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Abstract

Large Language Models (LLMs) have demonstrated strong capabili-
ties in various code intelligence tasks. However, their effectiveness
for Android malware analysis remains underexplored. Decompiled
Android malware code presents unique challenges for analysis,
due to the malicious logic being buried within a large number of
functions and the frequent lack of meaningful function names.

This paper presents Cama, a benchmarking framework designed
to systematically evaluate the effectiveness of Code LLMs in An-
droid malware analysis. Cama specifies structured model outputs
to support key malware analysis tasks, includingmalicious function
identification and malware purpose summarization. Built on these,
it integrates three domain-specific evaluation metrics—consistency,
fidelity, and semantic relevance—enabling rigorous stability and
effectiveness assessment and cross-model comparison.

We construct a benchmark dataset of 118 Android malware sam-
ples from 13 families collected in recent years, encompassing over
7.5 million distinct functions, and use Cama to evaluate four pop-
ular open-source Code LLMs. Our experiments provide insights
into how Code LLMs interpret decompiled code and quantify the
sensitivity to function renaming, highlighting both their potential
and current limitations in malware analysis.
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1 Introduction

Recent advances in Large Language Models (LLMs) have trans-
formed natural language processing [35], and their extension to
code understanding has led to the emergence of Code LLMs, i.e.,
specialized LLMs trained on large-scale code repositories. These
models have achieved strong performance in tasks such as code
generation, summarization, and repair [10, 23, 41]. Given their
growing capabilities in reasoning about code, Code LLMs offer a
promising direction for automating Android malware analysis, a
domain where analysts must often manually inspect large volumes
of low-level code to uncover malicious behavior [27].

While the potential is clear, effectively applying Code LLMs in
this context remains challenging. First, decompiled Android code
is often obfuscated, lacks type information, and contains incom-
plete control structures [30, 38], diverging sharply from the clean,
structured code these models are typically trained on [50]. Second,
accurate semantic interpretation is difficult due to the high-level
and diverse malicious behaviors in malware [43], while the absence
of reliable function-level ground truth (e.g., labeling functions as
malicious or benign) further complicates evaluation [14, 16, 37].
These challenges underscore the need for a structured evaluation
framework that systematically assesses and compares Code LLM
performance in real-world malware analysis scenarios.

To systematically evaluate the performance of Code LLMs in
Android malware analysis, we define a structured output format
comprising three key elements: function summaries, refined func-
tion names, and maliciousness scores. While function summaries are
commonly generated by Code LLMs to describe the purpose of code
snippets [15], refined function names address the lack of meaningful
identifiers in decompiled code and aid analysts in quickly under-
standing a function’s intent. Additionally, maliciousness scores
explicitly quantify the potential security risks associated with each
function, serving as critical indicators for malicious behavior local-
ization [9]. As these structured outputs constitute an interpretable
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and actionable representation, they offer potential to support both
human analysts and automated systems in malware analysis [3, 12].

We consider two key malware analysis tasks to benchmark LLM
performance: malicious function identification and malware purpose
summarization. For each task, we propose tailored domain-specific
metrics. Specifically, for malicious function identification, we de-
fine 1) Consistency, measuring the stability of generated function
names andmaliciousness scores under a self-referential process, and
2) Fidelity, quantifying how effectively LLM-generated malicious-
ness scores distinguish between benign and malicious functions.
For malware purpose summarization [34], we introduce 3) Seman-
tic Relevance, assessing how well aggregated function-level sum-
maries and refined function names generated by the LLM align
with ground-truth malware descriptions.

We implement our evaluation framework as Cama and demon-
strate its applicability through a detailed case study. Specifically, we
construct a benchmark dataset consisting of 118 Android malware
samples across 6 categories and 13 families, collectively comprising
over 7.5 million distinct functions. We select 4 popular open-source
Code LLMs (i.e., CodeLlama [36], StarChat [21], CodeT5 [45], and
PLBART [1]) and design tailored prompting and tuning strategies to
generate the desired structured outputs. This study investigates two
key research questions: 1) Howwell do Code LLMs interpret decom-
piled Android code in malware analysis? and 2) How does function
renaming influence the effectiveness of LLM-based analysis?

For the first question, we analyze the quality of LLM-generated
outputs using our structured output format and domain-specific
metrics. For the second, we systematically rename functions in
the original decompiled code with the LLM-suggested names and
measure the subsequent impact on evaluation metrics. Our findings
reveal that while Code LLMs can generate informative summaries,
their understanding of maliciousness remains limited. Among exist-
ing Code LLMs, instruction-tuned GPT-style models significantly
outperform Seq2Seq models across different metrics; function re-
naming enhances fidelity and consistency but may reduce semantic
clarity, indicating a trade-off that warrants careful consideration.
Contributions. This work makes the following key contributions:
• We propose a benchmarking framework for evaluating Code
LLMs for Android malware analysis, incorporating structured
outputs and downstream malware analysis tasks. We further
define three domain-specific metrics—consistency, fidelity, and
semantic relevance—to rigorously assess the stability and effec-
tiveness of LLM-generated outputs.

• We construct a benchmark dataset of 118 representative Android
malware samples and a total of 7,542,799 distinct functions to
demonstrate our framework’s utility. Our empirical analysis pro-
vides critical insights into Code LLMs’ capabilities in interpreting
decompiled code and quantifies the impact of function renaming
on malware analysis outcomes.

2 Background and Related Work

2.1 Code Large Language Models

Code LLM refers to large language models specifically trained on
programming-related data to assist with coding tasks. These mod-
els are pre-trained on extensive code repositories [5], documenta-
tion [18], and other technical resources [32], equipping them with

Model Style Architecture Java
*

Inst.
†

CodeT5 [45] T5 Encoder-Decoder ✓ ✗

PLBART [1] BART Encoder-Decoder ✓ ✗

CodeLlama [36] GPT Decoder-only ✓ ✓

StarChat [21] GPT Decoder-only ✓ ✓

* Whether the model has been trained on datasets that include Java code.
† Whether the model uses instruction tuning to follow task-specific prompts.
Table 1: Selected Code LLMs for code summarization.

a strong understanding of syntax, semantics, and programming
patterns. When fine-tuned with different datasets or optimization
techniques, Code LLMs can be tailored to excel in specific tasks,
such as code completion, translation, and summarization, across
multiple programming languages [7, 19, 44]. These capabilities
make them valuable tools for automating and streamlining various
aspects of the software development process.

Code Summary Models. Code summarization aims to auto-
matically generate concise and meaningful natural-language de-
scriptions of code snippets. Traditional Seq2Seq models, such as
CodeT5 [45] and PLBART [1], employ sequence-to-sequence archi-
tectures trained on large-scale paired datasets consisting of source
code and human-written descriptions. In contrast, instruction-tuned
models, such as CodeLlama [36] and StarCoder [21], incorporate
additional fine-tuning with structured prompts and task-specific
instructions, enabling them to generate more context-aware and
adaptive code summaries. In this paper, we select the four models
listed in Table 1 as they are widely used, open-source, and explicitly
designed for code summarization tasks. Additionally, since all four
models have exposure to Java code [15, 20, 26], they are suited for
analyzing decompiled Android applications.

2.2 Learning-based Malware Analysis

Traditional machine learning (ML) based approaches primarily
focus on coarse-grained malware analysis, such as family classifi-
cation and benign-malicious identification [4, 28]. However, fine-
grained analysis is essential for deeper malware understanding,
moving beyond simple classification [9]. Recent works explore
plugin-based or post-hoc methods, such as explainable AI (XAI)
techniques, to extend ML models for interpretable malware anal-
ysis. These approaches have been applied to malicious snippet
detection [13, 25], function identification [14], and behavioral mod-
eling [12], providing insights into why a model detects malware.

LLM-powered Analysis. Recent efforts have explored LLM-
powered malware detection, primarily operating within the estab-
lished pipeline of conventional classifiers and leveraging LLMs in
two ways: 1) querying LLMs with original features to generate
detection outputs [22], and 2) using LLMs to encode text-based
semantic representations that enrich traditional feature spaces [49].
More advanced approaches leverage GPT-4o-mini’s code summa-
rization capabilities [42], improving malware detection via program
slicing techniques and multi-tiered factual checking [34]. Despite
these advancements, the effectiveness of Code LLMs in fine-grained
analysis remains uncharted, largely due to the lack of ground truth.
Our work goes beyond classification and complements existing
studies by systematically benchmarking open-source Code LLMs
on both function-level and app-level malware analysis tasks.
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3 Our Evaluation Framework

We propose a benchmarking framework, named Cama, for system-
atic evaluation of Code LLMs in Android malware analysis. In this
section, we introduce the overview and technical details.

3.1 Overview

As illustrated in Figure 1, our benchmarking framework is struc-
tured into three main stages: dataset preprocessing, model adapta-
tion of Code LLMs, and downstream malware analysis.
• Dataset Preprocessing.We first build a representative bench-
mark dataset by collecting Android malware samples across dif-
ferent malware categories and families. The reverse engineering
tool Androguard [8] is used to generate decompiled Java func-
tions for each APK. To ensure function diversity and represen-
tativeness, we apply a category-wise de-duplication based
on APK size and the number of extracted methods. Since APKs
within the same malware category often exhibit only minor vari-
ations, this step helps eliminate near-duplicate samples.

• Model Adaptation of Code LLMs. Next, we carefully design
prompting strategies and tuning procedures for the evaluated
code LLMs. Our primary goal is to guide these models to produce
structured outputs, specifically consisting of 1) suggestions of
refined method names, 2) concise and meaningful function
summaries, and 3)maliciousness scores indicating potential
harmfulness. Such structured outputs facilitate targeted and in-
terpretable malware analysis.

• Downstream Malware Analysis Tasks.We leverage the struc-
tured outputs from the LLMs to define two downstream analysis
tasks essential for malware characterization: 1)Malicious Func-

tion Identification, where we utilize the maliciousness scores
as filters to pinpoint malicious functions within Android apps,
enabling analysts to efficiently locate suspicious code segments;
and 2)Malware Purpose Summarization, where we aggregate
function-level summaries into comprehensive prompts, support-
ing the automatic generation of concise malware descriptions
detailing their overall malicious objectives and behavior.
Within this structure, we design three domain-specific metrics

to evaluate model effectiveness in generating structured outputs
for downstream tasks. We introduce details of the model adaptation
in Section 3.2 and the three metrics in Section 3.3.

3.2 Prompting and Tuning

To effectively leverage code LLMs for Android malware analysis,
we design prompting strategies and tuning mechanisms that guide
models to generate the structured outputs. We adopt two comple-
mentary approaches: prompt engineering for instruction-tuned
models and instruction tuning for text-to-text models.

3.2.1 Prompt Engineering. Prompt engineering involves designing
effective input templates to elicit structured responses from models.
Instruction-tuned models such as StarChat and CodeLlama1 are
particularly suitable for this approach, as they are optimized for
instruction-following and structured generation tasks [46]. To elicit

1We use CodeLlama-Instruct and StarChat-Beta, the instruction-tuned variants
of CodeLlama and StarCoder, respectively. These models are optimized for instruct-
following code summarization, making them better suited for our task.

consistent outputs that include function descriptions, name sugges-
tions, and maliciousness scores, we design prompts that adhere to
several key principles:
• Instruction Blocks: We wrap the main task instruction using spe-
cial tokens [INST] and [/INST], following each model’s best
practices for instruction prompting.

• Code Delimiters: Decompiled function code is enclosed between
[FUNC] and [/FUNC] tokens to distinguish it from the rest of the
prompt and emphasize it as the primary input.

• Role Context: The task is contextualized from the perspective of
a cybersecurity expert analyzing decompiled Android functions,
encouraging the model to reason with a security mindset.

• Structured Requirements: The instruction clearly specifies that
the model should return three structured outputs. The expected
response is explicitly described in the prompt (see Output Re-
quirements I–III below).

Prompt I. Structured Function Summarization

[INST] You are a cybersecurity expert specializing in reverse
engineering and malware analysis. Your task is to analyze a decompiled
Android function and generate a structured function summary based on
the following aspects :
1. Function Summary : {𝑠𝑢𝑚𝑚𝑎𝑟𝑦_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 }
2. Suggested Function Name : {𝑛𝑎𝑚𝑒_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 }
3.Malicious Score(0-10) : {𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 } [/INST]

[FUNC] {𝑑𝑒𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑑_𝑐𝑜𝑑𝑒 } [/FUNC]

Output Requirement I. Summary

<Provide a brief, high-level description of what this function does.
Summarize its purpose, key operations, and intent.>

Output Requirement II. Name

<Suggest a clearer, more descriptive function name that accurately
represents its behavior.>

Output Requirement III. Score

<Rate the function’s maliciousness on a scale from 0 to 10, where:
0 - Benign : No suspicious activity.
1-3 - Potentially Safe but Risky : Performs sensitive actions but could be

legitimate.
4-6 - Suspicious : Uses permissions or techniques common in malware.
7-10 - Highly Malicious : Strong indicators of malware behavior.>

3.2.2 Instruction Tuning. Since models like CodeT5 and PLBART
are pretrained for general-purpose code summarization, they inher-
ently lack the ability to generate function names or maliciousness
scores. For instance, as shown in Figure 2, when tasked with gen-
erating a function summary alongside a refined function name,
CodeT5 would produce off-topic and unstructured responses, fail-
ing to generate the expected fields. To bridge this gap, we apply
instruction tuning using task-specific data.
• Function Name Prediction: We modify the training data by re-
placing function names with a placeholder (unk_function). The
model is then fine-tuned to predict the actual function name
based on the surrounding code. This adaptation allows CodeT5
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Figure 1: Evaluation pipeline of Cama.

Figure 2: Demonstration of the limited capability of CodeT5
2

in generating a meaningful output when additional require-

ments are specified.

and PLBART to suggest meaningful function names instead of
generic or incomplete descriptions.

• Maliciousness Score Prediction: Since large-scale ground truth la-
bels for maliciousness scores are unavailable, we introduce a
two-step approach. First, we use a tuned model to generate struc-
tured summaries and function names. Then, we leverage larger
models (e.g., GPT-4 and DeepSeek [11]) to infer maliciousness
scores based on the generated summaries and function names.
This hierarchical approach allows us to enhance the structured

output capabilities of CodeT5 and PLBART while leveraging more
powerful models for tasks that require higher-level reasoning, such
as estimating maliciousness scores.

3.3 Domain-Specific Metrics

To rigorously assess the performance of code LLMs in Android mal-
ware analysis, we define three domain-specific evaluation metrics:
consistency, fidelity, and semantic relevance. These metrics
quantitatively measure the effectiveness of structured outputs at dif-
ferent levels—individual function analysis, malware classification,
and overall application characterization.
Notations. Given an Android application A composed of a set of
decompiled functions F = {𝑓1, 𝑓2, ..., 𝑓𝑛}, our goal is to evaluate the
structured outputs generated by a target code LLM (denoted as 𝐺),
including function summary 𝑆 (𝑓 ), refined function name𝑁 (𝑓 ), and
2https://huggingface.co/Salesforce/codet5-base-multi-sum

maliciousness score𝑀 (𝑓 ). We formally define the structured output
for function 𝑓 as𝑂 (𝑓 ) = 𝑆 (𝑓 )⊕𝑁 (𝑓 )⊕𝑀 (𝑓 ), which encapsulates all
three elements generated by the LLM 3. For specific evaluation tasks,
we define the function descriptor as 𝐷 (𝑓 ) = 𝑆 (𝑓 ) ⊕ 𝑁 (𝑓 ), which
serves as the interpretable textual function representation (without
including its numerical measure) and is particularly relevant in
tasks that focus on function-level understanding and classification.

3.3.1 Consistency-based Metric. The consistency metric measures
the internal stability of the LLM’s structured outputs by checking
whether the model’s predictions contradict each other when ex-
amined under a self-referential process. We define two forms of
consistency, i.e., maliciousness consistency and name consistency.
Maliciousness Consistency. This metric evaluates whether the
maliciousness scores generated by the LLM from raw decompiled
code align with those produced when the model is queried with
structured descriptors (function summaries and suggested names).
Formally, for each function 𝑓 , we obtain:
a) 𝑀raw (𝑓 ), the original maliciousness score, obtained by directly

querying the target model using the decompiled function.
b) 𝑀des (𝑓 ), the descriptor-based maliciousness score, obtained by

prompting the same model with 𝐷 (𝑓 ).

Prompt II. Descriptor-based Maliciousness Score

Task: Given a function descriptor, {𝑠𝑐𝑜𝑟𝑒_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 }
Input: A function descriptor: {𝐷𝑟𝑎𝑤 (𝑓 ) = 𝑆𝑟𝑎𝑤 (𝑓 ) ⊕ 𝑁𝑟𝑎𝑤 (𝑓 ) }
Output: A numerical maliciousness score between 0 and 10, where 10
represents highly malicious behavior.

To measure consistency, we first normalize the score vectors
over all functions in an application (𝑓 ∈ A) into valid probability
distributions (non-negative and summing to 1), obtaining 𝑀′

raw
and 𝑀′

des. Then we compute the distributional divergence using
Jensen-Shannon Divergence (JSD):

JSD(𝑀′
raw, 𝑀

′
des) =

1
2𝐷KL (𝑀′

raw | |𝑀avg) +
1
2𝐷KL (𝑀′

des | |𝑀avg) , (1)

3The operator ⊕ denotes concatenation and is used consistently throughout the paper.

https://huggingface.co/Salesforce/codet5-base-multi-sum
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where𝑀avg is the average distribution and𝐷KL (𝑃 | |𝑄) is the Kullback-
Leibler divergence:

𝑀avg =
1
2 (𝑀

′
raw +𝑀′

des) , 𝐷KL (𝑃 | |𝑄) =
∑︁
𝑖

𝑃 (𝑖) log 𝑃 (𝑖)
𝑄 (𝑖) . (2)

Finally, we normalize the JSD to (0, 1) and define:

MCS = 1 −
JSD(𝑀′

raw, 𝑀
′
des)

log 2 . (3)

A higher maliciousness consistency score (MCS) indicates higher
consistency, meaning that the structured outputs retain the func-
tion’s security-relevant information.
Name Consistency. This metric assesses whether the suggested
function name remains stable when the LLM is prompted with its
own function summary. For each function 𝑓 , the LLM generates:
a) 𝑁raw (𝑓 ), the initial function name suggested as part of the

structured output 𝑂 (𝑓 ).
b) 𝑁reg (𝑓 ), a new function name generated when the LLM is re-

prompted with its own function summary 𝑆 (𝑓 ).

Prompt III. Re-generated Function Name

Task: Given a function summary, {𝑛𝑎𝑚𝑒_𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 }
Input: A function summary: {𝑆𝑟𝑎𝑤 (𝑓 ) }
Output: A concise, descriptive function name.

To quantify name consistency, we compute the normalized edit
distance between the original and revised function names:

NCS = 1 −
EditDistance(𝑁raw, 𝑁reg)

max( |𝑁raw |, |𝑁reg |)
, (4)

where |𝑛 | represents the length of 𝑛, and EditDistance is the Leven-
shtein distance, which counts the minimum number of character-
level insertions, deletions, or substitutions required to transform
𝑁raw into 𝑁reg. The result is normalized to (0, 1) by the length of
the longer function name to ensure comparability across different
naming conventions.

A higher name consistency score (NCS) indicates greater stability
in function name generation, suggesting that the model consistently
associates summaries with the same function identity.

3.3.2 Fidelity-based Metric. The fidelity metric assesses the degree
to which function-level structured outputs contribute to malicious
function identification. Inspired by explainable AI (XAI) evaluation
techniques [47], we define fidelity in terms of the impact of function
removals on malware classification performance.

Given a malware classifier𝐶 , which takes the function descriptor
as input and predicts a malware category 𝑦, we measure classifica-
tion confidence before and after removing the top-𝑘 most malicious
function summaries. Formally, let:

𝑝full = 𝐶 (𝐷 (𝑓1) ⊕ 𝐷 (𝑓2) ⊕ ... ⊕ 𝐷 (𝑓𝑛)) (5)

be the malware classification probability for an application before
removal. After removing the top-𝑘 most malicious function features
ranked by maliciousness, the new classification probability is:

𝑝red(𝑘 ) = 𝐶

(⊕
𝑓 ∉F𝑘 𝐷 (𝑓 )

)
, (6)

whereF𝑘 = {𝑓𝑖 ∈ F | 𝑀 (𝑓𝑖 ) is among the top 𝑘} is the set of kmost
malicious functions. The maliciousness-based fidelity score (MFS) is
then computed as the relative drop in confidence:

MFS(𝑘 ) =
𝑝full [𝑦] − 𝑝red(𝑘 ) [𝑦]

𝑝full [𝑦]
. (7)

A higher fidelity score indicates that structured outputs effec-
tively encode function-level characteristics for malware classifi-
cation, as the maliciousness-based descriptor removal leads to a
significant drop in the classifier’s confidence for the predicted class.

3.3.3 Semantic-based Metric. The semantic metric evaluates how
function outputs contribute to accurate application-level malware
purpose descriptions. Adopting approaches from automatic machine
translation evaluation [29], we measure the similarity between
LLM-generated malware descriptions and reference descriptions.

Given a set of top-𝑣 malicious function outputs, where 𝑣 varies
based on the target LLM’s context window, we firstly generate

𝐴LLM = 𝐺𝑎𝑝𝑝 (𝑂 (𝑓1) ⊕ 𝑂 (𝑓2) ⊕ ... ⊕ 𝑂 (𝑓𝑣)) , (8)

where 𝐺𝑎𝑝𝑝 is the target code LLM prompted to generate a high-
level malware description. This approach mimics context slicing,
but leverages LLM outputs (i.e., maliciousness scores) instead of
heuristic-based methods such as sensitive API filtering, which can
often be incomplete or overlook critical behaviors. Specifically, the
prompt for 𝐺𝑎𝑝𝑝 is defined as follows.

Prompt IV. Application Purpose Description

Task: Given the structured function-level analyses, generate a concise
and comprehensive description of the overall application’s purpose.
Input: A set of top-𝑣 malicious functions: { Function Summary 𝑆 (𝑓 ) ,
Refined Function Name 𝑁 (𝑓 ) , Maliciousness Score𝑀 (𝑓 ) }
Output: An application purpose description summarizing the app’s
behavior and potential security risks.

We compare 𝐴LLM against the reference malware description
𝐴GT using three widely used text similarity metrics. BLEU [31]
measures n-gram precision between 𝐴LLM and 𝐴GT:

BLEU(𝐴LLM, 𝐴GT) = exp
(
𝑁∑︁
𝑛=1

𝑤𝑛 log𝑝𝑛

)
(9)

where 𝑝𝑛 is n-gram precision and 𝑤𝑛 are weighting factors. Ad-
ditionally, we report METEOR [6], which incorporates synonym
matching and recall, and ROUGE-L [24], which evaluates the longest
common subsequence overlap.

A higher BLEU, METEOR, or ROUGE-L score indicates stronger
alignment between the LLM-generated description and the ref-
erence description, validating the semantic relevance of function
outputs in capturing malware behavior.

4 Benchmarking Results

We conduct experiments guided by two key research questions:
• RQ1: How well do Code LLMs understand decompiled code for
malware analysis tasks?

• RQ2: How does function renaming affect their performance (i.e.,
can models self-repair based on their own suggested names)?
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Consistency Fidelity Semantic Relevance

MCS NCS MFS(2) MFS(5) MFS(8) BLEU METEOR ROUGE-L

CodeT5 N/A 0.233 ± 0.04 0.332 ± 0.30 0.125 ± 0.22 0.396 ± 0.32 0.059 ± 0.04 0.083 ± 0.04 0.186 ± 0.04
PLBART N/A 0.499 ± 0.05 0.033 ± 0.14 0.031 ± 0.11 0.065 ± 0.14 0.137 ± 0.03 0.185 ± 0.05 0.228 ± 0.04

CodeLlama 0.381 ± 0.03 0.628 ± 0.04 0.158 ± 0.27 0.159 ± 0.27 0.113 ± 0.25 0.175 ± 0.05 0.247 ± 0.08 0.271 ± 0.06
StarChat 0.813 ± 0.02 0.575 ± 0.02 0.111 ± 0.20 0.254 ± 0.30 0.275 ± 0.33 0.176 ± 0.05 0.273 ± 0.09 0.272 ± 0.06

CodeLlama+ 0.357 ↓6.30% 0.677 ↑7.80% 0.485 ↑207.0% 0.451 ↑183.7% 0.440 ↑289.4% 0.171 ↓2.29% 0.219 ↓11.34% 0.270 ↓0.37%
StarChat+ 0.828 ↑1.85% 0.582 ↑1.22% 0.298 ↑168.5% 0.351 ↑38.19% 0.726 ↑164.0% 0.172 ↓2.27% 0.246 ↓9.89% 0.274 ↑0.74%
* Rows 1–4 correspond to RQ1, evaluating the performance of all four models on decompiled code. Results are reported as mean ± standard deviation.
* Rows 5–6 correspond to RQ2, assessing the impact of function renaming by replacing original names with LLM-suggested ones. CodeT5 and PLBART are excluded due to
limited name generation capability—they often replicate names from the input code. Results are reported as mean values with relative improvement ratios.

Table 2: Benchmarking results.

4.1 Experimental Setup

Dataset Selection. We use the LAMD [34] dataset4, which pro-
vides Android malware samples with high-quality GPT-4-generated
ground-truth application purpose summaries, making it well-suited
for evaluating semantic relevance. To reduce redundancy, we per-
form de-duplication by filtering out near-identical APKswithin each
malware category, resulting in 118 APKs across 6 categories (Ad-
ware, Backdoor, PUA, Riskware, Scareware, Trojan) and 13 families.
All APKs are decompiled using Androguard, resulting in a total of
7, 542, 799 decompiled functions across the dataset.
Implementation Details. For all selected models in Table 1, we
use their official implementations from the Hugging Face Hub 5. For
models not originally instruction-tuned (i.e., CodeT5 and PLBART),
we perform additional tuning on Java functions from their pre-
training datasets. Each model is fine-tuned for 3 epochs, which we
find sufficient to produce the structured outputs. The malicious-
ness score prediction of these two models is assisted by a locally
deployed DeepSeek-R1-Distill-Llama-70B. In the fidelity evalua-
tion, we use LightGBM [17] as the malware category classifier 𝐶 ,
ensuring high reliability with an accuracy above 0.95. To assess
the effect of removing suspicious code, we experiment with top-𝑘
values of 2, 5, and 8. In the semantic relevance evaluation, to ensure
stylistic consistency, we prompt all models to begin their outputs
with the phrase: “This application appears to...”, matching the format
used in the ground truth. We set top-𝑣 based on model context lim-
its: 4K tokens for CodeLlama, 8K for StarChat, and 1K for CodeT5
and PLBART. For BLEU-based evaluation, we use 2-gram precision,
which is more appropriate for evaluating short summaries.

The generated outputs are made open-source 6. Our overall
experimental results are summarized in Table 2. In the following
sections, we provide a detailed analysis of each research question:
RQ1 in Section 4.2 and RQ2 in Section 4.3.

4.2 RQ1 - Decompiled Code

This experiment investigates how well Code LLMs interpret decom-
piled Android code for malware analysis. We evaluate their ability
to generate the structured outputs and analyze their effectiveness
using the three domain-specific metrics.
4LAMD dataset collected in the 2020s: https://zenodo.org/records/14884736
5https://huggingface.co/{meta-llama/CodeLlama-7b-Instruct-hf,
HuggingFaceH4/starchat-beta, Salesforce/codet5-base-multi-sum, uclanlp/plbart-base}
6Our Cama dataset: https://zenodo.org/records/15155917

For maliciousness consistency, only CodeLlama and StarChat
are evaluated, as CodeT5 and PLBART rely on external models
for score generation. Among the two, StarChat achieves a notably
higher score (over twice that of CodeLlama), suggesting a better
understanding of high-level malware semantics. For name consis-
tency, CodeLlama performs best, with StarChat following closely.
Both models outperform the Seq2Seq baselines, reinforcing the ob-
servation that instruction-tuned, GPT-style models exhibit greater
stability in structured output generation. Among the Seq2Seq mod-
els, PLBART outperforms CodeT5 by approximately 114%, likely
due to its improved alignment between code and natural language.

In downstream evaluations, we observe clear performance differ-
ences across models in both fidelity and semantic relevance. Star-
Chat consistently outperforms the others, demonstrating a stronger
ability to assign meaningful maliciousness scores and produce high-
level malware descriptions—results that align with its superior con-
sistency metrics. This superior performance is likely driven by its
larger model size and the StarCoder architecture, which emphasizes
multilingual understanding and instruction-following. CodeLlama
performs competitively, especially excelling in top-2 function re-
moval and producing stylistically aligned summaries, suggesting
it effectively captures the most critical functions but is less robust
than StarChat when evaluating broader function sets.

Among the Seq2Seq models, PLBART shows better performance
in semantic relevance, benefiting from its BART-based architecture,
which favors fluent and coherent natural language generation. How-
ever, PLBART notably underperforms CodeT5 in fidelity, while both
models’ maliciousness scores are generated externally by the same
larger models. This difference arises because CodeT5’s summaries,
though less fluent, contain more descriptions that better highlight
critical code features, allowing the external scoring model to pro-
duce more discriminative maliciousness scores. Nevertheless, both
Seq2Seq models exhibit limited stylistic control. For instance, even
when explicitly prompted to begin with “This application appears
to...”, they frequently prepend generic phrases like “This function...”,
revealing limited control over stylistic constraints.

These findings highlight a fundamental tradeoff between lin-

guistic fluency and semantic precision in LLM-generated out-
puts. Our results also reinforce the superiority of instruction-

tuned GPT-style models (especially StarChat) for generating
both accurate and interpretable outputs in fine-grained malware
analysis tasks.

https://zenodo.org/records/14884736
https://huggingface.co/
https://zenodo.org/records/15155917
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(a) CodeLlama (b) StarChat

Figure 3: Maliciousness score distributions before and after

function renaming. For both models, refined function names

lead to more scores concentrated in the middle range.

4.3 RQ2 - Function Naming

This experiment investigates whether replacing original decom-
piled function names with LLM-suggested names affects model
performance. The goal is to understand whether LLMs can improve
their own reasoning and potentially providing more meaningful
input for subsequent predictions.

We compare each model’s outputs before and after replacing
function names, modifying only those names that differ from the
originals, while keeping all other code aspects unchanged. CodeT5
and PLBART are excluded from RQ2 due to their limited function
name refinement capability. These models often fail to produce
meaningful or distinct name suggestions. For instance, 61.75% of
PLBART’s generated names are exact copies of the names found in
the decompiled code. Even among the remaining cases, many sug-
gestions are only trivially modified (e.g., renaming set_b to set_a),
which lacks usefulness in evaluating the impact of renaming.

Results show that replacing original function names with LLM-
suggested names notably benefits fidelity, with both CodeLlama+
and StarChat+ showing substantial improvements. This suggests
that improved naming significantly helps the models better pri-
oritize and identify critical malicious functions. Consistency also
improves moderately, indicating enhanced stability in model pre-
dictions when meaningful names are used. However, semantic rele-
vance slightly decreases after renaming, likely because renaming
leads to a convergence of maliciousness scores around the mid-
range (Figure 3), reducing the distinctiveness of highly ranked
functions when aggregated into malware descriptions.

Overall, these findings indicate that LLM-based function renam-
ing effectively enhances function-wise consistency and fidelity

metrics, but may require careful handling to avoid diluting

high-level semantic clarity. To mitigate this issue, future im-
provements could focus on calibrating the scores to better reflect
model confidence and explicitly encoding more robust knowledge
about malware semantics.

5 Discussion

While Cama enables structured evaluation of Code LLMs in mal-
ware analysis, it also exposes a fundamental challenge: the scarcity
of reliable ground truth at the function and behavior levels. Our
function-level evaluation relies on counterfactual fidelity-based
methods, while APK-level summarization adopts techniques from
LLM-driven malware detection [34], which leverage program slic-
ing and prompt large models like GPT-4. Though practical, these

surrogate approaches can introduce noise and bias [40], which un-
derscores the pressing need for high-quality, fine-grained ground
truth malware datasets to advance trustworthy evaluation.

Cama opens the door to broader research directions. For example,
it can support studies on malware concept drift [33], enabling eval-
uation of whether Code LLM-based analyses generalize to evolving
threats. Beyond Code LLMs and Android malware, the framework is
adaptable to assess a wide range of approaches, as long as they tar-
get core sub-tasks including function summarization, naming, and
maliciousness estimation. Beyond benchmarking, Cama also sup-
ports practical applications: it can guide the selection, pretraining, or
fine-tuning of Code LLMs specifically for malware tasks [2, 39, 48].
Its structured outputs, particularly maliciousness scores, can be
used to prioritize suspicious functions, improving the precision of
traditional malware classifiers [4, 13].

6 Conclusion

This paper introduces Cama, a benchmarking framework for sys-
tematically evaluating the effectiveness of open-source Code LLMs
in Android malware analysis. We define a structured output format
aligned with two key analysis tasks: malicious function identifica-
tion and malware purpose summarization. To address the lack of
fine-grained ground truth, we propose three domain-specific eval-
uation metrics, enabling rigorous assessment of LLM-generated
outputs. Our benchmarking results reveal both the potential and
current limitations of Code LLMs. Cama provides a foundation for
future work to select and adapt Code LLMs for malware analysis,
improving their effectiveness in downstream tasks such as family
classification and behavioral explanation.
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