑡=0

0 ≤ 𝑊 𝑜𝑢𝑡
𝑡 ≤ 𝑊 𝑚𝑎𝑥

0 ≤ 𝑊 𝑖𝑛
𝑡 ≤ 𝑊 𝑚𝑎𝑥

(ST-DSM)

n Problem (ST-DSM), 𝑆𝑂𝐶𝑡 is the state of charge at the 𝑡th hour,
𝑖𝑛
𝑡 and 𝑊 𝑜𝑢𝑡

𝑡 are the charging and discharging rates, respectively, and
𝑡 = 1 h is the duration of one day-ahead trading interval. 𝑊 𝑚𝑎𝑥 is
he maximum rate for charging and discharging. The formulation in
roblem (ST-DSM) aims to maximize the profits achieved by buying
nd selling electricity at different points in time. The formulation
ncludes a cyclic constraint to prevent full discharging of the storage
t the end of the day. The initial and final state of charge are at 30%
f the maximum, and the efficiency 𝜂 is 90% (Colthorpe, 2021).

.2. Mode switching chlorine

The Mode Switching Chlorine case study considers the scheduling
f a chlorine production plant. The objective of the problem aims
o minimize the cost associated with chlorine production. Brée et al.
2019) proposed the model and subsequent scheduling formulations.
he plant is designed to switch between two operating modes. The
wo operating modes are operated via the cathodes used for chlorine



Computers and Chemical Engineering 186 (2024) 108681E. Cramer and J. Gao

f
o
v
l

m

Fig. 2. Mode switching chlorine production with constant chlorine demand (Brée et al.,
2019). Operative modes switch between standard cathodes (ST) and oxygen-depolarized
cathodes (OD).

oxidation. The standard cathode (ST) uses only sodium chloride and
water as educts and produces chlorine and hydrogen that can be sold as
a side product. Meanwhile, the oxygen-depolarized cathode (OD) does
not produce the hydrogen byproduct and requires additional oxygen
for the reaction but uses less electricity per kg of chlorine.

Fig. 2 shows a sketch of the mode-switching operation. The switch-
ing between modes is modeled using binary variables. Thus, the Mode
Switching Chlorine case study is a mixed-integer linear problem (MILP).
Changes to the integer decisions of an optimization problem often
indicate major changes in the operation. This makes MILP scheduling
optimization particularly sensitive to disturbances. Furthermore, MILPs
are prevalent in scheduling optimization and, thus, the Mode Switching
Chlorine problem is considered as case study under adversarial attack.
For details on the process and its implementation, the reader is referred
to the original publication by Brée et al. (2019).

4. Adversarial attacks

Adversarial machine learning describes the field of malicious mod-
ifications of machine learning models and their predictions. Preva-
lent adversarial attacks can be distinguished in poison and evasion
attacks (Demontis et al., 2019). Poison attacks aim to change the
training of machine-learning models (Jagielski et al., 2018; Şuvak et al.,
2022) and evasion attacks modify input data to fixed models to change
the outputs (Biggio et al., 2013). Evasion attacks typically use noise
patterns that are added to the input data of a machine-learning model.
For instance, the fast gradient sign method (FGSM) (Goodfellow et al.,
2015) and its extension to the basic iterative method (BIM) (Kurakin
et al., 2018) design adversarial noise using model sensitivities. Such
evasion attacks assume readily trained machine-learning models with
nonpermutable parameters. In this article, we restrict our analysis to
evasion attacks. For simplicity, we use the term adversarial attacks to
refer to evasion attacks.

In Section 4.1, we propose two heuristic attack targets and for-
mulate optimization problems to compute the adversarial data modi-
fications. Section 4.2 reviews the FGSM (Goodfellow et al., 2015) and
shows how FGSM can compute approximate solutions for the attack
design problems for the two heuristic attacks. Finally, Section 4.3
discusses the options for white-box and black-box attacks in the context
of EPF in combination with DSM optimization problems.

4.1. Heuristic attack design

Adversarial attacks can either aim to force the model output away
from the true realization or to point the prediction toward a specific
4

output. These two approaches reflect heuristic attack designs and are
called untargeted and targeted attacks, respectively. Both heuristics
assume a trained machine learning model that can be evaluated at will
and that also provides gradient information. The modifications to the
input data are achieved by adding an adversarial noise pattern to the
input data 𝐱 + 𝛥𝐱. Given a trained machine learning model 𝐓(𝐱) with
inputs 𝐱 and outputs 𝐲 = 𝐓(𝐱), the design of this adversarial noise can
be formulated as an optimization problem.

Our untargeted attack aims to push the prediction away from the
actual realization 𝐲∗. In mathematical terms, we aim to maximize a loss
unction (𝐱, 𝐲) that describes the change to the model (EPF or ASM)
utput. Meanwhile, we constrain the changes to the input data to small
alues. A typical choice of objective is the mean-squared-error (MSE)
oss (Kurakin et al., 2018):

ax
𝛥𝐱

(𝐱, 𝐲) =
𝐷
∑

𝑖=1

(

𝑦∗𝑖 − 𝐓(𝐱 + 𝛥𝐱)𝑖
)2

s.t.||𝛥𝐱||𝑝 ≤ 𝛿

(U-A)

In Problem (U-A), 𝐷 is the dimensionality of the outputs. The p-norm
|| ⋅ ||𝑝 of the adversarial noise 𝛥𝐱 is limited to a small number 𝛿 such
that the attack remains difficult to detect. For a given day, the input
features 𝐱 are constant.

Targeted attacks require a specific target. For the application of
DSM, we propose using the historical mean as the target based on
the following intuition: DSM applications utilize process flexibility to
shift production towards times with lower electricity cost (Zhang and
Grossmann, 2016). If the electricity price forecast is flat, the optimizer
is unable to find accurate production profiles, which alleviates the
advantages gained from DSM. In the black-box case, this intuition
extends to the decision by the optimizer as a flat decision profile fails
to take advantage of the variable electricity prices. In the following, we
refer to this attack heuristic as the dampen attack:

min
𝛥𝐱

(𝐱, 𝐲) =
𝐷
∑

𝑖=1

(

𝜇𝑦 − 𝐓(𝐱 + 𝛥𝐱)𝑖
)2

s.t.||𝛥𝐱||𝑝 ≤ 𝛿

(T-A)

Problem (T-A) describes the optimization problem for the dampen
attack that aims to minimize the MSE between the model output and
the historical mean 𝜇𝑦.

Both attack heuristics apply to the white-box and the black-box
cases discussed in this work. In the white-box case, the attack aims to
change the electricity price forecasts by the machine learning model 𝐓.
In the black-box case, the attack aims to change the decisions made by
the DSM optimizer via an attack on the ASM 𝐀𝐒𝐌(𝐱).

4.2. Fast gradient sign method

FGSM describes an efficient approach to compute adversarial noise
𝛥𝐱 (Goodfellow et al., 2015). Using the loss functions of Problem (U-
A) and Problem (T-A), FGSM computes the gradient, i.e., the direction
of maximum change in the output, to compute a gradient ascent step
or descent step, respectively. The gradient is normalized via the sign
function to control the intensity of the attack. With (𝐱, 𝐲) as the MSE
objective of Problem (U-A) or Problem (T-A), the formula to compute
the adversarial noise 𝛥𝐱 then reads:

𝛥𝐱 = 𝜀 ⋅ sign
(

∇𝐱(𝐱, 𝐲̂)
)

(2)

Here, 𝐱 are the model inputs, and 𝐲̂ is a target value of the outputs
𝐲. Eq. (2) describes a step towards the solutions of the optimization
problems proposed in Section 4.1. Thus, the attack rate 𝜀 is equal to
the noise limitation 𝛿 if the infinity norm is used:

||𝛥𝐱||∞ = 𝜀 ⋅ ||sign
(

∇𝐱(𝐱, 𝐲̂)
)

||∞
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= 𝛿
=1
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In regression tasks, the true realization 𝐲∗ is unknown to both the
perators and the adversaries. Thus, the untargeted attack cannot be
omputed as shown in Problem (U-A). Instead, the model output 𝐲 =
(𝐱) can be used as a proxy for the true realization. However, using

he model output yields a null gradient for the MSE loss function. Thus,
he model output is inflated with white noise 𝜖 ∼  (0, 𝜎2) to compute
n untargeted attack pattern. The formula to compute the untargeted
dversarial noise then reads:

̃ = 𝐱 + 𝜀 ⋅ sign
(

∇𝐱(𝐱,𝐓(𝐱) + 𝜖)
)

(3)

he dampen attack heuristic described in Problem (T-A) is a minimiza-
ion problem and, thus, the FSGM describes a gradient descent step:

̃ = 𝐱 − 𝜀 ⋅ sign
(

∇𝐱(𝐱, 𝜇𝐲)
)

(4)

n the following, the adversarial attacks using feature perturbations
ased on Eqs. (3) and (4) are called the untargeted and the dampen
ttack, respectively.

.3. White-box and black-box attacks on DSM

The attack heuristics proposed in Section 4.1 and the FGSM-based
ttack designs from Section 4.2 all require readily trained machine
earning models to compute gradients. The white-box case in this work
ttacks only the EPF model. Thus, the white-box scenario assumes the
PF model 𝐓(𝐱) to be known. Hence, the white-box attacks aim to
hange the electricity price forecasts such that the scheduling optimizer
s led towards suboptimal decisions. The white-box attacks discussed
n this work only consider the EPF model without considering the
eaction of the scheduling optimizer used for DSM. In real applications,
he attacker has no knowledge about the machine learning model and
ompanies publish neither internal electricity price forecasts nor DSM
ptimization models to maintain a competitive advantage. Thus, the
lack-box case starts in a position without any machine-learning model
o compute gradients and design the attacks. Instead, attackers have
o rely on black-box attack designs that typically rely on surrogate
odels to compute data perturbations. These surrogate models de-

cribe the same process and, thus, emulate the behavior of the actual
achine learning model. The attackers obtain such surrogate models

y sampling input and output data and training their own separate
achine-learning models describing the same process, i.e., the same

nput–output relation.
For the combined decision-making process of EPF and DSM the

tandard black-box case does not apply as the internal electricity price
orecasts are unknown, i.e., the output data of the EPF machine learning
odel is unattainable to the attackers. Instead, we propose to extend

he black-box case to include both EPF and DSM. Here, the attacker
nly has access to the input data to the EPF models, i.e., the residual
oad forecasts, see Section 2, and the decisions made by the DSM
cheduling optimizer, i.e., the grid interaction. The black-box surrogate
odel then is a shortcut model that maps from the residual load

orecasts directly to the trading decisions. Both of these data streams
re exchanged with external entities, which opens the possibility for
ttackers to gain access to the data and the data pipelines without
eeding to infiltrate the company boundaries. In fact, the historical
esidual load forecasts are published online, e.g., on the ENTSO-E
ransparency Platform (2022). The proposed ASM to emulate the full
ecision-making process of EPF and DSM reads:
grid = 𝐀𝐒𝐌(𝐱) (5)

n Eq. (5), 𝐀𝐒𝐌(𝐱) is the ASM and 𝐖grid is the vector of grid interac-
ions, e.g., 𝑊 𝑜𝑢𝑡

𝑡 ,𝑊 𝑖𝑛
𝑡 in the Storage Trader problem, see Problem (ST-

SM). In practice, the ASM is implemented as a simple fully connected
eural network. Note that the requirements for accuracy of the ASM
re comparatively low, as the ASM is not used for decision-making.
nstead, the ASM’s only purpose is to provide the gradient information
o compute the adversarial noise using the FGSM as described in Eq. (2).
5

Fig. 3 shows a sketch of the black-box attack heuristic proposed
n Eq. (5). The attacker intercepts the information streams for the
esidual loads and the grid interaction, i.e., the buy and sell decisions.
hen, the attacker trains the ASM on the collected data. Finally, the
rained ASM is used to design data modifications to the input features
hat enter the company boundaries using either the targeted or the
ntargeted attack heuristics proposed in Section 4.1. Note that the
roposed black-box scheme rests on the assumption that the attackers
ave access to the databases of external entities or data pipelines to
btain the historical residual load forecasts and the historical trading
ecisions. The exact action of how these data pipelines are intercepted
s beyond the scope of this study.

. Adversarial attacks on multivariate electricity price forecasting

This Section investigates the effects of adversarial attacks on day-
head EPF. We include this Section to complete the analysis of our
ttack designs. Readers only interested in the effects of the ASM-based
lack-box attack may skip ahead to the next Section.

.1. Error metrics of attacked forecasts

We apply the heuristic attack methods proposed in Section 4.1 to
he three forecasting models discussed in Section 2 for the test month
f September 2019. Both the untargeted (Eq. (3)) and the dampen
Eq. (4)) attacks are applied in the white-box format with increasing
ttack rates 𝜀 between 0 and 0.3. Fig. 4 shows the mean-squared-error
MSE) and the mean-absolute-percentage-error (MAPE) for the LASSO
egression, the fully-connected neural network, and the convolutional
eural network, respectively. Both MSE and MAPE are computed using
he unperturbed forecasts 𝐲 = 𝐓(𝐱) as the true labels and perturbed

forecasts 𝐲̃ = 𝐓(𝐱+𝛥) as the predictions, i.e., the values in Fig. 4 describe
the impact of the attacks on the forecasts independent of any existing
forecast errors. The results for the MSE in Fig. 4 show an exponential
increase of the error metrics with the attack rate for both the fully
connected and the convolutional forecasting models. The untargeted
attack leads to larger errors for the fully connected neural network
and the dampen attack leads to larger errors in the convolutional
neural network. Meanwhile, the LASSO regression model remains at
low MSE values even for high attack rates and for both attack heuristics.
The MAPE shows higher values for the convolutional neural network
compared to the fully connected neural network. The MSE places high
penalties on outliers with the square function while the MAPE considers
the absolute errors. In other words, the fully connected neural network
predicts more outliers while the absolute error induced by the attacks
is higher for the convolutional neural network. Overall, the MSE and
MAPE values are similar for the untargeted and the dampen attack.
Thus, the error metrics indicate no superior attack heuristic.

The LASSO regression has fewer parameters compared to the two
neural networks, which decreases the susceptibility to modified data.
Furthermore, the scale parameters of the LASSO model are regularized
via l1 penalties which reduces their overall impact on the forecast and
places a higher focus on the bias vector. In fact, the results in Fig. 4
indicate that the bias vector dominates the LASSO forecasts. Thus, the
LASSO regression is the least vulnerable to adversarial attacks. The fully
connected and convolutional neural networks show high susceptibility
to adversarial attacks. Table 1 shows higher loss values for the LASSO
model compared to the two neural networks. Apparently, there is a
trade-off between model accuracy and robustness toward adversarial
attacks. In summary, Fig. 4 shows that adversarial attacks can lead to

significant changes in the day-ahead electricity price forecasts.
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Fig. 3. Adversarial surrogate model (Eq. (5)) for black-box attacks on the full decision-making process.
Fig. 4. Mean-squared-error (MSE) and mean-absolute-percentage-error (MAPE) for
LASSO Regression, Fully Connected, and Convolutional regression models and for
different values of the attack rate 𝜀, respectively. The columns show the untargeted
and the dampen attack designs derived in Section 4.1. MSE and MAPE are computed
using the unperturbed prediction as the label. Metrics computed for the test month of
September 2019. Visualization using seaborn (Waskom, 2021).

5.2. Perturbation of input features

Besides causing high values in error metrics, the adversarial attack
should be difficult to detect, i.e., the changes to the input data should
be minimal and difficult to notice by the human eye. Fig. 5 shows
the input and output data for the convolutional neural network on
September 3rd, 2019 and for different attack rates using the dampen
attack heuristic.

For low attack rates of 𝜀 < 0.05, the changes to the input data
are barely noticeable visibly. For higher attack rates, the input data
becomes noisy. In particular, the nighttime hours of the solar day-ahead
forecasts show uncharacteristic fluctuations and the wind forecasts
show discrete jumps with high frequency. To make the attacks even
more difficult to detect, the solar nighttime hours can be constrained to
zero. Trebbien et al. (2023a) observe that the day-ahead wind and load
forecasts have the largest impact on the day-ahead electricity price.
Fig. 5 reflects this observation as the values for wind onshore and
offshore as well as load show the largest perturbations.

The last row in Fig. 5 shows the forecasts for the day-ahead elec-
tricity prices. There is a noticeable change in the outputs even for low
attack rates that show hardly visible perturbations to the input data.
6

For high attack rates over 0.05, the day-ahead price prediction loses its
typical structure.

In conclusion, the adversarial attack heuristics proposed in Sec-
tion 4.1 induce significant changes to the outputs of multivariate
forecasting models by using small and barely noticeable changes to the
input data. Of the three considered models, the linear LASSO regression
is the least susceptible to adversarial attacks. The vulnerability of the
two neural networks is significantly higher compared to the LASSO
regression. The results of MSE and MAPE evaluation do not indicate
either heuristic to be superior.

6. Adversarial attacks on demand side management

This Section investigates the effects of the adversarial attacks on
DSM, i.e., downstream decision-making problems. Section 6.1 investi-
gates white-box attacks with full knowledge of the EPF models, and
Section 6.2 investigates the black-box attack proposed in Section 4.3.
Finally, Section 6.3 discusses the results and draws general conclusions.

6.1. White-box attacks

For each day in the test month of September 2019, the full decision-
making processes of the Storage Trader and the Mode Switching Chlo-
rine case studies are solved for the untargeted and dampen attack
heuristic proposed in Section 4.1. First, the modified data is fed into
the forecasting model. Then the outputs are used as parameters to
solve the downstream optimization problems. In the next step, the
scheduling decisions are applied to the process and the actual profits
and actual costs are computed for the Storage Trader and the Mode
Switching Chlorine case studies, respectively. In other words, the actual
profits and costs are computed for the true realizations of the day-ahead
electricity prices.

Fig. 6 shows distribution intervals of the actual profits and the
actual costs obtained for the Storage Trader and the Mode Switching
Chlorine case studies as well as the untargeted and the dampen attack
heuristics, respectively. The distribution intervals are estimated over
the results of each day in the test month. In all cases, the attack rates
vary between 0 and 0.3 with 0.02 intervals. In all four cases shown
in Fig. 6, the adversarial attacks lead to a worsening of the respective
objectives for the forecasts by the two neural networks. Namely, the
Storage Trader returns lower profits, and the Mode Switching Chlo-
rine plant has a higher cost. The profits in the Storage Trader case
study regress significantly and even reach negative values for attack
rates over 0.2 for the dampen attack heuristic. Meanwhile, the profits
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Fig. 5. Changes to inputs and outputs of the convolutional neural network induced by the dampen attack (Eq. (3)) for different attack rates. Inputs are depicted in blue, and
outputs are depicted in red. Data shown for September 3rd, 2019. Power values in [MW] and price values in [EUR/MWh].
Fig. 6. White-box attacks: Profits [EUR] and costs [EUR] obtained in the Storage
Trader (Problem (ST-DSM)) and Mode Switching Chlorine (Brée et al., 2019) DSM
problems, respectively, for different attack rates 𝜀. The figure shows average and
distribution intervals estimated from profits in the test month of September 2019.
Visualization using seaborn (Waskom, 2021).

achieved using the LASSO forecasts do not regress with increasing
attack rates. The Mode Switching Chlorine case study shows small
increases in costs for the untargeted attack and moderate increases
in cost for the dampen attack in the case of both neural networks.
Again, there are no visible changes for the attacks on the linear LASSO
regression. Notably, the Storage Trader case study shows that the actual
profits for the linear LASSO regression without attacks are lower than
the two neural networks. The differences between the results for the
different forecasting models confirm the observations in Section 5.1,
where the LASSO forecasts do not change significantly with the at-
tacked inputs. Furthermore, this confirms the observation that there
is a trade-off between prediction accuracy and robustness towards
adversarial attacks.

Of the two attack heuristics, the dampen heuristic leads to signifi-
cantly more severe losses. For instance, the dampen attack leads to a
strong decrease in profits in the Storage Trader case study and even
negative profits for attack rates 𝜀 ≥ 0.2. Such negative profits indicate
that the optimizer decided to buy during high-price hours and sell
7

during low-price hours. As the attacks take a single gradient ascent
step, a high attack rate may lead to an overshoot of the flat profile
target and instead lead to a reversed prices profile. Meanwhile, the
untargeted attack does not achieve negative profits for the considered
attack rates. The actual cost obtained for the Mode Switching Chlorine
case study shows similar differences between the two attack heuristics,
where the dampen attack leads to a stronger increase in cost compared
to the untargeted attack heuristic. For the Mode Switching Chlorine
case study, the average losses lie within the typical range of cost values.
It appears that the integer decisions made by the optimizer do not
change significantly with the attack. Note that other MILP problems
may react differently to adversarial attacks.

As intended by the intuition, the dampen attack pushes the decisions
to a flat profile. Thus, the optimizer results in constant decisions that
contradict the actual market and its fluctuations. As a result, the losses
are comparatively high. Meanwhile, the untargeted attack heuristic
forces the predictions away from the true value. Here, the direction of
these perturbations is random due to the white noise that is added to
the true predictions (see Eq. (3)). Hence, the effects of the untargeted
attack on the scheduling decisions are difficult to estimate. Overall, the
losses induced by the untargeted attack are comparatively low.

6.2. Black-box attacks

This Section applies the black-box attack proposed in Section 4.3 to
attack the two DSM case studies. This black-box study assumes that the
attacker has access to the input features and the trading decisions made
by the DSM optimizer. For this work, we assume that the attacker has
observed the trading decisions over the years of 2019 and 2020 and has
collected both the residual load forecasts and the trading decisions over
time. Then, the ASM is trained on the recorded residual load forecasts
and the trading decisions. The trained ASM is then used to generate
adversarial noise that is subsequently added to the input features of the
actual decision-making process of forecasting and DSM optimization.
Again, September 2019 is set aside as a test set.

Fig. 7 shows the actual profits and the actual costs in the case of
the black-box attacks obtained for the Storage Trader and the Mode
Switching Chlorine case studies, respectively. The columns of Fig. 7
show the results for the untargeted and the dampen attack, respectively.

The attack rates are increased between 0 and 0.3 with equidistant steps
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Fig. 7. Black-box attacks: Profits [EUR] and costs [EUR] obtained in the Storage Trader
Problem (ST-DSM)) and Mode Switching Chlorine (Brée et al., 2019) DSM problems,
espectively, for different attack rates 𝜀. The figure shows average and distribution

intervals estimated from profits in the test month of September 2019. Visualization
using seaborn (Waskom, 2021).

of 0.02. The profits and cost shown in Fig. 7 highlight that the black-
box attack proposed in Section 4.3 can induce significant damage to the
considered scheduling problems. In particular, the black-box dampen
attack leads to similar damages as the dampen attack in the white-
box case leading to negative profits for the Storage Trader with attack
rates as small as 0.2. Meanwhile, the untargeted black-box attack leads
to comparatively small changes to profits and costs in the Storage
Trader and the Mode Switching Chlorine case studies, respectively. The
losses observed in Fig. 7 mirror the results for the white-box attack
shown in Fig. 6. Again, the dampen attack can flatten the profile of
the scheduling decisions leading to significantly higher losses compared
to the untargeted attack heuristic. The similarity between the effects
of the white-box and the black-box attacks shows that the ASM is
able to emulate the decision-making process sufficiently well to design
attacks on the real system. Please note that Zhuo et al. (2023) have
observed similar results in their study, where they found their black-
box attacks to be as potent as white-box attacks. The ASM is used to
design the adversarial noise via the FGSM algorithm in Eq. (2), where
the ASM only provides gradient information of the decision-making
process. Thus, the results for the black-box attack show that the ASM
emulates the behavior of the EPF and DSM decision-making process to
an extent that suffices to design potent attacks. Note that the FGSM
applies the sign function to the gradients. Thus, the results only show
that the gradients computed via the ASM yield attack designs that
are competitive with white-box attacks. However, the results do not
necessarily indicate that the ASM emulates the decision-making process
perfectly in the sense that it could be used to replace it.

6.3. Discussion

The results in Figs. 6 and 7 show that adversarial attacks can
lead to significant deterioration of the decisions made in a scheduling
optimization. Of the two attack heuristics, the dampen attack shows the
higher potential as it leads to losses in both case studies as well as both
white-box and black-box cases. It appears that targeting a dampening
of the trading decisions directly is a highly potent attack strategy that
leads to higher financial losses than the untargeted attack. The dampen
attack cancels the peaks in the price time series alleviating the option to
plan for those peaks. Considering that the error metrics in Fig. 4 show
roughly equal potency for both attack heuristics, error metrics like MSE
and MAPE do not indicate the attack’s potential to change the decisions
of a downstream optimizer.
8

In all considered attacks on the EPF model alone and on the com-
bined decision-making process, the LASSO model shows low suscepti-
bility to adversarial attacks. This robustness is a result of the regular-
ization of the scale parameters in the LASSO concept. The result is a
forecasting model that is dominated by its bias term which is unaffected
by the attacks. While this reliance on the bias term supports adversarial
robustness, the LASSO model is also the least accurate EPF model and
leads to the lowest profits or rather cost in DSM. In conclusion, the
regularization of scaling parameters appears to enhance adversarial
robustness. This is expected as large scaling factors can amplify minor
changes in the input data.

From the attacker’s perspective, the black-box ASM suffices to in-
duce flat decision profiles that do not fit the profile of the day-ahead
prices. In particular, there is no difference between losses induced
by the white-box and the black-box dampen attacks. For real-world
attack scenarios, this implies that attackers do not need to infiltrate a
company network to implement adversarial attacks. Thus, the security
and protection of the EPF model and the scheduling optimization
model are insufficient to protect a company against adversarial attacks.
Instead, the EPF model inputs, i.e., information typically obtained from
outside sources, are the most vulnerable part of the decision-making
process.

The black-box ASM is trained on almost two years of data which is
a long time for the attackers to observe. With less data available, the
emulation of the ASM will be worse. Whether an ASM trained on less
data leads to less potent attacks is difficult to say and an investigation
of different observation horizons is beyond the scope of this work.

7. Conclusions and open questions

This work highlights the potential of adversarial attacks to deteri-
orate the decisions made in the combined decision-making process of
EPF and DSM. In particular, we propose a black-box attack strategy
paired with heuristic attack targets that aim to deteriorate the decisions
made by the optimizer. In two case studies of a grid-scale electricity
storage and a chlorine production plant, the quantitative analysis shows
how small modifications of input data can lead to significant losses.
Notably, the results show that attackers do not need to know the
EPF model or the scheduling optimization model to design effective
attacks that lead to significant financial losses. In fact, attackers do
not need access to the network of the company under attack. Instead,
sampling historical data of residual load forecasts, i.e., the input data,
and subsequent trading decisions by the optimizer, i.e., the outputs
of the decision-making processes, is sufficient to fit an adversarial
surrogate model that can be used to design adversarial noise for data
manipulation.

For industrial applications, the success of the black-box attack
presents a substantial risk. Effective attacks can be designed by using
historical data of day-ahead residual load forecasts and the trading
decisions by the company, i.e., using data that is stored in third-party
databases outside of company networks. Furthermore, the tactic of
evasion attacks is difficult to detect as they only marginally change
the data, and no software or virus has to infiltrate the company
network. Thus, established protection against cyber-attacks needs to
be augmented by anomaly detection algorithms and other advanced
security measures.

The investigation in this work presents a first step to discovering the
potential of adversarial attacks on DSM and other scheduling problems.
Notably, the discussed attack approach is just one of possibly numerous
other attacks that could interfere with decision-making tasks like DSM.
The possibilities for adversarial attacks in chemical engineering are far
from understood and there remains a substantial risk for production
companies that are oblivious to the issue.

Future investigations should consider alternative attack heuristics
and utilize advanced methods to compute adversarial noise. White-box
attacks could be used to engineer optimal attacks that are specifically
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designed to worsen the objective instead of relying on heuristics like the
dampen attack. Furthermore, the proposed black-box attack strategy
relies on fitting a surrogate model for the unknown decision-making
processes. Artificial neural networks like the one used in this work need
a lot of data, and data availability is often limited. Alternative surrogate
models like Gaussian Processes could yield comparable performance
using significantly fewer samples.

Another critical avenue of future investigations is a defensive strat-
egy to protect against adversarial attacks. Possible defensive strategies
include regularization, adversarial training (Bai et al., 2021), and out-
put constraining (Tan and Wu, 2024) of the EPF models to enforce
robustness towards modified samples. An alternative or complementary
approach is fault detection, where the predicted electricity prices and
the DSM decisions are evaluated against historical data to decide if they
follow typical patterns. Data that breaks with established patterns is
likely to be compromised.

In summary, this work opens numerous questions in adversarial
attacks and defense for the safe operation of industrial processes. The
results shown in this work open many directions for further investiga-
tions in machine learning in chemical engineering, process operation,
and safety considerations.
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ppendix A. Training of multi-period electricity prices forecasting
odels

The multi-period forecasting scheme is shown in Fig. A.8.
The three models used for electricity price forecasting are a linear

ASSO regression, a fully connected neural network, and a convolu-
ional neural network. The parameter for the LASSO regularization
s set to 0.02. Tables A.2 and A.3 list the model structures for the
9

wo neural networks, respectively. The attributes of layers shown in
Fig. A.8. Sketch of the input/output structure of the multi-period forecasting scheme.

Table A.2
Structure of fully connected neural network.
Layer Attributes Activation

Linear 144 ReLU
Linear 144 ReLU
Linear 24 –

Table A.3
Structure of convolutional neural network.
Layer Attributes Activation

Conv2D 16, 3 × 3 ReLU
Conv2D 16, 3 × 3 ReLU
Linear 24 –

Table A.4
MSE for test sets in 5-fold cross-validation of the three forecasting models.

LASSO Fully connected Convolutional

1 0.46 0.06 0.06
2 0.37 0.05 0.08
3 0.40 0.07 0.07
4 0.40 0.07 0.08
5 0.44 0.07 0.08

Table B.5
Structure of adversarial surrogate model 𝐀𝐒𝐌(𝐱).
Layer Attributes Activation

Linear 64 ReLU
Linear 64 ReLU
Linear 32 ReLU
Linear 24 –

Tables A.2 and A.3 are Linear (fully connected): Number of nodes, and
Conv2D (2-dimensional convolution): number of filters, and filter size.

All models are trained using the mean-squared-error (MSE) loss
function over 100 epochs using the Adam optimizer (Kingma and Ba,
2015) with a learning rate of 0.001 and a batch size of 32 with
shuffled data. The input features are standardized, and the electric-
ity prices, i.e., the labels, are scaled using the variance stabilizing
transformation (Uniejewski et al., 2017). Scaling and other prepro-
cessing is performed using the python-based machine learning library
scikit-learn (Pedregosa et al., 2011).

Table A.4 shows the test loss values for the MSE in a 5-fold cross-
validation. All models give consistent results, which indicates no bias
through the selection of training and test sets. The LASSO regression
shows about one order of magnitude higher loss values.

Appendix B. Adversarial surrogate model

Table B.5 shows the model structure for the adversarial surrogate
model used for the black-box attacks in the main manuscript. The
same structure is used for all forecasting model and DSM problem

https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
https://transparency.entsoe.eu/
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combinations. The adversarial surrogate model is trained over 200
epochs, with a batch size of 32 after shuffling, and a learning rate of
0.001. The adversarial surrogate uses l2-regularization for the hidden
layers. The model primarily aims to provide gradient information for
the attacks. Thus, there is no separate test set for evaluation except for
the test month used in the evaluation in the main text.

Nomenclature

Symbol Description Symbol Description
𝛿 Small number ASM(𝐱) Adversarial

surrogate model
𝛥𝐱 Adversarial noise 𝐏DA Day-ahead

electricity prices
𝜖 White noise 𝐏DA

𝑡−1day Day-ahead price on
previous day

𝜎2 White noise
variance

𝑃DA
𝑡 Day-ahead price at

t-th hour
𝜀 Attack rate 𝐖DA

𝑃𝑉 Day-ahead PV
forecast

𝐓 Machine learning
model/EPF model

𝐖DA
𝑊 𝑖𝑛𝑑,𝑜𝑛 Day-ahead wind

onshore forecast
𝐱 Inputs 𝐖DA

𝑊 𝑖𝑛𝑑,𝑜𝑓𝑓 Day-ahead wind
offshore forecast

𝐲 Outputs 𝐖DA
𝐿𝑜𝑎𝑑 Day-ahead load

forecast
𝑦𝑖 𝑖th dimension of

outputs
𝐖grid Grid interaction

𝐲∗ True
realization/label

𝑊 in
𝑡 Charging rate

𝐲̂ Target outputs 𝑊 out
𝑡 Discharging rate

𝐲̃ Perturbed outputs 𝑊 𝑚𝑎𝑥 Maximum
(dis-)charging rate

𝐓̃ Modified inputs 𝑆𝑂𝐶𝑡 Battery state of
charge

(𝐱, 𝐲) Loss function 𝑆𝑂𝐶𝑚𝑎𝑥 Maximum battery
state of charge

∇𝐱(𝐱, 𝐲̂) Loss gradient w.r.t.
inputs

𝛥𝑡 Time interval

𝜇𝐲 Mean of historical
realizations

𝜂 (Dis-)charging
efficiency
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