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Abstract—The rise of the Internet of Medical Things (IoMT)
in healthcare brings benefits like continuous monitoring, remote
patient care, and data-driven treatments. However, it also poses
cybersecurity risks. While prior research has investigated this
issue, it has not looked at advanced wearable sensor nodes
that use combination of Bluetooth Low Energy (BLE) with
other wireless protocols. In this paper we conduct a black-
box audit of wearable sensor nodes for exploring vulnerabilities
associated with them. We use a systematic auditing approach
to (1) investigate whether security attacks are effective against
wearable sensor nodes, (2) group the vulnerabilities based on
susceptibility to certain types of attacks, and (3) provide an
in-depth gap analysis of the devices’ security behaviour. We
develop and release an approach for semi-automated wearable
sensor nodes experimentation to reveal their response to common
security threats. We perform hundreds of experiments using
popular commercial wearable sensor nodes when deployed in an
IoMT testbed. Our results indicate not only that these devices
are vulnerable to common security attacks, but also their critical
security gaps jeopardize patient safety and data integrity.
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I. INTRODUCTION

The Internet of Medical Things (IoMT) offers substan-
tial benefits such as continuous monitoring, remote patient
management, and data-driven interventions. However, it also
presents significant cybersecurity risks as many IoMT devices
prioritize functionality and ease of deployment over robust
security measures, leaving them more exposed to potential
cyberattacks [1]. Among IoMT devices, wearable sensor nodes
are becoming increasingly popular due to their ability to
provide real-time health data, improve patient engagement,
and facilitate personalized healthcare [2]. The global market
for wearable sensor nodes was valued at $33.85 billion in
2023, with a forecasted Compound Annual Growth Rate
(CAGR) of 25.66% from 2024 to 2030 [3]. By 2045, 1
in 8 adults, totaling around 783 million individuals, will be
diagnosed with diabetes, marking a 46% increase [4]. These
individuals increasingly rely on Continuous Glucose Monitors
(CGMs) that connect with other sensor nodes and applications,
forming a cohesive IoMT ecosystem. This integration enables
real-time data exchange and remote management of glucose
levels, enhancing patient care and promoting proactive health
interventions.

Wearable sensor nodes are typically connected with smart-
phones via Bluetooth Low Energy (BLE) [5], making them
susceptible to cybersecurity threats such as data breaches,
unauthorized access, and device tampering. Compromised
devices especially the wearable sensor nodes within the

Operational Technology (OT) environment [6] threaten pa-
tient privacy and safety. OT encompasses the hardware and
software systems responsible for detecting and managing
changes through direct monitoring and control of physical
devices, processes, and events in healthcare settings. A recent
ransomware attack on Change Healthcare exemplifies these
threats, significantly disrupting the U.S. healthcare system by
causing operational shutdowns that affected pharmacies and
hospitals [7].

There has been public and regulatory scrutiny of cyber-
security in wearable sensor nodes. Kirk et al. [8] reveal
critical vulnerabilities in insulin pumps, including insecure
communication protocols, inadequate authentication measures,
and the lack of encryption. These could easily be exploited
to remotely manipulate insulin delivery, potentially leading
to severe hypoglycemic or hyperglycemic events in patients.
Numerous research efforts have studied vulnerabilities and
threats in wireless communications, particularly concerning
wearable and implantable sensor nodes, as well as general
IoMT applications [5], [9]–[27]. However, there is limited
research on vulnerabilities of advanced wearable sensor nodes
such as those combining BLE with other wireless protocols,
that are being increasingly adopted by wearable sensor nodes’
manufacturers to enhance security [28].

Melamed [29] modifies data transmission from a smart-
watch to a device using tools for replay and on-the-fly data
modifications. Zhang et al. [30] emphasize the necessity for
the BLE programming framework in initiators to effectively
manage Secure Connections Only (SCO). This approach helps
avoid downgrade attacks that exploit pairing protocols, demon-
strating that Man in the Middle (MITM) attacks are feasible
across various tested BLE products. Li et al. [31] demonstrate
successful security attacks on older versions of CGMs and
insulin pumps, revealing that both passive (eavesdropping) and
active attacks (impersonation) can be executed using publicly
available information and common hardware. However, their
focus is limited to older wireless technologies, not involving
BLE, which incorporate more advanced security features [32].
Furthermore, their research focuses on reverse engineering a
single system and lacks systematic auditing and security as-
sessments of other wearable sensor nodes. Dadkhah et al. [33]
present the CICIoMT2024 dataset, a benchmark for assessing
multi-protocol security in IoMT devices, involving a variety
of attacks across 40 devices. While their work establishes
a comprehensive dataset that contributes significantly to the
field, it primarily focuses on dataset creation and the evaluation



Fig. 1. BLE Sniffing & MITM Execution Processes.

of machine learning (ML) techniques for detecting these
attacks. In contrast, our research focuses on more sensitive
devices, such as CGMs, and aims to provide a repeatable
auditing methodology that can be applied to many devices at
scale. By conducting systematic audits on commercially avail-
able BLE-enabled wearable sensor nodes, we emulate real-
world attacks, including eavesdropping, MITM, and Denial
of Service (DoS). This hands-on experimentation not only
uncovers critical vulnerabilities that may remain hidden in
a dataset-driven context but also highlights the immediate
and practical risks these devices face in operational settings,
offering a scalable approach to securing wearable sensor nodes
ecosystems.

The primary objective of this research is to enhance the
security and reliability of BLE-enabled wearable sensor nodes
by providing a systematic auditing methodology. We test our
auditing methodology on seven commercially available and
well-known wearable sensor nodes. We consider devices that
utilize the latest BLE specifications, such as BLE 4.0, 5.0 and
beyond, which introduce features like increased data transfer
rates, extended range, and improved security mechanisms,
such as Secure Connections that employ Elliptic Curve Diffie-
Hellman (ECDH) and Near Field Communication (NFC) for
key exchange. We focus on the implications of potential cyber-
attacks, despite the purported security enhancements offered
by these newer wireless communication protocols.

To contribute to the advancement of research in this field
and enhance reproducibility, we make all codes and data
produced as part of this work available at the following url. 1

Responsible Disclosure. We responsibly disclosed our re-
sults to the manufacturers of the wearable sensor nodes that
we studied in this work. At the time of submission, we did not
receive responses, we will include details of any subsequent
feedback and mitigation in the final version of this paper.

1https://github.com/SafeNetIoT/WMD MITM.git

TABLE I
SUMMARY OF WEARABLE SENSOR NODES USED IN THIS RESEARCH

Device Description Manufacturer Nickname
Wellue BP2A 2031 BPM Shenzhen Viatom BPM#1

Dexcom ONE CGM DexCom Inc. CGM#1
FreeStyle Libre 2 CGM Abbott Laboratories CGM#2

SnapECG ECG Nanjing Xijian ECG#1
DuoEK Wellue ECG Shenzhen Viatom ECG#2

OXYLINK Oximeter Shenzhen Viatom OXI#1
SleepO2 1400 Oximeter Shenzhen Viatom OXI#2

II. EXPERIMENTAL SETUP AND METHOD

In order to have a controlled environment for auditing the
devices, we build the testbed shown in Fig.1. In this section
we first explain the threat model used in our testbed, we then
describe the testbed and the methodology for auditing the
devices.

A. Threat Model

We assume that wearable sensor nodes function as com-
ponents of either open-loop or closed-loop systems. We also
assume that our system is composed of four main entities:
(i) The victim, either a patient with blood pressure lability, a
patient with heart arrhythmia, a patient with hypoxemia or a
patient with type 1 or 2 diabetes and relies on wearable sensor
nodes to function or live a healthy life [34]. (ii) The opera-
tional structure is composed of an open-loop system that only
includes the wearable sensor node (ECG monitors, Oximeters,
BPMs, CGMs) or a closed-loop system, such as a hybrid or
fully automated artificial pancreas consisting of a CGM sensor,
a smart device (containing the control algorithm), and an
insulin infusion pump. (iii) The communication, standard BLE
4.0 or BLE 5.0. (iv) The potential adversary, an individual
or organization within the BLE operational range (i.e. 100m)
performing malicious active cyberattacks (i.e. MITM and DoS)
and/or passive (i.e. Sniffing or Eavesdropping) on the open-
loop or closed-loop system.
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B. Testbed

Our testbed consists of the following components. (i) The
devices under test, including ECG monitors, Oximeters, Blood
Pressure Monitor (BPM), and Continious Glocuse Monitors
(CGM) as detailed in Table I. (ii) Smartphones: for controlling
the devices through their companion app, iPhone 13 Pro
and Google Pixel 3. (iii) Tools: we use two ORICO Wire-
less USB Bluetooth 4.0 Adapter USB Dongles (Transmitter-
Receiver) [35], an nRF52840 Nordic Dongle [36], Wireshark
software and “Mirage” [37], [38] to conduct the attacks. The
Mirage module is based on two main MITM strategies GAT-
Tacker and BTLEJuice [38]. (iv) Data Visualization Tools: we
use a server with Kali Linux [39] and Wireshark installed to
perform the eavesdropping, passive and active attacks, show
and analyze the intercepted data packets, and demonstrate the
impact of the attacks on the integrity and confidentiality of
medical data.

C. Auditing Methodology

We provide a methodology for auditing the devices against
4 main attacks, passive and active MITM attack, DoS attack
and sniffing. We write auditing script for performing these
attacks and reading the response. Each auditing experiment
iterates for at least 30 times per device per type of attack. Our
MITM attack execution process is divided into five main steps
(Fig. 1): Scan. Performs an active scan in order to discover
the target device. This process involves identifying available
BLE devices in the vicinity and collecting relevant data about
their advertising packets. Clone. Clones the target device and
applies the selected advertising strategy. This means creating a
virtual version of the target device that can mimic its behaviour
and signals. This allows us to attract connections from legiti-
mate devices, as they may mistake the clone for the original.
Wait Connection. Waits for an incoming connection from the
smartphone. Active MITM. Performs either passive attacks
by intercepting and forwarding legitimate packets between the
smartphone and the connected device, or active attacks through
a set of auditing scripts that execute specific commands and
inject payloads into the communication to manipulate data
flow. Stop. Stops execution.

For sniffing, we employ the nRF Sniffer (nRF52840) [36] as
shown in Fig. 1, upon initiation, the sniffer discovers all proxi-
mate BLE devices actively advertising, broadcasting Bluetooth
address and address type, full or abbreviated name, along
with the Received Signal Strength Indication (RSSI). The
sniffer’s software comprises firmware that is programmed onto
a development kit (DK) and a capture plugin for Wireshark
used to analyze the captured logs.

Our DoS auditing methodology utilizes auditing scripts that
ensure the server maintains a continuous connection with the
wearable sensor nodes, thereby preventing the smartphone
from establishing contact with the device, leading to a “loss
of view”.

Note: We do not cause any real threats in our experiments.
All experiments are contained within our own testbed.

(C)

BPM#1

132/92 mmHg

119/87 mmHg

(B)

OXI#1

94%
87/min

99% 75/min

(A)

ECG#1

60-100bpm

50-60bpm 

100-120bpm

Fig. 2. (A) Active MITM on ECG#1 (B) Active MITM on OXI#1 (C) Active
MITM on BPM#1

III. RESULTS

In this section we present our auditing results along with a
detailed analysis of intercepted BLE data logs of the wearable
sensor nodes, according to the specific attack types and
vulnerabilities encountered.

A. Man-in-the-Middle (MITM)

MITM attack is successfully performed on ECG monitors,
oximeters, BPM and CGMs and multiple vulnerabilities are
found as follows.
(i) Active MITM. Upon successfully performing this attack on
the ECG#1, we find that its packet structure includes only
the Header Information and Payload Content. The absence
of robust encryption is evident; as during the attack, we are
able to modify several payloads of the packets, demonstrating
successful data manipulation, where the heart rate readings
show fake unhealthy conditions as shown in Fig. 2 (A).

Similarly, we assess OXI#1 and OXI#2. Since both share
identical BLE structures and security mechanisms, we focus
on OXI#1, whose packet structure includes typical BLE header
fields with notification handles containing encoded data related
to oxygen level and heart rate. This data can be decoded using
the typical BLE packet format, where oxygen-level data can
easily be found in the fourth six bytes of the packet. The
only authentication observed is a two-character hexadecimal
key sent from the oximeter to the smartphone after each
packet. However, we observed that once this key is captured,
a replay attack can easily and successfully be carried out.
For example, during an MITM attack on OXI#1, the original
payload associated with the key ”39” (oxygen level = 97%,
heart rate = 94/min) is replaced with a previously captured
payload tied to the key ”db” resulting in an oxygen level =
96% and heart rate = 65/min, indicating a successful replay
attack as shown in Fig. 2 (B).

Correspondingly, during the MITM attacks on BPM#1,
handle value notifications are successfully altered to push the
blood pressure point into the unhealthy region (the orange
region in Fig. 2 (C)), indicating a successful data manipulation
attack.
(ii) Passive MITM. In the process of executing this attack on
the CGM#1 and CGM#2 devices, we successfully connect
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Fig. 3. (A) CGM#1 App Loss of View Attack (B) CGM#2 App Loss of View
Attack (C) CGM#2 App Loss of View Effect

to the devices and perform a “services discovery” operation
(extracting device attributes) via the ble connect and the
ble discover modules within the Mirage tool. The extracted
data provides detailed information about the services, charac-
teristics, and attributes of these devices, which are crucial for
understanding their BLE protocol implementation. We are also
able to extract device information such as Bluetooth Device
Address, Name, Company, Flags and Advertising Data.

By conducting BLE security analysis on the CGM#1, we
conclude that it uses Just Works Pairing method, which is
the simplest form of Secure Simple Pairing (SSP) in BLE
technology and does not require any human interaction to
complete the pairing [40]. Conversely, by executing BLE
security analysis on the CGM#2, we conclude that it uses Out-
of-Band (OOB) method, which is the most advanced form of
Secure Simple Pairing (SSP) in BLE technology as it requires
the use of Near Field Communication (NFC) to complete the
pairing [40]. Although no data manipulation is successfully
performed, due to the robustness of the OOB method against
such attacks [40], the multiple partially successful passive
MITM attacks could potentially cause battery depletion and
loss of view.

B. Sniffing

The analysis of the BLE packet data sniffed from the
CMG#1 reveals key security components: the Random Number
(rand) is all zeros. This imposes a serious security risk because
the predictability of the random numbers can allow attackers
to compromise security protocols more easily. Additionally,
the Encrypted Diversifier (EDIV) also appears to be a non-
random or default value. The captured Session Key Diversifier
Master (SKDm) and the Session Key Diversifier Slave (SKDs),
both suggest secure, randomized session key generation. The
captured Master Session Initialization Vector (IVm) and the
Slave Session Initialization Vector (IVs), both appear suffi-
ciently randomized, indicating a positive security status.

As for the CGM#2, the analysis of the captured BLE
packet data shows key components linked to BLE security.
The captured logs contain several ATT Packets labelled ”Rcvd
Handle Value Notification”, indicating that the CGM#2 ac-
tively sends updates, likely glucose readings, to the paired
device. The analysis also reveals proprietary data transactions,

TABLE II
WEARABLE SENSOR NODES AUDITING RESULTS.

✓ : SUCCESSFUL ATTACK, S! : PARTIALLY SUCCESSFUL ATTACK,
✕ : UNSUCCESSFUL ATTACK

Devices
Types of Attacks

Sniffing
(nRF52840

Nordic Dongle)

Passive
MITM

(Mirage)

Active
MITM

(Mirage)

DoS
(Mirage)

ECG#1 ✓ ✓ ✓ ✓
ECG#2 ✓ @@! ✕ ✓
OXI#1 ✓ ✓ ✓ ✓
OXI#2 ✓ ✓ ✓ ✓
BPM#1 ✓ ✓ ✓ ✓
CGM#1 ✓ @@! ✕ ✓
CGM#2 ✓ @@! ✕ ✓

which are crucial as they may contain sensitive algorithms
and information that, if compromised, could undermine the
device’s functionality and the accuracy of health data.

C. Denial of Service (DoS)

DoS attacks are successfully executed on all seven devices
to cause loss of availability, with a particular focus on ECG#2,
CGM#1 and CGM#2. Despite the extensive data interactions
from ECG#2, no active MITM attacks are conducted due to the
consecutive disconnection commands initiated by the device
(ECG). However, the seamless connection and redirection of
packets between the device (ECG) and the smartphone’s App
(ViHealth App) could be considered as potential hijack or DoS
attack due to the loss of availability it causes.

We are able to hijack the new or established sessions
when the smartphone and the wearable sensor nodes get
disconnected and try to reconnect every 5 mins for the CGM#1
and every 1 min for the CGM#2, which eventually causes loss
of view (Signal Loss) as shown in Fig. 3 (A), (B), and (C).

Table II summarizes the results of all our experiments. In
particular, we find all 7 tested devices susceptible to DoS and
sniffing attacks, 4 out of 7 devices are vulnerable to passive
and active MITM attacks, while 3 out of 7 devices are partially
receptive to passive MITM attacks but secure against active
MITM attacks.

IV. CONCLUSION

Our study reveals significant cybersecurity vulnerabilities
and threats associated with wearable sensor nodes. We perform
and release a systematic auditing methodology for attacks
(i.e. sniffing, MITM, and DoS attacks) and gap analysis
on various commercial devices, including ECG monitors,
Oximeters, BPMs and CGMs. Our results highlight critical
security gaps that could jeopardize patient safety and data
integrity. Our findings underscore the urgent need for robust
cybersecurity measures beyond single protocol reliance. Based
on our findings, we argue there is need for a multi-layered ap-
proach, incorporating strong encryption, secure authentication,
and real-time monitoring of device performance and security
status.
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