
Early-Stage Venture Financing: A
Data-Driven Approach with Machine

Learning Application

Pornpanit Rasivisuth

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Institute of Finance and Technology

Department of Civil and Environmental Engineering

University College London

July 3, 2025



2

I, Pornpanit Rasivisuth, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the work.



Abstract

Venture capital (VC) and private equity (PE) become indispensable financial assets,

globally driving economic and societal growth. This project primarily aims to inves-

tigate the utility of alternative datasets and machine learning models in addressing

various challenges prevalent within private markets. These challenges, often exac-

erbated by the illiquid nature of private investments, information asymmetry, and

potential moral hazard issues, include the valuation of Initial Coin O!ering (ICO) to-

kens, the assessment of early-stage company valuations, and the selection of startups

for venture capital funds. A Natural Language Processing (NLP) model, capable of

analysing unstructured text data, is employed alongside additional signals derived

from alternative data sources such as social media and financial news. Overall, the

project is anticipated to benefit academic researchers and practitioners within the

private capital sectors, contributing to recent advancements in both the technology

and sustainable finance domains.
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Venture capital, a cornerstone of the private capital market, focuses on investing in and

supporting the growth of early-stage companies characterised by higher risk profiles,

illiquidity, and long-term investment horizons. However, the process of assessing

these entrepreneurial ventures is hindered by information asymmetries, moral hazard,

and the limitations of traditional datasets. Moreover, the evolving landscape of

technology, such as blockchain, and the growing emphasis on sustainable finance

necessitate a re-evaluation of investment strategies. To address these challenges, this

research introduces a novel approach that leverages alternative datasets and machine

learning to enhance the screening and due diligence processes during the initial stages

of private capital investment.

By addressing the shortcomings of existing token rating methodologies and

whitepaper analysis used in token financing for initial coin o!erings (ICOs), the

first paper introduces an ML-based framework that leverages social media sentiment

to predict token returns. The findings underscore the critical role of understanding

market sentiment and investor behaviour through social media in shaping token return

predictions and highlight the systemic risks inherent in the lightly regulated ICO mar-

ket. These insights not only advance academic knowledge but also provide valuable

guidance for practitioners and policymakers seeking to foster a more transparent and

investor-centric token economy.

The second study introduces a pioneering valuation framework for early-stage

companies that surpasses traditional financial analysis by seamlessly integrating

machine learning and sustainability data. Incorporating ESG indicators, the model

provides a more comprehensive and forward-looking assessment of early-stage com-
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panies, demonstrating the value of alternative, unstructured datasets. This approach

not only enhances investment decision-making but also aligns with growing investor

demand for sustainable investments. Addressing the limitations of traditional valua-

tion methods like discounted cash flow, which often rely on inaccessible financial

statements, the study unveils the predictive power of a novel model to capture the

complexities of early-stage companies. This significantly advances valuation the-

ory and practice, fostering a new generation of valuation models that are robust,

transparent, and aligned with long-term value creation and sustainability regulations.

Lastly, the final study utilises reinforcement learning (RL), an underexplored

area in private capital investment, to revolutionise venture capital investment decision-

making. By developing a novel RL-based recommendation system, the study in-

troduces a paradigm shift in portfolio management, enabling investors to identify

high-potential startups and optimise investment returns. The research explores the

intricate design choices inherent in RL, including state representations, reward func-

tions, and exploration strategies, tailoring these elements to the unique challenges

of the venture capital landscape, especially the illiquidity nature. This research

profoundly impacts both academics and practitioners, encouraging future AI-driven

investment research while o!ering a practical tool for venture capitalists seeking a

competitive advantage.

Therefore, overall this thesis suggests that the alternative dataset can be used

alongside commercial databases available in private capital markets to support the

investment lifecycle in addition to the machine learning models. The same application

can be further applied in private equity, where the focus is on mature companies.
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Chapter 1

Introduction

Startups, characterised by their innovation-driven nature, are entrepreneurial ven-

tures that leverage financial, human, and other resources to introduce novel products

or processes into the marketplace. These ventures often involve technological ad-

vancements, intensive research and development, and innovative business models

(El Hanchi and Kerzazi, 2020). For startups to truly drive significant economic

development, innovation, and social progress, they critically depend on financial

resources and strategic guidance, particularly from private capital in exchange for

equity.

Private capital, including venture capital and private equity, serves as a critical

source of funding and support for early-stage companies. Beyond financial resources,

VC and PE firms often provide strategic guidance, industry expertise, and access

to valuable networks, fostering value creation and maximising returns upon exit.

While both VC and PE invest in early-stage companies, they di!er primarily in their

investment focus. VCs typically invest in early-stage startups, which may not yet

generate revenue or enter the market. This type of investment carries higher risk

due to the significant uncertainty surrounding potential returns and the possibility

of negative cash flows during the valley of death phase. In contrast, stable firms are

often financed through growth equity or leveraged buyouts, which can involve both

equity and debt, commonly known as private debt.

Despite the inherent risks and illiquidity associated with private market invest-

ments, the potential for extreme returns makes them an attractive asset class for both
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individual and institutional investors seeking to diversify their portfolios. Given

the higher risk associated with early-stage investing, there is a pressing need for

further research to understand the unique characteristics of startup investments and

the underlying challenges confronting both investors and entrepreneurs in this space.

The challenges found in entrepreneurial finance are characterised by two addi-

tional issues: asymmetric information and moral hazard (Denis, 2004) which a!ect

two key stakeholders in the ecosystem - investors and entrepreneurs. Information

asymmetry describes the phenomenon when the party with an information advantage

make a better decision than another without enough information. Investors encounter

di"culties in valuing the company given the limited information, especially for

startups with a lack of cash flows, collateral, and financial statements (Damodaran,

2009; Sander and Kõomägi, 2007); as a result, entrepreneurs themselves su!er these

constraints to raise external funding (Block et al., 2018). Another problem is the

moral hazard in which entrepreneurs may misallocate the funding; the term sheet can

resolve this issue to have agreement on economics and governance interest (Denis,

2004) or gather information to monitor the progress of the development (Wang and

Zhou, 2004). These two fundamental issues lead to the emergence of entrepreneurial

finance in various directions, including the entry of new players leveraging Blockchain

technology, the emergence of the sustainability investment trend, and the shift toward

digitalisation involving the integration of big data and artificial intelligence (AI).

The landscape of private capital investment is significantly reshaped by the

emergence of dedicated databases such as Pitchbook, Preqin, and Crunchbase. These

platforms empower both academics and practitioners to conduct data-driven analyses

of target portfolio companies and their respective industries. However, a critical

challenge persists: the absence of specific regulations governing private capital data

often impedes robust validation processes, which traditionally rely on investor due

diligence. This inherent confidentiality consequently limits public access to verified

startup information. To bridge this data gap, alternative data sources become increas-

ingly important. These sources, often unstructured and distinct from conventional

financial statements, encompass diverse formats, including text, images, and videos
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(Cong et al., 2021). Their capacity to enhance financial decision-making and reduce

data acquisition costs garners considerable attention from both academic researchers

and industry practitioners.

Concurrently, machine learning (ML), a subset of AI capable of learning from

data without explicit programming, emerges as an exceptionally valuable tool within

the financial sector. ML applications span diverse financial domains, from retail and

investment banking to payments, insurance, and critically, private capital investment,

where they can significantly assist in screening and valuation processes (Miloud et al.,

2012; Ang et al., 2022; Zhang et al., 2023; Garkavenko et al., 2021). This thesis

systematically assesses the extent to which advanced data analytics and machine

learning can be integrated to support private capital investments, particularly at the

early stages of venture capital financing. This study delves into three compelling

research frontiers, which form the core of its empirical chapters: (1) token financing

through Initial Coin O!erings (ICOs), (2) the sustainability transition within pri-

vate capital investment, and (3) leveraging advanced machine learning models for

screening investment opportunities.

The first study (Chapter 3) is titled “An investigation of sentiment analysis of

information disclosure during Initial Coin O!ering (ICO) on the token return”. The

emergence of blockchain technology o!ers an alternative to traditional entrepreneurial

financing, enabling capital raising through token finance. However, this new paradigm

presents significant valuation challenges due to information asymmetry and a lack

of regulatory oversight, despite the availability of the token rating platforms (Ofir

and Sadeh, 2020; Florysiak and Schandlbauer, 2019). This research’s objective is

to determine if token ratings guarantee positive ICO returns and to analyse what

alternative data (whitepapers and social media) can impact long-term token returns.

To achieve this, the research constructs an ICO index coupled with sentiment

analysis from whitepapers and Twitter (currently known as X) and implements

machine learning to predict token returns utilising available features and alternative

data. The results confirm a discrepancy between ICO ratings and actual returns,

highlighting the unreliability of current rating systems and underscoring the crucial
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role of social media and machine learning in overcoming information asymmetries.

This chapter contributes significantly by empirically evidencing the limitations of

existing ICO rating systems, developing a methodological approach using integrated

alternative data and sentiment analysis, and demonstrating the potential of machine

learning to enhance transparency and predictive accuracy in the valuation of token

financing.

The next chapter (Chapter 4) titled “Startup Valuation with Sustainability: A

Novel Approach with Machine Learning and Natural Language Processing” empha-

sises the impact investment as a prevalent trend driven by the public interest and the

governance policies that encourage the companies to disclose their environmental,

social, and governance (ESG) performance. Reflecting this trend, many investors

in publicly traded equities integrate ESG-related information into their investment

strategies, leading to extensive research on the relationship between ESG data and as-

set pricing in public markets (Serafeim and Yoon, 2023, 2022; Shanaev and Ghimire,

2022; Gibson Brandon et al., 2021). Responding to calls from researchers like Cum-

ming et al. (2022), this study’s research objective is to investigate the unexplored

impact of sustainability investment on early-stage startup valuation. This is particu-

larly critical given the limited availability of traditional sustainability data and the

consistency issues in existing ESG ratings (Bo!o and Patalano, 2020).

To address these challenges, the study proposes a novel approach: integrating

natural language processing (NLP) and machine learning (ML) to extract sustainabil-

ity indicators from startup news, which serve as an alternative data source to enhance

the pre-money valuation of early-stage companies. The study introduces a novel

ML-based valuation model that conceptually advances traditional methodologies by

investigating the impact of sustainability-related textual data on company valuation.

The results indicate a substantial 16.45% improvement in prediction accuracy over

conventional approaches, demonstrating the significant potential of sustainability

context to enhance startup valuation alongside traditional characteristics and funding

round data. This contribution uniquely bridges the domains of sustainable finance

and quantitative valuation, o!ering practitioners in the private capital market an inno-
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vative framework that considers sustainability’s crucial long-term impact alongside

short-term financial gains.

Chapter 5, “Identifying High-Growth Startups: A Reinforcement Learning

Approach for Venture Capital," introduces a novel application of reinforcement

learning (RL) in private capital. While supervised models are prevalent in finance,

RL remains underexposed in this domain, despite its proven ability in recommender

systems (RLRS) to surpass traditional methods by enabling agents to interact with

their environment (Chen et al., 2019; Taghipour et al., 2007; Liebman and Stone,

2014; Lei and Li, 2019). This chapter is motivated by the potential of RL to address

information asymmetry in private capital by recommending early-stage startups for

portfolio construction, particularly given the limited exposure of RL in this sector

compared to supervised learning.

This study aims to propose and evaluate a new RLRS model, called VC-RLRS,

specifically designed for venture capital investment. This involves recommending

top-ten portfolio companies and outlining how di!erent configurations impact recom-

mendation performance. The model is built upon Q-learning, integrating the unique

limitations of VC investment directly into the design and choices of its state repre-

sentations and reward functions. The VC-RLRS demonstrates a strong capability

to recommend high-growth startups, explicitly accounting for crucial factors like

exit opportunities and portfolio diversification. This not only conceptually extends

recommender systems to complex financial ecosystems but also showcases their

potential to enhance investment decision-making for both generalist and specialist

strategies, with successful applications across FinTech, Healthcare, and Information

Technology. The study further contributes significantly by integrating deep learning

into a hybrid model to assess performance against a Q-learning baseline, identifying

areas for future scalability. Overall, this chapter o!ers an original design and evalua-

tion of RL components tailored for the VC context, substantially advancing the field

and outlining promising avenues for practical VC application.

My thesis is composed of a literature review outlining the overview of venture

capital and private equity investment, and the application of alternative datasets and
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machine learning models in private capital investment. This is followed by the three

themed chapters that are previously described. The final chapter (Chapter 6) presents

the conclusion of this thesis, alongside an overview of contributions, a discussion of

limitations and future research directions.



Chapter 2

Literature review

Venture capital (VC) and private equity (PE) become indispensable financial asset

classes that contribute to and drive economic growth and society globally. The assets

under management (AUM) within the global private capital market exhibit sustained

growth, reaching $9.8 trillion in 2021 (McKinsey, 2022). Numerous successful

public companies and unicorns (those valued at over $1 billion) benefit from the

strategic investments of VC and PE firms. A prime example is Meta (formerly

Facebook), a social media platform, which secured Series A funding from Accel

Partners in 2005, valued at $98 million (Pitchbook, 2022). Through subsequent

growth and a successful IPO on the Nasdaq stock exchange in 2012, Meta’s valuation

surged to $81.25 billion, yielding Accel Partners a substantial return on their initial

investment from its ownership of $6.3 billion (Pitchbook, 2022; Tam and Raice, 2012;

McBride, 2012). Accel Partners’ strategic guidance and support play a pivotal role

in Meta’s growth, demonstrating the value of experienced VC firms in accelerating

high-potential startups. This case study underscores the pivotal role of private capital

in fostering the growth of high-potential startups.

Beyond the well-known unicorn startups that go public through initial public

o!erings (IPOs), numerous other companies previously backed by VC and PE firms

achieve significant milestones. For instance, Slack, a business communication plat-

form, was acquired by Salesforce in 2021 after receiving funding from Accel Partners

(Salesforce, 2021). Additionally, Gocardless, a recurring payment collection platform

founded in 2011, continues to operate privately with ongoing support and follow-
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on investment from Accel (Pitchbook, 2024). Collectively, VC-backed companies

raised a substantial $144.8 billion globally in Q1 (KPMG, 2022), underscoring their

significant impact on the startup ecosystem in terms of financial funding.

Venture capital and private equity investments play a pivotal role in nurturing the

growth of early-stage companies, which in turn contribute significantly to economic

development, innovation, and social progress. In the United States alone, startups

and young firms generated over 3.7 million new jobs in 2023 (Statista Research

Department, 2024). Moreover, startups comprise approximately 20% of the workforce

across OECD countries (OECD, 2024). Government policies also play a crucial

role in shaping the dynamics of startups and job creation, influencing the overall

economic landscape (Calvino et al., 2016; Kane, 2010). Beyond their direct economic

contributions, startups supported by private capital often contribute to social and

environmental progress by addressing pressing challenges and developing sustainable

solutions.

As evidenced by the number of patents obtained, VC-backed companies often

demonstrate a higher propensity for innovation (Nanda and Rhodes-Kropf, 2013).

In Addition, startups focus increasingly on addressing pressing global challenges.

Climatetech startups attract significant investment, reaching a valuation of $2.5

trillion (Dealroom, 2024a). Meanwhile, the Healthtech startups demonstrate a strong

commitment to improving quality of life, with over 120,000 patent activities recorded

between 2010 and 2021 and $25 billion invested globally in 2023 (Dealroom, 2023).

The proliferation of startups across various sectors positively impacts sustainable

economic development and social progress, as evidenced by their strong correlation

with the United Nations Sustainable Development Goals (UN SDGs) (Ressin, 2022).

Building on the discussion of private capital’s impact on startups, the economy,

and society, this chapter provides a comparative overview of early-stage investment,

specifically focusing on venture capital and private equity. It then explores the

transformative potential of alternative datasets and machine learning within the

financial market, critically highlighting their currently limited application to private

capital investment.
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2.1 The background of venture capital and private

equity
These firms invest in private companies through equity and debt financing, aiming

to generate returns from valuation growth. While both seek to capitalise on private

company potential, a key distinction lies in their investment stage. VC firms focus

on early-stage, high-risk startups often lacking revenue, whereas PE firms target

more mature companies seeking private growth capital (i.e., prior to initial public

o!ering or IPO). According to a KPMG report, the average deal size for early-

stage ventures is smaller at $7.9 million compared to $13.5 million for later-stage

investments; however, the number of early-stage deals is substantially higher (KPMG,

2022). The investment process for both typically involves formulating an investment

strategy, fundraising from limited partners (LPs), and selecting portfolio companies

aligned with the investment objectives. Comprehensive due diligence is conducted on

potential investments, considering factors such as the founding team, product, market,

and legal aspects. This process is crucial for identifying promising opportunities and

mitigating investment risks. The subsequent phase involves deploying the capital

committed by LPs.

Beyond monetary investment, VC and PE firms might o!er invaluable strategic

counsel and access to their extensive networks, significantly contributing to the

growth and success of portfolio companies and facilitating exits like M&A or IPOs.

This support encompasses talent recruitment, customer and supplier introductions,

and other value-added services. The funding landscape evolves significantly with the

emergence of new players like angel investors, crowdfunding, and corporate venture

capital (CVC), intensifying competition for investment opportunities among startups

(Block et al., 2018). Angel investors are high-net-worth individuals who provide

early-stage funding to startups in exchange for equity ownership or convertible debt.

Crowdfunding, in contrast, allows a large number of individuals to collectively

finance ventures through digital platforms. The CVC refers to investments made

by established corporations in startups to achieve strategic advantages alongside

financial returns. Additionally, technological advancements such as decentralised
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blockchain networks pave the way for innovative financing approaches, giving rise

to new categories of startups and investment strategies that are explored in greater

detail in Chapter 3.

Private capital can be defined as an alternative asset class, that o!ers investors

the opportunity to diversify their portfolios and mitigate risk. Investors can choose

to invest in these private capital funds managed by general partners (GPS), who are

entities responsible for overseeing venture capital funds, or they can invest directly

in portfolio companies, avoiding management fees and agency problems. Markowitz

(1952)’s Modern Portfolio Theory (MPT) introduces a framework for constructing

optimal portfolios by balancing expected return and risk. However, the theory’s

underlying assumption of asset liquidity and market e"ciency renders it inapplicable

to private equity (Thomas and Pierre-Yves, 2005). Unlike traditional asset classes,

private equity investments are characterised by their illiquid nature, requiring in-

vestors to commit capital for extended holding periods. LPs provide capital to the

fund through capital calls and receive returns upon the exit of portfolio companies,

which can take up to a decade. The return distribution of private equity invest-

ments deviates significantly from the normal distribution observed in traditional

asset classes, exhibiting a heavily skewed distribution with a concentration of returns

in a few highly successful investments (Cochrane, 2005). The distinctive return

patterns of private equity investments necessitate a specialised investment strategy

that prioritises identifying and nurturing high-potential opportunities, conducting

due diligence, and actively monitoring portfolio companies to achieve exceptional

returns that compensate for the inherent risks.

As previously discussed, information asymmetries and moral hazard issues re-

main prevalent challenges in entrepreneurial financing, hindering accurate valuation

and capital allocation (Denis, 2004). The landscape of VC investing evolves signifi-

cantly, characterised by a shifting focus on technology-driven startups, diminishing

governance standards, and evolving decision-making criteria among investors (Lerner

and Nanda, 2020). To navigate these challenges and enhance investment outcomes,

investors are increasingly turning to data-driven approaches and advanced analytical
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tools to resolve issues in entrepreneurial finance. This leads to the development of

key areas explored in this thesis: token financing rating for ICO investments (Chapter

3), the application of machine learning to perform valuation (Chapter 4), and its use

in portfolio selection for early-stage startups (Chapter 5). The following sections

explore the availability of relevant data sources for both investors and academic

researchers, followed by an in-depth examination of machine learning applications as

a promising tool for identifying target portfolio companies and optimising investment

returns.

2.2 Private capital database and alternative data

2.2.1 Private capital database

Understanding the determinants of startup funding, valuation, and growth necessitates

robust data. While public companies are obligated to disclose financial and non-

financial information subject to regulatory scrutiny, private companies, particularly

early-stage startups, have limited obligations and incentives to share such information.

Consequently, data availability for these firms is limited and often proprietary posing

significant challenges for researchers and investors. Additionally, unlike public

securities with frequent market data, the illiquid nature of private equity investments

hinders the analysis of investment trends, valuation patterns, and performance metrics.

The validation of startup information primarily relies on investor due diligence, with

results often remaining confidential. However, commercial databases like PitchBook,

Preqin, and Crunchbase o!er valuable resources by aggregating data on companies,

founders, deals, and investment funds, providing essential information for both

academics and practitioners.

Several studies compare di!erent private capital investment databases. For

instance, Maats and Bedrijfskunde (2008) contrast the firm-level and funding round-

level coverage of VentureXpert1 and Venture Source2. While VentureXpert o!ers

more comprehensive data, it also exhibits higher error rates. Kaplan and Lerner (2016)

1VentureXpert is part of Thomson Reuters
2Venture Source was formerly part of Dow Jones, acquired by CB Insights in 2020 (CB Insights

updates, 2020)
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emphasise the importance of accurate pre- and post-valuation of startups, highlighting

the need for databases to reflect the control rights of stakeholders, including cash

flow, voting, and liquidation rights, as outlined by Kaplan and Strömberg (2003),

rather than relying solely on the simple multiplication of share price and quantity.

However, without publicly accessible deal terms, accurately calculating valuations

remains challenging. A broader range of databases, including Cambridge Associates,

AngelList, Burgiss3, CB Insights, Crunchbase, Dealroom, Pitchbook, Preqin, and

Tracxn, are assessed by Kaplan and Lerner (2016) and Retterath and Braun (2020).

Each database possesses unique characteristics, and researchers should be mindful

of potential biases when utilising these data sources.

For example, Retterath and Braun (2020) find that startups in sectors such as

IT, software, biotech, and healthcare are more likely to be included in databases

like Crunchbase. PitchBook and Crunchbase tend to include younger companies,

reflecting the time trends. Additionally, founders with prior funding successes or

involvement in M&A deals are more prominently featured in PitchBook datasets.

Retterath and Braun (2020) further confirm that later-stage funding rounds exhibit

more complete data on round sizes and post-money valuations compared to early-

stage investments. Their analysis also reveals that VentureSource, PitchBook, and

Crunchbase o!er the most comprehensive and accurate data across key dimensions of

company information, founder data, and funding details. These findings underscore

the persistent challenge of obtaining reliable early-stage funding data and addressing

inherent biases within these datasets.

Kaplan and Lerner (2016) highlights that biases significantly distort data re-

garding the performance of VC funds. Several factors contribute to biases in VC

fund performance data, including the underrepresentation of first-time funds and the

limited transparency regarding underperforming funds. These factors can lead to an

upward bias in reported performance due to the selective disclosure of information, as

GPs may avoid reporting underperforming funds to protect their reputation. Addition-

ally, the complex and non-transparent valuation methodologies, as detailed in Chapter

3Burgiss is now part of MSCI
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4, employed by VCs can hinder benchmarking and comparative analysis. To address

these limitations and enhance the analysis of private companies, practitioners and

academic researchers can explore alternative datasets that can complement traditional

commercial and structured data sources.

2.2.2 Alternative data in finance
Alternative data, encompassing information beyond traditional financial statements

and company filings, becomes increasingly accessible due to technological advance-

ments. This diverse dataset, including text, images, and audio, garners significant

attention for its potential to enhance financial decision-making and reduce data ac-

quisition costs from both academics and practitioners (Cong et al., 2021). Textual

data, such as financial news, reports, and social media content, is a commonly used

type of alternative data that can be collected through web scraping4 and APIs 5

(#piewanowski et al., 2022; Cong et al., 2021). Other forms of alternative data used

in financial applications include satellite imagery (Yang and Broby, 2020) and audio

(Mayew and Venkatachalam, 2012). Although alternative data presents promising

opportunities, it also poses significant technical challenges, particularly in processing,

analysing, and storing unstructured information. Furthermore, data privacy concerns

require careful attention from regulators to ensure its responsible and ethical use

(Cong et al., 2021).

While numerous studies explore the application of alternative data in publicly

traded equities, textual data remains the most widely used source. For example,

sentiment analysis of Twitter data is used to predict stock price movements (Pagolu

et al., 2016) and returns (Ranco et al., 2015). Moreover, web tra"c metrics, including

website interactions and user behaviour, are associated with the performance of

internet stocks (Hand, 2001). Additionally, search engine queries related to portfolio

companies are correlated with trading volume (Bordino et al., 2012). Financial

news feeds constitute another popular source of alternative data, widely employed

by investors and academics. Researchers explore various textual representation
4The process of extracting data from HTML pages and storing it in a structured format
5Application Programming Interface or API is a set of protocols that allows di!erent software

applications to communicate, interact, and exchange data with each other.
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techniques to extract valuable insights from news articles (Schumaker and Chen, 2009;

Mittermayer, 2004). By combining feature selection methods with market feedback,

studies demonstrate the potential of these techniques to improve the accuracy of

price movement prediction and trading strategy performance (Hagenau et al., 2013).

Chapters 3 and 4 also highlight the importance of these alternative data sources,

demonstrating the extensive use of social media and financial news in predicting

token returns and startup valuations, respectively.

In the context of private capital, social media platforms like X (formerly known

as Twitter) emerge as valuable predictors of venture success. Antretter et al. (2019)

demonstrate the e"cacy of online legitimacy, a measure of social appreciation on

Twitter, in forecasting 5-year startup survivability with 76% accuracy. Bayar and

Kesici (2024) further highlight the correlation between higher Twitter engagement

levels and fewer VC financing rounds, smaller VC syndicates, and a greater likelihood

of successful exits with larger funding amounts. Garkavenko et al. (2022) leverage

social media and web-based metrics to predict startup funding success, emphasising

the potential of publicly available sources to provide labelled target variables that

may be absent in traditional databases.

Beyond social media, text-based analysis is applied to various types of data.

Trevor Rogers (2020) find a positive correlation between patent similarity among

VC-backed portfolio companies and their subsequent patent output and quality. While

venture capitalists are prominent players in early-stage funding, other sources such

as angel investors, crowdfunding, and initial coin o!erings (ICOs) also gain traction.

These alternative funding sources often leverage textual data from crowdsourcing

platforms to assess investment opportunities. Studies show that direct mentions of

startups in business and employment-related news articles can enhance the predictive

power of models for angel and seed funding success (Sharchilev et al., 2018). Kaiser

and Kuhn (2020) further explore the potential of publicly available data, including

textual information from the Danish Business Authority, to predict various dimensions

of Danish startup performance, such as survivability, employment growth, and return

on assets. Additionally, Lee et al. (2021) investigate the impact of ICO aggregated
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ratings, a collective opinion from communities and experts, on fundraising success

and long-run token returns. These ICO ratings are discussed further in Chapter 3.

The increasing prominence of sustainable finance leads to a growing interest in

news articles and sustainability reports as valuable sources of alternative data. Studies

demonstrate the impact of these text data on future asset returns and company risk

(Guo et al., 2020; Schmidt, 2019). Satellite technology, which enables the monitoring

of environmental indicators such as air and water pollution, waste management, and

natural resource management, o!ers another valuable source of information aligned

with EU legislation. This data can contribute significantly to ESG performance

measurement for financial assets (Yang and Broby, 2020). Chapter 4 delves deeper

into the application of alternative data in sustainable finance assessment.

Another application of alternative data involves the analysis of audio recordings,

such as earnings conference calls. Mayew and Venkatachalam (2012) employ vocal

emotion analysis software to extract emotional cues from these calls, demonstrating

their potential to provide insights into a company’s financial future. These emotional

cues can complement traditional financial data and textual analysis. Collectively,

these findings highlight the potential of alternative data, a relatively untapped potential

resource in private capital investment. Such data can o!er insights into the investment

process, particularly during the screening and due diligence phases. The subsequent

section delves deeper into the application of machine learning models to harness the

capabilities of these alternative data sources

2.3 Application of machine learning in private capital

market
Machine learning (ML), a subset of artificial intelligence that is capable of learning

from various types of data without explicit programming, emerges as a valuable tool

in financial markets, including asset management, insurance, and risk management.

Its application in private capital investment is gaining traction, particularly in the

areas of early-stage screening and due diligence. By judiciously selecting investment

opportunities through machine learning, investors can significantly enhance the value
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creation of target startups (Gompers et al., 2020).

Identifying exceptional investment opportunities capable of generating superior

returns remains a significant challenge for venture capital and private equity firms.

Predictive models emerge as a potential solution, with research focusing on forecast-

ing startup outcomes such as subsequent funding rounds (Sharchilev et al., 2018;

Garkavenko et al., 2022), survivability (Krishna et al., 2016), and exit pathways (Bhat

and Zaelit, 2011; Arroyo et al., 2019; Ross et al., 2021). Additionally, studies explore

the application of machine learning to predict startup valuations (Miloud et al., 2012;

Ang et al., 2022; Zhang et al., 2023; Garkavenko et al., 2021). The majority of these

studies employ supervised learning, where algorithms are trained on labelled data

with known target variables. Moreover, the application of supervised learning shows

success in public equity investment, especially for stock prediction (Lawal et al.,

2020; Kumar et al., 2018; Powell et al., 2008).

Unsupervised learning, another ML technique, trains algorithms on unlabelled

data to identify underlying patterns and structures. Despite the absence of labelled

training data, unsupervised learning models demonstrate comparable performance to

supervised learning models in market forecasting tasks (Powell et al., 2008; Corchado

et al., 1998). While it shows comparable performance in public equities research, its

application in private capital research remains limited. Unsupervised learning is em-

ployed to understand relationships and classify startups into industry domains based

on textual descriptions (Kharchenko et al., 2023). Additionally, semi-supervised

learning, a hybrid approach combining supervised and unsupervised techniques,

shows promise in both public and private equities research. In the context of pub-

lic equities, this approach is applied to improve time series forecasting for Nasdaq

markets (Palma et al., 2024) and spot foreign exchange rates (Pavlidis et al., 2006).

In the realm of private capital, Xiong and Fan (2021) implement a semi-supervised

approach to analyse VC network structures and identify industry leaders.

Reinforcement learning is an ML method where an agent learns to make deci-

sions by interacting with an environment. It is successfully applied in liquid financial

markets to optimise trading strategies, such as stock trading (Azhikodan et al., 2019)
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and asset allocation (Moody and Sa!ell, 2001). However, its application in the illiq-

uid private capital market is limited due to extended investment horizons. Designing

reinforcement learning models for this context is challenging due to delayed feedback

mechanisms inherent to venture capital and private equity investments. Chapter

5 examines the potential applications of reinforcement learning within the private

capital domain in more detail.

Finally, a neural network (NN), a computational model inspired by the human

brain, learns complex patterns from data through iterative adjustments to minimise

error. Information flows through the network, from input to output layers, undergoing

transformations at intermediate hidden layers. Monika Dhochak and Doliya (2024)

apply neural networks to predict pre-money valuations of Indian startups. Li et al.

(2022) extend the NN model by utilising graph neural networks (GNNs) to predict

M&A probabilities, leveraging the network relationships among companies, founders,

and investors. Deep learning, on the other hand, is a specialised neural network

architecture with multiple layers, that excels at extracting intricate features from

complex data. Ross et al. (2021) employ deep learning to develop an ensemble

model, CapitalVX, which outperforms human venture capitalists in predicting startup

exit scenarios. Natural Language Processing (NLP) is another domain where deep

learning shows promise in processing and analysing the unstructured text data format.

For instance, Caragea et al. (2020) utilise deep learning and BERT transformers to

categorise fintech innovations based on patent analysis. Chan et al. (2021) apply

BERT to crowdfunding project descriptions, generating scores indicative of writing

quality and predicting fundraising success. Interestingly, lower-quality writing given

by a higher average BERT score correlated with increased funding.

As previously discussed, the application of alternative data and machine learning

in private capital investment remains relatively limited compared to its use in public

financial markets. The availability of robust datasets is essential for training machine

learning models to make accurate predictions and investment recommendations. Fur-

thermore, emerging trends in entrepreneurial finance, such as blockchain technology,

coupled with the growing significance of sustainability, o!er promising avenues for
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applying alternative data and machine learning applications in early-stage investment.

These topics are explored in greater detail in the rest of the thesis.



Chapter 3

An investigation of sentiment analysis

of information disclosure during

Initial Coin O!ering (ICO) on the

token return
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3.1 Introduction

The digital revolution has a remarkable impact on many aspects of life, and finance

is no exception. In the last decades, firms and investors see their portfolio of opportu-

nities widen and become more profitable on average. The intersection of finance and

digital innovation makes available new financial tools such as equity or reward crowd-

funding, peer-to-peer lending (Ahlers et al., 2015; Belleflamme et al., 2014; Wei Shi,

2018) and Initial Coin O!erings (ICOs) (Giudici and Adhami, 2019; Bellavitis et al.,

2021; Fisch, 2019).

In this context, ICOs become tremendously important as a source of equity fi-

nancing. An ICO can be defined as a sale of digital assets “tokens” (cryptocurrency),

and since their first occurrence in 2013 (funding operation held by Mastercoin) ICOs

prove to be extremely popular. The reasons are manifold (Andrieu and Sannajust,

2023), spanning from the hedging role of cryptocurrency with respect to the volatility

of domestic currency and geopolitical risk (Momtaz, 2020), to the lack of trust and

strict selection criteria for funding of the banking sector (Block et al., 2012). Pilking-

ton (2018) adds their higher expected returns and lower transaction costs, whereas

Adhami et al. (2018) also points out the increased liquidity of firms’ investments

due to the secondary market of tokens. Regarding their characteristics as a funding

mechanism, ICOs prove to be suitable to finance projects characterised by a high

uncertainty in their characteristics, potential and returns (Chen, 2019; Narayanan

et al., 2016; Bellavitis et al., 2021), displaying positive e!ects of a built-in user base

and network (Giudici and Rossi-Lamastra, 2018). The ICO market kept momentum

in terms of volume and value in 2014, when Ethereum sold 31,000 bitcoins worth $

18.3 million, (Rooney, 2018) and on, until 2018 when a decline (and recent recovery)

took over as a result of the inability of regulation to match the growth of the market

(Andrieu and Sannajust, 2023). Despite their popularity, fraudulent activities are

more likely in an ICO environment than in alternative equity funding sources (Hornuf

et al., 2022), and they are estimated as an extremely high percentage of their overall

operations. For instance, Sapkota et al. (2020) estimate approximately 56% in number

and 65% in value in the period 2014 – 2019; Liebau and Schue!el (2019) claims 80%
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of ICOs are fraudulent in 2017. The reason why ICOs are particularly prone to fraud

is twofold. First, their links with ventures, i.e., investment projects at an early stage,

are highly innovative, and volatile. Then, ICOs embed into a fundraising activity a

high-level technological component (e.g., using decentralized finance (DeFi)), which

adds complexity and even more need for information with respect to a standard

funding mechanism. Together with an inappropriate regulation, this leads to a perfect

example of adverse selection and asymmetric information (Akerlof, 1970) as follows.

On the selling side of the market (fundraiser) the lack of information requirement

constitutes an incentive for bad projects to participate, whereas on the buying side,

investors are driven away from the di"culty to fairly value projects that rely on an

incomplete and potentially unreliable information set. The subsequent outcome is

adverse selection, that is, (i) only lower quality projects are encouraged to apply for

funding, (ii) a higher percentage of bad projects are funded with respect to alternative

standard financial tools and on average at a higher cost. In such a landscape, given

the increasing interest and potential for DeFi–based financial tools, the market itself

tries to provide a solution.

ICO is operated in a lightly or unregulated market; hence, there is no require-

ment to audit or monitor the information disclosed to investors. Without accessing

fundamental data to assess past performance in the form of financial and non-financial

statements similar to public equities investment, many investors need to rely on token

ratings to evaluate the proposed token generated by communities and experts. These

ratings are widely used to screen potential scam tokens or speculate on which tokens

successfully list on an exchange and generate a return. There are ongoing arguments

regarding the reliability of the token ratings and the ability to reduce information

asymmetry to assess the credibility of the token and future performance (Lee et al.,

2021). However, many studies emphasise the weaknesses of the existing token rating

system, underlying its non-transparent process and dependence on easily extractable

information (Ofir and Sadeh, 2020; Florysiak and Schandlbauer, 2019). Thus, posi-

tive ratings may not necessarily guarantee potential financial returns. The factors that

cause the discrepancy between token ratings and post-ICO financial performance
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are su"ciently studied. This leads to a research question aimed at understanding

the factors that can explain the discrepancy between ICO ratings and token returns,

and although this study is unable to find conclusive results regarding the specific

factors that cause this discrepancy, its existence leads to suggestions for the token

assessment process.

Assessing the true value and potential of Initial Coin O!erings (ICOs) is a

significant challenge in the rapidly evolving blockchain landscape. While traditional

token ratings and venture information from platforms, whitepapers, and social me-

dia o!er some insights, their reliability in predicting long-term success, funding

thresholds, or secondary market listings remains debated (Fisch, 2019; Campino

et al., 2022; Adhami et al., 2018; Howell et al., 2019; Lyandres et al., 2022; Li-

pusch, 2018; Bourveau et al., 2022; Ante et al., 2018). A research gap persists in

understanding how information disclosed during fundraising genuinely translates

into long-term post-ICO financial performance. With the latest advancements in

artificial intelligence, there is an opportunity to integrate natural language processing

(NLP) techniques for extracting quantitative information, such as sentiment analysis,

from the text presented on whitepapers (structured by IPO prospectus categories)

and social media platforms like Twitter, which is highly used by ventures. Hence,

the study extends Bourveau et al. (2022)’s model by analysing whitepaper sentiment,

integrating it with social media’s emotional cues for 6-months return prediction.

These refined signals are then integrated with previously studied factors to construct

a novel ICO index, enhancing transparency beyond traditional ratings.

The study then deploys machine learning (ML) to forecast post-ICO token re-

turns. Although some studies explore decision models to predict fundraising success

(Lahajnar and Rozanec, 2018; Deng et al., 2018), precisely predicting post-ICO re-

turns and minimising human bias inherent in community-driven token ratings remains

a challenge. This research makes several contributions: it empirically confirms the

discrepancy between ICO ratings and long-term token returns, underscoring the need

for more robust token assessment. It highlights the significant role of social media

sentiment in predicting and explaining token returns. Importantly, it demonstrates
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the impracticality of relying on whitepaper sentiment grouped by IPO prospectus

for prediction, despite its initial conceptual appeal. By creating a novel ICO index

and leveraging machine learning, this research provides an accurate and transparent

framework for evaluating token value, moving beyond the limitations of traditional

methods and significantly reducing information asymmetries in token financing.

The chapter is organised as follows: Section 2 outlines the background of token

financing, and it lays down the hypotheses for the analysis. Section 3 introduces the

dataset, and Section 4 highlights the methodologies for this paper, including NLP

techniques and regression model. Section 5 presents and discusses the results of the

statistical analysis, followed by classification results in Section 6. Lastly, Section 7

concludes the paper and outlines future work.
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3.2 Literature review and hypotheses formulation
Blockchain technology, disrupting the path dependence of centralised networks such

as the Internet and social media platforms, challenges the persistence of technology

use following past events (Arthur, 1989; Schilling, 2002). The proposal of Bitcoin

in 2008, leveraging the decentralisation and peer-to-peer properties of blockchain,

creates significant value in financial industries, reaching a peak market capitalisation

of one trillion in 2018 (CoinMarketCap, 2022). The financial market embraces this

innovation by introducing new assets in the form of cryptocurrency, serving as a

digital medium of exchange. Moreover, entrepreneurs and ventures capitalise on this

innovation through token financing methods, notably Initial Coin O!ering (ICO),

with the potential to become a mainstream financing avenue.

3.2.1 ICO Process
In contrast to traditional equity financing, ICO raise funds by issuing cryptograph-

ically secure tokens to investors. These tokens, with characteristics specified by

issuers, can be categorised as cryptocurrency, utility tokens, and security tokens.

Cryptocurrency serves as a medium of exchange for goods and services, utility tokens

grant access to the blockchain networks, and security tokens represent ownership

of assets (Howell et al., 2019). The decentralised feature of ICO is associated with

lower transaction fees and token price appreciation, driven by the network e!ect as

more counterparties become available for transactions, leading to increased demand

and higher token prices (Cong et al., 2020).

Another key distinguishing characteristic is a lightly regulated nature of the token

financing market compared to traditional equity financings like Initial Public O!ering

or IPO (initial public o!erings), transactions must follow regulatory jurisdictions,

necessitating the disclosure of financial and non-financial information to prospective

investors in compliance with rules. Consequently, IPO involves high costs, lengthy

processes, administrative and legal requirements, and multiple agents. However,

the true cost of token financing is still unclear (Andrés et al., 2022). To address

information disclosure gaps, ventures opt for alternative approaches to attract potential

investors in exchange for tokens. Entrepreneurs can publish relevant information on
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websites and social media platforms such as Twitter, Reddit, and Medium, facilitating

interaction between token issuers and communities. Additionally, ventures can

choose to release a whitepaper, a voluntary disclosure document o!ering project

overviews, teams’ details, and financial strategies. Alternatively, startups can list on

ICO database platforms such as ICObench, ICOdrop, and ICOdata at no cost. These

platforms employ rating mechanisms based on voluntary information disclosure and

expert’s evaluations. The availability of information implies the assumption that it

has the potential to mitigate information asymmetry in token financing and reduce

the analytical risk of choosing the wrong ICO due to a lack of information (Karpenko

et al., 2021; Cong et al., 2020; Campino et al., 2022; Burns and Moro, 2018; Fisch,

2019; Ofir and Sadeh, 2020).

The ongoing demand for investing in ICO tokens can be attributed to behavioural

finance biases, including overconfidence in herd behaviour and the fear of missing out

(FOMO) (Liu, 2019). From a pricing perspective, the ICO mechanism encourages

buyer competition for tokens due to their scarcity. Furthermore, investors can value

or price these tokens without shareholder rights compared with traditional equity

(Catalini and Gans, 2018). Catalini and Gans (2018) argue that the value of a token

depends on a single period of demand, and the absence of a commitment to hold the

token for an extended period allows for flexibility in future funding, unlike illiquid

equity financing for early-stage companies, which often occurs in multiple rounds.

Despite the increased flexibility in financing, token returns witness a decline overtime.

This phenomenon can be attributed to investors learning from their experiences,

leading to a reduction in underpricing compared to the first day of trading, which

typically involves greater uncertainty and urgency in token distribution (Benedetti

and Kostovetsky, 2021). Overall, the potential mainstreaming of token financing for

early-stage companies prompts researchers to examine the determinants influencing

ICO success and the potential value of post-ICO.

3.2.2 Determinants of ICO success and return

The ICO literature defines drivers of the success of ICO and analysed various sources

of fundamental data, including ICO characteristics, social media and whitepaper.
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ICO characteristics, available on the token issuer’s website and ICO databases, often

include project details, founder information, and fundraising campaigns. Many

studies examine the relationship between these ICO characteristics and the success

of token financing campaigns, particularly in terms of the likelihood of reaching

funding goals. Campino et al. (2022); Deng et al. (2018); Amsden and Schweizer

(2018); Howell et al. (2019) identify human capital features like team size, LinkedIn

network connection, advisors availability, and founder quality as positively correlated

with token funding success. However, Deng et al. (2018); Howell et al. (2019) argue

that possessing these characteristics does not necessarily guarantee the successful

delivery of products and services to the market. Campino et al. (2022) find that a high

token price with bonuses is perceived as a quality signal to investors, while cheap

tokens are considered potential scams. Additionally, the level of token retention held

by entrepreneurs and the team, indicating a commitment to establishing the company,

is positively correlated with ICO success (Amsden and Schweizer, 2018; Davydiuk

et al., 2023). Pre-selling of tokens before ICO, allowing investors to purchase at a

discounted price, may occur; however, this practice can lead to flipping and pump

and dump schemes, and market manipulation (Andrés et al., 2022). Overall, while

previous studies focus on the success of meeting the minimum funding threshold as

the dependent variable, there exists a research gap in further analysing the e!ects

of these signals on token returns. Another signal that can be considered is the ICO

analysis ratings, which rely on easy-to-extract characteristics shared by ICO ventures.

Lee et al. (2021) investigate ICO aggregated ratings, a collective opinion from

communities and experts in token financing, and found associations with fundraising

success and long-run token return. Bourveau et al. (2022) note that ICO rating

platforms and experts serve as market-based information intermediaries with strong

reputations for accurately rating ICO ventures. However, this rating information may

become commercialised, potentially resulting in market ine"ciency, as the rating

might not adequately consider the technical aspects of the project (Ofir and Sadeh,

2020). This aligns with Florysiak and Schandlbauer (2019)’s findings that the evalua-

tion process relies on easy-to-extract information, such as the team size, the existence
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of KYC, the number of active social media, and the presence of the whitepaper,

without necessarily understanding its content. Thus, the e!ectiveness of ICO ratings

in reducing information asymmetry and the quality of the assessment method is open

to question. Despite these findings, Lee et al. (2021) report contradicting results,

suggesting that the aggregated rating is associated with the token return. However,

this raises the question of whether a strongly positive rating necessarily guarantees a

positive token return and to this aim, this study proposes the following hypothesis:

𝜚1: There is a negative relationship between the rating assigned to an ICO by

the platform and its six-month return.

To address the potential discrepancy between ratings and token return as a proxy

of its fair value, the study aims to extend the model to understand the determinants

of token return and consider other sources of information, such as the whitepaper

relying on information published by token issuers rather than a collective opinion by

communities.

As previously mentioned, the rating often lacks consideration of the technical

aspects of the project, which are typically detailed in the whitepaper. This obser-

vation opens another research opportunity, as many studies investigate the role of

whitepapers. Whitepapers serve as documents prepared by token issuers to outline

products and services, similar to traditional business plans, providing information to

their potential investors (Lipusch, 2018). Cong et al. (2020); Campino et al. (2022)

conclude that whitepapers play a crucial role in reducing information asymmetry

and informing investors. Several studies examine the impact of whitepapers on the

amount of capital raised during an ICO campaign. Ante et al. (2018); Bourveau

et al. (2022) find that the existence of a whitepaper strongly influences the amount

of capital raised. Fisch (2019) delve into the role of technical pages, which focus

on technology, complement and architecture design, and find that these elements

influence the amount raised as it attracts investors. Other elements such as the num-

ber of pages and citations do not significantly impact ICO success, suggesting that

investors may consider the mere existence of a whitepaper as a signal rather than

delving into the document’s details (Ante et al., 2018). This conclusion aligns with
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the findings of Liu (2019); Adhami et al. (2018); Florysiak and Schandlbauer (2019),

who report that whitepapers do not significantly a!ect funding success and token

investment returns. The lightly regulated nature of the ICO market contributes to

issues related to whitepapers. There are no formal requirements for the content

included in whitepapers, leading to challenges such as the absence of certification,

standard format or authority to audit the information presented (Ante et al., 2018).

Consequently, whitepapers may be less valued by ICO ventures.

Despite challenges in analysing whitepapers, quantitative attributes such as the

sentiment can be extracted from the text. For example, Florysiak and Schandlbauer

(2019) study the e!ect of sentiment analysis on 22-day and 66-day token return and

volume. However, their studies focus on overall content that can be subdivided into

sections and can be further investigated with the long-term post-ICO return. The

paper further examines the relationship between the sentiment of the whitepaper

and post-ICO return over an extended period of up to six months, studying potential

e!ects that are not previously investigated. In addition, the study extends to extract

the sentiment of the whitepaper based on each aspect following (Bourveau et al.,

2022)’s methodology, which previously examines the availability of the information

presented in the whitepaper following the IPO prospectus. To investigate the potential

role of the whitepaper in driving the returns of the ICOs after six months, the research

formulates the following hypotheses regarding the di!erent categories of its content:

𝜚2𝜍: There is a positive relationship between the technical characteristics of

the project (henceforth “Technology”) as described in the whitepaper and the

six-month return of the ICOs.

𝜚2𝜑: There is a positive relationship between the characteristics of the team

(henceforth “Team”) and the six-month return of the ICOs.

𝜚2𝛻: There is a positive relationship between the economic and financial

characteristics of the project (henceforth “Market”) and the return of the ICOs

after six months.

The social interaction of agents in the environment can influence decision-
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making and economic outcomes through the transmission of biases (Han et al., 2022).

This phenomenon can be seen in the social media set up by the ICO venture to com-

municate and share information about products and services, overcoming information

asymmetries. The management and development team engage with the community,

including potential investors and end users, via well-known social platforms such

as Twitter, and Facebook, or messaging apps like Discord, Slack, and Telegram

(Lipusch, 2018; Bourveau et al., 2022). Bourveau et al. (2022) identify Twitter as

the most popular social media tool among ICO ventures, with 97% having a Twitter

presence. Fisch (2019); Bourveau et al. (2022); Lyandres et al. (2022); Campino et al.

(2022); Burns and Moro (2018); Ofir and Sadeh (2020); Ante et al. (2018) examine

Twitter activities, analysing metrics like the number of followers and the number

of tweets posted by token issuers. These studies found positive correlations with

ICO funding amount raised, emphasising the role of tweets in reducing information

asymmetry. However, Lyandres et al. (2022) report contradictory results, finding

that the number of tweets is not statistically significant for funding success. Stanley

(2019) explore the sentiment of tweets and the level of social media activity during

the pre-ICO and found no correlation between the return on investment. The research

findings suggest that social media activity posted before starting an ICO campaign

may not necessarily impact the token value. Despite this, there is little research

evaluating the tweet sentiment during ICO fundraising and its impact on long-term

post-ICO returns. This research gap raises another question for an investigation into

the sentiment of tweets and its relationship with long-term post-ICO returns. To

investigate the role of tweets in driving the ICO returns, the study formulate the

following hypothesis:

𝜚3: There is a positive and statistically significant correlation between the

sentiment about the project as proxied by the tweets and the six-month return

of the ICOs

The absence of regulation in the ICO space leads researchers to explore ways to

assess the trustworthiness of tokens as investment opportunities. Deng et al. (2018)

construct token valuation measurement, highlighting the influence of technological
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development and user base on token value. Deng et al. (2018); Bourveau et al.

(2022) also create a disclosure index and found a positive correlation between the

funding success of unrated ICOs and token returns. While many researchers delve

into the factors contributing to ICO success and the amount raised, there is limited

exploration of applying machine learning to predict the post-ICO returns. Such

models are well-suited for handling large volumes and diverse types of data, and

they can generate predictive insights without direct human intervention. This study

proposes a model that aims to predict post-ICO performance based on information

disclosed during the fundraising period, including sentiment extracted from text data.

This approach leverages the capabilities of machine learning to enhance understanding

and prediction in the ICO context.
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3.3 Data description

Initial Coin O!erings

ICObench is one of the popular rating platforms that provide ICO data, and its ratings

are extensively utilised and studied in numerous previous works (Lee et al., 2021;

Lyandres et al., 2022; Bourveau et al., 2022). This 5-star rating platform employs its

ICO assessment algorithm that incorporates independent experts who voluntarily rate

the token for the token financing community (ICObench, 2017). The score weight

is distributed according to the number of experts and their past contributions as

active members of the ICObench community. The ratings are assigned based on the

information disclosed during the ICO without incorporating the market data once

the venture successfully raises funding.

Since 2015, when the first ICO was advertised on the ICObench platform, a

total of 5,723 ICOs1 are listed on the website. The study aims to investigate the

financial performance of post-ICO; thus, only venture campaigns that are successfully

listed on the secondary market or crypto exchange are analysed. Some ICOs are

removed due to incomplete information on crucial characteristics, such as a lack of

Twitter presence and the unavailability of token prices, which is elaborated upon

later. Consequently, there are 391 tokens available for analysis, and A includes the

list of variables used in this study.

Whitepaper

A whitepaper serves as a document outlining key details of the blockchain project,

such as the algorithms, the product development roadmap, the management and

development team, revenue models, and tokenomics. Typically, a whitepaper is in

PDF format and is publicly accessible, being uploaded on ventures’ websites, ICO

rating platforms and cryptocurrency exchanges. However, their provision is voluntary,

leading to variations in disclosure requirements among ICO ventures. Also, there are

technical issues while extracting the text, such as the embedded information as an

1The data is collected on 11 February 2022.



3.3. Data description 53

Table 3.1: The description of whitepaper aspects following the Bourveau et al. (2022) tech-
nique, which studies the existence of information in each IPO prospectus.

Whitepaper Aspects Description

Product Description
Description of venture primary business’s purpose
and outline how the blockchain product and services
would solve a particular problem.

Technical Description of algorithm and architecture of
blockchain application and tokens.

Team

Description of human capital involved in the project:
management team, developer team, and advisors.
The information includes their identity and
professional background.

Product Roadmap Description of products and features to be developed
and delivered in each milestone.

Finance
Description of token sale plan, which indicates
the token allocation, incentives for token sales and
how the fund will be used for the expense.

Business Landscape Description of market and industry research, market position,
product matrix and competitor analysis.

Risk Description of risks involved in investment and risks related to
the products and services such as technology and regulatory risks

image. Any records with missing and non-English text are removed from the analysis.

As a result, only 161 out of 391 ICO ventures have whitepapers available.

This study extends Bourveau et al. (2022)’s model by analysing the sentiment

of the whitepaper by IPO prospectus rather than the binary variable of whitepaper

availability. Table 3.1 shows the whitepaper categories, including additional aspects

such as the business landscape and risk factors.

Tweets

Twitter is a social media platform widely used by numerous ICO ventures for commu-

nication, community engagement, and attracting potential investors (Bourveau et al.,

2022). The tweet message length is shorter than other social media with a maximum

length of 280 characters. Tweets are collected via Twitter API and twarc, a Python

package (Summers et al., 2014). Only the tweets posted by the venture and during the

token funding are collected for sentiment analysis. This study is designed to examine

the impact of information disseminated by ICO ventures. Accordingly, the research
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focus is solely on the analysis of tweets originating from these ventures, excluding

those from other Tweets users expressing their opinions on the token through hashtags

or mentions of the token issuer’s account. The rationale behind omitting tweets from

other Twitter users is driven by the commitment to following privacy policy during

the data collection phase. The dataset comprises a total of 17,520 tweets emanating

from ICO ventures, representing 391 distinct tokens.

Token Price

The final dataset employed in this study is the token price data. As each token

can be traded on single or multiple exchanges, establishing standard prices across

exchanges presents a challenge, given variations in governance that can range from

decentralised to centralised exchanges. Fortunately, Coingecko (Coingecko, 2022)

addresses this challenge by aggregating prices through a value-weighted average

function that considers exchange pairings. The platform also consolidates token

trading volumes across exchanges and o!ers market capitalisation in USD - the ratio

between the current crypto-asset price and the available supply. For the purposes

of this analysis, volumes and market capitalisation are beyond the scope. The study

aims to assess changes in token prices traded on an exchange for at least six months

after the end of ICO. The price data is used to compute a token return using the

following function:

𝜕ℵℶ_ℷℸ⊳⊲ℷ0 = log
1ℷ2𝛻ℸ

3

1ℷ2𝛻ℸ
2

(3.1)

where 1ℷ2𝛻ℸ
3

is the token price after six months, and 1ℷ2𝛻ℸ
2

is the token price

on the first day of trading. The result of Formula 3.1 provides the rate of return,

normalised to share the same scalar even when the price values of each token vary.

This log return serves as the dependent variable in the regression model and the target

variable used in the classification model. However, it is important to note that not

all tokens listed on ICObench have price data available on Coingecko. Some ICOs

may fail to raise su"cient funds and reach soft capitalisation, or they might be later

delisted from the exchange.
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3.3.1 Statistics summary result

Out of the 5,723 ICOs listed on ICObench, 391 tokens meet the criteria and are

analysed in this study. These ICOs have token price data traded on secondary markets

or crypto exchanges for at least six months and have Twitter accounts. The majority

of ICOs (47.8%) commenced in 2018. These blockchain applications aim to ad-

dress challenges across industries, including banking, healthcare, and entertainment,

with 20.9% identifying as platforms, and 13.8% as cryptocurrencies. Over 80% of

ICOs develop their products and services on Ethereum, a smart contract blockchain

adhering to the ERC (Ethereum Request for Comments) standard.

The applications are developed and operate in various geolocations; the ma-

jority of ICOs are established in Singapore (16.8%), followed by the United States

at 15.0%, and the United Kingdom at 6.72%. Nevertheless, some ventures also

initiate operations in countries with unfavourable regulations on token fundraising

and cryptocurrency, such as China (2.33%). Additionally, ventures may encounter

operational restrictions in certain countries. The average number of restricted coun-

tries, excluding the country that completely bans cryptocurrency, is one. Examples

of restricted countries included the United States, South Korea and Japan.

Based on information published on ICObench, other aspects of the ICO include

the venture team, financial information, and tokens issue during the fundraising

period. The average team size is approximately 15 members, with 68.5% and 50.9%

of ICOs having a Chief Executive O"cer (CEO) and a Chief Technology O"cer

(CTO), respectively. The CEO and CTO are the key players in the development of

blockchain applications, overseeing and monitoring the project and organisation to

deliver the promised products to potential investors. While the CEO’s engagement

in a prior blockchain project signals positively for ICO ventures, yet only 1.80% of

CEOs have directly comparable previous experiences.

As previously mentioned, every ICO of the dataset used in the study has a social

media presence on Twitter. Additionally, the ICO ventures utilise other communica-

tion channels such as Facebook, Discord, Telegram, Slack, and Reddit, averaging

around seven platforms per project. Another method to gain investor confidence is
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through the KYC (Know-Your-Customer) process, ensuring the verification of ICO

venture team members. Alternatively, ICOs can implement a whitelist, requiring

investors interested in token sales to undergo KYC procedures (Taço$lu, n.d.). More

than 58.3% of ventures have a whitelist or KYC process available for token selling.

Other approaches to token selling and distribution include Initial Exchange

O!erings or IEO and pre-selling of tokens. Approximately 10.7% of the tokens are

listed through IEO. The objectives of both ICO and IEO align in securing capital for

blockchain projects. However, the token sale process of an IEO occurs on cryptocur-

rency exchanges such as Binance Launchpad and OK Jump start Launchpad (Binance

Academy, 2020). Consequently, investors tend to have more confidence in purchasing

assets through these exchanges compared to venture websites or token platforms.

Over 47.1% of ventures allow the investor to participate in pre-selling or pre-ICO,

often o!ering incentives or bonuses during this period to attract investors. Regarding

processing times, the fundraising process takes an average of 51 days to complete,

followed by ventures spending approximately 119 days, or almost four months, to list

these tokens on exchanges. As previously explained, due to limited regulation and

monetary policy controlling liquidity and the variety of exchanges available for token

trading, ventures can list the tokens on numerous exchanges. Hence, the average

number of markets per project is six exchanges.

The information for each ICO project is not consistently available on ICObernch.

Out of 391 ICOs, 128 share details regarding the soft capitalisation or the minimum

fundraising target for the project. The figure usually depends on the project’s needs

and plans for developing and improving products and services or expanding into the

market. The average log value in USD is 14.9. Additionally, 302 ventures outline

the distribution of tokens sold during the ICO, with an average distribution of 46.1%.

This indicates that 46.1% of tokens are available for investors to purchase during the

ICO, while the rest may be allocated to founders and team, advisors and company

reserves. Furthermore, 310 token issuers disclose the number of tokens for sale to

investors, with the mean of its log value being 19.5. Table 3.2 provides a summary

of the statistics for each variable used in the study.
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Table 3.2: Summary Statistical Table of ICO variables captured from ICObench, Whitepaper,
Twitter, and Coingecko.

Name Count Mean Std Q25 Q50 Q75
Panel A: ICO Campaign
Soft Cap (log) 128 14.917 1.631 13.952 14.914 15.676
Whitelist/KYC 391 0.583 0.494 0.000 1.000 1.000
Pre-ICO 391 0.471 0.500 0.000 0.000 1.000
IEO 391 0.107 0.310 0.000 0.000 0.000
Bonus 391 0.396 0.490 0.000 0.000 1.000
ICO Duration 391 51.000 92.460 10.000 29.000 55.000
Token Listing Duration 391 119.248 198.976 20.000 55.000 116.500
Panel B: Token
Token for Sale (log) 310 19.475 2.290 18.118 19.382 20.352
% Token Sale 302 46.057 22.566 30.000 50.000 60.000
ETH-based 391 0.831 0.375 1.000 1.000 1.000
Panel C: Team
Team Size 391 15.898 9.577 10.000 15.000 19.000
CEO 391 0.685 0.465 0.000 1.000 1.000
CTO 391 0.509 0.501 0.000 1.000 1.000
CEO Prev Experience 391 0.018 0.133 0.000 0.000 0.000
Panel D: Whitepaper
Whitepaper Disclosure 391 0.412 0.493 0.000 0.000 1.000
Problem Description Disclosure 154 0.935 0.247 1.000 1.000 1.000
Technical Disclosure 158 0.943 0.233 1.000 1.000 1.000
Roadmap Disclosure 97 0.959 0.200 1.000 1.000 1.000
Team Disclosure 89 1.000 0.000 1.000 1.000 1.000
Financial Disclosure 102 0.990 0.099 1.000 1.000 1.000
Business Landscape Disclosure 74 0.959 0.199 1.000 1.000 1.000
Risk Disclosure 33 0.394 0.496 0.000 0.000 1.000
Panel E: Social Media
Social Media 391 7.197 1.641 6.000 8.000 8.000
Twitter Activity 391 44.808 93.191 7.000 19.000 43.500
% Positive Tweets 391 91.600 12.076 88.118 95.141 100.000
Panel F: Market
Market Size 391 11.307 20.733 2.000 4.000 8.000
Restricted Area 391 1.852 5.304 0.000 0.000 1.000
Panel G: Rating
ICO Rating 391 3.419 0.653 3.000 3.400 3.900
Panel H: Token Price and Return
Token Price Day 1 391 1.989 21.397 0.011 0.055 0.305
Token Price Day 30 391 1.889 20.694 0.009 0.051 0.301
Token Price Day 90 391 1.838 16.987 0.006 0.037 0.245
Token Price Day 180 391 2.763 34.825 0.004 0.022 0.192
First day Token Return (log) 391 -0.014 0.271 -0.093 -0.010 0.071
180 days Token Return (log) 391 -0.742 1.765 -1.816 -0.922 0.288
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3.4 Methodology

3.4.1 Natural language processing and sentiment analysis

This study examines two text datasets: whitepaper and tweets. However, these text

data can not be directly input into statistical and machine learning models without

preprocessing into numerical representations. The recommended approach involves

removing noises, such as stopwords and punctuations, followed by tokenisation

into word tokens and transformation into their base forms using lemmatisation.

Tweet messages may contain emojis and hashtags referring to specific topics, URLs

and mentions of other users. These elements do not contribute linguistic value to

understanding the sentiment, whether positive or negative and are therefore removed

during text preprocessing. Various natural language processing (NLP) techniques

can process text vectors to enable sentiment analysis, a binary classification task that

categorises text into positive or negative sentiment. However, sentiment analysis

approaches typically require a training dataset, which is impractical for the target

domain to gather. To address this limitation, this study adopts the Valence Aware

Dictionary of Sentiments (VADER) (Hutto and Gilbert, 2014).

VADER is a lexicon-based sentiment analysis tool that bypasses the need for a

training dataset, making it suitable for the study. VADER is designed and developed

to o!er several advantages of rule-based modelling. It provides a generalisation of

social media sentiment that can be applied across multiple domains without a training

dataset. Furthermore, the performance of the model is claimed to be e"cient without

compensating speed, making it suitable for processing online streaming data with

high velocity. The VADER process begins by constructing a list of lexical features

and assigning sentiment intensity to each feature on a scale from strongly negative to

extremely positive. The list considers common expressions in microblogs, including

emoticons and sentiment-related acronyms. Additionally, five generalisable heuristic

rules are developed and integrated with the list of lexical features. These rules are

based on grammatical and syntactic components, linking attributes to sentiment

intensity and accounting for word order – a sensitivity that the bag-of-words model

may not capture.
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The VADER model produces a compound score, which can be interpreted for

binary classification into positive and negative sentiments. If the compound score

is positive, the text is labelled it as positive sentiment; otherwise, it is considered

negative. Previous studies show that VADER outperforms other lexicon-based

models, including OpinionFinder (Wilson et al., 2005) and AFINN (Nielsen, 2011),

in various domains, including the financial domain (Sazzed and Jayarathna, 2021;

Sohangir et al., 2018). VADER is also successfully applied in the cryptocurrency

domain; for example, Kraaijeveld and De Smedt (2020) use VADER to capture

Twitter sentiment and forecast cryptocurrency prices of Bitcoin, Bitcoin Cash and

Litecoin.

This study applies VADER to assess the polarity and intensity of emotion

expressed by ICO ventures in tweets. The performance of VADER is analysed,

considering that its application is not explicitly outlined for non-social media text,

such as whitepapers, which may contain linguistic expressions di!erent from those

found in social media text.

3.4.2 Correlation

The study conducts correlation and regression analyses to understand the relationship

between the independent variable representing ICO characteristics and information

disclosure and the dependent variable of 6-month token investment return. This study

incorporates three types of variables: numerical, categorical, and ordinal values in

Boolean. Each type of variable requires a di!erent correlation analysis —Pearson

correlation for numerical variables and Point Biserial correlation for categorical

and ordinal variables. The Pearson correlation involves computing the covariance

of two continuous variables (4 and 5) divided by the product of their respective

standard deviation. Additionally, the Point Biserial coe"cient, which shares the

same computation as the Pearson correlation, assesses the degree of association

between categorical and continuous variables.

𝜕ℵℶ_ℷℸ⊳⊲ℷ0
2
= 60 +61721 +62722 + ...+6

1
7

21
+ 𝜀 (3.2)
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7
2
= independent variable (see table 3.2)

𝜀 = residuals ε8(0,92)

However, while correlation measures the strength of the relationship, regression

analysis is employed to quantify the association between the two variables. Multiple

linear regression (Formula 3.2) estimates the coe"cient, which explains the relation-

ship and the e!ect of the independent variable on token return, utilising Ordinary

Least Square (OLS) to find coe"cients that minimise the error in predicting the

dependent variable.

3.4.3 ICO Index
The study aims to explore another dimension by constructing a novel ICO index that

considers characteristics and information disclosure during token financing. This ap-

proach combines signals used by ICObench and those examined in previous literature,

with the goal of enhancing transparency compared to existing ICO ratings (ICObench,

2017; Deng et al., 2018; Lahajnar and Rozanec, 2018; Bourveau et al., 2022). Unlike

the disclosure index created by Bourveau et al. (2022), which is an arithmetic sum

of voluntary disclosures from whitepapers, source code, and social media used to

investigate the positive correlation with ICO fundraising success (investment decision

and quantity), this novel index focuses specifically on the relationship between its

scores and potential token returns.

The index comprises categories such as Teams, outlining team size and key

players like the CEO and CTO. Additionally, it assesses technology and campaign

strategies, including the availability of IEO, pre-selling, bonuses and the disclosure

of technology aspects in the whitepapers. The third factor encompasses the market,

considering the size of the markets where the startup operates and any restricted

areas of operation. Lastly, the index includes the ratio of positive messages found on

Twitter.

To construct this index, studies streamline categories by selecting variables that

pass multicollinearity tests and possess complete information. The ICO index is

then constructed as a linear combination, derived from the sum of its variables, with

each contributing equally, as detailed in Table 3.3. Continuous variables, such as
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Figure 3.1: A diagram shows the sources of data collection and the methodology used in
this study. The variables collected from various data sources are passed into
a pre-statistical test before being selected to test in the regression model and
machine learning and to construct the ICO index.

ICO Duration and Token Listing Duration, are transformed into categorical variables

based on their median benchmarks. This table also outlines the specific categories

of variables, including Team, Technology, Campaign, Market, and Social Media.

Subsequently, an in-depth exploration of this novel ICO index is conducted to anal-

yse its impact on the token return through regression analysis. This investigation

also evaluates whether the inclusion of the ICO index improves the robustness and

prediction accuracy of token return, utilising machine learning models.

The data collection process and methodologies are illustrated in Figure 3.1, with

further details on the machine learning model provided in Section 6.
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Table 3.3: A novel score category that aggregates the ICO variables used in the study. Some
variables are transformed from continuous values into dummy values whether the
value higher or lower than the threshold.

Score Category Name Description

Team

Team Size A dummy variable of one of the team sizes
is greater than the median; otherwise, zero.

CEO An indication of whether the venture
has a Chief Executive O"cer (CEO).

CTO An indication of whether the venture
has a Chief Technology O"cer (CTO).

CEO
Prev Experience

An indication of whether a CEO
has prior experience in blockchain projects.

Technology
and Campaign

Whitelist/KYC
An indication of whether the
Know-Your-Customer (KYC) and whitelist
are performed prior to purchasing the token.

ETH-based An indication of whether the application
is operated on Ethereum blockchain.

Pre-ICO An indication of whether the pre-ICO
or pre-selling is available.

IEO
An indication of whether the token sale
is handled and vetted by an exchange,
i.e., Initial exchange o!ering (IEO).

Bonus An indication of whether the bonus
is available for investors.

ICO Duration

A dummy variable of one if the number
of days for a token to be available on
exchanges is less than the median;
otherwise, zero

Token Listing
Duration

A dummy variable of one if the number
of days taken during the ICO process
is less than the median; otherwise, zero

Whitepaper
Disclosure

An indication of whether
the venture has a whitepaper.

Market Market Size

A dummy variable of one
if the number of markets or exchanges
that sell the token is greater than
the median; otherwise, zero.

Restricted Area

A dummy variable of one if
the number of countries restricted for
the project to operate is less than
the mean; otherwise, zero.

Social Media % Positive Tweets A ratio of positive sentiments of
tweets posted by the venture.
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3.5 Result

3.5.1 Sentiment analysis result

Prior to a detailed explanation of the results addressing each research question, this

study presents an overview of the sentiment analysis results achieved through the

application of VADER techniques on both tweet and whitepaper text.

As previously explained, VADER is a lexicon and rule-based sentiment analysis

tool that can give the sentiment score of each text. The compound score generated by

VADER sums neutral, positive and negative sentiments and normalises within the

range [ϑ1,1], where ϑ1 indicates extremely negative sentiment and 1 for strongly

positive sentiment. The non-negative compound score is interpreted as positive

sentiment and negative otherwise. This study applies VADER on two text datasets:

whitepaper and tweet messages.

For tweets, 17,520 messages representing 391 ICO ventures are analysed, and

92.0% of tweets are classified as positive, while the rest conveyed a negative sentiment.

Moreover, each ICO had an average ratio of the positive sentiment of overall tweets

at 91.6%. The result indicates a positive sentiment toward tweets posted by the token

issuer. These sentiment ratios can be further used in statistical analysis to study their

relationship with token returns. This research specifically focuses on analysing the

emotion based on the text shared by the ICO ventures.

After applying VADER and capturing the sentiment of the whitepaper, which

has di!erent linguistic characteristics from tweets, it is found that only 161 out of

391 ventures provide the whitepaper, and each whitepaper does not necessarily cover

all information aspects as previously described in Table 3.1. Table 3.4 shows that

only 158 of 391 tokens had a whitepaper that discloses technical information about

blockchain technology and architecture design. Of these, 154 ventures describe the

problem statement and how blockchain technology would address industry issues.

About 63.3% outline the token issuing and selling process and how the financial budget

would be distributed during development. However, only 20.5% of the whitepapers

outline investment-related risks, including technological and operational risks. This

specific section of the whitepaper yields the highest negative sentiment ratio at 60%.
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Table 3.4: The summary of statistics of a whitepaper published by token issuers with the
number of whitepapers that have information aspects outlined in table 3.1, number
of positive sentiment and negative sentiment, and the top ten words found in each
whitepaper aspect.

Whitepaper
Aspects Observations Positive

Sentiment
Negative
Sentiment Top ten Frequency Words

Problem
Description 154 144 10

blockchain, data, user, use,
technolog,platform, market,
network, token, develop

Technical 158 149 9
data, use, user, transact,
network,blockchain, token,
node, contract, servic

Team 89 89 0
develop, token, platform,
launch,transact, payment,
market, user, releas, exchang

Roadmap 97 93 4
develop, manag, blockchain,
team, busi,technolog, experi,
market, year, compani

Finance 102 101 1
token, sale, develop, use,
user,platform, market,
distribut, fund, particip

Business
Landscape 74 71 3

market, user, platform,
use, game,data, develop,
token, busi, servic

Risk 33 13 20
token, may, risk, platform,
compani,purchas, includ,
develop, use, attack

The impact of sentiment extracted from both tweets and the whitepaper is subject to

further investigation through regression modelling.
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3.5.2 Discrepancy between rating and return
To validate the existence of a discrepancy between ratings and token returns, an

analysis of a dataset of 391 tokens is conducted. The results reveal that the assumption

linking positive (negative) token ratings to positive (negative) financial returns is not

necessarily valid (Table 3.5). This assumption is previously explored in the literature.

On the first day of listing on exchanges, 42.7% of tokens from ICOs rated as good

(with a rating greater than or equal to 2.5) generate negative returns. Conversely,

53.33% of ICOs considered as poor, with ratings below the benchmark, yield positive

returns. This disagreement between rating and return persists consistently across

various timeframes, extending up to six months. The number of ICOs with negative

returns increases from 14 to 20 tokens six months after the initial trade date when

the tokens became available on crypto exchanges. The results suggest that a good

(bad) rating does not necessarily guarantee future positive (negative) returns. These

findings underscore the limitations of ICO ratings, signalling that investors should not

rely solely on them as a singular indicator of potential token returns after fundraising.

This is extremely important also at a regulatory level suggesting a twofold approach.

On one hand, in their capacity as drivers for investment decision-making, ICO ratings

should be more transparent in their components and technical aspects. On the other

hand, their misleading nature is an additional call for greater information disclosure

asked of the issuers.

The next section explores the relationship between information disclosure during

the ICO and token returns, aiming to provide insights into this observed discrepancy,

which is further detailed in the regression analysis.

Table 3.5: A number of tokens with a rating given on the ICObench website and classified
by the token return of 1 and 180 days after the token is listed on the exchange.

1 day Positive Return Negative Return
Rating ∱ 2.5 154 207
Rating < 2.5 16 14

180 days Positive Return Negative Return
Rating ∱ 2.5 108 253
Rating < 2.5 10 20
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3.5.3 Regression analysis result

In this study, the OLS regression is employed to examine the relationship between

ICO information disclosure and six-month token return on the exchange. The dataset

consists of two groups of observations: the first dataset includes 391 ICOs, and the

second dataset comprises 263 tokens that are identified to have a discrepancy between

the rating and the token return after six months. This discrepancy attribute implies

that the token receives ratings higher (less) than 2.5 and experiences a negative

(positive) return.

Pre-statistical testing identifies multicollinearity, indicating a high correlation

among independent variables. Additionally, the study incorporates token type and

country as control variables in the regression model. The token type is chosen to

capture nuanced characteristics of di!erent blockchain platforms, while the country

variable controls for geographical disparities. These controls are implemented to

standardise variations across diverse blockchain environments and isolate the true

relationship between independent variables and six-month token returns. The strate-

gic inclusion of these controls enhances the precision and interpretability of the

findings, ensuring a more accurate estimation of relationships within the dynamic

landscape of blockchain ventures. Consequently, only the variables listed in Table

3.6 are included in the Ordinary Least Squares (OLS) regression analysis. Before

discussing the results of regression analysis for other variables, this paper elaborates

on the findings related to sentiment in the whitepaper.

After reducing the number of independent variables, two observation sets are

used in OLS regression analysis on the dependent variable of log return after six

months. Table 3.6 shows the result of the OLS regression of both two datasets. The

regression result of all 391 tokens generates an adjusted R-squared of 11.6% with

five statistically significant variables for the token returns. These five variables are

the availability of pre-ICO, ICO duration, token listing duration, market size and

the number of restricted areas. The availability of pre-selling tokens had the highest

negative coe"cient value of -0.5421 compared with other variables. Contrary to

expectations, the variables of interest, whitepaper disclosure and the ratio of positive
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Table 3.6: The OLS regression results of the relationship between ICO attributes used in
this study and token return in the next six months after the token is listed on
the exchange. Model 1 took all the 391 tokens, and model 2 only captures 263
tokens that have discrepancies between the token rating given by ICObench and
the token return.

Log Return 6 months
(1) (2)

Independent Variables:

Whitelist/KYC -0.1975
(0.201)

-0.304
(0.186)

Pre-ICO -0.5421***
(0.187)

-0.4796***
(0.176)

IEO -0.3596
(0.283)

-0.3085
(0.27)

Bonus -0.3007
(0.188)

-0.1805
(0.18)

ICO Duration 0.0018*
(0.001)

0.0011
(0.001)

Token Listing Duration 0.0009**
(0)

0.0006
(0)

ETH-based 0.034
(0.262)

-0.2445
(0.258)

Team Size -0.0061
(0.009)

-0.0042
(0.008)

CEO -0.1463
(0.212)

0.0742
(0.21)

CTO 0.03
(0.194)

-0.0901
(0.184)

CEO Prev Experience -0.3647
(0.659)

-0.0753
(0.609)

Whitepaper Disclosure 0.2904
(0.176)

0.1479
(0.173)

% Positive Tweets 0.7161
(0.727)

1.2563*
(0.722)

Market Size 0.0275***
(0.008)

0.0143
(0.009)

Restricted Area -0.0405**
(0.017)

-0.0236
(0.015)

Control Variable:

Country -0.015***
(0.005)

-0.0112**
(0.005)

Token Type 0.0222
(0.022)

0.0079
(0.022)

Obersvations 391 263
Adjusted R² 0.116 0.078
Within R² 0.155 0.138
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sentiment in tweets, are not statistically significant predictors of token return. The

existence of the whitepaper gave the coe"cient value of 0.2904, and a ratio of positive

sentiment indicates a strong positive value of 0.7161.

The results from the analysis of 263 ventures with a discrepancy between the

rating and token return reveal an adjusted R-squared value of 7.8%, indicating a low

contribution of variables to log return. Unlike the overall token dataset, only two

variables —pre-ICO, and a ratio of positive sentiment in tweets—are statistically

significant to the dependent variable of token return. Pre-ICO had the highest negative

e!ect of -0.4796, while the ratio of positive sentiment in tweets shows a strong positive

value of 1.2563, signifying statistical significance to token return. Some variables

had opposite coe"cient signs compared to the regression result with all ICO ventures,

including ETH-based, the existence of a CEO and a CTO; hence, the interpretation

of the model coe"cient is di!erent. The ETH-based variable has a stronger negative

coe"cient value of -0.2445, but a weaker value of CEO and CTO existence. However,

these three variables are non-statistically significant. Despite the indication of three

ICO variables generating opposite signs in two OLS regression models using all

ICO ventures and the discrepancy dataset, it is challenging to conclude the set of

factors explaining the discrepancy between ICO rating and token value due to their

insignificance.

The results presented in Section 3.5.2 confirm the existence of a discrepancy be-

tween ICO ratings and token returns. This discrepancy underscores that a favourable

ICO rating does not consistently result in a positive long-term financial return, and

conversely, a lower rating doesn’t always lead to a negative return. Over 67% of the

391 tokens are misclassified based on token ratings from ICObench, highlighting the

unreliability of these ratings as a signal for predicting future returns. Additionally,

the regression analysis conducted on token returns indicates that ICO ratings have

statistical significance, with a negative coe"cient of -0.254. The finding supports

the initial hypothesis 𝜚1, suggesting that ICO ratings may not be reliable indicators

of token performance. This confirmation aligns with previous findings that point out

weaknesses in token ratings, such as lack of transparency, unreliable data sources,
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and the possibility of receiving incentives from ventures to manipulate ratings (Ofir

and Sadeh, 2020; Florysiak and Schandlbauer, 2019; Bourveau et al., 2022), despite

Lee et al. (2021)’s finding of an association between aggregated ratings and returns.

To address the research questions regarding factors explaining the discrepancy

between ICO ratings and token returns, regression analysis is conducted, and results

are compared between two groups of observations: all ICO tokens and ICOs with

discrepancies. Unfortunately, the statistical results do not provide clear insights into

the factors contributing to this mismatch phenomenon. Regression analysis indicates

that a few ICO venture characteristics had di!erent directional signs, including the

indication of ETH-based tokens and the existence of a CEO and CTO. However,

these variables are not statistically significant in predicting token returns.

Possible reasons for these inconclusive results include the dataset size, which

may not be su"cient to draw strong evidence. Additionally, ICO ratings rely on

information disclosed during the ICO and do not consider post-fundraising informa-

tion. Moreover, market participants may be focusing on token prices on exchanges

rather than the characteristics outlined during the ICO period, and investigating

speculative activity in token prices falls outside the scope of this study, but it can be

an opportunity for future research.
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3.5.4 ICO index result

Table 3.7 presents the outcomes of the regression analysis incorporating the novel ICO

index, as detailed in Section 3.4.3, with clustered standard errors based on platform

terms. Most independent variables, excluding team attributes, demonstrate statistical

significance with respect to six-month token returns. While human capital, such as

founders and the team, is widely recognised as a strong contributor to ICO ventures

in literature (Campino et al., 2022; Deng et al., 2018; Amsden and Schweizer, 2018;

Howell et al., 2019), the analysis fails to confirm hypothesis 𝜚2𝜑, as team attributes

are not statistically significant for token returns. This suggests that while a strong

founding team contributes to the initial success of ICO ventures, its direct positive

impact on long-term investment returns may not be statistically evident. Conversely,

and in contrast with hypothesis 𝜚2𝜍, technology characteristics exhibit a negative and

statistically significant e!ect on ICO returns. This finding suggests that once an ICO

is launched and its tokens are traded, information regarding the project’s technological

characteristics might introduce additional complexity, inadvertently increasing (rather

than decreasing) the perceived information asymmetry for investors.

Market characteristics of the token sale, however, yield a positive and statistically

significant coe"cient, thereby confirming hypothesis 𝜚2𝛻 . This result aligns with

previous findings by Amsden and Schweizer (2018) and Davydiuk et al. (2023),

indicating that robust market-related information can narrow the bid-ask spread and

contribute to ICO success. Finally, the Twitter sentiment attribute, representing social

media, records the strongest positive coe"cient value, indicating a significant impact

on six-month token returns. This finding confirms hypothesis 𝜚3, underscoring

that social media sentiment is a crucial, if not paramount, driver of ICO returns and

cannot be neglected in assessment. This result extends previous work, which often

focuses on social media activity primarily during the pre-ICO phase (Stanley, 2019).

This study further compares the disclosure index constructed by Bourveau

et al. (2022) to evaluate its association with six-month token returns. Previously,

Bourveau et al. (2022) create a voluntary disclosure index based on information

from whitepapers and other external sources, including source code and social media,
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Table 3.7: The OLS regression results of the relationship between the ICO index used in
this study and token return in the next six months after the token is listed on the
exchange.

Log Return 6 months
(1) (2) (3) (4) (5)

Independent Variable:

Team -0.1474***
(0.042)

-0.0599
(0.04)

Technology -0.2357***
(0.029)

-0.2167***
(0.027)

Market 0.5425***
(0.06)

0.4969***
(0.059)

Social Media 0.2458
(0.246)

0.6626**
(0.289)

Control Variable:

Country -0.0104***
(0.002)

-0.0104***
(0.002)

-0.0118***
(0.002)

-0.0092***
(0.002)

-0.0123***
(0.002)

Token Type 0.0394
(0.031)

0.0271
(0.031)

0.0381
(0.028)

0.0428
(0.032)

0.0222
(0.027)

Observation 391 391 391 391 391
Adjusted R² 0.019 0.047 0.049 0.012 0.075
Within R² 0.027 0.055 0.056 0.019 0.09

to investigate ICO investment decisions and quantities. For comparative purposes,

a modified disclosure index is constructed based on information presented in the

whitepaper, following the aspects mentioned in Table 3.1, rather than using sentiment

analysis, and then compared with the novel ICO index proposed in this study.

Table 3.8 shows results that indicate the problem description of the ICO project

has a strong positive coe"cient on six-month token returns, while the description

of risks involved exhibits a strong negative coe"cient. This suggests the problem

statement of the ICO ventures is impactful, and the explicit presence of risks related to

investment and product development is inversely associated with returns. Information

concerning the team and roadmap presented in the whitepaper also shows a negative

coe"cient. The remaining whitepaper aspects and the overall length of the whitepaper

are not significantly associated with long-term returns. These results contradict

Bourveau et al. (2022)’s findings that whitepaper length and technical information

are associated with token financing. When these whitepaper indicators are summed as
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a general disclosure index, it presents a weak positive coe"cient that is not statistically

significant for the return. In contrast, the proposed ICO index (which is the sum of

ICO index categories) shows a negative and statistically significant association with

the return.

This study successfully captures sentiment and disclosure signals, constructing

a novel ICO index that demonstrates the statistical significance of these signals in

influencing the six-month post-ICO return. Interestingly, the results reveal a negative

coe"cient for team attributes, contradicting assumptions about their critical role in

the success of early-stage startups. This trend is similarly reflected in the context

of technology attributes. The analysis suggests that the technological capabilities

established during token financing may no longer serve as a fundamental driver of

price and return once the token becomes available in the market. The proposed ICO

index is an attempt to provide investors with a wider and more e!ective information set

to support their financial decision-making. The main point is that even with no further

regulatory requirements to the issuers in terms of information provision, it is possible

to develop better solutions in the best interest of the individual investors, fundraisers,

and the overall financial system level. The analysis enables the decomposition of the

information categorised by type. This allows assessment of the contribution from

individual components, potentially aiding regulators in minimising the impact of

potential new provisions on issuers. Similarly, the findings of this study regarding

sentiment as a driver of ICO returns align with the notion that sentiment is a relevant

building block in the investor information set and should not be neglected. Prior

research suggests that increasing the information available and its reliability improves

outcomes in established and standard financial markets, including equity financing.

Studies show that increasing the information available and its reliability improves

outcomes in established and standard financial markets (and particularly for other

equity financing sources). These findings suggest that prioritising reliable information

disclosure can be a beneficial approach for the ICO market. The robustness of this

novel ICO index in predicting future returns undergo further examination in a machine

learning model.
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Table 3.8: The OLS regression results of the relationship between token returns six months
and two key indices: the Disclosure Index created by Bourveau et al. (2022), and
the ICO index developed in this study.

Log Return 6 months
(1) (2) (3)

Independent Variable:

Whitepaper Length -0.0497
(0.031)

Problem Description 0.5756***
(0.184)

Technical 0.3114
(0.279)

Team -0.3005*
(0.156)

Roadmap -0.2656*
(0.140)

Finance -0.1959
(0.143)

Business Landscape 0.0760
(0.135)

Risk -0.5491**
(0.237)

Disclosure Index 0.0126
(0.022)

Our ICO Index -0.1093***
(0.024)

Control Variable:

Country -0.0108***
(0.002)

-0.0094***
(0.002)

-0.0102***
(0.002)

Token Type 0.0408
(0.020)

0.0428
(0.031)

0.0340
(0.031)

Observations 391 391 391
Adjusted R² 0.025 0.012 0.026
Within R² 0.048 0.019 0.034
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3.5.5 Whitepaper sentiment result

Another objective is to investigate the sentiment of the whitepaper, most tokens do

not have the whitepaper, limiting the available data to reduce information asymmetry

with investors. Additionally, each whitepaper does not necessarily contain all aspects

outlined in the IPO prospectus. This incomplete data poses a challenge in conducting

OLS regression with other variables. An OLS regression analysis is conducted with

ICO returns as the dependent variable and each whitepaper aspect as an independent

variable. Only four out of seven categories are found to be statistically significant

predictors of token financial returns (as shown in Table 3.9). Although these variables

are statistically significant, the negative or low adjusted R-squared values indicate

a poorly fitting model. Overall, the sentiment of the whitepaper is not su"cient to

confirm the association with the token financial returns in the OLS regression.

Table 3.9: The OLS regression results of the whitepaper in each category and the token
return in the next six months after the token is listed on the exchange.

Log Return 6 months
(1) (2) (3) (4) (5) (6) (7)

Independent Variable

Problem Description -0.4141
(0.566)

Technical 0.338
(0.582)

Team 0.8732
(0.836)

Roadmap -0.9626*
(0.509)

Finance -0.0104***
(0.002)

Business Landscape -0.0104***
(0.002)

Risk -0.0104***
(0.002)

Control Variable:

Country -0.0086
(0.008)

-0.0074
(0.008)

-0.0024
(0.01)

-0.0019
(0.01)

0.0271
(0.031)

0.0271
(0.031)

0.0271
(0.031)

Token Type 0.0335
(0.031)

0.0299
(0.03)

0.0316
(0.035)

0.0217
(0.034)

-0.2357***
(0.029)

-0.2357***
(0.029)

-0.2357***
(0.029)

Observations 154 158 97 89 102 74 33
Adjusted R² -0.003 -0.004 -0.01 -0.018 -0.02 0.006 0.014
Within R² 0.017 0.015 0.021 0.005 0.01 0.047 0.106
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Building upon and extending Bourveau et al. (2022)’s methodology, sentiment

analysis is conducted on each whitepaper aspect. The findings align with studies

by Florysiak and Schandlbauer (2019); Ante et al. (2018), suggesting that investors

may only consider the presence of a whitepaper itself as a positive signal, regardless

of the detailed information within or the token return timeframe after fundraising.

The association between the existence of a whitepaper and the amount raised in

ICO fundraising are confirmed in other literature Ante et al. (2018); Fisch (2019);

Bourveau et al. (2022). Therefore, it is not practical to extract sentiment from

the whitepaper, given that none of the variables is statistically significant to token

return. The findings additionally suggest that the nature of the whitepaper itself may

be a contributing factor. Whitepapers may be perceived as technical appendices,

potentially limiting their e!ectiveness within a financial decision-making context.

This warrants further investigation.

There are several possible reasons explaining why the sentiment analysis of the

whitepaper fails. Firstly, the nature of the whitepaper document may not express

emotions as compared to social media text. The result from VADER produced

an imbalanced outcome, with many ICOs showing a positive sentiment in each

whitepaper aspect. This imbalance lacks negative sentiment to ascertain whether

positive or negative sentiment influences future returns. Table 5 also lists the top

ten words found in the whitepaper by each category, such as blockchain, data, token,

and user are commonly used across various whitepaper aspects and do not convey

specific emotions that can be classified into neutral sentiments. VADER sentiment

output is analysed, categorised into positive, neutral, and negative sentiments. The

average neural sentiment in whitepaper prospectuses is only 2.65%, with the roadmap

section comprising 10.2% neural sentiment, while the risk factor lacks any neural

sentiment. This underscores the di"culty of capturing sentiment in non-social media

text datasets with linguistic characteristics that limit emotional expression. Secondly,

the lack of available whitepapers for ICOs poses a challenge; only 161 out of 391

ICOs have whitepapers for analysis, and each whitepaper does not necessarily cover

all information categories. Lastly, the application of VADER to extract sentiment
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from the text can be another limitation. VADER is extensively studied on social

media text, but its application to non-social media documents may not be as e!ective.

As a result, these challenges may contribute to why the whitepaper category variable

does not provide su"cient information for this study.

3.5.6 Twitter sentiment result
The next notable finding pertains to the sentiment of tweets, specifically the ratio

of positive tweets published by token issuers. The study reveals that the sentiment

or social attribute of the ICO campaign, constructed as the novel ICO index, is

statistically significant with the six-month token return. These regression results

indicate the importance of the sentiment analysis of tweets to the future token return,

even though, there are concerns about the dataset. The tweets used in this study

are extremely unbalanced, with 92.0% of them exhibiting positive sentiments. This

imbalance may suggest that the team’s objective is to promote products and services

while presenting a positive image of the token, potentially avoiding discussions about

product risks that may discourage investors. The average compound score of 17,520

tweets is 0.245, indicating a neural sentiment in the three-class classification of tweets,

as the value is less than 0.5. Meanwhile, the whitepaper has an average compound

score of 0.795, which indicates strong positive sentiment, unlike tweets. The impact

of including tweets in predicting token returns is investigated in the following section.
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3.6 Classification model

3.6.1 Classification methodology

The last objective of the study involves examining the capability of the machine

learning model to predict the six-month post-ICO return. This is framed as a classi-

fication problem, where the model predicts whether a token would yield a positive

or negative return in the next six months based on the data shared during the ICO

fundraising. The dataset is unbalanced, with 118 tokens producing a positive return

and 273 tokens experiencing a negative return. To address this classification problem,

ICO variables (A) and ICO index (Table 3.3) are utilised as input for the supervised

machine learning model to predict the target variable. The decision tree model is

chosen as the primary supervised learning approach for its simplicity and capability

for exploratory analysis of variables (Myles et al., 2004). Decision trees provide

a graphical representation of how the model makes decisions at each node based

on input features. This transparency and interpretability stand in contrast to token

ratings, where the methodology for computing scores is often not publicly accessible.

A decision tree employs the divide-and-conquer approach, where each tree path

contains classification rules assigning the class labels at each node, starting from

the root node and reaching the leaf nodes. The scikit-learn library Pedregosa et al.

(2011) is used to implement this tree-based model, employing the Classification and

Regression Tree (CART) algorithm for training. The CART algorithm iteratively

splits the training set into two subsets to identify the pair (., ⊳
.
), where . is a single

feature, and ⊳
.

producing the purest subsets where all training instances belong to

the same class (Géron, 2017). The goal of the CART algorithm is to minimise the

cost function (Equation 3.3), utilising impurity measurement on both left and right

subsets of the tree. Impurity can be assessed using Gini impurity (Formula 3.4)

or entropy (Formula 3.5) as the splitting strategy (Géron, 2017). The algorithm

continues splitting the subset recursively until it identifies the best pair, reaches the

maximum depth threshold, or no longer finds the best split that reduces impurity or

entropy.
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1
2,.

= the ratio of class . instances among the training instances in the class 2 node.

The decision tree is used for exploratory data and can be utilised in classification

and regression problems (Myles et al., 2004). However, this classification model

is sensitive to overfitting, which can be prevented by regularisation to limit the

degree of freedom. The technique involves splitting training and testing datasets, and

pre-determining hyperparameters before training the model. A dataset is divided

into training and testing datasets in a 70:30 ratio. Identifying the best combination

of hyperparameters for the decision model involves a grid search, evaluating all

possible combinations at the expense of high computational time (Chawla et al.,

2002). Hyperparameters in decision trees include the choice of impurity criterion,

maximum tree depth, the number of samples required to split, and the number of

minimum samples on the leaf node (Pedregosa et al., 2011). The prediction model

underwent fine-tuning of hyperparameters (Table 3.10) using K-fold cross-validation.

This validation splits the training dataset into k subsamples and iteratively trains

and validates the hyperparameters search. The F1 score, a mean of precision and

recall, considering false positives and false negatives, evaluated the model during

the hyperparameter tuning process. To assess overall prediction performance, the

F1 score and accuracy, which only considers corrected predictions, are employed.
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Table 3.10: The list of hyperparameters of the decision tree model is fine-tuned on the
training dataset using grid search to find the best combination of values. The
criterion is the function that the CART cost function uses to calculate the impurity
of the subset to split. max_depth is the maximum depth of the decision tree.
min_sample_leaf is the minimum number of instances on the leaf node, and
min_sample_split is the minimum number of samples required to split (Pedregosa
et al., 2011).

Model F1 Score criterion max_depth min_sample_leaf min_sample_split
Model 1 0.383 entropy 7 3 6
Model 2 0.377 entropy 7 1 9
Model 3 0.307 entropy 7 1 5
Model 4 0.289 entropy 5 3 2

Additionally, the decision tree provides feature importance, quantifying the total

decrease in node impurity and indicating the significance of each feature to the target

variable.
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3.6.2 Prediction result

Figure 3.2 o!ers valuable insights into the binary prediction of six-month token

returns (positive or negative) using a decision tree model. The top panel of the

figure illustrates the relative importance of individual ICO variables. ICO fundrais-

ing duration stands out as the most significant feature, with a relative importance

value of 100. This indicates that the duration of token fundraising plays a critical

role in reducing uncertainty when classifying token returns. The ratio of positive

sentiment in tweets secures the second position, with a value of 73.4, highlighting

the substantial influence of social media perception. Following this, the country of

token issuance emerges as the third most important indicator, suggesting that the

success of blockchain projects is often tied to their operational jurisdiction.

Figure 3.2: The relative importance of decision tree models.

Within the same decision tree model, when incorporating features from the novel

ICO index (as detailed in Section 3.4.3), the sentiment score derived from this index
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achieves the highest relative importance value of 100 among other score variables.

This strongly underscores the critical role of aggregated sentiment in influencing the

model’s predictions, particularly when captured through the structured ICO index.

Interestingly, while ICO duration is critical as an individual variable, its prominence

diminishes when transformed into a binary feature (below/above median) within the

broader technology and campaign categories, becoming less influential compared to

the social media attributes.

The classification results for the binary classes of token return are presented

in Table 3.11. When examining predictions based on individual features, Model

1, which incorporates tweet sentiment, shows a significant divergence from Model

2, which excludes it. Both models e!ectively predicted training data, achieving

over 85% accuracy. However, Model 1 exhibits di"culties classifying tokens with

negative returns, leading to a higher number of false negatives and a reduced overall

F1 score compared to Model 2 on the training set. This performance divergence

became more apparent on the testing dataset, where the inclusion of the sentiment

predictor resulted in a 5.9% higher accuracy rate and 5.3% higher F1 score. This

underscores the critical role of social media sentiment in enhancing predictive power,

particularly for unseen data.

Table 3.11: The prediction result of token return using the decision tree model. Model 1
uses the same set of ICO variables as the OLS regression model, and Model 2
excludes a ratio of positive tweets.

Train Test
Confusion

Matrix Accuracy F1 Confusion
Matrix Accuracy F1

Model 1 [[184 8]
[ 26 55]] 87.5% 87.1% [[69 12]

[21 16]] 72.0% 70.8%

Model 2 [[175 17]
[ 15 66]] 88.3% 88.3% [[63 18]

[22 15]] 66.1% 65.5%

Furthermore, the inclusion of tweet sentiment also improves the model that

uses the ICO index as input, as detailed in Table 3.12. Model 3, which incorporates

the tweet sentiment ratio, shows a modest 1.7% improvement in its F1 score on the

testing dataset compared to Model 4 (without sentiment), with similar improvements
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observed in the training datasets. However, models relying on individual variables

prove more e!ective than those using the aggregated ICO index. Specifically, Model

1, leveraging individual features, achieves an F1 score of 70.8% on the testing dataset,

outperforming Model 3 (using the ICO index), which achieves an F1 score of 68.5%.

Table 3.12: The prediction result of token return using the decision tree model. Model 3
uses the same set of variables that are grouped into the category of ICO index
as the OLS regression model, and Model 4 excludes a ratio of positive tweets.

Train Test
Confusion

Matrix Accuracy F1 Confusion
Matrix Accuracy F1

Model 3 [[188 4]
[ 33 48]] 86.4% 85.4% [[72 9]

[25 12]] 71.2% 68.5%

Model 4 [[182 10]
[ 49 32]] 78.4% 76.0% [[75 6]

[28 9]] 71.2% 66.8%

In summary, the inclusion of tweet sentiments as a predictor further enhances

the performance of both models. These promising findings suggest that the predic-

tion model can o!er an alternative approach for evaluating ICO tokens, delivering

improved transparency and accuracy compared to the ICO ratings. This approach

would mitigate the observed discrepancy between ratings and token returns. How-

ever, it is important to acknowledge that some misclassification occurs, necessitating

further investigation into potential overfitting issues associated with the decision

tree’s sensitivity to training data.
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3.7 Conclusion

Accessing and predicting token returns based on information disclosed during

fundraising poses significant challenges. This study explores various signals con-

tributing to token returns, engaging in the ongoing discourse regarding the validity

and reliability of token ratings. Notably, ICO ratings misclassified 67% of tokens as

positive, prompting an exploration of factors contributing to the discrepancy between

ICO ratings and token returns. The regression analysis identifies three venture charac-

teristics —an indication of an ETH-based token, and the presence of a CEO and CTO

with contradictory directions, yet their statistical insignificance prevents conclusive

explanations for this phenomenon. The limitation can be addressed by utilising a

more extensive dataset unrestricted by Twitter presence. Certainly, future research

can delve into exploring the relationship between token returns and assessments from

alternative token ratings providers. This approach would provide valuable insights

into the consistency and reliability of di!erent rating sources in predicting token

performance.

In addressing the second objective, focusing on the impact of information dis-

closure from the whitepaper and Twitter on token returns, the analysis extends

beyond overall sentiment, dissecting the whitepaper into sections aligned with the

IPO prospectus. Nevertheless, relying on whitepaper sentiment proved impractical,

consistent with literature indicating that details, page length, readability, and tech-

nical aspects do not significantly influence investment decisions and token returns.

Additionally, the study highlighted VADER’s limitations in sentiment analysis for

non-social media texts, emphasising the need for tailored approaches.

To overcome the transparency issues of token ratings, this study constructs a

novel ICO index, demonstrating its significant influence on six-month token returns.

The sentiment of tweets, integrated into the ICO index, displays a positive coe"cient,

underscoring the pivotal role of social media in mitigating information asymmetry

and influencing token returns. However, an imbalance in sentiment in tweets suggests

a need for further analysis of neutral tweets and exploration of other social media

platforms like Facebook and Reddit.
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The final contribution involves implementing a machine learning model for

predicting future returns, achieving approximately 71% accuracy. Augmenting the

model with sentiment from tweets and using the ICO index as an input enhances

predictive accuracy. This showcases the potential of machine learning to o!er trans-

parent token assessments, surpassing the limitations of token ratings. Future research

avenues can explore alternative machine learning models for improved predictions.

In summary, this research underscores the opportunities presented by natural

language processing and machine learning in evaluating token fair value. Empha-

sising the importance of social media signals, the findings encourage entrepreneurs

to communicate e!ectively during blockchain startup fundraising. Investors can

leverage artificial intelligence for more accurate token assessments. However, the

absence of regulatory oversight for information disclosure necessitates caution, as

inaccurate information may impact prediction performance. The study supports the

call for regulatory bodies to facilitate transparent voluntary disclosure, fostering

promising blockchain projects while mitigating investor biases.
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4.1 Introduction

A heightened awareness of environmental protection, social responsibility, and ethical

governance (ESG) significantly impacts financial markets, encouraging investors to

become early adopters of this emerging trend. This is reflected in the substantial

growth of sustainable assets under management (AUM), reaching $35.3 trillion

globally by 2020, a 15% increase since 2018 (Global Sustainable Investment Alliance,

2021). Paralleling the well-established research on ESG integration and asset pricing

in public equities (Serafeim and Yoon, 2023, 2022; Shanaev and Ghimire, 2022;

Gibson Brandon et al., 2021), this trend is now emerging in the private equity market,

which focuses on illiquid assets. Sustainability can a!ect access to finance and the

cost of capital for startups and mature private companies (Vismara, 2019; Calic and

Mosakowski, 2016; Döll et al., 2022; Hegeman and Sørheim, 2021; Bianchini and

Croce, 2022). Consequently, venture capital and private equity firms are integrating

sustainability frameworks into their portfolios in two main forms: (1) incorporating

sustainability into existing funds or (2) establishing dedicated sustainability-focused

funds (Lin, 2022). However, practitioners face significant challenges related to both

sustainability investing and the unique characteristics of private capital markets.

Investing in young companies presents a unique risk profile. High failure rates

and the inherently illiquid nature of these investments, typically locked in for periods

ranging from five to ten years, necessitate a robust valuation process (U.S. Bureau of

Labor Statistics, 2022). However, accurate valuation is often hampered by limited

data availability. Traditional financial statements and comparable market data points

may be ine!ective for these companies, potentially leading to valuation errors and

impacting the cost of capital. This challenge is further amplified in the context of

sustainable investing, where non-financial information such as sustainability reports

plays a crucial role in assessing a company’s ESG performance. However, resource-

constrained early-stage companies may prioritise survival over comprehensive ESG

reporting (Lin, 2022). The scarcity of available sustainability data creates a significant

impediment for investors seeking to integrate ESG factors into their valuation models.

While third-party sustainability ratings o!er a potential solution, their limita-
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tions mirror those encountered in the public market. These limitations include the

complexity of sustainability terminology and the lack of standardised frameworks for

ESG reporting and rating (Bo!o and Patalano, 2020; Berg et al., 2022; Gibson Bran-

don et al., 2021). Furthermore, such sustainability data is often concentrated amongst

publicly listed companies, limiting its applicability to the private capital space. To

address these shortcomings and e!ectively assess the value and sustainability of

young companies, alternative datasets and technological solutions are gaining traction

as methods for evaluating investment opportunities.

The application of artificial intelligence (AI) and its subfield, machine learning,

becomes a prominent area of research in financial markets, attracting significant

interest from both practitioners and academics. One promising avenue lies in lever-

aging alternative data sources, like financial news, for textual analysis using Natural

Language Processing (NLP) techniques. NLP empowers the model to understand

and analyse unstructured text datasets, performing tasks like text similarity analysis

and classification. While prior research demonstrates the potential of ML and NLP

models for assessing sustainability in public equities (Guo et al., 2020; Ruberg et al.,

2021; Gutierrez-Bustamante and Espinosa-Leal, 2022; Mukherjee, 2020; Nugent

et al., 2021), the application to startup valuation, particularly for a sustainability

context, remains underexplored. This presents a significant research opportunity to

leverage sustainability information to enhance the valuation of early-stage startups

and inform portfolio investment decisions.

This study addresses a critical research gap: the limited application of machine

learning and alternative data sources for early-stage startup valuation, particularly

within the field of sustainable investments. A novel machine learning-based valu-

ation model is proposed that conceptually advances traditional methodologies by

investigating the impact of sustainability-related textual data on company valua-

tion. This represents a significant contribution, demonstrating a substantial 16.45%

improvement in prediction accuracy over conventional approaches.

This research uniquely bridges the domains of sustainable finance and quantita-

tive valuation, providing practitioners in the private capital market with an innovative
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framework to consider sustainability’s crucial, long-term environmental and so-

cial impact alongside short-term financial gains. Furthermore, this study o!ers a

conceptual model for integrating complex, unstructured data, aligning with the grow-

ing imperative for enhanced sustainability disclosure advocated by policymakers.

Through this integration, it not only contributes to academic literature with enhanced

valuation techniques but also provides practical impetus for more comprehensive and

sustainable investment decision-making in venture capital and private equity.

The remainder of this chapter is organised as follows. Section 2 outlines the

background of startup valuation in venture capital investment, sustainable invest-

ment in public, and machine learning applications in finance. Section 3 details the

employed methodologies, including machine learning models and natural language

processing. Section 4 introduces the dataset used in this study. Section 5 presents

the study’s findings, while Section 6 discusses these findings, their implications, and

any limitations of the research. Finally, Section 7 concludes the paper and outlines

potential areas for future work.
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4.2 Literature review

4.2.1 Startup valuation methodology

Successfully navigating the early-stage life cycle is critical for young companies. This

phase is characterised by high upfront costs associated with product development

and market entry before generating revenue. Equity financing, often secured from

angel investors or venture capitalists (VCs), provides crucial funding in exchange for

company ownership. Determining the appropriate valuation at this stage is essential,

as it dictates the equity price, and funding potential becomes paramount for investors

seeking high returns despite the inherent risk. Startups face high failure rates (i.e.,

20% fail within the first year (U.S. Bureau of Labor Statistics, 2022)) and illiquid

investments, further amplifying risk. Additional complexities in startup valuation

arise from market uncertainty, unique business models, multi-stage financing rounds,

limited financial data, and information asymmetry (Sander and Kõomägi, 2007;

Montani et al., 2020; Damodaran, 2009). The lack of legal obligation for private

companies to disclose financial and non-financial information creates a particularly

high level of information asymmetry (Montani et al., 2020). Consequently, VCs

heavily rely on their own experience when making investment decisions, potentially

leading to discrepancies in agreements with entrepreneurs (Glücksman, 2020). These

factors collectively present significant challenges for company valuation within the

private capital market.

Traditional valuation methods, such as discounted cash flow (DCF), rely on

predictable cash flows and established discount rates to estimate a company’s present

value (Williams, 1938). However, the inherent uncertainty associated with early-

stage startups poses significant challenges for applying DCF. The lack of historical

financial records and the absence of positive earnings in the early stages further

complicate the process (Damodaran, 2009; Sander and Kõomägi, 2007). In response

to these limitations, researchers propose incorporating non-financial information

and growth potential into valuation frameworks (Myers, 1977; Black, 2003; Shevlin,

1996; Köhn, 2018). For instance, Black (2003) suggests using the incremental cash

flows of unrecognised net assets to quantify growth opportunities in young firms.
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Damodaran (2009) outlines both top-down and bottom-up approaches for estimating

cash flows and discount rates considering the market risk and the correlation of the

VC portfolio. Additionally, Damodaran (2009) proposes a “key person discount"

to account for the potential impact of losing key personnel on a company’s success,

earnings, and cash flow generation. This concept is supported by other studies that

highlight the crucial role founders and teams play in successful fundraising and

valuation increases (Macmillan et al., 1985; Miloud et al., 2012; Hsu, 2007).

Beyond traditional valuation methods, VCs sometimes utilise alternative ap-

proaches like the Berkus method (Payne, 2011). This model assigns pre-defined

financial values (up to $0.5 million) to a set of qualitative factors that represent

common risk factors for startups. These factors may include the experience of the

management team in the relevant industry, the soundness of the business idea, the

existence of a working prototype, and the progress of product rollout or sales. How-

ever, the Berkus method’s simplicity introduces a significant limitation: its reliance

on a fixed set of five factors may overlook industry-specific elements crucial to a

startup’s success, such as regulatory or technological disruptions, potentially leading

to inaccurate valuations (Payne, 2011). These limitations highlight the need for

valuation frameworks that can incorporate both qualitative and quantitative data,

while also being adaptable to the unique risk profiles of startups across di!erent

industries.

The choice of valuation approach employed by practitioners is influenced by

additional factors. Sander and Kõomägi (2007) highlight the role of geographical

location, demonstrating that private equity and venture capital firms may favour

di!erent methods based on their region. For example, Estonian investors tend to

utilise cash flow-based valuations (e.g., DCF) compared to Western firms that rely

more heavily on multiples and comparable metrics. This finding aligns with Reverte

et al. (2016), who suggest that VCs in countries with English-based legal systems,

like the UK, are more likely to use comparable metrics due to the prevalence of well-

established and reliable companies for comparison. However, the unique and non-

replicable nature of early-stage business models, coupled with limited market data
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for such companies, presents a significant challenge in identifying truly comparable

companies within the same sector (Montani et al., 2020). This di"culty in finding

suitable comparables further underscores the need for alternative valuation tools.

Recent research explore the application of machine learning (ML) models for

predicting pre- and post-money valuations of companies (Miloud et al., 2012; Ang

et al., 2022; Zhang et al., 2023; Garkavenko et al., 2021). Ang et al. (2022) employ

ElasticNet and XGBoost to predict post-money and pre-money valuations, respec-

tively. Notably, their findings suggest a non-linear relationship between company

determinants and predicted value, with the amount raised exerting the highest influ-

ence on both valuations. Miloud et al. (2012) use linear regression to explore the

relationship between pre-money valuation and factors like product di!erentiation,

industry growth, management team experience, and network size. Zhang et al. (2023)

propose a custom model called Adam-ENN utilising di!erential evolution and an

adaptive learning rate optimisation algorithm. This model outperforms benchmarks

(Least Squares, Ridge Regression, Deep Neural Network, Random Forest) and iden-

tifies the number of VC investors as the most significant factor, likely due to their

social capital and network contributions to the portfolio company. Garkavenko et al.

(2021) develop a Domain Adaptation framework that surpasses EPoSV, CatBoost,

and MLP models in performance. Notably, their model identifies financing round

information (total amount raised and series type) as the most relevant factors. While

Montani et al. (2020) acknowledges the absence of a perfect valuation model for

early-stage companies, there remains room for improvement. This study proposes

a novel machine learning-based model that integrates the concept of sustainability,

further explained in subsequent sections.
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4.2.2 Sustainable investment and assessment

Sustainable investing gains significant traction in recent years, driven by several key

factors. An OECD report (Bo!o and Patalano, 2020) and accompanying survey

by BNP (2019) identify the desire for improved long-term returns, enhanced firm

reputation, and alignment with social and moral considerations as key drivers of

ESG investing. The belief that sustainable portfolios outperform traditional ones

further fuels this trend. Institute for Sustainable Investing (2021)’s report highlights

that US sustainable equity and bond funds outperform their peers by a median

of 3.9% and 2.3%, respectively. Early adoption of sustainability challenges can

lead to significant value creation for businesses (Fatemi and Fooladi, 2013). This

value creation manifests through enhanced brand reputation, increased customer

loyalty, and improved shareholder returns. Conversely, neglecting sustainability

can lead to value deconstruction. This dynamic incentivises entrepreneurs to adapt

their strategies and operations to achieve sustainable growth and meet evolving

stakeholder demands. Beyond investor preferences, policymakers and regulators

are actively shaping the sustainability landscape through two key initiatives: (1)

promoting economically, environmentally, and socially responsible development

(Cumming et al., 2022), and (2) supporting sustainability reporting and responsible

investment practices (Global Sustainable Investment Alliance, 2020). Scholars are

actively researching this emerging field, analysing the significance of sustainable

investing and how practitioners develop and utilise tools to assess sustainability

metrics aligned with ESG principles.

Research in sustainable investing primarily concentrates on the relationship

between ESG signals and investment returns. One prominent source of these signals

is aggregated ESG ratings and indices provided by firms like Sustainalytics and MSCI

(e.g., MSCI ESG Ratings, MSCI World SRI Index). Institute investors and fund

managers widely utilise these indices to assess portfolio risk exposure and identify

potential investment opportunities (Deutsche Bank, 2021). Compared to other ESG-

related information sources, such as company sustainability reports, corporate social

responsibility (CSR) reports, news articles, filings, and regulatory reports, aggregated
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ESG ratings remain the most popular choice. A substantial body of academic research

investigates the connection between ESG ratings and various financial aspects of

investments. These studies explore the relationship with factors such as pricing,

returns, and the cost of debt financing (Serafeim and Yoon, 2023; Gibson Brandon

et al., 2021). However, discrepancies between ESG ratings from various providers

emerge, raising concerns about the consistency and reliability of these data sources

used in investment decisions. This, in turn, heightens scrutiny regarding the potential

for “greenwashing", where companies may overstate their ESG commitment.

While ESG ratings o!er valuable insights into the sustainability of investment

targets, inherent limitations can lead to oversimplification and potentially hinder the

achievement of desired financial and social returns. Bo!o and Patalano (2020) high-

light several key challenges associated with ESG ratings. These include inconsistency

across providers, such as MSCI and Sustainalytics, who may assign di!erent weight-

ings to ESG pillars, indicators, and materiality considerations. This inconsistency

can lead to significantly di!erent ratings, particularly when comparing companies

across industries. Furthermore, the lack of transparency in rating methodologies

and data sources used by agencies limits interpretability for users. Finally, ESG

ratings often rely on potentially biased or non-standardised ESG disclosures from

companies, potentially introducing further inaccuracies. These limitations exacer-

bate rating divergence across industries (Berg et al., 2019; Rajna, 2021), hindering

e!ective risk and opportunity assessment and potentially causing asset mispricing

in sustainability-focused portfolios (Berg et al., 2022; Bo!o and Patalano, 2020;

Gibson Brandon et al., 2021; Serafeim and Yoon, 2023).

Highlighting a further complication Gibson Brandon et al. (2021) find a par-

ticularly strong disagreement between ESG ratings and financial returns, especially

within the environmental pillar. Similarly, Serafeim and Yoon (2023) identify that

high levels of ESG rating disagreement weaken the ability to predict market reac-

tions and the relationship between news sentiment and financial returns. Finally,

the potential for greenwashing, where companies misrepresent their sustainability

commitment, requires ongoing attention (Yu et al., 2020). The lack of standardised
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disclosure practices and robust audit mechanisms further complicates the integration

of ESG and sustainability-related factors into investment decisions (Ho, 2015). As a

result, practitioners and academics are actively seeking alternative solutions to these

challenges.

The limitations of traditional ESG ratings underscore the need for alternative data

sources to assess a company’s sustainability performance and its impact on financial

assets. News articles and sustainability reports emerge as promising alternatives,

with studies demonstrating their influence on future asset returns and company risk

(Guo et al., 2020; Schmidt, 2019). To unlock the potential of these unstructured

text data sources, researchers and practitioners are increasingly turning to artificial

intelligence (AI), specifically natural language processing (NLP) techniques.

While significant research explores the application of NLP in the public finan-

cial market (Krappel et al., 2021; Guo et al., 2020; Ruberg et al., 2021; Gutierrez-

Bustamante and Espinosa-Leal, 2022), a critical gap remains in the private capital

space. Existing studies primarily focus on tasks like predicting public company

sustainability ratings, and stock volatility, or classifying reports against frameworks

like the Global Reporting Initiative (GRI). Recent advancements in NLP models

o!er promising solutions. For example, domain-specific models called ESG-BERT

(Mukherjee, 2020) are pre-trained specifically to categorise text into ESG categories.

Additionally, NLP models can be pre-trained on financial corpora and fine-tuned for

specific tasks, such as multi-label classification of text related to ESG controversy

and UN sustainable Development Goals (SDGs) goals (Nugent et al., 2021). These

advancements, coupled with data augmentation techniques to address limitations in

labelled data for private markets, hold significant potential for enhancing the accuracy

and comprehensiveness of sustainability assessments in private capital.

However, the e!ectiveness of sustainability reporting remains hampered by a

lack of standardised guidelines and robust verification mechanisms. While voluntary

initiatives like the UN Sustainable Development Goals (United Nations, 2015) and

the Sustainability Accounting Standards Board (SASB) standards (IFRS Foundation,

2022b) aim to address this issue, further regulatory action is necessary. The EU’s
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Sustainable Finance Disclosure Regulation (SFDR) mandates market participant

disclosure of ESG integration processes and data sources, promoting standardisation

and mitigating greenwashing risks (European Comission, 2022). While numerous

studies explore sustainability investing in public markets, the applicability of these

strategies to private capital markets remains an open question.

4.3 Sustainable investment in private capital:

Hypothesis development
While long-term investment horizons in venture capital and private equity o!er the

potential for sustainability-driven value creation. However, a key challenge lies in the

lack of mandatory sustainability disclosure by private companies, forcing investors

to rely on information gleaned directly from founders and management teams (Lin,

2022). The evaluation of sustainable VC funds can be conducted through two main

approaches: (1) adding sustainability criteria to existing funds and (2) launching

dedicated sustainability-focused funds (Lin, 2022). Institutional investors can choose

either approach, factoring sustainability considerations into their investment selection

and execution processes (Lin, 2022; Wiek et al., 2023).

For a successful sustainable investment program, firms must prioritise two key

practices: measuring the impact of sustainability initiatives and developing a firm-

wide sustainability strategy (Wiek et al., 2023). Despite the emergence of ESG tools

like the Preqin database (Preqin, n.d.), which o!er access to ESG funds and risk

assessment capabilities, key challenges in sustainable investment remain. The lack

of standardised data for measuring impact and benchmarking sustainability goals is

a concern for investors, particularly for young companies. A key concern persists

regarding the potential trade-o! between prioritising sustainability initiatives and

achieving strong financial returns in venture capital (VC) investments. This concern

is further amplified by the inherent uncertainty associated with early-stage investing,

where investors, including limited partners (LPs), may encounter unknown risks and

market complexities (Lin, 2022).

While challenges exist, the growing importance of sustainability considerations
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cannot be ignored in the private capital market. Venture capitalists, whose decision-

making is extensively studied (Corea et al., 2021a), face an opportunity to be proactive

in meeting this evolving demand (Cumming et al., 2022). This necessitates further

research on how investors can select portfolios that balance economic, environmen-

tal, and social objectives, and how such investments can contribute to sustainable

development goals. Furthermore, the growing importance of sustainability is evident

in emerging areas of entrepreneurial finance, such as crowdfunding and corporate

venture capital (CVC).

Existing literature presents mixed findings regarding the relationship between a

firm’s sustainability orientation and crowdfunding success. Vismara (2019) investi-

gates the influence of sustainability on equity-based crowdfunding, concluding that it

had no significant positive impact on campaign success rates. However, their analysis

observes that such firms attract a di!erent investor base, one motivated by factors

beyond just financial returns. Conversely, Calic and Mosakowski (2016) report a

positive influence of social and environmental sustainability on the funding success

of reward-based crowdfunding projects. In addition, Mansouri and Momtaz (2022)

examine Initial Coin O!erings (ICOs), characterised as a form of blockchain-based

crowdfunding, and find that sustainability orientation (as determined by whitepaper

word count) positively correlates with funding acquisition, while conversely, it nega-

tively a!ects subsequent one-year token returns. These contrasting findings highlight

the potential for crowdfunding and investor motivations to moderate the e!ect of

sustainability orientation on campaign outcomes.

Large corporations are increasingly leveraging their CVC arms to invest in

sustainable businesses, particularly those in the clean technology (cleantech) sector.

This strategy o!ers a dual benefit: building a competitive advantage through innova-

tion and promoting CSR initiatives, ultimately aligning with long-term strategic and

financial objectives (Döll et al., 2022; Hegeman and Sørheim, 2021). While sustain-

ability factors are gaining traction, their impact may vary across industries. Bianchini

and Croce (2022) highlight the case of cleantech, where VC firms may be hesitant

to invest due to lower perceived returns and space-intensive products compared to
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sectors like information and communication technology (ICT) and biotechnology.

Prior research highlights the potential impact of sustainability on entrepreneur-

ship financing. However, a critical gap remains in understanding the long-term

relationship between sustainability and venture success, particularly in terms of valu-

ation. Filling this gap requires a deeper examination of how a venture’s commitment

to sustainability translates into startup valuation over time. Building on the potential

benefits of sustainability for value creation and long-term market positioning, the

study proposes the following hypothesis:

𝜚1: There is a positive relationship between the level of sustainability exposure,

as measured by media coverage of ESG initiatives, and its valuation. The study

assumes that ventures with public exposure to environmental, social, and

governance pillars are more attractive to investors and can stimulate market

growth, potentially leading to higher valuations.

𝜚2: There is a non-linear relationship between variables predicting venture

valuations, and deep learning models are capable of capturing these complex

interactions, potentially leading to a more comprehensive understanding of the

factors influencing venture valuation. A deep learning model will outperform

a traditional supervised learning model in predicting venture valuation.

𝜚3: A text embedding model pre-trained on ESG and financial corpus will lead

to a more accurate venture’s valuation compared to a traditional text embedding

model. By incorporating domain-specific information on sustainability, the

pre-trained model is expected to capture a more nuanced understanding of the

venture’s potential and improve prediction accuracy.

News articles o!er a promising alternative data source for evaluating a venture’s

sustainability performance, complementing traditional methods employed by VCs

such as founder experience and market size (Arroyo et al., 2019; Corea et al., 2021a).

While recent research utilises network analysis on news articles for M&A prediction

(Venuti, 2021), a crucial aspect often remains underexplored: sustainability. This

study proposes an innovative approach to integrate AI, specifically NLP techniques,
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to analyse news articles and assess a startup’s commitment to sustainability. This

proposed approach to sustainability assessment has the potential to revolutionise

startup valuation in the private capital market, enabling VCs to make more informed,

future-proof investment decisions that consider not only short-term gains but also

long-term environmental and social impact.
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4.4 Methodology
This study proposes a novel approach to traditional startup valuation by integrating

news articles and sustainability context through supervised learning and natural

language processing (NLP). These alternative data sources hold promise for capturing

valuable insights beyond traditional financial metrics. This section outlines the details

of both supervised learning and the NLP techniques used to process and integrate

unstructured text data from news articles into the valuation model. The diagram of

the novel startup valuation model is illustrated in Figure 4.1, with further details on

the data collection provided in Section 4.5.

Figure 4.1: A diagram shows the sources of data collection and the methodology used in
the novel startup valuation model.

The objective is to predict the pre-money valuation of startups at each funding

round, incorporating news articles and their potential influence on valuation. The

prediction builds on the assumption that news articles published prior to or in the

same year as the deal announcement have the most significant influence on a startup’s

valuation at that particular funding stage. These news articles likely capture the
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most recent developments and investor sentiment surrounding the venture, potentially

impacting the pre-money valuation assigned during the funding round. The details

of the constructed dataset used to test this hypothesis are further explained in the

next section.

The study employs a supervised learning approach, where algorithms are trained

on labelled data with known target variables. To preserve temporal order and mimic

real-world prediction scenarios, a chronological splitting strategy with a simulation

window concept is adopted to split the data into training and testing datasets (Arroyo

et al., 2019; Corea et al., 2021a). Similar to time series analysis, historical data

from funding rounds between 2010 and 2018 is used for training the model, while

more recent data (2019-2020) is reserved for validation and testing to assess model

performance as shown in Table 4.1. This approach aligns with the reasoning presented

in Arroyo et al. (2019) by keeping the simulation window close to the current period.

This strategy mitigates survivorship bias1 and allows the model to learn how startups

respond to contemporary sustainability trends, which may di!er from those reflected

in the past.

Table 4.1: This table details the chronological split of the Crunchbase (CB) and TechCrunch
(TC) datasets used for training and testing the valuation prediction model.

Type Year CB Size TC Size
Training 2010-2018 648 5815
Testing 2019-2020 464 2972

Total 1112 8787

4.4.1 Machine learning baseline models
Given the study’s objective of predicting startup valuation as a regression problem,

several supervised learning models can be considered. To explore the potential

benefits of complex model architectures, the experiment design is divided into two

categories: baseline models and deep learning models. The baseline models aim to

capture linear relationships within the data. Three common regression algorithms are

implemented: Linear Regression (LR), Gradient Boosting (GB), and Random Forest
1Companies that fail early before Crunchbase was established may not be available in the database:

this can lead to overrepresentation of successful and still-operating companies (Arroyo et al., 2019).
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(RF) using the scikit-learn library (Pedregosa et al., 2011). These models provide a

benchmark for comparison with the more complex deep learning models.

To ensure optimal performance of prediction models, the hyperparameter tuning

through RandomizedSearch and cross-validation is employed. Cross-validation

strengthens this process by splitting the data into training and validation sets across

multiple iterations. Each parameter combination is assessed on the training data,

with its performance measured using Mean Squared Error (MSE) on the validation

set (Section 4.4.4). Minimising MSE on the validation set guides the search towards

hyperparameter combinations likely to generalise well on unseen data, ultimately

enhancing the prediction model’s accuracy.

Linear Regression (LR)

Linear regression serves as a foundational model for valuation prediction. It estab-

lishes a linear relationship between the independent variables (startup attributes) and

the dependent variable (pre-money valuation). While its simplicity o!ers ease of

interpretation, it has limitations in capturing complex, non-linear patterns that may

exist within the data. Additionally, the model relies on several key assumptions: ab-

sence of multicollinearity (high correlation among independent variables), exogenous

property (independence from the error term), and normally distributed error terms

with constant variance across all levels of the independent variables. Violations of

these assumptions can compromise the model’s reliability.

The formula for multiple linear regression, which involves more than one inde-

pendent variable, is as follows:

5 = 60 +6141 +6242 + ...+6
0
4
0
+ 𝜀 (4.1)

where:
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y = A log of pre-money valuation as dependent variable

x1, ...,40 = Independent variables

b0,𝜑1, ...,𝜑0 = Coe"cients represent relationship between dependent and

independent

𝜀 = Residuals ε8(0,92)

Gradient boosting (GB)
Gradient boosting, introduced by Friedman (2001), o!ers another approach to regres-

sion problems. This ensemble method leverages the concept of weak learners, often

decision trees, to iteratively build a more robust model. The key idea is to sequentially

train these learners, with each one attempting to correct the errors (residuals) of the

previous learner in the ensemble.

Each iteration < (1 ∲ < ∲≨) trains a new model 𝐴
<
(4) to predict the target

variable ( 𝐵5) as shown in Formula 4.2. This process minimises a loss function, often

the mean squared error (MSE) (Section 4.4.4), by fitting the negative gradient of the

loss function. This iterative approach strengthens gradient boosting as it progressively

refines predictions by focusing on the errors from prior learners. Table 4.2 presents

the hyperparameters used in gradient boosting.

𝐴
<
(4) = 𝐴

<ϑ1(4)+ 𝐶 ⋛⋆
<
(4) (4.2)

where:

F
<
(4) = The predicted value at iteration <

F
<ϑ1(4) = The predicted value at iteration <ϑ1

h
<
(4) = The predicted value of weak learner at iteration

𝐶 = A learning rate

Through an iterative process involving ≨ steps, the model progressively refines

the prediction. The final prediction is then equivalent to the sum of these individual

contributions, as shown in the formula below:

𝐴 (4) = 𝐴
<
(4) = 𝐴0(4)+ 𝐶 ⋛

⌋
≨

<=1⋆<(4) (4.3)
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Table 4.2: Hyperparameters for Gradient Boosting and Random Forest Models

Model Parameter Description Value

Gradient

Boosting

n_estimators
The number of boosting stages

or iterations to perform.
[100, 200, 300]

learning_rate
The learning rate or step size

of each boosting iteration.
[0.1, 0.01, 0.001]

max_depth
The maximum depth of

each decision tree in the ensemble.
[3, 5, 7]

subsample
The fraction of samples to be used

for training each individual tree.
[0.8, 1.0]

min_samples_split
The minimum number of samples

required to split an internal node.
[2, 4, 6]

Random

Forest

n_estimators The number of trees. [100, 200, 300]

max_depth The maximum depth of each tree. [None, 5, 10]

min_samples_split
The minimum number of samples

required to split an internal node.
[2, 5, 10]

min_samples_leaf
The minimum number of samples

required to be at a leaf node.
[1, 2, 4]

max_features

The number of features to consider

when looking for the best split

at each tree node.

[’auto’, ’sqrt’]

bootstrap

Whether bootstrap samples are used

when building trees. If True, each tree

is built on a random subset of

the training data with replacement.

[True, False]

Random forest (RF)
Random forests (Breiman, 2001) represent another ensemble learning technique

for valuation prediction. This approach aggregates the predictions from multiple

decision trees, leading to a more robust and generalisable model. Each decision tree
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within the forest is independently constructed, introducing an element of diversity

that strengthens the overall model’s performance.

During tree construction, the best split at each node is determined by a splitting

criterion, often the mean squared error (MSE), which minimises the 𝐷2 loss (i.e.,

Least Square Errors). The final prediction for a given startup is determined by

aggregating the individual predictions from all trees in the forest. This aggregation

can be achieved by averaging (mean) or taking the most frequent prediction (median)

across the ensemble (Formula 4.4).

This process allows the model to capture non-linear relationships between in-

dependent and dependent variables, potentially o!ering an advantage over simpler

models like linear regression. The hyperparameter configuration used for the random

forest model is presented in Table 4.2.

5 = 1
8

8⌋
2=1

ℏ
2
(4ϱ) (4.4)

where:

y = A log value of pre-money valuation as dependent variable

N = The number of decision trees

f
2
(4ϱ) = The predicted value of each decision tree 2 with unseen samples 4ϱ

Deep learning (DL)
Deep learning is a subset of machine learning that utilises neural networks with

multiple layers inspired by the human brain’s structure and function. Deep learn-

ing is extensively explored in literature for its ability to uncover intricate patterns

within large datasets. They consist of interconnected processing units called artificial

neurons, which receive signals from other neurons and apply activation functions

to produce an output. The network learns complex patterns by iteratively adjusting

the weights of connections between neurons. This process is driven by the goal of

minimising the cost function, which measures the di!erence between the predicted

and actual values.

The model employed in this study utilises a feed-forward architecture. In this
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architecture, the input data (i.e., Crunchbase variable and sentence vectors) is passed

through each layer of the network. Within each layer, weights are applied to the data,

followed by an activation function to introduce non-linearity. A common activation

function used in this study is the Rectified Linear Unit (ReLU), which is defined

as ℏ (4) = <𝜍4(0,4), where 4 represents the input value. Outputs greater than zero

remain unchanged, while negative outputs are set to zero.

A cost function, such as the mean squared error (MSE), is used to measure the

di!erence between the predicted and actual values. The model aims to minimise this

cost function by iteratively adjusting the weights of the connections between neurons

through a process called backpropagation. Backpropagation calculates the gradient

of the cost function with respect to each weight, allowing the model to update the

weights in a direction that reduces the overall error. This process continues for a set

number of epochs (training iterations) or until a satisfactory level of performance is

achieved.

The PyTorch library (Paszke et al., 2019), a deep learning framework based on

the Torch language, is used to create a custom multi-layer perceptron (MLP) model.

The model consists of three linear layers and two activation functions. The Adam

optimiser (Appendix C) is employed to optimise the model’s learning process. Cross-

validation is utilised to identify the optimal hyperparameter combination, including

the learning rate (𝜛) from a range of [1ℸϑ3,1ℸϑ4,1ℸϑ5] and the number of epochs

from a range of [5,10,50,100]. The batch size is fixed at 32. The trained model is

then evaluated using a separate testing dataset.



4.4. Methodology 106

4.4.2 Text embedding models

The study leverages Natural Language Processing (NLP) techniques to process un-

structured text data from news articles for integration with machine learning models.

To transform the preprocessed text into numerical representations suitable for ma-

chine learning algorithms, the study employs two text embedding models. The first

model, Doc2Vec (Le and Mikolov, 2014), excels at capturing grammatical struc-

ture and contextual information within news articles. The second model utilises

pre-trained Large Language Models (LLMs) specifically trained on a corpus of fi-

nancial and sustainability-related text. These pre-trained LLMs o!er the advantage

of incorporating domain-specific knowledge into the text representation, potentially

leading to more accurate valuation predictions.

Doc2Vec models

The Doc2Vec model (Le and Mikolov, 2014) is a document-level or sentence-level

model that transforms textual news articles into numerical representations. Unlike

Bag-of-Words models that focus solely on word frequency, Doc2Vec incorporates

context to capture the semantic relationships between words.

This study utilises the Distributed Memory (PV-DM) variant of Doc2Vec. PV-

DM excels at predicting the next word within a defined context window based on both

sentence vectors and content words. This approach enables the model to consider

the surrounding context and leverage sentence vectors as a form of memory to retain

topic-related information. In contrast, the Distributed Bag-of-Words (PV-DBOW)

variant discards context words, relying solely on word representations independent

of context and order. This limitation makes PV-DBOW less suitable for capturing

the nuances of financial news articles, where contextual understanding is crucial.

The Gensim library (Rehurek and Sojka, 2011) is employed to train the Doc2Vec

model on the list of words within each document or sentence, generating correspond-

ing vector representations. This study experiments with di!erent vector output sizes

(50,100,150) as hyperparameters to assess their impact on valuation predictions

within regression models.

Unlike structured features readily available for startups, news text necessitates
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preprocessing before incorporation into the valuation prediction framework. A widely

adopted industry and academic approach is followed. The initial step involves text

cleaning, which removes noise such as stop words, punctuation that does not provide

semantic value. Subsequently, the text is converted to lowercase and tokenised into

individual words. Lemmatisation is then applied to map words to their dictionary-

based forms, enabling consistency and reducing vocabulary size. This preprocessing

ensures the model focuses on the most relevant content within the news articles.

Large Language Models
Large Language Models (LLMs) are a class of neural network models trained on mas-

sive amounts of text data. Through extensive fine-tuning, LLMs achieve remarkable

performance on various tasks, including document classification, sentiment analysis,

and question answering. This study leverages an LLM as a feature extractor to gener-

ate contextualised sentence representations for use in valuation prediction. These

representations encode the meaning of a sentence while considering the surrounding

context in bidirectional nature (i.e., both before and after), providing valuable features

for machine learning models (Devlin et al., 2019). Notably, various pre-trained LLM

options exist, including models trained on general corpora like Bidirectional Encoder

Representations from Transformers (BERT). The pre-training processes of BERT

are self-supervising learning that involves predicting missing words that are masked

with the token and next sentence prediction, whether they followed the previous

sentence together (Devlin et al., 2019). This study employs FinBERT (Araci, 2019)

and ESG-BERT (Mukherjee, 2020), LLMs pre-trained in financial and sustainability

corpora, respectively. These domain-specific models potentially o!er advantages by

incorporating relevant knowledge into the text representation.

• FinBERT: Building upon the BERT architecture, FinBERT is pre-trained on a

corpus of financial news articles from Reuters (Araci, 2019). This pre-training

process potentially imbues the model with domain-specific knowledge relevant

to financial tasks. While originally fine-tuned for sentiment analysis, this study

explores its applicability in generating sentence embeddings through token

averaging using FinBERT embedding model (Kumar, 2021).
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• ESG-BERT: Developed by Mukherjee (2020), ESG-BERT is designed for

text classification related to 26 sustainability topics. Notably, 25 of these

topics align with the general issue categories published by the Sustainability

Accounting Standards Board (SASB) (see Appendix G for details). This

alignment suggests the model’s ability to identify relevant sustainability risks

and opportunities within text data. However, the specific corpus used for pre-

training ESG-BERT remains undisclosed, raising questions about the data’s

relevance to the financial domain (Ruberg et al., 2021).

Unlike Doc2Vec preprocessing, stopword removal and lemmatisation are omit-

ted to preserve context for these models. The text is converted to lowercase before

being embedded by each embedding model into a 768-dimensional vector. While

BERT model2 and ESG-BERT are originally designed for classification tasks, this

study adapts them for regression. To achieve this, sentence embeddings are gen-

erated by averaging the pooled token embeddings from each model, resulting in a

768-dimensional representation suitable for feeding into the regression models.

4.4.3 Sustainability text similarity
To quantify the relationship between startup news and sustainability principles, this

study employs sentence transformers to convert them into numerical representations.

Sentence transformers excel at capturing semantic similarity relationships between

sentences (Reimers and Gurevych, 2019). This approach draws inspiration from the

work of Gutierrez-Bustamante and Espinosa-Leal (2022), who measure the textual

similarity between corporate social responsibility (CSR) reports of Nordic companies

and the Global Reporting Initiative (GRI) framework. The study leverages the all-

mpnet-based-v2 to encode sentences and short paragraphs. This model achieves the

best performance in sentence embedding across 14 datasets, demonstrating significant

capability in semantic search (Reimers and Gurevych, 2019).

Following sentence transformation, the cosine distance (Formula 4.5) is cal-

culated between the two sentence embedding vectors. Cosine similarity, a well-

2This study uses the pre-trained bert-base-uncased model, originally trained on a corpus of
Wikipedia and books (Devlin et al., 2019).
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established method in text analytics, is frequently used to measure sentence and

document similarity (Reimers and Gurevych, 2019). Appendix F provides examples

of news titles exhibiting high similarity to sustainability-related text, including UN

SDGs and SASB standards.
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4.4.4 Performance metrics

Given the regression nature of the startup valuation prediction task, this study uses a

set of four evaluation metrics to assess model performance.

• Mean squared error (MSE): This metric measures the average squared dif-

ference between predicted and actual valuation values. MSE is calculated

as:

≨𝐼𝐽 = 1
8

0⌋
2=1

(5ϑ 𝐾5)2 (4.6)

• R-Squared (𝐿2): 𝐿2 measures the proportion of variance in the actual valua-

tions which reflects the goodness of fit i.e., how well the data fit the regressor.

It is calculated as

𝐿
2 = 1ϑ

𝐼𝐼
ℷℸ𝐸

𝐼𝐼
⊳ℵ⊳𝜍𝜕

(4.7)

where 𝐼𝐼
ℷℸ𝐸

is the sum of squared residuals (the squared di!erences between

the observed values and the predicted values) and 𝐼𝐼
⊳ℵ⊳𝜍𝜕

is the total sum of

squared, representing the variance in the observed values. 𝐿2 values closer to

1 indicate a stronger model fit.

• Root Mean Square Error (RMSE): The square root of MSE provides the

average magnitude of the errors between predicted and actual valuations in the

same units as the original data.
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• Mean Absolute Error (MAE): This metric calculates the average of the

absolute di!erences between predicted and actual valuations. While it is less

sensitive to outliers compared to MSE, it does not take the magnitude of the

errors into account.
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2
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2
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Lower values for all three metrics (MSE, RMSE, and MAE) indicate a better

model fit, minimising the discrepancies between predicted and actual valuation

values.



4.5. Data description 111

4.5 Data description
This section details the four primary data sources employed in startup valuation pre-

diction. Data sources encompass early-stage funding from the Crunchbase databases

capturing the startups’ characteristics and history of funding. News articles from the

TechCrunch platform provide insights into current developments and sentiment sur-

rounding each startup, potentially influencing investor decisions. Furthermore, data

on the Sustainable Development Goals (SDGs) and industry-specific sustainability

criteria from the Sustainability Accounting Standards Board (SASB) are incorporated

to assess the focus on sustainability within each startup. Finally, the ESG scores

obtained from Refinitiv provide a quantitative measure of a startup’s commitment to

sustainable practices, complementing the other data sources.

Crunchbase

This study leverages data from Crunchbase, a comprehensive database widely used in

academic and industry research (Ang et al., 2022; Garkavenko et al., 2021; Krishna

et al., 2016). Crunchbase o!ers detailed information on startups and private com-

panies on a global scale, including portfolio companies, funding rounds, investors,

and individuals associated with the startup. A detailed list of variables extracted

from Crunchbase and their preprocessing steps for transformation into numerical

representations is provided in Appendix D.

TechCrunch

This study complements the structured data with unstructured text data from

TechCrunch, a leading online publication that focuses on startups. TechCrunch

articles o!er valuable insights into various aspects of a startup, potentially including

sustainability practices and other information relevant to valuation. Since Crunchbase

originated as a database spun o! from TechCrunch, the data formats exhibit a degree

of similarity, facilitating the mapping of company names to their corresponding

entries in Crunchbase.

This study restricts its scope to organisations that secure funding deals glob-

ally between 2010 and 2020. The initial dataset is downloaded on March 5, 2023,
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comprised 805,745 companies and 151,957 news articles. To focus on early-stage

financing valuations, the analysis excludes funding rounds beyond Series J. Following

this data filtering process, a final dataset of 772 unique companies with 1,112 funding

rounds (seed to Series J) and 5,815 unique news articles is established.

Sustainability text
To explore the potential influence of sustainability-related information on startup

valuation, this study incorporates data on two widely used standards3 in sustainable

finance: the United Nations’ Sustainable Development Goals (SDGs) and the sustain-

ability criteria established by the Sustainability Accounting Standards Board (SASB).

Analysis of the news context surrounding each startup, employing the methodology

explained in section 4.4.3, allows for the identification of connections between the

information and the sustainability topics defined within these established frameworks.

• UN Sustainable Development Goals (SDGs): This framework, established

by the United Nations (2015); ? outlines 17 interconnected goals aimed at

achieving a sustainable future. The text description that explains the definition

of each SDG’s goal is used in the text similarity metrics.

• Sustainability Accounting Standards Board (SASB): Developed by the

International Sustainability Standards Board (ISSB), SASB provides industry-

specific sustainability criteria for companies to report on 77 environmental,

social, and governance issues tailored to their industry’s impact (IFRS Foun-

dation, 2022b). While SASB provides metrics for quantitative measurement

of certain topics (e.g., percentage of food purchases meeting sustainability

standards for the restaurant industry), such metrics are often unavailable for

early-stage startups. Therefore, this study utilises the descriptive information

provided for each topic within the SASB industry-specific documentation.

Since the company dataset does not cover all industries listed by SASB, the com-

panies are manually classified based on industry descriptions. This mapping

results in a subset of 54 associated industries. Additionally, each industry-
3The data is collected on 3 July 2023.
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specific disclosure topic is mapped to 26 broader topics encompassing five key

dimensions: environment, social capital, human capital, business model and

innovation, and leadership and governance (IFRS Foundation, 2022b).

Refinitiv

The study leverages a comprehensive ESG dataset from Refinitiv4, a leading financial

data provider. This data extends beyond traditional financial statements to include

Environmental, Social, and Governance (ESG) information in the form of ESG

pillar statements and ESG scores. Their ESG data is compiled from diverse sources,

including company annual reports, websites, NGO websites, stock exchange filings,

CSR reports, and new sources. By merging data from these varied sources, Refinitiv

ensures a comprehensive picture of each company’s ESG performance, ultimately

enabling the calculation of a robust ESG score (Refinitiv, 2022). An example of ESG

measurement is available in Appendix H.

Unlike publicly traded companies, early-stage private companies often lack

publicly available information for the 2010-2020 timeframe. Furthermore, only

two companies had third-party ESG scores, and none of the companies disclosed

ESG statements within the specified timeframe. Due to these limitations, the study

employs indicators for financial data disclosure and ESG scores to analyse the impact

on data availability and company valuation.

4.5.1 Dependent variables

Startup valuations reflect their growth potential and market positioning, aiding ven-

ture capitalists (VCs) in pricing and determining funding potential. Two key valuation

figures exist: pre-money and post-money valuations. This study explores the im-

pact on a company’s valuation prior to funding, focusing on pre-money valuation,

calculated as the di!erence between post-money valuation and the funding amount.

The Kolmogorov-Smirnov test confirms a power-law distribution for both the

raised funding amount and post-money valuation. Logarithmic transformation nor-

malises the pre-money valuation distribution to a logarithmic scale, aligning with

4The data is collected on 1 August 2023.
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the sampling approach used in prior research (Miloud et al., 2012; Gompers, 1995).

Figure 4.2 visually depicts the log distribution of funding raised and pre-money valu-

ation. It is important to note that the startups may raise funds multiple times within

a year. To avoid duplication, only the most recent funding round per year for each

startup is considered. The correlation coe"cients between independent variables

obtained from Crunchbase and pre-money valuation are presented in Appendix E.

Figure 4.2: Distribution of funding amount raised and pre-money valuation between 2010
and 2020.

4.5.2 Statistics summary
Table 4.3 provides a detailed breakdown of all variables used in this study. The

dataset comprises information on 1,112 funding rounds for 772 unique companies

established and funded between 2010 and 2020. The initial data set is sourced from

Crunchbase, as previously described.
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Table 4.3: Summary statistics of Crunchbase features for predicting early-stage company
valuation.

Variable Name Count Mean Std Min Max

Organisation

Country 772 24.350 10.048 0.000 35.000

Company Status 772 2.284 1.113 0.000 3.000

Has Facebook (Dummy) 772 0.911 0.285 0.000 1.000

Has Linkedin (Dummy) 772 0.970 0.170 0.000 1.000

Has Twitter (Dummy) 772 0.957 0.202 0.000 1.000

Employee Count 772 4.010 1.944 0.000 8.000

Company Founded Year 772 2013 2.276 2010 2020

Top Ten City (Dummy) 772 0.427 0.495 0.000 1.000

Founder & Co-Founder

Founder Count 772 20.025 18.031 1.000 151.000

Has Bachelor 772 5.330 5.846 0.000 66.000

Has Master 772 2.197 2.902 0.000 27.000

Has MBA 772 2.053 2.524 0.000 18.000

Has PhD 772 0.558 1.156 0.000 10.000

Top 100 Education 772 3.373 4.003 0.000 35.000

Top 50 Education 772 2.845 3.528 0.000 31.000

Top 10 Education 772 1.826 2.526 0.000 19.000

STEM Education 772 3.312 3.928 0.000 36.000

Funding Round

Investment Type 1112 3.676 2.484 0.000 11.000

Log Amount Raised 1112 17.809 1.711 10.224 22.205

Log Pre-money Valuation 1112 19.693 2.013 10.820 25.000

Deal Announced Year 1112 2017 1.976 2011 2020

Deal Age 1112 4.475 2.253 0.000 10.000

Number Funding Rounds 1112 4.499 3.065 0.000 23.000

Log Cum Amount Raised 1112 18.536 1.827 10.224 23.733
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Table 4.3 continued from previous page

Variable Name Count Mean Std Min Max

Investor

Investor Count 1112 5.865 4.168 0.000 42.000

Top Institutional Investor (Dummy) 1112 0.180 0.384 0.000 1.000

Top Individual Investor (Dummy) 1112 0.003 0.052 0.000 1.000

Investment Age 1112 25.514 31.971 0.000 330.000

Accelerator Investor (Dummy) 1112 0.013 0.115 0.000 1.000

Angle Investor (Dummy) 1112 0.022 0.148 0.000 1.000

Di!erent Geolocation (Dummy) 1112 0.550 0.498 0.000 1.000

Log Cum Invesment Amount 1112 7.732 10.536 0.000 26.061

Investor Experience 1112 96.745 131.617 0.000 759.000

Figure 4.3 illustrates the distribution of founding years. The years 2012 (16.32%),

2015 (14.37%), and 2011 (13.86%) witness the highest number of startup formations.

The majority of startups (64.89%) are still operational, followed by those involved

in M&A deals (15.15%), IPOs (13.73%), and those no longer operating (6.22%).

Regarding social media presence, 91.06% of startups utilise Facebook, 97.02% use

LinkedIn, and 95.72% have a Twitter presence.

Company size analysis reveals that 52.33% of startups fall into the medium-sized

category with less than a thousand employees. Small companies with a team size

of less than ten comprise 4.79% of the sample, while large corporations with over

ten thousand employees represent 2.85%. Geographically, the majority of startups

(65.29%) are based in the USA, followed by the United Kingdom (6.99%) and India

(6.35%). Interestingly, only 42.75% of startups operate in the top ten cities globally.

Product o!erings show that software is the dominant category, accounting for 57.77%

of startups. E-commerce and science and engineering companies comprise 19.30%

and 17.49% of the sample, respectively.

The analysis of founder teams reveals an average size of 20 founders, which is

higher than what might be typically observed in early-stage startups. On average, five
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Figure 4.3: Distribution of companies by founding year and company status.

founders or co-founders hold bachelor’s degrees, while at least two possess master’s

or MBA degrees. PhD qualifications are less common within the founder teams.

Interestingly, at least one founder per team typically graduated from a top 10 globally

ranked university. Furthermore, an average of two founders hold degrees from top

50 universities and three from top 100 universities. Notably, the average founder

team of three members holds STEM degrees (Science, Technology, Engineering, and

Mathematics).

Companies typically receive their first round of funding within a few years

of establishment. However, many early-stage funding rounds (e.g., seed funding,

Series A) often lack publicly available company valuation data. Consequently, the

study primarily focuses on later-stage funding rounds, starting from Series C onwards,

which typically occur a few years after company formation (Figure 4.4). For improved
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visualisation, samples are grouped into two categories: funding rounds before or

equal to Series C, and those occurring after Series C.

Figure 4.4: Distribution of funding rounds by deal announced year series stage.

The year 2019 witnesses the highest number of funding rounds (21.31%), fol-

lowed by 2020 (20.4%) and 2018 (19.05%). On average, startups participate in

approximately four funding rounds. The average time between company establish-

ment and receiving funding is four years. The amount raised and valuation data are

log-transformed for analysis, with average values of 17.81 and 19.69, respectively.

The log-transformed average for the cumulative amount raised across all funding

rounds is 18.54.

Each funding round typically attracts an average of five investors, with 18%

being institutional investors and 0.3% individual investors. Investors possess an

average of 25 years of experience and participate in an average of 96 funding rounds
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by the time of their current investment. Accelerators or incubators play a role in

1.3% of the funding rounds, while 2.2% of startups previously receive funding from

angel investors. Moreover, in 55% of cases, the investor location di!ered from the

startup location. The average log-transformed cumulative investment amount raised

by investors is 7.732.

The average number of news articles associated with each company in the

dataset is eight. However, this number varies considerably across companies. For

instance, companies like Lyft and Pinterest, which are established near the beginning

of the study period, have a significantly higher number of news articles (over one

hundred) due to greater historical public exposure. The distribution of news articles

by publication year reveals that 2019 has the highest concentration (20.91%), followed

by 2020 (16.53%) and 2018 (13.91%).
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4.6 Results

4.6.1 Valuation prediction
Aligned with the study’s objective of predicting pre-money valuation for early-stage

companies, Appendix I presents the significant results of predictions based on vari-

ables obtained from the Crunchbase dataset and company news from TechCrunch.

Crunchbase
Analysing the Crunchbase data (Table 4.4), which includes variables relevant to

founders, companies, and investors participating in funding rounds, linear regression

yields the highest 𝐿2 of 0.747 with a low MSE value of 0.617. Gradient boosting

followed closely with a second-lowest MSE value of 0.626 and an 𝐿
2 of 0.743.

Interestingly, the simpler linear regression model outperforms ensemble methods

like random forest and complex deep learning models.

Table 4.4: The performance metrics exhibited by various machine learning models employed
for startup valuation prediction. The models include linear regression (LR),
random forest (RF), gradient boosting (GB), and deep learning (DL). Only the
results with the highest R-squared grouped by the combination of text embedding
and supervised learning are presented.

Model R-Squared MSE RMSE MAE
Crunchbase
LR 0.747 0.617 0.785 0.546
RF 0.691 0.752 0.867 0.637
GB 0.743 0.626 0.791 0.566
DL 0.541 1.118 1.057 0.802
TechCrunch
Doc2Vec + GB -0.039 2.589 1.609 1.252
BERT + RF 0.007 2.475 1.573 1.219
FinBERT + RF -0.017 2.536 1.592 1.235
ESG-BERT + RF -0.022 2.548 1.596 1.243
Crunchbase & TechCrunch
Doc2Vec + GB 0.761 0.595 0.771 0.614
BERT + LR 0.727 0.681 0.825 0.616
FinBERT + DL 0.721 0.696 0.835 0.667
ESG-BERT + LR 0.676 0.807 0.899 0.674

Despite a significant 𝐿2, the linear regression model suggests a potential vio-

lation of the linearity assumption. Figure 4.5 depicts a scatter plot of the model’s
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residuals for pre-money valuation and various Crunchbase variables. The observed

non-linear pattern in the residuals indicates that a linear model may be inadequate

to capture the relationship between these variables. This aligns with the findings by

Ang et al. (2022), who observe non-linear relationships between determinants and

predicted values. Further investigation confirms high collinearity among independent

variables and non-normal distribution of residuals.

Figure 4.5: Residual Plot of Crunchbase variables and Pre-Money Valuation

Therefore, given the non-linearity, gradient boosting emerges as the second-best

performing model with a comparable 𝐿2 of 0.743 and a slightly lower MSE of 0.626.

These results suggest that data from Crunchbase alone holds promise for predicting

the pre-money valuation of young companies.

TechCrunch and Text Embedding Models
Analysis of news data from TechCrunch, however, suggests limited predictive power

for valuation. As shown in Table 4.4, most models incorporating solely news data

yield negative 𝐿
2 scores, indicating a poor model fit. The only exception involves

text embeddings generated by the BERT model in conjunction with a random forest
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model for prediction. Nevertheless, this approach results in a low 𝐿
2 of 0.007 and a

high MSE of 2.475. These findings suggest that sentence embeddings of news titles

alone are insu"cient for determining company valuation.

Further investigation into the impact of di!erent embedding models, including

Doc2Vec, BERT, FinBERT, and ESG-BERT (Table 4.5), yields similar results.

Despite the use of domain-specific models like FinBERT and ESG-BERT, pre-trained

on business and financial corpora, the models still generate negative 𝐿
2 values and

high MSE scores, indicating insu"cient predictive power for valuation. Notably,

deep learning models perform even worse than ensemble algorithms like a random

forest.
Table 4.5: The performance metrics achieved by various text embedding models employed

for startup valuation prediction. The models include Doc2Vec, BERT, FinBERT,
and ESG-BERT.

Model R-Squared MSE RMSE MAE
TechCrunch
Doc2Vec + LR -0.398 3.484 1.867 1.467
Doc2Vec + RF -0.157 2.884 1.698 1.325
Doc2Vec + GB -0.039 2.589 1.609 1.252
Doc2Vec + DL -0.513 3.771 1.942 1.535
BERT + LR -0.486 3.704 1.924 1.505
BERT + RF 0.007 2.475 1.573 1.219
BERT + GB -0.021 2.545 1.595 1.239
BERT + DL -0.235 3.078 1.755 1.369
FinBERT + LR -0.352 3.369 1.835 1.455
FinBERT + RF -0.017 2.536 1.592 1.235
FinBERT + GB -0.024 2.553 1.598 1.241
FinBERT + DL -0.178 2.937 1.714 1.350
ESG-BERT + LR -0.431 3.567 1.889 1.485
ESG-BERT + RF -0.022 2.548 1.596 1.243
ESG-BERT + GB -0.025 2.555 1.599 1.242
ESG-BERT + DL -0.423 3.547 1.883 1.467

Crunchbase and TechCrunch
Combining Crunchbase data with news data from TechCrunch (Table 4.6) yields

promising results. The Doc2Vec model for embedding news titles performs particu-

larly well, with gradient boosting achieving the highest 𝐿2 (0.761) and lowest MSE

(0.595) among all models. The results demonstrate the potential of incorporating
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unstructured text information to improve startup valuation prediction, as evidenced

by the outperformance of our approach over the gradient boosting model using only

Crunchbase data (0.626 in Table 4.4).

Table 4.6: The performance metrics achieved by various machine learning models and
text embedding techniques, using a combination of the Crunchbase dataset and
company news from TechCrunch.

Model R-Squared MSE RMSE MAE
Crunchbase & TechCrunch
Doc2Vec + LR 0.754 0.613 0.783 0.567
Doc2Vec + RF 0.736 0.658 0.811 0.646
Doc2Vec + GB 0.761 0.595 0.771 0.614
Doc2Vec + DL 0.725 0.687 0.829 0.63
BERT + LR 0.727 0.681 0.825 0.616
BERT + RF 0.432 1.416 1.190 0.981
BERT + GB 0.219 1.946 1.395 1.100
BERT + DL 0.667 0.829 0.911 0.711
FinBERT + LR 0.706 0.732 0.855 0.637
FinBERT + RF 0.434 1.410 1.187 0.983
FinBERT + GB 0.219 1.947 1.395 1.101
FinBERT + DL 0.721 0.696 0.835 0.667
ESG-BERT + LR 0.676 0.807 0.899 0.674
ESG-BERT + RF 0.427 1.428 1.195 0.993
ESG-BERT + GB 0.219 1.946 1.395 1.100
ESG-BERT + DL 0.640 0.897 0.947 0.760

The general-purpose BERT model yields a mixed performance, with an average

MSE of 1.218. Only the BERT model with linear regression outperforms other BERT

models. However, given the non-linear relationships observed in the data, deep

learning models with BERT embeddings are expected to capture these complexities.

While the BERT model with deep learning achieves an MSE of 0.829 (still considered

slightly high), the FinBERT model outperformes general-purpose BERT models with

a lower MSE of 0.696. The overall average MSE for FinBERT integration is 1.196.

Interestingly, the ESG-BERT model, designed for the sustainability domain,

underperformed the general-purpose BERT model, exhibiting both higher MSE and

lower 𝐿2 values. It is worth noting that the average MSE score for ESG-BERT across

regression models (1.269) is the highest among all embedding models used in this

study.
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Crunchbase and Sustainability Similarity

While transforming text data into numerical features for regression analysis can

be informative, this study employs text embedding models to convert news and

sustainability-related text into vectors before calculating similarity. Table 4.7 demon-

strates the impact of integrating sustainability sources from the UN SDGs, SASB

reports, and Refinitiv statements. Among the models incorporating these sources, the

random forest model emerges as the most e!ective. It outperforms the simpler linear

regression model that relies solely on Crunchbase data with Doc2Vec embeddings

and gradient boosting.

Table 4.7: The performance metrics achieved by various machine learning models and text
embedding techniques, integrating text similarity with UN Sustainable Devel-
opment Goals (SDGs) and Sustainability Accounting Standards Board (SASB)
criteria, along with ESG disclosure data obtained from Refinitiv.

Model R-Squared MSE RMSE MAE
Crunchbase
LR 0.747 0.617 0.785 0.546
RF 0.691 0.752 0.867 0.637
GB 0.743 0.626 0.791 0.566
DL 0.541 1.118 1.057 0.802
Crunchbase & UN SDG
LR 0.753 0.602 0.776 0.542
RF 0.775 0.549 0.741 0.515
GB 0.756 0.596 0.772 0.545
DL 0.550 1.097 1.048 0.788
Crunchbase & SASB General Issue
LR 0.690 0.755 0.869 0.631
RF 0.785 0.523 0.723 0.503
GB 0.770 0.561 0.749 0.524
DL 0.456 1.327 1.152 0.898
Crunchbase & SASB Dimension
LR 0.746 0.618 0.786 0.547
RF 0.780 0.536 0.732 0.507
GB 0.715 0.695 0.833 0.613
DL 0.532 1.140 1.068 0.802
Crunchbase & Refinitiv
LR 0.747 0.617 0.786 0.547
RF 0.772 0.556 0.745 0.519
GB 0.723 0.676 0.822 0.587
DL 0.543 1.115 1.056 0.818
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Leveraging the similarity between news content and the 26 general issues high-

lighted by SASB, the model achieves the lowest MSE score (0.523) and a high 𝐿
2

(0.785). The model using aggregated data from the five SASB dimensions followed

closely with an 𝐿
2 of 0.780. Notably, the average MSE di!erence between models

using SASB general issues and those using SASB dimensions is only 5.93%.

Integrating similarity scores between the descriptions of the 17 UN SDGs and

news articles also yields positive results, with an MSE of 0.549 and an 𝐿
2 of 0.775.

Adding financial disclosure data and ESG scores further improves the model, with

the random forest model achieving an 𝐿
2 of 0.772 and an MSE of 0.556. This finding

is particularly noteworthy given the limited availability of ESG data within the study

timeframe. These results suggest that incorporating the sustainability context, even

with limited ESG data, can significantly enhance the model’s performance compared

to relying solely on standard financial and non-financial variables from Crunchbase.

This study compares the performance of various machine learning models for

startup valuation prediction. Ensemble regression models, particularly random forest,

yield generally good results compared to other regression models. Unfortunately,

none of the deep learning models achieve superior performance to the baseline

regression models in contrast to the hypothesis 𝜚2. This suggests that the limited

size and complexity of the startup dataset might hinder the ability of deep learning

models to e!ectively capture the valuation process.

Furthermore, while text embedding models pre-trained on ESG and financial

corpus (ESG-BERT and FinBERT) demonstrate promising results, they do not out-

perform simpler embedding models like Doc2Vec and general-purpose BERT. This

finding suggests that, in this context, simpler embedding techniques may be su"cient

for capturing relevant information from text data for valuation prediction, contra-

dicting the hypothesis 𝜚3. This observation warrants further investigation into the

optimal balance between domain-specific and general-purpose text embedding for

startup valuation tasks.



4.6. Results 126

4.6.2 Feature importance

Tables 4.4 and 4.7 demonstrate the value of integrating sustainability text data with

Crunchbase data to improve early-stage company valuation prediction. To gain a

deeper understanding of how individual variables contribute to the model’s perfor-

mance, the analysis of feature importance is conducted. This analysis focuses on the

top-performing model from Table 4.7, a random forest model that utilises Crunchbase

data and similarity scores with the 26 SASB general issues. This model achieves the

lowest MSE score (0.523) among all models investigated.

Figure 4.6 illustrates the top ten determinants with the highest feature importance

values in the random forest model. The log value of the cumulative amount of funding

raised by the company exhibits the highest relative importance (0.858), followed

by the log value of the amount raised in a single round (0.042). This substantial

di!erence in importance scores suggests that the cumulative funding history holds

greater weight in predicting valuation compared to the size of individual funding

rounds. This finding aligns with Ang et al. (2022); Garkavenko et al. (2021), who

highlighted the use of historical funding rounds by venture capitalists as a crucial

reference point for determining investment decisions and valuation. The remaining

determinants in the analysis yield relatively low feature importance scores.

Building upon prior research that emphasises the critical role of founders

(Macmillan et al., 1985; Miloud et al., 2012; Hsu, 2007; Damodaran, 2009), the

result indicates that the educational background (bachelor’s degree) and the number

of founders significantly impact the prediction of early-stage company valuation. Ad-

ditionally, the model highlights the relevance of specific sustainability factors. In the

sustainability context, three SASB general issues contribute to valuation: (1) encour-

aging equal opportunities for workforce satisfaction, (2) fostering fair competition

and market practices that protect customer welfare, and (3) adopting energy-e"cient

practices and renewable energy in their operations. This suggests that investors may

actively consider a company’s approach to these specific sustainability aspects when

making valuation decisions. Finally, the number of funding rounds and company

size also emerge as significant factors influencing valuation.
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Figure 4.6: Feature importance of the Random Forest model gives n the variables from
Crunchbase and SASB general issue text similarity.

Feature Importance of Sustainability Indicators

Beyond founder, startup, and market characteristics influencing valuation, this study

investigates the relationship between news titles and sustainability-related text derived

from the UN SDGs and SASB. Samples are further categorised based on funding

rounds: pre-Series C (including Series C) and post-Series C.

Figure 4.7 presents the feature importance of text similarity to UN Sustainable

Development Goals (SDGs), revealing significant di!erences between the two sample

groups. At the early-stages, it focuses on “Gender Equality” for founding the team.

For companies beyond Series C funding, “Sustainable Cities and Communities”

exhibits the highest feature importance. This can indicate how startups positively

impact communities, encouraging sustainable economic, environmental, and social

growth. These findings suggest that investor priorities regarding sustainability may

shift as companies mature and progress through funding stages.

Similar to the findings for UN SDGs, the relative importance of text similarity

scores with the 26 SASB general issues and dimensions reveals distinct patterns

across funding stages. Figures 4.8 and 4.9 illustrate a strong focus on human capital

in early funding rounds. This is reflected in the high feature importance of “Employee
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Figure 4.7: Feature Importance of UN SDGs in Startup Valuation.

Engagement, Diversity and Inclusion,” and the broader “Human Capital” dimension.

Figure 4.8: Feature Importance of 26 SASB general issues in Startup Valuation.

For companies that secure funding beyond Series C, the relative importance

shifts. “Competitive Behavior” emerges as the most significant factor based on SASB

general issue similarity scores. Additionally, within the high-level SASB dimensions,

the focus initially placed on “Leadership and Governance” diminishes, while other

dimensions contribute more equally to valuation predictions.

This study highlights the influence of specific sustainability topics on startup

valuation across funding stages. Notably, “Human Capital” and “Employee Engage-
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Figure 4.9: Feature Importance of 5 SASB dimensions in Startup Valuation.

ment” emerge as highly impactful factors for early-stage companies (Figures 4.8,

4.9). This suggests that investors in early funding rounds may place a high value on

a company’s approach to talent management and employee well-being. However,

investor priorities appear to shift for companies that secure funding beyond Series C.

Here, “Competitive Behavior” and “Leadership and Governance” within the SASB

framework take on greater importance, reflecting a focus on long-term strategic

positioning and sustainable business practices.

While the relative importance of sustainability factors remains lower than core

valuation drivers like historical funding and founder characteristics, their integration

demonstrably improves model performance, confirming the hypothesis 𝜚1. Com-

pared to the baseline model, the inclusion of sustainability data yields a significant

16.45% reduction in MSE score. This finding suggests that considering sustainability

aspects alongside traditional financial metrics can enhance the accuracy of early-stage

company valuation models.
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4.7 Discussion
This study leverages machine learning and natural language processing (NLP) tech-

niques to exploit unstructured text data. This approach addresses the challenges

associated with private market valuation and the integration of sustainability factors

into investment decisions. The proposed model o!ers the following theoretical and

practical implications:

4.7.1 Theoretical implication
Traditional valuation methods often rely on financial statements to predict discounted

cash flow (Williams, 1938). However, such data can be scarce, particularly in the

private equity and venture capital landscape. This study proposes a machine learning-

based valuation approach that utilises unstructured text data as an alternative data

source to overcome these limitations. While text embedding models e!ectively

convert text data into vectors suitable for machine learning analysis, these vectors do

not directly correspond to financial attributes used in traditional regression models.

The proposed model addresses this by integrating text embedding models to

capture the similarity of sustainability text data with established startup, founder,

and market characteristics explored in prior literature. The feature importance anal-

ysis reveals valuable insights. The raised funding amount emerges as a key factor,

reflecting the well-established practice of venture capitalists using historical funding

rounds as a reference point for future valuations. This aligns with the findings of

Ang et al. (2022); Garkavenko et al. (2021). The results also demonstrate a no-

table shift in valuation attributes observed before and after Series C funding within

the sustainability context, as indicated by the similarity scores. This suggests that

venture capitalists’ interests evolve from primarily focusing on human capital and

talent management, which serve as foundational strengths for early startup success,

towards assessing long-term strategic positioning and sustainable business practices.

This change reflects a refined understanding of what drives sustained growth and

competitive advantage in the market.

This study highlights the potential of incorporating sustainability factors into

early-stage company valuation models. By investigating this under-explored area
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within academic research, the study contributes to the promotion of economically,

environmentally, and socially responsible development within private capital in-

vestment (Cumming et al., 2022). As investor interest in sustainable investment

grows, sustainability considerations are likely to evolve into significant valuation

attributes. This aligns with research in public equities, which demonstrates the impact

of sustainability factors and news articles on asset returns (Guo et al., 2020; Schmidt,

2019).

Future research should expand beyond startup news and general sustainability

scores to investigate other relevant sustainability features. For example, the presence

of gender bias at both management and employee levels can significantly impact a

startup’s ability to raise funding and influence its valuations (Kanze et al., 2018).

Alternatively, future studies can assess and measure startup competitiveness by

considering attributes such as innovation, intellectual property, and investment in

Research and Development (R&D) (Silva Júnior et al., 2022). These attributes can

then be translated into quantitative features and incorporated into valuation prediction

models.

4.7.2 Practical implication

Machine learning o!ers significant potential as a data-driven tool for venture capital-

ists. By facilitating e"cient data processing and execution of due diligence tasks,

machine learning can help overcome information asymmetries inherent to the illiquid

private capital market. This study demonstrates the potential of leveraging unstruc-

tured text data, such as news articles, as a complementary data source for screening

investment opportunities and company valuation.

Integrating sustainability-context text analysis can serve as an additional signal

to support two key investment strategies: (1) incorporating sustainability into existing

funds or (2) establishing dedicated sustainability-focused funds (Lin, 2022). This

integration of sustainability factors has the potential to strengthen investor and limited

partner confidence in these emerging investment trends. Furthermore, the research

encourages practitioners in the private capital market to acknowledge the critical role

of sustainability, encompassing not only short-term financial gains but also long-term
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environmental and social impact.

However, a significant information gap exists in both financial and sustainability-

related data availability for private companies. Despite the presence of established

data providers like Refinitiv, generating comprehensive ESG statements within the

private capital market remains challenging. As Figure 4.10 illustrates, the majority

of ESG disclosures are concentrated among publicly traded companies that complete

initial public o!erings (IPOs). Similarly, Figure 4.11 demonstrates that the United

States possesses the highest rate of data disclosure, followed by the United Kingdom,

while most other countries lag significantly behind. Even with the absence of formal

sustainability reports from startups, news data pertaining to these ventures presents

a promising alternative dataset for bridging this information gap. Additionally,

policymakers and regulators can play a crucial role in encouraging sustainability

disclosures within the private capital market.

Furthermore, this research aligns with Lin (2022) in advocating for the develop-

ment of clear sustainability definitions and standards within specific regions, markets,

and regulatory frameworks. Such measures can help minimise greenwashing prac-

tices. Additionally, as suggested by Bianchini and Croce (2022), governments can

play a crucial role by enacting policies that create long-term demand for sustainable

products and provide financial grants to support startups in di!erentiating themselves

for long-term fundraising success. Regulatory bodies can also play a part, as exem-

plified by the European Union’s SFDR (Sustainable Finance Disclosure Regulation).

This regulation mandates that all financial market participants, including venture

capital firms, comply with sustainability disclosure requirements. This includes

highlighting their risk policies and demonstrating how sustainability risks are in-

tegrated into decision-making processes, with potential consequences reflected in

remuneration plans (Roure, 2024; European Comission, 2022).

Beyond the investor perspective, startups can also develop innovative solutions in

response to growing sustainability demands. Industries like cleantech o!er promising

opportunities for such innovation. However, fostering such innovation requires a

supportive ecosystem within the private market. Financial institutions, academic
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Figure 4.10: Completeness of ESG Data Disclosure available in Refinitiv
grouped by the company status.

Figure 4.11: Completeness of ESG Data Disclosure available in Refinitiv
grouped by the country.

institutions, governments, and other stakeholders like accelerators and incubators

form a critical ecosystem that empowers early-stage companies to create value and

respond e!ectively to sustainability demands from both markets and regulators.

While the importance of sustainability is undeniable, investors must also consider
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other relevant factors not explicitly addressed in this study. Market conditions,

including interest rates, can profoundly a!ect the funding supply, thereby influencing

startup valuations and competition among VCs (Hsu, 2007). This occurs as these

conditions significantly impact limited partners’ (LPs) ability to contribute capital

and, consequently, venture capitalists’ capacity to invest in new ventures. These

additional considerations require careful analysis alongside sustainability aspects for

informed investment decisions.
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4.8 Conclusion

In response to the growing demand for sustainable investment within the private

equity and venture capital landscape, this study proposes a novel model that explores

the potential of integrating sustainability factors and unstructurecd text data into

valuation models for early-stage companies. The findings reveal that sustainability

considerations are increasingly influencing investor decisions and company valua-

tions, particularly for startups in their early funding rounds. Companies that prioritise

and e!ectively communicate their sustainability e!orts stand to benefit from higher

valuations.

Unstructured text data, such as news articles, o!ers a valuable alternative data

source to address the information scarcity inherent in private capital markets. By

leveraging machine learning and text embedding models, this data can be incorporated

into valuation models to capture relevant information that may not be readily available

in traditional financial statements. Interestingly, the study found that domain-specific

embedding models do not significantly enhance model performance. However,

the similarity between startup news content and sustainability text derived from

frameworks like the SASB and UN SDGs significantly improves valuation prediction,

achieving a 16.45% improvement over the baseline regression.

Feature importance analysis reveals that traditional factors such as founder

characteristics continue to play a significant role in company valuation. However,

the funding amount raised by the company emerges as a particularly strong indicator,

reflecting the practice of venture capitalists using historical funding rounds as a

reference point for future company valuations. The analysis significantly reveals a

strategic shift in sustainability priorities, indicating a transition from an emphasis on

team and talent development towards strategic positioning that impacts society in the

long term.

A significant information gap persists regarding both financial and sustainability-

related data for private companies. Regulatory bodies and policymakers can play

a critical role in bridging this gap by encouraging sustainability disclosures within

the private capital market. While sustainability is gaining traction as an investment
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factor, investors must remain mindful of other relevant considerations. Other relevant

factors can significantly impact the ability of investors to secure funding (from limited

partners) and, consequently, their capacity to invest in startups. These additional

considerations require careful analysis alongside sustainability aspects for informed

investment decisions.

This study lays the groundwork for further exploration in several key areas.

Firstly, incorporating additional sources of unstructured text data beyond TechCrunch

can potentially enrich the model’s understanding of company performance. Analysing

sentiment within news articles can provide valuable insights into market perception,

while examining the impact of ESG-related news controversies on company value

presents another intriguing research avenue. Techniques like data augmentation, as

employed by Nugent et al. (2021), can be leveraged to address information scarcity.

Furthermore, investigating the relationships between unstructured text and various

sustainability factors can provide valuable insights. This may involve extending

the analysis to predict future company statuses, such as IPO prospects, receipt of

additional funding, or closure. Finally, integrating advanced large language models

(LLMs) like GPT-4 and Llama 2 into the existing framework represents a potential

avenue for future research. These models may o!er superior capabilities for extracting

and processing information from unstructured text data, potentially leading to further

improvements in model performance.
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5.1 Introduction

Venture capital (VC) transcends mere financial deployment anticipating high returns.

It actively contributes to a company’s value creation by fostering sustainable growth,

benefiting stakeholders, and enhancing future value. Given the vast and dynamic

landscape of operational startups driving economic progress, VC investors face grow-

ing challenges in selecting promising ventures. The initial stage of the VC process

involves screening and selecting startups that align with the firm’s investment strategy.

This strategy outlines targeted sectors and preferred startup stages, allowing the VC

team to leverage their industry knowledge and experience to drive value creation

within the portfolio companies. This ongoing process also includes continuous sup-

port and monitoring of these portfolio companies, while ensuring alignment with the

interests of the VC firm’s limited partners.

Following the screening process, VC firms perform thorough due diligence to

assess various aspects, including the founders, team, product/service o!erings, and

market potential, to determine if the company holds the potential to generate future

financial returns. Traditionally, this approach relies heavily on direct interaction

with founders, secondary market research, or intuition-based decision-making. This

subjectivity can lead to inconsistencies and biases in the selection process, potentially

causing VC firms to miss out on promising investment opportunities. Nonetheless, the

emergence of big data and artificial intelligence (AI) spurs a paradigm shift towards

a data-driven approach within VC firms. Several academic studies explore the

application of machine learning models, particularly supervised learning algorithms,

to predict company exit events and valuation using training datasets (Bhat and Zaelit,

2011; Arroyo et al., 2019). These supervised models excel at identifying patterns in

existing data, allowing them to make predictions based on past performance.

While widely adopted in financial applications, supervised learning models

exhibit limitations within the dynamic environment of VC. These models rely heavily

on large, labelled training datasets, which presents a significant hurdle in the VC con-

text due to the scarcity of historical data. To address these limitations, reinforcement

learning (RL) presents a promising alternative that receives limited exploration within
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the private capital space. RL employs an agent that interacts with its environment

and selects actions to maximise long-term rewards. Recent applications in public

equities demonstrate the potential of RL to simulate investment decision-making

processes (Azhikodan et al., 2019; Charpentier et al., 2023; Deng et al., 2017; Bühler

et al., 2018; Moody and Sa!ell, 2001; Spooner et al., 2018). However, its application

as a recommendation system within the financial domain remains largely unexplored

(Afsar et al., 2022). This capability o!ers a compelling solution for VC by enabling

the implementation of RL models as recommendation systems for promising startups.

The RL model’s ability to continuously adapt its selection criteria based on past

successes has the potential to outperform traditional methods employed by VC firms.

This study aims to bridge the existing research gap by investigating the e!ectiveness

of RL in identifying optimal investment candidates for VC funds.

Venture capital portfolio selection is a complex task marked by inherent un-

certainty and information asymmetry (Denis, 2004). This research introduces the

Venture Capital Reinforcement Learning Recommender System (VC-RLRS), a novel

framework designed to address the limitations of traditional VC investment strategies.

Unlike its applications in e-commerce, the potential of reinforcement learning recom-

mender systems remains largely unexplored within financial applications, particularly

in illiquid markets like venture capital and private equity. The groundbreaking ap-

proach, built upon a Q-learning model, o!ers a significant advance by incorporating

state representations and reward functions uniquely tailored to the VC domain.

Leveraging reinforcement learning’s strengths, the VC-RLRS e!ectively learns

optimal investment strategies through interaction with simulated investment envi-

ronments. The model demonstrates the capability to recommend startups with high

growth potential while explicitly considering crucial factors like exit opportunities

and portfolio diversification, conceptually extending the application of recommender

systems to complex financial ecosystems. It showcases its potential to enhance invest-

ment decision-making for both generalist and specialist strategies, with successful

demonstrations across specific industries like FinTech, Healthcare, and Information

Technology. Furthermore, this study makes a methodological contribution by inte-
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grating deep learning techniques within a hybrid model to assess its performance

against a baseline Q-learning approach, simultaneously highlighting areas for future

scalability improvements. Overall, this research presents an original design and

evaluation of reinforcement learning components specifically for the VC context,

significantly contributing to the field while outlining promising future directions for

practical application by VC practitioners.

The remainder of this chapter is structured as follows. Section 2 provides

background on machine learning and reinforcement learning models in financial

applications. Sections 3, 4, and 5 introduce the fundamentals of reinforcement

learning, along with the experiment design choices and dataset descriptions. Section

6 presents the study’s results, followed by a discussion of the findings, implications,

and limitations in Section 7. Finally, Section 8 concludes the research and outlines

future work directions.
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5.2 Literature review

5.2.1 Evaluating investment opportunities in venture capital

Early-stage companies play a vital role in the global economy by driving innovation,

fostering job creation, and stimulating financial flows within the ecosystem encom-

passing customers, suppliers, and investors. Investment in these companies comes

from various sources, including angel investors, venture capitalists (VCs), and individ-

uals participating in collective forms like crowdfunding. However, startup investment

is inherently risky, with a significant 20% failure rate within the first year (U.S. Bureau

of Labor Statistics, 2022). VCs hold a distinct advantage among early-stage investors

due to their superior access to information. While their collective experience enables

them to identify promising opportunities, constructing well-diversified portfolios

remains a complex challenge, hindered by ine"cient processes and information

asymmetries.

Identifying high-potential startups and cultivating them into successful portfo-

lio companies remains a core challenge for venture capital (VC) firms. VCs must

navigate a complex landscape of signals and criteria to assess risks and opportunities,

ultimately aiming to select outstanding firms with the potential for extreme future

returns. This challenge attractes significant attention from academic researchers

who consistently analyse the factors influencing VC decision-making. For exam-

ple, the management team is identified as a key factor contributing to investment

success (Gompers et al., 2020). However, Kessler et al. (2012) argue that founder

characteristics only influence initial funding, while the founding process itself, in-

cluding co-founder collaboration and managing expectations, has a greater impact

on long-term viability. Additionally, Lerner and Nanda (2020) point out how the

decision-maker’s background and characteristics can influence investment choices.

These factors hold varying weights in the selection process, potentially influenced

by industry, company age, prior success, and geographical location (Gompers et al.,

2020). Moreover, VCs’ selection of investments can significantly influence the value

creation of target startups by providing them with access to networks, mentorship,

and crucial growth capital (Gompers et al., 2020).
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The growing availability of data and advancements in computational power

encourage the adoption of artificial intelligence (AI) and machine learning (ML)

by VC firms. This trend enables VCs to leverage these technologies for enhanced

data analysis and more informed investment decisions. This presents a compelling

opportunity to explore the application of ML across various frontiers within the VC

landscape, including optimisation of investment strategies and data-driven funding

decisions (Cumming et al., 2022). Scholars are actively investigating the use of AI

and ML to predict the future of private companies, focusing on bankruptcy risk and

potential exit routes (Bhat and Zaelit, 2011; Arroyo et al., 2019). Krishna et al. (2016)

leverage factors relevant to funding rounds to predict startup success and failure using

supervised learning models like Support Vector Machines and Random Forests.

Additionally, researchers use ML features to analyse the importance of investment

candidate criteria. Corea et al. (2021b) introduce the Early-stage Startups Investment

(ESI) framework, which utilises Gradient Tree Boosting to examine the influence

of founders’ demographics, professional backgrounds, psychological characteristics,

and co-founder dynamics.

Beyond supervised learning models, researchers explore alternative approaches

to address challenges in VC decision-making. Dellermann et al. (2017) propose a

hybrid model that combines machine intelligence with human expertise to evaluate

the qualitative aspects (soft signals) often present in startup success. Additionally,

multi-criteria decision-making (MCDA) frameworks utilising fuzzy theory (Minola

and Giorgino, 2008; Zhang, 2012; A!ul-Dadzie et al., 2015) and goal programming

(Aouni et al., 2013) employs to simulate the VC evaluation process and predict

funding decisions. Unsupervised learning has limited application in understanding

relationships and classifying startups into industry domains based on text descriptions

(Kharchenko et al., 2023). Similarly, Xiong and Fan (2021) implement a semi-

supervised method to analyse the VC network structure and identify industry leaders.

Although supervised learning currently dominates VC research, this study advocates

for a shift towards reinforcement learning (RL) as a promising alternative for portfolio

recommendation.
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5.2.2 Reinforcement learning for venture capital portfolio

recommendation

Reinforcement learning (RL) presents a distinct machine learning paradigm com-

pared to supervised learning. While supervised learning relies on labelled datasets,

RL employs an agent that interacts with its environment through trial and error. This

framework is successfully applied to simulate financial market participant interac-

tion and optimise investment strategies for maximising long-term portfolio returns

(Charpentier et al., 2023). Many practitioners and scholars investigate and propose

the application of RL models in diverse financial domains, including stock trading

(Azhikodan et al., 2019), stock index and commodity futures contracts (Deng et al.,

2017), hedging instruments (Bühler et al., 2018), asset allocation (Moody and Sa!ell,

2001), and the simulation of limit order book markets for market makers (Spooner

et al., 2018).

While reinforcement learning (RL) showcases its success in liquid markets

like public equities, its application in the private capital market, characterised by

illiquid assets with investment horizons of eight to ten years, remains underexplored.

This limited and delayed feedback on portfolio performance hinders the agent’s

learning process and ability to optimise VC investment strategies. However, recent

advancements in reinforcement learning-based recommender systems (RLRS) o!er a

promising avenue for addressing these challenges. RLRS can potentially be employed

to simulate investment scenarios and identify investment opportunities that align with

a VC’s investment strategy and maximise long-term portfolio return. By leveraging

recent research in RLRS, this study aims to evaluate the e"cacy of RLRS as an

alternative to traditional RL for portfolio selection in the private capital market.

Traditional recommender systems typically fall into two categories: collabora-

tive filtering and content-based filtering. Collaborative filtering leverages relation-

ships between products and user interests to generate recommendations based on user

similarity or item characteristics. Conversely, content-based filtering utilises item

descriptions to identify products that align with established user profiles. However,

these traditional approaches exhibit limitations in capturing the nuances of sequential
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and dynamic user interactions. RL o!ers a compelling solution by incorporating

continuous user engagement as feedback from the environment. This enables the

formulation of recommendation problems as Markov Decision Processes (MDPs)

(Afsar et al., 2022). The iterative nature of RL allows the agent to continuously refine

its policy through interaction with the environment, potentially leading to superior

recommendations that surpass those solely reliant on user ratings or static training

data (Chen et al., 2019). A prominent application of RL in recommender systems

lies in web recommendations. This approach empowers the system to dynamically

interact with users, framing recommendations as actions rather than solely relying on

static user behaviour gleaned from historical web usage data (Taghipour et al., 2007).

In addition, recommender systems employing RL can recommend sequences of items,

such as a playlist of songs (Liebman and Stone, 2014), or leverage multi-MDP tasks

to capture user-specific attributes (Lei and Li, 2019).

This study aims to formulate an MDP framework to optimise startup recommen-

dations within the VC investment domain. This framework, named VC-RLRS, is a

novel model designed to evaluate top startup recommendations. Formulating this

recommendation problem as an MDP requires consideration of several key design

choices. These include state representation, state representation, which provides

the agent with information about the current investment environment; exploration

strategy, which determines how the agent balances between exploring new actions

and exploiting existing knowledge; and reward function, which provides feedback to

the agent, guiding its decision-making and learning process. Furthermore, crucial

parameters such as the exploration rate, which governs the balance between exploring

new ventures and exploiting known successful investments, and the discount factor,

which determines the relative importance of short-term and long-term rewards, sig-

nificantly influence the agent’s decision-making process. To investigate the impact

of these design choices, the study explores the following hypotheses:

𝜚1: Including historical recommendations within the state representation will

outperform those relying solely on current data in recommending high-growth

potential startups, as measured by average return.



5.2. Literature review 145

𝜚2: A reward function emphasising long-term financial returns will outperform

other functions recommending high-growth potential startups, as measured by

average return.

𝜚3: A higher exploration rate, which encourages the exploration of new star-

tups alongside established investment strategies, will outperform a lower ex-

ploration rate that prioritises exploiting known successful ventures in recom-

mending high-growth potential startups, as measured by average return.

𝜚4: A higher discount factor, which influences the agent’s prioritisation of

future rewards, will outperform a lower discount factor that emphasises short-

term gains in recommending high-growth potential startups, as measured by

average return.

By examining the influence of these design choices through experimentation,

this research aims to contribute to the development of a novel VC-RLRS model for

identifying high-growth potential startups.

5.2.3 Generalist vs. Specialist investment strategies in venture

capital
Venture capital funds often focus on startups that align with their specific investment

strategies. These strategies consider factors such as the stage of funding (e.g., pre-

Series B), preferred industries, and geographical locations. By adhering to these

criteria, venture capital funds can attract investors with similar goals and make

informed deal selections. This approach raises the ongoing debate about the optimal

level of portfolio concentration for balancing performance and risk (Norton and

Tenenbaum, 1993).

Generalist VC funds, by definition, o!er more diversification in startup selection,

allowing them to adapt to a rapidly evolving market and avoid overexposure to a

single sector. However, maintaining a knowledgeable board team and analysing

deals in unfamiliar markets can be resource-intensive. Furthermore, generalist funds

encounter competition from specialist VC funds with a strong track record. These

specialist funds can be more alluring to entrepreneurs, as they often possess dedicated



5.2. Literature review 146

resources specifically tailored to support value creation within their chosen market

niche. This targeted approach can potentially surpass the capabilities of a generalist

fund in terms of value creation for startups in a particular industry (Gabbert et al.,

2022).

However, specialist funds also face potential limitations. A downturn in the target

market can significantly impact a fund’s portfolio due to a lack of diversification within

a single industry. Furthermore, focusing on a specific sector might lead to overlooking

promising startups in other industries, potentially hindering the identification of high-

return investment opportunities.

The ongoing debate about the relative performance of generalist and specialist

venture capital funds remains inconclusive. While PitchBook’s report (Gabbert

et al., 2022) found no significant di!erences in technology and healthcare, research

by Gompers et al. (2009) suggested that incorporating experienced specialists can

enhance overall fund performance. This aligns with the arguments of Bygrave (1987,

1988) regarding the benefits of leveraging technical, product, and market expertise to

mitigate risk.

The proposed VC-RLRS model can be employed to evaluate its e!ectiveness

in selecting investments across specific domains of interest, such as technology,

healthcare, and fintech. This investigation leads to the following hypothesis:

𝜚5 Venture capital funds that limit their startup recommendations to a sin-

gle industry will underperform funds that consider startups across multiple

industries, as measured by average return.

It is important to acknowledge that various fund types exist, such as fund-of-

funds, bridge funding, and mezzanine funding, which are established for specific

company stages. However, these types fall outside the scope of the current research.

The VC-RLRS framework has the potential to be adapted for formulating recommen-

dations within both generalist and specialist VC funds. Furthermore, incorporating

additional technical components, such as deep learning, can be explored to enhance

the model’s performance. A more detailed discussion of these elements is provided

in the methodology section.
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5.3 Methodology
This research proposes a novel application of Reinforcement Learning for Recom-

mendation Systems, termed VC-RLRS, to simulate VC investment decision-making.

The VC-RLRS model formulates the interaction between the investor and startup

entities as a Markov Decision Process (MDP). By framing the selection process as

an MDP, the agent can learn optimal investment strategies and recommend a list of

the top ten startups1 with high exit potential and exceptional returns. This approach

has the potential to streamline the VC due diligence process by e"ciently identifying

promising investment opportunities.

5.3.1 Fundamentals of reinforcement learning
The recommendation problem can be formalised as an MDP characterised by a

five-component tuple (𝐼,𝐺,𝑀 ,𝐿,𝜛)

1. State Representation (𝐼): Represents the set of all possible states that define

the agent’s current situation within the environment.

2. Action (𝐺): A set of actions that the agent can perform in each state. These ac-

tions influence the transition to the next state and the potential reward received.

3. Transition probability (𝑀 ): This probability is denoted as 𝑀 (𝐸ϱ⌈𝐸,𝜍) and reflects

the likelihood of transitioning from state 𝐸 to state 𝐸
ϱ after taking action 𝜍.

4. Reward function (𝐿): This function, 𝐿(𝐸,𝜍), represents the immediate feedback

the agent receives after taking action 𝜍 in state 𝐸. The agent’s goal is to learn a

policy that maximises the total expected reward (or value) over time.

5. The discount factor (𝜛): This parameter 𝜛 ω [0,1], determines how the agent

values future rewards. A higher 𝜛 emphasises the importance of long-term

outcomes, while a lower 𝜛 signifies a stronger focus on immediate rewards.

Reinforcement learning o!ers a diverse range of model architectures suited

to di!erent applications. Model-based RL allows the agent to learn an internal
1Average number of portfolio companies for the medium-sized fund.
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representation of the environment, facilitating future planning capabilities. Policy op-

timisation, which refers to the process of determining the optimal probability of taking

action 𝜍 in state 𝐸, can be achieved through either tabular or function approximation

methods. However, this approach is not well-suited for the VC investment domain,

where the complete set of possible states is often unavailable for the agent to learn

from. This limitation necessitates the use of model-free RL, such as Q-Learning,

making it the more appropriate and practical choice for the proposed VC-RLRS

model.

5.3.2 Q-Learning

Q-learning (Watkins and Dayan, 1992) is an RL algorithm particularly well-suited

for the VC investment domain due to its model-free, value-based, and o!-policy

nature. Unlike model-based approaches that require a learned model of environment

dynamics, Q-learning directly interacts with the environment to learn optimal actions.

This is crucial in VC investment where the full environment dynamics are often

intricate and not readily available. Furthermore, Q-learning’s focus on the value

function, which estimates the long-term reward an agent can expect from taking a

specific action in a given state, aligns well with the objective of identifying high-

growth potential startups. Through trial and error, the agent learns by experiencing

the consequences of its actions, e!ectively bypassing the need for explicit transition

models, which are often impractical in this context.

Within the VC-RLRS model, Q-learning employs an iterative approach across

a predefined number of episodes. In each episode, the agent begins in a randomly

chosen state, defined by the features of available startups. To navigate this state space,

an exploration strategy guides the selection of the next state (next recommended

startup). The policy leverages the Q-table to determine the optimal next action

(selecting the next recommended startup). It achieves this by selecting the startup

with the highest Q-value, reflecting its estimated long-term reward potential. Notably,

Q-learning is an o!-policy algorithm, meaning that the data used to update the Q-table

can come from a di!erent policy than the one used for exploring the environment.

Once the optimal action for the next state (the highest Q-value) is chosen, the Q-
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table is updated using a specific temporal di!erence (TD) formula, incorporating the

Bellman equation (Formula 5.1) to estimate the expected value based on the current

state, previous state, and chosen action.

𝑁
0ℸ𝑂(𝐸,𝜍)𝑁(𝐸,𝜍)+𝑃 ς [𝐿(𝐸,𝜍)+ 𝜛 ς <𝜍4(𝑁ϱ(𝐸ϱ,𝜍ϱ))ϑ𝑁(𝐸,𝜍)] (5.1)

The Q-learning updates rule incorporates key parameters that influence the

learning process specific to VC investment decisions. The core update equation

utilises the concept of temporal di!erence, where the agent refines its understanding

of the value associated with taking an action in a particular state. This is achieved by

considering the immediate reward (denoted by 𝐿(𝐸,𝜍)) received from taking action 𝜍

in state 𝐸, along with the estimated future reward obtainable from the next best state-

action pair (represented by 𝑁
ϱ(𝐸ϱ,𝜍ϱ)). 𝑁(𝐸,𝜍) denotes the current Q-value associated

with the current state-action pair. Here, <𝜍4(𝑁ϱ(𝐸ϱ,𝜍ϱ)) reflects the agent’s estimate

of the maximum expected future reward achievable from the next possible states and

actions.

There are other key parameters that influence the learning process: learning rate

(𝑃) and discount factor (𝜛). The learning rate (𝑃 ω [0,1]) determines the weight given

to newly acquired information compared to existing Q-values. A learning rate of

𝑃 = 0 implies no updates based on new experiences, hindering learning. Conversely,

𝑃 = 1 completely replaces prior knowledge with new information, potentially leading

to instability. The discount factor (𝜛 ω [0,1]) reflects the agent’s intertemporal pref-

erence, balancing the value of immediate rewards (e.g., potential for high investment

return in the short term; 𝜛 = 0) with the importance of future rewards (e.g., long-term

growth potential; 𝜛 = 1).
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5.3.3 Deep Q-Learning

Reinforcement learning can leverage deep neural networks to e!ectively address

complex decision-making tasks, including recommendation problems. Deep learning

(DL) o!ers a significant advantage in uncovering non-linear relationships within

high-dimensional state spaces. However, this enhanced capability comes with trade-

o!s, including high computational demands and potentially less interpretable results

(Mousavi et al., 2018).

Several studies explore the potential of deep learning-based reinforcement learn-

ing (DRL) for financial applications. For instance, Hu and Lin (2019) explore the

application of Deep Reinforcement Learning (DRL), which leverages deep neural

networks to e!ectively manage the high dimensionality of state spaces encountered

in financial tasks like stock portfolio management. DRL can keep track of historical

states and actions while also searching for optimal parameters during policy optimi-

sation. Deng et al. (2017) propose Deep Direct Reinforcement Learning (DDRL),

where a deep learning component automatically captures market conditions and

performs feature engineering before feeding data to the RL module. This approach

demonstrates promising results in real-time stock and commodity futures trading.

Empirical evidence from Park et al. (2020); Gao et al. (2020); Jiang et al. (2017) un-

derscore the advantage of DRL for portfolio management. Their research showcases

that deep learning-based RL models can outperform traditional trading strategies

and be applied to multi-asset portfolios. Furthermore, Liu et al. (2022) develop a

DRL library specifically designed for implementing stock trading strategies. This

library simplifies development by providing pre-configured trading environments

and constraints, facilitating backtesting of DRL-based strategies.

The majority of research on DRL applications in finance focuses on publicly

listed equities, where asset prices naturally lend themselves to time-series analysis.

Private capital, however, deals with illiquid assets, resulting in non-time series data

for portfolio companies. This distinction presents a unique opportunity to explore

the application of DRL to private capital management, specifically focusing on how

deep learning can be leveraged to achieve optimal recommendation policies for VC
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investment decisions. The integration of DRL enables the model to extract and

leverage nuanced features from the state representation, leading to more informed

decision-making when recommending startups for both generalist and specialist VC

funds.

This study leverages Deep Q-Network (DQN) (Mnih et al., 2013), an RL tech-

nique that incorporates a deep neural network architecture on Q-Learning. This

Q-network is trained to approximate the Q-value function, which maps state-action

pairs to the expected cumulative future rewards associated with taking a specific

action within a given state. A significant advantage of DQN lies in its scalability

compared to traditional Q-learning methods that rely on Q-tables. DQN e!ectively

addresses the curse of dimensionality, a challenge encountered in RL when the

size and complexity of Q-tables grow exponentially with increasing environmental

complexity. This capability allows DQN to handle high-dimensional state representa-

tions, making it particularly well-suited for this research setting that involves intricate

investment decision-making within a multi-dimensional feature space.

During this training, the agent evaluates startups and stores these experiences as

tuples of (𝐸⊳𝜍⊳ℸ,𝜍𝛻⊳2ℵ0,ℷℸ𝑂𝜍ℷ𝑄,0ℸ4⊳_𝐸⊳𝜍⊳ℸ) within an experience replay bu!er. This

bu!er serves as a repository of historical interactions, providing valuable data for the

Q-network to learn from. The Q-network itself receives the current state (representing

the available startups) as input and outputs Q-values for each possible action (selecting

a startup). To optimise the learning process, the network leverages loss functions

based on the temporal di!erence (TD) error (Equation 5.2). This concept, rooted in

the Bellman equation (Equation 5.1), guides the network towards minimising the

discrepancy between the predicted Q-values and the target Q-values. In essence, the

network iteratively refines its decision-making strategies by adjusting its internal

weights through gradient descent. During training, experiences are randomly sampled

from the replay bu!er to facilitate the continuous update of the Q-network. This

implementation adheres to the Deep Q-Learning algorithm outlined in Appendix J.

𝐷ℵ𝐸𝐸(𝐹) = ((ℷ+ 𝜛 ς <𝜍4
𝜍ϱ𝑁

ϱ(𝐸ϱ,𝜍ϱ;𝐹ϑ))ϑ𝑁(𝐸,𝜍;𝐹))2 (5.2)
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5.4 Experiment design
The design of Markov Decision Processes (MDPs) within RLRS applications ne-

cessitates careful consideration of several factors to ensure optimal performance in

the specific problem domain. Afsar et al. (2022) explore various design considera-

tions, including state representations, exploration strategies, and reward functions.

These elements significantly impact the agent’s learning process and decision-making

capabilities.

In the context of VC investment, state representation and actions are crucial for

defining the environment the agent interacts. The proposed VC-RLRS model repre-

sents the state and actions as a set of available startups that the agent can evaluate and

recommend. Next, the exploration strategy plays a vital role in balancing exploitation

(leveraging existing knowledge) and exploration (discovering new possibilities). This

balance is essential for guiding the agent’s learning process and identifying high-

potential startups that may not be readily apparent. Finally, the reward function serves

as a key signal for the agent, providing feedback on the desirability of its actions.

In the VC-RLRS model, the reward function can be designed to consider various

factors relevant to VC investment decisions, such as potential return on investment,

exit potential, and alignment with the investment strategy. By carefully crafting

these reward signals, the agent can be guided towards recommending startups with

characteristics that align with the VC’s investment goals.

To identify the optimal configuration for the VC-RLRS model, the study evalu-

ates various combinations of these design elements within the context of the specific

problem statements. This evaluation process allows for fine-tuning the agent’s learn-

ing process and ultimately enables it to recommend a list of the top ten startups that

maximise the expected cumulative return during the investment period.

5.4.1 Designs of state representation
Leveraging the existing knowledge of diverse state representation approaches in

venture capital (VC) investment, this study proposes three distinct state design con-

figurations. This exploration aims to identify the most e!ective configuration for

capturing the critical information necessary for informed VC investment decisions.
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• State Design A: This configuration represents the simplest state design, where

the state, denoted by 𝐸
⊳
, solely consists of the features of a single startup. The

action, 𝜍
⊳
, corresponds to the selection of that particular startup for the portfolio

(Figure 5.1). This design mimics the scenario where an investor iteratively

evaluates and adds startups to their portfolio, one at a time.

Figure 5.1: State design A visualisation: incorporating features of a single startup.

• State Design B: Building upon State Design A, this configuration incorpo-

rates a broader state representation, denoted by 𝐸
⊳
. Inspired by the work of

Taghipour et al. (2007); Liebman and Stone (2014), it includes the list of pre-

viously recommended startups alongside the features of the current startup

under consideration, as shown in Figure 5.2. This expanded state represen-

tation introduces a memory component, allowing the agent to consider its

recommendation history and potentially avoid suggesting the same startups

repeatedly.

Figure 5.2: State design B visualisation: incorporating a list of recommended startups as
memory.

In state 𝐼1, the agent initially selects startup 𝜍 randomly. It then recommends

startup ℶ and receives a reward ℷ
ℶ

for this action. The agent transitions to the

next state with the updated list of recommended startups, [𝜍,ℶ]. This process
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continues until the agent reaches state 𝐼10 with a list of ten recommended

startups.

• State Design C: This configuration incorporates the most comprehensive state

representation, denoted by 𝐸
⊳

It includes the current investment year, and the

list of all recommended startups to date as illustrated in Figure 5.3. This design

reflects the assumption of an annual deal flow processing cycle, where the

agent can select and recommend a single startup per year to be added to the

portfolio.

Figure 5.3: State design C visualisation: including investment year and recommended star-
tups.

This design assumes a ten-year investment horizon, ranging from 2010 to 2019.

In the final state, 𝐼10, the agent has a list of ten recommended startups along

with the corresponding investment years.

Within each episode, the initial state consists of a single, randomly chosen

startup. The agent iteratively selects subsequent startups until it generates a list of the

top ten recommendations. During this exploration process, the Q-table is updated to

reflect the reward associated with each action taken within a given state. The size of

the Q-table typically scales with the number of possible states and actions. In this

case, the initial state and action space are identical, reflecting the number of startups

the agent can recommend. However, this can vary depending on the chosen state

representation design (as detailed previously).

For State Design A, the Q-table maintains a fixed size of 0⊲<𝜑ℸℷ_𝐸⊳𝜍ℷ⊳⊲1𝐸φ

0⊲<𝜑ℸℷ_𝐸⊳𝜍ℷ⊳⊲1𝐸. This is because both the number of states and actions correspond

to the total number of available startups. However, State Designs B and C operate
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under the assumption that the order of startup selections does not influence the

reward function. Consequently, the Q-table becomes dynamic and expands during

each training episode. The number of states grows based on the cumulative list of

recommended startups encountered by the agent. In this scenario, the action space

reflects the next possible recommended startup, leading to a new state defined by the

updated recommendation list

5.4.2 Exploration strategy

The exploration strategy is a critical component influencing the agent’s state transi-

tions within the VC investment search space. Q-learning o!ers various exploration

strategies, each with specific parameters that guide the agent’s action selection pro-

cess. This process necessitates a balance between exploration (seeking new, poten-

tially high-growth investment opportunities) and exploitation (leveraging the agent’s

accumulated knowledge to maximise expected returns). This study evaluates the

performance of the following three exploration strategies (Sutton and Barto, 2018):

• Epsilon-Greedy strategy: This widely adopted exploration strategy employs

an exploration rate (denoted by 𝜀). With a probability of 𝜀, the agent prioritises

exploration by selecting a random action, fostering the discovery of potentially

valuable yet underexplored investment opportunities within the search space.

Conversely, with a probability of 1ϑ𝜀, the agent leverages its current knowledge

by selecting the startup associated with the highest Q-value. This action

represents the most promising investment choice based on the agent’s current

understanding of the investment landscape.

• Epsilon-Decay strategy: Building upon the Epsilon-Greedy strategy, this

approach incorporates a decaying exploration rate. This signifies that the agent

explores more frequently in the initial stages, prioritising the discovery of novel

investment opportunities. As the agent accumulates experience and refines

its knowledge, the exploration rate gradually declines, favouring exploitation

(selecting startups with the highest estimated returns based on the learned

Q-values). This dynamic exploration approach allows the agent to balance
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the need for initial exploration with the goal of maximising long-term returns

through informed investment decisions. The formula governing the decay of

the epsilon value is presented in Equation 5.3.

𝜀 = 𝜀0 ς (𝑄ℸ𝛻𝜍5_ℷ𝜍⊳ℸ𝑅 ) (5.3)

• Boltzmann (Softmax) strategy: This strategy utilises the softmax function to

compute action probabilities based on the Q-values of available startups. It

incorporates a temperature parameter (denoted by 𝜗) that modulates the level of

exploration during the learning process. Higher temperature values correspond

to increased exploration, promoting the selection of a wider range of startups

and fostering the discovery of underexplored investment opportunities. Con-

versely, lower temperatures steer the agent towards exploitation by prioritising

startups with the highest estimated returns, as reflected by their Q-values. The

mathematical formula for calculating action probabilities using the softmax

function is presented in Equation 5.4.

𝑀
⊳
(𝜍) =

ℸ41(𝑁
⊳
(𝜍)ϖ𝜗)⌉0

2=1 ℸ41(𝑁⊳
(2)ϖ𝜗

(5.4)

5.4.3 Reward function
In the context of reinforcement learning, the reward function is crucial for guiding the

agent’s behaviour by providing feedback on its interactions with the environment. This

study proposes and evaluates three distinct reward function designs, incorporating

key VC success metrics such as exit opportunities (Bhat and Zaelit, 2011; Arroyo

et al., 2019), return on investment (Korteweg and Sorensen, 2010), and portfolio

diversification (Norton and Tenenbaum, 1993; Gompers et al., 2009). These reward

functions aim to e!ectively guide the VC-RSRL agent in making informed and

strategic startup recommendations.

• Company Status: This reward function emphasises the agent’s ability to iden-

tify startups with favourable exit prospects, including mergers and acquisitions
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(M&A) and initial public o!erings (IPOs), while discouraging investment in

failing companies. The design incorporates a static scoring system. Selecting

a startup facing closure results in a significant penalty of ϑ100. Conversely,

successful exits are rewarded: +100 for M&A, reflecting a potentially faster

return path for VCs due to streamlined regulatory processes compared to IPOs

(as evidenced in Smith et al. (2011)). Startups that remain private but secure

recent funding (within the past 3 years) also receive a positive reward of +50,

acknowledging their potential for future growth and eventual exits.

• Return: Aligning with the core objective of VCs to maximise return on in-

vestment (ROI), this reward function incentivises the agent to prioritise the

selection of startups with high gross return potential. The design adopts the

gross return calculation method established by Korteweg and Sorensen (2010),

which utilises the post-money valuation from the startup’s first funding round

and the pre-money valuation from its latest funding round as detailed in Equa-

tion 5.5.

ℶℷℵ𝐸𝐸_ℷℸ⊳⊲ℷ0 = 𝜕𝜍⊳ℸ𝐸⊳_1ℷℸ_<ℵ0ℸ5_𝑆𝜍𝜕⊲𝜍⊳2ℵ0
ℏ2ℷ𝐸⊳_ℷℵ⊲0𝑄_1ℵ𝐸⊳_<ℵ0ℸ5_𝑆𝜍𝜕⊲𝜍⊳2ℵ0

(5.5)

Due to potential limitations in the availability of comprehensive startup valua-

tion data, this study incorporates the di!erence in raised funding amounts as a

complementary reward factor (detailed in Equation 5.6). Both gross return and

raised funding amount can be calculated on a round-by-round basis, reflect-

ing the incremental funding stages of a startup. However, for simplicity and

practical application within the investment timeframe of VCs who typically

hold portfolio companies for 5-10 years, this study focuses on the disparity

between the first funding round and the most recent one. This aligns with

the VC investment model, where appreciating valuation over multiple funding

rounds translates to a positive return on investment.
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ℷ𝜍2𝐸ℸ𝑄_𝜍<ℵ⊲0⊳ = (𝜕𝜍⊳ℸ𝐸⊳_ℷ𝜍2𝐸ℸ𝑄_𝜍<ℵ⊲0⊳ϑℏ2ℷ𝐸⊳_ℷℵ⊲0𝑄_ℷ𝜍2𝐸ℸ𝑄_𝜍<ℵ⊲0⊳)
ℏ2ℷ𝐸⊳_ℷℵ⊲0𝑄_ℷ𝜍2𝐸ℸ𝑄_𝜍<ℵ⊲0⊳

(5.6)

• Startup similarity:

This reward function investigates the influence of portfolio company similarity

on the agent’s decision-making process. To assess the level of concentration

and diversification within the recommended portfolio, the design calculates the

business description similarity between the current state (recommended startup)

and the next potential recommendation (represented by the next state). Given

that startup descriptions are initially presented in text format, the study employs

a text pre-processing step to convert them into a numerical representation suit-

able for machine learning algorithms. This study uses Sentence Transformer, a

popular sentence embedding technique, specifically leveraging the pre-trained

model distilbert-base-nli-mean-tokens (Reimers and Gurevych, 2019). This

pre-trained model o!ers a fast and e"cient method compared to other options,

as it maps English sentences and paragraphs into a 768-dimensional dense

vector space. Text similarity between two startups is then determined using

the cosine distance metric (Equation 5.7) between their respective embedded

vector representations.

𝐸⊳𝜍ℷ⊳⊲1_𝐸2<2𝜕𝜍ℷ2⊳5 = 𝛻ℵ𝐸(𝐹) = 𝐺 ς 𝐻
⌈⌈𝐺⌈⌈⌈⌈𝐻⌈⌈ =

⌉0

2=1𝐺2
𝐻
2{⌉0

2=1𝐺
2
2

{⌉0

2=1𝐻
2
2

(5.7)
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5.4.4 Recommendation evaluation
Each episode simulates the complete investment decision-making process until a

terminal state is reached, signifying the generation of a list of the top 10 recommended

startups. To evaluate the performance of these recommendations, the study primarily

employs the average raised funding amount (detailed in Equation 5.6). This metric

aligns well with the practical consideration to evaluate the potential return of startups

and it is readily accessible for a broader set of startups. The following is a breakdown

of other relevant metrics for exit strategy and company status:

• Acquisition rate: This metric reflects the percentage of recommended startups

that achieve successful exits through mergers and acquisitions (M&A). M&A

exits are generally desirable due to their potential for high returns for the VC

(Smith et al., 2011).

• IPO rate: This metric captures the proportion of recommended startups that ex-

perience successful exits via initial public o!erings (IPOs). IPOs can generate

significant returns for VCs upon public share o!ering.

• Failure rate: This metric represents the percentage of recommended startups

that cease operations, resulting in a loss of investment capital for the VC.

• Reinvestment rate: This metric denotes the percentage of previously recom-

mended startups that are selected again for reinvestment during the investment

process. While a high reinvestment rate might indicate promising companies,

excessive reinvestment can hinder portfolio diversification, a crucial principle

for managing investment risk.
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5.5 Data description
This study utilises startup data sourced from Crunchbase 2, a comprehensive database

recognised for its extensive information on startups and private companies. Crunch-

base o!ers valuable details such as funding history and investor profiles, facilitating

informed investment decisions. However, a large volume of potential investment

opportunities can pose a significant challenge for VCs in terms of e"cient screening

and due diligence. To mitigate this challenge, VCs often employ filtering mecha-

nisms to identify opportunities aligning with their established investment strategy.

Reflecting this practical approach, the current study focuses on UK-based startups

founded between 2010 and 2020; this timeframe selection enables the exploration

of a manageable dataset while maintaining relevance to contemporary investment

landscapes.

The initial dataset consists of startup information obtained from Crunchbase.

To address the scarcity of data with complete funding and performance details, data

filtering is necessary. This process focuses on retaining UK-based companies with

either company valuation or funding amount information. This filtering step resulted

in a dataset of 3,382 companies. To establish a more manageable search space for the

VC-RLRS agent, further data reduction is implemented through random sampling of

1,000 startups. Key descriptive statistics for these sampled startups, employed for

subsequent evaluation purposes, are summarised in Table 5.1.

Table 5.1: The statistics summary of 1,000 startups used in the experiment of this study.

Name Count Mean Std Min Max

Panel A: Startup Characteristics

Age 1000 4.824 2.682 0.000 10.000

Located in London (Dummy) 1000 0.658 0.475 0.000 1.000

Operating status (Dummy) 1000 0.823 0.382 0.000 1.000

Closing status (Dummy) 1000 0.119 0.324 0.000 1.000

IPO exit status (Dummy) 1000 0.009 0.095 0.000 1.000

2Accessed on 5 March 2023 using the Crunchbase research access
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M&A exit status (Dummy) 1000 0.049 0.216 0.000 1.000

Panel B: Funding

Number of funding rounds 1000 2.231 1.455 1.000 12.000

Number of investors 1000 2.805 4.243 0.000 44.000

Total funding in USD (Log) 1000 13.944 1.916 6.908 21.107

Post-money valuation in USD (Log) 466 15.050 1.550 11.082 22.292

Non-equity (Dummy) 1000 0.093 0.291 0.000 1.000

Angel and Crowdfunding (Dummy) 1000 0.297 0.457 0.000 1.000

Pre- and Seed (Dummy) 1000 0.689 0.463 0.000 1.000

Early-stage VC (Dummy) 1000 0.159 0.366 0.000 1.000

Later-stage VC (Dummy) 1000 0.003 0.055 0.000 1.000

Private equity (Dummy) 1000 0.016 0.125 0.000 1.000

Debt financing (Dummy) 1000 0.056 0.230 0.000 1.000

The analysis reveals several interesting trends within the dataset of 1,000 UK-

based startups. As illustrated in Figure 5.4, the majority of these startups were

founded between 2014 and 2016, with an average age of approximately 4.8 years.

London emerged as the dominant location for these startups (65.8%), potentially due

to its concentrated ecosystem of funding resources and talent pool.

In terms of operational status, the data indicates that the majority (82.3%) of

the startups are still operational. Only a small percentage of them exit through M&A

(4.9%) or IPO (0.9%). The analysis of funding stages reveals that the average startup

undergoes two funding rounds, with at least two investors participating on average.

Pre-seed and seed funding rounds are the most common (68.9%), followed by angel

investor and crowdfunding rounds (29.7%), and early-stage funding (up to Series C)

at 15.9%.

Interestingly, a smaller proportion (9.3%) of startups secures non-equity grants.

Notably, later-stage funding (3%), private equity involvement (1.6%), and debt fi-

nancing (5.6%) are less prevalent. These companies with later-stage funding can

potentially represent successful growth trajectories and potential future exits via
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Figure 5.4: The number of startups established in each vintage year and grouped by the
current exit and operating statuses.

M&A or IPO.

Finally, the data shows an average total funding of $11.9 million per startup,

with an average post-money valuation of $38 million although valuation data is not

available for all startups.

Specialised Investment by startups domains

This study emphasises the advantages of the specialist VC fund setting compared to

generalist funds, as outlined in Section 5.2.3. Specifically, it examines the capability

of the proposed VC-RLRS model to recommend startups within three key industries

driving the global economy: Information Technology (IT), Financial Technology

(FinTech), and Healthcare (Dealroom, 2024b). To assess the agent’s performance

and ensure alignment with real-world VC practices, the evaluation process utilises

state representations on subsets of startups categorised by their industry domain.

As previously mentioned, the startup data is segmented into the following industry

groups for analysis:
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• Information Technology (IT): 579 companies.

• Financial Technology (FinTech): 624 companies.

• Healthcare: 477 companies.

This industry-based breakdown facilitates a more comprehensive examination

of the agent’s decision-making capabilities within each specific sector.
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5.6 Results

5.6.1 The e!ects of parameters

This section aims to examine the impact of key parameters within the VC-RLRS

model on the agent’s decision-making behaviour. Specifically, the study examines

how exploration rates and discount factors influence the agent’s ability to select

actions that lead to high rewards, as outlined in hypotheses 𝜚3 and 𝜚4.

To isolate the e!ects of exploration rates and discount factors, the study fixed

certain hyperparameters. The learning rate 𝑃 is set to 0.01, controlling the weight

assigned to new information during Q-value updates (Equation 5.1). Additionally, the

decay rate employed in the epsilon-greedy exploration strategy (detailed in Equation

5.3) is configured to 0.01. This fixed decay rate ensures a gradual decrease in the

exploration rate as the agent learns.

5.6.1.1 Exploration and Exploitation

A critical feature of RL models lies in their ability to manage the exploration-

exploitation trade-o!. In the context of VC investment, this translates to the agent’s

dynamic decision-making process. A higher exploration probability increases the

likelihood of the agent selecting startups for evaluation without prior bias. This

mirrors a VC’s initial due diligence phase for early-stage companies, reflecting the

need to discover promising investment opportunities within a vast landscape of po-

tential ventures. This exploration phase is crucial for achieving long-term portfolio

success, as it allows the agent to identify novel opportunities while maintaining

a diversified portfolio. While a high exploration rate encourages the discovery of

high-rewarding opportunities, excessive exploration can hinder the agent’s ability to

exploit established and successful investment choices.

This section analyses the influence of the exploration rate on the agent’s decision-

making process within the VC-RLRS model as specified in hypothesis 𝜚3. The

study evaluates the average funding raised by the startups recommended by the agent

across 1,000 episodes, each consisting of ten recommendations. To investigate this

e!ect, the study configured hyperparameters specific to each exploration strategy
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employed by the VC-RLRS model. The epsilon-based strategy employed epsilon (𝜀)

values of 0.25, 0.50, and 0.75. In addition, the study utilised the softmax strategy

with temperature (𝜗) of values 1 and 5. The temperature in the softmax strategy

controls the degree of exploration. To ensure consistency across experiments, the

discount rate (𝜛) is fixed at 0.5. Subsequent tables present detailed results for the

various epsilon values, state representation designs, and reward functions employed

within the experiments.

The analysis of Table 5.2 reveals that the optimal epsilon value for maximising

capital raised depends on the chosen combination of state representation design and

reward function within the epsilon-greedy strategy. Although a higher epsilon value

promotes exploration, potentially leading to the identification of high-performing

startups, it does not guarantee success in maximising the funding amount raised.

State Design C consistently favours exploitation across all reward functions, with an

optimal epsilon value of 0.25.

Table 5.2: The results of di!erent exploration rates 𝜀 ω [0.25,0.50,0.75] of epsilon-greedy
exploration strategy across state representation designs and reward functions.

Epsilon Value

Design Reward Function 0.25 0.50 0.75

A

Company Status 11.5±50.6 17.1±53.6 15.7±34.2

Return 43.8±31.7 31.5±74.9 45.0±99.5

Startup Similarity 14.9±46.8 17.7±50.2 17.3±36.0

B

Company Status 15.5±89.2 15.5±41.5 17.7±42.7

Return 13.8±48.7 15.8±38.2 15.5±34.4

Startup Similarity 17.9±63.2 15.1±39.1 17.5±38.1

C

Company Status 16.2±17.4 11.0±27.6 12.4±34.7

Return 21.2±19.1 15.5±22.9 15.4±39.4

Startup Similarity 15.5±80.4 8.9±14.8 12.3±28.7

Conversely, State Designs A and B demonstrate a dependence on the chosen

reward function. When using the “company status” and “returns” reward functions,
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both designs achieve optimal performance with epsilon values between 0.50 and

0.75, suggesting a preference for exploration to identify potentially high-performing

startups. However, the “startup similarity” reward function prefers exploitation for

both designs, with optimal epsilon values ranging from 0.25 to 0.50. This contrast

highlights the intricate interplay between state representation design, reward function

selection, and the exploration-exploitation balance in optimising the agent’s decision-

making process.

Table 5.3 reveals significant variations in performance compared to the epsilon-

greedy approach. All States Designs exhibits a preference for exploitation when paired

with the “company status” reward function. The lowest epsilon value (0.25) results in

the highest average funding raised by the recommended startups. This suggests that

for the "company status” reward, focusing on established venture characteristics might

be more e!ective than exploration in identifying promising investment opportunities.

Table 5.3: The results of di!erent exploration rates 𝜀 ω [0.25,0.50,0.75] of epsilon-decay
exploration strategy across state representation designs and reward functions.

Epsilon Value

Design Reward Function 0.25 0.50 0.75

A

Company Status 12.6±87.8 5.2±22.8 12.1±48.4

Return 7.1±33.1 17.8±122.1 16.7±122.6

Startup Similarity 13.7±115.8 24.8±45.0 35.1±20.6

B

Company Status 16.2±125.5 9.5±50.1 14.7±99.8

Return 10.0±32.5 9.7±44.1 11.5±85.1

Startup Similarity 14.1±94.4 8.6±35.8 12.2±89.4

C

Company Status 4.1±0.3 3.0±1.3 0.5±3.6

Return 4.3±1.0 502.6±108.9 522.2±236.0

Startup Similarity 6.5±0.9 6.5±1.5 6.6±2.0

State Designs A and B showcase contrasting preferences for the exploration

rate when using the “startup similarity” function. Interestingly, Design A favours

a higher exploration rate, whereas Design B exhibits a preference for exploitation.
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These contrasting findings underscore the intricate interplay between the chosen

state representation design and the specific startup characteristics captured by each

representation.

On the other hand, State Design C yielded an exceptionally high average capital

raised of 522.2. However, this result is accompanied by a considerably higher standard

deviation compared to the performance with an epsilon value of 0.50. This highlights

a potential trade-o! such that a higher exploration rate might lead to the discovery of

a single, high-performing startup but also introduce greater variability in the overall

portfolio performance. However, its performance with other reward functions is

generally low. For instance, the average funding raised with the “company status”

and “startup similarity” functions is 2.53 and 6.5, respectively. These results suggest

that State Design C might be less e!ective in capturing the relevant information

needed for identifying promising startups when using these reward functions within

the epsilon-decay framework.

Table 5.4 presents the results obtained with the softmax exploration strategy.

Interestingly, a temperature value (𝜗) of 1 generally leads to a higher average capital

raised compared to a temperature of 5. This suggests that a lower temperature, promot-

ing exploitation, might be more e!ective in maximising capital raised across various

reward functions. However, an important exception emerges with State Design B,

where a higher exploration yields superior performance when using the “company

status” and “startup similarity” reward functions. Additionally, significant di!erences

in capital raised are observed between temperature values for State Designs A and

C when the “return” function is employed. These findings highlight the continued

interplay between state representation design, reward function selection, and the

exploration strategy in influencing the agent’s decision-making process.
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Table 5.4: The results of di!erent temperature 𝜗 ω [1,5] of softmax strategy across state
representation designs and reward functions.

Temperature Value

Design Reward Function 1 5

A

Company Status 18.6±44.7 17.0±36.8

Return 41.1±87.3 18.5±46.3

Startup Similarity 18.8±48.1 15.7±32.0

B

Company Status 16.5±34.4 18.1±43.0

Return 18.9±42.2 16.8±36.6

Startup Similarity 16.4±34.0 17.0±35.0

C

Company Status 17.3±31.5 12.1±31.6

Return 77.2±50.3 12.8±25.0

Startup Similarity 11.5±20.0 11.4±18.8

Contrary to the initial hypothesis 𝜚3, a higher exploration rate does not neces-

sarily translate to a greater focus on identifying high-growth potential startups. The

findings reveal a more complex interplay between three key factors influencing the

agent’s performance: exploration strategy, state representation design, and reward

function selection. Notably, simply increasing the exploration rate to maximise

the likelihood of identifying winner startups is not always the optimal approach for

achieving superior portfolio performance.

5.6.1.2 Discount Factor
In conjunction with examining the influence of epsilon values on the agent’s explo-

ration rate, the study also investigates the impact of discount factors (𝜛) to confirm

hypothesis 𝜚4. Discount factors determine how the agent weighs future rewards

against immediate rewards, reflecting an investor’s focus on long-term returns in the

context of venture capital investment.

To analyse the e!ect of discount factors across various configurations, the

exploration rate (𝜀) is fixed at 0.50 for the epsilon-based strategy and the temperature

value (𝜗) at 1.0 for the softmax strategy. This isolation of the discount factor’s e!ect
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allows for a clearer understanding of its influence on the agent’s decision-making

process within di!erent state representation designs and reward functions.

Table 5.5 presents the findings on the influence of discount factors within the

epsilon-greedy strategy. The results suggest that higher discount factors generally

lead the agent to prioritise long-term reward maximisation. This aligns with the

real-world investment strategy of venture capitalists who focus on achieving superior

returns over extended time horizons.

Table 5.5: The results of di!erent discount factors 𝜛 ω [0.25,0.50,0.75] of epsilon-greedy
exploration strategy across state representation designs and reward functions.

Gamma Value

Design Reward Function 0.25 0.50 0.75

A

Company Status 14.0±32.1 17.1±53.6 18.5±47.2

Return 30.5±52.0 31.5±74.9 62.3±67.1

Startup Similarity 20.1±60.6 17.7±50.2 14.2±39.5

B

Company Status 15.8±45.0 15.5±41.5 16.6±41.7

Return 17.8±48.9 15.8±38.2 18.6±61.2

Startup Similarity 16.8±53.0 15.1±39.1 16.5±49.4

C

Company Status 10.0±21.5 11.0±27.6 14.8±28.1

Return 12.2±24.7 15.5±22.9 21.1±26.5

Startup Similarity 10.0±17.2 8.9±14.8 14.6±25.5

Interestingly, an exception emerges for State Designs A and B when using the

“startup similarity” reward function. In this specific case, the lowest discount factor

(𝜛 = 0.25), which prioritises short-term rewards, yields the highest average capital

raised. This deviates from the general trend observed and suggests that for these

configurations, focusing on short-term gains might be more e!ective. The overall

performance using the “startup similarity” function remains lower compared to the

strategy using the “return” reward function across all state designs.

The impact of discount factors on the performance of the epsilon-decay strategy

exhibits greater variability compared to the epsilon-greedy approach, as illustrated in
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Table 5.6. The epsilon-decay strategy shows no consistent pattern across di!erent

discount factor values. One configuration, however, stands out: State Design C with

the “return” reward function. A discount factor of 0.50 leads to a significantly higher

average capital raised of 502.620 compared to other discount factors for this specific

combination. The results suggest a high degree of variability in the influence of

discount factors within the epsilon-decay framework.

Table 5.6: The results of di!erent discount factors 𝜛 ω [0.25,0.50,0.75] of epsilon-decay
exploration strategy across state representation designs and reward functions.

Gamma Value

Design Reward Function 0.25 0.50 0.75

A

Company Status 13.0±116.3 5.2±22.8 18.3±142.4

Return 5.0±10.0 17.8±122.1 11.9±50.1

Startup Similarity 9.2±32.0 24.8±45.0 9.7±40.4

B

Company Status 11.4±88.6 9.5±50.1 11.2±40.1

Return 10.4±38.8 9.6±44.1 18.6±124.4

Startup Similarity 15.8±119.6 8.6±35.8 15.2±111.4

C

Company Status 4.7±1.3 3.0±1.3 3.4±1.2

Return 3.9±0.8 502.6±108.9 6.2±0.9

Startup Similarity 6.5±1.0 6.5±1.5 7.9±39.6

Table 5.7 details the impact of discount factors within the softmax strategy.

Interestingly, for State Design A, all reward functions achieve the highest average

capital raised with a discount factor of 0.50. This suggests that within this spe-

cific configuration, a focus on medium-term rewards might be more advantageous

compared to other discount factor values.

Table 5.7: The results of di!erent discount factors 𝜛 ω [0.25,0.5,0.75] of softmax exploration
strategy across state representation designs and reward functions.

Gamma Value

Design Reward Function 0.25 0.5 0.75
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Table 5.7 continued from previous page

Gamma Value

A

Company Status 18.0±40.7 18.6±44.7 18.2±46.2

Return 33.5±75.3 41.1±87.3 39.0±81.1

Startup Similarity 18.1±42.6 18.8±48.1 18.7±46.4

B

Company Status 17.2±36.4 16.5±34.4 15.8±35.3

Return 18.6±42.9 18.9±42.2 15.9±31.4

Startup Similarity 17.5±37.7 16.4±34.0 20.0±44.7

C

Company Status 24.9±19.1 17.3±31.5 23.7±20.1

Return 67.2±71.9 77.2±50.3 89.2±79.9

Startup Similarity 11.2±18.2 11.5±20.1 11.1±25.8

State Designs B and C showcase a preference for short-term rewards when

using the “company status” reward function. This is evidenced by the optimal

discount factor of 0.25, suggesting that prioritising immediate returns is most e!ective.

However, for these same state designs, the remaining reward functions perform best

with discount factor values ranging from 0.50 to 0.75. This indicates that a focus

on balancing medium-term and long-term returns becomes more prominent when

the agent considers reward signals beyond just company status. These contrasting

findings within State Designs B and C highlight the intricate interplay between state

representation design, reward function selection, and discount factors in influencing

the agent’s decision-making process within the softmax strategy.

The analysis provides partial support for hypothesis 𝜚4 such that higher discount

factors generally influenced the agent to prioritise long-term reward maximisation.

This aligns with the VC investment strategy by practitioners and potentially leads to

strong performance in identifying top-tier startups.
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5.6.2 The performance of design choices
Building upon our previous analysis of individual hyperparameters (exploration

strategies and discount factors) on the VC-RLRS model’s performance (Section

5.6.1), this section delves into the interplay between reward functions, exploration

strategies, and state representations. By examining how these design choices interact,

the study aims to gain a deeper understanding of their combined impact on the agent’s

decision-making process and the financial success of the constructed VC portfolios.

Reward Functions
To confirm hypothesis 𝜚2, the analysis further investigates the reward functions

detailed in Section 5.4.3 and categorises the results to identify the most e!ective

configurations. Table 5.8 demonstrates that State Design C, when used with the

epsilon-decay strategy and the “return” function, achieved the highest average capital

raised of 522.2. This configuration is followed by those utilising the “startup simi-

larity” and “company status” functions, respectively. State Design B, conversely, is

consistently absent from the top performers across all reward functions, suggesting

its relative ine!ectiveness in identifying promising young companies.

Table 5.8: The results of startup recommendations performance grouped by the reward
functions.

Reward Function Design Strategy Mean±Std Parameters

Company Status C Softmax 24.9±19.1 𝜛 = 0.25, 𝜗 = 1

Return C Decay 522.2±236.0 𝜛 = 0.50, 𝜀 = 0.75

Startup Similarity A Decay 35.1±20.6 𝜛 = 0.50, 𝜀 = 0.75

This observation suggests a potential synergy between the parameter optimi-

sation criteria for prioritising percentage returns and the “return” reward function

itself, lending support to hypothesis 𝜚2. This alignment might explain the superior

performance observed for this configuration compared to those using the discrete

numerical values in the “company status” function and the inherent maximum value

of one associated with the “startup similarity” function.

Figure 5.5 visually confirms the superior performance of the “return” function
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for state Designs A and C across 3,000 episodes. However, State Design B exhibits a

less conclusive pattern, with the “startup similarity” function occasionally surpassing

the “return” function.

Figure 5.5: The line graph shows the performance of startup recommendations by the agent
across 3,000 episodes by the reward functions and the state representation de-
signs.

Exploration Strategy
When examining the relationship between exploration strategies and various reward

functions (Table 5.9), a clear pattern emerges. The “return” reward function con-

sistently outperforms the others in terms of average capital raised, regardless of the

exploration strategy employed (epsilon-greedy, epsilon-decay, and softmax). This

finding underscores the importance of aligning the reward function with the objective

of maximising capital raised, as it significantly influences the agent’s decision-making

process.

Table 5.9: The results of startup recommendations performance grouped by the exploration
strategy.

Strategy Design Reward Function Mean±Std Parameters

Greedy A Return 62.3±67.1 𝜛 = 0.75, 𝜀 = 0.50

Decay C Return 522.2±236.0 𝜛 = 0.50, 𝜀 = 0.75

Softmax C Return 89.2±79.9 𝜛 = 0.75, 𝜗 = 1

The results in Table 5.9 suggest that grouping configurations by exploration

strategy leads to superior performance compared to grouping by reward function

(as seen in Table 5.8). This observation highlights the potential dominance of the
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exploration strategy in influencing the agent’s decision-making process and ultimately

impacting portfolio performance recommended by the VC-RLRS model.

Figure 5.6 provides a visual representation of how each exploration strategy

performs within di!erent state designs. State design C exhibits a clear preference for

the epsilon-decay strategy, significantly outperforming all others within the first 500

episodes. The epsilon-decay strategy facilitates a two-phase decision-making process

that aligns with VC investment strategies. During the initial exploration phase, the

agent explores a broad range of startups. Subsequently, it gradually shifts focus

towards exploiting previously identified ventures with high potential (exploitation

phase). This result suggests a strong synergy between the decaying exploration rate

of the epsilon-decay strategy and the information provided by State Design C. This

alignment facilitates the agent to e"ciently explore the search space and identify

promising investment opportunities yearly.

Figure 5.6: The line graph shows the performance of startup recommendations by the agent
across 3,000 episodes by the exploration strategies and the state representation
designs.

Conversely, State Design A demonstrates a continuous improvement in average

capital raised when paired with the softmax strategy. This behaviour aligns with the

core principle of softmax, where the exploration rate adapts based on the agent’s

experience. This allows for continuous exploration and potentially leads to better

performance in the long run for state design A. In contrast, the epsilon-greedy strategy

performs consistently but poorly with state design A. The fixed rate in epsilon-greedy

might not allow for the level of exploration necessary to discover valuable investment

opportunities within State Design A.

Consistent with prior observations from the reward function analysis (Table 5.5),
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state design B displays an inconsistent performance across exploration strategies

(Figure 5.6). No single exploration strategy emerges as consistently superior for this

design, as each occasionally outperforms the others at di!erent points during the

learning process.

State Representation
As outlined in hypothesis 𝜚1, the choice of state representation is another critical fac-

tor that can influence the performance of the VC-RLRS model. The best-performing

models across di!erent exploration strategies, reward functions, and hyperparameters

are summarised in Table 5.10 and Figure 5.7. State Design C exhibits superior per-

formance, significantly outperforming all other designs within the first 500 episodes.

This observation underscores the critical role of state representation in influencing

the VC-RLRS model’s decision-making process, leading to the maximisation of

capital raised for young companies.

Table 5.10: The results of startup recommendations performance grouped the state represen-
tation designs.

Design Strategy Reward Function Mean±Std Parameters

A Greedy Return 62.3±67.1 𝜛 = 0.75, 𝜀 = 0.50

B Softmax Startup Similarity 12.0±44.7 𝜛 = 0.75, 𝜗 = 1

C Decay Return 522.2±236.0 𝜛 = 0.50, 𝜀 = 0.75

Interestingly, State Design B, which incorporates previously recommended

startups into its state representation, yields lower performance compared to the

memory-less State Design A. A potential explanation for this observation is that the

specific information captured within State Design B’s state might be less suitable

for guiding the VC-RLRS’s decision-making process. This finding warrants further

investigation; exploring a range of evaluation metrics beyond capital raised, such

as acquisition rates and portfolio diversification, can o!er a more comprehensive

understanding of State Design B’s capabilities.
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Figure 5.7: The line graph shows the performance of startup recommendations by the agent
across 3,000 episodes by the state representation designs.
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5.6.3 Comparative evaluation of proposed VC-RLRS

While average capital raised o!ers a valuable initial assessment, a more comprehen-

sive evaluation of portfolio performance necessitates additional metrics. Examining

previously identified relevant metrics, such as acquisition rate, IPO rate, failure rate,

and reinvestment rate, provides a more comprehensive assessment of portfolio suc-

cess. This broader analysis reveals whether State Design C, incorporating investment

year and past recommendations, remains the top performer across various dimensions

critical to VC portfolio success generated by the proposed VC-RLRS model.

The following visualisations are in the form of scatter plots, one for each state

design. Each data point represents an episode of the top ten startups recommended by

the VC-RLRS model. The data points are classified according to the target indicator,

as indicated in the legend for each figure. The X-axis shows the average gross return

of the recommended startups across those episodes. The Y-axis represents the average

capital raised by the recommended startups within the same episode range. This

visualisation allows us to examine potential relationships between state design, target

indicators, and relevant metrics.

Acquisition rate

While exhibiting lower overall portfolio performance, State Design B displays a

unique strength in identifying startups with the potential for exceptionally high returns

through mergers and acquisitions (M&A) (Figure 5.8). State design B consistently

identifies startups achieving the highest gross returns, even if the average capital raised

for these startups is lower. A significant portion of the top-ten recommendations

from state design B (43%) involve startups that exit through M&A. This observation

suggests a potential benefit of incorporating information on previously recommended

startups (memory) into the state representation. Specifically, this memory component

might be particularly well-suited for uncovering promising, yet high-risk, M&A

targets that traditional investment strategies might overlook.

In contrast to its strength in capital raised, state design C exhibits a decline in

performance when considering M&A success rates. Notably, only a single episode

within this design yields a successful M&A exit with significant returns. Additionally,
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Figure 5.8: The scatter graph illustrates the relationship between average gross return and
the raised amount of startups, as recommended by various state representation
designs within the first 100 episodes. The data points are categorised by the
mergers and acquisitions (M&A) status of the startups.

the overall results for state design C tend to cluster around a low average capital raised

and gross return. Meanwhile, State Design A without the memory capacity achieves

a success rate of 23% for episodes with at least one M&A exit. Additionally, State

Design A maintained a level of capital raised comparable to other designs, suggesting

it can balance the pursuit of high-growth ventures with the need for su"cient capital

investment. This observation underscores the critical importance of a multifaceted

approach to portfolio evaluation, moving beyond a single metric such as capital

raised.

IPO rate

An analysis of IPO rates across recommended startups reveals a clear distinction

between state designs as shown in Figure 5.9. Although the dataset exhibits a low

overall IPO propensity, with only 0.9% of startups achieving IPO exits, State Designs

A and B successfully identify high-growth ventures, evidenced by their selection of

startups that subsequently went public at rates of 7% and 3%, respectively. Conversely,

state design C does not recommend any startups that achieve IPOs within the observed

timeframe.

Failure rate

Shifting the focus to failure rates, a critical metric for VC portfolio success, Figure

5.10 reveals a concerning trend for State Design C. The data suggests that a majority

of the startups recommended by this design experience failure. This high failure rate
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Figure 5.9: The scatter graph illustrates the relationship between average gross return and
the raised amount of startups, as recommended by various state representation
designs within the first 100 episodes. The data points are categorised by the IPO
status of the startups.

highlights potential limitations in the agent’s ability to learn from past experiences

and avoid previously encountered unsuccessful ventures.

Figure 5.10: The scatter graph illustrates the relationship between average gross return and
the raised amount of startups, as recommended by various state representation
designs within the first 100 episodes. The data points are categorised by the
failure status of the startups.

In contrast to State Design C, both State Designs A and B exhibit lower failure

rates, with a smaller proportion of recommendations resulting in failed startups.

However, the overall failure rate remains high across all designs, with at least one

failure experience in 49% and 78% of episodes for Designs A and B, respectively.

Despite exhibiting some degree of filtering for potentially resilient ventures, all state

designs experience a concerningly high overall failure rate. This finding underscores

the critical need for further research to improve the VC-RLRS model’s capacity to

mitigate portfolio failure and the consequent loss of investment.
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Reinvestment rate

This section examines reinvestment rates, a key metric used in VC investment strate-

gies to assess portfolio diversification. Diversification refers to the practice of spread-

ing investments across a variety of companies or industries to mitigate risk. A high

reinvestment rate, where the agent frequently selects the same ventures, can increase

portfolio concentration and heighten exposure to a single company or industry.

Figure 5.11 reveals a distinct pattern in reinvestment rates across state designs.

State Design B, which incorporates previously recommended startups into its state

representation, demonstrates a significantly lower tendency to select the same ven-

tures. Only 5% of recommendations in this design include at least one duplicated

startup within the top ten list. This finding suggests that incorporating memory, as in

design B, helps the VC-RLRS model avoid over-investing in the same companies,

thereby promoting portfolio diversification and potentially reducing risk.

Figure 5.11: The scatter graph illustrates the relationship between average gross return and
the raised amount of startups, as recommended by various state representation
designs within the first 100 episodes. The data points are categorised by the
reinvestment indictor

State design A, which does not incorporate previously recommended startups

into its state representation, achieves a reinvestment rate of 13%. In contrast, State

Design C, which incorporates both the investment year and a history of previously

recommended startups into its state representation, exhibits a higher propensity for

reinvesting in existing portfolio companies. All data points necessarily reflect this

behaviour, indicating reinvestment within a ten-year investment timeframe. This

behaviour aligns with some VC practices of pursuing follow-on investment rounds in

promising ventures. However, this approach presents a potential trade-o! between
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exploiting existing investment opportunities and mitigating concentration risk. While

reinvestment can capitalise on prior successes, it can also lead to a less diversified

portfolio and increased exposure to a smaller number of successful companies.
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Example of VC-RLRS Recommendation
The following analysis delves deeper into the model’s decision-making capabilities

by examining top-performing episodes within each state design. Specifically, the

analysis focuses on episodes that achieve both the highest average funding amount

and the lowest failure rate. These episodes represent instances where the VC-RLRS

model successfully balanced the pursuit of high-growth ventures with risk mitigation

by identifying startups with both high potential returns and low failure probabilities.

Table 5.11 presents a sample recommendation from State Design A, which

achieves the highest average capital raised among all designs (517.3). While this

finding highlights the model’s potential for identifying high-investment ventures, none

of the startups experience an initial public o!ering (IPO) or merger and acquisition

(M&A) exit. Second, the sectoral distribution of the recommendations within this

sample leans towards the HealthTech and IT domains. Finally, the founding years of

the recommended startups are concentrated after 2018. This observation suggests

a potential preference for more recent ventures, warranting further investigation to

understand the model’s selection criteria across founding stages.

Table 5.11: The table presents the top 10 startup recommendations generated by an agent
employing state representation design A. The agent utilises a greedy exploration
strategy with a reward function based on return. Key parameters for this strategy
include a discount factor (𝜛) of 0.75 and an exploration rate (𝜀) of 0.50.

Episode: 1796 | Average Raised Amount: 517.3, Failure Rate: 0%, Reinvest Rate: 0%

Startup Established Gross Return Raised Amount Industry

C01 2018 0.8 N/A Entertainment

U02 2018 N/A 2502.3 HealthTech

R03 2014 0.9 N/A HealthTech

I04 2011 1.0 N/A IT

D05 2019 N/A 300.8 FinTech

S06 2018 N/A 16.4 HealthTech

J07 2016 N/A 149.3 IT

F08 2019 N/A 25.8 EdTech

V09 2016 109.0 N/A Cyber Security
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Table 5.11 continued from previous page

Episode: 1796 | Average Raised Amount: 517.265, Failure Rate: 0%, Reinvest Rate: 0%

W10 2012 0.3 N/A Social Media

Despite achieving the lowest average capital raised among all state designs,

State Design B o!ers a fascinating example of prioritising risk mitigation as shown

in Table 5.12. This focus is evident in a sample recommendation showcasing a zero

failure rate, even with lower average investment amounts 376.0 compared to other

designs.

Table 5.12: The table presents the top 10 startup recommendations generated by an agent
employing state representation design B. The agent utilises a softmax strategy
with a reward function based on startup similarity. Key parameters for this
strategy include a discount factor (𝜛) of 0.75 and a temperature (𝜗) of 1.

Episode: 1206 | Average Raised Amount: 376.0, Failure Rate: 0%, Reinvest Rate: 0%

Startup Established Gross Return Raised Amount Industry

U02 2018 N/A 2502.3 HealthTech

M11 2013 0.8 N/A News

A12 2018 0.9 N/A FinTech

A13 2015 N/A 65.5 AI & Big data

O14 2018 N/A 58.9 FoodTech

E15 2013 N/A 0.5 HealthTech

O16 2015 N/A 3.9 HealthTech

I17 2012 N/A 0.2 FinTech

G18 2015 N/A 0.3 GreenTech

P19 2018 0.9 N/A FinTech

The example recommended by State Design B focuses on the HealthTech and

FinTech sectors. Interestingly, the model successfully identifies “U02” a startup

within the healthcare sector that secures a significant funding round of 2,502.3, which

is also selected by the state Design A. This finding suggests the model’s capability

for identifying promising ventures within specific industries.
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Furthermore, the inclusion of startup similarity within the reward function

appears to yield positive results in terms of portfolio diversification. This is evidenced

by the recommendation of “M11” from the entirely di!erent news and publishing

domain. This observation suggests that the model can balance sectoral focus with

diversification, potentially mitigating risk through a broader portfolio composition.

Following the analysis of average capital raised, this section focuses on State

Design C, which incorporates the investment year into the selection process. As

shown in Table 5.13, sample episodes within this design achieves a funding raised

amount of 630.0, demonstrating the highest performance among all state designs.

However, 40% of the recommended startups are no longer operational. This finding

underscores the potential shortcomings of relying solely on past returns as a predictor

of future venture viability.

Table 5.13: The table presents the top 10 startup recommendations generated by an agent
employing state representation design C. The agent utilises a decay exploration
strategy with a reward function based on return. Key parameters for this strategy
include a discount factor (𝜛) of 0.50 and an exploration rate (𝜀) of 0.75. A startup
name that ends with an asterisk (*) means that the startup is no longer operating.

Episode: 127 | Average Raised Amount: 630.0, Failure Rate: 40%, Reinvest Rate: 20%

Year Startup Established Gross Return Raised Amount Industry

2010 K20* 2010 1.0 N/A Blockchain

2011 U21 2010 0.5 N/A FinTech

2012 I04 2011 1.0 N/A IT

2013 I04 2011 1.0 N/A IT

2014 R22* 2014 N/A 5.8 Social Media

2015 O23 2015 N/A 0.005 IT

2016 S24* 2016 0.1 N/A Digital Media

2017 B25* 2016 0.8 N/A Nanotechnology

2018 H26 2012 N/A 12.0 Hospitality

2019 U02 2018 N/A 2502.3 HealthTech

Furthermore, the presence of a duplicate recommendation (i.e., startup “I04”
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is selected in both 2012 and 2013) raises concerns regarding potential limitations

in portfolio diversification within State Design C. While this duplication can be

interpreted as a deliberate reinvestment strategy, it deviates from VC practices that

typically avoid consecutive year investments in the same company.

Startup Coverage Analysis
To understand how agents navigate the extensive search space of 1,000 startups,

this study analyses VC-RLRS’s selection patterns. The 29 most frequently chosen

startups by each agent are identified and visually illustrated in Figure 5.12.

Figure 5.12: The heatmaps illustrate the selection patterns of the agents across the available
startups. The colour intensity within each cell represents the frequency at which
a specific startup is recommended by the agent across 500 episodes.

An analysis of agent selection patterns reveals a potential bias within State

Design A. This is evidenced by the strong colour intensity for startup “I04”, indicating

a significantly higher selection frequency compared to other ventures. Conversely,

the weaker colour intensity for a broader range of startups suggests a lower selection

probability. Overall, state Design A achieves a high exploration rate, leaving only
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5.8% of the startups unexplored.

Similar to State Design A, State Design C exhibits a preference for a limited

subset of startups within the search space. This is reflected by the higher concentra-

tion of dark blue colours in Figure 5.12, indicating a significantly higher selection

frequency for a specific group of ventures. Furthermore, the finding that 97% of

the available startups remain unselected by this state representation underscores a

potential concern regarding limited exploration within the search space. The selec-

tion patterns suggest that State Design C exhibits a risk of convergence to a local

maximum within the search space. Prioritising a single startup might lead the agent

to overlook the exploration of alternative ventures that can o!er promising returns.

In contrast, State Design B emphasises a more balanced selection pattern within

the search space. This is evidenced by the distribution of colour intensity across

the figure, which suggests a more even exploration of the available startup options.

Additionally, the low percentage (0.3%) of unselected startups by this model reinforces

this observation. This finding suggests State Design B’s e!ectiveness in navigating

the search space and identifying a broader set of potential investment opportunities

compared to the other designs analysed.

These findings underscore the inherent trade-o! between exploration and ex-

ploitation in this context. While venturing into new areas of the search space (explo-

ration) is crucial for identifying potentially high-performing startups, it also increases

the risk of encountering unsuitable ventures. Conversely, focusing on a limited

number of known options (exploitation) o!ers a safer route but may lead to missed

opportunities.

A comprehensive evaluation of portfolio success requires a multifaceted ap-

proach that extends beyond the sole consideration of average capital raised. For

example, State Design C, despite its impressive average capital raised of 522.2,

demonstrates the importance of other factors in assessing overall portfolio perfor-

mance. It struggles to identify promising ventures and exhibits concerning failure

and reinvestment rates, hindering diversification. In contrast, State Designs A and B

display a more balanced performance across metrics. As shown in Figure 5.13, they
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achieve a balance between high average gross return and funding amounts, while

avoiding concentration risk and investment losses seen in State Design C. In response

to hypothesis 𝜚1, State Design B emerges as the strongest candidate for balancing all

criteria due to its incorporation of the history of recommended startups. Nevertheless,

further refinement is necessary to enhance its performance.

Figure 5.13: The scatter graph illustrates the relationship between average gross return and
the raised amount of startups, as recommended by various state representation
designs within the first 100 episodes. The data points are categorised by the
state representations
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5.6.4 Startup domains

To test hypothesis 𝜚5, this section examines the agent’s performance on datasets

representing specific startup domains, as outlined in Section 5.5. The analysis focuses

on three key sectors: Financial Technology (FinTech), Information Technology (IT),

and Healthcare.

The results presented in Table 5.14 reveal that State Design A, the simplest

form of our state representation design, achieves the highest overall performance.

The healthcare sector exhibits the strongest average capital raised (145.6), followed

by FinTech (78.3) and IT (63.0). Figure 5.14 visually reinforces these findings,

illustrating State Design A’s initial lead across all domains over 3,000 episodes. These

findings can be attributed to the possibility that the dataset is filtered by specific

industries, allowing the agent to prioritise the selection of successful ventures without

the need for a memory function to maintain diversification.

Table 5.14: The table presents the performance of startup recommendations for various
industry domains categorised by state representation design. The reward func-
tion, exploration strategy, and parameters employed here are identical to those
detailed in Table 5.10.

State Design

Domain A B C

FinTech 78.3±183.0 28.0±103.1 3.1±0.6

Healthcare 145.6±164.4 22.4±49.6 56.2±37.5

IT 63.0±90.8 25.2±58.0 14.8±1.2

Figure 5.14: The line graphs show the performance of startup recommendation by the agent
over 3,000 episodes, categorised by the state representations.
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While State Design A achieves the highest average capital raised initially, State

Design C eventually surpasses Design A in the FinTech sector after approximately

2,500 episodes. This observation suggests that the epsilon-decay strategy employed

by State Design C, which encourages exploration before exploitation, can outperform

a purely greedy strategy like State Design A in the long run, particularly within

specific industry contexts. The FinTech domain, characterised by its dynamic na-

ture and potentially higher risk-reward profiles, might be more receptive to this

exploration-oriented approach. This finding highlights the potential benefits of bal-

ancing exploration and exploitation for long-term success in certain investment

landscapes.

Tables 5.15, 5.16, and 5.17 showcase sample episodes within each domain

(FinTech, IT, and Healthcare) that achieve both the highest average capital raised

and the lowest failure rate. These results demonstrate the agent’s ability to identify

promising startups with strong financial performance and low risk of failure within

specific industry sectors.

Table 5.15: The table presents the top 10 FinTech startup recommendations generated by
an agent employing state representation design A. The agent utilises a greedy
exploration strategy with a reward function based on return. Key parameters for
this strategy include a discount factor (𝜛) of 0.75 and an exploration rate (𝜀) of
0.50.

Episode: 2517 | Average Raised Amount: 1266.3, Failure Rate: 0%, Reinvest Rate: 0%

Startup Established Gross Return Raised Amount Subdomain

O27 2019 0.8 N/A Compliance

C28 2016 0.5 14.0 Payments

B29 2014 105.6 N/A Blockchain

T30 2010 N/A 6198.2 SMEs Finance

Q31 2018 1.7 N/A Investment

B32 2015 0.9 N/A Art

S33 2011 N/A 13.4 Cloud Computing

T34 2016 N/A 98.8 Payments

F35 2017 N/A 7.3 Investment
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Table 5.15 continued from previous page

Episode: 2517 | Average Raised Amount: 1266.3, Failure Rate: 0%, Reinvest Rate: 0%

L36 2013 2.4 N/A E-commerce

Table 5.16: The table presents the top 10 IT startup recommendations generated by an agent
employing state representation design A. The agent utilises a greedy exploration
strategy with a reward function based on return. Key parameters for this strategy
include a discount factor (𝜛) of 0.75 and an exploration rate (𝜀) of 0.50.

Episode: 1574 | Average Raised Amount: 509.9, Failure Rate: 0%, Reinvest Rate: 0%

Startup Established Gross Return Raised Amount Subdomain

E37 2018 0.8 N/A Augmented Reality

C38 2018 N/A 0.2 Software

D39 2019 0.9 N/A AI & Big Data

H40 2011 0.9 N/A Healthtech

T41 2018 0.6 N/A Fashion

B42 2016 N/A 1.1 Construction

U02 2018 N/A 2502.3 Healthtech

R43 2020 N/A 4.5 Software

H44 2017 N/A 41.3 Cyber Security

R45 2019 0.9 N/A AI & Big Data

Table 5.17: The table presents the top 10 Healthcare startup recommendations generated by
an agent employing state representation design A. The agent utilises a greedy
exploration strategy with a reward function based on return. Key parameters for
this strategy include a discount factor (𝜛) of 0.75 and an exploration rate (𝜀) of
0.50.

Episode: 2351 | Average Raised Amount: 515.6, Failure Rate: 0%, Reinvest Rate: 0%

Startup Established Gross Return Raised Amount Subdomain

C46 2014 0.7 N/A E-commerce

H47 2018 N/A 522.0 Biotechnology

A48 2016 N/A 2.8 Diagnostics
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Table 5.17 continued from previous page

Episode: 2351 | Average Raised Amount: 515.6, Failure Rate: 0%, Reinvest Rate: 0%

E49 2015 N/A 1.0 Biopharma

H50 2014 1.9 N/A Nutrition

D51 2016 0.9 N/A Nutrition

U02 2018 N/A 2502.3 Fitness

F52 2012 0.9 N/A Nutrition

B53 2010 N/A 0.3 Insurance

P54 2019 N/A 65.2 Pharmaceutical

Similar to limitations observed earlier, the VC-RLRS model prioritises max-

imising average funding but struggles to identify startups with high exit potential

through M&A and IPOs, potentially missing out on valuable investment opportunities.

Furthermore, measuring diversification within the context of individual industries

presents a challenge. A breakdown analysis, potentially involving the segmentation

of industries into subdomains, can provide a more precise assessment of portfolio

diversification.

Figure 5.15 illustrates the selection frequency across all startups, revealing a

concerning trend. During the initial 500 episodes, the agent exhibits a preference for

a limited subset of startups within each domain, as evidenced by the strong colour

gradient. This observation suggests a potential for limited exploration, particularly

in the early stages of the learning process.

The observed behaviour of limited exploration during the initial learning phase

can be attributed to the chosen hyperparameter settings, particularly the discount

factor (𝜛) of 0.75 and exploration rate (𝜀) of 0.50. These settings may lead the model

to prioritise exploitation by focusing on previously encountered startups rather than

exploring new ventures. Within the first 500 episodes, the agent fails to select a

significant portion of startups across all domains (57.5% in FinTech, 59.6% in IT,

and a concerningly high 68.6% in Healthcare). These findings highlight the critical

role of careful hyperparameter tuning in achieving a balance between exploration
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Figure 5.15: The heatmaps illustrate the selection patterns of the agents integrating state
presentation A across the available startups. The colour intensity within each
cell represents the frequency at which a specific startup is recommended by
the agent across 500 episodes.

and exploitation, particularly when dealing with smaller datasets. Therefore, the

findings support the hypothesis𝜚5 such that specialising the investment into a specific

industry may hinder the portfolio performance compared with the generalised fund.
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5.6.5 Deep Q-Network

This study proposes a novel hybrid approach that combines deep learning architec-

tures with reinforcement learning techniques to enhance the performance of startup

recommendations. The Deep Q-Network (DQN) model leverages the epsilon-decay

exploration strategy, identified as the most e!ective across all evaluated models (Ta-

ble 5.9). This strategy prioritises the exploration of the vast search space in the initial

learning phase, gradually shifting towards the exploitation of known successful ven-

tures as the model learns. To maintain consistency across evaluations, various reward

functions and hyperparameter configurations are tested for the DQN model within

each of the three state representation designs, while the epsilon-decay exploration

strategy remains constant.

Despite incorporating a deep learning architecture, the DQN model does not

achieve significant performance improvements. As shown in Table 5.18 and Figure

5.16, the mean average capital raised across all state design configurations fell below

that of the baseline VC-RLRS model presented in Section 5.6.2. Notably, the DQN

with state design A achieves the highest average capital raised amount (24.0), followed

by designs C (11.0) and B (8.5).

Table 5.18: The table presents the performance of startup recom- emendations categorised
by state representation design. with Deep Q Network.

Model Strategy Reward Function Mean±Std Parameters

A-DQN Decay Startup Similarity 24.0±28.2 𝜛 = 0.50,𝜀 = 0.75

B-DQN Decay Return 8.5±33.8 𝜛 = 0.75,𝜀 = 0.50

C-DQN Decay Return 11.0±21.6 𝜛 = 0.50,𝜀 = 0.75

While prior analyses suggest State Design C’s superiority, the DQN employing

State Design A (A-DQN) exhibits a surprising initial outperformance. This is evi-

denced by the steeper upward trend in the A-DQN’s performance curve during the

initial episodes, as shown in Figure 5.17.

While the A-DQN model initially exhibits a promising upward trend in aver-

age capital raised, this early success is overshadowed by a concerning decline in
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Figure 5.16: The line graph shows the performance of startup recommendations by the agent
over 3,000 episodes, categorised by the state representation designs.

performance after approximately 1,500 episodes. This pattern suggests potential lim-

itations within the A-DQN architecture, particularly when coupled with State Design

A, for maintaining long-term performance. One possibility is that the agent may be

overfitting to exploit readily available ventures, hindering its ability to generalise

and explore new startups, potentially high-performing opportunities, as the learning

process progresses.

The DQN model employing state design B (B-DQN) exhibits a distinct per-

formance pattern compared to A- and C-DQN. The B-DQN model demonstrates

a steady rise in the average capital raised, culminating in a peak around episode

1,000. However, this initial promise is followed by a period of performance volatil-

ity throughout the remaining episodes. Meanwhile, the C-DQN achieves a more

consistent average amount raised in the range of 10 to 20 across all episodes.

A further analysis is conducted to examine the initial recommendations generated

by each DQN-integrated state representation design. The analysis focuses on episodes
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Figure 5.17: The line graph shows the performance of startup recommendations by the agent
over 3,000 episodes, categorised by the state representation designs with the
Deep Q Network.

achieving the highest average capital raised and minimal failure rates. However, the

results presented in Tables 5.19 and 5.20 of State Designs A and B yield significantly

lower average capital raised compared to the non-DQN models, at 13.4 and 4.0,

respectively. Additionally, the failure rate remains high, particularly for State Design

B at 40%. Unlike the baseline VC-RLRS model, which successfully avoids selecting

failed ventures by not incorporating historical startup information into its decision-

making process, the DQN-based models appear to struggle in this aspect despite

leveraging recommendation history within the state representation. Furthermore, a

significant reinvestment rate in both designs suggests a bias towards existing ventures,

potentially hindering diversification.
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Table 5.19: The table presents the top 10 startup recommendations generated by an agent
employing state representation design A with Deep Q Networks. The agent
utilises a decay exploration strategy with a reward function based on startup
similarity. Key parameters for this strategy include a discount factor (𝜛) of 0.50
and an exploration rate (𝜀) of 0.75. A startup name that ends with an asterisk
(*) means that the startup is no longer operating.

Episode: 1 | Average Raised Amount: 13.4, Failure Rate: 10%, Reinvest Rate: 20%

Startup Founded Year Gross Return Raised Amount Industry

T55 2012 0.7 N/A Edtech

T56* 2016 0.9 N/A Social Network

S57 2015 N/A 16.7 E-commerce

K58 2018 N/A 4.2 Fintech

P59 2018 N/A 24.9 Fintech

L60 2014 N/A 10.1 Legal

K61 2015 2.1 N/A Foodtech

T56* 2016 0.9 N/A Social Network

T62 2017 N/A 14.7 Advertisement

H63 2015 N/A 9.6 Human Resources

Table 5.20: The table presents the top 10 startup recommendations generated by an agent
employing state representation design B with Deep Q Networks. The agent
utilises a decay exploration strategy with a reward function based on return.
Key parameters for this strategy include a discount factor (𝜛) of 0.75 and an
exploration rate (𝜀) of 0.50. A startup name that ends with an asterisk (*) means
that the startup is no longer operating.

Episode: 2 | Average Raised Amount: 4.0, Failure Rate: 40%, Reinvest Rate: 30%

Startup Established Gross Return Raised Amount Industry

F64 2013 1.0 N/A Social Media

H65 2019 0.9 N/A Education

H66* 2014 0.8 N/A Fintech

I04 2011 1.0 N/A IT

E67* 2013 0.6 N/A AI & Big data

I04 2011 1.0 N/A IT
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Table 5.20 continued from previous page

Episode: 2 | Average Raised Amount: 4.0, Failure Rate: 40%, Reinvest Rate: 30%

R22* 2014 N/A 5.8 Social Media

I04 2011 1.0 N/A IT

E68 2020 1.6 2.2 Environmental Consulting

B69* 2015 0.9 N/A Fintech

In contrast to the limitations observed in state designs A- and B-DQN, the

C-DQN model (Table 5.21) employing state design C achieved a positive outcome:

a zero failure rate and a zero reinvestment rate. However, this is accompanied by a

concerningly low average capital raised of only 8.0.

Table 5.21: The table presents the top 10 startup recommendations generated by an agent
employing state representation design C with Deep Q Networks. The agent
utilises a decay exploration strategy with a reward function based on return.
Key parameters for this strategy include a discount factor (𝜛) of 0.50 and an
exploration rate (𝜀) of 0.75. A startup name that ends with an asterisk (*) means
that the startup is no longer operating.

Episode: 3 | Average Raised Amount: 8.0, Failure Rate: 0%, Reinvest Rate: 0%

Year Startup Established Gross Return Raised Amount Industry

2010 O70 2019 N/A 9.9 Quantum Computing

2011 D71 2010 1.2 N/A AI & Big data

2012 L72 2011 N/A 0.4 E-commerce

2013 N73 2012 N/A 0.6 Cloud computing

2014 B74 2010 0.9 N/A Publishing

2015 M75 2014 N/A 7.7 Healthtehch

2016 O16 2015 N/A 3.9 Healthtech

2017 P76 2016 0.9 N/A Human Resources

2018 V77 2014 N/A 25.5 E-commerce

2019 W78 2016 0.9 N/A AI & Big data

Although integrating deep neural networks (DNNs) into a reinforcement learning

(RL) framework holds potential for startup recommendation, the observed perfor-
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mance may be limited by several factors. The dataset of 1,000 startups, while valuable,

might not be su"ciently large for the DQN to e!ectively capture the complex re-

lationships between the state representation and recommended startups, given the

DNN’s strength in handling extensive datasets with intricate features. Additionally,

the choice of state representation, which provides the DQN with the necessary in-

formation, significantly impacts its performance. The current representations may

not be optimally aligned with the DQN architecture, potentially limiting its ability to

learn e!ective selection strategies. Despite integrating a deep learning architecture

(DQN), this hybrid model does not exhibit a significant performance improvement

compared to the VC-RLRS baseline.
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5.7 Discussion

Venture capitalists face significant challenges in assessing and identifying high-

potential investment opportunities to construct optimal portfolios that deliver ex-

ceptional returns. This complexity is often exacerbated by the illiquidity of private

capital and the skewed distribution of returns, where only a few investments within a

portfolio achieve high success (Cochrane, 2005). Such conditions, which intensify

the already present information asymmetry (Denis, 2004), demand an evolution in

investor decision-making criteria (Lerner and Nanda, 2020). While several studies

explore machine learning, particularly supervised learning, for predicting company

valuation and future performance, the application of reinforcement learning (RL),

which uniquely enables agents to learn through trial and error, remains notably

underexplored in this domain.

This research directly addresses this critical gap by successfully bridging re-

inforcement learning with venture capital, proposing a novel Venture Capital Re-

inforcement Learning Recommender System (VC-RLRS) designed for identifying

high-growth potential startups. By leveraging recent advancements in RLRS, this

study evaluates its e"cacy as a promising alternative to traditional methods for

portfolio selection within the private capital market. A key contribution lies in the

development of a Q-learning model specifically tailored to the unique challenges

of the venture capital industry, including its illiquidity and the limited data avail-

ability that reinforces information asymmetries. This innovative application extends

the theoretical understanding of how adaptive learning systems can navigate highly

uncertain and data-scarce financial environments (Afsar et al., 2022; Chen et al.,

2019).

The state representation encoding the current conditions of the environment

that agents interact with proves to be a crucial factor. Incorporating historical rec-

ommendations as a memory component, inspired by the work of Taghipour et al.

(2007); Liebman and Stone (2014) to simulate how the VCs consider the past in-

vestments while reducing reinvestment in the same companies, yields promising

results. The proposed design shows potential in capturing ventures with potential exit
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opportunities through mergers and acquisitions (M&A) and initial public o!ering

(IPO). This aligns with the established goals of VC investment, which aim to invest

in young companies with high growth potential and the possibility of significant

returns through exits. However, imposing an annual investment limit constrains the

model’s ability to identify startups with high exit potential and avoid unsuccessful

investments. Moreover, restricting investments to one per year is unrealistic in the

dynamic venture capital industry. Such a limitation can lead to missed opportunities

in promising startups or force investments during market downturns, particularly

given the heavily skewed distribution of returns towards highly successful ventures

(Cochrane, 2005). Further improvements in state representation can be achieved

by integrating additional data, such as VC preferences or startup characteristics,

similar to Lei and Li (2019)’s work, to capture user-specific attributes during the

recommendation process. This aligns with the growing emphasis on personalisation

and domain expertise in RL applications.

Reward functions provide essential feedback guiding an agent’s interactions

within an environment. This study designs and tests three unique reward functions

considering investment return, potential venture exits, and portfolio diversification.

Results indicate that the reward function prioritising the return can overshadow

crucial factors such as venture stability and market fit. To address these limitations, a

balanced approach considering both short-term and long-term outcomes is necessary.

Developing multi-objective reward functions that incorporate a broader range of

success metrics is crucial for optimising investment strategies. Moreover, the study

examines the impact of exploration rate and discount factor on the RL agent’s learning

process. While high exploration rates, intended to mimic VC screening practices

by increasing the likelihood of discovering promising startups, do not consistently

yield high returns, the long-term nature of private capital investments suggests that a

higher discount factor can be advantageous. This aligns with the well-established

exploration-exploitation trade-o! in reinforcement learning, emphasising the need to

balance the discovery of new opportunities with the exploitation of known successes.

The selection of investments is crucial, as it also influences the long-term value
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creation of a portfolio (Gompers et al., 2020).

In addition to its original contribution of designing and implementing the VC-

RLRS to showcase the capabilities of reinforcement learning in the venture capital

domain, this research successfully demonstrates the model’s ability to recommend tar-

get ventures within specific industries, including Financial Technology, Information

Technology, and Healthcare. The study highlights the model’s adaptability to both

generalised and specialised investment strategies. To further enhance its applicability,

future research should explore tailoring the policy and reward function to specific

diversified dimensions, such as geolocation and investment stage. This would help

identify the optimal level of portfolio concentration for balancing performance and

risk (Norton and Tenenbaum, 1993) while also accounting for venture capitalists’

domain expertise and network e!ects.

Finally, this research lays the groundwork for employing deep Q-networks

(DQNs) within a reinforcement learning framework for VC startup recommendations.

While DQNs o!er potential advantages, scalability challenges arising from large

datasets necessitate exploring alternative architectures. The current study’s reliance

on a 1,000-UK startup dataset highlights the need for models capable of handling

larger and more diverse datasets, incorporating factors such as geolocation, startup

stage, and industry, which vary across VC funds. Future research can prioritise de-

veloping scalable RL architectures capable of handling complex state representations

and substantial data volumes. By addressing these limitations, practitioners can

enhance their investment decision-making through the VC-RLRS framework.



5.8. Conclusion 202

5.8 Conclusion
This research addresses the critical challenges of venture capital investment, par-

ticularly in the screening and selection of promising startups. To address these

challenges, the study proposes a novel VC-RLRS model tailored for this domain,

utilising the Q-learning algorithm, which is underexplored in private capital research.

This study fills this gap by comprehensively exploring various RL design choices,

as outlined in the hypotheses, including state representation, exploration strategies,

reward functions, and hyperparameters such as exploration rates and discount factors.

These parameters significantly influence the agent’s behaviour in searching for and

selecting startups that align with specific investment goals.

The proposed model demonstrates promising results across both generalised

and specialised investment strategies. It successfully recommends startups with

high average funding amounts, suggesting their potential to attract future invest-

ment rounds. The study emphasises the importance of crafting an e!ective state

representation that captures relevant information for the RL agent’s decision-making.

Additionally, it underscores the need for a tailored reward function design that bal-

ances short-term gains with long-term considerations crucial for VC success. The

exploration-exploitation trade-o! is also addressed, suggesting that a high discount

factor, reflecting the long-term investment horizon of VC, might be beneficial.

Beyond its traditional supervised learning approach, which relies on labelled

training data to predict future portfolio stages, the VC-RLRS model o!ers a promising

tool with practical applications in venture capital. The study highlights ways to

further develop the framework by addressing limitations like incorporating VC-

specific data and refining the reward function. By leveraging an improved VC-RLRS,

practitioners can make more informed investment decisions and potentially improve

overall portfolio performance.
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Conclusion

This research delves into the inherent challenges of entrepreneurial finance, particu-

larly at its early funding stages, with a high level of risk. This domain is uniquely

complex due to the significant information asymmetry (Denis, 2004) prevalent in

illiquid investments, compounded by limited historical data and less stringent reg-

ulatory requirements compared to public equity markets. Furthermore, the private

capital lifecycle involves distinct stages, from initial screening and due diligence

to active portfolio management aims at achieving successful exits and generating

extreme returns. This illiquid market is characterised by a skewed distribution of

returns, where significant success is typically driven by only a small number of high-

performing assets within a portfolio (Cochrane, 2005). In this dynamic environment,

investors must also be agile in responding to emerging trends, such as the innova-

tion of blockchain technology and its token financing mechanisms, alongside the

growing demand of sustainable finance that incorporates social and environmental

factors into investment decisions. The three empirical chapters present in this thesis

collectively address these fundamental challenges by leveraging the potential of alter-

native data and machine learning to support decision-making and enhance integration

across the entire private capital investment lifecycle. The subsequent sections outline

the implications of key findings, contributions, and future work derived from each

chapter.

Chapter 3 highlights the emergence of blockchain technology and the subsequent

demand for Initial Coin O!ering (ICO) as a new venture financing method. Despite
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their growing popularity, the chapter identifies persistent challenges, particularly a

lack of regulatory framework and existence of information asymmetry, which impede

accurate token valuation. Building upon gaps in existing literature, particularly the

limitations in token rating methodologies and the limited analysis of whitepaper

content (Ofir and Sadeh, 2020; Florysiak and Schandlbauer, 2019; Ante et al., 2018),

this study conducts a detailed examination of multiple signalling factors influencing

post-ICO token returns. The key findings reveal a significant discrepancy between

token ratings and realised six-month returns, with a misclassification rate of approxi-

mately 67%, which fundamentally challenges the reliability of token ratings. These

ratings may indicate fundraising success (Bourveau et al., 2022), but not long-term

ICO returns. In response to these critical limitations, this chapter investigates alter-

native data sources, such as whitepapers and social media, specifically from Twitter,

constructing a custom-built ICO index and leveraging ML models to provide a more

robust and objective valuation framework. Furthermore, the implementation of a

machine learning model for forecasting post-ICO returns achieves an accuracy of

71%, with the inclusion of social sentiment data and the novel ICO index significantly

enhancing its predictive power.

In summary, Chapter 3 contributes to the academic discourse by demonstrating

that data-driven token assessments can enhance return prediction in high-risk, low-

regulation environments such as ICOs. Moreover, investors also gain new tools to

assess risk more accurately, while regulators are reminded of the critical need for

transparency and standardised disclosures in whitepapers, as emphasised by Ante et al.

(2018). The findings further reveal the impracticality of relying on detailed whitepaper

content for predicting token returns, suggesting that investors may primarily treat

its presence as a positive signal, regardless of its detailed information (Florysiak

and Schandlbauer, 2019; Ante et al., 2018). Regulators can implement investor

protections and information disclosure requirements to prevent fraudulent activities,

which are highly active in the ICO environment (Hornuf et al., 2022). It is important

to acknowledge the limitations of using a lexicon-based sentiment analysis tool like

VADER and the inherent biases of relying solely on text published by the ventures
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themselves, as this content may be crafted to encourage token purchases and influence

returns. Future studies can significantly benefit from incorporating data from various

perspectives and additional social media platforms, such as Facebook and Reddit.

Accessing this broader social media landscape would provide a more comprehensive

understanding of public perception towards token issuers, thereby improving the

token assessment.

Chapter 4 shifts its focus to the growing, yet underexplored, trend of impact

investing in entrepreneurial financing. While research in sustainable finance in public

equities clearly demonstrates the power of alternative data and machine learning

for informed decision-making (Krappel et al., 2021; Guo et al., 2020; Ruberg et al.,

2021; Gutierrez-Bustamante and Espinosa-Leal, 2022), a significant gap exists in the

early-stage investment landscape. The absence of established ESG ratings and readily

available sustainability reports, primarily due to ventures’ limited data disclosure and

focus on survivability over transparency, poses a significant challenge for investors.

Addressing this gap, the chapter proposes a novel startup valuation framework that

leverages machine learning and unstructured text data, including startup news articles

and sustainability reports, as a complement to traditional financial statement-based

approaches such as discounted cash flow models (Williams, 1938). While acknowl-

edging the importance of traditional factors like founder characteristics, the research

reveals a new trend: sustainability considerations are profoundly influencing investor

decisions and company valuations, particularly for early-stage startups. By evalu-

ating the semantic similarity between startup news and established sustainability

frameworks, the study introduces a predictive model that improve valuation accuracy

by 16.45% over a baseline regression model using only startup and funding round

characteristics.

These findings contribute to the broader discussion on integrating environmen-

tal, social, and governance (ESG) considerations into entrepreneurial financing, in

addition to token financing examined by Mansouri and Momtaz (2022). The study

supports calls for a more systematic inclusion of sustainability in investment pro-

cesses, as emphasised by Lin (2022), and highlights the potential for developing
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dedicated sustainability-focused investment vehicles. From a practical perspective,

incorporating sustainability indicators from alternative text sources can help investors

make more informed and responsible decisions while fostering trust with limited

partners through a demonstrated commitment to long-term value and social goals.

The chapter also highlights important policy implications. As sustainability becomes

a central factor in investment decision-making, there is a growing need for regulatory

frameworks that ensure transparency, prevent greenwashing, and support consistent

sustainability reporting standards. These findings align with initiatives such as the

EU Sustainable Finance Disclosure Regulation (SFDR) (European Comission, 2022;

Roure, 2024) and suggest that similar disclosure mandates may be broadened to ven-

ture capital and private equity to promote accountability and sustainable investment

practices. In addition, the study can be extended to other sources of sustainability and

generate ESG scores for early-stage companies, which are not currently available in

the financial markets. Additionally, further studies may explore sentiment dynamics

or cross-sector comparisons to better understand how sustainability is perceived and

priced in di!erent entrepreneurial ecosystems.

Lastly, Chapter 5 systematically explores a novel application of reinforcement

learning (RL) within the context of private capital investment, an area that remains

largely underexplored in academic research (Afsar et al., 2022). While RL showcases

increasing success in public equity markets (Deng et al., 2017; Azhikodan et al., 2019;

Charpentier et al., 2023), its integration into private markets, particularly venture

capital, is still in its early stages. This can be explained by the nature of venture

capital investment, specifically its illiquidity and highly skewed return profile, which

collectively pose a challenge for designing an agent to interact e!ectively within this

environment. This chapter addresses this gap by proposing a reinforcement learning-

based recommendation system tailored to the unique characteristics of venture capital

investing, including long investment horizons, high uncertainty, and sparse, delayed

reward signals. The study designs and evaluates a reinforcement learning model

capable of recommending startups with strong potential for successful exits, such as

mergers and acquisitions (M&A) or initial public o!erings (IPOs). Key components
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of the RL architecture, including state representations, reward functions, exploration

strategies, and hyperparameter configurations, lay the groundwork for future RL

applications in illiquid markets. The model demonstrates strong performance by

consistently identifying startups associated with higher average funding amounts,

which is a critical indicator of future investment potential. Furthermore, the system

shows flexibility in supporting both generalised and specialised investment strategies,

o!ering practical value to venture capitalists seeking to improve decision-making

during the screening and due diligence processes.

These findings contribute to the research at the intersection of artificial intelli-

gence and financial decision-making. The study highlights the importance of adapting

reinforcement learning models to suit the unique dynamics of venture capital, where

traditional RL techniques must be refined to handle limited feedback, uncertain

outcomes, and evolving investment criteria. The results indicate that RL systems

have the potential to enhance decision-making in private capital markets, leading to

stronger portfolios and more e"cient capital allocation. Despite these encouraging

outcomes, the research acknowledges several limitations. The dataset size of 1,000

UK startups not only limits the model’s generalisability but also significantly restricts

the e!ective application of more complex deep learning architectures, which typically

require large datasets to capture intricate relationships. Future research should in-

clude a broader range of startups across di!erent regions and industries. Additionally,

exploring alternative reinforcement learning architectures beyond Q-learning, such

as policy gradient or actor-critic methods, may o!er better performance in larger and

more complex venture environments. Finally, the study does not fully account for

certain factors, such as systematic risks, that may influence the performance of the

recommendations.

This thesis demonstrates the transformative potential of alternative datasets in

addressing key challenges in entrepreneurial finance, particularly information asym-

metry, by complementing structured data from commercial sources with advanced

machine learning methodologies. The findings open several promising avenues for

future research. One direction involves extending these approaches to private equity
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investments in mature companies that do not exit through initial public o!erings.

Another unexplored area is the application of machine learning models to the post-

investment stage, an area beyond this thesis’s current scope. As the technological

landscape evolves, this research can also pivot toward innovative methodologies

such as data augmentation to artificially increase the size and diversity of a train-

ing dataset for textual financial data, a domain still nascent in financial markets

(Bayer et al., 2022). Additionally, the rapid advancement of generative AI presents

exciting opportunities for both academic and practical exploration. For instance,

generative models are developed to support startup operations (Tran and Murphy,

2023), enhance document analysis, and improve reasoning processes in financial

decision-making, thereby empowering analysts and venture capitalists (Desai et al.,

2024).

Strategic and well-informed investment decisions are essential to driving inno-

vation and sustainable growth within the venture capital ecosystem. The influence of

venture capital extends beyond financial returns, fostering economic development

and generating societal value. By integrating alternative data and advanced ma-

chine learning techniques, this thesis contributes to and encourages building more

intelligent, data-driven, and responsible investment practices for the future.
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Table A.1: A list of ICO variables and descriptions used in this study.

Name Description

Soft Cap
A minimum capital requirement to deliver

the product and service in USD.

Whitelist/KYC
An indication of whether the Know-Your-Customer (KYC)

and whitelist are performed prior to purchasing the token.

Pre-ICO
An indication of whether the pre-ICO

or pre-selling is available.

IEO
An indication of whether the token sale is handled and vetted

by an exchange, i.e., Initial exchange o!ering (IEO).

Bonus
An indication of whether the bonus is available for

investors who purchase the token.

ICO Duration The number of days taken during the ICO process.

Token Listing Duration
The number of days for a token to be listed on the

secondary market or crypto exchange.

Token for Sale The number of tokens available for sale.

% Token Sale The percentage distribution of tokens available for sale.

Token Type
The type of the token issued on the blockchain

such as utility token, ERC-based token.

Platform

The blockchain platform name that

the venture issues the token on, such as Ethereum

or their own blockchain network.

ETH-based
An indication of whether the application is operated

on Ethereum blockchain.

Team Size

The number of team members involved in the blockchain

application development, including the management team,

developer team, and advisors.

CEO
An indication of whether the venture has

a Chief Executive O"cer (CEO).
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Table A.1 continued from previous page

Name Description

CTO
An indication of whether the venture has

a Chief Technology O"cer (CTO).

CEO Prev Experience
An indication of whether a CEO has prior experience of

running blockchain projects.

Whitepaper Disclosure An indication of whether the venture has a whitepaper.

Problem Description Disclosure A sentiment of problem description aspect on the whitepaper.

Technical Disclosure A sentiment of technical aspect on the whitepaper.

Roadmap Disclosure A sentiment of product roadmap aspect on the whitepaper.

Team Disclosure A sentiment of team aspect on the whitepaper.

Financial Disclosure A sentiment of token and financial aspect on the whitepaper.

Business Landscape Disclosure A sentiment of business landscape aspect on the whitepaper.

Risk Disclosure A sentiment of risk aspect on the whitepaper.

Twitter Activity
The number of tweets posted by the venture

published during the ICO.

% Positive Tweets A ratio of positive sentiments of tweets posted by the venture.

Market Size The number of markets or exchanges that sell the token.

Country The country where the token has been issued or launched.

Restricted Area
The number of countries that are restricted

for the project to operate.

Social Media
The number of social media platforms used by the venture

as communication channels

ICO Rating
The rating of ICO is given by the assessment algorithm

and experts on the ICObench platform.

First-day Token Return
A log return of investment on the first day that

the token is listed on the exchange.

180 days Token Return
A log return of investment 180 day after

the token is listed on the exchange.
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Table B.1: The correlation table of the numerical variable used in the study.

(1) (2) (3) (4) (5) (6) (7)
(1) Team Size 0.148 0.093 0.202 -0.032 -0.016 -0.074
(2) Social Media 0.148 -0.112 -0.038 0.120 -0.077 0.144
(3) Soft Cap (log) 0.093 -0.112 0.223 0.101 -0.118 0.082
(4) Token for Sale (log) 0.202 -0.038 0.223 0.008 0.053 0.111
(5) % Token Sale -0.032 0.120 0.101 0.008 -0.065 0.133
(6) Market Size -0.016 -0.077 -0.118 0.053 -0.065 -0.096
(7) ICO Duration -0.074 0.144 0.082 0.111 0.133 -0.096
(8) Token Listing Duration -0.079 -0.028 0.096 -0.004 0.014 -0.040 0.086
(9) Restricted Area 0.061 0.082 -0.209 0.018 -0.103 0.068 0.148
(10) % Positive Tweets 0.028 0.086 -0.048 -0.075 0.027 -0.006 0.012
(11) Twitter Activity 0.050 0.124 0.112 0.030 0.120 -0.049 0.525
(12) ICO Rating 0.264 0.553 -0.006 0.131 0.098 0.077 0.122
(13) 180 days Token Return (log) -0.078 -0.020 -0.043 -0.019 -0.041 0.214 0.042

(8) (9) (10) (11) (12) (13)
(1) Team Size -0.079 0.061 0.028 0.050 0.264 -0.078
(2) Social Media -0.028 0.082 0.086 0.124 0.553 -0.020
(3) Soft Cap (log) 0.096 -0.209 -0.048 0.112 -0.006 -0.043
(4) Token for Sale (log) -0.004 0.018 -0.075 0.030 0.131 -0.019
(5) % Token Sale 0.014 -0.103 0.027 0.120 0.098 -0.041
(6) Market Size -0.040 0.068 -0.006 -0.049 0.077 0.214
(7) ICO Duration 0.086 0.148 0.012 0.525 0.122 0.042
(8) Token Listing Duration 0.034 -0.039 0.180 0.006 0.099
(9) Restricted Area 0.034 0.011 0.043 0.171 -0.109
(10) % Positive Tweets -0.039 0.011 0.015 0.063 0.029
(11) Twitter Activity 0.180 0.043 0.015 0.153 0.024
(12) ICO Rating 0.006 0.171 0.063 0.153 -0.094
(13) 180 days Token Return (log) 0.099 -0.109 0.029 0.024 -0.094
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Table B.2: The correlation table of the ordinal variable used in the study.

(1) (2) (3) (4) (5) (6) (7)
(1) Whitelist/KYC 0.340 0.120 0.155 -0.042 -0.020 -0.076
(2) Pre-ICO 0.340 0.065 0.075 -0.050 -0.008 0.001
(3) CEO 0.120 0.065 0.447 0.091 0.007 0.121
(4) CTO 0.155 0.075 0.447 -0.060 0.042 0.076
(5) CEO Prev Experience -0.042 -0.050 0.091 -0.060 0.083 -0.042
(6) Whitepaper Disclosure -0.020 -0.008 0.007 0.042 0.083 0.044
(7) ETH-based -0.076 0.001 0.121 0.076 -0.042 0.044
(8) IEO 0.042 -0.062 0.022 -0.006 -0.047 -0.005 -0.064
(9) Bonus 0.240 0.315 0.166 0.116 0.048 -0.041 0.030
(10) Sentiment Problem
Description Disclosure -0.062 -0.014 -0.060 -0.082 0.048 -0.032

(11) Sentiment Technical Disclosure 0.065 0.121 0.012 0.207 0.044 0.200
(12) Sentiment Roadmap Disclosure 0.168 0.037 0.091 0.119 0.037 0.071
(13) Sentiment Team Disclosure
(14) Sentiment Finance Disclosure 0.132 0.114 -0.057 0.117 -0.572 0.273
(15) Sentiment Business
Landscape Disclosure -0.138 -0.151 -0.112 -0.036 0.034 0.190

(16) Sentiment Risk Disclosure 0.094 0.385 0.076 -0.164 -0.081
(17) 180 days Token Return (log) -0.138 -0.190 -0.105 -0.058 0.019 0.090 -0.043

(8) (9) (10) (11) (12) (13) (14)
(1) Whitelist/KYC 0.042 0.240 -0.062 0.065 0.168 0.132
(2) Pre-ICO -0.062 0.315 -0.014 0.121 0.037 0.114
(3) CEO 0.022 0.166 -0.060 0.012 0.091 -0.057
(4) CTO -0.006 0.116 -0.082 0.207 0.119 0.117
(5) CEO Prev Experience -0.047 0.048 0.048 0.044 0.037 -0.572
(6) Whitepaper Disclosure -0.005 -0.041
(7) ETH-based -0.064 0.030 -0.032 0.200 0.071 0.273
(8) IEO -0.079 0.009 -0.003 0.066 0.027
(9) Bonus -0.079 -0.121 0.077 0.089 -0.103
(10) Sentiment Problem
Description Disclosure 0.009 -0.121 0.294 -0.031 -0.020

(11) Sentiment Technical Disclosure -0.003 0.077 0.294 -0.031 -0.017
(12) Sentiment Roadmap Disclosure 0.066 0.089 -0.031 -0.031
(13) Sentiment Team Disclosure
(14) Sentiment Finance Disclosure 0.027 -0.103 -0.020 -0.017
(15) Sentiment Business
Landscape Disclosure 0.049 0.057 0.216 0.328 -0.034

(16) Sentiment Risk Disclosure -0.219 0.219 0.143 0.171
(17) 180 days Token Return (log) -0.094 -0.127 -0.034 0.055 0.130 -0.120
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(15) (16) (17)
(1) Whitelist/KYC -0.138 0.094 -0.138
(2) Pre-ICO -0.151 0.385 -0.190
(3) CEO -0.112 0.076 -0.105
(4) CTO -0.036 -0.164 -0.058
(5) CEO Prev Experience 0.034 0.019
(6) Whitepaper Disclosure 0.090
(7) ETH-based 0.190 -0.081 -0.043
(8) IEO 0.049 -0.219 -0.094
(9) Bonus 0.057 0.219 -0.127
(10) Sentiment Problem
Description Disclosure 0.216 -0.034

(11) Sentiment Technical Disclosure 0.328 0.143 0.055
(12) Sentiment Roadmap Disclosure -0.034 0.171 0.130
(13) Sentiment Team Disclosure
(14) Sentiment Finance Disclosure -0.120
(15) Sentiment Business
Landscape Disclosure 0.047

(16) Sentiment Risk Disclosure -0.221
(17) 180 days Token Return (log) 0.047 -0.221

Table B.3: The correlation table of the nominal variable used in the study.

(1) (2) (3) (4)
(1) Country 0.018 0.047 -0.084
(2) Platform 0.018 0.565 0.008
(3) Token Type 0.047 0.565 0.105
(4) 180 days Token Return (log) -0.084 0.008 0.105
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Algorithm 1 Adam Algorithm for Stochastic Optimisation used in PyTouch library
(Kingma and Ba, 2017; Paszke et al., 2019)

Input: 𝜛 ,61,62,𝐹0,ℏ (𝐹),𝑇,𝜍<𝐸ℶℷ𝜍𝑄,<𝜍42<2𝐸ℸ
Initialise: <0  0,𝑆0  0, 𝐵𝑆

⊳

<𝜍4  0

for ⊳ = 1 do
if <𝜍42<2𝐸ℸ then

ℶ
⊳
 ϑ∇

𝐹
ℏ
⊳
(𝐹

⊳ϑ1)
else
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⊳
 ∇

𝐹
ℏ
⊳
(𝐹

⊳ϑ1)
end if
if 𝑇 ∳ 0 then

ℶ
⊳
 ℶ

⊳
+𝑇𝐹

⊳ϑ1
end if
<
⊳
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⊳
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end if
end for
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Table D.1: Description of Crunchbase variables for startup valuation model.

Variable Name Type Description

Organisation

Country Nominal
The numerical label of country that the organisation

currently operating in or its headquarter1.

Company Status Nominal The numerical label of current status of the organisation-1.

Has Facebook Binary
Indicator whether the organisation has

Facebook social media.

Has LinkedIn Binary
Indicator whether the organisation has

LinkedIn social media.

Has Twitter Binary
Indicator whether the organisation has

Twitter social media.

Employee Count Ordinal
A numerical label of organisation size

grouped into a category.

Company Founded Year Numerical A year that organisation has established.

Top Ten City Binary

Indicator whether the organisation has established

in the top ten cities that has

the highest number of startups globally.
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Table D.1 continued from previous page

Variable Name Type Description

Industry Category Binary

Indicator whether the organisation has been operated

in the following industry and model:

Administrative Services, Advertising,

Agriculture and Farming, Apps, Artificial Intelligence,

Biotechnology, Clothing and Apparel,

Commerce and Shopping, Community and Lifestyle,

Consumer Electronics, Consumer Goods,

Content and Publishing, Data and Analytics, Design,

Education, Energy, Events, Financial Services,

Food and Beverage, Gaming,Government and Military,

Hardware, Health Care, Information Technology,

Internet Services, Lending and Investments,

Manufacturing, Media and Entertainment,

Messaging and Telecommunications, Mobile,

Music and Audio, Natural Resources,

Navigation and Mapping, Other, Payments,

Platforms, Privacy and Security, Professional Services,

Real Estate, Sales and Marketing,

Science and Engineering, Software, Sports,

Sustainability, Transportation, Travel and Tourism, Video

Founder and Co-Founder

Founder Count Numerical
A number of founders and co-founders

of the organisation.

Has Bachelor Numerical
A number of founders and co-founders

hold bachelor’s degrees.

Has Master Numerical
A number of founders and co-founders

hold master’s degrees.
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Table D.1 continued from previous page

Variable Name Type Description

Has MBA Numerical
A number of founders and co-founders

completed the MBA course.

Has PhD Numerical
A number of founders and co-founders

hold PhD degrees.

Top 100 Education Numerical
A number of founder and co-founder attended

the top 100 universities given the QS global ranking2.

Top 50 Education Numerical

A number of founders and co-founders

attended the top 50 universities

given the QS global ranking0.

Top 10 Education Numerical

A number of founders and co-founders

attended the top 10 universities

given the QS global ranking0.

STEM Education Numerical
A number of founders and co-founders

hold STEM degrees.

Funding Round

Investment Type Nominal The numerical label of funding series-1.

Log Amount Raised Numerical A log value of amount raised in funding round in USD.

Log Pre-money Valuation Numerical
A log value of pre-money valuation of the organisation

in each funding round in USD.

Deal Announced Year Numerical A year that organisation receive funding rounds.

Deal Age Numerical
A di!erence between announced year of funding rounds

and funded year of organisation.

Number Funding Rounds Numerical
The number of funding rounds that the organisation

has been participated.

Log Cumulative

Amount Raised
Numerical

A log value of cumulative amount raised up to

the current funding round in USD.

Investor

Investor Count Numerical A number of investors participated in funding round.



222

Table D.1 continued from previous page

Variable Name Type Description

Top Institutional Investor Binary

Indicator whether top ten institutional investors

(e.g., venture capital fund, private equity fund)

participated in this funding round.

Top Individual Investor Binary
Indicator whether the top ten individual investors

participated in this funding round.

Investment Age Numerical
A di!erence between announced year of funding rounds

and funded year of organisation.

Accelerator Investor Binary
Indicator whether the top investors participated in

funding round are incubator or accelerator.

Angle Investor Binary
Indicator whether the top investors participated in

funding round are angle investor.

Di!erent Geolocation Binary
Indicator whether the country of operation of

startups and investors is di!erent.

Log Cumulative

Investment Amount
Numerical

A log value of the cumulative amount raised that

investors have participated in up to

the current funding round in USD.

Investor Experience Numerical

A number of funding rounds that investors

have participated in up to the announced year

of the funding round.
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Table E.1: Correlation matrix of Crunchbase variables and startup valuation.

Log Pre-Money Valuation

Country -0.152

Company Status 0.071

Has Facebook 0.025

Has LinkedIn 0.066

Has Twitter -0.046

Employee Count 0.720

Company Founded Year -0.223

Top Ten City 0.002

Founder Count 0.438

Has Bachelor 0.393

Has Master 0.357

Has MBA 0.344

Has PhD 0.230

Top 100 Education 0.395

Top 50 Education 0.388

Top 10 Education 0.376

STEM Education 0.373

Investment Type 0.488

Log Amount Raised 0.860

Deal Announced Year 0.269

Deal Age 0.453

Number Funding Rounds 0.508

Log Cumulative Amount Raised 0.903

Investor Count 0.163

Top Institutional Investor 0.166

Top Individual Investor 0.029

Investment Age 0.199
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Accelerator Investor -0.007

Angle Investor -0.154

Di!erent Geolocation 0.015

Log Cumulative Investment Amount 0.100

Investor Experience 0.129
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Table F.1: Startup News with Similarity to Sustainability Frameworks.

Topics
Average

Similarity
Example of Top Three News Title

UN SDGs

No Poverty 0.409

- Providing healthcare to lower-income communities

values Cityblock Health at $1 billion,

- Apeel gets more cash to fight poverty and food insecurity

in emerging markets with its food-preserving tech,

- Investment tech won’t solve systemic wealth gaps,

but it’s a good start

Zero Hunger 0.492

- Apeel gets more cash to fight poverty and food insecurity

in emerging markets with its food-preserving tech,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry,

- Farmers Business Network raises $20 million

to help farmers avoid spending on what they don’t need

Good Health

and Wellbeing
0.460

- Providing healthcare to lower-income communities

values Cityblock Health at $1 billion,

- Quizlet valued at $1 billion as it raises millions

during a global pandemic,

- Oscar Health’s CEO believes the U.S. has a moral

obligation to provide healthcare to its citizens

Quality Education 0.392

- India’s Vedantu scores $24M more for its

online tutoring service,

- TikTok makes education push in India,

- Education technology meets its limits
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Gender Equality 0.403

- Are option grants promoting gender and racial inequity?,

- Tech’s new diversity leaders explain how they plan

to fix sexism and racism in the industry,

- Female Founders: The State Of The Union

Clean Water

and Sanitation
0.390

- Apeel gets more cash to fight poverty and food insecurity

in emerging markets with its food-preserving tech,

- Focusing on human and climate health, S2G Ventures

launches ocean fund with $100 million in commitments,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry

A!ordable and

Clean Energy
0.436

- 4 sustainable industries where founders and VCs

can see green by going green,

- Southeast Asia’s Grab plans electric vehicle push,

- 5G promises to transform the world again

Decent Work and

Economic Growth
0.434

- Human Capital: Moving away from master/slave;

terminology,

- Investment tech won’t solve systemic wealth gaps,

but it’s a good start,

- Politicized “Gig Economy”; May Make Changing

Status Quo More Di"cult

Industry Innovation

and Infrastructure
0.518

- Latin America’s digital transformation is making up

for lost time,

- Investment tech won’t solve systemic wealth gaps,

but it’s a good start,

- Google report: Southeast Asia’s digital economy to

triple to $240 billion by 2025
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Reduced Inequalities 0.435

- Investment tech won’t solve systemic wealth gaps,

but it’s a good start,

- Getaround, Facebook, AI chips, Nvidia, Africa,

and immigration,

- Developing a global financial architecture

Sustainable Cities

and Communities
0.448

- Startups Weekly: How will we

build the city of the future?,

- With Detroit Taking A Lyft In A Driverless Car,

What’s Next For Cities?,

- Ride Sharing Will Give Us Back Our Cities

Responsible

Consumption

and Production

0.504

- Apeel gets more cash to fight poverty and food insecurity

in emerging markets with its food-preserving tech,

- 4 sustainable industries where founders and VCs

can see green by going green,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry

Climate Action 0.398

- Stripe Climate is a new tool to let Stripe customers

make carbon removal purchases,

- Focusing on human and climate health, S2G Ventures

launches ocean fund with $100 million in commitments,

- Could lessons from the challenger bank revolution

kick-start innovation on the climate crisis?
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Life Below Water 0.406

- Stripe Climate is a new tool to let Stripe customers

make carbon removal purchases,

- Focusing on human and climate health, S2G Ventures

launches ocean fund with $100 million in commitments,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry

Life On Land 0.349

- Stripe Climate is a new tool to let Stripe customers

make carbon removal purchases,

- 4 sustainable industries where founders and VCs

can see green by going green,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry

Peace Justice and

Strong Institutions
0.324

- A look ahead at blockchain’s next decade,

- The Khashoggi murder isn’t stopping

SoftBank’s Vision Fund,

- Announcing the TechCrunch Session on

Blockchain Agenda

Partnerships For

The Goals
0.435

- Apeel gets more cash to fight poverty and food insecurity

in emerging markets with its food-preserving tech,

- Developing a global financial architecture,

- Latin America’s chronic ine"ciency could drive

more O2O commerce growth

SASB 26 General Issues
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Product Quality

and Safety
0.417

- The hidden cost of food delivery,

- 14 wildly hot takes we need on this

Whole Foods + Amazon thing,

- Blue Apron Delivers All The Ingredients You Need To

Cook Fresh Meals Every Week

Data Security 0.554

- DataGuard, which provides GDPR and

privacy compliance-as-a-service, raises $20M,

- Why commerce companies are the advertising

players to watch in a privacy-centric world,

- The Internet Giveth, And Taketh Away: Sometimes,

Business Decisions Are Bad For Users

Customer Welfare 0.470

- Assessing the potential for a gig economy in education,

- Lucid Lane has developed a service to get patients o! of

pain meds and avoid dependence,

- Crimson Education, a platform to help students get into

top universities, nabs $5M at a $245M valuation

Energy Management 0.464

- 4 sustainable industries where founders and VCs

can see green by going green,

- Hewlett Packard Enterprise Places

A Big Bet On Containers,

- A Look At Startup Opportunities In The Container Era

Employee Engagement,

Diversity and Inclusion
0.504

- Human Capital: Google’s labor stumbles,

- Placement is the much-needed talent agent for jobseekers,

- Tech’s new diversity leaders explain how they plan

to fix sexism and racism in the industry
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Product Design and

Lifecycle Management
0.477

- Could lessons from the challenger bank revolution

kick-start innovation on the climate crisis?,

- How digital has redefined go-to-market strategy,

- The Power Of Online-To-O%ine Is Moving

Beyond Local Commerce

Customer Privacy 0.620

- BigID bags another $50M round as

data privacy laws proliferate,

- Why commerce companies are the advertising

players to watch in a privacy-centric world,

- The Internet Giveth, And Taketh Away: Sometimes,

Business Decisions Are Bad For Users

Employee Health

and Safety
0.419

- The two forces reshaping the landscape of

shipping and logistics,

- Lyft is getting more serious about

autonomous vehicle safety with new hire,

- Transport’s coming upheaval

Materials Sourcing

and E"ciency
0.472

- Amazon’s next conquest will be apparel,

- How legacy brands and retailers can keep up

with our tech-driven world,

- Farmers Business Network raises $20 million

to help farmers avoid spending on what they don’t need

Supply Chain

Management
0.435

- For alternative meat manufacturer Beyond Meat,

fast food chains giveth and take away,

- The Amazonization of Whole Foods, one year in,

- 14 wildly hot takes we need on this

Whole Foods + Amazon thing
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Access and

A!ordability
0.496

- The tale of 2 challenger bank models,

- Fundera, Funding Circle And Others Introduce

The Small Business Borrowers’ Bill Of Rights,

- Startup Financial Services Companies Come Of Age

Selling Practices and

Product Labeling
0.501

- Media roundup: Google to cut big checks

for news publishers,

Substack continues to draw top creators, more,

- Now more than ever we need fintechs

to lead on consumer transparency,

- Crimson Education, a platform to help students get into

top universities, nabs $5M at a $245M valuation

Human Rights and

Community Relations
0.477

- Synthetic biology startups are giving investors

an appetite,

- Benchling’s software for managing biotech research

nabs $34.5 million,

- Science37 aims to democratize clinical research with

a fresh $29 million in growth funding

Business Ethics 0.493

- Now more than ever we need fintechs

to lead on consumer transparency,

- The two forces reshaping the landscape of

shipping and logistics,

- Investors are pouring money into Latin America’s

logistics and shipping businesses
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Competitive Behavior 0.507

- Indian startups explore alliance and alternative

app store to fight Google’s ‘monopoly’,

- Trolling the patent trolls,

- The Internet Giveth, And Taketh Away: Sometimes,

Business Decisions Are Bad For Users

Systemic Risk

Management
0.595

- Enterprise companies find MLOps critical for

reliability and performance,

- Startups are helping cloud infrastructure customers

avoid vendor lock-in,

- Google’s Cloud outage is resolved, but it reveals

the holes in cloud computing’s atmosphere

Waste and Hazardous

Materials Management
0.539

- A glint of hope for India’s food delivery market as

Zomato projects monthly cash burn of less than $1M,

- Preventing food waste nets Apeel $250 million from

Singapore’s government, Oprah and Katy Perry,

- The hidden cost of food delivery

Critical Incident

Risk Management
0.467

- Uber commits $50 million to safety supplies for drivers,

- Investigation finds e-scooters a cause of

1,500+ accidents,

- Lyft is getting more serious about

autonomous vehicle safety with new hire

GHG Emissions 0.500

-Lyft invests millions of dollars to o!set

its e!ect on climate change,

- Regulators order environmental impact study of

Lyft Line and UberPOOL,

- Europe’s DocPlanner Bags $10M To Grow

Its Healthcare Booking Platform
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Ecological Impacts 0.374

- The two forces reshaping the landscape of

shipping and logistics,

- Regulators order environmental impact study of

Lyft Line and UberPOOL,

- HotelTonight ExpandsTo The UK, Former Jetsetter

Leads The Charge

Air Quality 0.443

- Air quality monitoring service Airly raises $2 million

as fires, pollution force consumers to take note,

- Regulators order environmental impact study of

Lyft Line and UberPOOL,

- Regulators Should Favor Lyft And Uber,

Not Taxis For Safety Reasons

Water and Wastewater

Management
0.422

- 4 sustainable industries where founders and VCs

can see green by going green,

- Farmers Business Network raises $20 million

to help farmers avoid spending on what they don’t need,

- Barry Sternlicht, Former CEO Of Hotel Giant Starwood,

Invests In HotelTonight

Labor Practices 0.567

- Equity Monday: Food delivery economics,

and global layo!s,

- Instacart shoppers plan a series of actions in

protest of company’s wage practices,

- HotelTonight Cuts 20 Percent Of Its Workforce
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Physical Impacts of

Climate Change
0.444

- Cowboy VC’s Aileen Lee: Your coronavirus

scenario planning

should be more conservative,

- Could lessons from the challenger bank revolution

kick-start innovation on the climate crisis?,

- VC doors are wide open for real estate startups

Management of

the Legal and

Regulatory Environment

0.186

- India’s Ather Energy raises $51 million to grow its

electric scooters business,

- Electric scooter maker Gogoro raises $300 million

for growth,

- VCs are betting on the great Chinese fitness boom

Business Model

Resilience
0.274

- India’s Ather Energy raises $51 million to grow its

electric scooters business,

- Quick-charging battery startup StoreDot gets

$60M on $500M valuation led by Daimler,

- Gogoro’s Compact New Electric Scooter

Charging Stations Can Be Installed Inside

Homes And Stores

SASB 5 Disclosure Dimensions

Environment 0.438

- 4 sustainable industries where founders and VCs

can see green by going green,

- Hewlett Packard Enterprise Places

A Big Bet On Containers,

- A Look At Startup Opportunities In The Container Era
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Table F.1 continued from previous page

Topics
Average

Similarity
Example of Top Three News Title

Social Capital 0.521

- DataGuard, which provides GDPR and

privacy compliance-as-a-service, raises $20M,

- BigID bags another $50M round as

data privacy laws proliferate,

- Segment’s new privacy portal helps companies comply

with expanding regulations

Human Capital 0.491

- Placement is the much-needed talent agent for jobseekers,

- Tech’s new diversity leaders explain how they plan

to fix sexism and racism in the industry,

- An Open Letter To Those Not Employed At Instagram

Business Model 0.462

- How legacy brands and retailers can keep up

with our tech-driven world,

- Narvar raises $22 million to help internet retailers

deliver physical goods without frustrating customers,

- The Power Of Online-To-O%ine Is Moving

Beyond Local Commerce

Leadership and

Governance
0.475

- Startups are helping cloud infrastructure customers

avoid vendor lock-in,

- Trolling the patent trolls,

- The Internet Giveth, And Taketh Away: Sometimes,

Business Decisions Are Bad For Users
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Table G.1: A mapping of SASB disclosure topics to the high-level dimension (IFRS Foun-
dation, 2022a). An issue category with asterisk (*) means that ESG-BERT has
additional category called Director Removal.

Dimension General Issue Category Availability in ESG-BERT

Environment

GHG Emissions Y

Air Quality Y

Energy Management Y

Water & Wastewater

Management
Y

Waste & Hazardous

Materials Management
Y

Ecological Impacts Y

Social Capital

Human Rights &

Community Relations
Y

Customer Privacy Y

Data Security Y

Access & A!ordability Y

Product Quality & Safety Y

Customer Welfare Y

Selling Practices

& Product Labeling
Y

Human Capital

Labor Practices Y

Employee Health & Safety Y

Employee Engagement,

Diversity & Inclusion
Y

Business Model

and Innovation

Product Design

& Lifecycle Management
Y

Business Model Resilience Y

Supply Chain Management Y
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Table G.1 continued from previous page

Dimension General Issue Category Availability in ESG-BERT

Materials Sourcing

& E"ciency
N*

Physical Impacts

of Climate Change
Y

Leadership and Governance

Business Ethics Y

Competitive Behavior Y

Management of the Legal

& Regulatory Environment
Y

Critical Incident

Risk Management
Y

Systemic Risk Management Y



Appendix H

Example of Refinitiv’s ESG

Disclosure - Chapter 4



242

Table H.1: Example of ESG disclosure structure from the Refinitiv Workspace (Refinitiv,
2022).

Dimension Example Disclosure Measurement

Environment Does the company make use of Renewable energy? True/False
Total CO2 and CO2 equivalents emission in Tons

Social
Does the company have a policy to improve employee
health and safety within the company and its supply chain? True/False

Percentage of women managers among
total managers in the company in percentage

Governance Does the company have an audit board committee? True/False
Ratio of CEO’s total compensation over median
employee compensation as reported by the company in ratio

-1Transformed by LabelEncoder available in scikit-learn library.
0The list of universities obtained from https://www.topuniversities.com/university-rankings/world-

university-rankings/2021 accessed on 12 July 2023.
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Table I.1: Hyperparameters of regression models.

Model R-Squared MSE Parameters

Crunchbase

LR 0.747 0.617 -

RF 0.691 0.752

{’n_estimators’: 200, ’min_samples_split’: 10,

’min_samples_leaf’: 2, ’max_features’: ’sqrt’,

’max_depth’: 10, ’bootstrap’: False}

GB 0.743 0.626

{’subsample’: 1.0, ’n_estimators’: 100,

’min_samples_split’: 4, ’max_depth’: 3,

’learning_rate’: 0.1}

DL 0.541 1.118 {’num_epochs’: 100, ’learning_rate’: 0.001}

TechCrunch

Doc2Vec + LR -0.398 3.484 {’doc2vec_vector_size’: 50}

Doc2Vec + RF -0.157 2.884

{’n_estimators’: 100, ’min_samples_split’: 10,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 5, ’bootstrap’: True,

’doc2vec_vector_size’: 50}

Doc2Vec + GB -0.039 2.589

{’subsample’: 1.0, ’n_estimators’: 200,

’min_samples_split’: 6, ’max_depth’: 3,

’learning_rate’: 0.001,

’doc2vec_vector_size’: 100}

Doc2Vec + DL -0.513 3.771 {’num_epochs’: 50, ’learning_rate’: 0.0001}

BERT + LR -0.486 3.704

BERT + RF 0.007 2.475

{’n_estimators’: 300, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 5, ’bootstrap’: True}

BERT + GB -0.021 2.545

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 2, ’max_depth’: 7,

’learning_rate’: 0.001}
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Table I.1 continued from previous page

Model R-Squared MSE Parameters

BERT + DL -0.235 3.078 {’num_epochs’: 50, ’learning_rate’: 0.0001}

FinBERT + LR -0.352 3.369 -

FinBERT + RF -0.017 2.536

{’n_estimators’: 200, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 5, ’bootstrap’: True}

FinBERT + GB -0.024 2.553

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 2, ’max_depth’: 5,

’learning_rate’: 0.001}

FinBERT + DL -0.178 2.937 {’num_epochs’: 50, ’learning_rate’: 0.0001}

ESG-BERT + LR -0.431 3.567 -

ESG-BERT + RF -0.022 2.548

{’n_estimators’: 200, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 5, ’bootstrap’: True}

ESG-BERT + GB -0.025 2.555

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 4, ’max_depth’: 5,

’learning_rate’: 0.001}

ESG-BERT + DL -0.423 3.547 {’num_epochs’: 10, ’learning_rate’: 0.001}

Crunchbase & TechCrunch

Doc2Vec + LR 0.754 0.613 {’doc2vec_vector_size’: 150}

Doc2Vec + RF 0.736 0.658

{’n_estimators’: 300, ’min_samples_split’: 5,

’min_samples_leaf’: 2, ’max_features’: ’auto’,

’max_depth’: None, ’bootstrap’: True,

’doc2vec_vector_size’: 100}

Doc2Vec + GB 0.761 0.595

{’subsample’: 1.0, ’n_estimators’: 300,

’min_samples_split’: 6, ’max_depth’: 5,

’learning_rate’: 0.1,

’doc2vec_vector_size’: 150}

Doc2Vec + DL 0.725 0.687 {’num_epochs’: 50, ’learning_rate’: 0.001}
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Table I.1 continued from previous page

Model R-Squared MSE Parameters

BERT + LR 0.727 0.681 -

BERT + RF 0.432 1.416

{’n_estimators’: 200, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 10, ’bootstrap’: True}

BERT + GB 0.219 1.946

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 4, ’max_depth’: 7,

’learning_rate’: 0.001}

BERT + DL 0.667 0.829 {’num_epochs’: 50, ’learning_rate’: 0.001}

FinBERT + LR 0.706 0.732 -

FinBERT + RF 0.434 1.410

{’n_estimators’: 100, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 10, ’bootstrap’: True}

FinBERT + GB 0.219 1.947

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 2, ’max_depth’: 7,

’learning_rate’: 0.001}

FinBERT + DL 0.721 0.696 {’num_epochs’: 100, ’learning_rate’: 0.001}

ESG-BERT + LR 0.676 0.807 -

ESG-BERT + RF 0.427 1.428

{’n_estimators’: 300, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’sqrt’,

’max_depth’: 10, ’bootstrap’: True}

ESG-BERT + GB 0.219 1.946

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 2, ’max_depth’: 7,

’learning_rate’: 0.001}

ESG-BERT + DL 0.640 0.897 {’num_epochs’: 50, ’learning_rate’: 0.001}

Crunchbase & UN SDG

LR 0.690 0.755 -
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Table I.1 continued from previous page

Model R-Squared MSE Parameters

RF 0.785 0.523

{’n_estimators’: 100, ’min_samples_split’: 5,

’min_samples_leaf’: 4, ’max_features’: ’auto’,

’max_depth’: 10, ’bootstrap’: True}

GB 0.770 0.561

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 4, ’max_depth’: 3,

’learning_rate’: 0.1}

DL 0.456 1.327 {’num_epochs’: 100, ’learning_rate’: 0.0001}

Crunchbase & SASB General Issue

LR 0.690 0.755 -

RF 0.785 0.523

{’n_estimators’: 200, ’min_samples_split’: 2,

’min_samples_leaf’: 4, ’max_features’: ’auto’,

’max_depth’: None, ’bootstrap’: True}

GB 0.770 0.561

{’subsample’: 0.8, ’n_estimators’: 100,

’min_samples_split’: 2, ’max_depth’: 5,

’learning_rate’: 0.1}

DL 0.456 1.327 {’num_epochs’: 50, ’learning_rate’: 0.001}

Crunchbase & SASB Dimension

LR 0.746 0.618 -

RF 0.780 0.536

{’n_estimators’: 200, ’min_samples_split’: 2,

’min_samples_leaf’: 2, ’max_features’: ’auto’,

’max_depth’: 10, ’bootstrap’: True}

GB 0.715 0.695

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 4, ’max_depth’: 3,

’learning_rate’: 0.1}

DL 0.532 1.140 {’num_epochs’: 50, ’learning_rate’: 0.001}

Crunchbase & Refinitiv

LR 0.747 0.617 -
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Table I.1 continued from previous page

Model R-Squared MSE Parameters

RF 0.772 0.556

{’n_estimators’: 200, ’min_samples_split’: 10,

’min_samples_leaf’: 1, ’max_features’: ’auto’,

’max_depth’: None, ’bootstrap’: True}

GB 0.723 0.676

{’subsample’: 0.8, ’n_estimators’: 200,

’min_samples_split’: 6, ’max_depth’: 3,

’learning_rate’: 0.01}

DL 0.543 1.115 {’num_epochs’: 100, ’learning_rate’: 0.001}



Appendix J

Deep Q-learning implementation -

Chapter 5
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Algorithm 2 Deep Q-learning with experience reply implementation previously
applied on seven Atari 2600 games (Mnih et al., 2013).

Initialise replay memory 𝑉 to capacity 8

Initialise action-value function 𝑁 with random weights 𝐹
Initialise target action-value function 𝐵𝑁 with weights 𝐹ϑ = 𝐹

for episode 1,≨ do Initialise sequence 𝐸1 = {41} and preprocess sequence 𝑊1 =
𝑊(𝐸1)

for ⊳ = 1,𝑅 do
With probability 𝜀 select a random action 𝜍

⊳

otherwise select 𝜍
⊳
= 𝜍ℷℶ<𝜍4

𝜍
𝑁(𝑊(𝐸

⊳
),𝜍;𝐹)

Execute action 𝜍
⊳

in the emulator and observe reward ℷ
⊳

and image 4
⊳+1

Set 𝐸
⊳+1 = 𝐸

⊳
,𝜍

⊳
,4

⊳+1 and preprocess 𝑊
⊳+1 = 𝑊(𝐸

⊳+1)
Store experience (𝑊

⊳
,𝜍

⊳
,ℷ

⊳
,𝑊

⊳+1) in 𝑉

Sample random minibatch of experience (𝑊
3
,𝜍

3
,ℷ

3
,𝑊

3+1) from 𝑉

if episode terminates at step 3+1 then
5
3
= ℷ

3

else
5
3
= ℷ

3
+ 𝜛<𝜍4

𝜍ϱ
𝐵𝑁(𝑊

3+1,𝜍
ϱ;𝐹ϑ)

end if
Perform a gradient descent step on (5

3
ϑ𝑁(𝑊

3
,𝜍

3
;𝐹))2 with respect to the

weights 𝐹
Every 𝑋 steps reset 𝐵𝑁 =𝑁

end for
end for
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