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Abstract

Bone is the most frequent site of distant metastasis in advanced prostate cancer (PCa),
contributing substantially to patient morbidity and mortality. Hypoxia, a defining fea-
ture of the solid tumour microenvironment, plays a pivotal role in driving bone-tropic
progression by promoting epithelial-to-mesenchymal transition (EMT), cancer stemness,
extracellular matrix (ECM) remodelling, and activation of key signalling pathways such
as Wingless/Integrated (Wnt) Wnt/β-catenin and PI3K/Akt. Hypoxia also enhances the
secretion of extracellular vesicles (EVs), enriched with pro-metastatic cargos, and upreg-
ulates bone-homing molecules including CXCR4, integrins, and PIM kinases, fostering
pre-metastatic niche formation and skeletal colonisation. In this review, we analysed cur-
rent evidence on how hypoxia orchestrates PCa dissemination to bone, focusing on the
molecular crosstalk between HIF signalling, Wnt activation, EV-mediated communication,
and cellular plasticity. We further explore therapeutic strategies targeting hypoxia-related
pathways, such as HIF inhibitors, hypoxia-activated prodrugs, and Wnt antagonists, with
an emphasis on overcoming therapy resistance in castration-resistant PCa (CRPC). By
examining the mechanistic underpinnings of hypoxia-driven bone metastasis, we highlight
promising translational avenues for improving patient outcomes in advanced PCa.

Keywords: prostate cancer; hypoxia; bone metastasis; Wnt signalling; extracellular vesicles;
EMT; HIF-1α; therapy resistance

1. Introduction
Prostate cancer (PCa) is the second most diagnosed malignancy among men and a

leading contributor to cancer-related mortality worldwide [1,2]. While early-stage, organ-
confined PCa can often be effectively managed with surgery or radiotherapy, progression
to metastatic and castration-resistant PCa (CRPC) presents a major clinical hurdle [3,4].
Bone is the predominant site of distant metastasis in advanced PCa, occurring in over
80% of affected individuals and contributing to significant skeletal morbidity, treatment
resistance, and decreased quality of life [5,6]. Tumour hypoxia, a hallmark of solid cancers,
has emerged as a key driver of aggressive disease phenotypes and metastatic spread in
PCa, although the extent of this effect can vary depending on tumour subtype, oxygen
gradient, and model system used. [7,8]. Resulting from inadequate tumour perfusion and
rapid cellular proliferation, hypoxic conditions activate hypoxia-inducible factors (HIFs),
particularly HIF-1α, which coordinates the transcription of genes involved in angiogenesis,
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metabolic reprogramming, invasion, and immune modulation [9,10]. These adaptations
support tumour cell survival under stress and enable progression to a more malignant state.

Hypoxia modulates multiple oncogenic pathways that promote bone-tropic dissemi-
nation in preclinical PCa models, although the relevance and consistency of these pathways
in clinical bone metastasis remains an area of active investigation. In this context, hypoxia
has an influence on epithelial-to-mesenchymal transition (EMT), cancer stem cell (CSC)
maintenance, extracellular matrix (ECM) remodelling, and activation of Wnt/β-catenin,
Notch, and PI3K/Akt signalling cascades [11–13]. EMT allows epithelial PCa cells to
acquire mesenchymal traits, including enhanced motility and invasiveness, which are
essential for intravasation into the circulation and subsequent extravasation at metastatic
sites [14]. In PCa, hypoxic regions within the tumour microenvironment (TME) maintain a
population of PCa stem cells (PCSCs), characterised by enhanced self-renewal, resistance to
androgen deprivation therapy (ADT) and radiotherapy, and these PCSCs are increasingly
recognised as key mediators of metastatic competence (particularly to bone) and tumour
recurrence. [15,16]. These cellular and molecular transformations are further supported by
dynamic changes in the TME, including altered ECM composition and increased stromal
remodelling [15].

Moreover, hypoxic stress enhances the biogenesis and secretion of extracellular vesicles
(EVs), that transport regulatory proteins, lipids, mRNAs and non-coding RNAs to both local
and distant cellular targets, shaping the pre-metastatic niche and influencing metastatic
organotropism [17–19]. EVs derived from hypoxic PCa cells have been shown to carry pro-
metastatic cargo, including matrix metalloproteinases (MMPs), integrins, and microRNAs
(miRs/miRNAs) that modulate gene expression in recipient cells, promoting a supportive
microenvironment for bone colonisation. Furthermore, hypoxia-induced expression of
bone-homing molecules such as CXCR4, integrin αvβ3, and PIM kinases enhances tumour
cell adhesion to bone matrix components and eases extravasation into the bone marrow
niche, where they interact with osteoblasts and osteoclasts to establish osteoblastic or mixed
lesions [20–22].

Despite growing insights into the role of hypoxia in PCa, the mechanisms linking
hypoxic signalling to bone-specific metastasis remain incompletely understood. This review
synthesises current evidence on how hypoxia promotes metastatic progression in PCa, with
particular attention to bone tropism. We examine the crosstalk between HIF signalling
and downstream pathways, including Wnt/β-catenin, Notch, and PI3K/Akt, that regulate
EMT, cancer stemness, and EV biogenesis.

We further highlight the role of hypoxia-induced bone-homing molecules such as
CXCR4, integrins, and PIM kinases in facilitating skeletal colonisation. Finally, we explore
emerging therapeutic strategies targeting these pathways, aiming to overcome treatment
resistance and improve outcomes for patients with advanced PCa.

2. Hypoxia-Mediated Mechanisms Driving Bone-Tropic PCa
HIF-1α is a master transcriptional regulator that enables cellular adaptation to oxy-

gen deprivation [23]. Under normal oxygen levels, HIF-1α is hydroxylated by prolyl
hydroxylase domain (PHD) enzymes and targeted for proteasomal degradation via von
Hippel–Lindau (VHL) protein [24]. In hypoxia, this degradation is inhibited, allowing
HIF-1α to accumulate, dimerise with HIF-1β (ARNT), and activate a broad array of genes
involved in angiogenesis, metabolism, and survival [25,26] (Figure 1). This stabilisation of
HIF-1α initiates diverse downstream signalling events that drive tumour progression and
metastasis in PCa [27,28].
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Figure 1. HIF the master regulator of the cellular response to low oxygen (hypoxia). Under normoxia,
HIF-1α is hydroxylated by PHD enzymes. Hydroxylated HIF-1α binds to VHL protein. This complex
is ubiquitinated and degraded by the proteasome. Under Hypoxia, PHD enzymes are inactive due to
a lack of oxygen. HIF-1α escapes degradation, accumulates, and translocates to the nucleus where
it dimerises with HIF-β (known as ARNT) and binds to hypoxia response elements in DNA. This
activates transcription of hypoxia adaptive pathways.

Hypoxia drives a cascade of biological processes that converge to promote PCa metas-
tasis, particularly to the bone (Figure 2). At the molecular level, HIF-1α plays a central role
in orchestrating transcriptional responses to low oxygen tension [29]. Upon stabilisation,
HIF-1α induces a suite of genes involved in angiogenesis (Figure 2B, VEGF, ANGPT2, SDF1,
and SCF [11]), glucose metabolism (Figure 2A, GLUT1), and invasion (Figure 2D, MMPs),
all of which are crucial to tumour progression and metastatic competence [30,31]. Under
hypoxic conditions, HIF-1α directly induces MMP9 transcription, facilitating basement
membrane degradation and tumour cell extravasation (Figure 2D) [32,33]. In PCa, HIF-1α
overexpression is associated with enhanced invadopodia formation, EMT (Figure 2C), and
increased MMP9 activity, which correlates with bone metastatic potential [34]. Additionally,
MMP9 downregulates COL4A1, further promoting ECM degradation and tumour dissemi-
nation [35]. In the hypoxic bone marrow, MMP9 is involved not only in ECM breakdown
but also in osteoclast activation, supporting osteolytic activity and tumour growth [35,36].
MMP7 contributes by solubilising RANKL, promoting osteoclastogenesis and bone degra-
dation [37,38]. The interplay between MMPs and bone-resorptive mechanisms forms a
positive feedback loop that accelerates metastatic colonisation [39].
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Figure 2. HIF-1α regulated cellular functions. (A) Upregulates glucose importer (GLUT1), increases
glycolytic flux (e.g., hexokinase HK & lactate dehydrogenase LD) and conversion to lactate (ex-
ported via MCT1), supporting rapid cell growth and survival in hypoxic environments (Warburg
Effect). (B) Binds to hypoxia response elements in the VEGF promoter, enhancing its expression
and stimulating angiogenesis. (C) Promotes EMT by activating the transcription factors—Snail,
Slug, TWIST, and ZEB1/2—reducing cell–cell adhesion and polarity, and increasing motility and
invasiveness. Enhances Wnt/β-catenin signalling by promoting β-catenin nuclear localisation and
transcriptional activity. (D) Enhances the expression of MMPs that degrade the extracellular matrix.
These changes collectively facilitate cancer cell migration, invasion, and metastasis under hypoxic
conditions. (E) Enhances Notch receptor expression and activation of the Notch intracellular domain
(NICD), which translocates to the nucleus to influence transcription of genes in angiogenesis, stem
cell maintenance, and EMT. (F) Upregulates PD-L1 expression on tumour, which binds to PD-1 on
T cells, suppressing their cytotoxic activity and promoting T cell exhaustion. Negatively regulates
MHC class I expression, contributing to immune evasion in hypoxic tumour environments by less
T cell receptor (TCR) binding. Up and down arrows indicate general movement of proteins in the
cytoplasm and nucleus.

Hypoxia-induced EVs from PCa cells have been shown to carry active MMP2 and
MMP9, which remodel the ECM at pre-metastatic niches, preparing distant bone envi-
ronments for tumour seeding (Figure 2D). These vesicles also support angiogenesis and
immune evasion (Figure 2F), further enhancing metastatic competency [40].

One of the hallmark features of hypoxia is its ability to induce EMTs (Figure 2C).
HIF-1α promotes EMT in part by upregulating signalling cascades such as Wnt/β-catenin
and Notch, which subsequently induce the expression of key EMT-associated transcription
factors including Snail, Twist and ZEB1 [41]. These changes increase the ability of PCa cells
to disseminate from the primary tumour and invade distant tissues, including bone [42].
In parallel, hypoxia enriches the subpopulation of CSCs, characterised by markers such
as CD44, ALDH1, and OCT4 (Figure 2E). These cells exhibit self-renewal, pluripotency,
and resistance to standard therapies, contributing to tumour recurrence and metastasis [9].
Hypoxia not only maintains the CSC phenotype via HIF-dependent mechanisms but
also increases cellular plasticity, allowing non-stem cells to acquire stem-like features
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under low oxygen tension [9,43]. This plasticity enhances tumour heterogeneity and
adaptability, further supporting metastatic seeding [44]. EVs represent another critical
conduit through which hypoxia enhances metastatic potential. Hypoxic PCa cells release
EVs enriched with oncogenic cargo, such as miR-210, miR-21, HIF1α target proteins, and
long non-coding RNAs, that modulate the behaviour of recipient cells in the tumour
microenvironment and distant pre-metastatic niches [45] (Figure 2F). These EVs have been
shown to activate Wnt/β-catenin signalling, promote EMT (Figure 2C), suppress immune
responses (Figure 2F), and facilitate stromal reprogramming in bone, making them key
mediators of organotropism [45,46].

Similar findings have been observed in our ongoing work on hypoxic PCa-derived EVs
and their role in modulating Wnt signalling and EMT in prostate epithelial cells. Together,
these hypoxia-induced processes, EMT, CSC enrichment, and EV-mediated signalling,
form a coordinated axis that enables PCa cells to escape the primary tumour, survive
in circulation, and adapt to the bone microenvironment [47,48]. This complex interplay
between intracellular reprogramming and extracellular communication underpins the
aggressive metastatic behaviour observed in advanced PCa [49].

3. Bone-Homing Molecules and Hypoxic Modulation
Hypoxia enhances the expression and activity of bone-homing molecules that facilitate

the preferential localisation of PCa cells to the bone microenvironment [43]. Among these,
the CXCR4/CXCL12 axis is particularly important [42,50]. In PCa, hypoxia induces CXCR4
expression via HIF-1α–dependent transcription, enhancing tumour cell chemotaxis toward
CXCL12 (SDF-1) secreted by bone marrow stromal cells, a key mechanism promoting
bone metastasis [51]. This chemokine-guided migration supports directed invasion and
anchoring within the bone niche. Integrins, particularly αvβ3 and α6β1, are overexpressed
in PCa and have been associated with tumour growth, angiogenesis, and metastasis. These
integrins contribute to bone metastasis by mediating prostate cancer cell adhesion to extra-
cellular matrix components such as fibronectin and osteopontin, which are abundant in the
bone microenvironment [52,53]. Hypoxia-induced integrin expression enhances tumour
cell survival, proliferation, and resistance to apoptosis under anchorage-independent con-
ditions [51]. These integrin-mediated interactions not only support metastatic colonisation
but also initiate signalling pathways that promote osteomimicry, a process by which tumour
cells adopt bone-like phenotypes to evade immune surveillance and adapt to the osseous
microenvironment [54]. Another family of hypoxia-responsive proteins implicated in bone
metastasis are PIM kinases, particularly PIM1 and PIM2 [55]. These serine/threonine
kinases promote tumour growth, survival, and metabolic adaptation in hypoxic condi-
tions [56]. Elevated expression of PIM kinases in PCa has been associated with enhanced
metastatic potential and poor prognosis [57,58]. They act downstream of both HIF-1α [59]
and STAT3, bridging hypoxic stress responses with oncogenic signalling [58]. Collectively,
the hypoxia-mediated regulation of CXCR4, integrins, and PIM kinases enables PCa cells
to efficiently traffic to, colonise, and persist within the bone microenvironment [20,55]. Tar-
geting these molecules offers potential therapeutic avenues for limiting skeletal metastases
and improving disease outcomes.

Importantly, hypoxia appears to play distinct roles at different stages of the metastatic
cascade, from the initial ‘seeding’ of tumour cells in bone to their later ‘colonisation’ and
expansion [20]. During the early seeding phase, hypoxia-induced upregulation of CXCR4
and integrins facilitates chemotaxis, adhesion, and survival in the hostile, low-oxygen bone
niche [60]. This allows circulating tumour cells to anchor effectively and resist anoikis [61].

At later stages, once tumour cells have seeded in the bone marrow, hypoxia continues
to support metastatic outgrowth by sustaining PIM kinase signalling, enhancing integrin-
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mediated osteomimicry, and maintaining metabolic flexibility under nutrient and oxygen-
deprived conditions [62]. These adaptations allow PCa cells not only to persist but also to
remodel their microenvironment, suppress immune clearance, and engage in reciprocal
signalling with osteoblasts and osteoclasts [42,63].

Hypoxia acts as both an enabler of bone homing and a sustainer of metastatic coloni-
sation, informing therapeutic timing and drug target selection. Intervening early to block
seeding versus disrupting late-stage colonisation may require different strategies, even if
the underlying hypoxic pathways overlap [64].

4. Therapeutic Targeting of Hypoxia-Driven Bone Metastasis
The hypoxic TME presents both a challenge and an opportunity for therapeutic inter-

vention in advanced PCa (Figure 3). By targeting the molecular drivers and downstream
consequences of hypoxia, several strategies aim to prevent or delay bone metastasis and
improve outcomes in CRPC.

Figure 3. Targeted therapeutic strategies against hypoxia-induced EV signalling and bone metastasis.
Hypoxia in the PCa tumour microenvironment stabilises HIF-1α, which transcriptionally upregulates
pro-metastatic factors such as VEGF (angiogenesis), miR-210 (cell survival), and CAIX (pH regulation).
This drives EMT, immune evasion, and release of EVs loaded with oncogenic and immunomodulatory
cargo. Targeted therapies include HIF-1α inhibitors, (PX-478), hypoxia-activated prodrugs (TH-302),
Wnt/β-catenin and EMT blockers (PRI-724, ICG-001, ZEB1/Snail siRNAs), and EV biogenesis
inhibitors (GW4869, Rab27a blockade). The diagram illustrates how these processes promote pre-
metastatic niche formation and bone colonisation. Combination approaches integrating hypoxia-
targeted agents with immune checkpoint inhibitors or AR antagonists offer promising avenues
for combating bone metastasis in CRPC. Red T-bar arrows indicate direct molecular inhibition of
hypoxia-induced pathways and blue T-bar arrows indicate inhibition of downstream metastatic
processes. Created by BioRender Science Suite Inc (Toronto, ON, Canada).

4.1. HIF Inhibitors and Hypoxia-Activated Prodrugs

Given the central role of HIF-1α in orchestrating hypoxia-adaptive responses, small-
molecule HIF inhibitors have been explored as potential therapies. Agents such as PX-478
have shown efficacy in preclinical PCa models by inhibiting HIF-1α expression, reducing
angiogenesis, and impairing tumour growth [65–67]. However, clinical translation has
been limited by off-target effects and modest efficacy as monotherapy [68]. An alternative
approach involves hypoxia-activated prodrugs (HAPs), such as TH-302 (evofosfamide),
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which remain inert under normoxia but become cytotoxic in hypoxic regions. These
agents selectively target hypoxic tumour zones, reducing systemic toxicity while enhancing
antitumour efficacy [69,70].

Emerging HIF inhibitors such as PT2385 (targeting HIF-2α) and the dual HIF-1α/p300
disruptors have shown enhanced specificity and tumour selectivity [71]. Recent efforts
focus on combining HIF inhibitors with immune checkpoint inhibitors or anti-angiogenic
agents to synergistically overcome resistance. Additionally, imaging modalities that detect
tumour hypoxia in vivo, such as [18F]-fluoromisonidazole (FMISO) PET, may guide patient
stratification and improve therapeutic precision [72].

4.2. EMT and Wnt Pathway Inhibitors

As EMT is a key mechanism driving metastasis under hypoxia, therapeutic strategies
aimed at reversing or inhibiting EMT have gained interest [49]. Pharmacologic agents
targeting TGF-β, Notch, and Wnt/β-catenin signalling pathways are under investigation in
several cancer types. Wnt inhibitors, such as LGK974 and PRI-724, have shown preclinical
efficacy in suppressing EMT and stemness in colorectal, breast, and pancreatic cancer
models. Early-stage studies are beginning to explore their relevance in PCa, particularly in
castration-resistant contexts [73,74]. In PCa models, these inhibitors have demonstrated the
ability to impair bone colonisation and sensitise tumours to ADT [73,74].

More recently, combination approaches targeting both EMT and Wnt signalling have
been investigated to counteract plasticity-driven resistance. For example, ICG-001, which
blocks the β-catenin/CBP interaction, has been shown to reverse castration resistance and
restore AR signalling control [75,76]. Targeting transcription factors like ZEB1 or Snail
using siRNA-loaded nanoparticles also holds promise for halting EMT progression [77].
These strategies may be particularly effective in halting early dissemination and enhancing
response to systemic therapies.

4.3. Extracellular Vesicle-Based Therapeutics

Targeting EV release or uptake represents a novel strategy to disrupt tumour commu-
nication under hypoxic conditions [78,79]. Agents such as GW4869 (a neutral sphingomyeli-
nase inhibitor) can block EV biogenesis, reducing the transfer of oncogenic cargo between
tumour and stromal cells [80,81]. Additionally, engineered EVs are being explored as deliv-
ery vehicles for siRNAs, immune stimulants, or small molecule inhibitors to reprogram the
tumour microenvironment or enhance antitumour immunity [82].

Efforts to selectively disrupt hypoxia-induced EV release have identified Rab27a, nS-
Mase2, and HIF-1α–regulated exosome biogenesis pathways as viable targets [83]. In vivo
studies have shown that systemic blockade of EV trafficking can reduce pre-metastatic
niche formation in bone and limit tumour-derived immunosuppression [83]. Meanwhile,
engineered exosomes delivering CRISPR/Cas9 or miRNA antagonists targeting oncogenic
EV cargo (e.g., miR-210, miR-21) are being developed as next-generation precision tools for
metastatic PCa [84,85].

4.4. Combination Strategies and Future Directions

Given the multifaceted role of hypoxia in PCa progression, combination therapies
targeting multiple pathways simultaneously are required for durable clinical benefit.
Monotherapies targeting isolated pathways have shown limited efficacy in advanced
disease settings [86]. For example, co-targeting HIF signalling and Wnt/β-catenin has
demonstrated promising results in preclinical models using PCa cell lines, disrupting the co-
operative effect of these pathways on EMT and cancer stemness [87]. In parallel, combining
hypoxia-activated prodrugs such as evofosfamide or tarloxotinib with immune check-
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point inhibitors may enhance tumour immunogenicity by alleviating hypoxia-induced
immunosuppression and restoring T-cell function [88].

Specifically designed clinical trials that incorporate validated biomarkers of tumour
hypoxia are critical to optimising these therapeutic combinations. Biomarkers such as CAIX,
GLUT1, and miR-210 have demonstrated utility in stratifying PCa patients and predicting
therapeutic responses [89,90]. For instance, CAIX overexpression has been associated with
biochemical recurrence and poor prognosis in PCa, supporting its role as both a prognostic
and predictive marker [87,91,92]. Similarly, elevated GLUT1 expression is strongly corre-
lated with tumour hypoxia, glycolytic metabolism, and resistance to conventional therapies,
making it an attractive candidate for patient selection and monitoring [91]. miR-210, a
key hypoxia-regulated microRNA, is detectable in circulation and has emerged as a robust
non-invasive biomarker with diagnostic and prognostic potential, especially when used in
liquid biopsy platforms [93].

A growing number of preclinical and clinical studies are now focused on integrating
these hypoxia-targeted agents into broader therapeutic regimens. Table 1 provides an
overview of emerging therapeutic agents and strategies aimed at disrupting hypoxia-
driven tumour progression and bone metastasis in PCa. Future research should prioritise
adaptive trial designs, biomarker-led patient selection, and longitudinal monitoring of
hypoxia dynamics to maximise therapeutic impact.

Table 1. Clinical trials investigating the role of hypoxia in prostate cancer.

Drug Mechanism of
Action Study Type Study Details Clinical Trial

ID
Trial Start

Date

Study
Completion

Date
References

PR-104
Hypoxia
activated
pro-drug

Phase Ib

Non-randomised, open
label intervention study
assessing the side effects
and optimal dose of PR-104
when given in combination
with Docetaxel or
Gemcitabine in advanced
solid cancers. Prostate
cancer patients (n = 4).

NCT00459836 2007 2009 [94,95]

N/A N/A Observational

Prospective study assessing
molecular features of
tumour hypoxia in
combination with
morphological and
functional MRI data and
the presence of micro
metastases. Patients are
assessed longitudinally for
clinical outcomes such as
recurrence, metastatic
disease and death.

NCT01464216 2011 Estimated 2030 [96]

Pimonidazole Hypoxia
specific marker Observational

Open label study
interventional study
investigating hypoxia and
stem cell content in prostate
cancer. Prostate cancer
patients who have agreed
to an open radical
prostatectomy are enrolled
into this study. Primary
objective is to quantify
Pimonidazole staining in
radical prostatectomy
specimens as a primary
determinant of
biochemical failure.

NCT02095249 2014 Estimated 2028 [97]
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Table 1. Cont.

Drug Mechanism of
Action Study Type Study Details Clinical Trial

ID
Trial Start

Date

Study
Completion

Date
References

non-
investigational

medicinal
product
(IMP) pi-

monidazole

Hypoxia
specific marker Observational

Prospective,
non-randomised,
exploratory biopsy and
imaging biomarker study.
Primary aim is to determine
the association between
hypoxia in the primary
tumour with the presence
of skeletal metastases.
Primary objective is to
identify differences in
genomic aberrations
samples with and without
hypoxia between hormone
naïve prostate cancer and
paired skeletal metastases.

NCT05702619 2021 2023 [98]

Evofosfamide
(IMGS-101)

Hypoxia
activated
pro-drug

Phase I/II

Non-randomised, open
label intervention study
assessing the overall safety,
tolerability and
effectiveness of the
combination of IMGS-101
with Zalifrelimab, and
Balstilimab
(immunotherapies) in solid
cancers, including
metastatic castration
resistant prostate cancer.

NCT06782555 2025 Estimated 2028 [99]

4.5. Hypoxia and Immunotherapy Resistance in PCa

Immunotherapy is changing the treatment landscape of cancer therapy, with great
advances in the treatment of leukaemia and lymphoma [100]. Immunotherapy is also
beginning to show some clinical benefit in solid cancers such as melanoma and renal
cancers [101,102]; however, it has yet to make a significant impact on solid tumours such
as PCa.

PCa is characterised as being “immunologically cold”, with low levels of tumour-
infiltrating lymphocytes, high levels of immunosuppressive cells, and low neoantigen
expression [103]. Prostate tumours express immune checkpoint molecules such as PD-
L1, show presence of T-cell exhaustion, and accumulation of immunosuppressive cell
populations (Tregs), all of which contribute to diminished immune responses [104].

Although not regarded as being the most hypoxic tumour, PCa hypoxia levels increase
with clinical stage and patient age [105]. Even the hyperproliferation of prostate epithelial
cells, in situ, driven by loss of the tumour suppressor, PTen, is sufficient for the activation
and accumulation of HIF-1α at the very early prostate intraepithelial neoplasia (PIN) stage,
with inflammatory and HIF-1α-driven miRNA expression [106,107].

CXCR4, through its interaction with its ligand CXCL12, contributes significantly
to immunosuppression within the TME [108]. This signalling axis plays a dual role: it
promotes tumour progression and simultaneously shapes an immunosuppressive niche
that hinders effective anti-tumour immune response [108,109]. One key mechanism in-
volves the recruitment and retention of immunosuppressive cell types, such as Tregs,
myeloid-derived suppressor cells (MDSCs), and CXCR4hi neutrophils. These cells suppress
cytotoxic T lymphocyte (CTL) activity and dampen the immune system’s ability to recog-
nise and destroy tumour cells [110,111]. HIF1a upregulates CD47 expression, allowing
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tumour cells to avoid phagocytosis by macrophages and contributes to resistance against
immunotherapy [112,113].

Additionally, the PD-L1 receptors (programmed cell death 1 ligand 1) which inhibits
T-cell activation and proliferation, is specifically upregulated by HIF-1α binding to its
promoter [110].

PD-L1 binds to PD-1 on T cells, suppressing their activity and enabling tumour sur-
vival. This interaction contributes to an immunosuppressive microenvironment, reducing
cytotoxic T cell function and recruiting regulatory T cells. Studies show that disrupting
hypoxic zones sensitises prostate tumours to PD-1 blockade therapies, enhancing immune
response [114]. Thus, targeting both hypoxia and PD-1 pathways may improve outcomes
in prostate cancer by reversing immune suppression and boosting immunotherapy efficacy.

Hypoxia itself also downregulates the antigen-presenting MHC class 1 molecules on
cancer cells which may allow tumour cells to escape from immune detection [112]. HIF-1α
suppresses transcription of MHC class I heavy chains and antigen-processing components
like TAP1/2 and LMP7, reducing surface presentation of tumour antigens [112], leading to
diminished CD8+ T cell infiltration and impaired cytotoxic responses.

ADT has been shown to enhance the immunogenicity of PCa [115]; however, this is
often very transient, with the rapid development of drug resistance and immune evasion
mechanisms. PCa often fail to generate immune responses, even at high tumour burden,
and hence the poor response to immunotherapies presents a major challenge with strategies
requiring methods to induce an immune hot PCa tumour and its microenvironment.

5. Knowledge Gaps and Research Priorities
Although considerable progress has been made in understanding the role of hypoxia

in driving PCa progression and bone metastasis, several critical knowledge gaps persist.
Current understanding is primarily derived from preclinical models, and the context-
dependence of hypoxic signalling, such as the timing, severity, and duration of hypoxia,
has not been defined [43,116,117]. In particular, the precise in vivo mechanisms by which
EVs, PIM kinases, and bone-homing molecules mediate metastatic colonisation require
further investigation in clinically relevant systems [118]. Another major limitation is the
lack of validated, non-invasive biomarkers for tumour hypoxia in PCa. This impedes
efforts to stratify patients who may benefit from hypoxia-targeted therapies or participate
in hypoxia-guided clinical trials [119,120]. Additionally, while hypoxia contributes to
immune evasion, few studies have evaluated how its immunosuppressive effects can
be reversed through combination approaches involving immune checkpoint blockade or
other immunomodulatory interventions [121,122]. To address these issues, integrative
research efforts are needed that incorporate advanced model systems, real-time hypoxia
imaging, and systems-level analyses of TME interactions. Table 2 summarises key areas of
uncertainty and outlines future directions that may improve our mechanistic understanding
and therapeutic targeting of hypoxia in bone-metastatic PCa.

Table 2. Knowledge Gaps and Research Priorities in Hypoxia-Driven Prostate Cancer Bone Metastasis.

Knowledge Gap Research Priority References

Lack of validated biomarkers for
hypoxia in PCa

Develop non-invasive tools such as circulating
hypoxia-associated miRNAs (such as miR-210) or FMISO PET
imaging for patient stratification

[123]

Limited in vivo understanding of
hypoxia-induced EV cargo and function

Elucidate the organ-specific roles of EV content using
lineage-tracing, EV-labelling, and preclinical metastasis models [124]

Unclear role of PIM kinases in mediating
skeletal colonisation

Investigate how hypoxia-regulated PIM1/2 influence bone
homing and osteomimicry in PCa cells [55]
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Table 2. Cont.

Knowledge Gap Research Priority References

Context-dependent effects of hypoxia (e.g.,
dose, duration, microenvironment)

Compare acute vs. chronic hypoxia across PCa models, using
varying oxygen gradients and tumour stages [125]

Challenges in targeting the CXCR4/CXCL12
axis therapeutically

Dissect spatial and temporal expression dynamics of CXCR4
under hypoxia to optimise therapeutic targeting [126]

Poor immunotherapy efficacy in hypoxic PCa Explore rational combinations of immune checkpoint inhibitors
with HIF, VEGF, or CXCR4 inhibitors [127,128]

Lack of precision delivery systems for
hypoxia-targeted agents

Develop tumour-selective nanocarriers or exosome-based
platforms responsive to hypoxic stimuli [118,129]

6. Conclusions and Future Perspectives
Bone metastasis remains a major cause of morbidity in advanced PCa [130], and

hypoxia is now recognised as a key orchestrator of the molecular events that drive this
process. Through the activation of HIF-1α and downstream pathways, hypoxia induces
EMT, enhances cancer stem cell plasticity, remodels the tumour microenvironment, and
promotes the secretion of pro-metastatic EVs [43,131]. These changes work in concert with
upregulation of bone-homing molecules such as CXCR4, integrins, and PIM kinases to facil-
itate skeletal colonisation [55,132]. Notably, hypoxia-driven extracellular vesicles not only
mediate local invasion but also influence distant stromal environments, preconditioning
the bone niche for successful tumour engraftment.

An improved understanding of hypoxia-driven mechanisms offers several therapeutic
opportunities. Targeting HIF signalling, inhibiting EMT and Wnt pathways, disrupting EV-
mediated communication, and employing hypoxia-activated prodrugs represent promising
strategies to counteract metastasis and overcome treatment resistance [133]. Moreover, the
development of hypoxia-responsive drug delivery systems and nanocarriers could enable
more precise targeting of hypoxic tumour zones while minimising off-target effects [134].

Future research should prioritise integrative, biomarker-driven approaches that address
tumour heterogeneity and the complex interplay between cancer cells and their microenviron-
ment. This includes the incorporation of non-invasive hypoxia markers such as circulating
miRNAs or imaging-based surrogates to monitor treatment response in real-time. Ultimately,
the translation of hypoxia-targeted therapies into clinical benefit will require multidisci-
plinary collaboration, robust preclinical models that mimic the hypoxic bone metastatic niche,
and well-designed clinical trials with rational patient stratification. By leveraging insights
into hypoxic adaptation, we can develop novel, personalised strategies to delay or prevent
bone metastases and improve outcomes for patients with metastatic PCa.
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Akt Protein kinase B
ALDH1 Aldehyde dehydrogenase 1
AR Androgen receptor
CAIX Carbonic anhydrase IX
CBP CREB-binding protein
CD44 Cluster of differentiation 44
COL4A1 Collagen type IV alpha 1 chain
CRISPR Clustered regularly interspaced short palindromic repeats
CRPC Castration-resistant prostate cancer
CSC Cancer stem cell
CXCL12 C-X-C motif chemokine ligand 12
CXCR4 C-X-C chemokine receptor type 4
ECM Extracellular matrix
EMT Epithelial-to-mesenchymal transition
EV Extracellular vesicle
FMISO Fluoromisonidazole
GLUT1 Glucose transporter 1
HAP Hypoxia-activated prodrug
HIF Hypoxia-inducible factor
HIF-1α Hypoxia-inducible factor 1 alpha
HK Hexokinase
LD Lactate dehydrogenase
lncRNA Long non-coding RNA
MCT1 Monocarboxylate transporter 1
MHC Major histocompatibility complex
miR MicroRNA
MMP Matrix metalloproteinase
NICD Notch intracellular domain
nSMase2 Neutral sphingomyelinase 2
Oct-4 Octamer-binding transcription factor 4
PCa Prostate Cancer
PD-L1 Programmed death-ligand 1
PET Positron emission tomography
PI3K Phosphoinositide 3-kinase
PIM Proviral integration site for Moloney murine leukemia virus
PIN Prostatic intraepithelial neoplasia
PTEN Phosphatase and tensin homolog
RANKL Receptor activator of nuclear factor kappa-B ligand
siRNA Small interfering RNA
STAT3 Signal transducer and activator of transcription 3
TCR T cell receptor
TGF-β Transforming growth factor beta
Treg Regulatory T cell
VEGF Vascular endothelial growth factor
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