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Abstract: Clinical algorithms are widely used tools for predicting, diagnosing, and managing diseases. However, race correction in 
these algorithms has faced increasing scrutiny for potentially perpetuating health disparities and reinforcing harmful stereotypes. This 
narrative review synthesizes historical, clinical, and methodological literature to examine the origins and consequences of race 
correction in clinical algorithms. We focus primarily on developments in the United States and the United Kingdom, where many race- 
based algorithms originated. Drawing on interdisciplinary sources, we discuss the persistence of race-based adjustments, the implica
tions of their removal, and emerging strategies for bias mitigation and fairness in algorithm development. The practice began in the 
mid-19th century with the spirometer, which measured lung capacity and was used to reinforce racial hierarchies by characterizing 
lower lung capacity for Black people. Despite critiques that these differences reflect environmental exposure rather than inherited 
traits, the belief in race-based biological differences in lung capacity and other physiological functions, including cardiac, renal, and 
obstetric processes, persists in contemporary clinical algorithms. Concerns about race correction compounding health inequities have 
led many medical organizations to re-evaluate their algorithms, with some removing race entirely. Transitioning to race-neutral 
equations in areas like pulmonary function testing and obstetrics has shown promise in enhancing fairness without compromising 
accuracy. However, the impact of these changes varies across clinical contexts, highlighting the need for careful bias identification and 
mitigation. Future efforts should focus on incorporating diverse data sources, capturing true social and biological health determinants, 
implementing bias detection and fairness strategies, ensuring transparent reporting, and engaging with diverse communities. Educating 
students and trainees on race as a sociopolitical construct is also important for raising awareness and achieving health equity. Moving 
forward, regular monitoring, evaluation, and refinement of approaches in real-world settings are needed for clinical algorithms serve 
all patients equitably and effectively. 
Keywords: clinical algorithms, race correction, health disparities, algorithmic fairness, algorithmic bias, lung function, spirometer, 
bias mitigation, bias detection

Introduction
Clinical algorithms are decision-making tools designed to assist health care providers in predicting, diagnosing, and 
managing diseases. These tools are widespread in health systems and can range from simple flowcharts to increasingly 
complex models deploying artificial intelligence (AI). One notable practice in the development of such algorithms is race 
correction, which adjusts clinical calculations based on the patient’s racial or ethnic background. In its simplest form, this 
involves applying a multiplicative factor to the calculated clinical value for individuals identified as belonging to 
a specific racial or ethnic group. These adjusted values influence critical clinical decisions, including diagnoses, 
treatments, and referral thresholds.1
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However, race correction has come under increasing scrutiny for its potential to perpetuate health disparities and 
reinforce harmful stereotypes.2,3 For instance, race-based adjustments in estimated glomerular filtration rate (eGFR) 
increases the calculated value for Black patients by approximately 16% to match White counterparts. The biological 
conjecture was that the higher average serum creatinine levels, used to calculate eGFR, were due to greater muscle mass 
of Black Americans.4 This race correction artificially elevated kidney function in Black patients, which delayed disease 
diagnosis and eligibility for transplants.5 Critics argue that race correction generally lacks a robust scientific basis and is 
a sociopolitical construct based on physical characteristics, such as skin color and facial features, and an imprecise proxy 
for continuous genetic diversity and lifelong environmental exposures. Algorithmic race correction essentially over
emphasis the role of biology often based on outdated and unproven theories. This overemphasis leads to a neglect of the 
role of true drivers of health disparities relevant to current health, such as socioeconomic factors and structural racism.3

In response, there is a growing momentum within the medical community to reassess and, where necessary, eliminate 
race-based adjustments in clinical algorithms. However, simply removing race-based adjustments may inadvertently 
worsen algorithmic fairness because the clinical goal and operational context of the model plays a significant role.2

This narrative review examines historical misconceptions, primarily from the United States and the United Kingdom, 
that have embedded race into clinical algorithms. We adopt an interdisciplinary analytic framework, drawing on 
historical epidemiology, public health ethics, and fairness metrics to examine the origins, consequences, and reform of 
race correction in clinical algorithms. We also incorporate recent guidance and highlight actionable strategies for clinical 
researchers, epidemiologists, and health data scientists to improve algorithmic fairness and equity in healthcare.

Historical Background
Ironically, the lungs - organs highly influenced by environmental factors - were among the first to be mischaracterized by 
the flawed genetic determinism that underpins many race-based medical adjustments. The development of lung function 
measurement, as meticulously documented by the late Lundy Braun,6–8 illustrates how epidemiological oversights, such 
as confirmation bias, causal misinference and residual confounding, contributed to the emergence of race correction.

The origins of technical race correction in medicine can be traced to the mid-19th century with the invention of the 
spirometer by Dr. John Hutchinson at University College London.6,8 Hutchinson’s spirometer gained acclaim for 
quantifying the relationship between height and lung capacity through compelling visual data, lending both biological 
and statistical credibility to the device.

In the United States (US), the spirometer was quickly co-opted to reinforce racial hierarchies. Samuel Cartwright, 
a plantation physician, adapted the device to compare lung function between enslaved Black Americans and free White 
Americans. Using data that showed Black individuals had, on average, 20% lower lung function, Cartwright concluded 
that this disparity was evidence of Black people’s supposed biological fitness for enslavement.9 Subsequent researchers 
observed similar racial and ethnic disparities in lung function, but influenced by confirmation bias, attributed these 
differences to innate biology without critically examining alternative explanations.6,8 They overlooked residual con
founding of their causal biological theory by social and environmental factors such as malnutrition, poor living 
conditions, and limited access to healthcare.

However, the nature above nurture hypothesis did not go unchallenged at the time. Black scholars, including 
prominent mathematician Kelly Miller, criticized these arguments. Miller dismantled the notion of a “malignant, 
capricious ‘race trait’” with mathematical precision, exposing the flawed reasoning underpinning these claims.8,10 

However, these critiques did not receive the attention they deserved and the belief in race-based differences in lung 
capacity endured in the medical literature for the next two centuries.

By the 1960s, the rise of genetics as a dominant scientific paradigm further sidelined environmental explanations for 
racial disparities in health outcomes.7 A pivotal 1974 study published in The International Journal of Epidemiology 
compared lung function between Black and White asbestos workers but failed to account for the complex social and 
environmental factors at play.11 The study reported a 13% difference in lung function, which was subsequently encoded 
(with modifications) into spirometers and the corresponding software worldwide. These artificial uplifts in lung function 
for people identified as Black or Asian raised the bar for a clinical diagnosis and removed the role of true drivers of 
health disparities, such as socioeconomic factors and structural racism.3 Despite objections, such as those from Jonny 
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Myer in apartheid South Africa, who highlighted social determinants over inherent racial traits, these adjustments have 
persisted and have potentially underdiagnosed lung disease in vulnerable minority populations across the world.12 Myer 
was an early advocate for universal lung function standards to ensure equitable disease prevention and worker 
compensation.

By the late 20th century, race-based adjustments were widely incorporated into clinical algorithms, influencing 
decisions ranging from kidney transplant eligibility to birth plans and cardiovascular treatments.1,13 However, the 
early 2020s marked a turning point in the scrutiny of race-based medical practice. Firstly, the COVID-19 pandemic 
disproportionately impacted minority communities in high-income countries. While early discussions centered on 
biological factors like vitamin D, attention soon shifted to the real drivers, such as intergenerational living, supported 
in part by the availability of large, representative health datasets.14 Then, the murder of George Floyd catalyzed 
widespread calls for systemic reform under the banner of the Black Lives Matter movement. These two events have 
brought global attention to racial inequities across healthcare, education, and economy. In response, medical institutions 
began reassessing their practices and initiating reforms in education, clinical training, and healthcare delivery to address 
racial bias. For the first time, clinical algorithms incorporating race have faced unprecedented levels of scrutiny, ushering 
in a critical reevaluation of their role in perpetuating health disparities.

Modern Data Science and the Reproduction of Structural Bias
Despite growing awareness of racial bias in clinical algorithms, many contemporary data science practices continue to 
replicate discredited assumptions under the guise of neutrality. This has been powerfully critiqued by Ruha Benjamin 
(2019), who coined the term “The New Jim Code” to describe how seemingly progressive technologies can reinforce 
racial hierarchies.15 In the context of clinical algorithms, this manifests in models that exclude race as a variable but still 
encode racial bias through proxies, historical data, and structural inequities embedded in the healthcare system.

The illusion of neutrality in algorithmic design is sustained by the widespread belief that data are objective, apolitical, 
and detached from social context. But data are deeply shaped by the historical and institutional settings in which they are 
collected. Clinical datasets, for example, often encode longstanding disparities in healthcare access, diagnosis, and 
treatment. When these datasets are used to train algorithms without critical scrutiny, they risk reinforcing the very 
inequities they purport to mitigate. This dynamic aligns with Michel Foucault’s (1976) concept of biopolitics, where 
power operates through the regulation of populations and bodies by means of apparently neutral institutions, discourses, 
and technologies.16 Clinical algorithms, in this sense, are not simply tools for enhancing diagnostic precision; they are 
technologies of governance that can normalize structural racism under the banner of efficiency and scientific rationality.

For example, algorithms trained on electronic healthcare records (EHRs) may inherit biases from historical under
diagnosis or undertreatment of racialized groups. Even when race is excluded as an input, other variables, such as 
insurance status or comorbidity patterns, can serve as proxies, leading to disparate outcomes. Without deliberate efforts 
by researchers to identify and mitigate these patterns, algorithmic outputs may appear neutral while reproducing racial 
disparities in care.

This issue is particularly problematic in the case of proprietary algorithms and opaque AI systems, where the 
underlying data, model architecture, and decision-making are not publicly disclosed. Such opacity limits the ability of 
clinicians, patients, and regulators to scrutinize or challenge biased outcomes. It also undermines accountability, as 
developers can claim neutrality while concealing the assumptions and trade-offs embedded in their models. The lack of 
transparency in commercial AI tools applied to healthcare raises serious ethical concerns, especially when these tools 
influence high-stakes decisions such as diagnosis, treatment eligibility, or resource allocation.

Clinical Context Matters
Amid growing political and societal pressure, numerous medical organizations in the US and Europe are actively 
reassessing their use of race in clinical algorithms, with some institutions and researchers initiating the removal of race- 
based adjustments entirely.17–19 Algorithms in fields such as obstetrics and nephrology quickly implemented race 
redaction by 2021 as the biological justification for racial adjustments was particularly tenuous.13 However, other groups 
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have advocated for a cautious approach, warning that the removal of race - a strong predictive factor - could 
unintentionally exacerbate disparities.20–23

The transition to race-neutral Global Lung Function Initiative (GLI) equations demonstrates this delicate balance of 
aiming to improve equity while addressing concerns about the unintended consequences. In 2023, the European 
Respiratory Society (ERS) and American Thoracic Society (ATS) endorsed new GLI equations that entirely removed 
race as a variable by averaging lung function across groups.24 This transition from race-specific GLI-2012 to race-neutral 
GLI-Global equations is estimated to have enhanced health equity by improved recognition and early diagnosis of 
respiratory disease in Black people.25–27 A retrospective study that examined all patients listed for lung transplantation in 
the US between 2009–2015 found evidence that race-neutral equations may also improve access to lung transplantation 
in Black patients.28 In terms of lung-transplant priority, race-neutral equations were predicted to reduce inequities by 
reducing wait times for Asian and Black candidates by 4.3 days while increasing times for Hispanic and White 
candidates by 1.1 days.26 Eligibility for payments for impairment-based compensation were also estimated to double 
in Black adults and decrease by 25% in White adults.26

Despite these potential equity improvements, concerns regarding the unintended consequences of race-neutral GLI 
equations persist. Potential issues include overdiagnosis, exclusion of minorities from professions requiring lung function 
tests, denial of certain treatments such as lung cancer resection, and increased life insurance premiums.29 For example, 
modeling studies have indicated that race-neutral equations may increase disqualifications from professions requiring 
lung function tests, such as firefighting for Black adults while decreasing disqualifications for White adults.26 Another 
study presented hypothetical scenarios to American surgeons and found that switching to race-neutral PFT may reduce 
lung cancer surgery referrals for Black patients from 79% to 53%.22

Following a comprehensive review of the literature on race and ethnicity in clinical algorithms, The Agency for 
Healthcare Research and Quality (AHRQ) in the US provided a balanced perspective in 2024, concluding that the 
benefits and risks of race removal depend heavily on the specific clinical context.2 This suggests that, while race-based 
algorithms can perpetuate health disparities, their complete removal may inadvertently lead to underdiagnosis or under
treatment in certain populations. With growing confusion regarding how to approach race and ethnicity in clinical 
algorithms, a panel of 14 leading experts and stakeholders convened to provide some clarity.23 The outcome is a living 
document: The Guidance for Unbiased predictive Information for healthcare Decision-making and Equity (GUIDE).23 

The guidance is intended as a framework to consider trade-offs in the inclusion or exclusion of race in clinical algorithms 
and distinguishes algorithmic bias from fairness. The guidance cautions against race redaction without first exploring the 
context and goal-specific impact on algorithmic bias and fairness.

Therefore, researchers are tasked with carefully examining algorithmic bias on a case-by-case basis, considering the 
full pipeline from conception to dissemination.

How Can Epidemiologists Contribute to Improving the Algorithmic 
Fairness?
In 2019, the FDA mapped the Total Product Lifecycle (TPLC) approach on the US regulation of medical devices onto 
clinical algorithms using AI that could be considered devices.30 The comprehensive pipeline has since been updated to 
incorporate equity and methods to reduce bias in every phase.30 This ranges from considering which diseases to target to 
post-market performance surveillance. We adapted the framework and highlighted the roles and responsibilities of 
epidemiologists and health data scientists in this process. A summary is provided in Figure 1.

Conception
During the conceptualization of clinical algorithms, developers should consider health conditions and relevant care 
processes and prioritize diseases that disproportionately affect underserved populations. Engaging patients and community 
stakeholders from historically marginalized racial and ethnic groups during this initial phase could help identify disease- 
specific inequities and ensure that the algorithm addresses the unique challenges faced by these communities.31–33 Beyond 
engagement, involving co-production processes which entails involving patients and representatives from underserved 
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populations directly and throughout the development processes to increase both transparency and inclusiveness of the 
algorithms. Co-production means that any intervention (here algorithm) is informed by lived experiences and context- 
specific knowledge that may not be captured by medical data alone. The goal of the algorithm also needs to be clarified at an 
early stage to understand potential issues around bias versus fairness, as highlighted in The GUIDE.23 In the prediction 
context, bias refers to variations in accuracy across subgroups, due to a lack of validation of model predictors in minority 
groups. Whereas unfairness may arise in limited resource situations, where there are conflicts between fairness and 
priorities. For models where the primary goal is shared patient-clinician decision-making (eg, prostate biopsy referral), 
the main concern is bias due to differential accuracy across subgroups, resulting in low specificity of prediction model 
outcomes and over-investigation of individuals from minority groups.34–36 Whereas both bias and unfairness can arise in 
models intended to allocate finite health resources (eg, transplant prioritization). High accuracy in this context may not 
necessarily lead to equitable distribution of resources.37

Design
Diverse Teams and Samples
Once the condition and goal have been clarified and the next phase considers how the algorithm is designed. Involving 
patients and community members from historically marginalized racial and ethnic groups in initial qualitative research or 
algorithm co-development is central to creating inclusive and equitable healthcare solutions.31,32 For example, qualitative 
research suggests that patient-led approaches during the design phase may have avoided the incorporation of race in 
vaginal birth after c-section (VBAC) calculators that led to racial inequities in counseling.38 Researchers and developers 
who engage and recruit diverse teams of professionals and public members early in the process can draw on a wide range 
of perspectives, experiences, and cultural insights to proactively identify input variables, biases, and gaps in algorithm 
design and evaluation.39,40 This ensures that the algorithms are culturally appropriate, accessible, and effective for 
diverse communities.39–41 Engaging diverse communities in algorithm development will also require work to improve 
public trust in health research, data collection and use of health data in clinical algorithms, which historically have been 
lacking due to unethical research and neglect of diverse groups in recruitment to clinical research.42,43

New clinical algorithms are increasingly expected to demonstrate effectiveness, equity, and value for money in 
the real-world setting, which requires core expertise beyond epidemiology, medicine, and health data science during 
the design phases. For example, in their comprehensive review of the evidence base, the AHRQ emphasized the 
need for a move away from quantitative simulation and more direct observation and evaluation of the downstream 

Figure 1 An adapted framework highlighting the roles and responsibilities of epidemiologists and health data scientists in improving algorithmic fairness.
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consequences of clinical algorithms.2 By broadening the scope of expertise involved in the algorithm design-phase 
to include expertise in clinical practice, qualitative research, health equity, health economics, trials, and implemen
tation science, researchers can better anticipate and address potential challenges in clinical application and patient 
outcomes.

It is also important to identify or design the collection of a large representative dataset with minimal potential for 
current and historical bias. Ensuring the data represents the full diversity of the underlying population with large samples 
for minority groups is particularly important for accuracy and downstream mitigation. For example, in 2018, the AMA 
revised the pooled cohort equations for CHD by using a more diverse dataset.44 Although the original algorithm 
overestimated the risk for most patients, potentially leading to unnecessary treatment, the new version was significantly 
better at predicting risk, especially for Black Americans. A subsequent investigation reported that the revised algorithm 
improved equity by reducing differences in risk assessment and recommendations for statin use between Black and White 
patients.45

One of the advantages of using routinely anonymized EHRs for algorithm design in more socialized healthcare 
systems with fewer access restrictions, such as the UK, is that it provides researchers with access to large 
longitudinal datasets that are broadly representative of the underlying population. Many of the current QRISK 
algorithms implemented by the UK’s National Health Service for cancer, cardiovascular and kidney disease were 
derived using representative EHRs from primary and secondary health care settings.46,47 There have however been 
concerns about QRISK algorithms generalizability due to variation between general practices in coding style, 
completeness of data and patient case-mix (variation in risk factors for disease).48 Given the uncertainty, research 
has led to suggestions that these tools should be used with additional input including clinical interpretation and 
incorporation of causal risk factors that better capture the unmeasured heterogeneity between different general 
practices.48

Using data from the intended settings of an algorithm is important. If an algorithm is developed using data from 
populations with regular healthcare access but deployed in underserved communities with barriers to access including 
language barriers and discrimination,49 it risks perpetuating inequities due to differential access and disease detection. 
The age of the data also matters, as historical data often contain biases from misclassification, missing data, or historical 
inequities in care access and quality.50 Additionally, we should consider whether label bias affects the outcome, where 
measured and true outcomes may systematically differ by race or ethnicity.23 Such inaccuracies can lead to biased 
algorithms that misrepresent disease prevalence or severity across groups.

Measuring Race and Ethnicity
When developing clinical algorithms, it is important to consider the justification for incorporating race or ethnicity and 
offer a clear explanation when publishing findings. Specifically, consider whether including these factors might reinforce 
the flawed concept of race as a biological construct or if it was necessary to represent the impacts of systemic racism to 
address inequalities.2

If there are strong reasons to include or explore race for bias detection and mitigation, the next consideration is the 
measurement. Epidemiologists and health data scientists involved in algorithm development frequently work with pre- 
collected data using broad ethnic and racial categorizations and therefore have limited influence over how race and 
ethnicity were originally recorded. With routinely collected EHRs, where the data are intended for patient management 
rather than research, and data collection methods vary between patient- or clinician-collected, developers often deal with 
misclassification and missing data, which can hinder the evaluation of algorithmic bias and fairness across groups. While 
difficult to address in the short-term, it is possible to advocate for better explanation to the public as to why accurate 
ethnicity data needs to be collected, consistent collection and improved quality of ethnicity data as members of the 
HDRUK are doing in the UK.51 In countries such as France, Canada, and the Netherlands, the collection of data on 
protected characteristics such as race and ethnicity is often prohibited; therefore, addressing bias in these settings is not 
possible.
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Development
Adding or Replacing Variables
In some contexts, removing race from an algorithm may have no major impact on the model accuracy. A prospective 
cohort study of White, Black, Hispanic, and Asian adults found that race-neutral equations had similar accuracy to the 
race-specific version in terms of predicting chronic lower respiratory disease events and mortality.52 Initially developed 
in 2007, the VBAC calculator included race as a variable, assigning Black and Hispanic women a 15–18% lower 
likelihood of success than White women, despite no clear biological basis for this adjustment.13,53 Further external 
validation of the calculator in ethnically diverse cohorts in the US, Canada, and Sweden found no evidence that adding 
race categories meaningfully improved model performance.54,55

Several studies have shown that replacing race with other clinical variables can improve performance in terms of 
accuracy. For example, the race-neutral VBAC calculator introduced in 2021 replaced race with clinical factors such as 
chronic hypertension while maintaining equivalent model performance.56 In 2020, the American Heart Association 
(AHA) introduced the PREVENT model, a race-neutral alternative developed using over six million diverse electronic 
health records.57 By replacing race with biomarkers, medication history, and metrics of social deprivation, PREVENT 
demonstrated predictive performance comparable to that of the earlier ASCVD model across racial groups. However, 
improved or maintained model performance may not always translate into algorithmic fairness. For instance, while 
transitioning from ASCVD to race-neutral PREVENT maintained accuracy, it halved high-risk estimates for Black adults 
(10.9% vs 5.1%), potentially limiting their access to statins and other preventive interventions.58 Given the well- 
documented barriers Black patients face in accessing healthcare, some cardiologists have raised concerns that 
PREVENT could inadvertently worsen treatment disparities and exacerbate health inequities.

Accurately understanding and measuring causal social and biological determinants in large datasets is essential for 
developing clinical algorithms that reflect true health disparities, ensure equitable care, and avoid perpetuating biases or 
inaccuracies in decision making. The challenge for algorithm developers is identifying and measuring these variables and 
will likely require involvement of underserved communities in design as discussed above.

Social Determinants
Using race as a proxy for genetic or biological factors oversimplifies the complex social determinants of health (SDoH), 
which are often the true causes of observed differences in health outcomes.59 For example, a study that included 48,170 
NHANES participants found that adjusting for several SDoHs, including income, food security, and education, com
pletely mediated the 60% higher premature mortality observed for Black people relative to White.60 However, social 
determinants are not reliably coded in large-scale EHRs that are increasingly used to develop and validate clinical 
algorithms.61,62 While measures of social deprivation can be inferred from address data, these are often outdated, derived 
for a given area (not household), and sometimes categorized into quantiles, further aggravating precision. For example, 
the largest providers of UK EHRs include a composite measure of social deprivation determined at the area level, divided 
into quantile scores and last updated in 2011 following the Census.60,63 This is the deprivation measure used in the most 
recent QRISK CVD tool updated in 2024.46 However, the PREVENT score demonstrated that even an imprecise measure 
of SDoH can replace race and improve or at least maintain accuracy, although there are still disagreements regarding the 
outcomes for CVD treatment equity.58

Researchers have applied large language models (LLMs) to extract SDoH from EHR codes and free-text data with 
some success.64,65 For example, a machine learning (ML) analytic pipeline was applied to the EHRs of 10,192 US-based 
patients to estimate an individualized polysocial risk score (iPsRS) and help identify type II diabetic patients at a high 
social risk for hospitalization.65 The team applied causal AI techniques to identify modifiable risk factors and optimize 
algorithmic fairness. They found that individual-level SDoH (eg, marital status, financial, and educational status) was 
more important than contextual measures (eg, murder rate per 1000 population) for predicting hospitalization, but these 
had high levels of missingness in the EHRs. For instance, housing stability had a particularly strong predictive value but 
was missing in 58% of the cohort.

Rather than relying on routine clinical data to derive SDoH, external linkages with existing environmental, educa
tional, and social data sources at the household or person level are arguably the most effective and unbiased way to 
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obtain a more complete picture. Linking external data with electronic EHRs faces challenges in terms of accuracy 
because of inconsistent and incomplete data and acceptability, as patients and providers may have concerns about privacy 
and data use and governance. A lack of standardized protocols for data integration can exacerbate these issues. Future 
research on data linkage should focus on developing robust data standards and interoperability frameworks to enhance 
data accuracy, governance and public trust.66–68 Additionally, increasing stakeholder engagement and education can 
improve the acceptability and support of integrating SDoH data into EHRs.

Supporting the integration of external data sources, deployment of AI techniques, and the promotion of non-clinical 
data recording by healthcare professionals will all enhance capacity to capture SoDH and produce more precise, fair 
algorithms.

Biomarkers and Omics
In addition to better measuring the external environment, many researchers advocate the inclusion of biomarkers, 
including genomics, to create race-neutral algorithms by focusing on individual genetic profiles rather than ethnic and 
racial categories. These algorithms can theoretically reduce health disparities by identifying genetic risk factors specific 
to individuals rather than relying on racial generalizations that are a poor proxy for continuous human genetic diversity.

However, early examples of this personalized approach were not encouraging in terms of accuracy. For example, one 
of the first genetic tests approved in the US for the purpose of guiding treatment, in this case irinotecan chemotherapy, 
produced a “null” result for 20–30% of people with recent African ancestry compared with 0% for White Europeans.69 

Subsequent investigations on replacing or supplementing race with genetic data have shown more promise with improved 
kidney graft failure prediction70 and warfarin dosing for Black patients.71

Genetics plays a strong and relatively simple role in the outcomes of these three examples. For more complex 
diseases, such as CVD, the explanatory role of genetics is often weaker and multifactorial, involving many genetic 
variants generally compiled by researchers into disease-specific polygenic risk scores (PGS). The addition of PGS to the 
original CVD ASCVD risk tool resulted in modest improvements in 10-year CVD prediction for all ethnic categories 
examined (net risk reclassifications of 3–9%), but a limited impact on reducing ethnic variation in the C statistic used to 
measure model discrimination.72 In general, the portability of these tools, typically trained in European populations, to 
other racially and ethnically defined groups is demonstrably low.73 A recent analysis of the general PGS landscape has 
highlighted the poor performance of PGS in screening, prediction, and risk stratification.74 The cost-effectiveness of 
integrating genomic screening with clinical algorithms remains a subject of debate, alongside the issue of the equitable 
distribution and uptake of these services across diverse healthcare systems. By focusing on PGS and not questioning 
what we are attempting to measure, there is also the risk of reinforcing the genetic determinism that underlies 
problematic race-based algorithms. On balance, while genetic and PGS approaches may hold value in developing race- 
neutral algorithms for health outcomes with a strong genetic component, the value for more complex multifactorial 
diseases seems less promising. Focusing on methods to identify and incorporate strong SDoH may hold more value for 
developers of complex disease/prognosis algorithms.

The incorporation of circulating biomarkers has also been studied as an alternative to race in clinical algorithms, 
particularly in the field of kidney function. Following evidence of harm in terms of timely referrals, exclusion from trials, 
and kidney transplant lists, several major bodies, including the National Kidney Foundation, American Society of 
Nephrology, and the UK National Institute for Health and Clinical Excellence, simultaneously recommended the 
redaction of race from clinical algorithms estimating eGFR.4,75 Studies have characterized several biomarkers that 
may offer a more accurate and inclusive approach to estimating kidney function and other health metrics without relying 
on race as a variable.76,77 Cystatin C, beta-2 microglobulin, and beta-trace protein are emerging as promising alternatives 
for developing race-neutral algorithms for estimated glomerular filtration rate (eGFR).76–78 For example, race-neutral 
eGFR equations with creatinine and cystatin C are more accurate and result in smaller differences in observed versus 
eGFR between Black and non-Black patients than equations without race with either creatinine or cystatin C alone.78 

A systematic review on bias and accuracy in US-based eGFR equations supported the role of cystatin C but emphasized 
that the solution to the disproportionate burden of kidney failure on Black Americans is multifaceted and should also 
include effective disease prevention, tackling SDoH, and systemic racism.79
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Before incorporating new biomarkers, it is important to consider the evidence that these measurements are racially 
invariant to minimize the risk of bias in the algorithm output.80 Furthermore, any improvements in accuracy and 
reduction in bias resulting from the addition of biomarkers to existing algorithms will need to demonstrate value for 
health systems with finite resources. Even inexpensive biomarkers that significantly improve model discrimination may 
not be cost-effective.81

Bias Detection
An initial examination of the training data can identify imbalances or underrepresentation of certain groups. Analysts can 
identify potential algorithmic bias by breaking down model performance metrics (eg, C statistic, AUC) and explanatory 
power (eg, R2, pseudo R2) by ethnic and racial categories. For example, the most recent iteration of a CHD risk tool used 
extensively across the UKs National Health Service reported the C statistic for ethnic groups.46 This highlighted clear 
differences in model performance, and the addition of nine additional clinical variables had no strong impact on reducing 
these differences.

In addition to the performance measures, the clinical context and goal of the algorithm could necessitate multiple bias 
metrics.82 These might include anti-classification (effect of protected attributes on predictions), calibration (difference 
between predicted risk and observed risk), optimizing equalized odds (sensitivity and specificity are similar across all 
groups) and predictive parity (positive predictive values are similar across groups). However, the choice requires careful 
consideration of the goal of the model owing to compatibility issues.82 GUIDE recommends against the use of 
classification measures that are sensitive to disease prevalence (eg, sensitivity and specificity) when exploring bias.23 

Model inputs may also have undergone previous race adjustments, such as lung function tests. It is important to identify 
such variables and evaluate the possibility of eliminating adjustments in the main model, or as part of a sensitivity 
analysis.

Statistical Mitigation
For researchers that identify potential issues with algorithmic bias and fairness,23 a rapidly increasing number of 
statistical mitigation strategies have been reported to improve fairness for author-selected metrics.83,84 In some contexts, 
these algorithmic debiasing methods produce fairer models than removing race from training data.85

Opportunities for statistical bias mitigation broadly fall into three stages for AI (and traditional) modelling strategies: 
preprocessing, in-processing and postprocessing (Table 1).83,86

Preprocessing
Preprocessing refers to general data cleaning and the conversion of raw data into a format appropriate for analysis. It is 
possible to address problems identified with representativeness at this stage by rebalancing the data. For example, 

Table 1 Comparison of Data-Based Bias Mitigation Techniques Used in Clinical Algorithms Development

Development 
Stage

Description Reported Effects or Trade-offs

Preprocessing General data cleaning and conversion of raw data into a format appropriate 

for analysis. Techniques include probability weighting, oversampling, and 
SMOTE.

Effective in addressing representativeness 

issues but may introduce synthetic data 
artifacts.

In-processing Techniques applied during the training phase to reduce bias and introduce 
fairness goals. Methods include separate models by race, recalibration, and 

adversarial debiasing.

Can harmonize error rates but may lead to 
overfitting or miscalibration.

Post-processing Adjusting outcomes in a group-dependent manner after training without 

altering the classifier or data. Methods include race-specific thresholds and 

recalibration.

Partially reduces inequities but often 

insufficient alone.

Note: Data from these studies.83,86
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probability weighting or oversampling underrepresented groups and under sampling over representative groups. An 
alternative approach, termed the Synthetic Minority Oversampling Technique (SMOTE), generates plausible synthetic 
copies of the minority group through interpolation, maintaining diversity and not simply duplicating samples.87 The 
random forest ensemble approach rebalances data by taking bootstrap samples from the minority group, followed by 
equal samples from the majority.88 All these techniques perform well in the presence of marginal bias based on the 
results of simulations and application to real health data.88

In-Processing
In-processing refers to the techniques applied during the training phase of a model to reduce bias and to introduce 
fairness goals. The simplest option is to develop models separately by race or ethnicity, but this assumes that race 
necessarily interacts with other variables and can lead to implausible predictions owing to overfitting, particularly for 
smaller minority samples.44 Another option is to recalibrate the model to assign a greater weight to underrepresented 
groups.89 Researchers found that this method improved group-level calibration but also increased error rates when 
deriving new ASCVD risk estimators in the context of guideline-recommended thresholds.89 Forcing the use of racially 
invariant priors instead of fully deriving the algorithm from the training data can help reduce bias in AI models.30 This 
approach was adopted in the development phase of the first FDA-authorized autonomous AI diagnostic system aimed at 
the early detection of diabetic retinopathy in the primary care setting.80 The equalized odds constraint method selects 
a model that minimizes group-level differences in the true positive/negative and false positive/negative rates. This 
method successfully harmonized error rates for guideline-recommended thresholds in a 10-year ASCVD risk prediction 
model, but at the expense of increased miscalibration.89 A Quasi-Pareto Improvement approach was proposed to enhance 
the subgroup prediction performance and fairness of algorithms trained using thyroid nodule ultrasound image dataset.90 

Adversarial debiasing in an ML method applies penalties to model iterations, where the output can predict sensitive 
characteristics, such as race.91 This method performed well in ethnically debiasing COVID-19 predictions relative to 
other benchmarks using complex EHR data, achieving the best results with respect to equalized odds.91

However, in processing mitigation may not be sufficient to prevent bias in isolation. For instance, to address the issue 
of implausible CVD scores in Black Americans from an earlier algorithm, one group identified newer, more diverse 
cohorts and applied elastic net regularisation to select predictors and accommodated non-proportional hazards to reduce 
overfitting.44 The authors reported that these adjustments improved calibration and plausible risk scores across sub
groups, but the statistical measures were not sufficient without new diverse cohorts.44 In another example, adding 
a fairness constraint to penalize predictions that rely on race-reduced disparities in a model for postnatal depression were 
outperformed by pre-processing methods.85

Post-Processing
Most postprocessing techniques only adjust the outcomes in a group-dependent manner after training without altering the 
classifier or data. However, these post hoc mitigations are usually insufficient. For example, after identifying ethnic 
biases in a previously validated ML opioid misuse classifier, the research team attempted two post hoc mitigation 
experiments to reduce disparities in the false-negative rate.92 First, they applied race-specific thresholds and then 
recalibrated them according to racial subgroups. These methods only partially reduced inequities in treatment and 
education referrals and emphasized the need to consider bias across the full development pathway. Other methods, 
that are beyond the scope of this review but worth highlighting, include self-correcting LLMs.93

Dissemination
Reporting
To ensure fairness and accountability in clinical algorithm development, there needs to be strong emphasis on transparent 
and inclusive reporting. Sharing code and de-identified datasets fosters transparency, enabling independent validation, 
bias detection, and reproducibility. The lack of transparency, particularly for proprietary AI, was highlighted by the 
AHRQ in its recent review as a barrier to patient understanding and trust, implementation and bias evaluation.2 The use 
of precise and inclusive terminology can also help address historical injustices and systemic inequities in health 
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outcomes. A systematic review of articles published in The Epidemiology and American Journal of Epidemiology 
between 2020 and 2021 aimed to understand how race, ethnicity, and similar social constructs were operationalized, 
used, and reported.94 Although this review focused on the treatment of race as a confounder in causal research, there are 
several relevant recommendations on reporting that we have adapted and expanded for algorithm dissemination, as 
follows:

Clearly Define the Model’s Goal and Data Collection Methods 
Specify whether the model is intended for shared decision-making or resource allocation. Detail the methodology used to 
collect racial data, such as self-identification, observation, survey items, or clinical assignment, and where feasible, adopt 
standardized classifications like those used in censuses.

Report Health Outcomes by Racial Categories Transparently 
Present health outcomes for all racial categories alphabetically to facilitate comparisons of disparities without false 
hierarchies. Avoid aggregating racial groups unless there is compelling justification, particularly when differences exist in 
the prevalence or incidence of health outcomes. This practice ensures transparency and enhances the predictive accuracy 
of the model. If racial categories are combined, provide a clear rationale, such as addressing model nonconvergence, and 
use descriptive terms for the merged groups instead of labeling them as “other.”

Evaluate and Report Model Performance by Racial Groups 
Provide detailed metrics of model performance (eg, C-statistic, AUC, calibration slope/intercept) and explanatory power 
(eg, R²) by race and ethnicity. Explain how the bias was identified and mitigated. Consider tools like PROBAST to assess 
the risk of bias and applicability systematically.95

Ensure Transparency Through Open Sharing 
Improve transparency by sharing code and de-identified datasets with permanent identifiers to allow for independent 
validation, bias assessment, and reproducibility. Publish these resources with safeguards such as anonymization and 
governance frameworks to maintain privacy and foster ethical and secure collaboration.

Address Historical Context in Reporting Disparities 
When discussing racial and ethnic disparities, acknowledge historical injustices, as recommended by the American 
Medical Association (AMA).96 Use appropriate terminology, such as racism, structural racism, racial equity, or inequity. 
Refer to guidelines such as those provided by the AMA and APA for inclusive and accurate scientific language when 
referencing race and ethnicity.96,97

Education
One of the most powerful tools available to those of us involved with training the next generation of epidemiologists and 
health data scientists is education. Educational interventions on race have shown significant potential in reducing 
biological essentialism among university students, which can lead to racial bias in health care. For example, US 
undergraduate students taught to perceive race as a social construct rather than a biological characteristic, exhibited 
greater emotional distress over social inequality, and were more motivated to address these issues.98 Conversely, students 
primed to view race as a biological construct were more likely to see inequalities as unproblematic.98 Evidence from 
a study that randomly assigned undergraduate students to an educational intervention on race also supports the role of 
education in reducing biological essentialism.99 Other studies have focused on the impact of genetics education on high- 
school students. They found that traditional genetics education, which often emphasizes genetic differences between 
races, can inadvertently reinforce biological essentialism.100,101 However, when the curriculum was adjusted to highlight 
the social and environmental factors that influence genetic traits, students were less likely to adopt essentialist views. 
This suggests that the way genetics is taught can significantly influence students’ perceptions of race.

Institutions delivering education in epidemiology and health data science can leverage existing evidence to enhance 
undergraduate and postgraduate courses by incorporating comprehensive education on race as a sociopolitical construct. 
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Educational frameworks should also include sessions on equity, algorithmic bias, and fairness-aware design. This 
approach can help students understand how biases, stemming from historical inequities or biased data, manifest in 
algorithms and influence clinical decision-making, as illustrated by various examples in this paper. Raising awareness of 
the impact of race and ethnicity will equip future research leaders with the knowledge to critically evaluate and improve 
these algorithms. This effort should be supported by equitable structures and systems within research institutions and 
funding bodies.

Limitations
The collection and use of racial and ethnic data in healthcare differ widely across countries. This review predominantly 
focuses on research in the UK and the US, reflecting their sociopolitical histories and the availability of large health 
datasets with recorded racial and ethnic identities. Countries such as France, Canada, Germany and the Netherlands have 
limited ethnicity data collection owing to legal and cultural restrictions, which may render some recommendations 
developed in Anglo-American settings less applicable. Future research must explore how algorithmic bias manifests in 
diverse healthcare systems and how fairness can be achieved without relying on racial data.

While the discussion primarily addresses race-related biases, the underlying principles and strategies are broadly 
relevant to other protected characteristics such as gender, disability, and socioeconomic status. However, the focus of the 
review on race may inadvertently narrow the scope, underemphasizing intersectional biases and the interplay of multiple 
identities, which can interact and compound inequities in algorithmic outcomes. Intersectionality theory provides 
a framework for understanding how overlapping identities, such as race, gender, class, and disability, interact to produce 
compounded forms of disadvantage.102 For example, a clinical algorithm may misclassify Black women not only due to 
racial bias but also because of gendered assumptions embedded in the data and design.

While this review provides an overview of technical solutions, such as fairness metrics or statistical debiasing, these 
can also obscure the need for structural change. These tools are valuable, but they must be situated within a broader 
ethical and political framework that acknowledges the historical roots of racial bias in medicine and the ongoing impact 
of systemic racism.

Future Priorities for Epidemiologists
We have focused on the development and reporting of new clinical algorithms, however, many will never be imple
mented in a clinical setting.83,103 There are several reasons for low implementation, including a lack of transparency and 
limited IT infrastructure. In their comprehensive review, The AHRQ expressed concern over the lack of real-world 
evidence where disparities are potentially exacerbated due to structural inequities.2 For example, a recent review found 
that no clinical algorithms developed using EHRs and AI have been appraised in a real-world setting.83 Therefore, 
instead of developing new algorithms, research efforts could refocus on observing how implemented algorithms play out 
in clinical settings in terms of effectiveness, cost, and equity. Regular review and updating of existing algorithms to 
reflect evolving data and societal contexts should also be prioritized. Otherwise, the promise of equitable healthcare risks 
is undermined by the continued perpetuation of historical bias.

Conclusion
Dismantling racial bias in clinical algorithms presents a complex challenge that demands sustained attention from 
development through implementation. Researchers and clinicians have begun replacing race-based adjustments with 
race-neutral algorithms in areas such as pulmonary function testing and obstetrics, demonstrating that fairness can be 
improved without compromising diagnostic accuracy. However, the outcomes of these changes vary across clinical 
contexts. In some cases, it remains unclear whether race-neutral approaches reduce or inadvertently reinforce disparities 
highlighting the need for rigorous evaluation and proactive strategies to identify and mitigate bias.

Future efforts by epidemiologists and health data scientists should focus on incorporating diverse data sources, 
capturing the true social and biological determinants of health, implementing bias detection and fairness mitigation 
strategies, ensuring transparent reporting, and engaging with diverse communities to understand specific healthcare 
needs. Additionally, educating students and trainees on race as a sociopolitical construct is an important step towards 

https://doi.org/10.2147/CLEP.S527000                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Clinical Epidemiology 2025:17 658

Horsfall et al                                                                                                                                                                        

Powered by TCPDF (www.tcpdf.org)Powered by TCPDF (www.tcpdf.org)



raising awareness and achieving health equity. It is also essential to monitor, evaluate, and refine our approaches in real- 
world settings to ensure that clinical algorithms serve all patients equally and effectively.

At the same time, algorithmic bias must be recognized not merely as a technical flaw, but as a reflection of deeper 
structural inequities embedded in the data and systems that epidemiologists engage with. Addressing this bias requires 
more than statistical fixes - it demands a commitment to justice, transparency, and accountability in how data are 
collected, interpreted, and applied. For epidemiologists, algorithmic equity is not just a theoretical concern but 
a professional and ethical responsibility. By critically examining the assumptions behind data and models, advocating 
for inclusive practices, and collaborating across disciplines, epidemiologists can play a pivotal role in ensuring that 
algorithms promote health equity. This is not only a methodological challenge but a moral imperative.
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