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Abstract. The use of synthetic/simulated data can greatly improve
model training performance, especially in areas such as image guided
surgery, where real training data can be difficult to obtain, or of limited
size. Procedural generation of data allows for large datasets to be rapidly
generated and automatically labelled, while also randomising relevant
parameters within the simulation to provide a wide variation in models
and textures used in the scene.

A method for procedural generation of both textures and geometry for
IGS data is presented, using Blender Shader Graphs and Geometry
Nodes, with synthetic datasets used to pre-train models for polyp detec-
tion (YoloV7) and organ segmentation (UNet), with performance evalu-
ated on open-source datasets.

Pre-training models with synthetic data significantly improves both model
performance and generalisability (i.e. performance when evaluated on
other datasets). Mean DICE score across all models for liver segmenta-
tion increased by 15% (p=0.02) after pre-training on synthetic data. For
polyp detection, Precision increased by 11% (p=0.002), Recall by 9%
(p=0.01), mAP@Q.5 by 10% (p=0.01) and mAP@].5:95] by 8% (p-0.003).
All synthetic data, as well as examples of different Shader Graph/Geometry
Node operations can be downloaded at https://doi.org/10.5522/04 /23843904.
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1 Introduction

A majority of researchers in Image Guided Surgery (IGS) are involved with
machine learning in some form (registration, segmentation, stereo reconstruc-
tion, classification etc). However, the lack of application specific training data
is a major blocker for development. In addition, the time-consuming process of
manually labelling data is especially challenging for medical data, as labelling
complex intraoperative scenes or radiological data typically requires the inter-
vention of a trained clinician.

The wider computer vision community has benefited from large open-sourced
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Fig. 1. Rendered synthetic data for Laparoscopy (left column) and Colonoscopy.
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Fig. 2. Example of Blender Shader Graph for basic shading and normal maps. By
combining different nodes, and adjusting their parameters, different textures/effects
can be generated.

datasets, including both real (e.g. ImageNet, KITTI) and simulated (e.g. Scene
Flow, Virtual KITTI). While synthetic data can underperform in training when
compared to real data, due to the so called ‘domain gap’, recent advances in do-
main specific simulation have produced models with equivalent, or in some cases
superior performance to those trained only on real data [10][16][13]. Synthetic
data has the additional advantage of being able to generate more accurate and
complex labels, without the time/cost overheads of manual labelling.

IGS researchers have applied several methods from the machine learning com-
munity to generate synthetic data [16][11][4][14][9][15][6]. However, procedural
generation, a method of creating data algorithmically from a pre-defined set of
rules, is not an area that has had much investigation in IGS, despite showing
promising results on conventional image recognition tasks [13]. As they allow
control over the entire scene, procedural methods can also be integrated into
active learning/active simulation pipelines, where the simulation parameters are
updated on the fly in response to the network performance.

1.1 Contribution

In this work, methods for the generation of high quality, procedurally rendered
data for IGS applications are described. This includes a fully procedural gener-
ation method, with no user inputs required, for generating colonoscopy data for
polyp detection (which the authors believe to be a first), and a partially pro-
cedural method, where anatomically accurate models are used, with procedural
textures, for liver segmentation during laparoscopic liver surgery.

Data was rendered using Blender (https://www.blender.org) (Figure 1), taking
ad-vantage of two main areas of functionality. The first is the use of Shader
Graphs to generate realistic tissue textures. The second is Geometry Nodes,
which allows for the entire geometry of the scene to be defined, and modified
procedurally. On top of this, custom scripting allows for randomization of rele-
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Fig. 3. Randomising texture and lighting parameters on laparoscopy (above) and
colonos- copy (below) data.

vant parameters within the scene, allowing large, varied datasets to be rapidly
generated.

The use of this data for model pre-training boosts performance, when evaluated
on a number of publicly available datasets, in both laparoscopy and colonoscopy.
Data used for training, along with original Blender files, to allow for data repli-
cation, is available for download (https://doi.org/10.5522/04/23843904).

2 Methods

2.1 Shader Graphs for Texture Generation

The use of visual editors and node based approaches to producing shaders has
increased in recent years, providing a layer of abstraction above shader code
(HLSL, OSL etc), allow the user to design shaders more intuitively, with instant
feedback as parameters are changed. All major 3D graphics tools now include
this functionality, including Unreal (Material Editor), Unity (Shader Graph),
Houdini (Materials) and Blender. (Shader Graph) An example Shader Graph in
Blender is shown in Figure 2, making use of the following nodes:

— Noise Texture: this node generates a procedural noise pattern, often used
for creating natural-looking textures or adding surface imperfections. It of-
fers various parameters to control the type, scale, and intensity of the noise
pattern.

— Bump: this node perturbs the surface normals of a material, simulating sur-
face details without actually modifying the geometry.

— Diffuse BSDF: The Diffuse BSDF node represents a Lambertian diffuse ma-
terial.
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Fig. 4. Geometry Nodes example. (a) Input Cube. (b) Linear extrusion of each face.
(c) Subdivision of the mesh, then extrusion of each face to a random distance. Output
geometry data is generated on the fly from as the input geometry/parameters are
changed.

— Material Output: The Material Output node is the final node in the shader
graph and serves as the endpoint for the material. It combines different
shader outputs, such as Diffuse BSDF and links them to the surface of the
3D model for rendering.

The approach used in this work was to generate all textures procedurally, making
use of more than 20 different Shader Graph nodes, allowing for fine grained
control over all aspects of the texture’s appearance, including albedo, bump
mapping, displacement, subsur-face scattering, reflectance, glossiness etc.
Custom Shader Graphs were created for each organ, to match the properties of
the real tissues as closely as possible. Within each graph, key parameters were
identified which were to be randomly varied (Figure 3) at simulation time, as
well as the ranges over which to randomise. The appearance of each Shader
Graph was manually tuned, and the appearance compared visually to sample
images of each target tissue. All textures used for training in this work were
generated using a Shader Graph, and these can be found in the accompanying
dataset release (https://doi.org/10.5522/04,/23843904).
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Fig. 5. Procedural generation of colon model. Clockwise from top left - curve used
to define shape of colon; curve used to define cross section of colon; internal view of
generated colon (no shading) with randomly placed polyps; external view of generated
colon. The colon shape will update in real time in response to changes to either of the
input curves. Further customization is carried out through randomization of Geometry
Node parameters at simula- tion time.

2.2 Geometry Nodes for Model Generation

Procedural modeling is a powerful approach in computer graphics and 3D design
that allows for the automatic generation of complex shapes, textures, and ani-
mations using algorithms and rules. Instead of manually creating each element,
procedural modeling relies on mathematical functions, parameters, and logical
operations to define the geometry and appearance of objects. This approach
offers numerous advantages, including scalability, flexibility, and the ability to
create variations easily. Procedural models can be modified parametrically, en-
abling quick adjustments without redoing the entire design. As a result, proce-
dural modeling is widely used in various industries, including video games, visual
effects, architectural visualization, and simulation. Here, we use Blender’s Geom-
etry Nodes feature (Figure 4) which enables procedural modeling by connecting
nodes that manipulate input geometry, perform operations like transformations
and deformations, and generate or modify mesh topology. Attribute and math
nodes manage data and perform calculations, while input nodes provide user-
defined parameters. Geometry nodes are used to procedurally generate both a
colon model, and to distribute polyps across the surface of the colon. Start-
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ing with a single curve to represent the shape of the colon, the entire model,
including the location and size of polyps, is generated from scratch (Figure 5).

2.3 Rendering/Synthetic Dataset Generation

For each frame of data, texture parameters were randomised controlling displace-
ment magnitude, bump map magnitude, colour of the organs/tissues, subsurface
scattering parameters, noise levels etc. The intensity of the lighting, the level of
motion blur, and the position, look direction and focal distance of the camera
were also adjusted. All images were rendered using the Cycle raytracing engine,
at dimensions of 512x512, with a noise threshold of 0.1 and 256 samples. Render
time for each frame was ~ 5s.

Colonoscopy — 50,000 frames Geometry Nodes parameters, controlling the
shape of the colon, and the position, size and distribution of polyps were ran-
domized per frame.

Laparoscopic liver surgery — 50,000 frames Publicly available models for
liver, gallbladder, etc. were used, and mesh primitives were used to represent
other organs/tissues where appropriate (abdominal cavity = sphere etc.).

Custom Labelling Semantic segmentations (Liver) were acquired by re-rendering
the scene with each object assigned a flat colour, with bounding boxes (Polyps)
derived from the minimum/maximum extents of the segmentation information.

Table 1. Data split for colonoscopy data. Brackets indicate the number of labeled
polyps in that set.

Total Images Train Validation Test
Kansas 37899 28773 (27048)|4254 (4214)| 4872 (4719)
HyperKvasir 1000 800 (972) 100 (121) 100 (113)
LD 4-186 20855 (18900)|3934 (4569) (15397 (15268)
PolypGen 1471 1178 (1191) 88 (98) 208 (204)
Blender 50000 45000 (60827)|5000 (7685) N/A

Table 2. Data split for laparoscopy data. Brackets indicate the number of distinct pa-
tients/procedures in that set.

Total Images| Train |Validation| Test

DSAD 1430 (23) |1131 (18)] 101 (2) | 119 (3)
CholecSeg8Kk| 8080 (19) |6080 (15)| 1000 (2) |2000 (2)
SISVSE 4510 (40) |3588 (32)| 457 (4) | 462 (4)

Blender 50000 45000 5000 N/A
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2.4 Evaluation Datasets

Colonoscopy Four datasets were used: Kansas Polyp Dataset 7], HyperKvasir
[2], LDPolypVideo [8] and PolypGen [1]. Only polyp detection was considered,
so from each data set, the relevant subset of data was used (HyperKvasir for ex-
ample also contains upper GI tract data). Labels were converted to the COCO
format. Kansas and LD datasets have a train/test/validation split already de-
fined, which was left unchanged. LD data was split 80/10/10, and PolypGen was
randomly split into 5 patients for train, 1 for test and 1 for validation (Table 1).

Laparoscopic liver segmentation Three datasets were used: Dresden Surgi-
cal Anatomy Dataset (DSAD) [3], CholecSeg8k [5], SISVSE[16]. DSAD contains
both single organ labelling and multi-organ labelling datasets. For this work,
only the data from the liver single organ subset was used. The full SISVSE and
CholecSeg8k datasets were used, with any non-liver labels removed.

Each dataset provides data from a number of separate patients/procedures.
Data was randomly split into training, test and validation data, with an ap-
proximate 80/10/10 split of images between the three (Table 2). Actual splits
deviate slightly from this, as the number of images for each patient varies. It
should be noted that while CholecSeg8k has the highest number of images, the
dataset consists of multiple sets of sequential frames taken from the same pro-
cedures, whereas each frame in DSAD and SISVSE are non-sequential/from
different procedures.

2.5 Model Training

Laparoscopy — semantic segmentation Semantic segmentation was evaluated
using a standard UNet configuration, with combined DICE loss and Cross En-
tropy loss, RMSprop optimizer, and learning rate of le-5. The network was
trained on each dataset individually, as well as with pre training on Blender
data for each dataset. Pre-training on Blender data was for 10 epochs; all other
training runs were 50 epochs. This resulted in 6 trained models (each dataset
with and without Blender pre-training), each of which was evaluated on the
three sets of test data, with the DICE score for liver classification recorded.

Colonoscopy — polyp bounding box detection Polyp detection was trained using
Yolov7[12]. Default training parameters were used for the full YoloV7 network,
with pre-trained ImageNet weights loaded. A model was trained for 100 epochs
on each of the 4 datasets, as well as being pre-trained on the Blender data and
post trained on each dataset. This resulted in 8 trained models (each dataset
with and without Blender pre-training), each of which was evaluated on the four
sets of test data.

The metrics reported by YoloV7 are precision, recall and mean average precision
(mAP). mAP is calculated both for a single IoU of 0.5 (mAP@.5), and as an
average of the mAP for ToU values between 0.5 and 0.95 (mAP@[.5:.95]).
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3 Results

For laparoscopy data (Table 3), the use of synthetic data for pre-training in-
creased the DICE score in 8 out of 9 cases, with the average change being an
increase of 15% (p=0.02, using paired t-test).

For colonoscopy data (Table 4), for each evaluation metric, for each dataset, the
highest value was achieved when the synthetic data was used for pre-training
(cells with shaded background). If the training dataset is excluded from eval-
uation, 11 out of 16 metrics are achieved on pre-trained data (bold text in
table); 3 are unchanged, and 2 are lower following pre-training. When the per-
formance of individual metrics is compared with /without pre-training, then Pre-
cision is increased 12/16 times (Average change +11%, p=0.01), Recall 14/16
(+9%, p=0.002), MAP@.5 13/16 (+10%, p=0.01), MAP@].5:.95] 13/16 (+8%,
p=0.003).

Table 3. Liver segmentation DICE score, out of 100. Rows indicate training dataset,
columns the test dataset. Cells with highlighted background show the highest value for
that metric, across all models. Bold values indicate the highest value when the dataset
used for training is excluded (e.g. excluding Cholec trained models from evaluation on
Cholec data)

Cholec| DSAD|SISVSE
Cholec 75 74 73
DSAD 37 85 61
SISVSE 23 77 77
Blender + Cholec 79 87 78
Blender + DSAD 55 96 79
Blender + SISVSE| 71 92 91

Table 4. Polyp detection results. All values given as a score out of 100. Columns
represent the results on the test sets, and rows are the different trained models. Cells
with a highlighted background show the highest value for that metric, across all models.
Bold values indicate the highest value when the dataset used for training is excluded
(e.g. excluding HyperKvasir models from evaluation on HyperKvasir test set). B =
Blender, KA = Kansas, KV = Kvasir, L = LD, P = PolypGen.

Kansas (KA) Kvasir (KV) LD (L) PolypGen (P)
mAP| mAP mAP| mAP mAP| mAP mAP| mAP
PIRE 5 iseos)| TR 5 [1505)| PR 5 (15005 IR 5 |[.5:99]

KA |83|74| 82 49 |86|54| 61 40 |55|36| 37 17 |45|33| 33 16

KV |46|23| 23 12 |82]66| 73 44 |37|15] 14 07 |20|28| 16 08

LD |64|38| 41 24 |84|67| T4 46 |69(47| 52 24 |54|43| 44 21

P 81|39| 50 31 |86|74| 80 55 [52]34| 36 18 [69|50| 59 37

B+KA|88(83| 92 58 (80(62| 66 44 162|42| 45 21 |59|45| 43 24

B+KV|65|41| 44 28 193/80| 84 64 |60[38| 41 20 |74|52| 63 39

B+LD|68(|29| 33 20 (83|65] 73 44 |73|48| 55 26 [59(44| 45 25

B+P [74|43| 50 30 |86|81| 83 62 |63(41| 45 21 |71|66| 67 45
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4 Discussion

For both the laparoscopy (Table 3) and colonoscopy (Table 4) datasets, the use of
synthetic data improved model performance, across all metrics, compared with
train-ing only on real data. The results given in this work show that the method
employed for procedural generation of training data can be used to improve
model performance. It is envisaged that such methods would be complementary
to existing approaches for data synthesis (GANs, diffusion models etc.) either
by the use of multiple sources of synthetic data for training, or for example,
by generating target geometries and labels using Geometry Nodes, and then
applying an alternative method for texture synthesis. Being able to generate
synthetic data in this way also extends the use of synthetic data to areas where
there may not be sufficiently large training datasets to utilize deep learning
methods. Further work is underway to consider the effects of changing the ratio
of synthetic to real data when training, and to make use of Geometry Nodes
to provide more fine-grained labels, such as polyp sizing, for more advanced
applications.
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