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1   |   BACKGROUND

Human geographers have long studied the forms and functions of settlement systems across a range of spatial scales, 
with a particular focus on intra-urban residential structure. This has been formalised as the study of geodemographics, 
which characterises populations based on where they live (Harris et  al.,  2005; Longley,  2015). At its core, geodemo-
graphics rely on data reduction techniques, such as k-means clustering, to summarise data collected by national sta-
tistical organisations and reveal social patterning at small spatial scales (Gale et al., 2016; Wyszomierski et al., 2024). 
In the UK, neighbourhood-scale census ‘state-istics’ (Dorling & Simpson,  1998; Louckx & Vanderstraeten,  2015) 
are shaped by government priorities, with the content of modern UK censuses tracing back to the 1920 Census Act 
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Abstract
Functional roles of neighbourhoods change throughout the day, as both a 
cause and consequence of human mobility fluctuations. Here we review how 
neighbourhoods can be characterised by origin–destination flows derived from 
individual level GPS-enabled in-app data. These are used to track individual 
trajectories from start to end points prior to aggregation. We leverage securely 
held individual level in-app mobile phone location data that preserve spatial 
and temporal flexibility in representing place-to-place interactions. The data 
are available at the individual level and are aggregated for reporting of origin–
destination analysis at the Middle layer Super Output Area (MSOA) level to 
accommodate disclosure control and positional uncertainty. We show how in-
app mobile phone location data for Greater London enhance our understanding 
of the relationships between places, and demonstrate how these relationships 
may change over the course of the day. Finally, we discuss how such analysis 
can inform transport policy and the contribution of our approach to extending 
geodemographic research.
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(Dewdney & Rhind, 2011). These classifications also reflect data collection constraints, such as the longstanding omis-
sion of income due to feasibility and ethical concerns.

Over time, geodemographic classifications have evolved in several ways. First, they have expanded beyond residen-
tial data to include workplace geographies, supplementing focus on where people live with where they work (Cockings 
et al., 2020). Second, they have been used to enable small-area estimates using survey data, such as estimates of fear 
of crime or travel behaviour (Ashby, 2005; Batey & Brown, 1995; Liu & Cheng, 2020). Third, they have been supple-
mented with commercial lifestyle data, extending their application to areas like education, policing and healthcare 
(Singleton, 2010). However, while these classifications highlight self-organising neighbourhood structures, they do not 
account for how neighbourhood functions shift throughout the day as indicated by human mobility, and remain limited 
in capturing temporally granular flows.

The increasing availability of Global Positioning Systems (GPS) in-app mobile phone location data allow for de-
tailed analysis of complex place-to-place interactions of individuals beyond home-to-work trajectories. They can 
provide a more comprehensive view of daily activity patterns across different times of the day, week and year than 
traditional census and survey approaches (Arribas-Bel & Tranos, 2018; Gibbs et al., 2024). For instance, GPS data 
have been used to estimate hourly population density and temporally granular population counts to generate ambi-
ent population datasets (Deville et al., 2014; Liu et al., 2018), as well as to infer key activity locations, such as home 
and workplace. This enables a deeper understanding of individual activity locations (Alexander et al., 2015; Jiang 
et al., 2017).

GPS data sources not only allow for mapping of individuals' locations, but also enable the exploration of origin–
destination (OD) flows between places and the temporal rhythms that structure them. OD analysis can be used to 
characterise human interactions, over the short, medium or long term, in order to facilitate the understanding of con-
nections between places, and has gained significant traction with the advent of GPS location data (Guo et al., 2012; 
Schneider et al., 2013; Van Dijk et al., 2021; Wang et al., 2019). For instance, Yang et al. (2016) use in-app mobile 
phone location data for Shenzhen in China to classify areas into clusters exhibiting different characteristics of in-
bound and outbound human mobility flows throughout the day. Similarly, Xu (2022) applies in-app mobile phone 
location data to understand how exposure to racial diversity varies throughout the day, revealing that individuals 
often experience more diverse social environments than residential data alone suggest, and that such exposure is 
shaped by temporally dynamic activity spaces. Over the longer term, Ge and Fukuda (2016) use aggregated mobile 
phone data to estimate work-related travel in Tokyo over a five-year period, identifying consistent spatial patterns 
in commuting. Calafiore et al. (2021) use in-app mobile phone location data with a spatially weighted community 
detection approach to derive functional neighbourhoods in New York, illustrating how mobility-based methods can 
reveal dynamic urban boundaries shaped by actual movement patterns. Despite the increasing use of mobile phone 
data for OD analysis, the primary methodological focus of past research has been on developing and predicting tem-
porally aggregated OD flows, neglecting the spatial dynamics of diurnal variations (Calabrese et al., 2011; Demissie 
& Kattan, 2022; Graser et al., 2019). This overlooks the finer spatial and temporal area-specific insights that can be 
obtained from mapping OD flows to leverage their full analytical potential.

Building on these developments, we propose to shift focus from residential geodemographics to interactional geogra-
phies. Unlike traditional geodemographic studies, this approach does not seek to classify populations based on residence 
alone, but rather on understanding place-to-place interactions as they unfold throughout the day. This makes it possible 
to examine the relationship between human activity and urban spaces (Kempinska et al., 2018; Vich et al., 2017). We 
therefore use individual level place-to-place interactions from in-app mobile phone location data to effectively visualise 
OD flows at a spatially and temporally granular scale, with a particular focus on the dominant patterns of interaction 
flows in three areas of Greater London: Canary Wharf, London Bridge (South Bank) and Kilburn. Through this analysis, 
we demonstrate how GPS location data can enhance spatial and temporal analyses of urban connectivity, establishing a 
proof of concept for interactional geographies as an extension to geodemographic classifications of residences or work-
places. The empirical objectives of this study are thus twofold:

1.	 To demonstrate how temporally and spatially granular OD matrices from in-app data go beyond traditional home-
to-work commuting data to enable more comprehensive understanding of interactions between neighbourhoods 
through the course of the day.

2.	 To identify how interaction flow indicators can be used to capture an area's connectivity, extent of connections and 
volume of inbound and outbound flows by time of day, and how these can be integrated into geodemographics.
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2   |   DATA AND METHODS

2.1  |  Study area, data and validation

The individual level GPS in-app location dataset available to us, acquired from a consolidator by the Consumer Data 
Research Centre (Longley et al., 2018), records use of 700+ apps by approximately 120,000 individuals in 2019 in London. 
Data are collected when the individual user accesses an app, when the app is running in the background, or both, 
depending on the specific user settings and privacy controls used by each application. This results in larger volumes of 
location impressions recorded from devices where the app is running in the background, thus revealing more activity 
insights. Unlike the pre-aggregated data used in most other studies, having access to individual level in-app impressions 
gives us the flexibility in aggregating and analysing the data without being constrained by the assumptions built into 
industry data products. It should also be noted that for commercial and disclosure control reasons, the functions of the 
applications are not known.

While the full dataset has UK-wide coverage, London is selected as the study area because it contributes 54% of all 
in-app mobile phone locations in the dataset. Moreover, London's complex and dynamic characteristics also make it a 
good candidate for empirical analysis (cf. Singleton & Longley, 2015; Wyszomierski et al., 2024). The data were collected 
between June 2016 and October 2020, but we limit our analysis to 2019 for reasons of computation management as well 
as to avoid the impact that the COVID-19 pandemic had on mobility patterns. The data include device IDs, application 
IDs, level of GPS accuracy determined through GPS receivers, longitude, latitude and timestamp of the local date and 
time of the event. The application ID attribute is used to restrict analysis to the 25 most heavily used applications, which 
together comprise 99.6% of all impressions recorded in London in 2019. The analysis is further limited to triangulated 
GPS points with at least 100 metre accuracy, which is common practice given that geolocation accuracy greatly improves 
with triangulation of position using two or more GPS satellites (Kumar & Dutt, 2020; Wang et al., 2019).

The data originate from self-selecting user bases, with further bias likely arising from user consents to share app 
use data, and socio-demographic selectivity potentially frustrating population-wide inferences (Lovelace et al., 2016). 
Elsewhere, research has tried to assess the over- or underrepresentation of the underlying population by using demo-
graphic data. Sinclair et al. (2023), for instance, use these mobile phone location data for Glasgow across a period of 3 years 
to benchmark the assigned home locations against the Acorn geodemographic classification types (see CACI,  2025). 
Their findings showed that despite the fact that the sample covers only a small percentage of the population, the dataset 
shows a good socio-demographic representation compared with the population at large. Because our focus is on exam-
ining interaction flows and relations between places, we compare our data with footfall estimates from an aggregated 
call detail record mobile phone location dataset collected by BT (2024), provider to 30% of mobile phone users in the UK 
under the EE brand (Statista, 2022).

The BT data, referred to as ‘BT footfall’ data, were obtained from the Greater London Authority (GLA) high street data 
service, with aggregations made available for a tessellation of 350-metre hexagons. For comparison, we aggregated our 
in-app mobile phone location data to the same 350-metre hexagonal grid. The results indicate that, in most grid cells, 
our in-app mobile phone location data consistently capture between 0.00001% and 3% of footfall activity data. Whereas 
this seems little in comparison, what is important for our current purposes is that our data provide a consistent spatial 
representation of users across most areas in London. A larger sample than the BT data occurs in less than 1.2% of the 
hexagonal grids, and this is the case only in parks, such as Bushy Park and Richmond Park, and Heathrow Airport. 
Together, we believe this to be an acceptable representation of the patterns captured in the much larger footfall dataset. 
Moreover, where the aggregated BT footfall data obscure OD patterns, our mobile phone in-app dataset preserves indi-
vidual movements.

2.2  |  Method

The first step in deriving place-to-place interactions from the data is to convert the timestamped individual location im-
pressions of each device into activity locations with a start and end time (see Table 1 for raw data structure). We do this 
by employing spatial and temporal clustering, using agglomerative clustering with the Ward method (Gibbs et al., 2023; 
Pedregosa et al., 2011). This approach combines raw, timestamped in-app mobile phone location data points that are 
spatially and temporally close, grouping them into a single visit of known duration for each device. Data points recorded 
at the same location share (approximate) coordinates, but this proximity may be influenced by GPS-induced imprecision. 
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When clustering these raw data points into visits (see l0, l1 and l2 in Figure 1), the spatial threshold used for clustering 
can vary depending on the degree of imprecision in the data. For locations that show greater imprecision, such as those 
resembling l0, a smaller threshold is applied, while for locations with less imprecision, like l2, a larger threshold is used. 
Clusters of points that are spatially close are then defined as a visit, with the arrival and departure times determined by 
when the device first and last appears at that specific location.

To define activity locations, we first specify a minimum visit duration based on the distribution of apparent arrivals 
and departures. A key data cleaning step involves removing implausibly short visits to screen out any non-static impres-
sions that could otherwise introduce noise into the analysis. For this reason, we remove apparent visits of less than 5 min 
to filter intermediate locations from activity destinations, following accepted practices (Fang et al., 2018; Transportation 
Research Board and National Academies of Sciences, Engineering, and Medicine, 2018; Xu, 2022). A visit therefore be-
gins when a device remains present at a location for at least 5 min, and the first recorded appearance at a location marks 
the start of the visit.

To derive flows between different activity locations, we first clean the data and organise observations by device and 
time of occurrence. This sorting allows us to link a location visited by a device to the next location it moves to, facilitating 
the formation of interaction flows. After linking origins to destinations, we calculate the time elapsed between leaving 
one location and arriving at the next. The final cleaned dataset contains almost 17 million activity locations, generating 
around 10 million flows between locations. In a final step, we remove any rows where the time between visits exceeds  
2 hour. We set this two-hour threshold because even the most distant locations in Greater London can be reached within 
this time. Figure 2 presents the workflow used to obtain individual OD interaction data.

To move from individual OD flows to place-to-place interactions, we aggregate the data to the Middle layer Super 
Output Area (MSOA) level. A further hourly breakdown is used to understand how interactions vary according to 
the time of day. We choose to conduct our analysis at this level to accommodate likely issues of positional uncer-
tainty. MSOAs are administrative geographies used in England and Wales, and defined as part of the decennial 
census to facilitate the reporting of data, and typically consist of 2000–6000 households. While the lower granularity 
level may limit the depth of analysis, this guarantees adherence to minimum statistical disclosure requirements and 
ensures that interaction origins have multiple destinations. To protect locational privacy, a threshold of 10 obser-
vations is applied within each MSOA, resulting in minimal data loss (Welpton, 2019). The choice of administrative 
geographies further ensures that census data can be brought into the analysis at a later stage of the research, and fa-
cilitates profiling of city-wide patterns consistent with previous research (Friedrich et al., 2010; Schlaich et al., 2010). 
Crucially, it also provides a foundation for our ambition to extend geodemographic analysis with place-to-place 
interactions.

To visualise relationships between neighbourhoods, we use the centroids of MSOAs to create Euclidean distance lines 
connecting origin and destination areas. The centroids serve as reference points for drawing the flow lines, providing a 
consistent and spatially accurate way to represent the connection between two MSOAs. Each line is then assigned an 
attribute indicating the total number of flows it represents, providing a clear visualisation of the intensity of interactions 
between areas. We apply edge bundling in some of the outputs to minimise visual clutter, making overlapping OD flows 
easier to interpret (see Graser et al., 2019).

T A B L E  1   The structure of location visits, in which the median latitude and longitude of raw data points within a cluster are used to 
define activity locations (data in the table are synthetic).

App ID User ID Start datetime Leaving datetime Cluster Visit longitude Visit latitude

111 12,344 2019-01-01 00:00:05 2019-01-01 12:40:45 1 51.5244 −0.1342

F I G U R E  1   Trajectories of three illustrative visits (after Wang et al., 2019).
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3   |   RESULTS

3.1  |  Visualising place-to-place interactions

Figure 3 illustrates the place-to place-interactions derived from the individual OD mobile phone location data. The 
most connected MSOAs are London's West End and South Bank, and, while some other parts of Greater London have 
strong connectivity with these areas, there are also many flows between town centres and MSOAs across the area. 
For example, Croydon is well connected to central London MSOAs as well as its adjacent MSOAs, while Eltham in 
south-eastern London shows strong connections with neighbouring areas and Canary Wharf. These observed pat-
terns may manifest good transport links, that make it possible to cover longer distances over any given time window.

F I G U R E  2   Workflow for obtaining interaction flows from GPS-derived activity locations.
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The interaction flows can further be broken down temporarily and directionally. Figure 4 shows the intensity of these 
interactions by time of day, standardised by the area of each borough. Flows may either begin or end in the boroughs 
shown, highlighting how different parts of the city are engaged at various times.

The most prominent pattern is the high volume of interactions observed between 8 am and 7 pm across the capital. 
Boroughs such as Tower Hamlets, Southwark, Newham, Lambeth, Islington, Hammersmith & Fulham, and the City of 
London show clear peaks in activity during the morning and afternoon. The City of London, Camden and Westminster 
have the most intense activity patterns, while the lowest levels of activity are found in Richmond-upon-Thames, 
Redbridge, Hillingdon, Havering, Enfield and Bromley. While Figure 4 provides a useful overview of borough-level pat-
terns throughout the day, it offers only limited insights into the multi-dimensional nature of hourly interaction flows. To 
explore these dynamics in greater detail, Figure 5 maps the origins and destinations of flows during four selected one-
hour time windows: midnight, 6 am, 12 noon and 6 pm.

Commencing at 12 midnight, interactions are very low, and the only areas with more than 60 interactions are (a) 
Oxford Street and Covent Garden and (b) Heathrow and Whitton (see Figure 5a). By 6 am interactions are becoming 

F I G U R E  3   Edge-bundled non-directional origin–destination (OD) flows between each Middle layer Super Output Area (MSOA) in 
Greater London, 2019 (minimum threshold = 600 interactions).
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much higher, manifesting commuting to work, especially between suburban MSOAs and central London MSOAs. Mid-
day interactions are shorter distance, manifesting loci of daytime activities (see Figure 5b,c). By 6 pm, such interactions 
are supplemented by return commuting (see Figure 5d), indicating the presence of both commuting patterns and other 
localised flows.

3.2  |  Visualising shifting neighbourhood functions

As outlined in the introduction, the main aim of this work is to use detailed individual-level data to better understand 
how interactions between places unfold over the course of the day. This serves as a proof of concept for how such data 
can be used to generate insights into place-to-place interaction and the shifting roles of neighbourhoods over time. In 
this final part of the analysis, we demonstrate how focusing on specific areas can help reveal these changing functions, 
using directional movement patterns for three case study areas: Canary Wharf (Figure 6), London Bridge (South Bank) 
(Figure  7) and Kilburn (Figure  8). This analysis assumes that the 8 am and 6 pm flows primarily reflect commuting 
patterns, and 1 pm and 11 pm flows represent local daily activity and the night-time economy, respectively. The Canary 
Wharf and London Bridge MSOAs, which are predominantly commercial, experience a net inflow at 8 am and net outflow 
at 6 pm, while the Kilburn area, which is mostly residential, experiences the opposite pattern.

Figure  6 shows that Canary Wharf experiences a large influx of people at 8 am, principally from Tower Hamlets, 
Newham and Lambeth. At 6 pm there is a corresponding outflow of individuals to some adjacent MSOAs as well as to 
further flung suburban locations. The flows at 1 pm and 11 pm are much smaller. Canary Wharf is principally a commer-
cial area but also houses many workers, so while there is an evident net inflow of commuters, there is also some local 
commuter traffic. Comparing Figures 6 and 7, we observe similarities in the net inflow at 8 am and outflow at 6 pm be-
tween Canary Wharf and London Bridge, reflecting their shared role as commercial hubs serviced by daily commuters. 

F I G U R E  4   Interaction flows per km2, by borough and time of day.
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The key difference between the two is that London Bridge's flows are largely directed towards South London, with strong 
links to Croydon, whilst Canary Wharf's flows are most pronounced with northern and central London neighbourhoods. 
At 6 pm, London Bridge's outflows demonstrate a strong connection with east and south-east London, whereas its 8 am 
inflows are more widely distributed across commuting areas. Many commuters to London Bridge come from Newham 
or Tower Hamlets in east London, or Mill Hill, East Barnet, Harrow, Woodford and Newbury in north London. Canary 
Wharf and London Bridge show similar inflow and outflow volumes during peak commute hours. What distinguishes 
the two areas is the extent and location of the other areas to which they are connected.

For Kilburn (Figure 8), inflows and outflows are shown simultaneously rather than separately. We focus on a residen-
tial MSOA in Kilburn to examine net flows, where negative values indicate net outflows and positive values indicate net 
inflows. This approach allows for a straightforward assessment of the overall balance of movement into and out of the 
area at different times of day, providing a clearer picture of its changing function within the wider urban context. Net 
flows in Kilburn are relatively small and largely confined to the same or neighbouring boroughs. The only notable excep-
tion occurs around 8 am, when there is a net outflow to more distant MSOAs such as Marylebone, Soho, Whitechapel, 
Bayswater, Edgware and Northwood. In contrast, inflows at that time originate from nearby areas including Willesden, 
Wembley and Marble Arch, with no significant outflows to those locations. By 1 pm, net inflows are observed from 
Hammersmith and Kensington, while net outflows are directed towards Wembley and Brent Cross. At 6 pm, inflows ex-
ceed outflows, and by 11 pm, all recorded flows are net inflows. Given that any flows between MSOAs of less than 10 are 
excluded from the analysis due to disclosure control, Kilburn appears to be locally embedded within its immediate sur-
roundings but has limited connectivity to more destinations. Overall, Kilburn's flow volumes are evidently much lower 
than those of Canary Wharf and London Bridge.

F I G U R E  5   Edge-bundled hourly non-directional origin–destination (OD) flows between Middle layer Super Output Areas (MSOAs) in 
Greater London in 2019 commencing at (a) 12 midnight, (b) 6 am, (c) 12 noon and (d) 6 pm (minimum threshold = 60 interactions).
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4   |   DISCUSSION

The MSOA-interaction analysis demonstrates the useability of mobile phone location data for understanding connectivity, 
reach and links between locations throughout the day. This approach facilitates the exploration of how different areas 
assume varying functional roles as a result of fluctuations in human mobility. By providing a temporally granular 
breakdown of interaction flows, it offers insights into the dynamic aspects of these movements. As demonstrated in 
Section 3.2, this method allows us to focus on individual MSOAs, providing a nuanced view of how places function 
differently at different times of the day.

Unlike the Census, which captures only home-to-work trajectories without timestamps (Martin et al., 2018), GPS 
location data provide a more comprehensive view of daily activity patterns across different times of the day, week and 

F I G U R E  6   Hourly directional interactions terminating or originating in Canary Wharf and other MSOAs beginning at (a) 8 am, (b) 
1 pm, (c) 6 pm and (d) 11 pm.
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year. The finer temporal granularity of GPS location data can equip policymakers to understand how urban spaces func-
tion dynamically, informing more responsive urban planning, transport policies and service provision. Additionally, the 
2021 Census data are heavily influenced by the COVID-19 pandemic, making it them representative of typical mobility 
patterns (Harrington & Hadjiconstantinou, 2022). By using 2019 GPS location data—the most recent pre-pandemic year 
available to us—we ensure that our analysis reflects more stable and generalisable trends.

The directional interaction flow analysis for Canary Wharf, London Bridge and Kilburn reveals significant variations 
in interaction patterns across the different areas, indicating the diverse functioning of labour markets and the integrity 
of neighbourhood structures. While Kilburn exhibits a limited number of interaction flows with neighbouring regions, 
Canary Wharf and London Bridge display a broader connectivity, reaching areas further away. Despite their extensive 
connections, these areas demonstrate distinct interaction profiles, bringing focus to urban dynamics and multifaceted 
urban landscapes. Even though the exact purpose of an interaction flow may be unknown, when the general function of 

F I G U R E  6    (Continued)
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a location is coupled with time of day, it is possible to make inferences between different types of flows and to distinguish 
between a night-worker flow and a leisure flow, at 11 pm for example. This analysis can thus inform decision-making 
requiring identification of neighbourhoods with differing connectivity characteristics—for example, those with low ac-
tivity and poor connectivity that might be upgraded to serve community needs.

Building directly upon this work, our future research will formalise interaction flows as summary indicators that will 
capture an area's connectivity, extent of connections and volume of inbound and outbound flows by time of day. This will 
allow us to extend conventional geodemographics by incorporating the variegated functional characteristics of any study 
area. Combined with socio-economic and demographic data, new geodemographic classifications will move beyond un-
derstanding place solely in terms of social similarities to also include the dynamic interaction flows that shape and define 
unique neighbourhood contexts.

F I G U R E  7   Hourly directional interactions between London Bridge and other MSOAs in Greater London in 2019 commencing at (a) 
8 am, (b) 1 pm, (c) 6 pm and (d) 11 pm.
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The underlying data enable calculation of transitions from origins to destinations at the MSOA level, which is not 
possible using pre-aggregated app or mobile phone data products. Unlike aggregated location data made available by 
data consolidators, OD patterns are not obscured, and spatial as well as temporal flexibility is preserved, enabling more 
bespoke analysis of how neighbourhoods function as part of a city system. By preserving granular movement data, we 
provide a richer understanding of urban connectivity, overcoming the limitations of commercial aggregation that often 
lacks methodological transparency. This shifts the focus from profiling the attributes of areas to profiling the functional 
interdependencies between them; while also acknowledging the temporal component of these place-to-place interac-
tions. Through aggregation at the MSOA level, the study minimises the impact of GPS inaccuracies given that the coarser 
geographical scale reduces uncertainty and improves the useability of the dataset. Timeframes can similarly be scaled 
to intervals that are sensitive to context. This additionally addresses ethical considerations regarding the sensitive na-
ture of the individual level data (cf. Sieg et al., 2024). A remaining limitation, however, is that adherence to minimum 

F I G U R E  7    (Continued)
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disclosure control requirements requires that insights of less prevalent interaction flows can only be revealed when using 
a larger dataset. Notwithstanding these challenges, urban planners and local policy makers can benefit from these types 
of analyses.

Further research might expand the analysis to explore seasonal variations as well as weekday and weekend interaction 
flows to provide additional insights for urban planning and transportation management. The two-hour threshold used as 
a cut-off in the analysis for the time elapsing between leaving a location and first appearing at the next location could be 
increased to assess how it will affect the results. Our analysis is limited to OD flows within London, hence one direction 
for future research would be to extend the analysis to examine flows into and out of Greater London, which is particularly 
useful for understanding external flow patterns in terms of both volume and direction. Additionally, the disaggregate na-
ture of the data means that information on location types might be used to filter analysis to only leisure (home to leisure) 
or commuting (home to office) interaction flows. Lastly, distance and speed thresholds could also be used to achieve the 
segmentation of OD flows by mode of transport, such as foot, car, bus and train.

5   |   CONCLUSION

Geodemographic classifications have long supported general-purpose analysis of populations based on their residential 
locations, using variables from traditional censuses. This paper has explored how understanding spatial behaviour can 
be enriched by incorporating interaction flows, rendering geodemographics amenable to investigation of the ways in 
which areas interact through individual activity patterns. This marks a shift from the analysis of static urban form, to a 
more dynamic understanding of urban function. Our contribution is to demonstrate how in-app mobile phone location 
data can be used to understand the functional and interactional characteristics of an area throughout the day using OD 

F I G U R E  8   Hourly net origin–destination (OD) flows for the interactions between Kilburn and other London Middle layer Super Output 
Areas (MSOAs) in 2019, commencing at (a) 8 am, (b) 1 pm, (c) 6 pm and (d) 11 pm.
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analysis, something that will be incorporated in geodemographics in the next phase of this research. Through this study, 
we use interaction matrices as an analytical tool to explore urban flows dynamically across both time and space. Our 
results illustrate how different MSOAs, such as those in Canary Wharf, London Bridge and Kilburn, take on varying 
functional roles throughout the day as a result of human mobility fluctuations. This moves beyond the Census' home and 
work dichotomy to an area-based perspective of interaction flows.

Despite the self-selective nature of mobile phone location data, our findings show that OD analysis remains a valu-
able tool for distinguishing interaction patterns and understanding urban mobility dynamics. Given declining partici-
pation in travel surveys, mobile phone location data provide a promising way of analysing place-to-place interactions 
across continuous spatial and temporal scales despite limitations arising from sample size. We note that standardised, 
pre-aggregated data products risk obscuring important spatial and temporal variations, through their ‘one size fits all’ 
approach, and instead emphasise the benefits of using disaggregated data that allow flexibility in manipulation. By con-
ducting analysis at the MSOA level, we mitigate issues of positional uncertainty arising from GPS data, meet disclosure 
control requirements, and facilitate linkage to demographic data. Ultimately, this study lays the groundwork for a new 
generation of geodemographic classifications, that incorporate mobility into holistic representation of the configuration 
as well as socioeconomic composition of neighbourhoods. The methodology of the study is also scalable and adaptable 
to other mobile phone location datasets where device IDs are known.
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