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 a b s t r a c t

This paper investigates a non-causal control scheme for the Marine Launch and Recovery (L&R) systems involving 
a mothership and a small rigid-hulled inflatable boat (RHIB). The controller is considered non-causal as it requires 
predicted future wave information for decision-making. The main challenges are: 1) the system is underactuated 
with the tension force in the connecting cable as the only control input; 2) both mothership and RHIB are subject 
to uncertain wave-induced disturbances that pose challenges to collision avoidance; 3) the overall system exhibits 
nonlinear dynamics with coupling between the cable dynamics and the swing dynamics. Traditional Tube-based 
Model Predictive Control (MPC) addresses these challenges but leads to overly conservative control actions. 
In this paper, a Sliding Mode Observer (SMO) based MPC is proposed to reduce the conservatism, leading to 
reduced steady-state errors. Furthermore, the online computational load for the proposed scheme is similar to 
the traditional MPC, as the SMO is computationally cheap. Numerical simulations have been conducted to verify 
the effectiveness of the proposed scheme.

1.  Introduction

Marine Launch and Recovery (L&R) systems have been extensively 
studied in the literature for the L&R of Unmanned Aerial Vehicles (UAV) 
and Unmanned Surface Vehicles (USV) (Nie et al., 2021; Zhang et al., 
2020a; Chu et al., 2021), and autonomous or remotely-operated sub-
marines from a mothership (Szczotka, 2022; Tran et al., 2023; Ross 
et al., 2022; Chen et al., 2020). Typically, manual L&R of marine ves-
sels from a mothership involves a crane connected to a small boat via a 
cable. During recovery, a trained operator assesses sea state conditions 
and initiates the hoisting procedure based on their judgment of oper-
ational safety. While lifting the boat, the operator monitors the vessel 
motion to avoid collision with the mothership. The main challenge of 
this operation is the high-risk that arises because of the environmental 
conditions such as sea waves, wind, currents. When the small boat is 
attached to the cable but still on the water, rough sea conditions may 
induce capsizing. Similarly, significant cable oscillations during hoisting 
can cause the small boat to collide with the mothership when the boat 
is out of water. Therefore, manual L&R operation is typically restricted 
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to calm sea states. Related research in Arctic navigation has shown that 
external environmental factors, such as sea ice thickness and concentra-
tion, significantly influence vessel following behaviour, emphasising the 
importance of environmental modelling in operational decision making 
(Shu et al., 2025).

Automating the L&R process requires prediction of future wave 
forces to evaluate collision and capsizing risks. The wave force act-
ing on the small boat depends on both sea surface elevation and vessel 
hydrodynamic characteristics. Sea surface elevation can be predicted 
by the Deterministic Sea Wave Prediction (DSWP) algorithm (Al-Ani 
et al., 2020).This method utilises wave radar measurements to construct 
a short-term wave prediction model. To cope with model uncertainty, 
an Adaptive Sliding Mode Observer has been developed, and has been 
demonstrated to be more effective than a Kalman Filter (Zhang et al., 
2020b, 2021). Alternative short-term forecasting approaches include 
Autoregressive Methods (Chen et al., 2022), Gaussian Process (Shi et al., 
2018), and Neural Networks (Pang et al., 2023). For L&R applications, 
these methods could be utilised as long as the prediction error is consid-
ered. Apart from the L&R problem, machine learning approaches such 
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as graph neural networks have recently been employed to predict cau-
sation in maritime accidents, offering data-driven insights into accident 
investigation (Gan et al., 2025).

A problem similar to the L&R operation is anti-swing control of a 
crane mounted on the ship. This topic has been extensively studied, with 
a comprehensive review provided in Cao and Li (2020). The standard ap-
proach is to utilise Proportional-Integral-Derivative (PID) control due to 
the simplicity of the scheme. Recently, an advanced combination of Par-
ticle Swarm Optimization-PID control was investigated for very rough 
sea conditions (Bozkurt and Ertogan, 2023). This approach, simulated 
based on a payload of 5 tons, achieved a swing reduction of 60%. This 
enhances safety compared to the scenario where control is disabled. An-
other widely adopted approach is Sliding Mode Control (SMC) because 
it has the capability of coping with uncertainties in the system (Qian 
et al., 2024; Zanjani and Mobayen, 2022). A recent scheme proposes an 
adaptive SMC scheme with an improved reaching law for a multi-cable-
system in Zhao et al. (2024). Compared to a Proportional-Derivative 
scheme, it offers a 77.5% improvement in error control for a 10-ton 
payload.

In this article, the focus is on autonomous L&R of a rescue vessel, 
specifically a small rigid-hulled inflatable boat (RHIB) to a mothership. 
To achieve safe and reliable operation, the control system must satisfy 
several key requirements.First, the cable swing angles must remain small 
throughout the operation to avoid collision. Second, the control strat-
egy must respect actuation limits, particularly the limitation of the cable 
tension. Third, the angular velocities must be constrained in the case 
of human occupation of the RHIB. Finally, the cable length must re-
duced in such a way that its final velocity is zero. Because in practice, 
L&R is mostly operated manually, there is limited literature describing 
the dynamics and control of the process. Zhang et al. (2022) modelled 
the problem as a 2D underactuated system under Sliding Mode Control 
(SMC). Their method relies on wave prediction to evaluate the feasibility 
of the operation. The simulation results show the capability of the con-
troller to shorten the cable while achieving zero terminal velocity. An 
integral SMC scheme is developed in Rout et al. (2024), and it demon-
strates robust success in the presence of rough sea states. To handle 
constraints and disturbances explicitly, a tube-based Model Predictive 
Control (TMPC) scheme is applied to a 2D model with consideration of 
the ship motion response in Zhang et al. (2023b). Although TMPC is ro-
bust to disturbances, the conventional TMPC suffers steady-states error 
in the presence of persistent disturbances. To address this, Zhang et al. 
(2023a) introduced a Sliding Mode Observer (SMO) to estimate distur-
bances and compensate for them within the robust MPC framework. In 
addition, the computational time of the combined TMPC-SMO scheme 
remains similar, as SMO is computationally cheap. Therefore, this paper 
will adopt this combined method to enable fully autonomous L&R.

Similar to the previous study (Zhang et al., 2023b, 2022), the con-
trol scheme proposed in this work is non-causal. This means that it re-
quires future wave prediction which in turn predicts the motion of the 
mothership as well as the wave forces acting on the system. This future 
information was incorporated in the controller for feasibility checks.

While both SMO and TMPC are mature techniques, their system-
atic combination remains novel. This is because combining a causal 
method like SMO with a non-causal framework like TMPC requires care-
ful handling of their interplay. Specifically, SMO is capable of providing 
a known, decreasing bound on the estimation error, which is critical 
for constructing the invariant tube required by TMPC. This non-causal 
bound from SMO informs TMPC to have less conservative constraint 
tightening. Therefore, it improves the control performance by reducing 
steady-state error in regulation tasks.

This is, to the best of the authors’ knowledge, the first attempt to 
adopt the prior published work in Zhang et al. (2023a) in the context 
of marine related problems. Moreover, this framework is particularly 
well-suited to the launch and recovery application, where waves are 
predictable. Since the SMO provides a noncausal bound on the estima-
tion error, wave prediction can be leveraged to further improve the ob-
server’s performance, resulting in a less conservative disturbance bound 
passed to the TMPC.

The contributions described in this paper are as follows:

a) The proposed control algorithm implements a SMO based MPC 
scheme from Zhang et al. (2023a) on a nonlinear time-varying sys-
tem.

b) The proposed control scheme enhances the robustness of marine L&R 
systems against uncertainties and ensures that collision is avoided 
through state constraints.

c) The implementation of the SMO in marine L&R reduces the bound 
of the disturbance that the TMPC has to handle, and thus lowers 
the steady-state error of the target cable length and velocities. This 
increases the accuracy of the operation.

The remainder of the article is structured as follows. Section 2 in-
troduces the problem formulation for the L&R system. Then, Section 3 
describes the formulation of the controller, observer, and their imple-
mentation. Section 4 provides simulation results and analysis. Finally, 
Section 5 concludes the paper.

2.  Problem formulation for L&R system

In this section, the dynamics for the marine L&R system is intro-
duced. The dynamics for the 2D L&R system is taken from Zhang et al. 
(2022). The reference frames for the system are defined in Fig. 1. They 
are the earth-fixed frame (𝑂0, 𝑥0, 𝑧0), mothership-fixed frame (𝑂1, 𝑥1, 𝑧1), 

Fig. 1. L&R system diagram. (a) Stage 1 - payload is on the water. (b) Stage 2 - payload is out of the water.
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Table 1 
Notations.

 Notation Definition

𝑑 Horizontal distance of crane w.r.t 𝑂1
ℎ Vertical distance of crane w.r.t 𝑂1
𝑚 Mass of the payload
𝛼 Roll angle of the mothership w.r.t 𝑂0
𝑥𝑚 Horizontal distance of 𝑂1 w.r.t 𝑂0
𝑧𝑚 Vertical distance of 𝑂1 w.r.t 𝑂0
𝑙 Cable length w.r.t 𝑂0
𝜃 Swing angle w.r.t 𝑂0
𝐹wave,𝑥 , 𝐹wave,𝑧 Horizontal/vertical component of wave forces acting on payload 

w.r.t 𝑂0
𝐹𝑇 Cable tension force w.r.t 𝑂0
𝜖𝜃 , 𝜖𝑙 Model uncertainties in the equation of motion w.r.t 𝑂0
𝑔 Gravitational acceleration w.r.t 𝑂0

and payload-fixed frame (𝑂2, 𝑥2, 𝑧2). There are two stages for the L&R 
procedure which here are named Stage 1 and Stage 2. The first stage 
commences when the payload is in the water subject to wave forces. The 
subsequent stage begins as the payload emerges from the water and it is 
no longer affected by wave forces. The notations and their correspond-
ing definition are explained in Table 1. The small angle approximation 
is employed in the dynamic formulation, which remains valid for swing 
angles within ±10 deg. This assumption is justified, as the system is ex-
pected to operate within this range to minimise the risk of collision. 
Since both stages has similar model form, they can be described as in 
Eqs. (1)–(5).

𝜃̈ = −2𝜃̇𝑙̇
𝑙

− 𝜃
𝑙
𝑔 − 1

𝑙
𝐷𝜃 + 𝜖𝜃 (1)

𝑙 = −
𝐹𝑇
𝑚

+ 𝑔 + 𝜃̇2𝑙 +𝐷𝑙 + 𝜖𝑙 (2)

where

𝐷𝜃 =

{

𝜃Ω̄𝑧 + Ω̄𝑥,  if 𝑙 ≥ 𝑙𝑠
𝜃Ω𝑧 + Ω𝑥,  if 𝑙 < 𝑙𝑠

(3)

𝐷𝑙 =

{

Ω̄𝑧 − 𝜃Ω̄𝑥,  if 𝑙 ≥ 𝑙𝑠
Ω𝑧 − 𝜃Ω𝑥,  if 𝑙 < 𝑙𝑠.

(4)

and
Ω̄𝑥 = 𝑥̈𝑚 + (−𝛼𝛼̈ − 𝛼̇2)𝑑 + (𝛼𝛼̇2 − 𝛼̈)ℎ − 𝐹wave,𝑥∕𝑚

Ω̄𝑧 = 𝑧̈𝑚 + (−𝛼𝛼̇2 + 𝛼̈)𝑑 + (−𝛼𝛼̈ − 𝛼̇2)ℎ − 𝐹wave,𝑧∕𝑚

Ω𝑥 = 𝑥̈𝑚 + (−𝛼𝛼̈ − 𝛼̇2)𝑑 + (𝛼𝛼̇2 − 𝛼̈)ℎ

Ω𝑧 = 𝑧̈𝑚 + (−𝛼𝛼̇2 + 𝛼̈)𝑑 + (−𝛼𝛼̈ − 𝛼̇2)ℎ.

(5)

The symbol 𝑙𝑠 in Eqs. (3)–(4) refers to the length at which the payload 
has been lifted out of the water. In reality, this is a time-varying variable 
dependent on the wave information (see Remark 1).

Eqs. (1) and (2) can be transformed into a nonlinear control affine 
state-space model as follows 
𝑝̇ = 𝑓 (𝑝) + 𝐺𝑢 +𝑤 (6)

where

𝑓 (𝑝) =

⎡

⎢

⎢

⎢

⎢

⎣

𝜃̇
𝑙̇

− 2𝜃̇𝑙̇
𝑙 − 𝜃

𝑙 𝑔 − 1
𝑙 𝐷𝜃

𝑔 + 𝜃̇2𝑙 +𝐷𝑙

⎤

⎥

⎥

⎥

⎥

⎦

, 𝐺 =
[

0, 0, 0,− 1
𝑚

]𝑇
, 𝑤 =

[

0, 0, 𝜖𝜃 , 𝜖𝑙
]𝑇 (7)

In Eq. (6), the states are 𝑝 =
[

𝜃; 𝑙; 𝜃̇; 𝑙̇
] while the control input is 𝑢. Both 

are subject to state constraints, 𝑝 ∈ ℙ, and input constraint, 𝑢 ∈ 𝕌. Sim-
ilarly, the external disturbance, 𝑤, is bounded by the set 𝕎. Since the 
proposed TMPC scheme utilises a discrete system, the state-space model 
is discretised by the method described in Verschueren et al. (2022).
Remark 1. The variable 𝑙𝑠 in Eqs. (3) and (4) represents the cable length 
at which the payload is lifted out of the water surface. This value is in-
fluenced by the time-varying wave elevation. During typical launch and 

recovery operations, such variations in 𝑙𝑠 can be reasonably predicted 
based on the wave prediction methods. Furthermore, the variation in 𝑙𝑠
does not compromise the overall stability of the proposed control system 

3.  Tube-based model predictive control for launch and recovery 
system based on sliding mode observer

In this section, a sliding mode observer is presented to address un-
certainties within the robust TMPC framework. The combination of the 
TMPC-SMO method and the constraint tightening technique is intro-
duced. Subsequently, the implementation of the proposed algorithm is 
discussed in detail.

3.1.  Sliding mode observer (SMO) formulation

The main idea of using a SMO is to reduce the disturbance that the 
TMPC has to handle. This is achieved by compensating the controller 
with the estimated matched disturbance (𝑤̂𝑚𝑎). A SMO was selected to 
create 𝑤̂𝑚𝑎 since it has fast convergence and it can provide non-causal 
information to the MPC. In this subsection, the derivation of 𝑤̂𝑚𝑎 follows 
the same approach as in Zhang et al. (2023a). Firstly, the sliding variable 
𝑠 is defined as 
𝑠 = 𝑝 − 𝜆 (8)

where 𝜆(0) is selected to make 𝑠(0) = 0 and the variable 𝜆 is defined as 
𝜆̇ = 𝑓 (𝑝) + 𝐺𝑢 − 𝑣(𝑠) (9)

with 𝑣(𝑠) as the injection signal depending on 𝑠. Based on (6), (8), and
(9), it follows 
𝑠̇ = 𝑝̇ − 𝜆̇ = 𝑤 + 𝑣(𝑠) (10)

The 𝑖th component of 𝑣(𝑠) is chosen as 
{

𝑣𝑖(𝑠) = −𝛾 sign
(

𝑠𝑖
)

|

|

𝑠𝑖||
1
2 + 𝜆0𝑖

𝜆̇0𝑖 = −𝛽 sign
(

𝑠𝑖
)

(11)

where 𝜆̇0𝑖(0) = 0, and 𝛾 > 0 and 𝛽 > 0 are constant gain parameters. If 
a new vector 𝜆̃0 = 𝜆0 +𝑤 is defined, then combined with (10), the 𝑖th 
component of 𝑠̇ can be written in the following super-twisting structure. 
{

𝑠̇𝑖 = 𝜆̃0𝑖 − 𝛾 sign
(

𝑠𝑖
)

|

|

𝑠𝑖||
1
2

̇̃𝜆0𝑖 = 𝑤̇𝑖 − 𝛽 sign
(

𝑠𝑖
)

(12)

Moreover, choosing the estimated disturbance as 𝑤̂ = −𝜆0 yields 𝜆̃0 =
𝑤 − 𝑤̂. Therefore, 𝜆̃0 becomes the estimation error of the disturbance 
and it is bounded and converges to zero in finite time according to Zhang 
et al. (2023a). In the case of the L&R system described in (6), 𝑤̂𝑚𝑎 = 𝑤̂4 =
𝜖𝑙. This implies the fourth component of the estimated disturbance, 𝑤̂.

3.2.  Tube-based MPC based on SMO

The purpose of robust TMPC is to constrain the trajectory of the 
uncertain system inside a tube centered around the nominal trajectory 
without disturbances. In the controller, the assumption is that full-state 
measurement is available. To formulate the controller, a nominal L&R 
model is defined based on (6) without the external disturbance (𝑤): 
specifically 
̇̄𝑝 = 𝑓 (𝑝̄) + 𝐺𝑢̄ (13)

where 𝑝̄ and 𝑢̄ are the nominal states and nominal control input respec-
tively. The objective of the nominal MPC is to minimise the nominal 
cost function (𝐽 ) described as 

𝐽 =min
𝑢̄

𝑁−1
∑

𝑘=1
(𝑝̄(𝑘) − 𝑝𝑟(𝑘))𝑇𝑄(𝑝̄(𝑘) − 𝑝𝑟(𝑘)) + 𝑢̄𝑇 (𝑘)𝑟𝑢̄(𝑘) (14)

Ocean Engineering 340 (2025) 122354 

3 



Wijaya et al.

where 𝑄 and 𝑟 are the weighting matrices of the states and control input. 
Moreover, Eq. (14) is subject to the model in (13), and 
𝑝̄ ∈ ℙ̄ ⊂ ℙ, 𝑢̄ ∈ 𝕌̄ ⊂ 𝕌, 𝑝𝑟 ∈ ℙ𝑟, ℙ̄ = 𝜇1(𝑘) ℙ, 𝕌̄ = 𝜇2(𝑘) 𝕌𝑚𝑝𝑐 (15)

where 𝑁 is the prediction horizon length, both 𝑝̄ and 𝑢̄ are constrained 
by the tightened set ℙ̄ and 𝕌̄, and the reference trajectory (𝑝𝑟) is also 
bounded by the set ℙ𝑟. The scalars, 𝜇1(𝑘) and 𝜇2(𝑘), are positive time-
varying parameters that tighten the constraint set ℙ and 𝕌𝑚𝑝𝑐 . This is 
to ensure the constraint satisfaction of the uncertain system over the 
bounded disturbance sequence Mayne et al. (2011). In addition, the con-
straint set 𝕌𝑚𝑝𝑐 is a tightened constraint set from the original constraint 
𝕌 based on the compensation from the SMO.
𝕌𝑚𝑝𝑐 ∶=

{

𝑢𝑚𝑝𝑐 ∈ 𝑅𝑛𝑢 ∶ |𝑢𝑚𝑝𝑐 | ≤ 𝑢𝑚𝑎𝑥 − 𝑚𝑤𝑚𝑎,𝑚𝑎𝑥
}

(16)

where 𝑛𝑢 is the dimension of the control input, 𝑢max is the maxi-
mum value of the original bound for the control input and 𝑤𝑚𝑎,max is 
the maximum value of the matched disturbance. Unlike in the typi-
cal nonlinear TMPC, the nominal constraint set is time-varying as the 
SMO indirectly provides information about the size of the set. This re-
duces the conservatism of the solution while ensuring constraint sat-
isfaction. The procedure to calculate the tightening parameters is dis-
cussed in Remark 2. The solution of the optimisation problem in (14) 
is a sequence of nominal control inputs calculated at timestep 𝑘, 𝐮̄ =
[𝑢̄(𝑘), 𝑢̄(𝑘 + 1),… , 𝑢̄(𝑘 +𝑁 − 1)]𝑇 . The applied control input at timestep 
𝑘 to the nominal system is 𝑢̄∗ = 𝑢̄(𝑘), and it results in the nominal states 
𝑝̄∗ = 𝑝̄(𝑘). Then, 𝐮̄ is recalculated for the next timestep.

To enhance the robustness of the uncertain system against distur-
bances, an ancillary controller is implemented. The ancillary controller 
maintains the trajectories of the uncertain system revolving around the 
nominal system bounded by a tube. It is achieved by introducing a cost 
function as follows

𝐽 =min
𝑢𝑚𝑝𝑐

𝑁−1
∑

𝑘=1
(𝑝(𝑘) − 𝑝̄∗(𝑘))𝑇𝑄(𝑝(𝑘) − 𝑝̄∗(𝑘))

+ (𝑢𝑚𝑝𝑐 (𝑘) − 𝑢̄∗(𝑘))𝑇 𝑟(𝑢𝑚𝑝𝑐 (𝑘) − 𝑢̄∗(𝑘)) (17)

The minimization in (17) is also subject to
𝑝 ∈ ℙ, 𝑢𝑚𝑝𝑐 ∈ 𝕌𝑚𝑝𝑐 (18)

and the dynamical system in (6) without the external disturbances. 
In the ancillary controller calculation, the disturbance (𝑤) is omitted 
from the uncertain system (6) and the deviation of the uncertain tra-
jectory is stabilised by the resultant controller. Similar to the nom-
inal controller, the solution of the optimisation problem in (17) is 
a sequence of robust control inputs calculated at timestep 𝑘, 𝐮𝐦𝐩𝐜 =
[

𝑢𝑚𝑝𝑐 (𝑘), 𝑢𝑚𝑝𝑐(𝑘 + 1),… , 𝑢𝑚𝑝𝑐 (𝑘 +𝑁 − 1)
]𝑇  and the resulting control in-

put at timestep 𝑘 is 𝑢∗𝑚𝑝𝑐 = 𝑢𝑚𝑝𝑐 (𝑘).

Remark 2. In the nonlinear TMPC problem, the constraint set (ℙ̄, 𝕌̄) 
is tightened by a constant scalar parameter found by utilising Monte 
Carlo simulation Mayne et al. (2011). However, in the current TMPC-
SMO problem, the tightened constraint set is time-varying as a result 
of the control input compensation from the SMO. Therefore, a modified 
strategy to find the time-varying parameter is introduced as follows

1. Before the tightened set is calculated, the time-varying parameters 
are held constant, 𝜇1 = 𝜇2 = 1.

2. Monte Carlo simulation is employed for the closed-loop system with 
the compensation from the SMO for various disturbance sequences. 
The maximum resultant spread of trajectories (2𝑑𝑝,𝑘 and 2𝑑𝑢,𝑘) is cal-
culated for each state and control input.

3. For time step k, the constraints for each nominal state and control 
input is tightened by 𝑑𝑝,𝑘 and 𝑑𝑢,𝑘 respectively.

4. Set the current timestep to k+1, Steps a) to c) are then repeated 
until the timestep reaches the end of simulation horizon (𝑁𝑠).

Remark 3. As explained in Remark 2, the tightening parameters (𝜇1 and 
𝜇2) are computed offline using Monte Carlo simulations, as described in 
Mayne et al. (2011). While adaptive or generalised tightening methods 
are possible, they typically rely on strong assumptions or bounds. More-
over, the Launch and Recovery system considered in this study operates 
within a relatively narrow region. Introducing additional assumptions 
or bounds can lead to unnecessary conservatism and potentially degrade 
the optimality of the control performance. The Monte Carlo-based ap-
proach offers a practical alternative, since they do not require additional 
assumptions or bound. Moreover, the computational burden is manage-
able offline with standard computer. 

Remark 4. The stability and feasibility of the TMPC scheme can be 
imposed by adding a terminal cost and constraint with the standard 
proof for nonlinear TMPC from Mayne et al. (2011) 

The tuning parameters of the nonlinear TMPC are as follows Mayne 
et al. (2011): 1) the weighting gains, 𝑄 and 𝑟, these gains could be tuned 
separately for the nominal and robust MPC to give a better performance 
in attenuating the disturbances; 2) The prediction horizon step (𝑁), 
could be reduced in the ancillary controller for faster computational 
time but the prediction horizon time should not be altered; 3) The pre-
diction horizon time could be tuned but the duration generally depends 
on the timescale of the particular system dynamics and disturbances.

3.3.  Implementation

The implementation of the TMPC-SMO in the L&R operation is de-
scribed in Algorithm 1 and Fig. 2. To combine the TMPC and the SMO, 
the resulting compensated control input (𝑢) applied to the system takes 
the form 
𝑢 = 𝑢𝑚𝑝𝑐 + 𝑚𝑤̂𝑚𝑎 (19)

Algorithm 1 TMPC based SMO for marine L&R control.
1: Initialisation: model parameters, initial states (𝑝0), TMPC weight

  parameters (𝑄, 𝑟), constraints set (ℙ,𝕌), constraints tightening
  parameters (𝜇1, 𝜇2), SMO parameters (𝛾, 𝛽).

2: Wave Prediction: reset the current time to be zero, predict the sea
  wave and mothership response to give (Ω̄𝑥, Ω̄𝑧,Ω𝑥,Ω𝑧).

3: for 𝑖 from 0 to simulation horizon (𝑁𝑠), do
4:  Nominal control: compute the nominal state ̄𝒑 and control input

 𝒖̄ over [𝑡𝑖, 𝑡𝑖 +𝑁𝑠𝑇𝑠
]

.
5:  SMO: for given 𝒑 and 𝒖, use the observer to find 𝑤̂𝑚𝑎
6:  TMPC-SMO: using Monte Carlo simulations, compute the actual

  system states 𝒑 and control input 𝒖𝒎𝒑𝒄 that will be compensated
  by the observer so that 𝑢 = 𝑢𝑚𝑝𝑐 + 𝑚𝑤̂𝑚𝑎 over 

[

𝑡𝑖, 𝑡𝑖 +𝑁𝑠𝑇𝑠
]

.
7:  Constraint tightening parameters update: at each time step

  (𝑡𝑖), calculate the maximum resultant spread of the trajectories
  and update the 𝜇1(𝑖), 𝜇2(𝑖)

8: end for
9: Constraint set update: update the nominal constraint set to be

 ℙ̄ = 𝜇1(𝑖) ℙ, 𝕌̄ = 𝜇2(𝑖) 𝕌𝑚𝑝𝑐
10: Nominal control with tightened constraint: run the nominal

  control with constraint set ℙ̄, 𝕌̄, and check if the MPC is
  feasible.

11: if Nominal control with tightened constraint is feasible, then
12:  Robust TMPC-SMO: check the feasibility of the scheme via

  simulation over all the uncertain disturbances sequence
13: else repeat step 2 when 0.5 s has passed
14: end if
15: Real-time implementation: using step 10 as the reference

  trajectory, compute the MPC control input 𝑢, the observed
  disturbance 𝑤̂𝑚𝑎 online, and transmits the compensated control
  input to the L&R System
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Fig. 2. TMPC-SMO control scheme for real-time L&R system.

Table 2 
Simulation parameters.
 Parameter  Notation  Value
 Mass of the payload 𝑚  1040 kg
 TMPC sampling time 𝑇𝑠,𝑚𝑝𝑐  0.1 s
 Prediction horizon 𝑁  20 steps
 Simulation horizon 𝑁𝑠𝑖𝑚  50 steps
 weighting matrix of states 𝑄 diag(0, 2000, 0.5, 1500)
 weighting matrix of input 𝑟 3 × 10−5

 SMO sampling time 𝑇𝑠,𝑠𝑚𝑜  0.0001 s
 SMO parameter 𝛾, 𝛽  1,1

This compensation reduces the bound of disturbance that the TMPC has 
to handle. As it decreases, the resulting steady-state error reduces. In 
addition, a feasibility check is proposed to verify the feasibility of MPC. 
If it is not feasible, for instance, due to harsh wave conditions, the con-
troller will wait for 0.5 s before checking the feasibility again.

4.  Numerical results and discussion

In this section, the results of the simulation for the proposed control 
scheme are presented. The simulation framework is first introduced, fol-
lowed by a performance evaluation of the SMO. The analysis is divided 
into two parts. In Part 1, the performance of the proposed TMPC-SMO 
scheme is compared against the TMPC. Relevant performance metrics 
are defined, and the TMPC-SMO is further assessed under varying lev-
els of mothership motion prediction error to evaluate its robustness. In 
Part 2, a Monte Carlo simulation is conducted across different initial 
conditions to examine the robustness of the control scheme.

The simulation was excecuted in Matlab with an Intel i7-7500U CPU. 
For the MPC optimisation calculations, acados was utilised (Verschueren 
et al., 2022) which offers high-performance fast optimization that can be 
directly implemented for embedded applications. The nonlinear optimal 
control problem from MPC is discretised using the multiple shooting ap-
proach as it has good convergence. Then, for fast real-time application, 
the problem is converted to a Sequential Quadratic Problem (SQP). To 
implement this, a QP sub-problem is defined and solved efficiently by 
a high-performance interior-point method (HPIPM) solver from Frison 
and Diehl (2020).

Table 2 shows the parameters that are utilised in the simulation. The 
gains for the SMO (𝛾, 𝛽) are designed such that 𝑠𝑖 = 𝑠̇𝑖 = 0 in Eq. (12) in 
finite time (Nagesh and Edwards, 2014). While increasing these gains 
accelerates the convergence of the prediction error, it may also amplify 

chattering. Therefore, a trade-off exists, and the tuning is performed to 
achieve a balance between convergence speed and chattering. Based on 
the simulation horizon and sampling time, the total time of the simu-
lation is 5s. This is chosen because a larger time window in real-time 
L&R may cause the system to encounter a larger wave train which will 
affect the feasibility of the controller. Although this could be avoided by 
conducting a feasibility check, in this simulation, it is assumed that the 
feasibility of the mission has already been checked and the L&R control 
scheme is ready to be deployed. The gains (𝑄, 𝑟) of the TMPC are de-
signed such that cable length can be decreased to the target in under 5 s. 
For the gain related to the swing angle and its derivative, it was chosen 
to be small as the system is underactuated in these states. Here, for con-
venience, the parameters of the MPC are identical for both nominal and 
ancillary controller.

For safe L&R operation, the constraint for the states and con-
trol input of the TMPC scheme are given in (20). This is based 
on the literature in Zhang et al. (2022) and they are defined to 
avoid collision with mothership. The initial conditions of the states 
are 𝑝0 =

[

4 deg; 6 m; 0 deg/s; 0 m/s
]

, and the target states are 𝑝𝑟 =
[

0 deg; 4 m; 0 deg/s; 0 m/s
]

. 
⎡

⎢

⎢

⎢

⎢

⎣

−10 deg
0 m

−10 deg/s
−1.6 m/s

⎤

⎥

⎥

⎥

⎥

⎦

≤ 𝑝 ≤

⎡

⎢

⎢

⎢

⎢

⎣

10 deg
10 m

10 deg/s
1.6 m/s

⎤

⎥

⎥

⎥

⎥

⎦

|𝑢| ≤ 15, 000 N

(20)

The external disturbances (𝑤) due to modelling, wave prediction er-
rors, wind, and current disturbances are assumed to be sinusoidal func-
tions as described below 
𝑤3 = 𝜖𝜃 = 𝐴𝜖𝜃 sin 𝑎𝑡

𝑤4 = 𝜖𝑙 = 𝐴𝜖𝑙 sin 𝑎𝑡.
(21)

where, for each Monte Carlo iteration, the amplitude of the disturbance 
is a randomly selected constant 𝐴𝜖𝜃 ∼  (0, 0.5), 𝐴𝜖𝑙 ∼  (0, 0.5) and the 
frequency of the sinusoidal function is 𝑎 = 1.

The result of the SMO on one of the Monte Carlo simulation is shown 
in Fig. 3(a). It can be observed that the estimated disturbance is in good 
agreement with the actual disturbance. The estimation error also con-
verges to almost zero in under one second. As the L&R operation is un-
der 5 s, fast convergence of the estimation error is highly beneficial. 
Additional simulations of the SMO with an initial prediction error of 
0.2 are presented in Fig. 3(b). The observer converges in less than 0.1,s, 
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Fig. 3. Sliding mode observer performance to estimate matched disturbance. (a) 𝑤̂𝑚𝑎 = 𝑤4 and the estimation error (𝑤𝑚𝑎 − 𝑤̂𝑚𝑎) with 𝐴𝜖𝑙 = −0.403 for one of the 
Monte Carlo simulation. (b) initial estimation is different from the actual matched disturbance.

indicating that initial estimation errors have minimal impact on its per-
formance.

The complete simulation of the proposed scheme is divided into two 
parts:

1. Part 1: Comparison of the proposed TMPC-SMO scheme with a tra-
ditional nonlinear TMPC without the observer.

2. Part 2: Monte Carlo simulation of the proposed TMPC-SMO scheme 
with various initial states to demonstrate the robustness of the 
scheme.

In Part 1 of the simulation, TMPC-SMO scheme is compared with tra-
ditional nonlinear TMPC without an observer. It is important to clarify 
that this paper does not aim to benchmark the SMO against other ob-
server designs. Rather, the focus is on demonstrating that only the SMO 
makes the proposed integration with Tube-based MPC (TMPC) feasible 
in the current formulation. This is because the SMO can be designed to 
provide a known and decreasing bound on the estimation error that can 
construct an invariant tube for TMPC. This approach follows the same 
rationale outlined in previous work published in Zhang et al. (2023a). 
Therefore, comparisons with other observer methods are not included, 
as they fall outside the scope of this specific contribution.

Figs. 4–7 show the comparison of the TMPC-SMO and TMPC schemes 
with 40 Monte Carlo simulations. The blue vertical line separates the 
two stages i.e. when the small boat is on or out of water, while the green 
dotted line represents the constraints. Since the system is underactuated, 
it is not possible to bring the angle to the target angle. Therefore, both 
the swing angle and the angular velocities are oscillatory. Nevertheless, 
the constraints are respected by the states and this shows the advan-
tage of utilising the proposed control scheme to avoid a small boat col-
lision with the mothership (even if the system is underactuated). For 
both length and velocity, the TMPC-SMO scheme shows minimal devia-
tion from the nominal control trajectory compared to the TMPC scheme. 
This demonstrates its ability to eliminate matched disturbances and it 
reduces the steady-state error of the system. All the schemes also com-
plete the operation in under 5s which is acceptable for a L&R mission.

The control input for the simulation is shown in Fig. 8. Similar to the 
states, the input is within the constraint of 15000N which is acceptable. 
However, the constraint in the TMPC-SMO is not active as a result of 
multiple constraint tightening through the Monte Carlo method and the 
compensation provided by the SMO.

The numerical performance of the controller can be quantified using 
a RMSE method as follows

RMSE =

√

√

√

√

∑𝑁𝑠𝑖𝑚
𝑖=𝑘

(

𝑛𝑖 − 𝑛𝑟
)2

𝑁𝑠𝑖𝑚 − 𝑘 + 1
(22)

Table 3 
RMSE and maximum steady state error from the simulation.
 States  RMSE (𝒌 = 𝟒𝟓)  Maximum value

 TMPC-SMO  TMPC  TMPC-SMO  TMPC
𝜃  3.66 deg  3.63 deg  5.58 deg  5.56 deg
𝑙  0.0065m  0.025m  0.01m  0.06m
𝜃̇  6.81 deg/s  6.68 deg/s  8.68 deg/s  8.56 deg/s
𝑙̇  0.016m/s  0.025m/s  0.03m/s  0.066m/s

where 𝑘 is the starting timestep for the performance calculation, 𝑛𝑖 de-
notes the i-th value of the variable and 𝑛𝑟 is the target variable. The 
RMSE for each state are presented in Table 3 where the RMSE is calcu-
lated for the last half-second of the simulation (𝑘 = 45). The results sug-
gest that the RMSE of the cable length for the TMPC-SMO is 0.0065m 
while the TMPC only achieves 0.025m. This could be considered as 
the steady-state error and it demonstrates that the TMPC-SMO scheme
manages to improve the tracking performance and reduce the error for 
the states that have matched disturbances. Moreover, the RMSE of the 
swing angle and angular velocity remains within the constraints, ensur-
ing the safety of the proposed control scheme. In addition to the RMSE 
calculations, the maximum value of the last half-second of the simula-
tion is also investigated in Table 3. It shows that the TMPC-SMO is ef-
fective in reducing the maximum steady state error of the cable length 
compared to TMPC.

Apart from the RMSE analysis, three additional performance metrics 
used are the Control Effort (CE), computation time, and the Integral of 
Time-weighted Absolute Error (ITAE). The Control Effort quantifies the 
total energy of control actions applied over the simulation, computed 
as the sum or integral of squared control inputs, which is defined as 
follows 

CE =
𝑁𝑠𝑖𝑚
∑

𝑘=1
|𝑢(𝑘)|2Δ𝑡 (23)

where Δ𝑡 is the sampling time. On the other hand, ITAE is calculated 
with respect to the nominal trajectory to highlight the tracking perfor-
mance of the scheme. This metric penalises errors that persist over time 
and is defined as: 

ITAE =
𝑁𝑠𝑖𝑚
∑

𝑘=1
𝑡(𝑘)|𝑒(𝑘)|Δ𝑡 (24)

where 𝑒(𝑘) is the error between the nominal trajectory and the robust 
control trajectory. Table 4 presents a quantitative comparison between 
the TMPC and the proposed TMPC-SMO controller in multiple perfor-
mance metrics. In terms of tracking accuracy, the ITAE values for 𝑙 and 
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Fig. 4. Nominal control and 40 Monte Carlo robust control trajectories of the swing angle, |𝜃| ≤ 10 deg. (a) TMPC-SMO. (b) TMPC.

Fig. 5. Nominal control and 40 Monte Carlo robust control trajectories of the cable length, 0m ≤ 𝑙 ≤ 10 m. (a) TMPC-SMO. (b) TMPC.

Fig. 6. Nominal control and 40 Monte Carlo robust control trajectories of the cable velocity, |𝑙̇| ≤ 1.6 m/s. (a) TMPC-SMO. (b) TMPC.

𝑙̇ are significantly lower in TMPC-SMO compared to TMPC, indicating 
improved disturbance attenuation and better trajectory tracking of the 
nominal path. Meanwhile, the ITAE values for 𝜃 and 𝜃̇ remain similar 
between both approaches. This suggests that the proposed scheme does 
not adversely affect the angular dynamics.

Regarding the control effort, TMPC-SMO increases the cost to ap-
proximately 0.1% relative to TMPC. This slight increase can be justi-
fied by the added compensation term, which increases the actuation 
commands. However, the difference is negligible and remains within

actuator limits. Furthermore, the average computation time required to 
solve the optimisation problem in (17) and (18) is also included in the 
table and is presented as a boxplot in Fig. 9. Although TMPC-SMO shows 
slightly longer mean computation time, both methods achieve solution 
times well below the MPC sampling interval of 0.1 s. This demonstrates 
the feasibility of deploying the controller in a real-time setting.

Additional simulations are conducted to evaluate the performance 
of the proposed TMPC-SMO scheme under varying wave prediction er-
rors. The prediction error is introduced as an error to the predicted
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Fig. 7. Nominal control and 40 Monte Carlo robust control trajectories of the swing angular velocity, |𝜃̇| ≤ 10 deg/s. (a) TMPC-SMO. (b) TMPC.

Fig. 8. Nominal control and 40 Monte Carlo robust control trajectories of the control input, |𝑢| ≤ 15, 000 N. (a) TMPC-SMO. (b) TMPC.

Table 4 
Comparison of TMPC and TMPC-SMO performance based 
on ITAE, mean computation time, and CE.
 Metric  TMPC  TMPC-SMO
 ITAE 𝜃  2.2406  2.2656
 ITAE 𝑙 𝟎.𝟐𝟎𝟕𝟑 𝟎.𝟎𝟎𝟑𝟐
 ITAE 𝜃̇  2.5047  2.3998
 ITAE 𝑙̇  0.2417  0.0351
 Control Effort (CE) 5.319 × 108 5.324 × 108

 Mean Computation Time (ms)  0.821  1.243

Fig. 9. Boxplot of the online computation time for TMPC-SMO and TMPC. Red 
line is the median.

mothership motion terms (Ω̄𝑥, Ω̄𝑧, Ω𝑥, Ω𝑧), defined as Ω =
Ω
(

1 + (0, 𝜎)
)

, where  (0, 𝜎) is a Gaussian distribution with zero mean 
and standard deviation 𝜎. In addition, Gaussian noise is injected into 
the signal with three different signal-to-noise ratios, SNR, (0 dB, 10dB, 
20dB). These levels were chosen because they sufficiently capture the 
typical range of noise magnitudes encountered in short-term wave pre-
diction (a few seconds of prediction horizon). Moreover, three predic-
tion standard deviations were tested with 𝜎 = 0.05, 0.1, 0.2.

The resulting ITAE values are shown in Fig. 10 as a boxplot. The re-
sults show that the ITAE for 𝜃 and 𝜃̇ remains relatively similar to changes 
in SNR and prediction error. In contrast, the ITAE for 𝑙 and 𝑙̇ increases 
with larger prediction errors and lower SNRs, as expected due to more 
erroneous predicted motion. Nevertheless, the maximum ITAE values 
for 𝑙 and 𝑙̇ remain around 0.63 and 0.71, respectively, which are within 
acceptable values. Performance only degrades slightly due to the strong 
robustness of the TMPC. By incorporating SMO, robustness against wave 
prediction error is fully considered.

In Part 2, Monte Carlo simulations with different initial conditions 
for cable length and swing angle are investigated. The variations are 
±10% for the swing angle and ±4% for the cable length. Combinations 
of four initial swing angles and four initial cable lengths are investigated 
with 16 various disturbance sequences. The number of disturbance se-
quences is less than previously to save computational time. In total, 
there are 4 × 4 × 16 = 256 trajectories to validate the robustness of the 
TMPC-SMO scheme. All the controller and observer parameters are the 
same as previously except for the constraint of cable length velocities. 
This constraint was relaxed to ±3 m/s but it remains within a reason-
able range for L&R. The simulation results are presented in Figs. 11 and 
12. The separation line between Stage 1 and Stage 2 is not included, as
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Fig. 10. Boxplot of ITAE for TMPC-SMO with different SNR and prediction std. (a) 𝜃 and 𝜃̇. (b) 𝑙 and 𝑙̇.

Fig. 11. 256 Monte Carlo robust control trajectories with different initial conditions and disturbance sequences. (a) swing angle, 𝜃. (b) swing angle velocity, 𝜃̇.

Fig. 12. 256 Monte Carlo robust control trajectories with different initial conditions and disturbance sequences. (a) cable length, 𝑙. (b) cable length velocity, 𝑙̇.

variations in initial conditions result in small differences in the time 
required to extract the RHIB from the water. It can be observed that 
the cable length successfully achieves the target in all trajectories. Ad-
ditionally, all state constraints were respected, indicating that no colli-
sion occurs. In particular, the swing angle velocity constraint is active 
in Fig. 11(b). The results in Table 5 indicate that the mean values of 
𝜃 and 𝜃̇ remain within the specified constraints at the final simulation 
step. Meanwhile, the mean values of 𝑙 and 𝑙̇ are close to their respective 

targets of 4m and 0m/s. Despite varying initial conditions, the standard 
deviations remain small across all states, indicating that the controller 
has limited sensitivity to initial states variation.

It is important to note that the proposed approach relied on a 2D 
model. The use of a 2D model in the 𝑥𝑧-plane with roll dynamics was 
justified by typical launch and recovery conditions, where the ship is 
oriented bow- or stern-on to the waves to reduce motion and prevent 
sea sickness. In this orientation, most excitation occurs in the pitch
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Table 5 
Mean and standard deviation of the Monte Carlo sim-
ulation with different initial conditions. The values 
are computed at the final step of the simulation.
    States  mean  std  
 𝜃 (deg)  1.7411  0.5102 
 𝜃̇ (deg/s) -8.2140  0.5043 
 𝑙 (m)  4.0352  0.0526 
 𝑙̇ (m/s)  0.0629  0.1270 

direction, where oscillations are minimal due to the ship’s large mo-
ment of inertia. As the crane is mounted on the side, roll becomes the 
critical angle for collision avoidance. Therefore, selecting the roll angle 
as the 2D model is justified. Although yaw motion can affect the small 
boat’s orientation, it is generally uncontrollable in single-point recovery 
unless a mechanical locking mechanism is implemented at the crane tip. 
Effects outside the 2D plane can be lumped into the disturbance term, 
𝜖, and compensated through the robust control design. Extending the 
framework to a full 3D dynamic model, including yaw and lateral forces, 
remains a relevant direction for future research.

For real-time implementation, several practical considerations must 
be addressed. The current control design assumes full-state availability. 
In practical marine environments, not all states are directly measurable, 
and sensor measurements are subject to noise. To address this, a state 
observer such as the Extended Kalman Filter (EKF) can be integrated 
to estimate unmeasured states while accounting for sensor noise and 
measurement uncertainty. Additionally, the current controller outputs 
force commands, whereas in actual launch and recovery scenarios, the 
actuator responsible for generating this force is an electric motor. Most 
motors, however, are designed to control position or speed rather than 
force directly. Consequently, an additional transmission system must be 
modeled and controlled. This includes linking the electric signal through 
the motor, gearbox, and drum, and ultimately to the pulley cable so that 
the commanded force can be realised as cable tension force.

5.  Conclusions

This paper investigated a robust TMPC-SMO scheme for marine L&R 
in the presence of external disturbances from wind, current, predic-
tion, and model error. The proposed scheme checks the feasibility of the 
controller with the future wave prediction before commencing the mis-
sion. The proposed disturbance observer converges in finite time with 
small estimation error. Moreover, the combined controller and observer 
achieved safe recovery within 5s with a very small cable length error. 
Future work will focus on refining the model to account for 3D effects 
(yaw and pitch motion), crane dynamics, and implementation of the 
controller in a hardware simulator or scaled prototype system.
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