
Completeness Theorems for
Behavioural Distances and

Equivalences

Wojciech Krzysztof Różowski

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of

University College London.

Department of Computer Science

University College London

August 12, 2025

2

I, Wojciech Krzysztof Różowski, confirm that the work presented in this thesis

is my own. Where information has been derived from other sources, I confirm that

this has been indicated in the work.

Abstract

In theoretical computer science, it is customary to provide expression languages

for representing the behaviour of transition systems and to study formal systems

for reasoning about the equivalence or similarity of behaviours represented by

expressions of interest. The key example of this approach is Kleene’s regular

expressions, a specification language for deterministic finite automata, as well as

complete axiomatisations of language equivalence of regular expressions due to

Salomaa and Kozen.

The first part of this thesis studies axiomatisations of behavioural distances.

Originally considered for probabilistic and stochastic systems, behavioural distances

provide a quantitative measure of the dissimilarity of behaviours that can be defined

meaningfully for a variety of transition systems. As a first contribution, we consider

deterministic automata and provide a sound and complete quantitative inference

system for reasoning about the shortest-distinguishing-word distance between lan-

guages represented by regular expressions. Then, we move on to a more complicated

case of behavioural distance of Milner’s charts, which provide a compelling setting

for studying behavioural distances because they shift the focus from language equiv-

alence to bisimilarity. As a syntax of choice, we rely on string diagrams, which

provide a rigorous formalism that enables compositional reasoning by supporting

a variable-free representation where recursion naturally decomposes into simpler

components.

The second part focuses on generative probabilistic transition systems and

presents a sound and complete axiomatisation of language equivalence of behaviours

specified through the syntax of probabilistic regular expressions (PRE), a probabilis-

Abstract 4

tic analogue of regular expressions denoting probabilistic languages in which every

word is assigned a probability of being generated. The completeness proof makes

use of technical tools from the recently developed theory of proper functors and

convex algebra, arising from the rich structure of probabilistic languages.

Impact Statement

Outside academia: The discipline of formal verification enables making precise

logical statements about computer systems to guarantee their correctness. This

relies on the study of models of computation, which are mathematical objects

representing the semantics of systems of interest. In theoretical computer science,

it is customary to model computations as transition systems. This thesis is part

of a larger research programme aimed at providing specification languages. for

representing transition systems and studying formal systems for reasoning about the

equivalence or similarity of systems represented by the syntax. One of the central

kinds of problems attached to this field of research are completeness problems, which

concern showing that every semantic equivalence or similarity of transition systems

can be witnessed through the means of axiomatic manipulation. Having a complete

axiomatisation allows one to fully resort to syntactic reasoning, which is particularly

amenable to implementation and thus desirable from the automated reasoning point

of view.

Kleene algebra (KA) [Koz94] is a central example of such a specification

language. KA is a foundation of tools relevant to industry, such as NetKAT [And+14],

which enables reasoning about the behaviour of packet-passing Software-Defined

Networks, or cf-GKAT [Zha+25], which can be used to certify the correctness of

decompilation algorithms. This thesis particularly focuses on the semantic notions

of behavioural distances and probabilistic language equivalence, where it makes its

main contributions. Behavioural distances [BW01; Des+04] replace the strict notion

of equivalence of states with a more liberal quantitative measure of dissimilarity. This

is particularly desirable for stochastic or probabilistic systems, where a tiny observed

Impact Statement 6

perturbation would lead to inequivalence of states. Behavioural distances have been

successfully applied to Markov decision processes within reinforcement learning

(RL), with the key example being MICo (matching under independent couplings)

distance [Cas+21]. Additionally, probabilistic language equivalence, axiomatised

in Chapter 4 of this thesis, underpins Apex [Kie+12], an automated equivalence

checker for probabilistic programs.

Inside academia: This thesis makes original contributions within the field

of theoretical computer science. The results in Chapter 2 are an adaptation of a

concrete completeness result for behavioural distance of probabilistic transition

systems to an instance of an abstract coalgebraic framework. Besides the basic

examples provided recently by Lobbia et al [Lob+24], the content of Chapter 3 is the

first work to propose a complete axiomatisation of a quantitative calculus of string

diagrams through a systematic axiomatic foundation. Finally, Chapter 4 provides

an alternative axiomatisation of language equivalence of generative probabilistic

transition systems [GSS95] through a simple generalisation of Kleene’s regular

expressions. The completeness result makes use of recently developed theory of

proper functors [Mil18] and provides further evidence that the use of coalgebras for

proper functors provides a good abstraction for completeness theorems.

The entire material presented in this thesis has been accepted or is under review

for several highly-ranked conferences in theoretical computer science. The results

of this thesis have been disseminated to the computer science community through a

series of seminar talks across the United Kingdom, the United States, and Germany.

Acknowledgements

First and foremost, I would like to thank my supervisor, Alexandra Silva, for giving

me the opportunity to embark on this PhD and for her support over the past four

years. I am deeply grateful for the many fantastic opportunities she exposed me to,

as well as for her invaluable academic and career advice. I sincerely appreciate her

time, energy, and trust in me. I am also thankful to Alexandra for hosting my visits

to Cornell and for making my time in Ithaca both enjoyable and productive. I greatly

valued having Alexandra in London during my final year, as I was writing up my

thesis and planning my next career steps.

I am very grateful to my examiners, Filippo Bonchi and Clemens Kupke, for

reading my thesis so thoroughly and offering valuable suggestions to improve the

final version of the manuscript. Thanks to them, the final viva was a fantastic

discussion, which generated many interesting ideas. I would also like to thank

Samson Abramsky and Robin Hirsch, who examined my first- and second-year vivas.

Their feedback provided many useful pointers that helped me in the later stages of

my PhD.

I would like to acknowledge all of my coauthors on the papers I worked on

during my PhD. Thank you to Alexandra, Barbara, Dexter, Fabio, Gabriele, Johanna,

Jurriaan, Keri, Matina, Paul, Ralph, Sebastian, Spencer, Stefan, Tobias, and Todd.

Collaborating with them has been immensely rewarding, and I have learned a great

deal from the work that we have done together.

At the midpoint of my PhD, I had the privilege of participating in the Adjoint

School 2023 in Applied Category Theory. Collaborating with Barbara König was

one of the highlights of my PhD and introduced me to behavioural distances, which

Acknowledgements 8

ultimately became the central focus of my thesis. I am very grateful to Barbara for

hosting two highly productive visits to the University of Duisburg-Essen. I would

also like to thank Giorgio Bacci and Ana Sokolova for the insightful discussions that

contributed to the content of Chapters 2 and 4 of this thesis, respectively.

In the summers of 2023 and 2024, I had the privilege of interning with the

Automated Reasoning Group at Amazon Web Services in Seattle, where I worked

alongside many wonderful people. I am grateful to Rustan Leino and Leo de Moura

for the many enlightening discussions we shared during my time there, and especially

to Leo for offering me an exciting step forward in my career. I would also like to

thank my managers, George-Axel Jaloyan and Daniel Schoepe, as well as Sean

McLaughlin, for making both internships such a positive and rewarding experience.

I would like to thank the organisers of the Dagstuhl Seminar on Quantitative

Logic and Behavioural Metrics, as well as the two Bellairs Workshops on Proba-

bilistic Semantics and Quantitative Logic, for inviting me to participate. As a junior

academic, it was a real pleasure to engage with the research community in my field

in such stimulating and welcoming environments.

I would not have embarked on a PhD if it weren’t for the inspiring academics at

the University of Southampton, who sparked my passion for theoretical computer

science and supported me throughout my academic journey. I am especially grateful

to Julian Rathke for supervising my Bachelor’s thesis and for his invaluable help

during the PhD application process. My heartfelt thanks also go to my exceptional

lecturers, Corina Cîrstea and Paweł Sobociński, whose teaching made me fall in

love with theory and who have supported me ever since. I would also like to thank

Enrico Gerding, who was my personal academic tutor at the time, for his guidance

and support.

If I were to properly thank each of my friends, I would probably need to write

a separate thesis. During my time at UCL, I was lucky to be surrounded by many

incredible people - close friends, flatmates, concert and rave companions, who made

those years full of joy, laughter, and unforgettable experiences. Thank you Alesandro,

Antonio, Billy, Cheng, Delia, Fred, Gerco, Kevin, Leo, Linpeng, Louis, Mateo, Jaš,

Acknowledgements 9

Katya, Tiago, Rafał, Ralph, Robin, Sam, Stefan, Tao, and Yll. Beyond the Gower

Street office, at the very start of my PhD, I had the chance to collaborate remotely

with Todd. He quickly became a close friend, generously sharing his knowledge and

providing amazing support ever since. During my time in Seattle, I was fortunate

to hang out with George and Tabea, who accompanied me on several fun trips and

after-work activities.

Beyond the friends I made through work, I was also fortunate to have a wonder-

ful support network of people who made the past four years not only bearable but

truly fun, and who provided many much-needed positive distractions. Thank you

Aiden, Behrad, Bennie, Daniela, Dominik, Gaby, Iwo, Jackie, Juliusz, Lucy, Maciek,

Molly, Natalie, Nima, Ola, Olga, Patryk, and Zuza.

I would like to thank my parents, to whom I dedicate this thesis. I am deeply

grateful for everything they have done for me throughout my life, and I cannot

overstate how much their love and support have meant to me. Simply put, I would

never have made it this far without them. I feel incredibly lucky to call this pair of

amazing human beings my parents. Additionally, I am deeply grateful to my aunt

Grażyna for her financial support during my undergraduate years, which greatly

helped me along the way.

Finally, I would like to thank my wonderful girlfriend, Kinga, for her love and

support. I feel incredibly lucky to have such a caring and inspiring partner by my

side. The time I have spent with her has been one of the greatest highlights of my

journey, and I am truly honoured to have her in my life.

Contents

1 Introduction 15

1.1 Behavioural Distances . 18

1.2 Probabilistic Language Equivalence 19

1.3 Coalgebra . 20

1.4 Overview of the thesis . 21

I Behavioural Distances 25

2 Behavioural Distance of Regular Expressions 26

2.1 Preliminaries . 29

2.1.1 Coalgebra . 29

2.1.2 Deterministic automata . 32

2.1.3 Regular expressions . 33

2.1.4 Brzozowski derivatives . 33

2.1.5 Pseudometric spaces . 36

2.1.6 Banach spaces . 38

2.2 Behavioural distance of deterministic automata 39

2.2.1 Coalgebraic behavioural distances 39

2.2.2 Behavioural distance of deterministic automata via functor

lifting . 40

2.3 Quantitative Axiomatisation . 42

2.3.1 Quantitative equational theories 42

2.3.2 Quantitative algebras . 43

Contents 11

2.3.3 Quantitative algebra of regular expressions 44

2.3.4 The lack of the fixpoint axiom 49

2.4 Completeness . 53

2.4.1 Behavioural distance of finite-state automata 53

2.4.2 Completeness result . 58

2.5 Discussion . 60

3 Behavioural Distance of Nondeterministic Processes 63

3.1 Preliminaries . 65

3.1.1 Charts . 65

3.1.2 Algebra of regular behaviours 67

3.1.3 Behavioural distance of precharts 71

3.1.4 Monoidal categories . 79

3.1.5 Conway theories . 81

3.1.6 Trace-fixpoint correspondence 83

3.1.7 Int construction . 83

3.2 Monoidal Syntax . 84

3.3 Monoidal semantics . 86

3.3.1 RegBeh as a Conway theory 90

3.3.2 Pseudometric structure on RegBeh 93

3.3.3 A category of bidirectional regular behaviours 101

3.3.4 Interlude: Connections to enriched category theory 102

3.3.5 Functorial semantics . 105

3.4 Axiomatisation . 106

3.5 Completeness . 112

3.5.1 Left-to-right diagrams . 112

3.5.2 Co-copying . 117

3.5.3 One-to-n diagrams . 122

3.5.4 Completeness result . 128

3.6 Discussion . 133

Contents 12

II Probabilistic Language Equivalence 136

4 Probabilistic Regular Expressions 137

4.1 Overview . 140

4.1.1 Syntax . 140

4.1.2 Language semantics . 141

4.1.3 Generative probabilistic transition systems 142

4.1.4 Axiomatisation of language equivalence of PRE 143

4.2 Preliminaries . 145

4.2.1 Locally finitely presentable categories 146

4.2.2 Monads and their algebras 146

4.2.3 Generalised determinisation 147

4.2.4 Subdistribution monad . 148

4.2.5 Positive convex algebras 149

4.2.6 Rational fixpoint . 153

4.3 Operational semantics . 154

4.3.1 Language semantics of GPTS 154

4.3.2 Antimirov derivatives . 159

4.3.3 Roadmap to soundness and completeness 164

4.4 Soundness . 167

4.4.1 Step 1: Soundness with respect to bisimilarity 167

4.4.2 Step 2a: Fundamental theorem 168

4.4.3 Step 2b: Algebra structure 178

4.4.4 Step 3: Coalgebra structure 183

4.4.5 Step 4: Soundness result 191

4.5 Completeness . 192

4.5.1 Step 1: Algebra structure 194

4.5.2 Step 2: Proper functors . 195

4.5.3 Step 3: Systems of equations 202

4.5.4 Step 4: Correspondence of solutions and homomorphisms . 209

4.5.5 Step 5: Establish the universal property 214

Contents 13

4.6 Discussion . 217

4.6.1 Related work . 218

4.6.2 Future work . 219

5 Conclusions and Future Work 221

5.1 Completeness theorems for behavioural distances 221

5.2 Probabilistic language equivalence 223

Appendices 225

A Omitted proofs from Chapter 4 225

A.1 Couplings of subdistributions . 225

A.2 Relation lifting . 226

A.3 Soundness argument . 230

List of Figures

2.1 Three inequivalent DFAs . 26

2.2 Axioms of the quantitative equational theory REG for e, f ,g ∈ RExp

and a ∈ A. 47

3.1 Two charts at distance 1
4 and their corresponding representations as

string diagrams . 64

3.2 Equational axioms for regular behaviours. 107

3.3 Quantitative axioms for regular behaviours. 109

4.1 Axioms for language equivalence of PRE. The rules involving the

division of probabilities are defined only when the denominator is

non-zero. The function E(−) provides a termination side condition

to the (Unique) fixpoint axiom. 144

Chapter 1

Introduction

One of the motivations for the mathematical study of the models of computation

stems from the desire for precise and formal reasoning about the correctness of

computer systems. These theoretical foundations enable formal verification experts

to prove that systems deployed in safety-critical areas, such as avionics or health-

care, behave as expected. In theoretical computer science it is customary to model

computations as state transition systems, which are discrete models where a set of

states is equipped with a notion of one-step observable behaviour, describing how

the system evolves. Typical examples include finite automata, Kripke frames, and

Markov chains among many others.

The central topic of this thesis are axiomatisations of behaviour of transition

systems. By this we mean providing expression languages for representing the

behaviour of transition systems and the study of formal systems for reasoning about

equivalence or similarity of behaviours represented by expressions of the interest.

The interest in axiomatising behaviour of transition systems originates from

the seminal work of Kleene on regular expressions [Kle51]. In his influential paper

from 1951, Kleene introduced deterministic finite automata (DFAs), which are the

fundamental model of sequential deterministic computations. Each state of a DFA

can be associated with a formal language, a collection of strings that are accepted

starting from a given state. This characterises an important class of formal languages,

known as regular languages. Classically, two states are equivalent if they recognise

the same language. In the same paper, Kleene proposed regular expressions, which

16

are an algebraic specification language for DFAs and proved that both formalisms

are equally expressive through a result known nowadays as Kleene’s theorem. As an

open problem, he left a completeness question: are there a finite number of rules that

enable reasoning about language equivalence of regular expressions?

Shortly after Kleene’s paper, Redko [Red64] demonstrated that one cannot use

a finite number of equational axioms to axiomatise the language equivalence. But

the search for axiomatisation made of more expressive rules continued. The first

answer came in 1966 from Salomaa [Sal66], who presented two axiom systems. One

was infinitary, and the other used finite equations along with an implicational rule

encoding Arden’s lemma [Ard61] for formal languages. While Salomaa’s implica-

tional axiomatisation later became a blueprint for inference systems for reasoning

about semantic equivalence or similarity of transition systems, this formal system

was not algebraic. Essentially, the implicational rule relied on the productivity

side-condition called empty word property (EWP) that caused the resulting axioma-

tisation to be unsound under substitution of letters by arbitrary expressions. This

problem has motivated several researchers including Conway [Con12], Krob [Kro90]

and Boffa [Bof90] to pursue the problem of obtaining algebraic axiomatisation of

language equivalence of DFAs, eventually leading to the celebrated completeness

result of Kozen [Koz94]. The inference system of Kozen is known nowadays under

the name Kleene Algebra (KA) and it forms a basis of several formal systems for

equational reasoning about imperative programs [KS96], packet-passing software

defined networks [And+14], and concurrent programs [Kap+18; Wag+19] among

many others.

Besides DFAs, automata theorists have studied many variants of automata,

including nondeterministic [RS59], weighted [Sch61] and probabilistic [Rab63]

ones, usually focusing on the notion of language equivalence or inclusion. At the

advent of process algebra in the 1980s, Milner and Park brought the concept of

bisimilarity [Par81], a notion of equivalence finer than language equivalence, that

was motivated by the needs of the study of concurrency theory and models such

as labelled transition systems (LTSs). Essentially, language equivalence is a linear-

17

time notion, as it hides the precise moment of resolving nondeterministic choice

from the external observer. At the same time, bisimilarity allows for a more fine-

grained comparison of behaviours by looking at the exact moment of resolving the

nondeterministic choice.

Milner [Mil84] considered a variant of LTSs that he called charts and studied

the associated problem of axiomatising the bisimilarity of charts. Interestingly, while

the syntax of regular expressions can be used to specify behaviours of charts, it is

not expressive, that is there exist behaviours that cannot be specified using Kleene’s

syntax. Instead, Milner proposed a more general language called the algebra of regu-

lar behaviours (ARB) featuring binders, action prefixing, and a recursion operator.

The paper introducing ARB also provided a suitable generalisation of Salomaa’s

non-algebraic axiomatisation and demonstrated its soundness and completeness with

respect to the bisimilarity of charts.

The completeness results of Salomaa, Kozen, and Milner mentioned above are

prototypical instances of the vast strain of research that has been of particular interest

to theoretical computer scientists for decades. Given a transition system model and

an associated notion of semantic equivalence, having a complete axiomatisation

allows one to reason about model behaviour through the syntactic manipulation

of terms of the specification language, which is well-suited for implementation,

automation, and formal reasoning. Each time when the needs of modelling computer

systems result in a new transition system model or an associated notion of semantic

equivalence, it is natural to ask about the complete axiomatisation.

This thesis provides contributions to the above outlined field of axiomatisations

of behaviours of transition systems in two orthogonal directions.

1. The first part of the thesis is concerned with the study of formal systems for

quantitative reasoning about behavioural distances, that replace conventional

notions of behavioural equivalence with a quantitative measure of how close

the behaviour of two states of transition systems is.

2. The second part focuses on probabilistic transition systems and presents a

sound and complete axiomatisation of language equivalence of behaviours

1.1. Behavioural Distances 18

specified through the syntax of probabilistic regular expressions.

We now provide a brief outline of each of these directions.

1.1 Behavioural Distances
In many contexts, especially when dealing with probabilistic or quantitative models,

focusing on exact equivalence of behaviours such as language equivalence or bisim-

ilarity is too restrictive. A tiny perturbation in observed probability or weights of

transition can deem two states inequivalent. Instead, it is often more meaningful to

measure how far apart the behaviours of two states are.

This has motivated the development of behavioural distances, which endow

the state spaces of transition systems with (pseudo)metric spaces quantifying the

dissimilarity of states. In such a setting, states at distance zero are not necessarily

the same, but rather equivalent with respect to some classical notion of behavioural

equivalence. In a nutshell, equipping transition systems with such a notion of distance

crucially relies on the possibility of lifting the distance between the states to the

distance on the one-step observable behaviour of the transition system.

Behavioural distances first appeared in the context of probabilistic transition

systems [Des+04; BW01], where one-step observable behaviour forms a probability

distribution. In such a setting, in order to lift distances from the state space to

one-step observable behaviour, one can rely on the classic Kantorovich lifting from

transportation theory [Vil09].

More generally, behavioural distances are not limited to probabilistic or

weighted systems; instead, they can be defined meaningfully for a variety of transi-

tion systems [Bal+18]. One of the simplest instances is deterministic finite automata,

which can be equipped with a shortest-distinguishing-word distance [BKP18], where

the longer the smallest word that can witness inequivalence of two states is, the

closer the behaviour of compared states is. To illustrate that, given an alphabet

A = {a}, we have that a state recognising the language {a,aa,aaa} is closer to the

one recognising {a,aa,aaa,aaa} rather than {a}.

The study of axiomatisations of behavioural distances have mainly focused on

1.2. Probabilistic Language Equivalence 19

concrete probabilistic cases [Bac+18a; Bac+18b; Bac+18c]. Axiomatisations of other

important instances of behavioural distances are still underexplored. The main goal of

the first part of this thesis is to initiate the study of axiomatisations and completeness

problems for behavioural distances beyond the concrete probabilistic instances. Our

starting point is the work of Bacci, Bacci, Larsen and Mardare [Bac+18a], who

gave a sound and complete axiomatisation of branching-time behavioural distance

of terms of a probabilistic process calculus.

1.2 Probabilistic Language Equivalence

In 1963, Rabin introduced probabilistic automata [Rab63]. This model captures the

simple notion of randomised computation and acts as an acceptor for probabilistic

languages. Under such semantics, each word over some fixed alphabet is associated

with a weight from the unit interval capturing how likely the word is to be accepted.

Throughout the years, Probabilistic Automata were deeply studied from an algorith-

mic point of view [Kie+11] that eventually enabled the development of practical

verification tools for randomised programs [Kie+12].

In the process algebra community, Larsen and Skou [LS91] devised a notion of

probabilistic bisimilarity, while Stark and Smolka [SS00] provided a probabilistic

process calculus featuring binders and a recursion operator and gave a sound and

complete axiomatisation of probabilistic bisimilarity of terms of their calculus.

The later work of Silva and Sokolova [SS11] showed that one can extend Stark

and Smolka’s system with additional axioms characterising probabilistic language

equivalence to obtain a complete axiomatisation of language equivalence.

While the result of Silva and Sokolova enables the use of the process algebraic

syntax of Stark and Smolka for reasoning about probabilistic language equivalence, it

is natural to ask if one could devise a simpler, binder-free specification language in the

style of Kleene’s Regular Expressions and provide a more streamlined axiomatisation

in the style of Salomaa.

This problem is the central motivation for the second part of this thesis. One of

the main inspirations for that comes from the probabilistic pattern matching com-

1.3. Coalgebra 20

munity, where researchers already considered regular expression-like operations

to specify probabilistic languages [Ros00]. They did so by replacing the union of

languages and Kleene’s star from the usual regular expressions with their proba-

bilistic counterparts, which respectively can be seen as a convex combination and

a form of the Bernoulli process. At the same time, the precise connection of such

syntaxes to the transition systems model was under-explored [Bee17] and the topic

of axiomatisation was not tackled at all.

1.3 Coalgebra

Both behavioural distances and probabilistic language equivalence can be studied

abstractly through the unifying framework of the universal coalgebra [Gum00;

Rut00]. Coalgebras provide an abstract and uniform treatment of transition systems

through the language of category theory. Generally speaking, transition systems can

be seen as pairs consisting of a set of states and a transition function, mapping each

state to its one-step behaviour. The coalgebraic outlook allows abstracting away the

features of the one-step behaviour of the transition system, such as inputs, labels,

nondeterminism, probability, and the like through the notion of a type, formally

modelled as an endofunctor on the category of sets and functions. Given a type

functor, one can uniformly instantiate abstract results concerning the transition

systems of the interest.

In particular, each type of functor canonically determines a notion of behavioural

equivalence of states. Under mild set-theoretic size constraints on the type functor,

one can construct a final coalgebra, which provides a universal domain of behaviours

of transition systems of interest. For example, the final coalgebra for the functor

describing deterministic automata is isomorphic to the set of all formal languages

over some alphabet [Rut00]. Concrete instances of coalgebraic behavioural equiva-

lence usually capture variants of bisimilarity and coincide with the notions known

for the literature such as bisimilarity of LTSs or probabilistic bisimilarity of Larsen

and Skou [VR99].

Modelling finer notions of semantic equivalence can be phrased by changing

1.4. Overview of the thesis 21

the base category over which the type functor is defined to a more structured setting

than sets and functions. For example, one of the ways to model probabilistic

language equivalence in the language of coalgebra is to work with coalgebras for

an appropriate type functor over the category of positive convex algebras [Sil+10;

SS11]. In this category, the final coalgebra is precisely carried by the set of all

probabilistic languages over some alphabet.

At the same time, the recent work on coalgebraic behavioural distances [Bal+18]

provided a categorical generalisation of Kantorovich lifting to lifting endofunctors

over the category of sets to the category of pseudometric spaces and nonexpansive

maps between them. Final coalgebras for type functors obtained through such liftings

come equipped with a pseudometric between behaviours. Such a coalgebraic out-

look enables generalising the notions of behavioural distances beyond probabilistic

transition systems and is extensively used in the first part of the thesis.

Using the theory of universal coalgebra for axiomatisation problems allows ab-

stracting away the generic steps of completeness theorems and instantiating abstract

categorical results to obtain concrete properties of transition systems of interest. For

example, the thesis of Silva [Sil+10] follows the pattern introduced by Jacobs [Jac06]

and casts completeness results as establishing appropriate universal properties in

the categories of coalgebras. Similarly, the recently developed theory of rational

fixpoints [Mil10] for coalgebras for proper functors [Mil18] provides a useful gen-

eralisation of the notion of regular languages to coalgebraic generality. One of the

concrete instances of such a theory enables characterising the analogue of regular

languages in the case of probabilistic languages [SW18] and underpins key results in

the second part of the thesis.

1.4 Overview of the thesis

Having outlined the scope and the main aims of this thesis, we summarise below the

content of each chapter and provide references to the main technical results. The

description of each content chapter contains a table providing a high-level overview

of the studied axiomatisation problem.

1.4. Overview of the thesis 22

Chapter 2 presents a sound and complete axiomatisation of the shortest-

distinguishing-word distance between formal languages represented by regular

expressions. The axiomatisation relies on a recently developed quantitative analogue

of equational logic [MPP16], allowing manipulation of rational-indexed judgements

of the form e ≡r f meaning the distance between terms e and f is less or equal to

r. The technical core of the chapter is dedicated to the completeness argument that

draws techniques from order theory and Banach spaces to simplify the calculation of

the behavioural distance to the point it can be then mimicked by axiomatic reasoning.

Summary of Chapter 2

Model deterministic finite automata (DFA)

Syntax e, f ∈ RExp ::= 0 | 1 | a ∈ A | e+ f | e ; f | e∗

Semantics shortest-distinguishing-word distance of languages

Example fact a∗ ≡1/4 a+1

Soundness Theorem 2.3.3

Completeness Theorem 2.4.10

This chapter incorporates results from the following paper:

Wojciech Różowski. “A Complete Quantitative Axiomatisation of Be-

havioural Distance of Regular Expressions”. In: 51st International

Colloquium on Automata, Languages, and Programming (ICALP 2024).

Ed. by Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svens-

son. Vol. 297. Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, 2024, 149:1–149:20. ISBN: 978-3-95977-322-5

Chapter 3 describes a sound and complete axiomatisation of a behavioural metric for

nondeterministic processes using Milner’s charts [Mil84]—a model that generalises

finite-state automata by incorporating variable outputs. Charts provide a compelling

setting for studying behavioural distances because they shift the focus from language

equivalence to bisimilarity.

To formalise this approach, we adopt string diagrams [Sel10; PZ23b] as our

syntax of choice. String diagrams closely mirror the graphical structure of charts,

1.4. Overview of the thesis 23

while providing a rigorous formalism that supports inductive reasoning and compo-

sitional semantics. Unlike traditional algebraic syntaxes, which require additional

mechanisms such as binders and substitution, string diagrams offer a variable-free

representation where recursion naturally decomposes into simpler components. This

makes them well-suited for reasoning about behavioural distances and aligns with

broader efforts to axiomatise automata-theoretic equivalences through a unified

diagrammatic framework [PZ23a; Ant+25].

Summary of Chapter 3

Model Milner’s charts [Mil84]

Syntax a (a ∈ A)

Semantics bisimulation distance of regular behaviours

Example fact
a

b
a

b
≡1/4

a

b

Soundness Theorem 3.4.4

Completeness Theorem 3.5.26

The findings presented in this chapter are the content of the following paper:

Wojciech Różowski, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi.

“A Diagrammatic Axiomatisation of Behavioural Distance of Nondeter-

ministic Processes”. Under review. 2025

Chapter 4 introduces probabilistic regular expressions (PRE), a probabilistic ana-

logue of regular expressions denoting probabilistic languages in which every word

is assigned a probability of being generated. PRE are formed through constants

from an alphabet and regular operations of probabilistic choice, sequential com-

position, probabilistic Kleene star, identity and emptiness. We present and prove

the completeness of an inference system for reasoning about probabilistic language

equivalence of PRE based on Salomaa’s axiomatisation of language equivalence of

regular expressions. The technical core of the chapter is devoted to the completeness

proof, which relies on technical tools from the theory of convex algebra [SW18],

arising from the rich structure of probabilistic languages.

1.4. Overview of the thesis 24

Summary of Chapter 4

Model generative probabilistic transition systems [GSS95]

Syntax e, f ∈ PExp ::= 0 | 1 | a ∈ A | e⊕p f | e ; f | e[p]

Semantics probabilistic language equivalence

Example fact a ; a[1/4] ≡ a⊕3/4

(
a ; a[1/4] ; a

)
Soundness Theorem 4.4.20

Completeness Theorem 4.5.27

The results described in this chapter were published in the paper referenced below:

Wojciech Różowski and Alexandra Silva. “A Completeness Theorem

for Probabilistic Regular Expressions”. In: Proceedings of the 39th

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2024, Tallinn, Estonia, July 8-11, 2024. Ed. by Pawel Sobocinski, Ugo

Dal Lago, and Javier Esparza. ACM, 2024, 66:1–66:14

Chapter 5 sketches directions for the future work and concludes this thesis.

Part I

Behavioural Distances

25

Chapter 2

Behavioural Distance of Regular

Expressions

Deterministic automata have been traditionally studied through the point of view

of language equivalence. Another perspective is given by the notion of shortest-

distinguishing-word distance quantifying the dissimilarity of states. To illustrate that

notion of distance, consider the following three deterministic finite automata:

q0start

a

r0start r1 r2
a a

a

s0start

a

Figure 2.1: Three inequivalent DFAs

Neither of the above automata are language equivalent. Their languages are

respectively: {ε,a,aa,aaa, . . .}, {ε,a}, and /0 (we use ε to denote the empty word).

However, one could argue that the behaviour of the middle automaton is closer to

the one on the left rather than the one on the right. In particular, languages of the left

and middle automaton agree on all words of length less than two, while the left and

right one disagree on all words.

One can make this idea precise, by providing a shortest-distinguishing-word

metric dP(A∗) : P(A∗)×P(A∗)→ [0,1] on the set of all formal languages over some

27

fixed alphabet A given by the following formula, where λ ∈]0,1[and L,M ⊆ A∗:

dL(L,M) =

λ |w| w is the shortest word that belongs to only one of L and M

0 if L = M
(2.1)

If we set λ = 1
2 , then

dP(A∗)({ε,a,aa,aaa, . . .},{ε,a}) = 1
4

and dP(A∗)({ε,a,aa,aaa, . . .}, /0) = 1

This allows us to formally state that the behaviour of the middle automaton is a

better approximation of the left one, rather than the right one. Observe, that we

excluded λ = 0 and λ = 1, as in both cases dP(A∗) would become a pseudometric

setting all languages to be at distance zero or one, without providing any quantitative

information.

Equivalently, languages accepted by automata depicted on the Figure 2.1 can

be represented using regular expressions a∗, a+1 and 0 respectively. To determine

the distance between arbitrary regular expressions e and f one would have to con-

struct corresponding deterministic finite automata and calculate (or approximate) the

distance between their languages. Instead, as a main contribution of this chapter, we

present a sound and complete quantitative inference system for reasoning about the

shortest-distinguishing-word distance of languages denoted by regular expressions.

Since we are dealing with distances, rather than strict equality, we cannot rely on

classical equational logic as a basis for our inference system. Instead, we rely on the

quantitative analogue of equational logic [MPP16], which deals with the statements

of the form e ≡r f , intuitively meaning term e is within the distance of at most r ∈Q

from the term f . While the existing work [Bac+18c; Bac+18a; Bac+18b] looked

at quantitative axiomatisations of behavioural distance for probabilistic transition

systems calculated through the Kantorovich lifting, which can be thought of as a

special case of the abstract coalgebraic framework relying on lifting endofunctors to

the category of pseudometric spaces [Bal+18], axiomatising behavioural distances

for other kinds of transition systems have received little to no attention.

28

It turns out that the approach to completeness used in [Bac+18a] relies on prop-

erties which are not unique to distances obtained through the Kantorovich lifting and

can be employed to give complete axiomatisations of behavioural distances for other

kinds of transition systems obtained through the coalgebraic framework [Bal+18].

In this chapter, as a starting point, we look at one of the simplest instantiations of

that abstract framework in the case of deterministic automata, yielding shortest-

distinguishing-word distance.

Formally speaking, if J−K : RExp→P(A∗) is the function taking regular ex-

pressions to their languages, then our inference system satisfies the following:

⊢ e ≡r f ⇐⇒ dP(A∗)(JeK,J f K)≤ r

The rest of the chapter is organised is as follows.

In Section 2.1 we review basic definitions from the field of universal coalge-

bra [Rut00; Gum00] and automata theory. In particular, we recall the semantics of

regular expressions through Brzozowski derivatives [Brz64]. Then, in order to talk

about distances, we state basic definitions and properties surrounding (pseudo)metric

spaces.

In Section 2.2 we recall the central notions of the abstract framework of coal-

gebraic behavioural metrics [Bal+18] and discuss its instatiation to the case of

deterministic automata that yields shortest-distinguishing-word distance.

In Section 2.3 we introduce a quantitative inference system for reasoning about

the shortest-distinguishing-word distance of regular expressions. We recall the defi-

nitions surrounding the quantitative equational theories [MPP16] from the literature.

We then present the rules of our inference system, give soundness result and provide

a discussion about the axioms. The interesting insight is that when relying on quan-

titative equational theories which contain an infinitary rule capturing the notion of

convergence, there is no need for any fixpoint introduction rule. We illustrate this by

axiomatically deriving Salomaa’s fixpoint rule for regular expressions [Sal66].

The key result of our paper is contained in Section 2.4, where we prove com-

pleteness of our inference system. The heart of the argument relies on showing that

2.1. Preliminaries 29

the behavioural distance of regular expressions can be approximated from above

using Kleene’s fixpoint theorem, which can be then mimicked through the means of

axiomatic reasoning. This part of the paper makes heavy use of the order-theoretic

and Banach space structures carried by the sets of pseudometrics over a given set.

We conclude in Section 2.5, review related literature, and sketch directions for

future work.

2.1 Preliminaries
In this section, we recall the main definitions and results from the literature that this

and further chapters rely on. Throughout this thesis, we assume the familiarity of

the reader with basic notions of category theory [AT11] and order theory [DP02].

Notation wise, given a category C, we will write Obj(C) for the collection of its

objects. For X ,Y ∈Obj(C), we will write C(X ,Y) for the hom-object between objets

X and Y . We will write f : X → Y , to denote that f is a morphism from X to Y .

2.1.1 Coalgebra

Let C be a category. A B-coalgebra is a pair (X ,α : X →BX), where X ∈ Obj(C)

and B : C → C is an endofunctor on C. We call B a type functor and refer to X and α

as state space (or carrier) and transition structure respectively. We will omit writing

B when it is obvious from the context. A homomorphism f : (X ,α) → (Y,β) of

coalgebras is an arrow f : X → Y in C making the following diagram commute:

X Y

BX BY

f

α β

B f

B-coalgebras and their homomorphisms form a category CoalgB.

Definition 2.1.1. We call a coalgebra (νB, t) final if for any B-coalgebra (X ,α),

there exists a unique homomorphism behα : (X ,α)→ (νB, t). A final coalgebra (if

it exists) is precisely the final object in CoalgB.

If C is a concrete category, that is a category equipped with a faithful functor

2.1. Preliminaries 30

U : C → Set, one can define the notion of behavioural equivalence. All coalgebras

considered in this thesis are defined over concrete categories.

Definition 2.1.2. Given B-coalgebras (X ,α) and (Y,β), and elements x ∈ UX ,

y ∈ UY , we say that x is behaviourally equivalent to y (written x ∼b y), if there exists

a third coalgebra (Z,γ) and B-coalgebra homomorphisms f : (X ,α)→ (Z,γ) and

g : (Y,β)→ (Z,γ), such that U f (x) = Ug(x).

For the remainder of this subsection, we will focus on properties of coalge-

bras for endofunctors over Set by setting B : Set→ Set. For such coalgebras, one

can phrase the notion of coalgebraic bisimulation, originally due to Aczel and

Mendler [AM89].

Definition 2.1.3 ([AM89, Section 6]). Let (X ,α) and (Y,β) be two coalgebras for

the functor B : Set→ Set. We call a relation R ⊆ X ×Y a bisimulation if there exists

a transition function R →BR making the following diagram commute:

X R Y

BX BR BY

α

π1 π2

β

Bπ1 Bπ2

In the above, π1 : R → X and π2 : R → Y are the canonical projection maps

given by the product structure on X ×Y . Given ⟨x,y⟩ ∈ X ×Y , we write x ∼ y if there

exists a bisimulation R between (X ,α) and (Y,γ), such that ⟨x,y⟩ ∈ R. Moreover,

constructing bisimulations is a sound technique for proving behavioural equivalence.

It is also complete upon imposing a mild restriction on B.

Lemma 2.1.4 ([Rut00, Theorem 9.3]). We have that x ∼ y =⇒ x ∼b y. The converse

is true if B preserves weak pullbacks.

Bisimulations and homomorphisms are related via the following lemma:

Lemma 2.1.5 ([Rut00, Theorem 2.5]). Let (X ,α) and (Y,β) be two coalgebras. A

function f : X → Y is a homomorphism if and only if G(f) = {⟨x, f (x)⟩ | x ∈ X} ⊆

X ×Y is a bisimulation.

2.1. Preliminaries 31

We call a bisimulation that is an equivalence relation a bisimulation equivalence.

Forming a quotient using bisimulation equivalences can be used to construct quotient

coalgebras.

Lemma 2.1.6 ([Rut00, Proposition 5.8]). Let R ⊆ X ×X be a bisimulation equiva-

lence on a coalgebra (X ,α). Let [−]R : X → X/R, be the canonical quotient map of

R. Then, there is a unique transition structure α : X/R →BX/R on X/R, that makes

[−]R into a coalgebra homomorphism, thus making the following diagram commute:

X X/R

BX BX/R

[−]R

α α

B[−]R

Moreover, one can phrase the dual notion of subalgebras.

Definition 2.1.7. A coalgebra (X ,α) is called a subcoalgebra of (Y,β), if X ⊆ Y

and the canonical inclusion map i : X ↪→ Y is a coalgebra homomorphism.

Upon imposing a mild restriction on B, subcoalgebras carry a lattice structure.

Lemma 2.1.8 ([Rut00, Theorem 6.4.]). If B preserves weak pullbacks, then the

collection of all subcoalgebras of a system (Y,β) is a complete lattice. Least upper

bounds and greatest lower bounds are respectively given by union and intersection

of sets.

Given a set X ⊆ Y , we will write ⟨X⟩(Y,β) for the least subcoalgebra of (Y,β)

containing X . When (Y,β) is obvious from the context, we will omit writing it in

the subscript. In case when X is a singleton or a two-element set, we will abuse the

notation and respectively write ⟨x⟩(Y,β) and ⟨x,y⟩(Y,β) instead. Least subcoalgebras

allow to characterise an important subcategory of coalgebras.

Definition 2.1.9. We call a coalgebra (X ,α) locally finite if for all x ∈ X , we have

that ⟨x⟩(X ,α) is finite.

We will write Coalglf B for the full subcategory of CoalgB consisting only of

locally finite coalgebras.

2.1. Preliminaries 32

2.1.2 Deterministic automata

A deterministic automaton M with inputs in a finite alphabet A is a pair (M,⟨oM, tM⟩)

consisting of a set of states M and a pair of functions ⟨oM, tM⟩, where oM : M →{0,1}

is the output function which determines whether a state m is final (oM(m) = 1) or

not (oM(m) = 0), and t : M → MA is the transition function, which, given an input

letter a determines the next state. If the set M of states is finite, then we call an

automaton M a deterministic finite automaton (DFA). We will frequently write ma

to denote tM(m)(a) and refer to ma as the derivative of m for the input a. Definition

of derivatives can be inductively extended to words w ∈ A∗. We will write ε to denote

an empty word. We set mε = m and maw′ = (ma)w′ for a ∈ A,w′ ∈ A∗.

Remark 2.1.10. Note that our definition of deterministic automaton slightly differs

from the most common one in the literature, by not explicitly including the initial

state. Instead of talking about the language of the automaton, we will talk about the

languages of particular states of the automaton.

Given a state m ∈ M, we write LM(m)⊆ A∗ for its language, which is formally

defined by LM(m) = {w ∈ A∗ | o(mw) = 1}. Given two deterministic automata

(M,⟨oM, tM⟩) and (N,⟨oN , tN⟩), a function h : M → N is a homomorphism if it pre-

serves outputs and input derivatives, that is oN(h(m)) = oM(m) and h(m)a = h(ma).

The set of all languages P(A∗) over an alphabet A can be made into a deterministic

automaton (P(A∗),⟨oL, tL⟩), where for l ∈ P(Σ∗) the output function is given by

oL(l) = [ε ∈ l] and for all a ∈ A the input derivative is defined to be la = {w | aw ∈ l}.

This automaton is final, that is for any other automaton M = (M,⟨oM, tM⟩) there

exists a unique homomorphism from M to P(A∗), which is given by the map

LM : M →P(A∗) taking each state m ∈ M to its language.

Fact 2.1.11. Deterministic automata are precisely coalgebras for the functor

H : Set→ Set given by H= {0,1}× (−)A : Set→ Set. The coalgebraic definition

of homomorphism coincides with the definition of an automaton homomorphism

stated above. The final coalgebra for that functor corresponds to the final automaton

defined on the set P(A∗).

2.1. Preliminaries 33

2.1.3 Regular expressions

We let e, f range over regular expressions over A generated by the following gram-

mar:

e, f ∈ RExp ::= 0 | 1 | a ∈ A | e+ f | e ; f | e∗

The standard interpretation of regular expressions J−K : RExp → P(A∗) is induc-

tively defined by the following equation:

J0K = /0 J1K = {ε} JaK = {a} Je+ f K = JeK∪ J f K

Je ; f K = JeK◦ J f K Je∗K = JeK∗

Given L,M ⊆ A∗, we define L◦M = {lm | l ∈ L,m ∈ M}, where mere juxtaposition

denotes concatenation of words. L∗ denotes the asterate of the language L defined as

L∗ =
⋃

i∈NLi with L0 = {ε} and Ln+1 = L◦Ln.

2.1.4 Brzozowski derivatives

Kleene’s theorem states that the formal languages accepted by DFA are in one-to-one

correspondence with formal languages definable by regular expressions. One direc-

tion of this theorem involves constructing a DFA for an arbitrary regular expression.

The most common way is via Thompson construction, ε-transition removal and

determinisation. Instead, we recall a direct construction due to Brzozowski [Brz64],

in which the set RExp of regular expressions is equipped with a structure of de-

terministic automaton R= (RExp,⟨oR, tR⟩) through so-called Brzozowski deriva-

tives [Brz64]. The output derivative oR : RExp→ {0,1}, that intuitively captures

the membership of empty word, is defined inductively as follows

oR(0) = 0 oR(1) = 1 oR(a) = 0

oR(e+ f) = oR(e)∨oR(f) oR(e ; f) = oR(e)∧oR(f) oR(e∗) = 1

2.1. Preliminaries 34

for a∈A and e, f ∈RExp. Similarly, the transition derivative tR : RExp→A→RExp

denoted tR(e)(a) = (e)a is defined by

(0)a = 0 (1)a = 0 (a′)a =

1 a = a′

0 a ̸= a′

(e+ f)a = (e)a +(f)a (e ; f)a = (ea) ; f +oR(e) ; (f)a (e∗) = (e)a ; e∗

Semantics of regular expressions is well-behaved, that is the standard interpretation

J−K assigning a language to each regular expression concides with the canonical

language-assigning homomorphism from R to L.

Lemma 2.1.12 ([Sil10, Theorem 3.1.4]). For all e ∈ RExp, JeK = LR(e)

Instead of looking at an infinite-state automaton defined on the state-space of all

regular expressions, we can restrict ourselves to the subautomaton ⟨e⟩R of R while

obtaining the semantics of e.

Lemma 2.1.13. For all e ∈ RExp, JeK = L⟨e⟩R(e)

Proof. Let i : ⟨e⟩R ↪→ RExp be the canonical inclusion homomorphism. Composing

it with LR a unique homomorphism from R into the final automaton L yields a

homomorphism LR ◦ i from ⟨e⟩R to the final automaton, which by finality is the

same as L⟨e⟩R . Using Lemma 2.1.12 we can show the following:

JeK = LR(e) = LR(i(e)) = L⟨e⟩R(e)

Unfortunately, for an arbitrary regular expression e ∈ RExp, the automaton

⟨e⟩R is not guaranteed to have a finite set of states. However, simplifying the

transition derivatives by quotienting the expressions by associativity, commutativity

and idempotence (ACI) guarantees a finite number of reachable states from any

expression.

Example 2.1.14 ([Sil10, Section 3.1.2]). Consider a regular expression (a∗)∗, where

2.1. Preliminaries 35

a ∈ A. Computing a transition derivative for the letter a yields the following

((a∗)∗)a = (1 ; a∗)(a∗)∗

((1 ; a∗)(a∗)∗)a = (0 ; a∗+1 ; a∗) ; (a∗)∗+(1 ; a∗)(a∗)∗

((0 ; a∗+1 ; a∗) ; (a∗)∗+(1 ; a∗)(a∗)∗)a = (0 ; a∗+0 ; a∗+1 ; a∗) ; (a∗)∗

+(1 ; a∗)(a∗)∗+(1 ; a∗)(a∗)∗

...

Although each of the transition derivatives above is equivalent, without identifying

duplicates of (1 ; a∗), the set ⟨(a∗)∗⟩R is infinite.

To formally deal with the above issue, let ≡̇ ⊆ RExp×RExp be the least con-

gruence relation closed under the following equations:

1. (e+ f)+g ≡̇ e+(f +g) (Associativity)

2. e+ f ≡̇ f + e (Commutativity)

3. e ≡̇ e+ e (Idempotence)

for all e, f ,g ∈ RExp. We will write RExp/≡̇ for the quotient of RExp by the

relation ≡̇ and [−]≡̇ : RExp→ RExp/≡̇ for the canonical map taking each expression

e ∈ RExp into its equivalence class [e]≡̇ modulo ≡̇. It can be easily verified that

≡̇ is a bisimulation and hence using Lemma 2.1.6, one can equip RExp/≡̇ with

a structure of deterministic automaton Q = (RExp/≡̇,⟨oQ, tQ⟩), where for all e ∈

RExp,a ∈ A, oQ([e]≡̇) = oR(e) and ([e]≡̇)a = [ea]≡̇, which makes the quotient map

[−]≡̇ : RExp→ RExp/≡̇ into an automaton homomorphism from the Brzozowski

automaton R into Q. This automaton enjoys the following property:

Lemma 2.1.15 ([Brz64, Theorem 4.3]). For any e ∈ RExp, the set ⟨e⟩Q ⊆ RExp/≡̇

is finite.

Through an identical line of reasoning to Lemma 2.1.12, we can show that:

Lemma 2.1.16. For all e ∈ RExp, L⟨[e]≡̇⟩Q([e]≡̇) = JeK

2.1. Preliminaries 36

2.1.5 Pseudometric spaces

A 1-bounded pseudometric on a set X (or equivalently just a pseudometric) is a

function d : X ×X → [0,1] satisfying

1. d(x,x) = 0 (Reflexivity)

2. d(x,y) = d(y,x) (Symmetry)

3. d(x,z)≤ d(x,y)+d(y,z) (Triangle inequality)

for all x,y,z ∈ X . If additionally d(x,y) = 0 implies x = y, d is called a (1-bounded)

metric.

Definition 2.1.17. A pseudometric space is a pair (X ,d), where X is a set and d is

a pseudometric on X . We call a function f : X → Y between pseudometric spaces

(X ,d1) and (Y,d2) nonexpansive, if d2(f (x), f (y)) ≤ d1(x,y) for all x,y ∈ X . It is

called isometry if it satisfies d2(f (x), f (y)) = d1(x,y).

Pseudometrics and nonexpansive functions form a category PMet. This category

is bicomplete, i.e. has all limits and colimits [Bal+18, Theorem 3.8]. The categorical

product in PMet is defined as follows:

Definition 2.1.18. Let (X ,d1) and (Y,d2) be pseudometrics. We define (X ,d1)×

(Y,d2) = (X ×Y,dX×Y), where dX×Y (⟨x,y⟩,⟨x′,y′⟩) = max{d1(x,x′),d2(y,y′)} for

all x,x′ ∈ X and y,y′ ∈ Y .

This can be easily extended to any n-tuple. We define 0-tuples to be given

by 1• = ({•},d•), the unique single point pseudometric space, where d•(•,•) =

0. Given a function of multiple arguments, i.e. X1 → X2 → Y , we will call it

nonexpansive, if it is nonexpansive as a function f : (X1,d1)× (X2,d2)→ (Y,dY).

Given a set X , we write DX for the set of all pseudometrics on the set X . This

set carries a partial order structure, given by

d1 ⊑ d2 ⇐⇒ ∀x,y ∈ X .d1(x,y)≤ d2(x,y)

The partial order structure defined above admits the following property:

2.1. Preliminaries 37

Lemma 2.1.19 ([Bal+18, Lemma 3.2]). (DX ,⊑) is a complete lattice. The join of

an arbitrary set of pseudometrics D ⊆ DX is taken pointwise, ie. (supD)(x,y) =

sup{d(x,y) | d ∈ D} for x,y ∈ X. The meet of D is defined to be infD = sup{d | d ∈

DX ,∀d′ ∈ D,d ⊑ d′}.

The top element of that lattice is given by the discrete pseudometric ⊤ : X×X →

[0,1] such that ⊤(x,y) = 0 if x = y, or ⊤(x,y) = 1 otherwise.

Crucially for our completeness proof, if we are dealing with descending chains,

that is sequences {di}i∈N, such that di ⊒ di+1 for all i ∈N, then we can also calculate

infima in the pointwise way.

Lemma 2.1.20. Let {di}i∈N be an infinite descending chain in the lattice (DX ,⊑) of

pseudometrics over some fixed set X. Then (inf{di | i ∈ N})(x,y) = inf{di(x,y) | i ∈

N} for any x,y ∈ X.

Proof. It suffices to argue that d(x,y) = inf{di(x,y) | i ∈ N} is a pseudometric. For

reflexivity, observe that d(x,x) = inf{di(x,x) | i ∈ N}= inf{0}= 0 for all x ∈ X .

For symmetry, we have that d(x,y) = inf{di(x,y) | i ∈ N} = inf{di(y,x) | i ∈

N}= d(y,x) for any x,y ∈ X .

The only difficult case is triangle inequality. First, let i, j ∈ N and define

k = max(i, j). Since dk ⊑ di and dk ⊑ d j, we have that dk(x,y)+dk(y,z)≤ di(x,y)+

d j(y,z). Therefore inf{dl(x,y)+dl(y,z) | l ∈N} is a lower bound of di(x,y)+d j(y,z)

for any i, j ∈ N and hence it is below the greatest lower bound, that is inf{dl(x,y)+

dl(y,z) | l ∈N} ≤ inf{di(x,y)+d j(y,z) | i, j ∈N}. We can use that property to show:

d(x,y) = inf{di(z,y) | i ∈ N}

≤ inf{di(x,y)+di(y,z) | i ∈ N}

≤ inf{di(x,y)+d j(y,z) | i, j ∈ N}

= inf{di(x,y) | i ∈ N}+ inf{d j(y,z) | j ∈ N}

= d(x,y)+d(y,z)

which completes the proof.

2.1. Preliminaries 38

2.1.6 Banach spaces

In the intermediate steps of the completeness proof presented in this chapter, specif-

ically, in establishing the cocontinuity of the endomap defining the behavioral

distance, we will make use of the Banach space structure associated with spaces of

pseudometrics. We begin by recalling the relevant definitions.

Definition 2.1.21 ([OKT53]). Let K be a field. A valuation on K is a map | · | : K→

[0,+∞[satisfying the following properties for all f ,g ∈K:

• | f |= 0 ⇐⇒ f = 0 (Non-degeneracy)

• |− f |= | f | (Symmetry)

• | f +g| ≤ | f |+ |g| (Triangle inequality)

• | f ·g|= | f | · |g| (Multiplicativity)

A canonical example is the field R of real numbers equipped with the absolute

value.

Definition 2.1.22 ([Rud90]). Let K be a field with valuation | · |. A normed space over

K is a pair (V,∥·∥), where V is a vector space over K and ∥·∥ and ∥·∥ : V→ [0,+∞[

is a function (called norm) satisfying the following for all x,y ∈ V and k ∈K:

• ∥x∥= 0 if and only if x is a zero vector (Positive definiteness)

• ∥k · x∥= |k| · ∥x∥ (Absolute homogeneity)

• ∥x+ y∥ ≤ ∥x∥+∥y∥ (Triangle inequality)

Every normed space induces a metric via d(x,y) = ∥x− y∥ for all x ∈ V. If this

metric space is complete, then V is called a Banach space.

For any set X , the set of bounded functions of the type X ×X →R is an infinite-

dimensional vector space over the field R of real numbers. When equipped with the

supremum norm

∥d∥= sup
x,y∈X

|d(x,y)|

this space becomes a Banach space [van12]. In particular, the space of pseudometrics

DX is a subset of this Banach space.

2.2. Behavioural distance of deterministic automata 39

2.2 Behavioural distance of deterministic automata
We now focus on defining a behavioural distance for deterministic automata through

the abstract framework of coalgebraic behavioural distances [Bal+18]. We first recall

the main definitions and then concretise the abstract results to the case of our interest.

2.2.1 Coalgebraic behavioural distances

In order to define a behavioural distance for B-coalgebras for a functor B : Set→ Set,

we need to be able to lift the functor B describing the one-step dynamics of transition

systems of interest to the category PMet of pseudometric spaces and nonexpansive

functions. In terms of notation, we will write U : PMet → Set for the canonical

faithful functor taking each pseudometric space (X ,dX) to its underlying set X .

Definition 2.2.1 ([Bal+18, Definition 5.1]). Let B : Set→ Set be a functor. A functor

B : PMet→ PMet is called a lifting of B if makes the following diagram commute:

PMet PMet

Set Set

B

U U
B

Given a pseudometric space (X ,d), we will write dB for the pseudometric dB : BX ×

BX → [0,1] obtained by applying B to (X ,d).

We can use liftings to equip coalgebras with a notion of behavioural distance,

through the following construction:

Lemma 2.2.2 ([Bal+18, Lemma 6.1]). Let B : PMet → PMet be a lifting of a

functor B : Set→ Set and let (X ,α) be a B-coalgebra. The mapping associating

each pseudometric d : X ×X → [0,⊤] with dB ◦ (α ×α) is a monotone mapping on

the complete lattice (DX ,⊑) of pseudometrics over set X. By Knaster-Tarski fixpoint

theorem, this mapping has a least fixpoint, that we will refer to as dα : X ×X →

[0,1]. Given a coalgebra (Y,β) and a homomorphism f : (X ,α)→ (Y,β), we have

that f : (X ,dα)→ (Y,dβ) is nonexpansive. If B preserves isometries, then f is an

isometry.

2.2. Behavioural distance of deterministic automata 40

If B : Set→ Set admits a final coalgebra (νB, t), then we can define behavioural

distance on a coalgebra (X ,α) to be the pseudometric space bdα : X ×X → [0,1]

given by bdα(x,y) = dt(behα(x),behα(y)) for all x,y ∈ X . Behavioural distances

satisfy several desirable properties:

Lemma 2.2.3. Let B : PMet → PMet be a lifting of a functor B : Set → Set that

admits a final coalgebra (νB, t). Given a coalgebra (X ,α) and x,y∈X, the following

facts hold:

1. x ∼b y =⇒ bdα(x,y) = 0

2. If B preserves metrics and B is finitary, then bdα(x,y) = 0 =⇒ x ∼b y

3. If B preserves isometries, then dα(x,y) = bd(x,y)

Proof. 1 follows from [Bal+18, Lemma 6.6]. For 2 , we have that if B is finitary,

then (νB, t) can be obtained via the Adamek fixpoint theorem [AK95] and hence one

can apply [Bal+18, Theorem 6.10]. Finally, 3 follows from [Bal+18, Theorem 6.7].

Remark 2.2.4. The forgetful functor U : PMet → Set is a fibration arising from

the Grothendieck construction applied to a functor of the type Setop → Pos (where

Pos is the 2-category of posets and monotone functions) that maps each set X to

the complete lattice (DX ,⊑). Liftings of functors to the category of pseudometric

spaces are precisely instances of fibred liftings [DAn+24]. Upon reversing the order

on pseudometrics, one can view behavioural distances as instances of a general

framework of coinductive predicates in fibrations [HKC18; Spr+21], which gener-

alises the Hermida–Jacobs relation lifting [HJ98] to a more general, lattice-theoretic

perspective. Due to the reversal of the order, behavioural distances in such a setting

are obtained as greatest fixpoints [BKP18].

2.2.2 Behavioural distance of deterministic automata via functor

lifting

It turns out that shortest-distinguishing-word metric (Equation (2.1)) can be obtained

as an instance of the coalgebraic framework of behavioural distances [Bal+18,

2.2. Behavioural distance of deterministic automata 41

Example 6.5] using an appropriate lifting of the functor H= {0,1}×(−)A describing

one-step behaviour of finite automata [Bal+18, Example 6.3]. That lifting is defined

as follows; let d : M ×M → [0,1] be a pseudometric and let λ ∈]0,1[be a fixed

discount factor. We can equip the set HX with a distance function given by

dH(⟨o1, t1⟩,⟨o2, t2⟩) = max{d{0,1}(o1,o2),λ ·max
a∈A

d(t1(a), t2(a))}

for all ⟨o1, t1⟩,⟨o2, t2⟩ ∈HX . The definition above involves d{0,1}, the discrete metric

on the set {0,1}. Intuitively, two one-step behaviours ⟨o1, t1⟩,⟨o2, t2⟩ ∈ {0,1}×MA

of a deterministic automaton with the set of states M are maximally apart if o1 ̸= o2,

that is, they disagree in their output behaviour. Otherwise, the distance is equal to a

maximal distance d(t1(a), t2(a)) between reachable states for all letters a ∈ A of the

alphabet, discounted by the factor of λ .

The lifting defined above is particularly well-behaved, as it satisfies the follow-

ing:

Proposition 2.2.5. dH preserves isometries and metrics.

Proof. Preservation of isometries follows from [Bal+18, Theorem 5.23] and preser-

vation of metrics follows from [Bal+18, Theorem 5.24].

Combining the statement above with Lemma 2.2.2 yields that for any de-

terministic automaton M := (M,⟨oM, tM⟩), its behavioural distance bd⟨oM ,tM⟩ is a

pseudometric space, whose values can be calculated as the least fixpoint of the

monotone map Φ⟨oM ,tM⟩ : DM → DM defined as

Φ⟨oM ,tM⟩(d)(m1,m2) = dH(⟨oM(m1), tM(m1)⟩,⟨oM(m2), tM(m2)⟩)

for all m1,m2 ∈ M.

Moreover, because of the preservation of metrics and Lemma 2.2.3, we know

that for the final deterministic automaton L= (P(A∗),⟨oL, tL⟩), the least fixpoint of

Φ⟨oL,tL⟩ is a metric space. This metric enjoys the following concrete characterisation:

2.3. Quantitative Axiomatisation 42

Proposition 2.2.6 ([Bal+18, Example 6.5]). For the final deterministic automa-

ton L = (P(A∗),⟨oL, tL⟩), the least fixpoint of Φ⟨oL,tL⟩ coincides with shortest-

distinguishing-word metric.

2.3 Quantitative Axiomatisation
In order to provide a quantitative inference system for reasoning about the be-

havioural distance of languages denoted by regular expressions, we first recall the

definition of quantitative equational theories from the existing literature [MPP16;

Bac+18a] following the notational conventions from [Bac+18a]. We then present

our axiomatisation and demonstrate its soundness. The interesting thing about our

axiomatisation is the lack of any fixpoint introduction rule. We show that in the

case of quantitative analogue of equational logic [MPP16] containing the infini-

tary rule capturing the notion of convergence, we can use our axioms to derive

Salomaa’s fixpoint rule from his axiomatisation of language equivalence of regular

expressions [Sal66].

2.3.1 Quantitative equational theories

Let Σ be an algebraic signature (in the sense of universal algebra [BS81]) consisting

of operation symbols fn ∈ Σ of arity n ∈ N. If we write X for the countable set of

metavariables, then T(Σ,X) denotes a set of freely generated terms over X built from

the signature Σ. As a notational convention, we will use letters t,s,u, . . . ∈ T(Σ,X)

to denote terms. By a substitution we mean a function of the type σ : X → T(Σ,X)

allowing to replace metavariables with terms. Each substitution can be inductively

extended to terms in a unique way by setting σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn))

for each operation symbol fn ∈ Σ from the signature. We will write S(Σ) for the

set of all substitutions. Given two terms t,s ∈ T(Σ,X) and a nonnegative rational

number r ∈Q denoting the distance between the terms, we call t ≡r s a quantitative

equation (of type Σ). Intuitively, such a quantitative equation will denote that the

distance between terms t and s is bounded by the rational number r.

Notation-wise, we will write E(Σ) to denote the set of all quantitative equations

(of type Σ) and we will use the capital Greek letters Γ,Θ, . . . ⊆ E(Σ) to denote

2.3. Quantitative Axiomatisation 43

the subsets of E(Σ). By a deducibility relation we mean a binary relation denoted

⊢ ⊆ P(E(Σ))×E(Σ). Similarly, to the classical equational logic, we will use the

following notational shorthands:

Γ ⊢ t ≡r s ⇐⇒ (Γ, t ≡r s) ∈ ⊢ and ⊢ t ≡r s ⇐⇒ /0 ⊢ t ≡r s

Furthermore, following the usual notational conventions, we will write Γ ⊢ Θ as

a shorthand for the situation when Γ ⊢ t ≡r s holds for all t ≡r s ∈ Θ. To call ⊢ a

quantitative deduction system (of type Σ) it needs to satisfy the following rules of

inference:

(Top) ⊢ t ≡1 s ,

(Refl) ⊢ t ≡0 t ,

(Symm) {t ≡r s} ⊢ s ≡r t ,

(Triang) {t ≡r u,u ≡r′ s} ⊢ t ≡r+r′ s ,

(Max) {t ≡r s} ⊢ t ≡r+r′ s , for all r′ > 0 ,

(Cont) {t ≡r′ s | r′ > r} ⊢ t ≡r s ,

(NExp) {t1 ≡r s1, . . . , tn ≡r sn} ⊢ f (t1, . . . , tn)≡r f (s1, . . . ,sn) , for all fn ∈ Σ ,

(Subst) If Γ ⊢ t ≡r s, then σ(Γ) ⊢ σ(t)≡r σ(s), for all σ ∈ S(Σ) ,

(Cut) If Γ ⊢ Θ and Θ ⊢ t ≡r s, then Γ ⊢ t ≡r s ,

(Assum) If t ≡r s ∈ Γ, then Γ ⊢ t ≡r s .

where σ(Γ) = {σ(t)≡r σ(s) | t ≡r s ∈ Γ}. Finally, by a quantitative equational

theory we mean a set U of universally quantified quantitative inferences {t1 ≡r1

s1, . . . , tn ≡rn sn} ⊢ t ≡r s , with finitely many premises, closed under ⊢-derivability.

2.3.2 Quantitative algebras

Quantitative equational theories lie on the syntactic part of the picture. On the

semantic side, we have their models called quantitative algebras, defined as follows.

Definition 2.3.1 ([MPP16, Definition 3.1]). A quantitative algebra is a tuple A=

2.3. Quantitative Axiomatisation 44

(A,ΣA,dA), such that (A,ΣA) is an algebra for the signature Σ and (A,dA) is a

pseudometric such that for all operation symbols fn ∈ Σ, for all 1 ≤ i ≤ n, ai,bi ∈ A,

dA(ai,bi) ≤ r implies dA(fA(a1, . . . ,an), fA(b1, . . . ,bn)) ≤ r, i.e., the operation

symbols are nonexpansive.

Consider a quantitative algebra A= (A,ΣA,dA). Given an assignment ι : X →

A of meta-variables from X to elements of carrier A, one can inductively extend it to

Σ-terms t ∈T(Σ,X) in a unique way. We will abuse the notation and just write ι(t) for

the interpretation of the term t in quantitative algebra A. We will say that A satisfies

the quantitative inference Γ ⊢ t ≡r s, written Γ |=A t ≡r s, if for any assignment of the

meta-variables ι : X → A and for all t ′ ≡r′ s′ ∈ Γ, we have that dA(ι(t ′), ι(s′))≤ r′

implies dA(ι(t), ι(s))≤ r. Finally, we say that a quantitative algebra A satisfies (or is

a model of) the quantitative theory U , if whenever Γ ⊢ t ≡r s ∈ U , then Γ |=A t ≡r s.

2.3.3 Quantitative algebra of regular expressions

From now on, let’s focus on the signature ΣB = {00,10,+2, ;2,(−)∗1}∪{a0 | a ∈ A},

where A is a finite alphabet. This signature consists of all operations of regular

expressions. We can easily interpret all those operations in the set RExp of all

regular expressions, using trivial interpretation functions eg. +B(e, f) = e+ f ,

which interpret the operations by simply constructing the appropriate terms. Formally

speaking, we can do this because the set RExp is the carrier of initial algebra [BS81]

(free algebra over the empty set of generators) for the signature Σ.

To make this algebra into a quantitative algebra, we first equip the set RExp

with a pseudometric, given by

dB(e, f) = dP(A∗)(JeK ,J f K) for all e, f ∈ RExp (2.2)

Recall that dP(A∗) used in the definition above is a behavioural metric on the

final deterministic automaton carried by the set P(A∗) of all formal languages over

an alphabet A. In other words, we define the distance between arbitrary expressions

e and f to be the distance between formal languages JeK and J f K calculated through

the shortest-distinguishing-word metric. It turns out, that in such a situation all

2.3. Quantitative Axiomatisation 45

the interpretation functions of Σ-algebra structure on RExp are nonexpansive with

respect to the pseudometric defined above. In other words, we have that:

Lemma 2.3.2. B = (RExp,ΣB,dB) is a quantitative algebra.

Proof. Since dP(A∗) is a pseudometric, then so is dB = dP(A∗) ◦ (J−K× J−K). We

now verify the nonexpansivity of interpretations of operations with non-zero arity.

Let e, f ,g,h ∈ RExp, dB(e,g)≤ r and dB(f ,h)≤ r.

1. We show that dB(e+ f ,g+h)≤ r. In the case when r = 0, the proof simplifies

to showing that if JeK= JgK and J f K= JhK then Je+gK= Jg+hK, which holds

immediately. For the remaining case, when r > 0, let n = ⌈logλ r⌉.

Observe that in such a case, we have that dB(e,g) ≤ λ n and dB(f ,h) ≤ λ n.

Using it, we can deduce that JeK and JgK (and similarly J f K and JhK) agree on

all words of length strictly below n (because the shortest word for which they

disagree is at least of length n). To put that formally:

∀w ∈ A∗. |w|< n =⇒ (w ∈ JeK ⇐⇒ w ∈ JgK)∧ (w ∈ J f K ⇐⇒ w ∈ JhK)

Let w ∈ A∗, such that |w|< n. We have that

w ∈ Je+ f K ⇐⇒ w ∈ JeK∪ J f K ⇐⇒ (w ∈ JeK)∨ (w ∈ J f K)

⇐⇒ (w ∈ JgK)∨ (w ∈ JhK) (|w|< n)

⇐⇒ w ∈ Jg+hK

And thus Je+ f K and Jg+hK agree on all words of the length below n and

therefore dB(e+ f ,g+h)≤ λ n ≤ r.

2. The case for r = 0 holds immediately through the same line of reasoning as

before, relying on well-definedness of ◦ (concatenation) operation on formal

languages. We focus on the remaining case, making the same simplification as

before, that is we assume that JeK and JgK (as well as J f K and JhK) agree on all

word of length strictly below n). We show that Je ; f K and Jg ; hK also agree on

2.3. Quantitative Axiomatisation 46

all words of the length strictly less than n. Let w ∈ A∗, such that |w|< n. We

have that:

w ∈ Je ; f K ⇐⇒ w ∈ JeK◦ J f K

⇐⇒ (∃u,v ∈ A∗.w = uv∧w ∈ JeK∧ v ∈ J f K)

⇐⇒ (∃u,v ∈ A∗.w = uv∧w ∈ JgK∧ v ∈ JhK)

(|u|< n and |v|< n)

⇐⇒ w ∈ JgK◦ JhK ⇐⇒ w ∈ Jg ; hK

3. We use the same line of reasoning as before. Assume that JeK and JgK agree

on all words of length below n. Let w ∈ A∗, such that |w| < n. We have the

following:

w ∈ Je∗K ⇐⇒ w ∈ JeK∗

⇐⇒ w = ε ∨ (∃k ≥ 1.∃u1, . . . ,uk ∈ A∗.w = u1 . . .uk

∧u1 ∈ JeK∧·· ·∧uk ∈ JeK)

⇐⇒ w = ε ∨ (∃k ≥ 1.∃u1, . . . ,uk ∈ A∗.w = u1 . . .uk

∧u1 ∈ JgK∧·· ·∧uk ∈ JgK) (|u1|< n, . . . , |uk|< n)

⇐⇒ w ∈ JgK∗ ⇐⇒ w ∈ Jg∗K

In order to talk about the quantitative algebra B of the behavioural distance of

regular expressions in an axiomatic way, we introduce the quantitative equational

theory REG (Figure 2.2).

The first group of axioms capture properties of the nondeterministic choice oper-

ator + (SL1-SL5). The first four axioms (SL1-SL4) are the usual laws of semilattices

with bottom element 0. (SL5) is a quantitative axiom allowing one to reason about

distances between sums of expressions in terms of distances between expressions be-

ing summed. Moreover, (SL1-SL5) are axioms of so-called Quantitative Semilattices

with zero, which have been shown to axiomatise the Hausdorff metric [MPP16].

2.3. Quantitative Axiomatisation 47

Nondeterministic choice
(SL1) ⊢ e+ e ≡0 e ,
(SL2) ⊢ e+ f ≡0 f + e ,
(SL3) ⊢ (e+ f)+g ≡0 e+(f +g) ,
(SL4) ⊢ e+0≡0 e ,
(SL5) {e ≡r g, f ≡r′ h}

⊢ e+ f ≡max(r,r′) g+h ,

Loops
(Unroll) ⊢ e∗ ≡0 e ; e∗+1 ,
(Tight) ⊢ (e+1)∗ ≡0 e∗ ,

Sequential composition
(1S) ⊢ 1 ; e ≡0 e ,
(S) ⊢ e ; (f ; g)≡0 (e ; f) ; g ,
(S1) ⊢ e ;1≡0 e ,
(0S) ⊢ 0 ; e ≡0 0 ,
(S0) ⊢ e ;0≡0 0 ,
(D1) ⊢ e ; (f +g)≡0 e ; f + e ; g ,
(D2) ⊢ (e+ f) ; g ≡0 e ; g+ f ; g ,

Behavioural pseudometric
(λ -Pref) {e ≡r f} ⊢ a ; e ≡r′ a ; f ,

for r′ ≥ λ · r

Figure 2.2: Axioms of the quantitative equational theory REG for e, f ,g ∈ RExp and a ∈ A.

The sequencing axioms (1S), (S1), (S) state that the set RExp of regular expres-

sions has the structure of a monoid (with neutral element 1) with absorbent element

0 (0S), (S0). Additionally, (D1-D2) talk about interaction of the nondeterministic

choice operator + with sequential composition.

The loop axioms (Unroll) and (Tight) are directly inherited from Salomaa’s

axiomatisation of language equivalence of regular expressions [Sal66]. The (Unroll)

axiom associates loops with their intuitive behaviour of choosing, at each step,

between successful termination and executing the loop body once. (Tight) states

that the loop whose body might instantly terminate, causing the next loop iteration

to be executed immediately is provably equivalent to a different loop, whose body

does not contain immediate termination. Finally, (λ -Pref) captures the fact that

prepending the same letter to arbitrary expressions shrinks the distance between

them by the factor of λ ∈]0,1[(used in the definition of dB). This axiom is adapted

from the axiomatisation of discounted probabilistic bisimilarity distance [Bac+18a].

Through a simple induction on the length of derivation, one can verify that indeed B

is a model of the quantitative theory REG.

Theorem 2.3.3 (Soundness). The quantitative algebra B = (RExp,ΣB,dB) is a

model of the quantitative theory REG. In other words, for any e, f ∈ RExp and r ∈Q,

if Γ ⊢ e ≡r f ∈ REG, then Γ |=B e ≡r f

Proof. By the structural induction on the judgement Γ ⊢ e ≡r f ∈ REG. (Subst),

2.3. Quantitative Axiomatisation 48

(Cut) and (Assum) deduction rules from classical logic hold immediately. The

soundness of (Top), (Refl), (Symm), (Triang), and (Max) follows from the fact that

dB is a pseudometric. The soundness of (Cont) follows from pseudometrics being

real-valued and captures the limiting property of a decreasing chain of neighbour-

hoods with converging diameters. (NExp) follows from the fact that interpretations

of symbols from the algebraic signature are nonexpansive (Lemma 2.3.2). Recall

that dB = dP(A∗) ◦ (J−K× J−K). Additionally, for all axioms in the form ⊢ e ≡0 f

it suffices to show that JeK = J f K. (SL1-SL4), (1S), (S), (S1), (0S), (S0), (D1-D2),

(Unroll) and (Tight) are taken from Salomaa’s axiomatisation of language equiva-

lence of regular expressions [Sal66] and thus both sides of those equations denote

the same formal languages [Wag+19, Theorem 5.2]. For (λ -Pref) assume that the

premise is satisfied in the model, that is dP(A∗)(JeK ,J f K)≤ r. Let r′ ≥ λ · r. We show

the following:

dB(a ; e,a ; f) = dP(A∗)(Ja ; eK ,Ja ; f K) (Equation (2.2))

= Φ⟨oL,tL⟩(dP(A∗))(Ja ; eK ,Ja ; f K) (dP(A∗) is a fixpoint of Φ⟨oL,tL⟩)

= max{d{0,1}(oL(a ; e),oL(a ; e′))λ ·max
a′∈A

dP(A∗)(Ja ; eKa′ ,Ja ; f Ka′)}

= λ ·dP(A∗)(JeK ,J f K) (Def. of final automaton)

≤ λ · r ≤ r′

Finally, (SL5) is derivable from other axioms; we included (SL5) as an axiom to

highlight the similarity of our inference system with axiomatisations of language

equivalence of regular expressions [Sal66; Koz94] containing the axioms of semilat-

tices with bottom. In [MPP16], (SL1-SL5) are precisely the axioms of quantitative

semilattices with zero axiomatising the Hausdorff distance. If r = max(r,r′) then

{e ≡r g} ⊢ e ≡max(r,r′) g holds by (Assum). If r < max(r,r′), then we can derive the

quantitative judgement above using (Max). By a similar line of reasoning, we can

show that { f ≡r′ h} ⊢ f ≡max(r,r′) h. Finally, using (Cut) and (NExp), we can show

that {e ≡r g, f ≡r′ h} ⊢ e+ f ≡max(r,r′) g+h as desired.

2.3. Quantitative Axiomatisation 49

We now revisit the example from Figure 2.1 (page 26). Recall that states marked

as initial of the left and middle automata can be respectively represented as a∗ and

a+1. The shortest word distinguishing languages representing those expressions

is aa. If we fix λ = 1
2 , then dB(a∗,a+1) = dP(A∗)(Ja∗K ,Ja+1K) = 1

4 =
(1

2

)|aa|
. We

can derive an upper bound on this distance through the means of axiomatic reasoning

using the quantitative equational theory REG in the following way:

Example 2.3.4.

⊢ a∗ ≡1 0 (Top)

⊢ a ; a∗ ≡ 1
2

a ;0 (λ -Pref)

⊢ a ; a∗+1 ≡ 1
2

a ;0+1 (⊢ 1≡0 1 and SL5)

⊢ a∗ ≡ 1
2
1 (Triang, Unroll, S0 and SL4)

⊢ a ; a∗ ≡ 1
4

a ; 1 (λ -Pref)

⊢ a ; a∗+1 ≡ 1
4

a ;1+1 (⊢ 1≡0 1 and SL5)

⊢ a∗ ≡ 1
4

a+1 (Triang, Unroll and S1)

2.3.4 The lack of the fixpoint axiom

Traditionally, completeness of inference systems for behavioural equivalence of

languages of expressions featuring recursive constructs such as Kleene star or µ-

recursion [Mil84] rely crucially on fixpoint introduction rules. Those allow showing

that an expression is provably equivalent to a looping construct if it exhibits some

form of self-similarity, typically subject to productivity constraints. As an illus-

tration, Salomaa’s axiomatisation of language equivalence of regular expressions

incorporates the following inference rule:

g ≡ e ; g+ f ε /∈ JeK

g ≡ e∗ ; f
(2.3)

2.3. Quantitative Axiomatisation 50

The side condition on the right states that the loop body is productive, that is a

deterministic automaton corresponding to an expression e cannot immediately reach

acceptance without performing any transitions. This is simply equivalent to the

language JeK not containing the empty word. It would be reasonable for one to

expect REG to contain a similar rule to be complete, especially since it should be

able to prove language equivalence of regular expressions (by proving that they

are in distance zero from each other). Furthermore, all axioms of Salomaa except

Equation (2.3) are contained in REG as rules for distance zero.

It turns out that in the presence of the infinitary continuity (Cont) rule of

quantitative deduction systems and the (λ -Pref) rule of REG, the Salomaa’s inference

rule (Equation (2.3)) becomes a derivable fact for distance zero. First of all, one can

show that (λ -Pref) can be generalised from prepending single letters to prepending

any regular expression satisfying the side condition from Equation (2.3).

Lemma 2.3.5. Let e, f ,g ∈ RExp, such that ε /∈ JeK. Then, { f ≡r g} ⊢ e ; f ≡r′ e ; g

is derivable using the axioms of REG for all r′ ≥ λ · r.

Proof. By induction on e ∈ RExp. The cases when e = 1 and e = (e1)
∗ are not

possible, because of the assumption that ε /∈ JeK.

e = 0 Because of the (0S) axiom, we can derive that e ; f ≡0 0≡0 0 ; g ≡0 e ; g.

We can show the desired conclusion, using (Max) axiom.

e = a Holds immediately, because of (λ -Pref) axiom.

e = e1 + e2 Because of the assumption, both ε /∈ Je1K and ε /∈ Je2K. Using the

induction hypothesis, we can derive that ⊢ e1 ; f ≡r′ e1 ;g and e2 ; f ≡r′ e2 ;g. We can

apply the (SL5) axiom to derive that ⊢ e1 ; f +e2 ; f ≡r′ e1 ; g+ s2 ; g. Finally, we can

apply the (D2) axiom to both sides through (Triang) and derive ⊢ (e1 + e2) ; f ≡r′

(e1 + e2) ; g as desired.

e = e1 ; e2 Because of the assumption, ε /∈ Je1K or ε /∈ Je2K. First, let’s consider

the subcase when both ε /∈ Je1K and ε /∈ Je2K. By induction hypothesis, we have

that ⊢ e2 ; f ≡r′ e2 ; g. Since λ ∈]0,1[, we have that λ · r′ < r′. Because of that, we

can apply induction hypothesis again and obtain ⊢ e1 ; e2 ; f ≡r′ e1 ; e2 ; g. Now, let’s

consider the subcase when ε /∈ Je1K, but ε ∈ Je2K. Using (NExp), we can obtain

2.3. Quantitative Axiomatisation 51

⊢ e2 ; f ≡r e2 ; g. Then, since ε /∈ Je1K, we can apply the induction hypothesis and

obtain ⊢ e1 ; e2 ; f ≡r′ e1 ; e2 ; g as desired. The remaining subcase, when ε /∈ Je2K but

ε ∈ Je1K is symmetric and therefore omitted.

With the above lemma in hand, one can inductively show that if g ≡0 e ; g+ f

and ε /∈ JeK, then g gets arbitrarily close to e∗ ; f . Intuitively, the more we unroll

the loop in e∗ ; f using (Unroll) and the more we unroll the definition of g, then the

closer both expressions become. First, we establish the following helper lemma:

Lemma 2.3.6. Let e, f ,g ∈ RExp, such that ε /∈ JeK and let w ∈ R be an arbitrary

real number. If for all r ∈Q≥0, such that r ≥ w, it holds that Γ ⊢ f ≡r g ∈ REG, then

Γ ⊢ e ; f ≡s e ; g ∈ REG, for all s ∈Q≥0, such that s ≥ λ ·w

Proof. Since s ≥ λ ·w, we have that s ·λ−1 ≥ w. Unfortunately, we cannot imme-

diately apply the induction hypothesis, as s ·λ−1 is not guaranteed to be rational.

Instead, we will rely on the (Cont) rule of quantitative deduction systems.

Let s′ be an arbitrary rational number strictly greater than s. Let {un}n∈N be

any decreasing sequence of rationals that converges to λ−1. Then, {λ ·un}n∈N is a

decreasing real sequence that converges to 1. Recall that s′ > s, and hence s′
s > 1.

From the definition of the limit, we know that there exists a large enough N ∈ N,

such that |λ ·uN −1| ≤ s′
s −1. Since λ ·un ≥ 1 for all n ∈N, we have that λ ·uN ≤ s′

s

and hence s′ ≥ s ·λ ·uN .

We have the following chain of inequalities:

s ·uN ≥ s ·λ−1 (uN ≥ λ−1)

≥ λ ·w ·λ−1 (s ≥ λ ·w)

= w

Since s ·uN is rational and greater or equal to w, we can derive Γ ⊢ f ≡s·uN g using

the axioms of REG. Since s′ > s ·λ ·uN and ε /∈ JeK, we can use Lemma 2.3.5 and

conclude Γ ⊢ e ; f ≡s′ e ; g ∈ REG. Since s′ was an arbitrary rational strictly greater

than s, we conclude using (Cont) that Γ ⊢ e ; f ≡s e ; g ∈ REG.

2.3. Quantitative Axiomatisation 52

Lemma 2.3.7. Let e, f ,g ∈ RExp, such that ε /∈ JeK and let n ∈ N. Then, {g ≡0

e ; g+ f} ⊢ g ≡r e∗ ; f is derivable using the axioms of REG for all r ≥ λ n.

Proof. By induction. If n = 0, then using (Top), we can immediately conclude that

⊢ g ≡1 e∗ ; f . Since by the assumption r ≥ λ 0 = 1, we can apply (Max) and obtain

⊢ g ≡r e∗ ; f .

For the inductive case, for all r ∈Q≥0, such that r ≥ λ n, we can use the induction

hypothesis and conclude that {g ≡0 e ; g+ f} ⊢ g ≡r e∗ ; f . Using Lemma 2.3.6 and

the fact that ε /∈ JeK, we can conclude that {g ≡0 e ; g+ f} ⊢ e ; g ≡r e ; e∗ ; f ∈ REG

for all rational r, such that r ≥ λ ·λ n = λ n+1. Then, because of (Refl), we have that

⊢ f ≡0 f . We can combine those two quantitative inferences using (SL5) axiom in

order to get ⊢ e ; g+ f ≡r e ; e∗ ; f + f . By assumption, the left hand side satisfies

that ⊢ g ≡0 e ; g+ f . Now, consider e ; e∗ ; f that appears on the right-hand side of

the quantitative inference mentioned above:

⊢ e ; e∗ ; f + f ≡0 e ; e∗ ; f +1 ; f (1S)

≡0 (e ; e∗+1) ; f (D2)

≡0 e∗ ; f (Unroll)

We can use (Triang) to combine the above inferences and obtain {g ≡0 e ; g+ f} ⊢

g ≡r e∗ ; f .

Having the result above, we can now use the infinitary (Cont) rule capturing

the limiting property of decreasing chain of overapproximations to the distance and

show the derivability of Salomaa’s inference rule.

Lemma 2.3.8. Let e, f ,g ∈ RExp, such that ε /∈ JeK. Then, {g ≡0 e ; g+ f} ⊢ g ≡0

e∗ ; f is derivable using the axioms of REG.

Proof. To deduce that {g ≡0 e ; g+ f} ⊢ g ≡0 e∗ ; f using (Cont) it suffices to show

that {g ≡0 e ; g+ f} ⊢ g ≡r e∗ ; f for all r > 0. To do so, pick an arbitrary r > 0 and

let N = ⌈logλ r⌉. Observe that λ N = λ ⌈logλ r⌉ ≤ λ logλ r = r. Because of Lemma 2.3.7

we have that {g ≡0 e ; g+ f} ⊢ g ≡r e∗ ; f , which completes the proof.

2.4. Completeness 53

2.4 Completeness
We now focus our attention on the central result of this chapter, which is the complete-

ness of REG with respect to the shortest-distinguishing-word metric on languages

denoting regular expressions. We use the strategy from the proof of completeness

of quantitative axiomatisation of probabilistic bisimilarity distance [Bac+18a]. It

turns out that the results from [Bac+18a] rely on properties that are not unique to

the Kantorovich/Wassertstein lifting and can be also established for instances of the

abstract coalgebraic framework [Bal+18].

The heart of our argument relies on the fact that the distance between languages

denoting regular expressions can be calculated in a simpler way than applying the

Knaster-Tarski fixpoint theorem while looking at the infinite-state final automaton of

all formal languages over some fixed alphabet.

In particular, regular expressions denote the behaviour of finite-state deter-

ministic automata. Since automata homomorphisms are nonexpansive mappings,

the distance between languages JeK and J f K of some arbitrary regular expressions

e, f ∈ RExp is the same as the distance between states in some DFA whose languages

corresponds to JeK and J f K. To be precise, we will look at the finite subautomaton

⟨[e]≡̇, [f]≡̇⟩Q of the ≡̇ quotient of the Brzozowski automaton. The reason we care

about deterministic finite automata is that it turns out that one can calculate the

behavioural distance between two states through an iterative approximation from

above, which can be also derived axiomatically using the (Cont) rule of quantitative

deduction systems. We start by showing how this simplification works, and then we

establish completeness.

2.4.1 Behavioural distance of finite-state automata

Consider a deterministic automaton M = (M,⟨oM, tM⟩). The least fixpoint of a

monotone endomap Φ⟨oM ,tM⟩ : DM → DM on the complete lattice of pseudometrics

on the set M results in d⟨oM ,tM⟩. It is noteworthy that Φ⟨oM ,tM⟩ exhibits two generic

properties. Firstly, Φ⟨oM ,tM⟩ behaves well within the Banach space structure defined

by the supremum norm.

2.4. Completeness 54

Lemma 2.4.1. For any deterministic automaton M=(M,⟨oM, tM⟩), Φ⟨oM ,tM⟩ : DM →

DM is contractive with respect to the supremum norm. In other words, for all

d,d′ ∈ DM we have that

∥Φ⟨oM ,tM⟩(d
′)−Φ⟨oM ,tM⟩(d)∥ ≤ λ · ∥d′−d∥

Proof. We can safely assume that d ⊑ d′, as other case will be symmetric. It sufices

to show that for all m,m′ ∈ M, Φ⟨oM ,tM⟩(d′)(m,m′)−Φ⟨oM ,tM⟩(d)(m,m′)≤ ∥d′−d∥.

First, let’s consider the case when oM(m) ̸= oM(m′) and hence d{0,1}(m,m′) = 1. In

such a scenario, it holds that

Φ⟨oM ,tM⟩(d
′)(m,m′)−Φ⟨oM ,tM⟩(d)(m,m′) = 0 ≤ λ · ∥d′−d∥

From now on, we will assume that oM(m) = oM(m) and hence d{0,1}(m,m′) = 0.

We have the following:

Φ⟨oM ,tM⟩(d
′)(m,m′)−Φ⟨oM ,tM⟩(d)(m,m′)

=

∣∣∣∣λ ·max
a∈A

d′(ma,m′
a)−λ ·max

a∈A
d(ma,m′

a)

∣∣∣∣ (d ⊑ d′ and monotonicity of Φ)

=λ ·
∣∣∣∣(max

a∈A
d′(ma,m′

a)−max
a∈A

d(ma,m′
a)

)∣∣∣∣
≤λ ·

(
max
a∈A

{∣∣d′(ma,m′
a)−d(ma,m′

a)
∣∣}) ([Bal+18, Lemma 3.4])

≤λ · sup
n,n′∈M

{
|d′(n,n′)−d(n,n′)|

}
=λ · ∥d′−d∥

Secondly, contractivity of Φ⟨oM ,tM⟩ implies the following:

Corollary 2.4.2. For any deterministic automaton M= (M,⟨oM, tM⟩), Φ⟨oM ,tM⟩ has

a unique fixed point.

This means that if we want to calculate d⟨oM ,tM⟩ it suffices to look at any fixpoint

of Φ⟨oM ,tM⟩. This will enable a simpler characterisation, than the one given by the

Knaster-Tarski fixpoint theorem. In particular, we will rely on the characterisation

2.4. Completeness 55

given by the Kleene’s fixpoint theorem [San11, Theorem 2.8.5], which allows to

obtain the greatest fixpoint of an endofunction on the lattice as the infimum of the

decreasing sequence of finer approximations obtained by repeatedly applying the

function to the top element of the lattice.

Theorem 2.4.3 (Kleene’s fixpoint theorem). Let (X ,⊑) be a complete lattice with a

top element ⊤ and f : X → X an endofunction that is ω-cocontinuous or in other

words for any decreasing chain {xi}i∈N it holds that

inf
i∈N

{ f (xi)}= f
(

inf
i∈N

{xi}
)

Then, f possesses a greatest fixpoint, given by gfp(f) = infi∈N{ f (i)(⊤)} where f (n)

denotes n-fold self-composition of f given inductively by f (0)(x) = x and f (n+1)(x) =

f (n+1)(f (x)) for all x ∈ X.

The theorem above requires the endomap to be ω-cocontinuous. Conveniently,

it is the case for Φ⟨oM ,tM⟩ if we restrict our attention to DFA. To show that, we directly

follow the line of reasoning from [Bac+18a, Lemma 5.6] generalising the similar line

of reasoning for ω-continuity from [Bre12, Theorem 1]. First, using Lemma 2.1.20

we show that decreasing chains of pseudometrics over a finite set converge to their

infimum. That result is a minor re-adaptation of [Bre12, Theorem 1] implicitly used

in [Bac+18a, Lemma 5.6].

Lemma 2.4.4. Let {di}i∈N be an infinite descending chain in the lattice (DX ,⊑),

where X is a finite set. The sequence {di}i∈N converges (in the sense of convergence

in the Banach space) to d(x,y) = infi∈N di(x,y).

Proof. Let r > 0 and let x,y ∈ X . Since d(x,y) = infi∈N di(x,y) there exists an index

mx,y ∈ N such that for all n ≥ mx,y, |dn(x,y)−d(x,y)|< r. Now, let N = max{mx,y |

x,y ∈ X}. This is well-defined because X is finite. Therefore, for all n ≥ N and

x,y ∈ X , |dn(x,y)−d(x,y)|< r and hence ∥dn −d∥< r.

We can now use the above to re-adapt [Bre12, Theorem 1].

2.4. Completeness 56

Lemma 2.4.5. Let Λ : DX → DX be a monotone map that is nonexpansive with

respect to the supremum norm. If X is finite, then Λ is cocontinuous.

Proof. Let {di}i∈N be an arbitrary decreasing chain of pseudometrics over X . By

Lemma 2.4.4, {di}i∈N converges to infi∈N di. Since Λ is nonexpansive (Lemma 2.4.1)

it is also continuous (in the sense of the Banach space continuity) and therefore

{Λ(di)}i∈N converges to Λ(infi∈N di). Recall that Λ is monotone, which makes

{Λ(di)}i∈N into a chain, which by Lemma 2.1.20 and Lemma 2.4.4 converges to

infi∈N{Λ(di)}. Since limit points are unique, infi∈N{Λ(di)}= Λ(infi∈N di).

Note that the assumption that X is finite is essential, as it enables the use of

Lemma 2.4.4. Consequently, we obtain the following corollary:

Corollary 2.4.6. If M = (M,⟨oM, tM⟩) is a deterministic finite automaton, then

Φ⟨oM ,tM⟩ is ω-cocontinuous.

We can combine the preceding results and provide a straightforward characteri-

sation of the distance between languages represented by arbitrary regular expressions,

denoted as e, f ∈ RExp. Utilising a simple argument based on Lemma 2.2.3, which

asserts that automata homomorphisms are isometries, one can demonstrate that the

distance between JeK and J f K in the final automaton is equivalent to the distance

between [e]≡̇ and [f]≡̇ in ⟨[e]≡̇, [f]≡̇⟩Q. This is, the least subautomaton of Q that

contains the derivatives (modulo ≡̇) reachable from [e]≡̇ and [f]≡̇. Importantly,

this automaton is finite (Lemma 2.1.15), allowing us to apply the Kleene’s fixpoint

theorem to calculate the distance.

Let Ψ
(0)
e, f denote the discrete metric on the set ⟨[e]≡̇, [f]≡̇⟩Q (the top element

of the lattice of pseudometrics over that set). Define Ψ
(n+1)
e, f = Φ⟨[e]≡̇,[f]≡̇⟩Q

(
Ψ

(n)
e, f

)
.

Additionally, leveraging the fact that infima of decreasing chains are calculated

pointwise (Lemma 2.1.20), we can conclude with the following:

Lemma 2.4.7. For all e, f ∈ RExp, the underlying pseudometric of the quantitative

algebra B can be given by dB(e, f) = infi∈N

{
Ψ

(i)
e, f ([e]≡̇, [f]≡̇)

}
Proof. Recall that dB = dP(A∗) ◦(J−K×J−K). Moreover, the canonical quotient map

[−]≡̇ : RExp→ RExp/≡̇ is an automaton homomorphism from R to Q. Composing

2.4. Completeness 57

it with a language assigning homomorphism LQ : RExp/≡̇ → P(A∗) yields an au-

tomaton homomorphism LQ ◦ [−]≡̇ : RExp→P(A∗), which by finality must be the

same as LR : RExp→P(A∗), and thus (by Lemma 2.1.12) the same as J−K. Using

the fact that automata homomorphisms are isometries (Lemma 2.2.3), we can derive

the following:

dB = dP(A∗) ◦ (J−K× J−K)

= dP(A∗) ◦ ((LQ ◦ ([−]≡̇)× (LQ ◦ ([−]≡̇))

= dP(A∗) ◦ (LQ×LQ)◦ ([−]≡̇× [−]≡̇)

= d⟨oQ,tQ⟩ ◦ ([−]≡̇× [−]≡̇) (Lemma 2.2.3)

Additionally, since ⟨[e]≡̇, [f]≡̇⟩Q is the subautomaton of Q containing all the deriva-

tives (modulo ≡̇) of e and f , the canonical inclusion map ι : ⟨[e]≡̇, [f]≡̇⟩Q ↪→Q is a

deterministic automaton homomorphism. Because ι([e]≡̇) = [e]≡̇ and ι([f]≡̇) = [f]≡̇,

we can again use Lemma 2.2.3 to show that

dB(e, f) = d⟨oQ,tQ⟩([e]≡̇, [f]≡̇) = d⟨[e]≡̇,[f]≡̇⟩Q([e]≡̇, [f]≡̇)

Because of the fact that ([e]≡̇, [f]≡̇) has finitely many states (lemma 2.1.15) then

by Corollary 2.4.2, Corollary 2.4.6 and Theorem 2.4.3 one can use the simplified

iterative formula to calculate the behavioural pseudometric of ⟨[e]≡̇, [f]≡̇⟩Q.

In simpler terms, we have demonstrated that the behavioural distance between

a pair of arbitrary regular expressions can be calculated as the infimum of decreasing

approximations of the actual distance from above.

Alternatively, one could calculate the same distance as the supremum of increas-

ing approximations from below using the Kleene’s fixpoint theorem for the least

fixpoint. We chose the former approach because our proof of completeness relies on

the (Cont) rule of quantitative deduction systems. This rule essentially states that

to prove two terms are at a specific distance, we should be able to prove that for all

approximations of that distance from above. This allows us to replicate the fixpoint

2.4. Completeness 58

calculation through axiomatic reasoning.

2.4.2 Completeness result

We start by recalling that regular expressions satisfy a certain decomposition property,

stating that each expression can be reconstructed from its small-step semantics, up

to ≡0. This property, often referred to as the fundamental theorem of regular

expressions (in analogy with the fundamental theorem of calculus and following

the terminology of Rutten [Rut00] and Silva [Sil10]) is useful in further steps of

the proof of completeness. We will make use of the n-ary generalised sum operator,

which is well defined because of (SL1-SL4) axioms of REG.

Theorem 2.4.8 (Fundamental Theorem). For any e ∈ RExp,

⊢ e ≡0 ∑
a∈A

a ; (e)a +oR(e)

is derivable using the axioms of REG.

Proof. See [Brz64, Theorem 4.4] or [Sal66, Lemma 4].

Let’s now say that we are interested in the distance between some expressions

e, f ∈ RExp. As mentioned before, we will rely on ⟨[e]≡̇, [f]≡̇⟩Q, the least subau-

tomaton of the ≡̇ quotient of the Brzozowski automaton containing states reachable

from [e]≡̇ and [f]≡̇. Recall that by Lemma 2.1.15 its state space is finite. It turns out

that the approximations from above (from Lemma 2.4.7) to the distance between

any pair of states in that automaton can be derived through the means of axiomatic

reasoning.

Lemma 2.4.9. Let e, f ∈ RExp be arbitrary regular expressions and let [g]≡̇, [h]≡̇ ∈

⟨[e]≡̇, [f]≡̇⟩Q. For all i ∈N, and r ≥ Ψ
(i)
e, f ([g]≡̇, [h]≡̇), one can derive ⊢ g ≡r h using

the axioms of REG.

Proof. We proceed by induction on i.

For the base case, observe that Ψ
(0)
e, f is the discrete pseudometric on the

set ⟨[e]≡̇, [f]≡̇⟩Q such that Ψ
(0)
e, f ([g]≡̇, [h]≡̇) = 0 if and only if g≡̇h, or otherwise

Ψ
(0)
e, f ([g]≡̇, [h]≡̇) = 1.

2.4. Completeness 59

In the first case, we immediately have that g ≡0 h, because ≡̇ is contained in

distance zero axioms of REG. In the latter case, we can just use (Top), to show

that g ≡1 h. Then, in both cases, we can apply (Max) to obtain ⊢ g ≡r h, since

r ≥ Ψ
(0)
e, f ([g]≡̇, [h]≡̇).

For the induction step, let i = j+1 and derive the following:

r ≥ Ψ
(j+1)
e, f ([g]≡̇, [h]≡̇)

⇐⇒ r ≥ Φ⟨[e]≡̇,[f]≡̇⟩Q

(
Ψ

(j)
e, f

)
([g]≡̇, [h]≡̇) (Def. of Ψ

j+1
e, f)

⇐⇒ r ≥ max
{

d{0,1}(oQ([g]≡̇),oQ([h]≡̇)),λ ·max
a∈A

{
Ψ

(j)
e, f ([g]≡̇a, [h]≡̇a)

}}
(Def. of Φ)

⇐⇒ r ≥ max
{

d{0,1} (oR(g),oR(h)) ,λ ·max
a∈A

{
Φ

(j)
⟨[e]≡̇,[f]≡̇⟩Q

([(g)a]≡̇, [(h)a]≡̇)
}}

(Def. of Q)

⇐⇒ r ≥ d{0,1}(oR(g),oR(h)) and for all a ∈ A, r ≥ λ ·Ψ(j)
e, f ([(g)a]≡̇, [(h)a]≡̇)

Firstly, since d{0,1} is the discrete pseudometric on the set {0,1}, we can use

(Refl) or (Top) depending on whether oR(g) = oR(h) and then apply (Max) to

derive ⊢ oR(g)≡r oR(h).

For an arbitrary a ∈ A, we can apply Lemma 2.3.6 and the induction hypothesis

to conclude ⊢ a ; (g)a ≡r a ; (h)a using the axioms of REG. Using (SL5), we can

combine all subexpressions involving the output and transition derivatives into the

following:

⊢ ∑
a∈A

a ; (g)a +oR(g)≡r ∑
a∈A

a ; (h)a +oR(h)

Since both sides are normal forms of g and h existing because of Theorem 2.4.8, we

can apply (Triang) on both sides and obtain ⊢ g ≡r h, as desired.

At this point, we have done all the hard work, and establishing completeness

involves a straightforward argument that utilises the (Cont) rule and the lemma

above.

Theorem 2.4.10 (Completeness). For any e, f ∈ RExp and r ∈Q, if |=B e ≡r f , then

2.5. Discussion 60

⊢ e ≡r f ∈ REG.

Proof. Assume that |=B e ≡r f , which by the definition of |=B is equivalent to

dB(e, f)≤ r. In order to use (Cont) axiom to derive ⊢ e ≡r f , we need to be able

to show ⊢ e ≡r′ f for all r′ > r. Because of iterative characterisation of dB from

Lemma 2.4.7, we have that infi∈N{Ψ
(i)
e, f ([e]≡̇, [f]≡̇)}< r′. Since r′ is strictly above

the infimum of the descending chain of approximants, there exists a point i ∈N, such

that r′ > Ψ
(i)
e, f ([e]≡̇, [f]≡̇). We can show this by contradiction.

Assume that for all i ∈ N, r′ ≤ Ψ
(i)
e, f ([e]≡̇, [f]≡̇). This would make r′ into the

lower bound of the chain
{

Ψ
(i)
e, f ([e]≡̇, [f]≡̇)

}
i∈N

and in such a case r′ would be less

than or equal to the infimum of that chain, which by assumption is less than or equal

to r. By transitivity, we could obtain r′ ≤ r. Since r′ > r, by antisymmetry we could

derive that r′ = r, which would lead to the contradiction.

Using the fact shown above, we can use Lemma 2.4.9 to obtain ⊢ e ≡r′ f ∈ REG

for any r′ > r, which completes the proof.

2.5 Discussion
We have presented a sound and complete axiomatisation of the shortest-

distinguishing word distance between languages representing regular expressions

through a quantitative analogue of equational logic [MPP16]. Outside of the coalge-

bra community, the shortest-distinguishing word distance and its variants also appear

in the model checking [Kwi90] and the automata learning [FHS22] literature.

Early works on axiomatising behavioural distances relied on ad-hoc inference

systems. The earliest example of such a system was presented by Larsen, Fahrenberg

and Thrane [LFT11], who focused on the directed simulation distance of streams

of elements equipped with a metric space structure. Later work of D’Argenio,

Gebler and Lee [DGL14] studied systematic axiomatisations of behavioural distance

between processes featuring both probability and nondeterminism definable through

the PGSOS rule format. It is important to note that the inference system of D’Argenio

et al contained a powerful rule internalising the definition of Kantorovich lifting as

an inference rule.

2.5. Discussion 61

The introduction of quantitative equational theories [MPP16] made more prin-

cipled approaches possible. Bacci, Mardare, Panangaden and Plotkin [Bac+18c]

axiomatised the bisimilarity metric of Markov processes [Des+04] and in the later

work similarly considered behavioural distance of Mealy machines and Markov

decision processes [Bac+24]. Those results crucially hinged on the quantitative

generalisations of results from universal algebra, such as the notion of the tensor

of algebraic theories. It is worth noting that specification languages used in those

axiomatisations did not feature separate primitives for introducing recursion.

An alternative approach was proposed by Bacci, Bacci, Larsen and Mar-

dare [Bac+18a], who used a mild relaxation of quantitative equational theories and

gave a sound and complete axiomatisation of bisimulation distance between terms of

probabilistic process calculus of Stark and Smolka [SS00] and later adapted their re-

sults to a coarser notion of total variation distance between infinite traces [Bac+18b].

We have followed the strategy for proving completeness from [Bac+18a]. The

interesting insight about that strategy is that it relies on properties that are not

exclusive to distances obtained through the Kantorovich lifting and can be established

for notions of behavioural distance for other kinds of transition systems stemming

from the coalgebraic framework. In particular, one needs to show that the monotone

map on the lattice of pseudometrics used in defining the distance of finite-state

systems is nonexpansive with respect to the sup norm (and hence ω-cocontinuous)

and has a unique fixpoint, thus allowing to characterise the behavioural distance

as the greatest fixpoint obtained through the Kleene’s fixpoint theorem. This point

of view allows one to reconstruct the fixpoint calculation in terms of axiomatic

manipulation involving the (Cont) rule, eventually leading to completeness.

We have additionally observed that in the presence of the infinitary (Cont) rule

and the (λ -Pref) axiom, there is no need for a fixpoint introduction rule, which is

commonplace in axiomatisations of language equivalence regular expressions but

also other work on process calculi. Interestingly, the previous work on axiomatising a

discounted probabilistic bisimilarity distance from [Bac+18a] includes both (λ -Pref)

and the fixpoint introduction rule, but its proof of completeness [Bac+18a, Theo-

2.5. Discussion 62

rem 6.4] does not involve the fixpoint introduction rule at any point. We are highly

confident that in the case of that axiomatisation, the fixpoint introduction rule could

be derived from other axioms in a similar fashion to the way we derived Salomaa’s

rule for introducing the Kleene star [Sal66]. Additionally, we are interested in how

much this argument relates to the recent study of fixpoints in quantitative equational

theories [MPP21].

In this chapter, we have focused on the simplest and most intuitive instantiation

of the coalgebraic framework in the case of deterministic automata, but the natural

next step would be to generalise our results to a wider class of transition systems. A

good starting point could be to consider coalgebras for polynomial endofunctors, in

the fashion of the framework of Kleene Coalgebra [Sil10]. Alternatively, it would

be interesting to look at recent work on a family of process algebras parametric

on an equational theory representing the branching constructs [Sch+22] and study

its generalisations to quantitative equational theories. A related and interesting

avenue for future work are equational axiomatisations of behavioural equivalence of

Guarded Kleene Algebra with Tests (GKAT) [Smo+20; Sch+22] and its probabilistic

extension (ProbGKAT) [Róż+23], whose completeness results rely on a powerful

uniqueness of solutions axiom (UA). The soundness of UA in both cases is shown

through an involved argument relying on equipping the transition systems giving the

operational semantics with a form of behavioural distance and showing that recursive

specifications describing finite-state systems correspond to certain contractive map-

pings. It may be more sensible, particularly for ProbGKAT to consider quantitative

axiomatisations in the first place and give the proofs of completeness through the

pattern explored in this chapter.

Chapter 3

Behavioural Distance of

Nondeterministic Processes

In this chapter, we investigate axiomatisations of behavioural distance for a nonde-

terministic model of computation, known as charts [Mil84]. Originally introduced

by Milner, charts extend finite-state nondeterministic automata (NFA) by replacing

the notion of acceptance with variable outputs. Intuitively, the distance between two

charts can be quantified by, roughly, the number of steps after which their behaviours

disagree. This seemingly small generalisation from deterministic finite automata

provides a range of challenges, stemming from the fact that the presence of non-

determinism moves the semantics from language to bisimilarity, while at the same

time representing a crucial step towards weighted transition systems [LFT11], where

the general theory of behavioral distances and axiomatisations thereof is relatively

underexplored.

The central contribution of this chapter is an inference system for reasoning

about behavioural distances of behaviours of Milner’s charts. We demonstrate its

soundness (Theorem 3.4.4) and completeness (Theorem 3.5.26). On the way, we

gather several contributions of independent interest. First, we instantiate the abstract

framework of behavioural distances in the concrete case of charts. We organise

such behaviours as a symmetric monoidal category, in which they may be composed

sequentially and in parallel. We do so relying on rich structures associated with

charts, such as Conway theories [BÉT93; Ési99]. Second, as one of the steps in the

64

a

b
b

a

a

b a
a

b

a

b
aa≡1/4

b

a

a
a

a

~w w� completeness

,d

()
≤ 1

4

soundness

Figure 3.1: Two charts at distance 1
4 and their corresponding representations as string dia-

grams

soundness argument, we give a concrete characterisation of behavioural distance

between charts via Hennessy and Milner’s stratification of bisimilarity [HM85].

Finally, similarly to Chapter 2, the completeness argument makes use of tools from

fixpoint theory and Banach spaces to simplify the calculation of behavioural distance

to the point it can be mimicked via syntactic manipulation.

The syntax and equations of our complete axiomatic theory are given in terms

of string diagrams, the two-dimensional language of monoidal categories [Sel10;

PZ23b]. The pictorial representation of string diagrams provides an intuitive under-

standing of how information flows and is exchanged between components within a

system. For this reason, they have been increasingly popular as a formal language

for computations and processes in areas such as quantum theory [CD08], concur-

rency [Bon+19], probabilistic programming [Pie+24], and digital circuits [GKS22].

There are several reasons to favour string diagrams as our syntax of choice. First,

they closely resemble the usual graphical representation of the transition structure

of charts, while constituting a formal syntax that supports inductive reasoning and

to which we can assign semantics formally. Moreover, as Milner observed [Mil84],

the standard algebraic syntax of regular expressions is not expressive enough to

capture all chart behaviour [Gra22]. His solution introduced a more complex syntax

with binders and names, later studied in the process algebra community for various

models, including probabilistic [SS00] and quantitative [JL20] ones. In contrast,

3.1. Preliminaries 65

string diagrams offer a variable-free approach, eliminating the need to define substi-

tution and recursion as a primitive operation (the latter is decomposed into simpler

components). Finally, using string diagrams aligns our work with a broader research

programme aimed at axiomatising various notions of equivalence in automata theory

through a unified diagrammatic syntax [PZ23a; Ant+25].

The rest of the chapter is organised is as follows.

In Section 3.1, we introduce charts, as well as their associated notions of

behavioural equivalence and distances. Then, in Section 3.2, we introduce the syntax

of our diagrammatic calculus, for which we construct the semantics in Section 3.3.

Next, in Section 3.4 we present a (quantitative) equational inference system for

reasoning about distances of the denotations of the terms of our calculus; we also

prove its soundness and study one example in more detail. Section 3.5 contains

the main technical result of the chapter, namely completeness for the proposed

behavioural distance between charts. We wrap up in Section 3.6 where we review

related literature, and sketch directions for future work.

3.1 Preliminaries
In this section, we provide the main technical preliminaries for the development of

this chapter.

3.1.1 Charts

Fix a set V = {v1,v2, . . .} of variables and Σ of letters respectively. A prechart

is a triple (Q,E,D), where Q is a set of states, D ⊆ Q×Σ×Q a finite labelled

transition relation and E ⊆ Q×V is a finite output relation. Precharts can be thought

as a branching-time generalisation of nondeterministic automata, where instead of

acceptance, we deal with the notion of outputs. Moreover, when D and E are clear

from the context, we will write q a−→ q′ ⇐⇒ (q,a,q′)∈ D and q▷v ⇐⇒ (q,v)∈ E.

A chart C is a quadruple (Q,s,D,E), where (Q,D,E) is a prechart and s ∈ Q is a

distinguished start node. We call a chart finite if Q is finite.

Remark 3.1.1. Charts are closely related to other well-known transition system

models in theoretical computer science. On one hand, they can be viewed as a slight

3.1. Preliminaries 66

variation of image-finite labelled transition systems (LTS), differing primarily in their

use of explicit outputs besides just a labelled transition relation. This connection

proves particularly useful when applying Hennessy and Milner’s stratification of

bisimilarity, later in this chapter. On the other hand, charts can also be seen as

a variation of Kripke frames, where outputs serve as propositional atoms, but the

standard accessibility relation between worlds is generalised to a labelled transition

relation. While we do not explicitly pursue this perspective, we will hint at the

connections between the results presented in this chapter and the field of modal logic.

We emphasise that the similarity between labelled transition systems and Kripke

frames was crucially exploited by Hennessy and Milner [HM85], who introduced a

modal logic for witnessing inequivalences of states of LTS, in which standard box

and diamond modalities with their transition-labelled counterparts.

Definition 3.1.2 (Strong Bisimulation). Let Ci = (Qi,Di,Ei), i ∈ {1,2} be precharts.

A bisimulation between C1 and C2 is a relation R⊆Q1×Q2, such that 1 if (q1,q2)∈

R, then E(q1) = E(q2), 2 if (q1,q2) ∈ R and q1
a−→ q′1, then there exists q′2 ∈ Q2,

such that q2
a−→ q′2 and (q′1,q

′
2) ∈ R and symmetrically. If C1 and C2 are charts, we

say that they are bisimilar (denoted C1 ∼C2) if there exists a bisimulation between

their underlying precharts that relates their start nodes.

Using the above definition, we can also define the following:

Definition 3.1.3 (Prechart homomorphism). Let Ci = (Qi,Di,Ei), i ∈ {1,2} be

precharts. We call a function f : Q1 → Q2 a prechart homomorphism if the graph of

f , given by G(f) = {(q, f (q)) | q ∈ Q1} is a bisimulation between C1 and C2.

In other words, prechart homomorphisms preserve and reflect transitions. Given

a chart C = (Q,s,D,E) we say that a variable v ∈ V is live in C if there exists a

path of transitions s a1−→ ·· · an−→ s′▷ v or call it dead otherwise. It can be easily

observed that bisimulations and homomorphisms preserve the liveness of variables.

Such a conclusion can be also obtained from the perspective of modal logic, where

bisimulations of Kripke frames preserve the truth of modal propositions [BRV01,

Chapter 2].

3.1. Preliminaries 67

Later in this chapter, we will characterise the behavioural distance of precharts

via Hennessy and Milner’s stratification of bisimilarity [HM85] defined by the

following:

Definition 3.1.4 (Stratification of bisimilarity). Let Ci = (Qi,Di,Ei) for i ∈ {1,2}

be precharts. We can define a family {∼(i)}i∈N of equivalence relations on Q1 ×Q2

given by the following. For all (q1,q2) ∈ Q1 ×Q2, we have that q1 ∼(0) q2. Given

(q1,q2) ∈ Q1×Q2, we have that q1 ∼(n+1) q2 if 1 E1(q1) = E2(q2), 2 q1
a−→C1 q′1

implies that there exists q′2 ∈ Q2, such that q2
a−→ q′2 and q′1 ∼(n) q′2.

For precharts, which by definition are image-finite, we have the following

relationship between bisimilarity and its stratification [HM85]:

x ∼ y ⇐⇒ ∀k ∈ N. x ∼(k) y (3.1)

Given a prechart (Q,E,D), we can equivalently see it as a pair (Q,β), where β

is a combined transition function Q →Pω(Σ×Q+V), where Pω denotes a finite

powerset. Such transition function β takes each state q ∈ Q, to the set β (q) =

D(q)∪E(q) of possible successors, that include labelled transitions and variable

outputs.

In other words, precharts are coalgebras for the functor L : Set→ Set, given

by L= Pω(Σ× (−)+V). Bisimulations and homomorphisms of L-coalgebras are

captured concretely by strong bisimulation of precharts and their homomorphisms.

Because of this, we will interchangeably use terms prechart and L-coalgebra. More-

over, L preserves weak pullbacks and hence ∼ is an equivalence relation that captures

behavioural equivalence of L-coalgebras. For more details of coalgebraic treatment

of precharts, we direct an interested reader to [SRS21].

3.1.2 Algebra of regular behaviours

To define charts, Milner proposed a specification language called an algebra of

regular behaviours (ARB). The syntax of ARB is given by the following:

e, f ∈MExp ::= 0 | v ∈V | a.e | e+ f | µv.e (a ∈ Σ)

3.1. Preliminaries 68

where V = {v1,v2, . . .} and Σ are sets of variables and letters respectively. Given an

expression f containing a variable v, we say that v is free in f , if it appears outside of

the scope of the µv.e operator or say that it is bound otherwise. Given an expression

e ∈MExp, we write fv(e)⊆V for the set of its free variables.

Definition 3.1.5 ([Mil84]). Given vectors v⃗ of binders and e⃗ of expressions of the

same size, we define a syntactic substitution operator [⃗e/⃗v] : MExp→MExp by the

following:

v[⃗e/⃗v] =

e⃗i if v = v⃗i

v otherwise

(a.e)[⃗e/⃗v] = a.(e[⃗e/⃗v])

(e+ f)[⃗e/⃗v] = e[⃗e/⃗v]+ f [⃗e/⃗v]

(µw.e)[⃗e/⃗v] =

µw.(e[⃗e/⃗v]) if w is not in v⃗ nor free in e⃗

µz.(e[z/w][⃗e/⃗v]) otherwise for some z not in v⃗ nor free in e⃗

We can now define operational semantics of ARB, by equipping its syntax with

a prechart structure.

Definition 3.1.6 ([Mil84]). Let (MExp,∂) be a prechart whose transition function

(called derivative) is a least one satisfying the following inference rules

e a−→ e′

a.e a−→ e′ v▷ v

e a−→ e′

e+ f a−→ e′

f a−→ f ′

e+ f a−→ f ′

e▷ v

e+ f ▷ v

f ▷ v

e+ f ▷ v

e▷ v v ̸= w

µw.e▷ v

e a−→ e′

µv.e a−→ e′[µv.e/v]

Remark 3.1.7 ([Sew95]). The last rule (that defines the transition behaviour of the µ

recursion operator) can be replaced by the following:

e[µv.e/v] a−→ e′

µv.e a−→ e′

3.1. Preliminaries 69

Remark 3.1.8 ([Mil84, Proposition 5.4.]). Syntactic substitution can be described

operationally using the following rules

e▷ v f a−→ f ′

e[f/v] a−→ f ′

e a−→ e′

e[f/v] a−→ e′[f/v]

e▷w w ̸= v

e[f/v]▷w

e▷ v f ▷w

e[f/v]▷w

The syntactic prechart defined above is locally finite.

Lemma 3.1.9 ([Mil84, Proposition 5.1]). For all e ∈MExp, ⟨e⟩∂ is finite.

We can use Lemma 2.1.6 and construct the following quotient L-coalgebra.

Lemma 3.1.10. We can equip MExp/∼ with a transition function ∂ given by

e a−→ ∂ e′

[e]∼ a−→ ∂
[e′]∼

e▷∂ vi

[e]∼▷
∂

vi

This map is a unique transition function on MExp/∼ that makes the quotient map

[−]∼ : MExp→MExp/∼ into prechart homomorphism.

We will refer to the elements of the set MExp/∼ as regular behaviours.

It turns out that all operations from the syntax are compositional with respect to

bisimilarity, and hence can be unambiguously lifted to the quotient prechart defined

above.

Lemma 3.1.11 ([Sew95, Proposition 7]). ∼ is a congruence on MExp with respect

to all operations of the algebra of regular behaviours.

Using the definitions stated above, we can show the following technical lemma,

that we will use when constructing a semantic category for our string diagrammatic

syntax.

Lemma 3.1.12. For all e, f1, . . . , fm,g1, . . . ,gn ∈ MExp and vectors v⃗ =

(vi1, . . . ,vim), w⃗ = (v j1, . . . ,v jn), such that all free variables of e are contained

in v⃗ and all free variables of f⃗ are contained in w⃗, we have that

(e[f⃗ /⃗v])[⃗g/w⃗]∼ e[(f1 [⃗g/w⃗], . . . , fm [⃗g/w⃗])/⃗v]

3.1. Preliminaries 70

Proof. Let ∆ = {(e,e) ∈ MExp} be the diagonal relation. We define a relation

R ⊆MExp×MExp, given by the following:

R = ∆∪{((e[f⃗ /⃗v])[⃗g/w⃗],e[(f1 [⃗g/w⃗], . . . , fm [⃗g/w⃗])/⃗v])

| e, f1, . . . , fm,g1, . . . ,gn ∈MExp, v⃗ = (vi1, . . . ,vim), w⃗ = (v j1, . . . ,v jn),

fv(e)⊆ v⃗, fv(f⃗)⊆ w⃗}

We claim that R is a bisimulation. For pairs (e,e) ∈ ∆, the conditions of

bisimulation are immediately satisfied.

For the remaining pairs, assume that (e[f⃗ /⃗v])[⃗g/w⃗]▷u. In such a case at least

one of the following is true:

• e[f⃗ /⃗v]▷u

• e[f⃗ /⃗v]▷w j for w j ∈ w⃗ and g j ▷u

Since all free variables of e are contained in v⃗ and all free variables of f⃗ are contained

in w⃗, we have that all free variables of e[f⃗ /⃗v] are also contained in w⃗, which makes

the first case impossible. Through a similar line of reasoning, we can deduce that

e▷ vi for some vi ∈ v⃗ and fi ▷w j. Since g j ▷u, we have that fi[⃗g/w⃗]▷u. Finally,

we have that e[(f1[⃗g/w⃗], . . . , fn[⃗g/w⃗]), v⃗]▷u.

Assume that (e[f⃗ /⃗v])[⃗g/w⃗] a−→ h. Then, at least one of the following is true:

• e[f⃗ /⃗v]▷w j and g j
a−→ h.

• h = h′ [⃗g/w⃗], such that e[f⃗ /⃗v] a−→ h′

In the first case, through a similar line of reasoning as before, we can conclude that

e▷ vi for some vi ∈ v⃗ and fi ▷w j. Hence, fi[⃗g/w⃗] a−→ h. Finally, we can deduce that

e[(f1[⃗g/w⃗], . . . , fm[⃗g/w⃗])/⃗v] a−→ h. Obviously, (h,h) ∈ R.

In the second case, we have that e[f⃗ /⃗v] a−→ h′. There are two subcases, that

need to be considered

• e▷ vi and fi
a−→ h′

3.1. Preliminaries 71

• h′ = h′′[f⃗/w⃗] and e a−→ h′′

In the first subcase, we have that fi[⃗g/w⃗] a−→ h′ [⃗g/w⃗] and hence

e[(f1[⃗g/w⃗], . . . , fm[⃗g/w⃗])/⃗v] a−→ h′[⃗g/w⃗]

or equivalently e[(f1[⃗g/w⃗], . . . , fm[⃗g/w⃗])/⃗v] a−→ h. As before, of course (h,h) ∈ R.

Finally, moving on to the second subcase, we have that e a−→ h′′ and hence

e[(f1 [⃗g/w⃗], . . . , fm [⃗g/w⃗])/⃗v] a−→ h′′[(f1 [⃗g/w⃗], . . . , fm [⃗g/w⃗])/⃗v]

Recall that (e[f⃗ /⃗v])[⃗g/w⃗] a−→ h and h = (h′′[f⃗ /⃗v])[⃗g/⃗v]. Both of those reachable

expressions are actually in the relation R. The remaining conditions of bisimulation,

can be shown via a symmetric argument.

From now on, we will overload the notation and simply write e for the equiva-

lence class [e]∼.

3.1.3 Behavioural distance of precharts

Given a pseudometric space defined on a state-space of a prechart, we can lift it to

the set of possible transitions through the following construction.

Definition 3.1.13 (Transitions lifting). Let (X ,d) be a pseudometric space. We write

d↑ for the pseudometric on Σ×X +V defined by d↑(m,n) = 1
2d(x,y) if m = (a,x)

and n = (a,y), d↑(m,n) = 0 if m = n or d↑(m,n) = 1 otherwise.

Remark 3.1.14. Unlike Chapter 2, for simplicity and clarity, we fix a discount factor

of 1
2 for transitions with identical labels, rather than allowing an arbitrary λ ∈]0,1[.

The results in this chapter can be readily generalised to any discount factor in the

open unit interval, and we explicitly note this when introducing the axioms and

proving completeness.

The transitions lifting introduced above satisfies the following:

Lemma 3.1.15. (−)↑ : DX → DΣ×X+V , the lifitng for Σ× (−)+V is contractive

with respect to the metric induced by the sup norm. Namely, ∥d↑−d′↑∥ ≤ 1
2∥d −d′∥

3.1. Preliminaries 72

Proof. For the sake of simplicity, assume that d′ ⊑ d, and hence d′↑ ⊑ d↑. It suffices

that we show that for all u,w ∈ Σ×X +V , we have that d↑(u,w)−d′↑(u,w)≤ 1
2∥d−

d′∥. Recall that in all cases, except when u = (a,x) and w = (a,y) for some a ∈ Σ

and x,y ∈ X , d↑(u,w) = d′↑(u,w) and hence d↑(u,w)− d′↑(u,w) = 0 ≤ 1
2∥d − d′∥.

In the remaining case, we have that

d↑((a,x),(a,y))−d′↑((a,x),(a,y)) =
1
2

d(x,y)− 1
2

d′(x,y)

≤ 1
2
∥d′−d∥

which completes the proof.

To lift the distances between elements of X to distances finite subsets of X (that

is elements of Pω(X)), we will rely on the classic notion of Hausdorff distance (also

known as Pompeiu-Hausdorff distance) [BT06]. The standard definition applies to

non-empty compact subsets of a metric space, but we adapt it here to finite (and

possibly empty) subsets of a pseudometric space, following [Bal+18].

Definition 3.1.16 (Hausdorff lifting). Let (X ,d) be a pseudometric space. We can

equip Pω(X) with a distance function

H(d)(X ,Y) = max{sup
x∈X

inf
y∈Y

d(x,y),sup
y∈Y

inf
x∈X

d(y,x)}

making (Pω(X),H(d)) into a pseudometric.

Moreover, Hausdorff lifting can be equivalently characterised via the notion of

relational couplings.

Remark 3.1.17 ([Bal+18, Example 5.31]). Let (X ,d) be a pseudometric space and let

A,B ∈ Pω(X). Let Γ(A,B) denote the set of relational couplings of A and B, namely

elements R ∈ Pω(A × B), such that π1(R) = A and π2(R) = B. The Hausdorff

distance between A and B can be alternatively presented as:

H(d)(A,B) = inf

{
sup

(x,y)∈R
d(x,y) | R ∈ Γ(A,B)

}

3.1. Preliminaries 73

Hausdorff lifting satisfies the following property:

Lemma 3.1.18 ([van12]). Hausdorff lifting H : DX → DPω (X) is nonexpansive with

respect to the metric induced by the sup norm. Namely,

∥H(d)−H(d′)∥ ≤ ∥d −d′∥

Given a prechart (Q,β), whose state-space is equipped with a pseudometric

dQ, we can define a new pseudometric Φβ (dQ) that calculates the distance between

any pair q1,q2 ∈ Q of states, by lifting dQ to the set Pω(Σ×Q+V) and comparing

β (q1) with β (q2), namely Φβ (dQ)(q1,q2) =H
(

d↑
Q

)
(β (q1),β (q2)). This is used

to define the behavioural distance.

Theorem 3.1.19. Let (Q,β) be a prechart. Then, the following properties hold: 1

dQ 7→ Φβ (dQ) is a monotone mapping on the lattice DQ, 2 Φβ has a least fixpoint

bdβ , 3 x ∼ y =⇒ bdβ (x,y) = 0 and 4 a homomorphism f : Q → R between

precharts (Q,β) and (R,γ) is an isometry between (Q,bdβ) and (R,bdγ).

Proof. H and (−)↑ are liftings for the functors Pω and Σ× (−)+V respectively,

that preserve isometries [Bal+18, Theorem 5.8]. The rest follows from Lemma 2.2.2

and Lemma 2.2.3

The monotone map used to define the behavioural distance satisfies the follow-

ing:

Lemma 3.1.20. Φβ : DX → DX is contractive with respect to the metric induced by

the sup norm, namely ∥Φβ (d)−Φβ (d′)∥ ≤ 1
2∥d −d′∥.

Proof. For the sake of simplicity, assume that d′ ⊑ d and hence Φβ (d′) ⊑ Φβ (d).

It suffices to show that for all x,y ∈ X , we have that H(d↑)(β (x),β (y)) −

H(d′↑)(β (x),β (y)) ≤ 1
2∥d − d′∥. We can combine the previous results and for

arbitrary x,y ∈ X obtain the following

H(d↑)(β (x),β (y))−H(d′↑)(β (x),β (y))≤ ∥H(d↑)−H(d′↑)∥

≤ ∥d↑−d′↑∥

3.1. Preliminaries 74

≤ 1
2
∥d −d′∥

As a consequence, we have the following corollary:

Corollary 3.1.21. Φβ has a unique fixpoint.

Additionally, through an identical argument to Corollary 2.4.6, we can show

the following:

Lemma 3.1.22. For a finite prechart (X ,β), Φβ is cocontinuous.

Proof. Since X is finite and Φβ is nonexpansive with respect to the metric induced

by the sup-norm (by Lemma 3.1.20), an application of Corollary 2.4.6 yields the

desired result.

Since Φβ has a unique fixpoint, we can use Theorem 2.4.3 to calculate be-

havioural distance of states of finite precharts.

Lemma 3.1.23. Let (Q,β) be a finite prechart. The behavioural distance

between any pair q1,q2 ∈ Q of states can be calculated by bdβ (q1,q2) =

infp∈N

{
Φ

(p)
β

(q1,q2)
}

, where Φ
(0)
β

is a discrete pseudometric and for any p ∈ N, we

define Φ
(p+1)
β

= Φβ

(
Φ

(p)
β

)
.

The characterisation described above can be extended to any locally finite

prechart.

Corollary 3.1.24. For any locally finite prechart (X ,β), the distance between x,y ∈

X, can be calculated by:

bdβ (x,y) = inf
i∈N

(
Φ

(i)
β
(x,y)

)
Proof. Let β ′ denote β restricted to ⟨x,y⟩β . Since (X ,β) is locally finite, then its

subprechart (⟨x,y⟩β ,β
′) is finite. Since homomorphisms are isometries, calculating

distance between x and y in (X ,β) is the same as calculating it in (⟨x,y⟩β ,β).

Because of Lemma 3.1.22, Φβ is cocontinuous (when restricted to ⟨x,y⟩β ′) and

3.1. Preliminaries 75

hence we can employ Theorem 2.4.3. Since the infima in the lattice of pseudometrics

can be calculated pointwise (Lemma 2.1.20), we have that

bdβ (x,y) = bdβ ′(x,y) = inf
i∈I

(
Φ

(i)
β ′ (x,y)

)
Since β ′ is a restriction of β to ⟨x,y⟩β and each Φ

(i)
β ′ makes only use of the states in

⟨x,y⟩β , we can rewrite the above as bdβ (x,y) = infi∈N

(
Φ

(i)
β
(x,y)

)
as desired.

The behavioural distance between any two states in locally finite precharts is

always a power of two.

Lemma 3.1.25. Let (X ,β) be a locally finite prechart. For all x,y ∈ X, i ∈ N, either

Φ
(i)
β

= 0 or there exists k ∈ N, such that Φ
(i)
β
(x,y) = 2−k

Proof. Let x,y ∈ X . We proceed by induction on i.

• If i = 0, then Φ
(0)
β
(x,y) = 1 = 20, if x ̸= 0 or Φ

(0)
β
(x,y) = 0, otherwise.

• If i = j+1, then unrolling the definition of Φ
(j+1)
β

yields the following:

Φ
j+1
β

(x,y) = max

{
sup

u∈β (x)
inf

w∈β (y)
Φ

(j)
β

↑
(u,w), sup

w∈β (y)
inf

u∈β (x)
Φ

(j)
β

↑
(w,u)

}

For any two transitions u = (a,x′) and w = (a,y′) with the same prefix, the

following holds:

Φ
(j)
β

↑
(u,w) =

1
2

Φ
(j)
β
(x′,y′)

We can apply the induction hypothesis, which states that one of the following

is true:

– Φ
(j)
β
(x′,y′) = 0, which entails that Φ

(j)
β

↑
(u,w) = 0.

– There exists a k ∈ N, such that Φ
(j)
β
(x′,y′) = 2−k. This implies that

Φ
(j)
β

↑
(u,w) = 2−(k+1).

Since the infima range over finite sets, their values are either 1 = 20 if the sets

are empty or are one of the values from the set, which we have shown to be of

3.1. Preliminaries 76

the desired form. Similarly, suprema range over finite sets and are either 0 for

empty sets or are on of the values from the set, which are in the desired form.

Taking the maximum of values in the desired form, still results in a value in

the desired form.

If two states have a non-zero distance, then the chain of approximants from

Kleene’s fixpoint theorem stabilises.

Lemma 3.1.26. Let (X ,β) be a locally finite prechart and let x,y ∈ X, such that

bdβ (x,y)> 0. There exists i ∈ N, such that Φ
(i)
β
(x,y) = Φ

(i+1)
β

(x,y)

Proof. Assume that for all i ∈ N, Φ
(i)
β
(x,y) ̸= Φ

(i+1)
β

(x,y). Essentially, that means

we have an infinite, strictly decreasing ω-cochain {Φ
(i)
β
(x,y)}i∈I . By Lemma 3.1.25,

we know that the values of the chain are either 0 or 2−k. Since all the values of

the chain are nonegative, if any of it is equal to zero 0, we reach a contradiction,

as the chain would have to contain values strictly below 0. Hence, we can safely

assume that the chain is in the form {1, 1
2 ,

1
4 , . . .}. But in such a case its infimum is 0,

contradicting the assumption.

We can connect behavioural distances with stratified bisimulations via the

following result:

Lemma 3.1.27. Let (X ,β) be a prechart. For any x,y ∈ X, we have that

x ∼(k) y ⇐⇒ bdβ (x,y)≤ 2−k

Proof. By induction on k. The base case is trivial, as we immediately have that

x ∼(0) y and bdβ (x,y)≤ 20 = 1.

For the inductive step assume that for some k′ ∈ N, the induction hypothesis

holds. First, assume that x ∼(k′+1) y. Unrolling the definition of stratification of

bisimilarity, we have that

• If x▷ v, then y▷ v

• If x a−→ x′, then there exists y′ such that y a−→ y′ and x ∼(k′) y.

3.1. Preliminaries 77

and symmetrically.

We want to show that bdβ (x,y)≤ 2−(k′+1). We can unroll the definition of bdβ

and rewrite the desired result as

sup
u∈β (x)

(
inf

w∈β (y)
bd↑

β
(u,w)

)
≤ 2−(k′+1) ∧ sup

w∈β (y)

(
inf

u∈β (x)
bd↑

β
(w,u)

)
≤ 2−(k′+1)

We focus on the left hand side of the conjunction above, as the right hand side is

symmetric. We are aiming to show that

∀u ∈ β (x). inf
w∈β (y)

bd↑
β
(u,w)≤ 2−(k′+1)

Let u ∈V . By the assumption, we know that also u ∈ B(y), which means that

inf
w∈β (y)

bd↑
β
(u,w) = 0 ≤ 2−(k′+1)

Now, let u∈ Σ×X , i.e. u= (a,x′). By the assumption, we know that there exists

y′ ∈ X , such that (a,y′) ∈ β (y) and x′ ∼(k′) y′. By induction hypothesis, we know

that bdβ (x′,y′)≤ 2−k′ . Hence, we have that bd↑
β
((a,x′),(a,x′))≤ 1

2 ·2
−k′ = 2−(k′+1).

Hence, we again have that

∀u ∈ β (x). inf
w∈β (y)

bd↑
β
(u,w)≤ 2−(k′+1)

Now, for the converse assume that bdβ (x,y)≤ 2−(k′+1). Through a similar line

of reasoning, as before, we have that

∀u ∈ β (x). inf
w∈β (y)

bd↑
β
(u,w)≤ 2−(k′+1)

Assume that x▷ v, i.e. v ∈ β (x). Assume that ¬(y▷ v). That means that for all

w ∈ β (y), we have that bd↑
β
(v,w) = 1 and hence infw∈β (y) bd

↑
β
(v,w) = 1, which

contradicts the assumption as 1 > 2−(k′+1). Hence, y▷ v.

Now, assume that x a−→ x′, i.e. (a,x′) ∈ β (y). Through a similar argument as

before, we know that there must exist (a,y′) ∈ β (y), such that bd↑
β
((a,x′),(a,y′))≤

3.1. Preliminaries 78

2−(k′+1). Unrolling the definitions of bd↑
β

, we obtain 1
2 ·bdβ (x′,y′) ≤ 2−(k′+1) and

hence bdβ (x′,y′)≤ 2−k′ . Using the induction hypothesis, we get that x′ ∼(k′) y′ as

desired. The remaining part of the proof is symmetric and hence is omitted.

We can now combine the above results and obtain the following concrete

characterisation of behavioural distance of locally finite precharts.

Theorem 3.1.28. Let (X ,β) be a locally finite prechart and let x,y ∈ X. The be-

havioural distance between x and y is given by:

bdβ (x,y) =

0 if x ∼ y

2−n if n ∈ N is the largest number such that x ∼(n) y

Proof. For the first case, because of Theorem 3.1.19, if x ∼ y, then bdβ (x,y) = 0.

For the converse, if bdβ (x,y) = 0, we have that x ∼(k) y for all k ∈ N and hence by

Equation (3.1), it holds that x ∼ y.

In the second case, because of Lemma 3.1.26, we know that if bdβ (x,y)> 0,

then the behavioural distance is equal to some element of the chain of approximants.

By Lemma 3.1.25, we know that all non-zero elements of that chain are equal to

2−k, for some k ∈ N. Combining it with Lemma 3.1.27 yields the desired result.

For the converse, if n ∈ N is the largest number such that x ∼(n) y, then because of

Lemma 3.1.27, we have that bdβ (x,y)≤ 2−n. Assume that bdβ (x,y) = 0. In such

a case, using Lemma 3.1.27, we could conclude that x ∼(n+1) y, which would lead

to contradiction. Hence, bdβ (x,y) > 0. Because of Lemma 3.1.26, we have that

bdβ (x,y) is equal to some power of two. Combining that with Lemma 3.1.27 again

yields the desired result.

Remark 3.1.29. If the discount factor 1
2 in the definition of transitions lifting

were replaced with an arbitrary λ ∈]0,1[(as discussed in Remark 3.1.14), then

Lemma 3.1.20, Lemma 3.1.25, Lemma 3.1.27 and Theorem 3.1.28 would need

to be adjusted accordingly to mention (powers of) λ , but otherwise would remain

unchanged.

3.1. Preliminaries 79

Remark 3.1.30. The original paper that introduced the stratification of bisimilar-

ity [HM85] simultaneously presented Hennessy-Milner logic and established connec-

tion between each relation x ∼(k) y and formulas of modal depth k. Viewed through

this lens, the theorem above provides a characterisation of the behavioural distance

between inequivalent states x and y of the chart (X ,β) as 2−n, where n denotes the

minimal modal depth of a Hennessy-Milner formula distinguishing their behaviours.

In this setting, modal formulas serve an analogous role to words in the behavioural

distance theory studied in Chapter 2.

3.1.4 Monoidal categories

Throughout this thesis, we assume the reader is familiar with basic concepts of

monoidal categories [Sel10; PZ23b], traced monoidal categories [JSV96], and com-

pact closed categories [KL80]. Nevertheless, we recall the definitions of (symmetric)

monoidal categories to establish notation for the remainder of the chapter.

Definition 3.1.31. A monoidal category is a tuple (C,⊗, I,α,λ ,ρ) consisting of:

• A category C,

• A bifunctor ⊗ : C ×C → C (monoidal product),

• An object I ∈ Obj(C) (monoidal unit),

• A natural isomorphism αA,B,C : (A⊗B)⊗C ∼−→ A⊗ (B⊗C) (associator),

• Natural isomorphisms λA : I ⊗ A ∼−→ A and ρA : A ⊗ I ∼−→ A (left and right

unitors),

satisfying the following coherence conditions:

1. Pentagon identity: For all A,B,C,D ∈ Obj(C), the diagram

((A⊗B)⊗C)⊗D

(A⊗ (B⊗C))⊗D (A⊗B)⊗ (C⊗D)

A⊗ ((B⊗C)⊗D) A⊗ (B⊗ (C⊗D))

αA⊗B,C,DαA,B,C⊗idD

αA,B⊗C,D αA,B,C⊗D

idA⊗αB,C,D

3.1. Preliminaries 80

commutes.

2. Triangle identity: For all A,B ∈ Obj(C), the diagram

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

αA,I,B

ρA⊗idB idA⊗λB

commutes.

A monoidal category is called strict if α , λ , and ρ are identity morphisms.

We often abuse notation by referring to the monoidal category as (C,⊗, I), by

omitting associator and unitors.

Definition 3.1.32. A symmetric monoidal category is a monoidal category

(C,⊗, I,α,λ ,ρ) equipped with a natural isomorphism σA,B : A⊗B ∼−→ B⊗A, called

symmetry, satisfying the following additional coherence conditions:

1. Involutivity: For all A,B ∈ Obj(C), the composite

A⊗B
σA,B−−→ B⊗A

σB,A−−→ A⊗B

equals idA⊗B.

2. Hexagon identity: For all A,B,C ∈ Obj(C), the diagram

(A⊗B)⊗C

A⊗ (B⊗C) (B⊗A)⊗C

(B⊗C)⊗A B⊗ (A⊗C)

B⊗ (C⊗A)

αA,B,C σA,B⊗idC

σA,B⊗C αB,A,C

αB,C,A idB⊗σA,C

commutes.

3.1. Preliminaries 81

3. Unitor compatibility: For all A ∈ Obj(C), the diagram

A⊗ I I ⊗A

A

σA,I

ρA λA

commutes.

3.1.5 Conway theories

Let C be a category, whose objects are natural numbers and 0 is the initial object.

We will write 0n for the unique map 0n : 0 → n. Additionally, we assume that C is

equipped with all finite coproducts, where the binary coproduct is given by addition,

i.e. n⊕m := n+m. Given f : k → m and g : l → m, we will write [f ,g] : k+ l → m

for the mediating map from the universal property of the coproduct that makes the

following diagram commute:

k k+ l l

m

inlk+l

f
[f ,g]

inrk+l

g
(3.2)

For every n ∈ N, we can define a codiagonal ∇n : n+n → n, given by ∇n := [idn, idn].

Given f : k → l and g : m → n, we can define their separated sum f ⊕ g : k+

m → l +n, given by the unique mediating arrow in the following diagram

k k+m m

l l +n n

inlk,m

f f⊕g

inrk,m

g

inll,n inrl,n

(3.3)

Observe that under the assumptions listed above C is equipped with all finite coprod-

ucts (since it has an initial object and binary coproducts), and hence (C,⊕,0) is a

cocartesian symmetric monoidal category.

3.1. Preliminaries 82

We follow the terminology of Esik, and we call C a preiteration theory [Ési99]

if for every morphism f : n → p+ n, there exists a morphism f †
n,p : n → p called

dagger. We will often omit the subscripts and write f †, when n and m are clear from

the context. Note that the definition does not impose any conditions on the dagger.

However, for f : 0 → p, when always we have that f †
0,p = 0p.

Definition 3.1.33 ([Ési99, Definition 3.1]). A Conway theory is a preiteration theory,

in which the following conditions are satisfied:

(Scalar parameter identity)

(f ;(g⊕ id1))
† = f †;g

for all f : 1 → p+1, g : p → q.

(Scalar composition identity)

(f ; [idp ⊕01,g])† = f ; [idp,(g; [idp ⊕01, f])†]

for all f ,g : 1 → p+1.

(Scalar double dagger identity)

f †† = (f ;(idp ⊕∇1))
†

for all f : 1 → p+2.

(Scalar pairing identity)

[f ,g]† = [f †; [idp,h†],h†]

for all f : n → p+1+n, g : 1 → p+1+n where

h = g; [idp+1, f †] : 1 → p+1

3.1. Preliminaries 83

Remark 3.1.34 ([Ési99, Remark 3.2]). Note that in order to define a Conway theory

it suffices to define f † : 1 → p for all f : 1 → p+1 that satisfies first three axioms of

Definition 3.1.33 and use scalar pairing identity to inductively define (−)†.

3.1.6 Trace-fixpoint correspondence

It turns out that Conway theories can be seen as a special case of traced symmetric

monoidal categories. This is captured by the following theorem that was indepen-

dently proved by Hasegawa [Has97] and Haghverdi [Hag00]. The formulation of

Hasegawa is phrased dually via the setting of products and cartesian categories.

Theorem 3.1.35 ([Hag00, Proposition 3.1.9]). For any category with finite coprod-

ucts, to give a Conway operator is to give a trace (where finite coproducts are taken

as the monoidal structure).

That bijective correspondence is concretely given by the following:

f : n → p+n

f † = Trnn,p(∇n; f) : n → p

g : p+n → q+n

Trnp,q(g) = inlp,n;(g; [idq, inrq+p,n])
† : p → q

3.1.7 Int construction

Given a traced symmetric monoidal category (C,⊗, I), we can construct a compact

closed category Int(C) [JSV96]. The objects of Int(C) are the pairs (A+,A−) of

objects of C. Morphisms f from (A+,A−) to (B+,B−) are the morphisms f : A+⊗

B− → A−⊗B+ of C. The identity of any object (A+,A−) is given by the symmetry

of C, namely id(A+,A−) = σA+,A− . The composition f ;g : (A+,A−)→ (C+,C−) of

morphisms f : (A+,A−) → (B+,B−) and g : (B+,B−) → (C+,C−) is defined as

TrB
−⊗B+

A+⊗C−,A−⊗C+(α;(f ⊗g);β), where

α = (idA+ ⊗σC−,B− ⊗ idB+);(idA+ ⊗ idB− ⊗σC−,B+)

β = (idA− ⊗ idB+ ⊗σB−,C+);(idA− ⊗σB+,C+ ⊗ idB−);(idA− ⊗ idC+ ⊗σB+,B−)

Int(C) is equipped with the monoidal structure. The tensor product of (A+,A−)

and (B+,B−) is given by taking the tensor product of C pointwise, namely (A+⊗

3.2. Monoidal Syntax 84

B+,A−⊗B−). The unit of that monoidal product is given by (I, I), where I is the unit

of the monoidal product on C. The tensor product f ⊗g : (A+⊗C+,B−⊗D−)→

(A−⊗C−,B+⊗D+) of f : (A+,A−)→ (B+,B−) and g : (C+,C−)→ (C+,C−)→

(D+,D−) is given by the following:

f ⊗g = (idA+ ⊗σC+,B− ⊗ idD−);(f ⊗g);(idA− ⊗σB+,C− ⊗ idD+)

The dual (A+,A−)∗ of (A+,A−) is given by exchanging the components, that is

by (A−,A+). Then, the unit η(A+,A−) : (I, I)→ (A+,A−)⊗ (A+,A−)∗ is a morphism

σA−,A+ : A−⊗A+ → A+⊗A−. The counit ε(A+,A−) : (A+,A−)∗⊗ (A+,A−)→ (I, I)

can be similarly given by σA−,A+ : A−⊗A+ → A+⊗A− in C.

Int(C) is equipped with a canonical trace, which takes a morphism

f : (A+,A−)⊗ (U+,U−)→ (B+,B−)⊗ (U+,U−)

to the map given by the following:

(
id(A+,A−)⊗η(U+,U−)

)
;
(

f ⊗ id(U+,U−)∗

)
;
(
id(B+,B−)⊗ ε(U+,U−)

)

3.2 Monoidal Syntax
We adopt the diagrammatic syntax for NFA that has appeared in a number of previous

papers [PZ23a; Ant+25]. We refer the reader to Selinger’s classic survey [Sel10], or

to Piedeleu and Zanasi’s recent text for a more gentle introduction to the language of

string diagrams [PZ23b].

This syntax is formalised as a product and permutation category, or prop, a

structure which generalises algebraic theories. Formally, a prop is a strict symmetric

monoidal category (SMC) whose objects are words over a set of generators and

whose monoidal product ⊕ is given by concatenation. More specifically, our syntax

is the free prop TS over the signature S = (O,M), given by a set O of generating

objects and a set M of generating morphisms g : v → w, with v,w ∈ O∗ (we use

ε to denote the empty word). Morphisms of TS can be combined in two different

3.2. Monoidal Syntax 85

ways, using the composition operation (−);(−) : TS(u,v)×TS(v,w)→ TS(u,w) or

the monoidal product (−)⊕ (−) : TS(v1,w1)×TS(v2,w2)→ TS(v1v2,w1w2). We

also have distinguished constants: identities idw : w → w, which are the unit for

composition, and symmetries σ v
w : vw → wv, to reorder the letters of a given object.

In summary, morphisms of TS can be described as terms of the (O∗,O∗)-sorted

syntax generated from the constants M+{idw : w ∈ O∗}+{σ v
w : v,w ∈ O∗} using

the operations ; and ⊕, quotiented by the axioms of SMCs. However, the terms of

this syntax are very cumbersome to work with and hence we adopt a more convenient

way to represent morphisms of TS , using the graphical notation of string diagrams.

In this view, a morphism f : v→w of TS is depicted as a f -labelled box with a v-

labelled on the left and a w-labelled wire on the right. The operations of composition

and monoidal product are represented by connecting two boxes horizontally and

juxtaposing two boxes vertically, respectively:

fu v g w f1

f2

v1 w1

v2 w2

Wires w represent identities, the wire crossing v
w

represents the symmetry

σ v
w, and the empty diagram the identity idε : ε → ε .

Definition 3.2.1. We call Syn the free prop over the signature given by

• two generating objects ◀ ("left") and ▶ ("right"), with their identity morphisms

depicted respectively as and ;

• generating morphisms a (a ∈

Σ).

Morphisms of Syn are thus vertical and horizontal composites of the generators

above, potentially including wire crossings and identity wires, up to the laws of

symmetric monoidal categories, listed below:

3.3. Monoidal semantics 86

c1 c2 c3 = c1 c2 c3

c1

c2

c3

=

c1

c2

c3

c1 d1

d2c2

=
c1 d1

d2c2

c = c = c

c
= c =

c

c
= c

=

The direction of the arrows on the wires denotes the corresponding object: for

example, represents an operation of type ▶→▶▶, while has type ◀▶→ ε .

Note that, when we have n parallel wires of the same type, say ▶, we depict them as

a single directed wire labelled by a natural number label, as n. We call inputs

the incoming wires of a diagram, and outputs its outgoing wires; formally, the inputs

(resp. outputs) of f : v → w are the set of positions of the word v which are ▶ (resp.

◀) and the position of w which are ◀ (resp. ▶).

3.3 Monoidal semantics
In order to interpret the string diagrams described in Section 3.2, we construct an

appropriate semantic universe out of regular behaviours. As much as the techni-

cal development makes use of category theory, we will keep the description of

the formalism high-level. We will write Vn for the set Vn = {v1, . . . ,vn} ⊆ V and

(MExp/∼)(n) for the set of all regular behaviours whose live variables are contained

in the set Vn. For any m,n ∈ N, we will write RegBeh(m,n) for the set of m-tuples

of elements of (MExp/∼)(n).

For every n ∈ N, we define an identity map idn ∈ RegBeh(n,n) as idn = v⃗n =

(v1, . . . ,vn). When n is clear from the context, we will abuse the notation and simply

write v⃗ instead.

Given f ∈ RegBeh(m,n) and g ∈ RegBeh(n, p), we can define their sequential

3.3. Monoidal semantics 87

composition f ;g ∈ RegBeh(m, p) to be given by (f1[⃗g/⃗v], . . . , fm[⃗g/⃗v]), where v⃗ =

(v1, . . . ,vn). It turns out that sequential composition is associative, with identity

being a neutral element when composed both on the left and right.

Lemma 3.3.1. Let f : m → n, g : n → p, h : p → q. We have that:

1. (f ;g);h = f ;(g;h)

2. idm; f = f

3. f ; idn = f

Proof. We respectively prove each of the properties. For 1 we have the following:

(f ;g);h = (f1 [⃗g/⃗v], . . . , fm [⃗g/⃗v]);h

=
(
(f1 [⃗g/⃗v])[⃗h, v⃗], . . . ,(fm[⃗g/⃗v])[⃗h, v⃗]

)
=
(

f1[(g1[⃗h/⃗v], . . . ,gn[⃗h/⃗v])/⃗v], . . . , fm[(g1 [⃗h/⃗v], . . . ,gn [⃗h/⃗v])/⃗v]
)

(Lemma 3.1.12)

=
(

f1[⃗(g;h)/⃗v], . . . fm[⃗(g;h)/⃗v]
)

= f ;(g;h)

For 2 , we have the following:

idm; f = (v1[f⃗ /⃗v], . . . ,vm[f⃗ /⃗v]) = (f1, . . . , fm) = f

The proof of 3 is similar, as we have the following:

f ; idn = (f1[⃗v/⃗v], . . . , fm [⃗v/⃗v]]) = (f1, . . . , fm) = f

Because of the above, we can define a category RegBeh, whose objects are

natural numbers and morphisms f : m → n are elements f ∈ RegBeh(m,n).

For every n ∈ N, there is a unique element 0n ∈ RegBeh(0,n) given by the

empty tuple.

3.3. Monoidal semantics 88

Lemma 3.3.2. 0 is the initial object of RegBeh.

Proof. For each n ∈ N, there exists a unique empty tuple 0m : 0 → m satisfying that

for any f : m → n, we have that 0m; f = 0n.

Given f ∈ RegBeh(k,m) and g ∈ RegBeh(l,m), we define their pairing [f ,g] ∈

RegBeh(k+ l,m), by setting

[f ,g] = (f1, . . . , fk,g1, . . .gl) (3.4)

RegBeh can be equipped with binary coproducts, which is defined on objects as

addition and the mediating map is given by pairing.

Lemma 3.3.3. RegBeh has binary coproducts. In particular, given k, l ∈ N, the

inclusions inlk,l : k → k+ l and inrk,l : l → k+ l are given by inlk,l = (v1, . . . ,vk) and

inrk,l = (vk+1, . . . ,vk+l) respectively, while the mediating map is given by pairing.

Proof. Let f : k → m and g : l → m. We can safely assume that f = (f1, . . . , fk) and

g = (g1, . . . ,gl). Recall that inlk,l = (v1, . . . ,vk) and inrk,l = (vk+1, . . . ,vk+l). For the

existence proof, define [f ,g] : k+ l → m as a k+ l-tuple (f1, . . . , fk,g1, . . . ,gl). We

show that that the coproduct diagram from Equation (3.2) commutes. We start from

the left triangular subdiagram.

inlk,l; [f ,g] = (v1, . . . ,vk);(f1, . . . fk,g1, . . . ,gl) (Equation (3.4))

= (f1, . . . , fk)

= f

Similarly, for the right subdiagram, we have that:

inrk,l; [f ,g] = (vk+1, . . . ,vk+l);(f1, . . . fk,g1, . . . ,gl) (Equation (3.4))

= (g1, . . . ,gl)

= g

3.3. Monoidal semantics 89

For the uniqueness proof, assume that there exists a map h : k+ l → m, which makes

the coproduct diagram commute. We have that h = (h1, . . . ,hk+l). Since inlk,l;h = f

and inrk,l;h = g, we have that:

(f1, . . . , fk) = f

= inlk,l;h

= (v1, . . . ,vk);(h1, . . . ,hk+l)

= (h1, . . . ,hk)

Similarly, we have that:

(g1, . . . ,gl) = f

= inrk,l;h

= (vk+1, . . . ,v);(h1, . . . ,hk+l)

= (hk+1, . . . ,hk+l)

Hence, h = (f1, . . . , fk,g1, . . . ,gl) = [f ,g] as desired.

Given f ∈ RegBeh(k, l) and g ∈ RegBeh(m,n), we can define their parallel

composition f ⊕g ∈ RegBeh(k+m, l +n), by setting

f ⊕g = (f1, . . . , fk,g1[(vl+1, . . . ,vl+n)/⃗v], . . . ,gm[(vl+1, . . . ,vl+n)/⃗v])

This operation intuitively combines two tuples while systematically renaming vari-

ables in g to prevent conflicts with those in f . The equation above precisely cor-

responds to the mapping defined in Equation (3.3) and thus (RegBeh,⊕,0) is a

co-cartesian symmetric monoidal category. Moreover, this monoidal category is

strict.

Proposition 3.3.4. (RegBeh,⊕,0) is a strict monoidal category.

Proof. We verify that associators and unitors are strict equalities. Let f ∈

RegBeh(k, l),g ∈ RegBeh(m,n),h ∈ RegBeh(o, p). For the left unitor, we have the

3.3. Monoidal semantics 90

following:

0⊕ f = ()⊕ (f1, . . . , fk) (def. of 0 and ⊕)

= (f1, . . . , fk) = f

Similarly, for the right unitor, we have that:

f ⊕0 = ()⊕ (f1, . . . , fk) (def. of 0 and ⊕)

= (f1, . . . , fk) = f

Finally, for the associator we have that:

(f ⊕g)⊕h

=(f1, . . . , fk,g1[(vl+1, . . . ,vl+n)/⃗v], . . . ,gm[(vl+1, . . . ,vl+n)/⃗v])⊕h

=(f1, . . . , fk,g1[(vl+1, . . . ,vl+n)/⃗v], . . . ,gm[(vl+1, . . . ,vl+n)/⃗v],

h1[(vl+n+1, . . . ,vl+n+p)/⃗v], . . . ,ho[(vl+n+1, . . . ,vl+n+p)/⃗v])

= f ⊕ (g1[(v1, . . . ,vn)/⃗v], . . . ,gm[(v1, . . . ,vn)/⃗v],

h1[(vn+1, . . . ,vn+p)/⃗v], . . . ,ho[(vn+1, . . . ,vn+p)/⃗v])

= f ⊕ (g1, . . . ,gm,

h1[(vn+1, . . . ,vn+p)/⃗v], . . . ,ho[(vn+1, . . . ,vn+p)/⃗v])

= f ⊕ (g⊕h)

The intermediate steps in the calculation above follow from the definition of ⊕.

3.3.1 RegBeh as a Conway theory

We move on to showing that RegBeh is in fact a Conway theory. For any f ∈

RegBeh(1, p+ 1), we can define f † ∈ RegBeh(1, p) to be given by f † = µvp+1. f .

The dagger defined above satisfies scalar parameter identity.

3.3. Monoidal semantics 91

Lemma 3.3.5. Let f : 1 → p+1, g : p → q be morphisms in RegBeh. Then,

(f ;(g⊕ id1))
† = f †;g

Proof.

(f ;(g⊕ id1))
† = (f [(g1, . . . ,gp,vq+1)/(v1, . . . ,vp,vp+1)])

† (Def. of ⊕)

= µvq+1.
(

f [(g1, . . . ,gp,vq+1)/(v1, . . . ,vp,vp+1)]
)

(Def. of †)

= µvq+1.
(

f [vq+1/vp+1][⃗g/⃗v]
)

([Mil84, Lemma 5.6 2.])

= (µvq+1. f [vq+1/vp+1])[⃗g/⃗v] (Definition 3.1.5)

= (µvp+1. f)[⃗g/⃗v] ([Mil84, Proposition 4.6 5.])

= f †[⃗g/⃗v] (Def. of †)

= f †;g

To show the remaining identities, we first recall the following lemma.

Lemma 3.3.6 ([Sew95, Theorem 2]). Terms of Milner’s ARB (modulo bisimilarity)

satisfy the following rules:

1. µvz.
(
e[(vz,vz)/(v j,vk)]

)
= µv j.µvk.e for any vz not free in e

2. µv j.
(
e[f/v j]

)
= e[µvx.

(
f [e/v j]

)
/v j]

We can now establish the scalar composition indentity.

Lemma 3.3.7. Let f ,g : 1 → p+1 be morphisms of RegBeh. Then,

(f ; [idp ⊕01,g])† = f ; [idp,(g; [idp ⊕01, f])†]

Proof.

(f ; [idp ⊕01,g])† =
(

f [(v1, . . . ,vp,g)/⃗v]
)†

= µvp+1.
(

f [(v1, . . . ,vp,g)/⃗v]
)

= µvp+1.
(

f [g/vp+1]
)

3.3. Monoidal semantics 92

= f [µvp+1.
(
g[f/vp+1]

)
/vp+1] (Lemma 3.3.6 2.)

= f [µvp+1.
(
g[(v1, . . . ,vn, f)/(v1, . . . ,vn,vp+1)]

)
/vp+1]

= f [µvp+1.(g; [idp ⊕01, f])/vp+1]

= f [(g; [idp ⊕01, f])†/vp+1]

= f ; [idp,(g; [idp ⊕01, f])†]

Similarly, we can show that dagger on RegBeh satisfies scalar double dagger

identity.

Lemma 3.3.8. Let f : 1 → p+2 be a morphism of RegBeh. Then,

f †† = (f ;(idp ⊕∇1))
†

Proof.

f †† = µvp+1.(µvp+2. f)

= µvp+1.
(

f [(vp+1,vp+1)/(vp+1,vp+2)]
)

(Lemma 3.3.6 1.)

= µvp+1.(f ;(idp ⊕∇1))

= (f ;(idp ⊕∇1))
†

Combining earlier results yields the following statement.

Lemma 3.3.9. RegBeh is a Conway Theory.

Proof. Follows from Lemma 3.3.5, Lemma 3.3.7 and Lemma 3.3.8.

We can now combine all the intermediate results into the following statement.

Theorem 3.3.10. The category RegBeh has the following properties:

• RegBeh has all finite coproducts.

• (RegBeh,⊕,0) is a (co-Cartesian) strict symmetric monoidal category.

• RegBeh equipped with a dagger is a Conway theory [Ési99].

3.3. Monoidal semantics 93

• Each morphism g : p+ n → q+ n has a trace Trnp,q(g) : p → q defined in

terms of dagger. This equipment makes RegBeh into a traced monoidal cate-

gory [JSV96].

3.3.2 Pseudometric structure on RegBeh

RegBeh additionally carries a well-behaved pseudometric structure. For all m,n ∈ N

each set RegBeh(m,n) can be made into a pseudometric space by equipping it with

a distance function, given by

dm,n((f1, . . . , fm),(g1, . . . ,gm)) = sup
1≤i≤m

{
bd

∂
(fi,gi)

}
In the definition above, bd

∂
is a behavioural distance associated with the quotient

prechart (MExp/∼,∂). Intuitively, this pseudometric calculates the distance between

m-tuples of regular behaviours, by taking the pointwise behavioural distance of

elements of tuples and then taking their maximum. In the corner case, when both

tuples are empty, then they are simply at distance zero. We will show that all

categorical operations of RegBeh defined above are well-behaved with respect to that

pseudometric equipment. To do so, we establish a series of technical lemmas. Many

of these can be seen as quantitative analogues of congruence results for operations in

the syntax of MExp.

First, we show that substitution preserves indexes of relations forming the

stratification of bisimilarity.

Lemma 3.3.11. Let i1, . . . , im ∈N. For all n∈N and for all e, f ,g1, . . . ,gm,h1, . . . ,hm ∈

MExp/∼, we have that

e ∼(n) f ∧
j≤m∧
j=1

g j ∼(n) h j

=⇒ e[(g1, . . . ,gm)/(vi1, . . .vim)]∼(n) f [(h1, . . . ,hm)/(vi1, . . .vim)]

Proof. Base case holds immediately, since we always have that

e[(g1, . . . ,gm)/(vi1, . . .vim)]∼(0) f [(h1, . . . ,hm)/(vi1, . . .vim)]

3.3. Monoidal semantics 94

for all e, f ,g1, . . . ,g j,h1, . . . ,h j ∈MExp/∼.

Assume that e ∼(n+1) f , g j ∼(n+1) h j for all j ∈ {1, . . . ,m}. For the successor

case assume that e[(g1, . . . ,gm)/(vi1, . . .vim)] ∼(n) f [(h1, . . . ,hm)/(vi1, . . .vim)]. We

will argue that

e[(g1, . . . ,gm)/(vi1, . . .vim)]∼(n+1) f [(h1, . . . ,hm)/(vi1 , . . .vim)]

To do so, we will study the operational semantics of both (equivalence classes of)

expressions.

Assume that e[(g1, . . . ,gm)/(vi1 , . . .vim)]▷ vk. Using Remark 3.1.8, we can

observe that it is the case if any of the following is true:

• e▷ vk and vk /∈ {vi1, . . .vi j}

• e▷ vil for some vil ∈ {vi1, . . . ,vi j} and gl ▷ vk

Consider the first subcase. Since e▷ vk (for some k /∈ {vi1, . . . ,vi j}) and by as-

sumption e ∼n+1 f , we have that f ▷ vk and hence f [(h1, . . . ,h j)/(vi1, . . . ,vi j)]▷ vk.

Now, consider the second subcase. By a similar line of reasoning, we can ob-

tain f ▷ vl and hl ▷ vk. Hence, again we have that f [(h1, . . . ,h j)/(vi1, . . . ,vi j)]▷

vk. In other words, we have shown that e[(g1, . . . ,gm)/(vi1, . . .vim)]▷ vk implies

f [(h1, . . . ,h j)/(vi1 , . . . ,vi j)]▷vk. One can easily obtain a reverse implication through

a symmetric proof.

Now, assume that e[(g1, . . . ,gm)/(vi1 , . . .vim)]
a−→ s. Using Remark 3.1.8, we

know that such transition can be made only if any of the following is true:

• s = e′[(g1, . . . ,gm)/(vi1, . . .vim)], for some e′ such that e a−→ e′

• For some vil , such that vil ∈ {vi1, . . . ,vim}, we have that e▷ vl and gl
a−→ s

Consider the first subcase. We know that f a−→ f ′ and e′ ∼(n) f ′. Using the induction

hypothesis, we can conclude that

e[(g1, . . . ,gm)/(vi1, . . . ,vim)]∼(n) f [(h1, . . . ,hm)/(vi1 , . . . ,vim)]

3.3. Monoidal semantics 95

Hence, there exists a t, such that f [(h1, . . . ,hm)/(vi1, . . . ,vim)]
a−→ t, such that s ∼(n) t.

Now, consider the second subcase. We can easily conclude that f ▷ vl and

hl
a−→ t, with s ∼(n) t.

In other words, we have show that e[(g1, . . . ,gm)/(vi1, . . . ,vim)]
a−→ s, then there

exists t, such that f [(h1, . . . ,hm)/(vi1, . . . ,vim)]
a−→ t, such that s ∼(n) t. The reverse

implication can be again shown via a symmetric argument. Combining all of the

above, we can conclude that

e[(g1, . . . ,gm)/(vi1, . . . ,vim)]∼(n+1) f [(h1, . . . ,hm)/(vi1, . . . ,vim)]
a−→ t

Using the result above, we can show that substitution is in fact nonexpansive.

Corollary 3.3.12. Let e, f ,g1, . . . ,gm,h1, . . . ,gm ∈MExp/∼. Then,

bd
∂
(e[(g1, . . . ,gm/(vi1, . . .vim)], f [(h1, . . . ,hm/(vi1, . . .vim)])

≤ max{bd
∂
(e, f), max

j∈{1,...,m}
{bd

∂
(g j,h j)}}

Proof. If the right hand side of the inequality is equal to zero, then we have

that e ∼ f and g j ∼ h j for j ∈ {1, . . . ,m}. We can use Lemma 3.1.11, to

conclude that e[(g1, . . . ,gm/(vi1, . . .vim)] ∼ f [(h1, . . . ,hm/(vi1, . . .vim)] and hence

bd
∂
(e[(g1, . . . ,gm/(vi1, . . .vim)], f [(h1, . . . ,hm/(vi1, . . .vim)]) = 0, which implies non-

expansivity.

If the right hand side is greater than zero, we can employ the characterisation of

bd
∂

from Theorem 3.1.28 and use Lemma 3.3.11 to conclude the desired result.

Finally, we can conclude the following:

Lemma 3.3.13. Sequential composition in RegBeh is nonexpansive.

Proof. Let f ,h ∈ RegBeh(m,n) and g, i ∈ RegBeh(n,k).

dn,k(f ;g,h; i)

= sup
1≤ j≤n

{
bd

∂

(
f j[(g1, . . . ,gm)/⃗v],h j[(i1, . . . , im)/⃗v]

)}

3.3. Monoidal semantics 96

≤ sup
1≤ j≤n

{
max

{
bd

∂
(f j,h j), sup

1≤l≤m
{bd

∂
(gl, il)}

}}
(Corollary 3.3.12)

=max{ sup
1≤ j≤n

{bd
∂
(f j,h j)}, sup

1≤ j≤n
sup

1≤l≤m
{bd

∂
(gl, il)}}

(Interchanging of supremas)

=max{ sup
1≤ j≤n

{bd
∂
(f j,h j)}, sup

1≤l≤m
{bd

∂
(gl, il)}}

(j not mentioned in the second argument)

=max{dn,m(f ,h),dm,k(g, i)}

Similarly to Lemma 3.3.11, µ-recursion interacts well with the stratification of

bisimilarity.

Lemma 3.3.14. Let e, f ∈MExp/∼∂ . Then, for all n ∈ N, we have that

e ∼(n) f =⇒ µvx.e ∼(n)
µvx. f

Proof. Base case holds immediately, as µvx.e ∼(0) µvx. f for all e, f ∈MExp/∼.

Assume that e ∼(n+1) f . For the successor case assume that µvx.e ∼(n) µvx. f .

We will argue that µvx.e ∼(n+1) µvx. f .

Assume that µvx.e▷ vk. It is only the case, when e▷ vk and vk ̸= vx. Since

e ∼(n+1) f , then f ▷ vk and hence µvx. f ▷ vk. In other words, µvx.e▷ vk implies

µvx. f ▷ vk. The reverse implication can be easily obtained via a symmetric proof.

Now, assume that µvx.e a−→ s. It is the case, when e a−→ e′ and s = e′[µvx.e/vx].

Since e ∼(n+1) f , then there exists f ′, such that f a−→ f ′ and e ∼(n) f . We can now

use induction hypothesis and Lemma 3.3.11 and conclude that e′[µvx.e/vx] ∼(n)

f ′[µv. f/vx]. Moreover, we have that µv.x f a−→ f ′[µvx. f/vx]. Hence, if µvx.e a−→ s,

then there exists t, such that µvx. f a−→ t and s ∼(n) t. A reverse implication can be

obtained via a symmetric proof.

Combing the above, allows us to conclude that µvx.e ∼(n+1) µvx. f .

We can use the above and conclude µ-recursion is nonexpansive.

3.3. Monoidal semantics 97

Corollary 3.3.15. Let e, f ∈MExp/∼. We have that

bd
∂
(µvx.e,µvx. f)≤ bd

∂
(e, f)

Proof. Analogous proof to Corollary 3.3.12, but utilising Lemma 3.3.14 instead.

We now show the following result for the case of prefixing:

Lemma 3.3.16. Let e, f ∈MExp/∼. Then for all n ∈ N, a ∈ Σ, we have that

e ∼(n) f =⇒ a.e ∼(n+1) a. f

Proof. Both a.e and a. f do not output anything. Now, assume that a.e a−→ e′. Then,

the only possibility is that e′ = e. We can match that transition with an expression

a. f that performs an a-labelled transition to f . Since e ∼(n) f , then a.e ∼(n+1) a. f .

The remaining condition works through a symmetric line of reasoning.

Hence, we obtain that prefixing is contractive.

Corollary 3.3.17. Let e, f ∈ MExp/∼. Then for all n ∈ N, a ∈ Σ, we have that

bd
∂
(a.e,a. f)≤ 1

2bd∂
(e, f)

Proof. We employ the characterisation from Theorem 3.1.28. If e ∼ f , then by

Lemma 3.1.11 we are done. Otherwise, we have that bd
∂
(e, f) = 2−k and e ∼(k)

∂
f

for some k ∈ N. By applying Corollary 3.3.17, we get that a.e ∼(k+1) a. f and hence

bd
∂
(e, f)≤ 2−(k+1) = 1

22−k = 1
2bd∂

(e, f), as desired.

Remark 3.3.18. If we were to replace the discount factor of 1
2 appearing in the

definition of transitions lifting with an arbitrary λ ∈]0,1[(see Remark 3.1.14), then

we would need to appropriately adjust the Lipschitz factor appearing in the corollary

above.

The mediating map of the binary coproduct is also nonexpansive.

Lemma 3.3.19. Let f , f ′ : m → k, g,g′ : n → k be morphisms of RegBeh. We have

that dm+n,k([f ,g], [f ′,g′])≤ max{dm,k(f , f ′),dn,k(g,g′)}

3.3. Monoidal semantics 98

Proof.

dm+n,k([f ,g], [f ′,g′]) = dm+n,k((f1, . . . , fm,g1, . . . ,gn),(f ′1, . . . , f ′m,g
′
1, . . . ,g

′
n))

= max
{

dm,k((f1, . . . , fm),(f ′1, . . . , f ′m)),

dn,k((g1, . . . ,gm),(g′1, . . . ,g
′
m))
}

≤ max
{

dm,k(f , f ′),dn,k(g,g′)
}

The above allows us to conclude the following:

Lemma 3.3.20. The monoidal product of RegBeh is nonexpansive.

Proof. Let f ,h ∈ RegBeh(k,m) and g, i ∈ RegBeh(l,n). Given j ∈ N, such that

1 ≤ j ≤ l, we define

g′j = g j[(vm+1, . . . ,vm+n)/(v1, . . . ,vn)]

i′j = i j[(vm+1, . . . ,vm+n)/(v1, . . . ,vn)]

Using Corollary 3.3.12 one can easily obtain that for all j ∈ N, such that 1 ≤ j ≤ l,

we have that

bd
∂
(g′j, i

′
j)≤ bd

∂
(g j, i j)

Using that fact, we can prove the following

dk+l,m+n(f ⊕g,h⊕ i) = dk+l,m+n([f1, . . . , fk,g′1, . . . ,g
′
l], [h1, . . . ,hk, i′1, . . . , i

′
l])

= max

{
sup

1≤p≤k
{bd

∂
(fp,hp)}, sup

1≤ j≤l
{bd

∂
(g′j, i

′
j)}

}

≤ max

{
sup

1≤p≤k
{bd

∂
(fp,hp)}, sup

1≤ j≤l
{bd

∂
(g j, i j)}

}
= max{dk,m(f ,g),dl,n(h, i)}

Through an inductive argument, we can show the following:

3.3. Monoidal semantics 99

Lemma 3.3.21. The dagger on RegBeh is nonexpansive.

Proof. Let f ,g : n → p+n be morphisms in RefBeh. We proceed by induction on n.

If n = 0, then f † = f = 0p = g = g† and hence d0,p(f †,g†)≤ d0,p(f ,g).

If n = 1, then we have the following

d1,p(f †,g†) = bd
∂
(µvp+1. f ,µvp+1.g)≤ bd

∂
(f ,g) (Corollary 3.3.15)

Let n = n′+1. Recall, that we can represent f and g in the following way

f = [f1, . . . , fn′, fn′+1] = [[f1, . . . , fn′], fn′+1]

g = [g1, . . . ,gn′, fg′+1] = [[g1, . . . ,gn′],gn′+1]

We can apply the induction hypothesis and obtain the following:

dn′,p+1([f1, . . . , fn′]
†, [g1, . . . ,gn′]

†)≤ dn′,n′+p+1([f1, . . . , fn′], [g1, . . . ,gn′])

Using it, one can show that:

dp+1+n′,p+1
(
[idp+1, [f1, . . . , fn′]

†], [idp+1, [g1, . . . ,gn′]
†]
)

= dn′,p+1([f1, . . . , fn′]
†, [g1, . . . ,gn′]

†)

≤ dn′,p+1+n′([f1, . . . , fn′], [g1, . . . ,gn′])

For the sake of simplicity, define the following:

k = fn′+1; [idp+1, [f1, . . . , fn′]
†]

l = gn′+1; [idp+1, [g1, . . . ,gn′]
†]

Using Corollary 3.3.12 we know that

d1,p+1(k, l)≤ max
{

d1,p+1(fn′+1,gn′+1),

dp+n′,p+1
(
[idp+1, [f1, . . . , fn′]

†], [idp+1, [g1, . . . ,gn′]
†]
)}

3.3. Monoidal semantics 100

≤ max{d1,p+1(fn′+1,gn′+1),d
n′,p+1+n′([f1, . . . , fn′], [g1, . . . ,gn′])}

≤ dn′+1,p+1+n′(f ,g)

Because of the above, we can use Corollary 3.3.15 and obtain

d1,p(k†, l†)≤ d1,p+1(k, l)≤ dn′,p+1+n′(f ,g)

Recall the scalar pairing identity, which states that

f † = [[f1, . . . , fn′]
†; [idp,k†],k†]

g† = [[g1, . . . ,gn′]
†; [idp, l†]], l†]

We have the following:

dn′+1,p(f †,g†)

≤max{dn′,p+1([f1, . . . , fn′]
†; [idp,k†],

[g1, . . . ,gn′]; [idp, l†]),d1,p(k†, l†)}

≤max{dn′,1+p([f1, . . . , fn′]
†, [g1, . . . ,gn′]

†),

dp+1,p([idp,k†], [idp, l†]),d1,p(k†, l†) (Corollary 3.3.12)

≤max{dn′,p+1([f1, . . . , fn′]
†, [g1, . . . ,gn′]

†),d1,p(k†, l†)

≤max{dn′,p+1+n′([f1, . . . , fn′], [g1, . . . ,gn′]),d
1,p(k†, l†)} (Induction hypothesis)

≤max{dn′,p+1+n′([f1, . . . , fn′], [g1, . . . ,gn′]),d
n′+1,p+1+n′(f ,g)}

= dn′+1,p+1+n′(f ,g)

which completes the proof.

Since the trace on RegBeh is defined in terms of operations that we have shown

to be nonexpansive, we can easily obtain the following result:

Corollary 3.3.22. The trace on RegBeh is nonexpansive.

Proof. Immediate consequence of Theorem 3.1.35, Lemma 3.3.13 and Lemma 3.3.21.

3.3. Monoidal semantics 101

3.3.3 A category of bidirectional regular behaviours

Each morphism f : m → n of RegBeh can be informally thought of as a process that

has directionality to it, i.e. it takes m inputs and produces n outputs. Moreover,

the trace operator defined on these processes allows to globally introduce the no-

tion of feedback. At the same time, the syntax of our diagrammatic language is

bidirectional and the notion of feedback is introduced locally by bending the wires.

To reconcile these points of view, we rely on the Int construction [JSV96], which

takes a traced monoidal category C and completes it into a compact closed category

Int(C), a categorical structure with sequential and parallel composition equipped

with duals (allowing to swap directionality) and adjoints (allowing to form local

loops representing feedback) [KL80]. Int(C) carries the same information as C, but

represents it in an alternative, bidirectional way. Furthermore, when looking at the

undirected fragment of Int(C), this is precisely the same as the original category C

of directional processes. We now briefly describe Int(RegBeh) (see Section 3.1.7

for more detail).

• The objects of Int(RegBeh) are pairs (m,n) of natural numbers.

• A morphism f : (k, l)→ (m,n), representing a process with k left inputs, l left

outputs, m right outputs and n right inputs is a map f : k+m→ l+n in RegBeh,

i.e. we group inputs and outputs together. Composition of f : (k, l)→ (m,n)

and g : (m,n)→ (p,q) is defined by forming a trace that resolves the feedback

involving m and n.

• The parallel composition of f : (m,n) → (p,q) and g : (m′,n′) → (p′,q′) is

given by the map f ⊗g : (m+m′,n+n′)→ (p+ p′,q+q′) that is defined via

parallel composition in RegBeh combined with an appropriate reordering of

elements of tuples involved.

• A dual of the object (m,n) of Int(RegBeh) is given by (n,m). Intuitively,

inputs become swapped with outputs. For each object (m,n) of Int(RegBeh),

3.3. Monoidal semantics 102

there is a unit map η(m,n) : (0,0) → (m+ n,m+ n) and counit ε(m,n) : (m+

n,m+n)→ (0,0). These represent the bending of the wires on the right and

left respectively. Appropriate formation of loops using those operations defines

a trace on Int(RegBeh).

• Int(RegBeh) inherits the pseudometric structure from RegBeh, by setting

d(k,l),(m,n) to be given by dk+n,l+n (defined before).

The connection between RegBeh and Int(RegBeh) is an instance of the following

theorem:

Theorem 3.3.23 ([JSV96, Proposition 5.1]). There is a full and faithful traced

monoidal functor N : RegBeh→ Int(RegBeh) that takes each f : n → m in RegBeh

to f : (n,0)→ (m,0)

Informally, the theorem above states that on directional processes Int(RegBeh)

is exactly the same as RegBeh. Moreover, the pseudometric structure interacts well

with the operations of Int(RegBeh).

Proposition 3.3.24. The sequential and parallel composition in Int(RegBeh) is

nonexpansive. Moreover, the fully faithful functor N : RegBeh → Int(RegBeh)

is locally an isometry, i.e. for all f ,g : m → n, we have that dm,n(f ,g) =

d(m,0),(n,0)(N(f),N(g)).

Proof. All operations that are used to defined sequential and parallel composi-

tion in Int(RegBeh) have been shown above to be nonexansive in Lemma 3.3.13,

Lemma 3.3.20, Corollary 3.3.22.

For the remaining claim, let f ,g ∈ RegBeh(m,n). From the definition of N, we

immediately have that dN(m),N(n)(N(f),(N(g)) = dm,n(f ,g).

3.3.4 Interlude: Connections to enriched category theory

Although we do not pursue such a perspective in this thesis, a categorically-minded

reader may observe that equipping the homsets of RegBeh and Int(RegBeh) with

pseudometric structures and proving appropriate nonexpansivity conditions yields

3.3. Monoidal semantics 103

an enrichment over PMet - the monoidal category (PMet,×,{•}) of pseudometric

spaces with the product metric as tensor and singleton space with a discrete metric

as unit. For notational convenience, we will write PMet as an abbreviation for

the monoidal category (PMet,×,{•}) and Set for the cartesian monoidal category

(Set,×,{•}). In this section, we assume the basic familiarity of the reader with the

notions of enriched category theory [Kel82].

Following Kelly [Kel82], taking V = Set yields ordinary small categories,

functors, and natural transformations as V-categories, V-functors, and V-natural

transformations respectively. The category PMet is concrete, that is, can be viewed

as Set equipped with an extra pseudometric structure. In particular, it admits a

faithful, strict monoidal forgetful functor to Set. Crucially, PMet inherits monoidal

structure from Set : their tensor products, units, associators, and unitors coincide,

with PMet simply adding pseudometric structures and constraints.

Because of that, the definitions of enriched category theory trivialise, when

applied to PMet. In particular, they reduce to endowing ordinary the homsets of small

categories with pseudometric structures, with an extra condition that all fundamental

operations (composition, monoidal product, etc.) are nonexpansive on each homset.

Lemma 3.3.25 ([Lob+24, Lemma B.7]). Let C be a small category such that for each

X ,Y ∈Obj(C) there is a pseudometric space (C(X ,Y),dX ,Y). If for all f , f ′ ∈ C(X ,Y)

and g,g′ ∈ C(Y,Z),

dX ,Z(g◦ f ,g′ ◦ f ′)≤ max{dY,Z(g, f),dX ,Y (g′, f ′)}

then C is a PMet-enriched category.

Since PMet is a concrete category, given a PMet-enriched category one can

unambiguously talk about its underlying category, obtained by forgetting the pseudo-

metric structure. By construction, C is the underlying category of the PMet-enriched

category obtained through the above lemma. Similarly, one can lift functoriality to

enriched functoriality, by verifying nonexpansivity.

3.3. Monoidal semantics 104

Lemma 3.3.26 ([Lob+24, Lemma B.8]). Let C and D be two PMet-enriched cat-

egories and F : C → D be a functor between their underlying categories. If F

is locally nonexpansive, namely, the assignment f → F f is a nonexpansive map

C(X ,Y) → D(F(X),F(Y)) for all X ,Y ∈ Obj(C), then there is a PMet-enriched

functor between C and D, whose underlying functor is given by F.

Given a small strict monoidal category C one can enrich it in PMet via the

following lemma:

Lemma 3.3.27 ([Lob+24, Corollary B.10]). Let C be an PMet-enriched category,

whose underlying category is equipped with a strict monoidal product ⊗ : C×C → C.

Then C is a strict PMet-enriched monoidal category, if for all X ,Y,Z,W ∈ ObjC,

f , f ′ ∈ C(X ,Y), g,g′ ∈ C(Z,W),

dX⊗Z,Y⊗W (f ⊗g, f ′⊗g′)≤ max{dX ,Y (f , f ′),dZ,W (g,g′)}.

Using the above lemma, we can obtain the following.

Corollary 3.3.28. RegBeh is a strict PMet-enriched monoidal category.

Proof. Follows from Corollary 3.3.15, Lemma 3.3.20, Lemma 3.3.25 and

Lemma 3.3.27.

In Corollary 3.3.22, we proved that for all A,B,X ∈ Obj(RegBeh), the trace

map Tr : RegBeh(A⊗X ,B⊗X)→RegBeh(A,B) is nonexpansive, showing it defines

a family of morphisms in PMet. Consequently, all trace axioms become valid

equalities in PMet, which suggests that RegBeh could be viewed as a PMet-enriched

traced monoidal category. However, we note that the literature lacks a general

characterization of traces in arbitrary V-enriched monoidal categories that would

encompass our construction. While the enrichment conditions trivialise for PMet, it

would be interesting to formulate axioms for V-enriched traced categories to handle

more complex enrichment cases.

We speculate that tightening axioms of trace that enforce naturality in A and B

should correspond to V-naturality, while the sliding axiom that ensures dinaturality

3.3. Monoidal semantics 105

in X , would require a notion of a V-dinaturality that is currently missing in the

literature (see [Lor21, Remark 4.3.8]).

However, since the trace of RegBeh is used to define sequential composition in

Int(RegBeh), we can easily obtain the following result.

Corollary 3.3.29. Int(RegBeh) is a strict PMet-enriched monoidal category.

Proof. Follows from Proposition 3.3.24 and Lemma 3.3.25 and Lemma 3.3.27.

Moreover, the functor N : RegBeh→ Int(RegBeh) satisfies the following prop-

erty.

Corollary 3.3.30. N : RegBeh→ Int(RegBeh) is a PMet-enriched strict monoidal

functor.

Proof. Follows from Proposition 3.3.24 and Lemma 3.3.26.

3.3.5 Functorial semantics

We are ready to state the semantics of our diagrammatic language J−K : Syn →

Int(RegBeh) as a symmetric monoidal functor from Syn to Int(RegBeh). Since the

syntax is a freely generated prop, in order to interpret arbitrary string diagrams it

is enough to just define the interpretation of the generating morphisms of Syn. We

have:
r z

= N(v1 + v2) J K = N(0) J K = N(())
r z

= N(∇1) J a K = N(a.v1)
q y

= ε(1,0)

r z
= η(1,0)

The first five generators are left-to-right morphisms and hence they live in the

image of the functor N : RegBeh→ Int(RegBeh). In particular, we interpret

as nondeterministic choice, as the behaviour of the empty chart, while and

correspond to the empty tuple and joining the variables respectively. For each

letter a ∈ Σ of the alphabet, we view a as the prefixing operation. The remaining

generators, and , are interpreted using counit and unit of Int(RegBeh) coming

from the Int construction (see Section 3.1.7) allowing one to create loops. The

3.4. Axiomatisation 106

sequential composition in Int(RegBeh) makes use of the trace operation of RegBeh

interpreting such loops via recursion operation on charts.

Remark 3.3.31. A careful reader should note a lack of right-to-left generators. Intu-

itively speaking, Int construction simulates bidirectionality via the trace operation,

but its only relevant data are left-to-right morphisms taken from the traced monoidal

category. In the setting of compact closed categories, right-to-left diagrams can be

easily obtained by applying the dual operation to left-to-right diagrams.

3.4 Axiomatisation
Our main aim in this chapter is to find a set of (quantitative) equations to reason

about semantic distance directly at the level of the diagrams themselves. To do so,

we distinguish two different relations on diagrams of the same type:

• A purely equational theory, allowing us to simplify the diagrams being com-

pared modulo (strong) bisimilarity.

• An implicational quantitative equational theory intended to capture the be-

havioural distance of Section 3.3, that is the subject of the completeness

theorem (Theorem 3.5.26) described in Section 3.5. Note that this theory

contains the equational axioms as rules for distance zero, as well as includes

an axiom schema defining the distance between any two charts with no initial

states to zero.

Equational theory. Our equational theory is the smallest congruence (w.r.t to

vertical and horizontal compositions) that includes the axioms of Fig. 3.2. In practice,

this means that, if we find a sub-diagram that matches one side of an axiom in a larger

diagram, we can replace it with the other side of the axiom (the left and right-hand

side of any axiom have the same type) [PZ23b, Section 2.1].

Axioms A1-A2 are those of compact closed categories [KL80] and allow us to

bend and straighten wires at will, only keeping track of their directions. Crucially,

they also allow us to manipulate feedback loops. B1-B3 encode the fact that

and form a cocommutative comonoid. These guarantee that nondeterministic

3.4. Axiomatisation 107

(A1)
=

(A2)
=

(B1)
=

(B2)
=

(B3)
=

(B4)
=

(B5)
=

(B6)
=

(B7)
=

(B8)
=

(B9)
=

(B10)
=

(B11)
= a (C1)

=
a

a

Figure 3.2: Equational axioms for regular behaviours.

choice behaves like a commutative, associative and unital operation in our diagram-

matic syntax. At the same time, B4-B6 are the dual of the previous three, and

make and into a commutative monoid. These guarantee that output wires

behave like the variables of our diagrammatic syntax. B7-B9 make the previous

monoid-comonoid pair into a bimonoid, while B10 makes nondeterministic choice

an idempotent operation, thus combined with commutative comonoid axioms yields

an anlalogue of the semilattice axioms appearing in Chapter 2. Axiom B11 allows us

to remove unguarded loops, similarly to the axiom (Tight) appearing in Chapter 2.

C1 encodes the fact that merging tuples of variables interacts as expected with pre-

fixing: (a.v1,a.v2);(v1,v1) = (a.v1,a.v1). This can be seen as a string diagrammatic

version of the right distributivity axiom from Chapter 2. Note that, if we replace the

with , the resulting equality (prefixes distribute over nondeterministic

sum) is not valid. This captures the fact that left distributivity of prefixing over

nondeterministic choice is not sound in branching-time semantics. While we do not

have an analogue of the (Unroll) rule from Chapter 2, we will show that a similar

identity can be derived using the above axioms.

Lemma 3.4.1 (Soundness). For any two diagrams f ,g : v → w of Syn, if f = g then

J f K = JgK.

Proof. We verify that all equations defining Syn are satisfied. When dealing with left-

to-right diagrams, we will make use of the fact that RegBeh fully faithfully embeds

into Int(RegBeh) (Theorem 3.3.23) and hence it suffices to verify the axioms in

3.4. Axiomatisation 108

RegBeh, rather then in their completion to Int(RegBeh). (A1) is satisfied because

of the yanking property of trace operation defined on RegBeh, while (A2) is its

dual in Int(RegBeh) and can be verified similarly. (B1), (B2) and (B3) are satisfied

because + defined on MExp/∼ is a commutative monoid with 0 being its identity.

Similarly, (B4), (B5) and (B6) are satisfied because of the universal property of

coproduct on RegBeh and ∇1 being the codiagonal morphism. For (B8) we rely

on the fact that ∇1; [v1 + v2] = [v1,v1]; [v1 + v2] = [v1 + v2,v1 + v2]. (B9) holds

because ∇1; [0] = [v1,v1]; [0] = [0,0]. (B10) is satisfied because + is idempotent.

Finally, (B11) corresponds to taking the dagger of [v1 + v2] and captures the identity

µv2.(v1 + v2) = v1 of Milner’s Algebra of Regular Behaviours. Finally, (C1) holds,

because ∇1; [a.v1] = [v1,v1]; [a.v1] = [a.v1,a.v1].

Quantitative theory. We define Eq as the set of triples of the form (f ,r,g), where

f ,g are string diagrams of the same type and r ∈Q≥0, as the least set closed under

the rules of Fig. 3.3. We will call elements of that set derivable equations. For any

two diagrams f ,g : v → w of Syn, we say a quantitative equation f ≡r g is valid

if dJvK,JwK(J f K ,JgK) ≤ r. Analogously, an inference rule is valid if, whenever all

quantitative equations in the premise are valid, then the equation in the conclusion in

the equation is also valid. We now briefly explain each of the rules of our inference

system depicted on Figure 3.3. Nearly all the rules are analogues of the axioms

of quantitative equational theories (see Section 2.3.1). (Refl), (Sym) and (Triang)

respectively capture reflexivity, symmetry and triangle inequality of pseudometric

spaces. Importantly, rule (Refl) allows one to state that equal diagrams (modulo

strictly equational rules described above) are at distance zero of each other. (Top)

allows us to state that any two diagrams are at most within distance 1 of each other,

while (Max) allows one to always weaken the bound on the distance at which two

diagrams are. (Cont) is the key analytic inference rule here: it allows us to conclude

that two diagrams are within distance r, provided we can show that they are within all

distances that are strictly greater than r, thereby passing to the limit. Next, (Seq) and

(Tens) relate the horizontal and vertical compositions of diagrams to the distance.

There are two domain-specific rules that we use. (Pref) witnesses the fact that

3.4. Axiomatisation 109

f
nm ≡r g nm

a⃗ ∈ Σ
m

a⃗ f nmm ≡r/2 a⃗ g nmm
(Pref)

f wv ≡r g wv s ≥ r

g wv ≡s f wv
(Max)

f wv = g wv

f wv ≡0 g wv
(Refl)

f wv ≡r g wv g wv ≡s h wv

f wv ≡r+s h wv
(Triang)

{
f wv ≡s g wv

}
s>r

f wv ≡r g wv
(Cont)

f wv ≡r g wv

g wv ≡r f wv
(Sym)

f vu ≡r h vu g wv ≡s i wv

fu v g w ≡max{r,s} h
u v

i
w

(Seq) f wv ≡1 g wv
(Top)

f1
w1v1 ≡r g1

w1v1 f2
w2v2 ≡s g2

w2v2

f1

f2

v1 w1

v2 w2
≡max{r,s}

g1

g2

v1 w1

v2 w2

(Tens)
n ≡0 d

m n
(Codel)

Figure 3.3: Quantitative axioms for regular behaviours.

prefixing by the same actions decreases the distance by half and is a direct analogue

of the identically named rule in Chapter 2. Note that the string diagrammatic version

of this rule applies to diagrams ▶m→▶n and that we use a⃗
mm to denote the

vertical composition of m many a generators, for any m ∈ N.

Remark 3.4.2. If we were to replace the discount factor of 1
2 appearing in the defini-

tion of transitions lifting with an arbitrary λ ∈]0,1[(see Remark 3.1.14), one would

need to appropriately adjust the (Pref) rule to capture all rational overapproximations

of the discounted distance, similarly to (Pref) rule appearing in Chapter 2.

(Codel) encodes that any diagram with no initial state has no behaviour and

is therefore at distance zero of the empty chart. We purposely did not include this

axiom in the fragment for strict equality, as it is an axiom schema, rather than purely

equational axiom.

Through a straightforward argument, one can show the soundness of the pro-

3.4. Axiomatisation 110

posed quantitative rules.

Lemma 3.4.3. All the inference rules defining the distance on Syn are satisfied in

Int(RegBeh).

Proof. For most of the rules, the proof is straightforward. The soundness of (Top)

follows from the fact that the distance on morphisms of Int(RegBeh) is 1-bounded,

while (Max) captures the transitivity of partial order on the rational numbers. (Refl),

(Sym) and (Triang) are satisfied because the distance function on each hom-set

of Int(RegBeh) is a pseudometric space. The soundness of (Cont) comes from

the fact that the behavioural distance is real-valued. It intuitively captures the

limiting property of a decreasing chain of neighbourhoods with converging diameters,

while (Seq) and (Tens) are immediate consquence of Proposition 3.3.24. For the

remaining two rules, we will make use of the fact that the fully faithful embedding

N : RegBeh→ Int(RegBeh) is an isometry (Proposition 3.3.24), hence for the left-

to-right diagrams it suffices to check the rules in RegBeh. The soundness of (Pref)

is an immediate consequence of Corollary 3.3.17. Finally, (Codel) follows from the

uniqueness of maps from the initial object in RegBeh.

Through a simple inductive argument, we can extend the above to any derivable

equation.

Theorem 3.4.4 (Quantitative soundness). Every derivable equation f ≡r g is valid.

Proof. Induction on the length of derivation and Lemma 3.4.3.

Example 3.4.5. We revisit the charts from Figure 3.1 and axiomatically show that

their distance is bounded by 1
4 . We use compositionality to our advantage and break

them into two parts which we will compose later with the (Seq) rule. First, we have

3.4. Axiomatisation 111

1

≡1
a

(Top)

a ≡1/2
a

a

(Pref)

a (B6;B5)
=

a
≡1/2

a

a
(Unroll)
= a

(Comp)

a
≡1/2

a

(Refl;Triang)

a
a ≡1/4

a

a

(Pref)

a

b
a

b

(C1)
=

a
a

b
≡1/4

a

a
b

(Unroll)
=

a

b

(Comp)

a

b
a

b
≡1/4

a

b

(Refl;Triang)

In the rules labelled with (Refl;Triang) we have used the strict equality of

diagrams to simplify the quantitative equations. The equalities marked with (Unroll)

follow from Lemma 3.5.7, which we state in the next section. Then, for the second

part of our diagrams, we can show 2 , as depicted below.
2

a ≡1
a a

(Top)

a
a ≡1/2

a a
a

(Pref)

a (C1)
= a

a

≡1/2 a

a
a

(Refl;Triang)

a ≡1/2
a a

(Refl;Triang)

3

a ≡r
a a

4

a ≡0
a a

Then, using the same reasoning, we can show 3 for r = 1/2n for any n ∈ N,

and thus for any r > 0. Finally, the (Cont) rule allows us to conclude 4 . Finally,

combining 1 and 4 together with the (Comp) rule, allows us to recover the equality

we wanted to show:

a

b a
a

b

≡1/4

a

b
aa

3.5. Completeness 112

3.5 Completeness

We finally arrive at the main technical section of the chapter, where we gradually

present a sequence of results leading to the completeness of our axioms for the

behavioural distance. First, we show that we can safely focus solely on ▶m→▶n

diagrams. Then, through an analytic proof relying on the (Cont) rule, we show that

each diagram can be co-copied. Consequently, we can decompose any ▶m→▶n

diagram into a collection of ▶→▶n diagrams, which correspond to individual charts.

We argue that each of those ▶→▶n diagrams has a normal form from which one

can extract a finite prechart structure. It turns out that the distance between states of

this prechart precisely captures the distance between the diagrams being related and

very importantly, admits a simple characterisation that can be simulated through the

inference rules of our system, eventually leading to the completeness result.

3.5.1 Left-to-right diagrams

The following result allows us to turn any bidirectional diagram into a left-to-right

one by appropriately bending the the wires using and . We will see later that

this process does not change distances between diagrams.

Lemma 3.5.1. There are bijections between the sets Syn(v1 ◀ v2,w) and

Syn(v1v2,w▶), and between Syn(v,w1 ◀w2) and Syn(v▶,w1w2), i.e. between

sets of string diagrams of the form

v1
w

v2 and
v1 w

v2

as well as between w1
v

w2 and
w1v

w2

where v,w,vi,wi are words over {▶,◀}.

Proof. The lemma holds in any compact closed category and relies on the ability to

bend wires using and . Explicitly, given a diagram of the first form, we can

3.5. Completeness 113

obtain one of the second form as follows:

v1
w

v2 7→
v1

w
v2

The inverse mapping is given by the same wiring with the opposite direction. That

they are inverse transformations follows immediately from the defining axioms of

compact closed categories (A1-A2).

v1
w

v2 7→
v1

w
v2

(A1)
=

v1
w

v2

The other bijection is constructed analogously.

Intuitively, Lemma 3.5.1 tells us that we can always bend incoming wires to

the left and outgoing wires to the right to obtain a ▶m→▶n diagram from any given

diagram. Let S(f) :▶m→▶n be the diagram obtained by applying the bijections of

Lemma 3.5.1 to a diagram f : v → w until all the objects occurring in its domain and

codomain are ▶.

Lemma 3.5.2. Given two diagrams f ,g : v → w, S(f) = S(g) iff f = g.

Proof. The idea is that, if S(f) = S(g), we can always show that f = g using a

similar derivation, by simply applying the transformation of Lemma 3.5.1 before

using the derivation that S(f) = S(g), and then recover the original orientation of

the wires by bending them back into their original place afterwards; and the same

idea applies to show that f = g implies S(f) = S(g).

A block is simply a diagram freely composed from a restricted set of generators

(possibly including identities and symmetries). In this chapter, we will make use of

two special kinds of diagrams that can be factored into blocks:

• A matrix-diagram is a diagram ▶m→▶n that factors as a composition of a

block of , , another of a for a ∈ Σ, and a last one of , .

A matrix-diagram is guarded when any path from left to right port encounters

3.5. Completeness 114

at least one a . The diagram below, with the three blocks highlighted, is

an example of matrix-diagram.

a

b

a

a

• A relation-diagram is a diagram ▶m→▶n that factors as a composition of

a block of , followed by the block of , . Removing the

middle block from the diagram above would yield an example of a relation-

diagram.

Lemma 3.5.3. For any matrix-diagram d :▶m→▶n, we have

d
m

n

d
m = d

m
n

m

Proof. See [PZ23a, Lemma 4.9] (co-cpy). It is a simple structural induction. For the

base cases, all the generators of matrix-diagrams satisfy the equality of the lemma,

by axioms (B5), (B7),(B8), and (C1). The inductive cases are straightforward.

Now, we show that one can generalise (Pref) inference rule to arbitrary guarded

matrix-diagrams, rather than just vectors of a . In other words, prepending a

guarded matrix-diagram to any pair of diagrams contracts the distance between them.

Lemma 3.5.4. For any guarded matrix-diagram c :▶ℓ→▶m and any two diagrams

d1,d2 :▶m→▶n such that

d1
nm ≡r d2

nm

we have
nd1cℓ ≡r/2

nd2cℓ

Proof. We rely on the definition of guarded matrix diagrams. Recall from the

3.5. Completeness 115

definition of a guarded matrix-diagram that since c is guarded, we can factor it as

c mℓ
= a⃗ c1

mkkc0
ℓ

where c0 is a diagram composed only of , , a⃗ is a vertical composite of k

ai generators, and c1 is a diagram composed only of , . Hence,

d1
nm ≡r d2

nm c1
mk ≡0 c1

mk

c1 d1
mkk ≡r c1 d2

mkk a⃗ ∈ Σ
k

(Seq)

c1 d1
mkk

a⃗
k ≡r/2 c1 d2

mkk
a⃗

k c0
mk ≡0 c0

mk
(Pref)

c1 d1
mkk

a⃗
kc0

ℓ ≡r/2 c1 d2
mkk

a⃗
kc0

ℓ
(Seq)

The last line is what we wanted to show.

Remark 3.5.5. Changing the discount factor of 1
2 in the definition of transitions lifting

to an arbitrary λ ∈]0,1[(see Remark 3.1.14), would require adjusting the above

lemma (and its usages) to use the contractivity factor of ⌊λ⌋.

Intuitively, matrix-diagrams are representations of labelled transition relations,

while relation-transition diagrams are representations of the output relations. This

idea can be captured formally through the notion of a representation. For a di-

agram d :▶m→▶n, a representation is a pair (a,o) of a guarded matrix-diagram

c :▶ℓ+m→▶ℓ+m and a relation-diagram o :▶ℓ+m→▶n, such that

d
nm = oc∗

ℓ ℓ
n

m :=

ℓ

o

c
nm (3.5)

Using the rules for strict equality, we can rearrange the any diagram into the form

described above.

Theorem 3.5.6. Any diagram ▶m→▶n has a representation.

Proof. The proof is the same as [PZ23a, Proposition 4.7]. All axioms used in that

proof are in our theory.

3.5. Completeness 116

The matrix-diagram in the representation that is being fed through feedback,

can be unrolled.

Lemma 3.5.7. For any matrix-diagram d :▶n→▶n, we have

d =
d

d

Proof.

d (B7)
=

d

(A1)
=

d

(SMC)
= d

(A1)
= d

(Lemma 3.5.3)
= d

d

(A1)
=

d
d

3.5. Completeness 117

3.5.2 Co-copying

It turns out that bringing each diagram to a form corresponding to its representation,

combined with the usage of unrolling (Lemma 3.5.7) and generalisation of (Pref)

to guarded matrix-diagrams (Lemma 3.5.4) allows to show that the following two

diagrams are arbitrarily close and hence by (Cont) are in zero distance

Theorem 3.5.8. For any diagram d :▶m→▶n, we have that

d
m

n

d
m ≡0 d

m
n

m

Proof. First, by Theorem 3.5.6, we can find a matrix-diagram, a :▶ℓ+m→▶ℓ+m and

a relation-diagram o :▶ℓ+m→▶ such that

d
nm
=

ℓ

o

c
nm

We will show that

n

o

c
m+ ℓ

o

c
m+ ℓ

≡0
no

cm+ ℓ

m+ ℓ

from which the statement of the lemma immediately follows, by pre-composing with

. Since c : m+ ℓ→ m+ ℓ is a guarded matrix-diagram, so is

cm+ ℓ

cm+ ℓ

m+ ℓ

m+ ℓ

3.5. Completeness 118

Therefore, by Lemma 3.5.4, we get

n

o

c

o

c

cm+ ℓ

cm+ ℓ

≡1/2
n

c
o

c

m+ ℓ

cm+ ℓ

and thus,

n

o

c

o

c

cm+ ℓ

cm+ ℓ

o

o

≡1/2
nc

o

ccm+ ℓ

m+ ℓ
o

o

We also have

nc
o

ccm+ ℓ

m+ ℓ
o

o

≡0
nc

o

ccm+ ℓ

m+ ℓ

o

3.5. Completeness 119

≡0 c

ccm+ ℓ

m+ ℓ o n

≡0

c

c
m+ ℓ

m+ ℓ o n

where the last step uses Lemma 3.5.3 and (Refl) to merge the two occurrences of the

matrix-diagram c. Resuming, we get

c

c
m+ ℓ

m+ ℓ o n

≡0

c

c
m+ ℓ

m+ ℓ o n

≡0

c

c
o n

m+ ℓ

m+ ℓ

≡0
no

cm+ ℓ

m+ ℓ

3.5. Completeness 120

We can show in the same way that

n

o

c

o

c

cm+ ℓ

cm+ ℓ

o

o

≡0
n

o

c
m+ ℓ

o

c
m+ ℓ

Thus, we have shown that

n

o

c
m+ ℓ

o

c
m+ ℓ

≡1/2
no

cm+ ℓ

m+ ℓ

In the same way, we can show that

n

o

c
m+ ℓ

o

c
m+ ℓ

≡2−n
no

cm+ ℓ

m+ ℓ

for any n ∈ N and thus, by the continuity axiom (Cont), we conclude that

n

o

c
m+ ℓ

o

c
m+ ℓ

≡0
no

cm+ ℓ

m+ ℓ

as we wanted to show.

3.5. Completeness 121

A very important consequence of the above combined with the usage of (Codel)

rule is the fact that each ▶m→▶n diagram can be separated to a collection of ▶→▶n

intuitively corresponding to individual entries of tuples being manipulated in RegBeh.

Lemma 3.5.9. Let f :▶m→▶n and define fi to be the diagram ▶→▶n obtained by

composing all but the i-th input of f with (co-deleting all inputs except the i-th

one). We have that

f nm ≡0

f1

fm

n

n

n

...

The semantics of those diagrams is precisely given by pairing:

Lemma 3.5.10. Let e, f :▶→▶n, such that JeK = N(s) and J f K = N(t), where

s, t ∈ RegBeh(1,n). We have that

u

v
e

n
n

n

f

}

~ = N ([s, t])

Proof.

u

v
e

n
n

n

f

}

~ = (N(s)⊕N(f));N(∇1)

= N((s⊕ t);∇1) (Functoriality of N)

= N([s, t[v2/v1]]; [id1, id1])

= N([s, t])

Hence, behavioural distance between the denotations of arbitrary diagrams

f ,g : ▶m→▶n is simply the maximum of the component-wise distances between

each fi and gi for i ∈ {1, . . . ,m}.

3.5. Completeness 122

Lemma 3.5.11. Let e1,e2, f1, f2 : ▶→▶n. We have that

dN(2),N(n)

u

v
e1

n
n

n

f1

}

~ ,

u

v
e2

n
n

n

f2

}

~


= max

{
dN(1),N(n)

(r
e1

n
z
,
r

e2
n
z)

,

dN(1),N(n)
(r

f1
n
z
,
r

f2
n
z)}

Proof. Since e1,e2, f1, f2 are left-to-right diagrams, we can safely assume that there

exist s1,s2, t1, t2 ∈ RegBeh(1,n) such that Je1K = N(s1),Je2K = N(s2),J f1K = N(t1)

and J f2K = N(t2). We have the following

dN(2),N(n)

u

v
e1

n
n

n

f1

}

~ ,

u

v
e2

n
n

n

f2

}

~


= dN(2),N(n)(N([e1, f1]),N[e2, f2]) (Lemma 3.5.10)

= d2,n([e1, f1], [e2, f2]) (Proposition 3.3.24)

= max{bd
∂
(e1,e2),bd∂

(f1, f2)} (Def. in distance of RegBeh)

= max{d1,n(e1,e2),d1,n(f1, f2)}

= max{dN(1),N(n)(N(e1),N(e2)),dN(1),N(n)(N(f1),N(f2))} (Lemma 3.5.10)

= max
{

dN(1),N(n)
(r

e1
n
z
,
r

e2
n
z)

,

dN(1),N(n)
(r

f1
n
z
,
r

f2
n
z)}

This concludes the proof.

From now on, we will temporarily shift focus to ▶→▶n diagrams.

3.5.3 One-to-n diagrams

Each of the ▶→▶n diagrams represents a behaviour of the single state of the prechart

structure on MExp/∼ or equivalently, defines a chart. Turns out that appropriately

combining these diagrams corresponds to operations of ARB described in Section 3.1.

3.5. Completeness 123

Lemma 3.5.12. For any two c,d :▶→▶n, we have that

u

v
e

n
n

n

f

}

~ = JeK+ J f K

Proof. First, since c and d are left-to-right, there exists expressions s, t ∈

RegBeh(1,n), such that JeK = N(s) and J f K = N(t). Then,

u

v
e

n
n

n

f

}

~

=
r z

;(JeK⊕ J f K);
r z

= N(v1 + v2);(N(s)⊕N(t));N(∇1)

= N((v1 + v2);(s⊕ t);∇1) (Functoriality of N)

= N(s+ t) (Definition of N)

= N(s)+N(t) = JeK+ J f K

This operation of combining two ▶→▶n string diagrams (that we call con-

volution) can easily be extended to any finite collection of ▶→▶n diagrams. Let

F = { fi : ▶→▶n}i∈I be an indexed collection of string diagrams. Given a finite

indexed collection A = { fi1, . . . , fik}k∈K ⊆ F of string diagrams from the set F , we

define its convolution to be the string diagram RA : ▶→▶n given by

fi1

fik

n

n

n

...

The above is well defined up to permutations and removing duplicates, while staying

at distance zero. Hence, given a finite subset of F we can unambiguously talk about

its convolution.

Lemma 3.5.13. If A = { fi1, . . . , fik}k∈K and B = {gi1, . . . ,gi j} j∈J are two finite in-

dexed collections that are equal as sets, then their convolution are at distance zero

from each other.

3.5. Completeness 124

Proof. It is enough to show that the convolution of two string diagrams is an asso-

ciative, commutative and idempotent operation (up to ≡0).

Associativity: For any f1, f2, and f3, we have

f3

n

n

n
f1

f2
n

n

=

f3

n

n

n
f1

f2
n

n

=

f3

n

n

n

f1

f2
n

n

Commutativity:

n
f1

f2
n

n

=
n

f1

f2
n

n

=
n

f2

f1
n

n

=
n

f2

f1
n

n

Idempotence:

n
f1

f1
n

n

≡0 f1
n (Theorem 3.5.8)

= f1
n

3.5. Completeness 125

If a diagram is in the representation normal form we can express each the

subdiagrams fi : ▶→▶n from Lemma 3.5.9 as a certain convolution.

Lemma 3.5.14. For any diagram f :▶m→▶n, if

f nm ≡0
no

c

for some guarded matrix-diagram c :▶ℓ+m→▶ℓ+m and a relation-diagram o :

▶ℓ+m→▶n, then, for all i ∈ {1, . . . ,m} we can find {a j, fi j}1≤ j≤k, and {vq j}1≤ j≤ℓ

such that

fi
n ≡0

fi1

fik n
n

na1

ak
n

vq1

...

...
vqr

n

where fi, 1 ≤ i ≤ m and vq j , 1 ≤ i ≤ ℓ are defined as above.

Proof. First, by unrolling (Lemma 3.5.7),we have

f nm ≡0
no

c

≡0

c

c
n

o

o
m

Thus, for any i ∈ {1, . . . ,m}, say i = m for simplicity, we get

fm
n ≡0

m−1

o

c

c

o
n ≡0

c

o
n

f

≡0

c

o

n

f1

fm

...

3.5. Completeness 126

≡0

cm

om

n

f1

fm

...

≡0

f1

fm n

c1
m

cn
m

om

...

≡0

f1

fm n

c1
m

cn
m

...

o1
m

on
m

...

where ci
m is either a for some a ∈ Σ, when there is an a-transition connecting its

only input wire to some f j, or otherwise (recall that c is guarded), and oi
m

is either an identity, when the only input of om is connected to some output wire, or

otherwise. Since all f j connected to some can be removed (using

co-deleting), we get the equality we wanted.

Since every diagram can be brought to the representation normal form, we can

easily obtain the following result.

Lemma 3.5.15. For any diagram f : ▶m→▶n and fi, 1 ≤ i ≤ m defined as above,

for all i ∈ {1, . . . ,m}, we can derive

fi
n ≡0

fi1

fik n
n

na1

ak
n

vq1

...

...
vqr

n

where, for 1 ≤ j ≤ ℓ, each vq j :▶→▶n is a diagram encoding the output variables to

which the i-th input wire of f is directly connected, that is, without going through any

3.5. Completeness 127

a generator (in particular, each vq j is a monoidal product of a single identity

with n−1 generators).

Proof. Follows from Theorem 3.5.6 and Lemma 3.5.14.

Remark 3.5.16. The normal form guaranteed by the above lemma resembles the

normal form appearing in Theorem 2.4.8, as well as the one given by the equational

characterisation theorem from the original Milner’s paper on (pre)charts [Mil84,

Theorem 5.9]. At the same time, when looking at precharts from the coalgebraic

modal logic perspective, one can observe the similarity of the normal form presented

above to the shape of ∇ formulas [Mos99], characterising one-step behaviour of

coalgebras.

The informal intuition is that each of the fi : ▶→▶n diagrams represents a

state of a prechart and the behaviour of each such state is the union of all possible

labelled transitions to other states and variable outputs. To make this formal, we first

establish the lemma below.

Lemma 3.5.17. For any f :▶m→▶n and fi, 1 ≤ i ≤ m defined as above, for all

i ∈ {1, . . . ,m}, we have that

J fiK =
k

∑
j=1

a j.
q

fi j

y
+

ℓ

∑
j=1

JvqkK if fi
n ≡0

fi1

fik n
n

na1

ak
n

vq1

...

...
vqr

n

where, for 1 ≤ j ≤ ℓ, each vq j :▶→▶n is a diagram encoding the output variables,

as defined in Lemma 3.5.15.

Proof. This is a consequence of Lemma 3.5.12 and the semantics of composition

and prefixing.

It turns out that we can make the intuition about each diagram corresponding to

state of a prechart formal, by extracting a prechart over the set Q f = { f1, . . . , fm},

whose transition function β is given by the following;

3.5. Completeness 128

• fi
a−→ f j iff fi

n contains f j na

• fi ▷ vs iff fi
n contains vs

n

The behavioural distance between states of this prechart, precisely captures the

behavioural distance between each of the fi diagrams.

Lemma 3.5.18. For all fi, f j ∈ Q f , we have that bdβ (fi, f j) = bd(J fiK ,
q

f j
y
)

Proof. First, we observe that a function mapping each state fi ∈ Q f to J fiK is a

prechart homomorphism from (Q f ,β) to MExp/∼. This immediately follows from

Lemma 3.5.17 and the definition on transition structure on MExp/∼ (given by

Lemma 3.1.10). Essentially, homomorphisms are maps that preserve and reflect

prechart transitions [Rut00, Example 2.1] and (Q f ,β) is precisely defined to satisfy

this. Since homomorphisms are isometries (Theorem 3.1.19), we obtain the desired

result.

3.5.4 Completeness result

Recall that a prechart (Q f ,β) is finite and hence we can employ an iterative charac-

terisation of behavioural distance from Lemma 3.1.23. The completeness argument

relies on showing that we can axiomatically derive each of the approximants from

Theorem 2.4.3. First, we observe the following:

Remark 3.5.19. Let F be a set of string diagrams of the type ▶→▶n. The set

Σ×F +Vn is isomorphic to the set

G =
{

f j na | a ∈ Σ, f j ∈ F
}
∪
{

vs
n | 1 ≤ s ≤ n

}
Then, we show that we can axiomatically simulate the behaviour of lifting for

the functor Σ× (−)+V .

Lemma 3.5.20. Let F be a set of string diagrams of the type ▶→▶n that is equipped

with a 1-bounded pseudometric dF : F ×F → [0,1]. Assume that for all fi, fk ∈ F,

r ∈Q≥0, such that dF(fi, fk)≤ r, we have that fi
n ≡r fk

n is derivable.

For all gu,gv ∈ G, with G defined as above and all r ∈Q≥0, such that d↑
F(gu,gv)≤ r,

we have that gu
n ≡r gv

n is derivable.

3.5. Completeness 129

Proof. Let r ≥ d↑
F(gu,gv). First, consider the case, when gu

n
=

fi
na and gv

n
= fk

na . We have that d↑
F(gu,gv) =

1
2dF(fi, fk) and hence 2r ≥ dF(fi, fk). By the assumption, we know that

fi
n ≡2r fk

n is derivable.

Using (Pref), we can derive fi
na ≡r fk

na , which is

the same as gu
n ≡r gv

n . In all the remaining cases, d↑
F behaves like

a discrete pseudometric, hence there are two remaining subcases. In the situation

when gu
n
= gv

n , we have that d↑
F(gu,gv) = 0 and hence we can de-

rive gu
n ≡r gv

n by first applying (Refl) and then (Max). Othwerise,

when gu
n ̸= gv

n , we have that d↑
F(gu,gv) = 1 and hence we can derive

gu
n ≡r gv

n by first applying (Top) and then (Max).

Remark 3.5.21. If we would replace the discount factor 1
2 in the transitions lifting

with an arbitrary λ ∈]0,1[(see Remark 3.1.14), we would need an analogue of

Lemma 2.3.6 allowing us to approximate the discounted distance arbitrarily closely

through the use of (Cont) rule.

Then, we establish a similar result to Lemma 3.5.20, but for the Hausdorff

lifting. Crucially, we make use of the alternative characterisation of Hausdorff

distance via couplings.

Lemma 3.5.22. Let F be a finite set of string diagrams of the type ▶→▶n that is

equipped with a 1-bounded pseudometric dF : F ×F → [0,1]. Assume that for all

fi, fk ∈ F, r ∈Q≥0, such that dF(fi, fk)≤ r, we have that fi
n ≡r fk

n

is derivable. Then, for all A,B ⊆ F and all r ∈Q≥0, such that H(dF)(A,B)≤ r, we

have that RA
n ≡r RB

n is also derivable.

Proof. Pick an arbitrary r ∈Q≥0, such that H(dF)(A,B)≤ r. If A = B = /0, then by

the usage of (Refl) and (Max) we are done. Similarly, when only one of A and B

is empty, that we can immediately obtain the desired result using (Top) and (Max)

rules. From now on, we can safely assume that A and B are nonempty. Recall the

characterisation of Hausdorff distance from Remark 3.1.17. One can easily observe

that in the case when A and B are nonempty, the set Γ(A,B) of relational couplings

3.5. Completeness 130

between A and B is nonempty and hence

H(dF)(A,B) = min

{
sup

(fi, fk)∈R
dF(fi, fk) | R ∈ Γ(A,B)

}
≤ r

There must exist some optimal coupling Rmin ∈ Γ(A,B), which witnesses the above

minimum. Hence, we have that sup(fi, fk)∈Rmin
dF(fi, fk)≤ r, which in turn implies

that dF(fi, fk)≤ r for all (fi, fk) ∈ Rmin. Using the assumption, we know that for all

pairs (fi, fk) ∈ Rmin, we have that

fi
n1 ≡r fk

n1

For the sake of simplicity, assume that Rmin = {(fi1, fk1), . . . ,(fi j , fk j)}. Using the

(Tens) rule we can stack in parallel all these pairs and obtain:

fi1

fi j
n

n

... ≡r

fk1

fk j
n

n

...

Using the (Seq) rule, we can derive that

fi1

fi j

n

n

n

... ≡r

fk1

fk j

n

n

n

...

From the definition of relational couplings, we have that π1(Rmin) = A and

π2(Rmin) = B and hence the diagrams above are convolutions of the sets A and

B respectively. This allows us to conclude that RA
n1 ≡r RB

n1 is deriv-

able.

We can now combine the above results and show that upper bounds on each

of the approximants can be derived syntactically through the means of axiomatic

manipulation.

Lemma 3.5.23. Let f :▶m→▶n, fi, 1 ≤ i ≤ m and (Q f ,β) be defined as above.

3.5. Completeness 131

For all fg, fh ∈ Q f , all p ∈ N and any r ≥ Φ
(p)
β

(fg, fh), we have that fg
n ≡r

fh
n is derivable.

Proof. Pick an arbitrary fg, fh ∈ Q f . By induction on p. When p = 0, Φ
(p)
β

is a

discrete pseudometric on the set Q f and hence for all r ≥ Φ
(p)
β

(fg, fh), we can derive

fg
n ≡r fh

n using (Refl), (Top) and (Max) rules, similarly to the proof of

Lemma 3.5.20. For the induction step, when p = p′+1. Recall that Φ
p′+1
β

(fg, fh) =

H
(

Φ
(p′)
β

↑
)
(β (fg),β (fh)). Pick an arbitrary r ≥ H

(
Φ

(p′)
β

↑
)
(β (fg),β (fh)). In

order to derive that fg
n ≡r fh

n , we will rely on Lemma 3.5.22. In

order to use it, we need to be able to derive approximations to the distance given

by Φ
(p′)
β

↑
on the string diagrams representing the elements of the set Σ×Q f +Vn

(see Remark 3.5.19). For this we will use Lemma 3.5.20, which requires that for all

fg′, fh′ ∈ Q f , r′ ≥ Φ
(p′)
β

one can derive that fg′
n ≡r′ fh′

n . This in turn is

guaranteed by the induction hypothesis, which completes the proof.

Using (Cont) rule and characterisation from Lemma 3.1.23, we obtain a com-

pleteness result for distances between fi : ▶→▶n components of f : ▶m→▶n.

Lemma 3.5.24. Let f :▶m→▶n and fi, 1 ≤ i ≤ m be defined as above. For all

g,h ∈ {1, . . . ,m}, any valid equation fg
n ≡r fh

n is derivable.

Proof. Let fg
n ≡r fh

n be valid, that is bd
∂
(J fgK ,J fhK) ≤ r. We will

rely on (Cont) rule. In order to deduce that fg
n ≡r fh

n we need to show

that for all r′ > r, we have that fg
n ≡r′ fh

n is derivable. Since r′ > r,

we have that bd
∂
(J fgK ,J fhK)< r′. Because of Lemma 3.5.18 and Corollary 3.1.24,

we have that

inf
p∈N

{
Φ

(p)
β

(fg, fh)
}
< r′

We will argue that there exists p ∈N, such that Φ
(p)
β

(fg, fh)< r′. Assume that for all

p ∈ N, we have that Φ
(p)
β

(fg, fh)≥ r′. This would make r′ into the lower bound of

the ω-cochain
{

Φ
(p)
β

(fg, fh)
}

p∈N
and hence r′ ≤ infp∈N

{
Φ

(p)
β

(fg, fh)
}
< r′, which

leads to contradiction. Combining that argument with Lemma 3.5.23 allows us to

conclude that fg
n ≡r′ fh

n is derivable, which completes the proof.

3.5. Completeness 132

Relying on Lemma 3.5.9, we can reduce the problem of deriving distance

between arbitrary ▶m→▶n diagrams, to the case of ▶→▶n solved above. This

yields completeness result for left-to-right diagrams.

Theorem 3.5.25. Let f ,g : ▶m→▶n. Any valid equation f nm ≡r g nm

is derivable.

Proof. Assume that f nm ≡r g nm is valid. Recall that because of

Lemma 3.5.9, we have that

f nm ≡0

f1

fm

n

n

n

... and g nm ≡0

g1

gm

n

n

n

...

Assume that J fiK = N(si) and JgiK = N(ti) for 1 ≤ i ≤ m. Because of Lemma 3.5.11,

we have that d1,n(si, ti)≤ r. We will consider the following diagram

f

g

n

n

n

≡0

f1

fn n
n

n

n

g1
...
gn

n

...

Using Lemma 3.5.15, we can show that each of the ▶→▶m subdiagrams is in the

form allowing to use Lemma 3.5.24. In turn, that lemma allows to derive any valid

equations between the subdiagrams mentioned above. In particular, we can derive

that fi
m ≡r gi

m for all 1 ≤ i ≤ m. We can use (Tens) rule to derive

f1

fm
n

n

... ≡r

g1

gm
n

n

...

3.6. Discussion 133

We can then apply (Seq) to postcompose co-copying to the diagrams above to obtain

f1

fm

n

n

n

... ≡r

g1

gm

n

n

n

...

By previous reasoning and (Triang) rule this is the same as

f nm ≡r g nm

which completes the proof.

Since arbitrary diagrams can be turned into ▶m→▶n diagrams by appropriately

composing and , which happens to preserve distances between diagrams, we

arrive at the desired completeness result.

Theorem 3.5.26 (Quantitative completeness). Let f ,g : v → w be two arbitrary

diagrams. Any valid equation f wv ≡r g wv is derivable.

Proof. Observe that, given a pair f ,g : v → w we obtain S(f) and S(g) by post-

composing (or precomposing). Since composition is nonexpansive

(Proposition 3.3.24), if f wv ≡r g wv is valid, so is S(f)
nm ≡r S(g)

nm .

The rest follows as a consequence of Theorem 3.5.25.

3.6 Discussion
In this chapter, we presented a sound and complete quantitative axiomatisation of the

behavioural distance of Milner’s charts [Mil84]. We have relied on a compositional,

string diagrammatic syntax [PZ23a; Ant+25] and equipped it with a quantitative

inference system for reasoning about bounds on behavioural distance, inspired by

recent advances in metric universal algebra [MPP16; MU19; MSV24].

Originally introduced for probabilistic systems [BW01; Des+04], behavioural

distances have recently been generalised to a broad range of systems modelled via

the abstract framework of universal coalgebra [Rut00], leveraging pseudometric

liftings of functors [Bal+18]. The notion of behavioural distance for charts used in

3.6. Discussion 134

this chapter is an instance of this coalgebraic framework. Our concrete character-

isation closely resembles the metric on trees studied by Nivat [Niv79]. A similar

characterisation was studied by Golson and Rounds [GR84], who instead examined

de Bakker and Zucker’s metric domain for nondeterministic processes [BZ82], also

derived via a fixpoint construction involving the Hausdorff distance.

The idea of reasoning about distances between string diagrams has been ex-

plored before in quantum theory [KTW17; BMR19; Hou21] and probability the-

ory [Per24]. However, in contrast with the growing body of work on cartesian

quantitive algebra [MPP16; MSV24; Bac+24], a systematic foundation to axiomatis-

ing distances between string diagrams appeared only very recently, in the work of

Lobbia et al [Lob+24]. Besides the basic examples provided in [Lob+24], our work

is the first to propose a complete axiomatisation of a quantitative calculus of string

diagrams. The approach of [Lob+24] is based on enriched category theory: similarly,

one could observe that the equipment of our semantic category with pseudometric

structures making sequential and parallel composition nonexpansive yields the en-

richment in the category of pseudometric spaces. However, our axiomatisation relies

on the domain-specific implicational rule (Pref) and an axiom schema (Codel) that

cannot be expressed in the framework of Lobbia et al [Lob+24], which only supports

quantitative equations. Reconciling those rule formats with the general framework

of Lobbia et al [Lob+24] is an interesting direction for future research.

Axiomatising behavioural distances have been originally studied through ad-hoc

inference systems [LFT11; DGL14]. The introduction of quantitative equational

theories made more principled approaches possible, leading to axiomatisations of

behavioural distance for probabilistic systems [Bac+18a; Bac+18c]. In Chapter 2,

we extended these results within a coalgebraic framework, focusing on the simple

case of DFA, which enjoys a straightforward algebraic representation via the syntax

of Kleene Algebra. While we rely here on the general pattern of the completeness

proof from Chapter 2 the case of Milner’s charts was significantly more involved,

requiring the ability to simulate the behaviour of Hausdorff lifting syntactically.

In constructing the semantic category, we have used the fact that charts form

3.6. Discussion 135

a Conway theory [Ési99], studied in the literature on parametrised fixpoint oper-

ators [Hag00; SP00; AHS02], and which can be seen as a relaxation of iteration

theories [BÉT93]. The connection between charts and these structures was previ-

ously investigated by Bloom, Esik, and Taubner [BÉT93] and Sewell [Sew95], while

the interplay of parametrised fixpoint operators with traced monoidal categories was

studied by Hasegawa [Has97], Haghverdi [Hag00], and Simpson and Plotkin [SP00]

independently.

Our work constitutes a necessary first step towards a similar diagrammatic

treatment of behavioural distance for quantitative transition systems, such as prob-

abilistic and weighted systems, for which distances are a more suitable way of

reasoning rather than Boolean equivalences. The string diagrammatic point of view

would enable a desirable, compositional treatment that reflects well the underlying

operational models, in a way that is not available through conventional syntaxes.

Another promising direction for future work would be to consider Guarded Kleene

Algebra with Tests (GKAT) [Smo+20; Sch+21], an efficiently decidable language

for reasoning about equivalence of uninterpreted programs. The completeness proof

of GKAT relies on a metric argument that could be internalised within an inference

system like the one introduced in this chapter. Moreover, the syntax of GKAT

is insufficiently expressive, as it can only describe a part of the behaviours of its

underlying operational model – in fact there is no finite purely algebraic syntax that

could do so [CK25]. A string diagrammatic treatment could allow us to express all

such behaviours and obtain a simpler yet more expressive completeness result, that

would in turn enable axiomatic reasoning about decompilation algorithms, that were

recently shown to be expressible via GKAT automata (but not in GKAT) [Zha+25].

Part II

Probabilistic Language Equivalence

136

Chapter 4

Probabilistic Regular Expressions

Kleene [Kle51] introduced regular expressions and proved that these denote exactly

the languages accepted by deterministic finite automata. In his seminal paper,

Kleene left open a completeness question: are there a finite number of rules that

enable reasoning about language equivalence of regular expressions? Since then,

the pursuit of inference systems for equational reasoning about the equivalence

of regular expressions has been subject of extensive study [Sal66; Kro90; Bof90;

Koz94]. The first proposal is due to Salomaa [Sal66], who introduced a non-algebraic

axiomatisation of regular expressions and proved its completeness.

Deterministic automata are a particular type of transition system: simply put,

an automaton is an object with a finite set of states and a deterministic transition

function that assigns every state and every action of the input alphabet exactly one

next state. By varying the type of transition function one gets different systems: e.g.

if the function assigns to every state and every action of the input alphabet a set of

the next states, the resulting system is said to be non-deterministic; if the transition

function assigns the next state based on any sort of probability distribution then

the system is said to be probabilistic. Probabilistic systems appear in a range of

applications, including modelling randomised algorithms, cryptographic protocols,

and probabilistic programs. In this chapter, we focus on generative probabilistic

transition systems (GPTS) with explicit termination [GSS95], and study the questions

that Kleene and Salomaa answered for deterministic automata.

Our motivation to look at probabilistic extensions of regular expressions and

138

axiomatic reasoning is two-fold: first, regular expressions and extensions thereof

have been used in the verification of uninterpreted imperative programs, including

network policies [KP00; KK05; And+14]; second, reasoning about exact behaviour

of probabilistic imperative programs is subtle [Che+22], in particular in the presence

of loops. By studying the semantics and axiomatisations of regular expressions fea-

turing probabilistic primitives, we want to enable axiomatic reasoning for randomised

programs and provide a basis to develop further verification techniques.

We start by introducing the syntax of Probabilistic Regular Expressions (PRE),

inspired by work from the probabilistic pattern matching literature [Ros00]. PRE are

formed through constants from an alphabet and regular operations of probabilistic

choice, sequential composition, probabilistic Kleene star, identity and emptiness.

We define the probabilistic analogue of language semantics of PRE as exactly the

behaviours of GPTS. We achieve this by endowing PRE with operational semantics

in the form of GPTS via a construction reminiscent of Antimirov derivatives of

regular expressions [Ant96]. We also give a converse construction, allowing us to

describe languages accepted by finite-state GPTS in terms of PRE, thus establishing

an analogue of Kleene’s theorem.

The main contribution of this chapter is to present an inference system for

reasoning about probabilistic language equivalence of PRE and proving its complete-

ness. The style of our axiomatisation is inspired by Salomaa’s non-algebraic ax-

iomatisation [Sal66] of language equivalence of regular expressions. While Kozen’s

later algebraic axiomatisation [Koz94] is generally preferred due to its ability to

admit a broader class of models, such as relational models used in semantics of

nondeterministic programs, it is unclear how to adopt it to the probabilistic setting.

Kozen’s approach characterises the Kleene star as the least fixpoint with respect

to a natural order induced by the idempotent + operation [Koz94], which corresponds

to simulations of deterministic automata. However, for PRE, defining an analogous

order that simultaneously captures simulations of GPTS and supports a least-fixpoint

interpretation of the probabilistic Kleene star is a highly non-trivial task. Although

there are equational variants of Kozen’s axiomatisation that rely on an inference

139

rule capturing the uniformity (in the sense of Bloom and Ésik [BÉT93]) of Kleene

star [GU24], it is still unclear how to adapt Kozen’s completeness proof to the

probabilistic setting. In particular, his argument depends on lifting operations on

regular expressions to matrices of regular expressions and relating them to automata.

For PRE, defining a probabilistic Kleene star on matrices that behaves well enough to

support such arguments remains a significant challenge. For these reasons, we adapt

Salomaa’s older, automata-theoretic approach. Notably, this style of axiomatisation

often appears in the works from the field of process algebra [Mil84].

While being in the spirit of classic results from automata theory, our devel-

opment relies on the more abstract approach enabled via the theory of universal

coalgebra [Rut00]. As much as a concrete completeness proof ought to be possible,

our choice to use the coalgebraic approach was fueled by wanting to reuse recent

abstract results on the algebraic structure of probabilistic languages. A concrete proof

would have to deal with fixpoints of probabilistic languages and would therefore

require highly combinatorial and syntactic proofs about these. Instead, we reuse a

range of hard results on convex algebras and fixpoints that Milius [Mil18], Sokolova

and Woracek [SW15; SW18] proved in the last 10 years. In particular, we rely on

the theory of rational fixpoints (for proper functors [Mil18]), which can be seen as a

categorical generalisation of regular languages.

Our completeness proof provides further evidence that the use of coalgebras

over proper functors provides a good abstraction for completeness theorems, where

general steps can be abstracted away leaving as a domain-specific task to achieve

completeness a construction to syntactically build solutions to systems of equations.

Proving the uniqueness of such solutions is ultimately the most challenging step in

the proof. By leveraging the theory of proper functors, our proof of completeness,

which depends on establishing an abstract universal property, boils down to an

argument that can be viewed as a natural extension of the work by Salomaa [Sal66]

and Brzozowski [Brz64] from the 1960s.

The remainder of this chapter is organised as follows.

In Section 4.1, we introduce Probabilistic Regular Expressions (PRE), an ana-

4.1. Overview 140

logue of Kleene’s regular expressions denoting probabilistic languages and propose

an inference system for reasoning about language equivalence of PRE.

Then, in Section 4.2, we elaborate on the main theoretical preliminaries for

the technical development of this chapter. The coalgebraic approach to language

semantics of GPTS is described in Section 4.3. In the remainder of that section, we

provide a small-step semantics of PRE through an analogue of Antimirov derivatives

endowing expressions with a structure of Generative Probabilistic Transition Systems

(GPTS).

The technical core of this chapter is located in Section 4.4 and Section 4.5,

where we obtain soundness and completeness results for our axiomatisation. Due

to our use of proper functors, the proof boils down to a generalisation of a known

proof of Salomaa for regular expressions [Sal66] exposing the connection to a

classical result. We also obtain an analogue of Kleene’s theorem allowing the

conversion of finite-state GPTS to expressions through an analogue of Brzozowski’s

method [Brz64].

We conclude the chapter in Section 4.6, where we survey related work and

sketch some areas for future work.

4.1 Overview
In this section, we will introduce the syntax and the language semantics of proba-

bilistic regular expressions (PRE), as well as a candidate inference system to reason

about the equivalence of PRE.

4.1.1 Syntax

Given a finite alphabet A, the syntax of PRE is given by:

e, f ∈ PExp ::= 0 | 1 | a ∈ A | e⊕p f | e ; f | e[p] p ∈ [0,1]

We denote the expressions that immediately abort and successfully terminate by 0

and 1 respectively. For every letter a ∈ A in the alphabet, there is a corresponding

expression representing an atomic action. Given two expressions e, f ∈ PExp and

4.1. Overview 141

p ∈ [0,1], probabilistic choice e⊕p f denotes an expression that performs e with

probability p and performs f with probability 1− p. One can think of ⊕p as the

probabilistic analogue of the plus operator (e+ f) in Kleene’s regular expressions.

e ; f represents sequential composition, while e[p] is a probabilistic analogue of

Kleene star: it successfully terminates with probability 1− p or with probability

p performs e and then iterates e[p] again. In terms of the notational conventions,

the probabilistic loop operator (−)[p] has the highest binding precedence, followed

by sequential composition (;), with probabilistic choice (⊕p) having the lowest

precedence.

Example 4.1.1. The expression a ; a[
1
4] first performs action a with probability 1 and

then enters a loop which successfully terminates with probability 3
4 or performs

action a with probability 1
4 and then repeats the loop again. Intuitively, if we think

of the action a as observable, the expression above denotes a probability associated

with a non-empty sequence of a’s. For example, the sequence aaa would be observed

with probability 1 · (1/4)2 ·3/4 = 3/64.

4.1.2 Language semantics

PRE denote probabilistic languages A∗ → [0,1]. For instance, the expression 0

denotes a function that assigns 0 to every word, whereas 1 and a respectively assign

probability 1 to the empty word and the word containing a single letter a from the

alphabet. The probabilistic choice e⊕p f denotes a language in which the probability

of each word is the total sum of its probability in e scaled by p and its probability

in f scaled by 1− p. Describing the semantics of sequential composition and loops

inductively is more involved. In particular, the semantics of loops would require

a fixpoint calculation, which does not have as clear and straightforward (closed-

form) formula, as the asterate of regular languages. Instead, we take an operational

approach, and we formally define the language semantics of PRE in Section 4.3

through a small-step operational semantics, using a specific type of probabilistic

transition system, which we introduce next.

4.1. Overview 142

4.1.3 Generative probabilistic transition systems

A GPTS consists of a set of states Q and a transition function that maps each state

q ∈ Q to finitely many distinct outgoing arrows of the form:

• successful termination with probability t (denoted q t
=⇒✓), or

• to another state r, via an a-labelled transition, with probability s ∈ [0,1]

(denoted q
a|s−→ r).

We require that, for each state, the total sum of probabilities appearing on outgoing

arrows sums up to less than or equal to one. The remaining probability mass is

used to model unsuccessful termination, hence the state with no outgoing arrows

can be thought of as exposing deadlock behaviour. These requirements reflect the

intuition that a state generates transitions (potentially with different labels), rather

than treating labels as input symbols, as in the case of DFAs.

Given a word w ∈ A∗ the probability of it being generated by a state q ∈ Q

(denoted Lang(q)(w) ∈ [0,1]) is defined inductively:

Lang(q)(ε) = t if q t
=⇒✓ Lang(q)(av) = ∑

q
a|s−→r

s ·Lang(r)(v) (4.1)

We say that two states q and q′ are language equivalent if for all words w ∈ A∗, we

have that Lang(q)(w) = Lang(q′)(w).

Example 4.1.2. Consider the following GPTS:

q0 q1a | 1

a | 1
4

✓
3
4 q2

q3
a | 1

4

a | 1
4

q4
a | 3

4

a | 3
4

✓
1

States q0 and q2 both assign probability 0 to the empty word ε and each word an+1

is mapped to the probability
(1

4

)n · 3
4 . Later, we show that the languages generated by

states q0 and q2 can be specified using expressions a ; a[
1
4] and a⊕ 3

4

(
a ;
(

a[
1
4] ; a

))
respectively.

4.1. Overview 143

In Section 4.3, we will associate to each PRE e an operational semantics or,

more precisely, a state qe in a GPTS. The language semantics JeK of e will then be

the language Lang(qe) : A∗ → [0,1] generated by qe. Two PRE e and f are language

equivalent if Lang(qe) = Lang(q f). One of our main goals is to present a complete

inference system to reason about language equivalence. In a nutshell, we want to

present a system of (quasi-)equations of the form e ≡ f such that:

e ≡ f ⇔ JeK = JgK ⇔ Lang(e) = Lang(f)

Such an inference system will have to contain rules to reason about all constructs of

PRE, including probabilistic choice and loops. We describe next the system, with

some intuition for the inclusion of each group of rules.

4.1.4 Axiomatisation of language equivalence of PRE

We define ≡ ⊆ PExp×PExp to be the least congruence relation closed under the

axioms shown on Figure 4.1. We will show in Section 4.5 that these axioms are

complete with respect to language semantics.

The first group of axioms capture properties of the probabilistic choice operator

⊕p (C1-C4) and its interaction with sequential composition (D1-D2). Intuitively,

(C1-C4) are the analogue of the semilattice axioms governing the behaviour of

+ in regular expressions. These four axioms correspond exactly to the axioms of

barycentric algebras [Sto49], excluding the cancellation axiom (referred to as the fifth

postulate in Stone’s original paper). (D1) and (D2) are right and left distributivity

rules of ⊕ over ;. The sequencing axioms (1S), (S1), (S) state PRE have the structure

of a monoid (with neutral element 1 with absorbent element 0 – see axioms (0S),

(S0). The loop axioms contain respectively unrolling, tightening, and divergency

axioms plus a unique fixpoint rule. The (Unroll) axiom associates loops with their

intuitive behaviour of choosing, at each step, probabilistically between successful

termination and executing the loop body once. (Tight) and (Div) are the probabilistic

analogues of the identity (e+1)∗ ≡ e∗ from regular expressions. In the case of PRE,

we need two axioms: (Tight) states that the probabilistic loop whose body might

4.1. Overview 144

Probabilistic choice
(C1) e⊕p e ≡ e
(C2) e⊕1 f ≡ e
(C3) e⊕p f ≡ f ⊕1−p e

(C4) (e⊕p f)⊕q g ≡ e⊕pq

(
f ⊕ (1−p)q

1−pq
g
)

Sequential composition
(1S) 1 ; e ≡ e ,
(S) e ; (f ; g)≡ (e ; f) ; g ,
(S1) e ;1≡ e ,
(0S) 0 ; e ≡ 0 ,
(S0) e ;0≡ 0 ,
(D1) (e⊕p f) ; g ≡ e ; g⊕p f ; g
(D2) e ; (f ⊕p g)≡ e ; f ⊕p e ; g

Loops
(Unroll) e[p] ≡ e ; e[p]⊕p 1

(Tight) (e⊕p 1)[q] ≡ e
[

pq
1−(1−p)q

]
(Div) 1[1] ≡ 0

(Unique)
g ≡ e ; g⊕p f E(e) = 0

g ≡ e[p] ; f

Termination condition: E : PExp→ [0,1]

E(1) = 1 E(0) = E(a) = 0 E (e⊕p f) = pE(e)+(1− p)E(f)

E(e ; f) = E(e)E(f) E
(
e[p]
)
=

{
0 E(e) = 1∧ p = 1

1−p
1−pE(e) otherwise

Figure 4.1: Axioms for language equivalence of PRE. The rules involving the division of
probabilities are defined only when the denominator is non-zero. The function
E(−) provides a termination side condition to the (Unique) fixpoint axiom.

instantly terminate, causing the next loop iteration to be executed immediately is

provably equivalent to a different loop, whose body does not contain immediate

termination; (Div) takes care of the edge case of a no-exit loop and identifies it with

failure. Finally, the unique fixpoint rule is a re-adaptation of the analogous axiom

from Salomaa’s axiomatisation and provides a partial converse to the loop unrolling

axiom, given the loop body is productive – i.e. cannot immediately terminate. This

productivity property is formally written using the side condition E(e)= 0, which can

4.2. Preliminaries 145

be thought of as the probabilistic analogue of empty word property from Salomaa’s

axiomatisation. Consider an expression a[
1
2] ; (b⊕ 1

2
1). The only way it can accept

the empty word is to leave the loop with the probability of 1
2 and then perform 1,

which also can happen with probability 1
2 . In other words, Ja[

1
2] ; (b⊕ 1

2
1)K(ε) = 1

4 .

A simple calculation allows to verify that E(a[
1
2] ; (b⊕ 1

2
1)) = 1

4 .

Example 4.1.3. We revisit the expressions from Example 4.1.2 and show their

equivalence via axiomatic reasoning.

a ; a[
1
4] ≡ a ;

(
a[

1
4] ; a⊕ 1

4
1
)

(†)

≡ a ;
(

a[
1
4] ; a

)
⊕ 1

4
a ;1 (D2)

≡ a ;
(

a[
1
4] ; a

)
⊕ 1

4
a (S1)

≡ a⊕ 3
4

a ;
(

a[
1
4] ; a

)
(C3)

The † step of the proof above relies on the equivalence e[p] ; e ⊕p 1 ≡ e[p]

derivable from other axioms under the assumption E(e) = 0 through a following line

of reasoning:

e[p] ; e⊕p 1≡ (e ; e[p]⊕p 1) ; e⊕p 1 (Unroll)

≡ (e ; (e[p] ; e))⊕p 1 ; e)⊕p 1 (D1)

≡ (e ; (e[p] ; e)⊕p e)⊕p 1 (1S)

≡ (e ; (e[p] ; e)⊕p e ;1)⊕p 1 (S1)

≡ e ; (e[p] ; e⊕p 1)⊕p 1 (D2)

Since E(e) = 0, we then have: e[p] ; e⊕p 1
(Unique)

≡ e[p] ;1
(S1)
≡ e[p].

4.2 Preliminaries

In this section, we review the main preliminaries for the technical development

outlined in the subsequent sections.

4.2. Preliminaries 146

4.2.1 Locally finitely presentable categories

In this chapter, we will rely on notions associated with the theory of locally finitely

presentable categories [AR94], that allows to generalise the notion of finiteness to

more structured categories than just Set.

D is a filtered category, if every finite subcategory D0 ↪→D has a cocone in D.

A filtered colimit is a colimit of the diagram D→ C, where D is a filtered category.

A directed colimit is a colimit of the diagram D → C, where D is a directed poset.

We call a functor finitary if it preserves filtered colimits. An object C is finitely

presentable (fp) if the representable functor C(C,−) : C → Set preserves filtered

colimits. Similarly, an object C is finitely generated (fg) if the representable functor

C(C,−) : C → Set preserves directed colimits of monomorphisms. Importantly,

every finitely presentable object is finitely generated, but the converse does not hold

in general.

Definition 4.2.1. A category C is locally finitely presentable (lfp) if it is cocomplete

and there exists a set of finitely presentable objects, such that every object of C is a

filtered colimit of objects from that set.

Set is the prototypical example of a locally finitely presentable category, where

finitely presentable objects are precisely finite sets.

4.2.2 Monads and their algebras

A monad (over the category Set) is a triple T = (T,µ,η) consisting of a functor

T : Set→ Set and two natural transformations: a unit η : Id⇒ T and multiplication

µ : T 2 ⇒ T satisfying µ ◦ηT = idT = µ ◦T η and µ ◦ µT = µ ◦T µ A T-algebra

(also called an Eilenberg-Moore algebra) for a monad T is a pair (X ,h) consisting of

a set X ∈ O(C), called carrier, and a function h : T X → X such that h◦µX = h◦T h

and h◦ηX = idX . A T-algebra homomorphism between two T -algebras (X ,h) and

(Y,k) is a function f : X → Y satisfying k ◦T f = f ◦h.

T-algebras and T-homomorphisms form a category SetT. There is a canonical

forgetful functor U : SetT → Set that takes each T-algebra to its carrier. This functor

has a left adjoint X 7→ (T X ,µX : T 2X → T), mapping each set to its free T-algebra.

4.2. Preliminaries 147

If X is finite, then we call (T X ,µX) free finitely generated.

Given a function f : X → Y , where Y is a carrier of a T-algebra (Y,h), there

is a unique homomorphism f ♯ : (T X ,µX) → (Y,h) satisfying f ♯ ◦ηX = f that is

explicitly given by f ♯ = h◦T f .

4.2.3 Generalised determinisation

Language acceptance of nondeterministic automata (NDA) can be captured via

determinisation. NDA can be viewed as coalgebras for the functor N = 2×Pω
A,

where Pω is the finite powerset monad. Determinisation converts a NDA (X ,β : X →

2×PωXA) into a deterministic automaton
(
PωX ,β ♯ : PωX → 2× (PωX)A

)
, where

for A ⊆ X , we define β ♯(A) =
⋃

x∈A β (a). Additionally, β ♯ satisfies β ♯({x}) = β (x)

for all x ∈ X . A language of the state x ∈ X of NDA, is given by the language

accepted by the state {x} in the determinised automaton (PωX ,β ♯).

This construction can be generalised [Sil+10] to HT -coalgebras, where

T : Set→ Set is an underlying functor of finitary monad T and H : Set→ Set an end-

ofunctor that admits a final coalgebra that can be lifted to the functor H : SetT → SetT.

Liftings of functors H : Set → Set to H : SetT → SetT, are in one-to-one corre-

spondence with distributive laws of the monad T over the functor H [JSS15],

which are natural transformations ρ : T H ⇒ HT satisfying HηX = ρX ◦ηHX and

HµX ◦ρT X ◦T ρX = ρX ◦µHX . In particular, given a T-algebra (X ,k : T X → X), we

can equip HX , with a T-algebra structure, given by the following composition of

maps:

T HX HT X HX
ρX Hk

Generalised determinisation turns HT -coalgebras (X ,β : X → HT X) into H-

coalgebras (T X ,β ♯ : T X → HT X), where β ♯ is the unique extension arising from

the free-forgetful adjunction between Set and SetT. The language of a state x ∈ X

is given by behβ ♯ ◦ ηX : X → νH, where η is the unit of the monad T. Since

β ♯ : T X →HT X can be seen as a T-algebra homomorphism (T X ,µX)→H(T X ,µX),

each determinisation (T X ,β ♯) can be viewed as an H-coalgebra ((T X ,µX),β
♯). The

carrier of the final H-coalgebra can be canonically equipped with T-algebra structure,

4.2. Preliminaries 148

yielding the final H-coalgebra. In such a case, the unique final homomorphism from

any determinisation (viewed as an H-coalgebra) is precisely an underlying function

of the final H-coalgebra homomorphism.

4.2.4 Subdistribution monad

A function ν : X → [0,1] is called a subprobability distribution or subdistribution,

if it satisfies ∑x∈X ν(x) ≤ 1. A subdistribution ν is finitely supported if the set

supp(ν) = {x ∈ X | ν(x) > 0} is finite. We use DX to denote the set of finitely

supported subprobability distributions on X . The weight of a subdistribution ν : X →

[0,1] is a total probability of its support:

|ν |= ∑
x∈X

ν(x)

Given ν ∈DX and Y ⊆ X , we will write ν [Y] = ∑x∈Y ν(x). This sum is well-defined

as only finitely many summands have non-zero probability.

Given x ∈ X , its Dirac is a subdistribution δx which is given by δx(y) = 1 only

if x = y, and 0 otherwise. We will moreover write 0 ∈ DX for a subdistribution with

an empty support. It is defined as 0(x) = 0 for all x ∈ X . When ν1,ν2 : X → [0,1] are

subprobability distributions and p ∈ [0,1], we write pν1 +(1− p)ν2 for the convex

combination of ν1 and ν2, which is the probability distribution given by

(pν1 +(1− p)ν2)(x) = pν1(x)+(1− p)ν2(x)

for all x ∈ X . Note that this operation preserves finite support.

D is in fact a functor on the category Set, which maps each set X to DX and

maps each arrow f : X → Y to the function D f : DX →DY given by

D f (ν)(x) = ∑
y∈ f−1(x)

ν(y)

Moreover, D also carries a monad structure with unit ηX(x) = δx and multiplication

µX(Φ)(x) = ∑ϕ∈DX Φ(ϕ)ϕ(x) for Φ ∈ D2X . Using the free-forgetful adjunction

between Set and category of D-algebras, given f : X →DY , there exists a unique

4.2. Preliminaries 149

map f ♯ : DX → DY satisfying f = f ♯ ◦ δ called the convex extension of f , and

explicitly given by f ♯(ν)(y) = ∑x∈X ν(x) f (x)(y).

4.2.5 Positive convex algebras

By ΣPCA we denote a signature given by

ΣPCA =

{
⊞
i∈I

pi · (−)i | I finite,∀i ∈ I. pi ∈ [0,1],∑
i∈I

pi ≤ 1

}

A positive convex algebra is a an algebra for the signature ΣPCA, that is a pair

A=
(
X ,ΣA

PCA

)
, where X is the carrier set and ΣA

PCA is a set of interpretation functions

⊞i∈I pi · (−)i : X |I| → X satisfying the axioms:

1. (Projection) ⊞i∈I pi · xi = x j if p j = 1

2. (Barycenter) ⊞i∈I pi ·
(
⊞ j∈J qi, j · x j

)
=⊞ j∈J

(
∑i∈I piqi, j

)
· x j

In terms of notation, we denote the unary sum by p0 ·x0. Throughout this chapter we

will we abuse the notation by writing(
⊞
i∈I

pi · ei

)
⊞

(
⊞
i∈J

q j · f j

)

for a single sum⊞k∈I+J rk ·gk, where rk = pk and gk = ek for k ∈ I and similarly rk =

qk and gk = fk for k ∈ J. Note that this is well-defined only if ∑i∈I pi +∑ j∈J r j ≤ 1.

The signature of positive convex algebras can be alternatively presented as a

family of binary operations, in the following way:

Proposition 4.2.2 ([BSS17, Proposition 7]). If X is a set equipped with a binary

operation ⊞p : X ×X → X for each p ∈ [0,1] and a constant 0⊞ ∈ X satisfying for

all x,y,z ∈ X (when defined) the following:

x⊞p x = x x⊞1 y = x x⊞p y = y⊞1−p x

(x⊞p y)⊞q z = x⊞pq

(
y⊞ (1−p)q

1−pq
z
)

4.2. Preliminaries 150

then X carries the structure of a positive convex algebra. The interpretation of

⊞i∈I pi · (−)i is defined inductively by the following

⊞
i∈I

pi · xi =


0⊞ if I = /0

x0 if p0 = 1

xn ⊞pk

(
⊞i∈I\{k}

pi
1−pk

· xi

)
otherwise, for some k ∈ I

Below we state several properties of positive convex algebras, that we will use

throughout this chapter.

Proposition 4.2.3. Let I be a finite indexed set, and let {pi}i∈I and {xi}i∈I be indexed

collections of elements of [0,1] and X respectively. Then, in any positive convex

algebra, the following statements hold:

1.

⊞
i∈I

pi · xi = ⊞
x∈
⋃

i∈I{xi}

(
∑

xi=x
pi

)
· x

2. Let =R ⊆ X ×X be a congruence relation, with [−]R : X → X/=R being its

canonical quotient map. Then,

⊞
i∈I

pi · xi =R ⊞
[x]R∈

⋃
i∈I{[xi]R}

(
∑

xi=Rx
pi

)
· x

3. All terms ⊞i∈I 0 · xi coincide and are all provably equivalent to the empty

convex sum.

4. If J ⊆ I and {i ∈ I | pi ̸= 0} ⊆ J, then

⊞
i∈I

pi · xi =⊞
j∈J

p j · x j

5. Let σ : I → I be a permutation of the index set I. Then, we have that

⊞
i∈I

pi · xi =⊞
i∈I

pσ(i) · xσ(i)

4.2. Preliminaries 151

Proof. We write [Φ] to denote Iverson bracket, which is defined to be 1 if Φ is true

and 0 otherwise.

For 1 we have that

⊞
i∈I

pi · xi =⊞
i∈I

pi ·

 ⊞
x∈∪i∈I{xi}

[xi = x] · x

 (Projection axiom)

= ⊞
x∈∪i∈I{xi}

(
∑
i∈I

pi[xi = x]

)
· x (Barycenter axiom)

= ⊞
x∈∪i∈I{xi}

(
∑

xi=x
pi

)
· x

2 can be shown by picking a representative for each equivalence class and then

using 1 . For 3 , by [SW15, Lemma 3.4] we know that all terms⊞i∈I 0 ·xi coincide.

To see that they are provably equivalent to the empty convex sum, observe that

⊞
i∈I

0 · xi =⊞
i∈I

0 ·

(
⊞
j∈ /0

p j · y j

)
([SW15, Lemma 3.4])

=⊞
j∈ /0

0 · y j (Barycenter axiom)

Finally, 4 follows from [SW15, Lemma 3.4], while 5 was proved in [Dob08,

Proposition 3.1].

Lemma 4.2.4. Let I,J be finite index sets, {pi}i∈I , {qi, j}(i, j)∈I×J and {xi, j}(i, j)∈I×J

indexed collections such that for all i ∈ I and j ∈ J, pi,qi, j ∈ [0,1] and xi, j ∈ X. If X

carries PCA structure, then:

⊞
i∈I

pi ·

(
⊞
j∈J

qi, j · xi, j

)
= ⊞

(i, j)∈I×J

piqi, j · xi, j

4.2. Preliminaries 152

Proof.

⊞
i∈I

pi ·

(
⊞
j∈J

qi, j · xi, j

)

=⊞
i∈I

pi ·

 ⊞
(k, j)∈{i}×J

qk, j · xk, j


=⊞

i∈I

pi ·

 ⊞
(k, j)∈I×J

[k = i]qk, j · xk, j

 (Proposition 4.2.3)

= ⊞
(k, j)∈I×J

(
∑
i∈I

pi[k = i]qk, j

)
· xk, j (Barycenter axiom)

= ⊞
(k, j)∈I×J

pkqk, j · xk, j

= ⊞
(i, j)∈I×J

piqi, j · xi, j

Lemma 4.2.5. Let I be a finite index set, {pi}i∈I and {qi}i∈I indexed collections

such that pi,qi ∈ [0,1] for all i ∈ I, ∑i∈I pi +∑i∈I qi ≤ 1 and let {xi}i∈I and {yi}i∈I

indexed collection such that xi,yi ∈ X for all i ∈ I. If X carries PCA structure, then:(
⊞
i∈I

pi · xi

)
⊞

(
⊞
i∈I

qi · yi

)
=⊞

i∈I

(pi +qi) ·
(

pi

pi +qi
· xi ⊞

qi

pi +qi
· yi

)

Proof. Let J = {0,1}. Define indexed collections {ri, j}(i, j)∈I×J and {zi, j}(i, j)∈I×J ,

such that ri,0 =
pi

pi+qi
and zi,0 = xi and ri,1 =

qi
pi+qi

and zi,1 = xi. We now reason:

⊞
i∈I

(pi +qi) ·
(

pi

pi +qi
· xi ⊞

qi

pi +qi
· yi

)

=⊞
i∈I

(pi +qi) ·

(
⊞
j∈J

ri, j · zi, j

)

= ⊞
(i, j)∈I×J

(pi +qi)ri j · zi, j (Lemma 4.2.4)

=

(
⊞
i∈I

pi · xi

)
⊞

(
⊞
i∈I

qi · yi

)

4.2. Preliminaries 153

Speaking more abstractly, positive convex algebras and their homomorphisms

(in the sense of homomorphisms of algebras for the signature from universal algebra)

form a category, that we will call PCA. This category can be seen as a concrete

presentation of an Eilenberg-Moore algebra for the subdistribution monad.

Theorem 4.2.6. There is an isomorphism of categories between PCA and SetD.

Given a set X equipped with a positive convex algebra structure, we can define a

map h : DX → X, given by

h(ν) = ⊞
x∈supp(ν)

ν(x) · x

for all ν ∈ DX, making (X ,h) into an algebra for the monad D. Equivalently, given

a D-algebra (X ,h), one can define

⊞
i∈I

pi · xi = h

(
∑
i∈I

pi ·δxi

)

for all finite I and indexed collections {pi}i∈I , {xi}i∈I , such that ∑i∈I pi ≤ 1 and for

all i ∈ I, xi ∈ X. This equips the set X with a positive convex algebra structure.

Proof. See [Jac10a, Theorem 4] or [Dob08, Proposition 5.3].

Moreover, PCA as a category enjoys the following property:

Theorem 4.2.7 ([SW15]). In PCA finitely presented and finitely generated objects

coincide.

4.2.6 Rational fixpoint

The completeness claim presented in this chapter will rely on the universal property

of the rational fixpoint [AMV06; Mil10], which provides a convenient notion of a

domain representing finite behaviours of structured transition systems, by relying on

the theory of locally finitely presentable categories.

Let B : C → C be a finitary functor. We will write CoalgfpB for the subcategory

of CoalgB consisting only of B-coalgebras with finitely presentable carrier. The

4.3. Operational semantics 154

rational fixpoint is defined as

(ρB,r) = colim(CoalgfpB ↪→ CoalgB)

In other words, (ρB,r) is colimit of the inclusion functor from the subcategory

of coalgebras with finitely presentable carriers. We call it a fixpoint, as the map

r : ρB →B(ρB) is an isomorphism [AMV06].

Under some restrictions on underlying category and the type functor of coalge-

bras, we have the following result:

Theorem 4.2.8 ([MPW20, Corollary 3.10, Theorem 3.12]). If finitely presentable

and finitely generated objects coincide in C and B : C → C is a finitary endofunctor

preserving non-empty monomorphisms, then rational fixpoint is fully abstract, that

is, (ρB,r) is a subcoalgebra of the final coalgebra (B, t).

The requirement of preserving non-empty monomorphisms is quite weak and

is satisfied by any lifting of a Set endofunctor to the category of Eilenberg-Moore

algebras.

Lemma 4.2.9. Let H : Set→ Set be an endofunctor and let T be a finitary monad

on Set. Then, the lifting H : SetT → SetT preserves non-empty monomorphisms.

Proof. Follows from [Gum00, Corollary 3.16] and [MPW20, Lemma 2.4].

4.3 Operational semantics
In this section, we begin by describing a coalgebraic approach to modelling the

probabilistic language semantics of GPTS. Building on this, we introduce an opera-

tional semantics for PRE, drawing inspiration from Antimirov’s partial derivatives

for NFAs [Ant96].

4.3.1 Language semantics of GPTS

Let F : Set → Set be an endofunctor given by F = {✓}+A× (−). GPTS are

precisely DF -coalgebras, that is pairs (X ,β), where X is a set of states and β : X →

4.3. Operational semantics 155

D({✓}+A×X) is a transition structure. Because of this, we will interchangeably

use terms "DF-coalgebra" and "GPTS".

The functor DF admits a final coalgebra, but unfortunately it is not carried by

the set of probabilistic languages, that is [0,1]A
∗
, because the canonical semantics of

DF -coalgebras happens to correspond to the more restrictive notion of probabilistic

bisimilarity (also known as Larsen-Skou bisimilarity [LS91]). Probabilistic bisimi-

larity is a branching-time notion of equivalence, requiring observable behaviour of

compared states to be equivalent at every step, while probabilistic language equiv-

alence is a more liberal notion comparing sequences of observable behaviour. In

general, if two states are bisimilar, then they are language equivalent, but the converse

does not hold.

Example 4.3.1. Consider the following GPTS:

q0 q1 q2 ✓ q3 q4 q5 ✓a | 2
3 b | 1

2

1
a | 1

2 b | 2
3

1

States q0 and q3 are language equivalent because they both accept the string ab with

the probability 1
3 , but are not bisimilar, because the state q0 can make a transition

with the probability 2
3 , while q3 can perform an a transition with probability 1

2 .

A similar situation happens when looking at nondeterministic automata through

the lenses of universal coalgebra, where again the canonical notion of equivalence is

the one of bisimilarity. A known remedy is the powerset construction from classic

automata theory, which converts a nondeterministic automaton to a deterministic

automaton, whose states are sets of states of the original nondeterministic automaton

we have started from. In such a case, the nondeterministic branching structure is

factored into the state space of the determinised automaton. The language of an

arbitrary state of the nondeterministic automaton corresponds to the language of the

singleton set containing that state in the determinised automaton.

As we have discussed in Section 4.2.3, generalised determinisation extends

the above idea to HT -coalgebras, where T : Set→ Set is an underlying functor of

a finitary monad T and H : Set → Set is a functor that can be lifted to category

4.3. Operational semantics 156

SetT of T-algebras. Generalised determinisation provides a uniform treatment of

language semantics of variety of transition systems, where the final H-coalgebra

provides a notion of language. Unfortunately, DF -coalgebras do not fit immediately

to this picture. Luckily, each such DF-coalgebra can be seen as a special case of a

more general kind of transition system, known as reactive probabilistic transition

systems (RPTS) [GSS95] or Rabin probabilistic automata [Rab63].

RPTS can be intuitively viewed as a probabilistic counterpart of nondeterminis-

tic automata and they can be determinised to obtain probabilistic language semantics.

In an RPTS, each state x is mapped to a pair ⟨ox,nx⟩, where o ∈ [0,1] is the ac-

ceptance probability of state x and nx : A →D(X) is the next-state function, which

takes a letter a ∈ A and returns the subprobability distribution over successor states.

Formally speaking, let G : Set→ Set be an endofunctor G = [0,1]× (−)A. RPTS

are precisely GD-coalgebras, that is pairs (X ,β), where X is a set of states and

β : X → [0,1]×D(X)A is a transition function. Following the convention outlined

before, we will use terms "GD-coalgebras" and "RPTS" interchangeably.

GD-coalgebras fit into framework of generalised determinisation [SS11]. In

particular, there exists a distributive law ρ : DG ⇒ GD of the monad D over the

functor G that allows to lift G : Set→ Set to G : PCA→ PCA. Speaking in concrete

terms, if the set X is equipped with a convex sum operation ⊞i∈I pi · (−), then so

is [0,1]×XA. Let {⟨oi, ti⟩}i∈I be an indexed collection of elements of [0,1]×XA.

Then, we can define

⊞
i∈I

pi · ⟨oi, ti⟩=

〈
∑
i∈I

pi ·oi,λa.⊞
i∈I

pi · ti(a)

〉
(4.2)

The final coalgebra for the functor G is precisely carried by the set [0,1] of proba-

bilistic languages.

In order to talk about language semantics of DF-coalgebras, we first provide

an informal intuition that each DF-coalgebra can be seen as a special case of a

GD-coalgebra.

Example 4.3.2. Fragment of a GPTS (on the left) and of the corresponding RPTS

4.3. Operational semantics 157

(on the right).

✓ q0
1
4

q1 q2

a | 1
4 a | 1

2

1
4

q0 ◦a

q1 q2

1
4

1
2

In the corresponding RPTS state q0 accepts with probability 1
4 and given input a it

transitions to subprobability distribution that has 1
4 probability of going to to q1 and

1
2 probability of going to q2.

We can make the above intuition formal. Let X be a set, and let ζ ∈ DFX .

Define a function γX : DFX →GDX , given by

γX(ζ) = ⟨ζ (✓),λa.λx.ζ (a,x)⟩

Such functions define components of the natural transformation.

Proposition 4.3.3. [SS11] γ : DF ⇒ GD is a natural transformation with injective

components.

We now have all ingredients to specify language semantics of DF-coalgebras.

Given a DF-coalgebra (X ,β), one can use the natural transformation γ and obtain

GD-coalgebra (X ,γX ◦β). Since G can be lifted to PCA, we can obtain G-coalgebra(
DX ,(γX ◦β)♯

)
. Note that this coalgebra carries an additional algebra structure and

its transition map is a PCA homomorphism, thus making
(
(DX ,µX),(γX ◦β)♯

)
into

a G-coalgebra. The resulting language semantics of (X ,β) are given by the map

Lang(X ,β) : X → [0,1]A explicitly given by

Lang(X ,β) = beh(γX◦β)♯ ◦ηX

where η : X → DX is a unit of the monad D taking each state x ∈ X to its Dirac

δx ∈ DX .

4.3. Operational semantics 158

This can be summarised by the following commutative diagram:

X DX [0,1]A

DFX

GDX G
(
[0,1]A

)

ηX

β

beh
(γX ◦β)♯

(γX◦β)♯
t

γX

Gbeh
(γX ◦β)♯

The language semantics defined above coincide with the explicit definition

of Lang we gave in Equation (4.1) (this is a consequence of a result in [SS11,

Section 5.2]).

Moreover, the natural transformation γ : DF ⇒ GD interacts well with the

distributive law ρ : DG ⇒ GD, making the following diagram commute:

D2F DF

DGD GD2 GD

µG

Dγ γ

ρD Gµ

The above is a consequence of γ : DF ⇒ GD being a so-called extension law –

for more details, see [JSS15, Section 7.2]. This observation yields an alternative

characterisation of the transition structure induced by the generalised determinisation,

which will be employed in one of the steps of the completeness proof, as stated

below.

Proposition 4.3.4. For any DF -coalgebra (X ,β), the following diagram commutes:

DX D2FX DFX GDX
Dβ

(γX◦β)♯

µF γX

Proof. We first argue that (γX ◦β)♯ ◦ηX = γX ◦µFX ◦Dβ ◦ηX

ηX ◦Dβ ◦µFX ◦ γX = β ◦ηDFX ◦µFX ◦ γX (η is natural)

4.3. Operational semantics 159

= β ◦ γX (Monad laws)

= (β ◦ γX)
♯ ◦ηX (Kleisli extension)

Then, we argue that γX ◦ µFX ◦Dβ is a PCA homomorphism from the free PCA

(X ,µX) to G(X ,µX), by checking the commutativity of the diagram below.

D2X D3FX D2FX DFDX

G2DX

DX D2FX DFX GDX

D2β

µX

DµFX

µDFX

DγX

µDFX

ρDX

GµX

Dβ

µFX γX

The left diagram commutes because µ is natural, while the middle one commutes

because of µ being a multiplication map of the monad. Finally, the commutativity of

the rightmost subdiagram is guaranteed by γ being an extension law (see discussion

above).

Since, µFX ◦Dβ ◦ηX is a PCA homomorphism that factorises through η in the

same way as (γX ◦β)♯, we have that (γX ◦β)♯ = γX ◦µFX ◦Dβ .

4.3.2 Antimirov derivatives

We now equip PExp with a DF-coalgebra structure, that is, we define a function

∂ : PExp→D(1+A×PExp). We refer to ∂ as the Antimirov derivative, as it is rem-

iniscent of the analogous construction for regular expressions and nondeterministic

automata [Ant96]. First, we define a helper function that will eventually be used to

define sequential composition:

Definition 4.3.5. Let f ∈ PExp. We define (−◁ f) : DFPExp→DFPExp to be

given by (−◁ f) = c f
♯, that is a convex extension of the map c f : 1+A×PExp→

D(1+A×PExp) given by the following:

c f (x) =

∂ (f) x =✓

δ(a,e′; f) x = (a,e′)

4.3. Operational semantics 160

Using such a helper function, we can state the following definition:

Definition 4.3.6 (Antimirov derivatives for PRE). Given a ∈ A, e, f ∈ PExp and

p ∈ [0,1] we define:

∂ (0) = 0 ∂ (1) = δ✓ ∂ (a) = δ(a,1)

∂ (e⊕p f) = p∂ (e)+(1− p)∂ (f) ∂ (e ; f) = ∂ (e)◁ f

∂

(
e[p]
)
(x) =



1−p
1−p∂ (e)(✓) x =✓

p∂ (e)(a,e′)
1−p∂ (e)(✓) x = (a,(e′ ; e[p]))

0 otherwise

In the definition above, the expression 0 is mapped to the empty subdistribution,

intuitively representing a deadlock. On the other hand, the expression 1 represents

immediate acceptance, that is, it transitions to ✓ with probability 1. For any letter

a ∈ A in the alphabet, the expression a performs a-labelled transition to 1 with

probability 1. The outgoing transitions of the probabilistic choice e⊕p f consist

of the outgoing transitions of e with probabilities scaled by p and the outgoing

transitions of f scaled by 1− p. In the definition of ∂ (e; f), we use the helper

function (−◁ f) defined above (see Definition 4.3.5). Intuitively speaking, we need

to factor in the possibility that e may accept with some probability t, in which case

the outgoing transitions of f contribute to the outgoing transitions of e ; f . In such a

case, (−◁ f) reroutes the transitions coming out of ∂ (e): acceptance (the first case

of c f from Definition 4.3.5) is replaced by the behaviour of f , and the probability

mass of transitioning to e′ (the second case of c f from Definition 4.3.5) is reassigned

to e′ ; f .

Example 4.3.7. Below, we give a pictorial representation of the effect on the deriva-

tives of e ; f . Here, we assume that ∂ (e) can perform a a-transition to e′ with

probability s; we will make the same assumption in the informal descriptions of

4.3. Operational semantics 161

derivatives for the loops, later on.

e ; f

e′ ; f

@@✓∂ (f)
t

a | s

The definition of loops is slightly more involved. This stems from the require-

ment that ∂

(
e[p]
)

is the least subdistribution satisfying the following equation:

∂

(
e[p]
)
= p∂ (e)◁ e[p]+(1− p)∂ (✓)

In the case when ∂ (e)(✓) ̸= 0, the above becomes a fixpoint equation (as in

such a case, the unrolling of the definition of (−◁ e[p]) involves ∂ (e[p])). It turns

out, we can give the definition ∂

(
e[p]
)

in a closed form, but we need to consider

two cases. If ∂ (e)(✓) = 1 and p = 1, then the loop body is constantly executed, but

the inner expression e does not perform any labelled transitions. We identify such

divergent loops with deadlock behaviour and hence ∂ (e[p])(x) = 0. Otherwise, we

look at ∂ (e) to build ∂

(
e[p]
)

.

First, we make sure that the loop may be skipped with probability 1− p. Next,

we modify the branches that perform labelled transitions by adding e[p] to be executed

next. The remaining mass is p∂ (e)(✓), the probability that we will enter the loop

and immediately exit it without performing any labelled transitions. We discard this

possibility and redistribute it among the remaining branches.

Example 4.3.8. As before, we provide an informal visual depiction of the probabilis-

tic loop semantics below, using the same conventions as before. The crossed-out

checkmark along with the dashed lines denotes the redistribution of probability mass

described above.

e[p]

✓

e′;e[p]@@✓
1−p
1−pt

pt a | ps/(1− pt)

4.3. Operational semantics 162

Having defined the Antimirov transition system, one can observe that the

termination operator E(−) : PExp→ [0,1] precisely captures the probability of an

expression transitioning to ✓ (successful termination) when viewed as a state in the

Antimirov GPTS.

Lemma 4.3.9. For all e ∈ PExp it holds that E(e) = ∂ (e)(✓).

Proof. By structural induction. The base cases E(0) = 0 = ∂ (0)(✓), E(1) = 1 =

∂ (1)(✓) and E(a) = 0 = ∂ (a)(✓) hold immediately. For the inductive steps, we

have the following:

Probabilistic choice

E(e⊕p f) = pE(e)+(1− p)E(f)

= p∂ (e)(✓)+(1− p)∂ (f)(✓)

= ∂ (e⊕p f)(✓)

Sequential compositon

E(e ; f) = E(e)E(f)

= ∂ (e)(✓)∂ (f)(✓)

= (∂ (e)◁ f)(✓)

= ∂ (e ; f)(✓)

Loops First, we consider the case when ∂ (e)(✓) = 1 and the loop probability

is 1. By induction hypothesis, also E(e) = 1 and hence E
(

e[1]
)
= ∂

(
e[1]
)
(✓).

Otherwise, we have the following:

E(e[p]) =
1− p

1− pE(e)

=
1− p

1− p∂ (e)(✓)

= ∂

(
e[p]
)
(✓)

4.3. Operational semantics 163

Given an expression e ∈ PExp, we write ⟨e⟩ ⊆ PExp for the set of states reach-

able from e by repeatedly applying ∂ . It turns out that the operational semantics of

every PRE can be always described by a finite-state GPTS given by (⟨e⟩,∂).

Lemma 4.3.10. For all e ∈ PExp, the set ⟨e⟩ is finite. In fact, the number of of states

is bounded above by #(−) : PExp → N, where #(−) is defined recursively by:

#(0) = #(1) = 1 #(a) = 2 #(e⊕p f) = #(e)+#(f)

#(e ; f) = #(e)+#(f) #(e[p]) = #(e)+1

Proof. We adapt the analogous proof for GKAT [Sch+21].

For any e ∈ PExp, let |⟨e⟩| be the cardinality of the carrier set of the least

subcoalgebra of (PExp,∂) containing e. We show by induction that for all e ∈ PExp

it holds that |⟨e⟩| ≤ #(e).

For the base cases, observe that for 0 and 1 the subcoalgebra has exactly one

state. Hence, #(0) = 1 = |⟨0⟩|. Similarly, we have #(1) = 1 = |⟨1⟩|. For a ∈ A, we

have two states; the initial state, which transitions with probability 1 on a to the state

which outputs ✓ with probability 1.

For the inductive cases, assume that |⟨e⟩| ≤ #(e), |⟨ f ⟩| ≤ #(f) and p ∈ [0,1].

• Every derivative of e⊕p f is either a derivative of e or f and hence |⟨e⊕p f ⟩| ≤

|⟨e⟩|+ |⟨ f ⟩|= #(e)+#(f) = #(e⊕p f).

• In the case of e ; f , every derivative of this expression is either a derivative of f

or some derivative of e followed by f . Hence, |⟨e ; f ⟩|= |⟨e⟩×{ f}|+ |⟨ f ⟩| ≤

#(e)+#(f) = #(e ; f).

• For the probabilistic loop case, observe that every derivative of e[p] is a deriva-

tive of e followed by e[p] or it is the state that outputs ✓ with probability 1. It

can be easily observed that |⟨e[p]⟩| ≤ |⟨e⟩|+1 = #(e) = #(e[p]).

Example 4.3.11. Operational semantics of the expression e = a⊕ 3
4

a ; a[
1
4] ; a corre-

spond to the following GPTS:

4.3. Operational semantics 164

a⊕ 3
4

a ; a[
1
4] ; a

a[
1
4] ; aa | 1

4
a | 1

4

1

a | 3
4

a | 3
4 ✓

1

One can observe that the transition system above for e is isomorphic to the one

starting in q2 in Example 4.1.2.

Given the finite-state GPTS (⟨e⟩,∂) associated with an expression e ∈ PExp we

can define the language semantics of e as the probabilistic language JeK ∈ [0,1]A
∗

generated by the state e in the GPTS (⟨e⟩,∂).

4.3.3 Roadmap to soundness and completeness

The central aim of this chapter is to show that the axioms in Figure 4.1 are sound

and complete to reason about probabilistic language equivalence of PRE, that is:

e ≡ f

Completeness

⇐=

=⇒

Soundness

JeK = J f K

We now sketch the roadmap on how we will prove these two results to ease the flow

into the upcoming technical sections. Perhaps not surprisingly, the completeness

direction is the most involved.

The heart of both arguments will rely on arguing that the semantics map

J−K : PExp → [0,1]A
∗

assigning a probabilistic language to each expression can

be seen as the following composition of maps:

PExp PExp/≡ [0,1]A
∗[−] behd

J−K

The technical core of both arguments will rely on equipping PExp/≡ with a struc-

ture of a G-coalgebra, possesing additional well-behaved PCA structure making

it into a G-coalgebra. In the picture above [−] : PExp → PExp/≡ is a quotient

map taking expressions to their equivalence class modulo the axioms of ≡, while

4.3. Operational semantics 165

behd : PExp/≡→ [0,1]A
∗

is a final G-coalgebra homomorphism taking each equiva-

lence class to the corresponding probabilistic language. In such a case, soundness

follows as a sequence of three steps:

e ≡ f ⇒ [e] = [f]⇒ behd([e]) = behd([f])⇒ JeK = J f K (4.3)

In general, obtaining the appropriate transition system structure on PExp/≡ needs a

couple of intermediate steps, which then lead to soundness:

1. We first prove the soundness of a subset of the axioms of Figure 4.1:

omitting (S0) and (D2) yields a sound inference system, which we call

≡b, with respect to a finer equivalence–probabilistic bisimilarity as defined

by Larsen and Skou [LS91] (Lemma 4.4.1). As a consequence, there

exists a deterministic transition system structure on the set DPExp/≡b,

such that D[−]≡b : DPExp → DPExp/≡b is a G-coalgebra homomorphism

(Lemma 4.4.2).

2. We then prove that the set of expressions modulo the bisimilarity axioms, that

is PExp/≡b , has the structure of a positive convex algebra α≡b : DPExp/≡b →

PExp/≡b (Lemma 4.4.10). This allows us to flatten a distribution over equiv-

alence classes into a single equivalence class. This proof makes use of a

fundamental theorem decomposing expressions (Theorem 4.4.3). Addition-

ally, we obtain that the coarser quotient PExp/≡ also has a PCA structure

(Lemma 4.4.12), that will become handy in the proof of completeness.

3. With the above result, we equip the set PExp/≡b with a G-coalgebra structure

and show that the positive convex algebra structure map on PExp/≡b is also a

G-coalgebra homomorphism from DPExp/≡b into it (Lemma 4.4.13).

4. Through a simple argument (this step encapsulates the key part of the sound-

ness argument), we show that there exists a unique deterministic transition sys-

tem structure on the coarser quotient, that is PExp/≡, that makes further iden-

tification using axioms (S0) and (D2) (denoted [−]≡ : PExp/≡b → PExp/≡)

4.3. Operational semantics 166

into a G-coalgebra homomorphism (Lemma 4.4.14). We compose all homo-

morphisms into a map of the type DPExp→ PExp/≡ and show the correspon-

dence of the probabilistic language of the state [e] in the above mentioned

G-coalgebra with the one of δe in the determinisation of Antimirov GPTS

(Lemma 4.4.19), thus establishing soundness (Theorem 4.4.20).

As much as our proof of soundness is not a straightforward inductive argument like

in ordinary regular expressions, it immediately sets up the stage for the completeness

argument. To obtain completeness we want to reverse all implications in Equa-

tion (4.3)–and they all are easily reversible except [e] = [f]⇒ behd([e]) = behd([f]).

To obtain this reverse implication we will need to show that behd is injective. We

will do this, by showing that the (algebraically structured) coalgebra on PExp/≡

satisfies a universal property of the rational fixpoint, that generalises the idea of

regular languages representing finite-state deterministic automata.

As we will see in Section 4.5, determinising a finite-state GPTS can lead to

an infinite state G-coalgebra. Instead, we will rely on the theory of locally finitely

presentable categories to characterise finite behaviour. It turns out, each determin-

isation of a finite-state GPTS carries a structure of a positive convex algebra, that

is free finitely generated. Thanks to the work of Milius [Mil18] and Sokolova &

Woracek [SW18] on proper functors, we will see that establishing that PExp/≡

is isomorphic to the rational fixpoint boils down to showing uniqueness of homo-

morphisms from determinisations of finite-state GPTS. We will reduce this prob-

lem to converting GPTS to language equivalent expressions through the means of

axiomatic manipulation using a procedure reminiscent of Brzozowski’s equation

solving method [Brz64] for converting DFAs to regular expressions. As a corollary,

we will obtain an analogue of (one direction of) Kleene’s theorem for GPTS and

PRE. To sum up, the completeness result is obtained in 4 steps:

1. We show that the structure map of G-coalgebra on PExp/≡ constructed in pre-

vious step is in fact a PCA homomorphism, thus making it into a G-coalgebra

(Lemma 4.5.1).

2. We show that determinisations of GPTS, as well as G-coalgebra structure

4.4. Soundness 167

on PExp/≡, are precisely coalgebras for the functor Ĝ : PCA→ PCA that is

proper and a subfunctor of G.

3. Following a traditional pattern in completeness proofs [Sal66; Bac76; Mil84],

we represent GPTS as left-affine systems of equations within the calculus and

show that these systems have unique solutions up to provable equivalence

(Theorem 4.5.19).

4. We then show that these solutions are in 1-1 correspondence with well-behaved

maps from Ĝ-coalgebras obtained from determinising finite-state GPTS into

the Ĝ-coalgebra on PExp/≡ (Lemma 4.5.7).

5. Finally, we use this correspondence together with an abstract categorical

argument to show that Ĝ-coalgebra structure on PExp/≡ has a universal

property of the rational fixpoint (Corollary 4.5.24) that eventually implies

injectivity of behd , establishing completeness (Theorem 4.5.27).

4.4 Soundness
We are now ready to execute the roadmap to soundness described in Section 4.3.3.

4.4.1 Step 1: Soundness with respect to bisimilarity

We first check that a subset of axioms generating ≡ is sound with respect to bisimi-

larity of DF -coalgebras, which is a coarser notion of equivalence than probabilistic

language equivalence. Let ≡b ⊆ PExp×PExp denote the least congruence rela-

tion closed under the axioms on Figure 4.1 except (S0) and (D2). We will use the

following notation for the quotient maps associated with ≡ and ≡b:

PExp PExp/≡b PExp/≡
[−]≡b

[−]

[−]≡

A straightforward induction on the length derivation of ≡b allows us to show

that this relation is a bisimulation equivalence on (PExp,∂). As mentioned before, in

the case of GPTS this notion corresponds to bisimulation equivalences in the sense

4.4. Soundness 168

of Larsen and Skou [LS91]. Due to readability concerns, the proof of that result is

delegated to Appendix A.

Lemma 4.4.1. The relation ≡b ⊆ PExp×PExp is a bisimulation equivalence.

As a consequence of Lemma 4.4.1 and Lemma 2.1.6, there exists a unique coal-

gebra structure [∂]≡b : PExp/≡b →DFPExp/≡b, which makes the quotient map

[−]≡b : PExp→ PExp/≡b into a DF-coalgebra homomorphism from (PExp,∂) to

(PExp/≡b, [∂]≡b). It turns out, that upon converting those DF-coalgebras to GD-

coalgebras using the natural transformation ρ : DF → GD and determinising them,

D[−]≡b : DPExp→DPExp/≡b becomes a homomorphism between the determini-

sations.

Lemma 4.4.2. D[−]≡b : DPExp → DPExp/≡b is a G-coalgebra homomorphism

from (DPExp,(ρPExp ◦ ∂)♯) to (DPExp/≡b,(ρPExp/≡b
◦ [∂]≡b)

♯). In other words,

the following diagram commutes:

DPExp DPExp/≡b

PExp PExp/≡b

DFPExp DFPExp/≡b

GDPExp GDPExp/≡b

D[−]≡b

(γPExp◦∂)♯ (γPExp/≡b
◦[∂]≡b)

♯

ηPExp

[−]≡b

∂

ηPExp/≡b

[∂]≡b

γPExp γPExp/≡b
GD[−]≡b

Proof. The top face of the diagram commutes by naturality of η . Front face of the

diagram commutes because [−]≡b is DF-coalgebra homomorphism and because

of [Rut00, Theorem 15.1]. The sides of the diagram commute because of the free-

forgetful adjunction between Set and PCA. Finally, the commutativity of the square

at the back of the diagram above follows from [Sil+10, Theorem 4.1].

4.4.2 Step 2a: Fundamental theorem

We show that every PRE is provably equivalent (modulo the axioms of ≡b) to

a decomposition involving sub-expressions obtained in its small-step semantics.

4.4. Soundness 169

This property, often referred to as the fundamental theorem (in analogy with the

fundamental theorem of calculus) is useful in proving soundness. In order to encode

elements of FPExp using the syntax of PExp, we define a function exp: FPExp→

PExp, given by exp(✓) = 1 and exp(a,e′) = a;e′ for all a ∈ A and e′ ∈ PExp. To be

able to syntactically express finitely supported subdistributions, we will use n-ary

convex sum of elements of PExp obeying the axioms of positive convex algebras,

that exists because of Proposition 4.2.2 and axioms (C1-C4). Using it, we can state

the following:

Theorem 4.4.3. For all e ∈ PExp we have that

e ≡b
⊕

d∈supp(∂ (e))

∂ (e)(d) · exp(d)

Before we give the proof of the result above, we start by establishing a couple

of intermediate results. Firstly, we show that the binary probabilistic choice satisfies

the following identities:

Lemma 4.4.4. The following facts are derivable in ≡b

1. e⊕p (f ⊕q g)≡b

(
e⊕ p

1−(1−p)(1−q)
f
)
⊕1−(1−p)(1−q) g

2. (e⊕p f)⊕q (g⊕p h)≡b (e⊕q g)⊕p (f ⊕q h)

Proof. For 1 , let k = p
1−(1−p)(1−q) and l = 1 − (1 − p)(1 − q). We derive the

following:

e⊕p (f ⊕q g)≡b (f ⊕q g)⊕1−p e (C3)

≡b (g⊕1−q f)⊕1−p e (C3)

≡b g⊕1−l (f ⊕1−k e) (C4)

≡b (f ⊕1−k e)⊕l g (C3)

≡b (e⊕k f)⊕l g (C3)

4.4. Soundness 170

For 2 we show the following:

(e⊕p f)⊕q (g⊕p h)≡b e⊕pq

(
f ⊕ 1−pq

1−pq
(g⊕p h)

)
(C4)

≡b e⊕pq

(
(g⊕p h)⊕ 1−q

1−pq
f
)

(C3)

≡b e⊕pq

(
g⊕ p(1−q)

1−pq

(
h⊕1−q f

))
(C4)

≡b e⊕pq

(
g⊕ p(1−q)

1−pq

(
f ⊕q h

))
(C3)

≡b
(
e⊕q g

)
⊕p
(

f ⊕q h
)

(1)

This completes the proof.

Then, we argue that any non-empty n-ary convex sum can be expressed as a

binary probabilistic choice and an (n−1)-nary convex sum.

Lemma 4.4.5. Let {pi}i∈I and {ei}i∈I be non-empty collections indexed by a finite

set I, such that for all i ∈ I, pi ∈ [0,1] and ei ∈ PExp. For any j ∈ I it holds that:

⊕
i∈I

pi · ei ≡b e j ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei


Proof. In the edge case, when p j = 1 (and therefore I = { j}) we have that

⊕
i∈I pi ·

ei ≡b e j and therefore

e j ≡b e j ⊕1 0 (C2)

≡b e j ⊕p j

(⊕
i∈ /0

pi

1− p j
· ei

)
(Def. of empty n-ary convex sum)

≡b e j ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei

 (I = { j})

Note that despite the fact that p j = 1, the n-ary sum on the right is well-defined

as it ranges over an empty index set and thus division by zero never happens. The

4.4. Soundness 171

remaining case, when p j ̸= 1 holds because of Proposition 4.2.2.

Using the above result, we can also split the normal form used in Theorem 4.4.3

into two parts; one describing acceptance and one describing labelled transitions.

Lemma 4.4.6. For all e ∈ PExp,

⊕
d∈supp(∂ (e))

∂ (e)(d) · exp(d)≡b 1⊕∂ (e)(✓)

 ⊕
d∈supp(∂ (e))\{✓}

∂ (e)(d)
1−∂ (e)(✓)

· exp(d)


Proof. If supp(∂ (e)) = /0, then

⊕
d∈supp(∂ (e))

∂ (e)(d) · exp(d)≡b 0 (Def. of empty n-ary convex sum)

≡b 0⊕1 1 (C2)

≡b 1⊕0 0 (C3)

≡b 1⊕∂ (e)(✓) 0 (∂ (e)(✓) = 0)

≡b 1⊕∂ (e)(✓)

(⊕
d∈ /0

∂ (e)(d)
1−∂ (e)(✓)

· exp(d)

)

≡b 1⊕∂ (e)(✓)

 ⊕
d∈supp(∂ (e)(✓))\{✓}

∂ (e)(d)
1−∂ (e)(✓)

· exp(d)



The remaining case when supp(∂ (e)) ̸= 0 holds by Lemma 4.4.5 and the fact

that exp(✓) = 1.

Finally, we generalise the axiom (D1) to n-ary convex sums.

Lemma 4.4.7. Let f ∈ PExp, I be a finite index set and let {pi}i∈I and {ei}i∈I

indexed collections of probabilities and expressions respectively. Then,(⊕
i∈I

pi · ei

)
; f ≡b

⊕
i∈I

pi · ei ; f

4.4. Soundness 172

Proof. By induction. If I = /0, then using (0S) we can show that(⊕
i∈I

pi · ei

)
; f ≡b 0 ; f ≡b 0≡b

⊕
i∈I

pi · ei ; f

If there exists j ∈ I, such that p j = 1, then

(⊕
i∈I

pi · ei

)
; f ≡b e j ; f ≡b

(⊕
i∈I

pi · ei ; f

)

Finally, for the induction step, we have that

(⊕
i∈I

pi · ei

)
; f ≡b

e j ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei

 ; f

≡b e j ; f ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei

 ; f (D1)

≡b e j ; f ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei ; f

 (Induction hypothesis)

≡b

(⊕
i∈I

pi · ei ; f

)

We now have all the ingredients to show the fundamental theorem.

Proof of Theorem 4.4.3. We proceed by the structural induction on e ∈ PExp. For

the base cases, we have the following:

e = 0

0≡b
⊕
d∈ /0

∂ (0)(d) · exp(d) (Proposition 4.2.3)

≡b
⊕

d∈supp(∂ (0))

∂ (0)(d) · exp(d) (supp(∂ (0)) = /0)

4.4. Soundness 173

e = 1

1≡b exp(✓) (Def. of exp)

≡b
⊕

d∈supp(∂ (1))

∂ (1)(d) · exp(d) (∂ (1) = δ✓)

e = a

a ≡b a ;1 (S1)

≡b exp((a,✓)) (Def. of exp)

≡b
⊕

d∈supp(∂ (a))

∂ (a)(d) · exp(d) (∂ (a) = δ(a,✓))

We now move on to inductive steps.

e = f ⊕p g

f ⊕p g

≡b

 ⊕
d∈supp(∂ (f))

∂ (f)(d) · exp(d)

⊕p

 ⊕
d∈supp(∂ (g))

∂ (g)(d) · exp(g)


(Induction hypothesis)

≡b

 ⊕
d∈supp(∂ (f⊕pg))

∂ (f)(d) · exp(d)

⊕p

 ⊕
d∈supp(∂ (f⊕pg))

∂ (g)(d) · exp(g)


(Proposition 4.2.3)

≡b
⊕

d∈supp(∂ (f⊕pg))

(p∂ (f)(d)+(1− p)∂ (g)(d)) · exp(d) (Barycenter axiom)

≡b
⊕

d∈supp(∂ (f⊕pg))

∂ (f ⊕p g)(d) · exp(d) (Definition 4.3.6)

e = f ; g

f ; g ≡b

 ⊕
d∈supp(∂ (f))

∂ (f)(d) · exp(d)

 ; g (Induction hypothesis)

4.4. Soundness 174

≡b

1⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

 ; g (Lemma 4.4.6)

≡b

1 ; g⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

 ; g

 (D1)

≡b g⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; g


(Lemma 4.4.7 and 1S)

≡b

 ⊕
d∈supp(∂ (g))

∂ (g)(d) · exp(d)


⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; g


(Induction hypothesis)

≡b

 ⊕
d∈supp(∂ (f ;g))

∂ (g)(d) · exp(d)


⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; g

 (Proposition 4.2.3)

Now, we simplify the subexpression on the right part of the convex sum. Define

n : FPExp→ [0,1] to be:

n(d) =

∂ (f)(a, f ′) d = (a, f ′ ; g)

0 otherwise

By applying Proposition 4.2.3 and the preceding definition, it follows that:

⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; g ≡b
⊕

d∈supp(∂ (f ;g))

n(d)
1−∂ (f)(✓)

· exp(d)

By combining this with the previous derivation and applying the barycenter axiom,

we can conclude that

f ; g ≡b
⊕

d∈supp(∂ (f ;g))

(∂ (f)(✓)∂ (g)(d)+n(d)) · exp(d)

4.4. Soundness 175

Combining it with the previous derivation, using the barycenter axiom, we can show

that:

f ; g ≡b
⊕

d∈supp(∂ (f ;g))

(∂ (f)(✓)∂ (g)(d)+n(d)) · exp(d)

Observe that for d = (a, f ′ ; g), we obtain

∂ (f)(✓)∂ (g)(d)+n(d) = ∂ (f)(✓)∂ (g)(a, f ′ ; g)+∂ (f)(a, f ′) = ∂ (f ; g)(d)

When d =✓, it follows that

∂ (f)(✓)∂ (g)(d)+n(d) = ∂ (f)(✓)∂ (g)(d) = ∂ (f ; g)(d)

In all remaining cases, both functions assign the value 0 to d. Consequently, we

conclude that

f ; g ≡b
⊕

d∈supp(∂ (f ;g))

∂ (f ; g)(d) · exp(d)

which establishes the desired result for this case.

e = f [p]

We begin by considering the case where ∂ (f)(✓) = 1 and p = 1.

f [p] ≡b

 ⊕
d∈supp(∂ (f))

∂ (f)(d) · exp(d)

[1]

(Induction hypothesis)

≡b 1
[1] (∂ (f)(✓) = 1)

≡b 0 (Div)

≡b
⊕

d∈supp(∂(f [1]))

∂

(
f [1]
)
(d) · exp(d)

Otherwise, we first apply the (Tight) axiom to the loop body as follows:

f [p] ≡b

 ⊕
d∈supp(∂ (f))

∂ (f)(d) · exp(d)

[p]

(Induction hypothesis)

4.4. Soundness 176

≡b

1⊕∂ (f)(✓)

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

[p]

(Lemma 4.4.6)

≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

⊕1−∂ (f)(✓) 1

[p]

(C3)

≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)


[
(1−∂ (f)(✓))p
1−p∂ (f)(✓)

]
(Tight)

For convenience, we denote by g[r] the expression obtained from the preceding

derivation. We proceed by applying the (Unroll) axiom.

g[r] ≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

 ; g[r]⊕r 1 (Unroll)

≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d)

 ; f [p]⊕r 1 (f [p] ≡b g[r])

≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; f [p]

⊕r 1 (Lemma 4.4.7)

≡b

 ⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; f [p]


⊕r

 ⊕
d∈supp(∂(f [p]))

δ✓(d) · exp(d)


Next, we simplify the left-hand side of the binary convex sum. Define n : FPExp→

[0,1] as follows

n(d) =

∂ (f)(a, f ′) d =
(

a, f ′ ; f [p]
)

0 otherwise

By applying Proposition 4.2.3 and the definition above, we obtain

⊕
d∈supp(∂ (f))\{✓}

∂ (f)(d)
1−∂ (f)(✓)

· exp(d) ; f [p] ≡b
⊕

d∈supp(∂(f [p]))

n(d)
1−∂ (f)(✓)

· exp(d)

By combining the above with the previous derivation and applying the barycenter

4.4. Soundness 177

axiom, we obtain:

f [p] ≡b
⊕

d∈supp(∂(f [p]))

(
pn(d)

1− p∂ (f)(✓)
+

1− pδ✓(d)
1−∂ (f)(✓)p

)
· exp(d)

Observe that for d = (a, f ′ ; g), we obtain

pn(d)
1− p∂ (f)(✓)

+
1− pδ✓(d)

1− p∂ (f)(✓)
=

p∂ (f)(a, f ′)
1− p∂ (f)(✓)

= ∂

(
f [p]
)
(d)

When d =✓, it follows that

pn(d)
1− p∂ (f)(✓)

+
1− pδ✓(d)

1− p∂ (f)(✓)
=

1− p
1− p∂ (f)(✓)

= ∂

(
f [p]
)
(d)

In all remaining cases, we have that

pn(d)
1− p∂ (f)(✓)

+
1− pδ✓(d)

1− p∂ (f)(✓)
= 0 = ∂

(
f [p]
)
(d)

Thus, we obtain the following:

f [p] ≡b
⊕

d∈supp(∂(f [p]))

∂

(
f [p]
)
(d) · exp(d)

This establishes the desired result.

A direct corollary of the result established above is that every loop is provably

equivalent to a loop whose body does not assign any probability to transitions to ✓.

Corollary 4.4.8 (Productive loop). Let e ∈ PExp and p ∈ [0,1]. We have that

e[p] ≡b f [r] for some f ∈ PExp and r ∈ [0,1], such that E(f) = 0.

Proof. If ∂ (e)(✓) = 1 and p = 1, then it follows that:

e[1] ≡b

 ⊕
d∈supp(∂ (e))

∂ (e)(d) · exp(d)

[1]

(Theorem 4.4.3)

≡b 1
[1]

4.4. Soundness 178

≡b 0 (Div)

≡b 0 ;0⊕1 1 (0S and C2)

≡b 0
[1] (Unique fixpoint rule and E(0) = 0)

Therefore, e[1] = 0[1]. In this case, it follows that E(0) = 0. In the remaining cases,

we obtain the following:

e[p] ≡b

 ⊕
d∈supp(∂ (e))

∂ (e)(d) · exp(d)

[p]

(Theorem 4.4.3)

≡b

1⊕∂ (e)(✓)

 ⊕
d∈supp(∂ (e))\{✓}

∂ (e)(d)
1−∂ (e)(✓)

· exp(d)

[p]

(Lemma 4.4.6)

≡b

 ⊕
d∈supp(∂ (e))\{✓}

∂ (e)(d)
1−∂ (e)(✓)

· exp(d)

⊕1−∂ (e)(✓) 1

[p]

(C3)

≡b

 ⊕
(a,e′)∈supp(∂ (e))

∂ (e)(a,e′)
1−∂ (e)(✓)

·a ; e′

⊕1−∂ (e)(✓) 1

[p]

(Def. of exp)

≡b

 ⊕
(a,e′)∈supp(∂ (e))

∂ (e)(a,e′)
1−∂ (e)(✓)

·a ; e′


[

p(1−∂ (e)(✓))
1−p∂ (e)(✓)

]
(Tight)

Observe that the body of the loop above is an n-ary probabilistic sum involving terms

of the form a ; e′ (where a ∈ A, e′ ∈ PExp), for which E(a ; e′) = 0. By examining

the definition of the n-ary sum (Proposition 4.2.2) and the termination operator E(−)

(Figure 4.1), we immediately conclude that the loop body is mapped to 0 by E(−),

which completes the proof.

4.4.3 Step 2b: Algebra structure

Then, we equip the set PExp/≡b with a PCA structure. To do so, we first observe that

as a consequence of Theorem 4.4.3, we have that [∂]≡b : PExp/≡b →DFPExp/≡b

is an isomorphism.

Corollary 4.4.9. The structure map [∂]≡b :PExp/≡b →DFPExp/≡b of the quotient

4.4. Soundness 179

coalgebra (PExp/≡b, [∂]≡b) is an isomorphism in the category Set.

Proof. Given ν ∈DFPExp/≡b define a function [∂]−1
≡b

: DFPExp/≡b → PExp/≡b

as follows:

[∂]−1
≡b
(ν) =

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′


≡b

First, observe that for arbitrary ν ∈ DFPExp/≡b we have that:

(
[∂]≡b ◦ [∂]

−1
≡b

)
(ν)(✓)

= ([∂]≡b ◦ [−]≡b)

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(✓)

= (DF [−]≡b ◦∂)

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(✓)

([−]≡ is a DF-coalgebra homomorphism)

= ∂

ν(✓) ·1⊕
⊕

(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(✓)

= ν(✓) (Definition 4.3.6)

Similarly, for any (b, [f ′]≡b) ∈ supp(ν), it follows that:

([∂]≡b ◦ [∂]
−1
≡b
)(ν)(b, [f ′]≡b)

= ([∂]≡b ◦ [−]≡b)

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(b, [f ′]≡b)

= (DF [−]≡b ◦∂)

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(b, [f ′]≡b)

([−]≡ is a DF-coalgebra homomorphism)

= ∑
g≡ f ′

∂

ν(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(ν)

ν(a, [e′]≡b) ·a ; e′

(b,g)

= ν(b, [f ′]≡b) (Definition 4.3.6)

For the second part of the proof, let e ∈ PExp. As a consequence of Theorem 4.4.3,

4.4. Soundness 180

it follows that:

e ≡b
⊕

d∈supp(∂ (e))

∂ (e)(d) · exp(d) (Theorem 4.4.3)

≡b ∂ (e)(✓) ·1⊕

 ⊕
(a,e′)∈supp(∂ (e))

∂ (e)(a,e′) ·a ; e′


≡b ∂ (e)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈A×PExp/≡b

(
∑

g≡e′
∂ (e)(a,g)

)
·a ; e′

 (Proposition 4.2.3)

Next, observe that:

([∂]−1
≡b

◦ [∂]≡b)[e]≡b = ([∂]−1
≡b

◦DF [−]≡b ◦∂)(e)

([−]≡ is a DF-coalgebra homomorphism)

=

∂ (e)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp((DF [−]≡b◦∂)(e))

(DF [−]≡b ◦∂)(e)(a, [e′]≡b)) ·a ; e′


≡b

=

∂ (e)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈A×PExp/≡b

(DF [−]≡b ◦∂)(e)(a, [e′]≡b)) ·a ; e′


≡b

(Proposition 4.2.3)

=

∂ (e)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈A×PExp/≡b

(
∑

g≡e′
∂ (e)(a,g)

)
·a ; e′


≡b

(Def. of [∂]≡b)

= [e]≡b (Derivation above)

This completes the proof.

The result above allows to define a map α≡b : DPExp/≡b → PExp/≡b as the

following composition of morphisms:

DPExp/≡b DDFPExp/≡b DFPExp/≡b PExp/≡b
D[∂]≡b µFPExp/≡ [∂]≡b

−1

In fact, this map equips the set PExp/≡b with a positive convex algebra structure.

Lemma 4.4.10. (PExp/≡b,α≡b) is an Eilenberg-Moore algebra for the finitely

supported subdistribution monad.

4.4. Soundness 181

Proof. We first verify that α≡b ◦ηPExp/≡b
= idPExp/≡b

.

α≡b ◦ηX = [∂]−1
≡b

◦µFPExp/≡b
◦D[∂]≡b ◦ηPExp/≡b

(Def. of α≡b)

= [∂]−1
≡b

◦µFPExp/≡b
◦ηDFPExp/≡b

◦ [∂]≡b (η is natural)

= [∂]−1
≡b

◦ [∂]≡b (Monad laws)

= idPExp/≡b
(Corollary 4.4.9)

Then, we show that α≡b ◦Dα≡b = α≡b ◦µPExp/≡b

α≡b ◦Dα≡b = [∂]−1
≡b

◦µFPExp/≡b
◦D[∂]≡b ◦D[∂]−1

≡b
◦DµFPExp/≡b

◦D2[∂]≡b

(Def. of α≡b)

= [∂]−1
≡b

◦µFPExp/≡b
◦DµFPExp/≡b

◦D2[∂]≡b (Corollary 4.4.9)

= [∂]−1
≡b

◦µFPExp/≡b
◦µDFPExp/≡b

◦D2[∂]≡b (Monad laws)

= [∂]−1
≡b

◦µFPExp/≡b
◦D[∂]≡b ◦µPExp/≡b

(µ is natural)

= α≡b ◦µPExp/≡b
(Def. of α≡b)

This completes the proof.

Moreover, using the isomorphism between PCA and SetD one can calculate the

concrete formula for PCA structure on PExp/≡b.

Lemma 4.4.11. The PCA structure on PExp/≡b is concretely given by:

⊞
i∈I

pi · [ei]≡b =

[⊕
i∈I

pi · ei

]
≡b

Proof.

⊞
i∈I

pi · [ei]≡b = α≡b

(
∑
i∈I

piδ[ei]≡b

)
(Theorem 4.2.6)

= [∂]−1
≡b

◦µFPExp/≡b ◦D[∂]≡b

(
∑
i∈I

piδ[ei]≡b

)
(Def. of α≡b)

= [∂]−1
≡b

◦µFPExp/≡b

(
∑
i∈I

piδ[∂]≡b([ei]≡b)

)

4.4. Soundness 182

= [∂]−1
≡b

(
∑
i∈I

pi[∂]≡b ([ei]≡b)

)

= [∂]−1
≡b

(
∑
i∈I

pi(DF [−]≡b ◦∂)(ei)

)
([−]≡ is a DF-coalgebra homomorphism)

=

(∑
i∈I

pi∂ (ei)(✓)

)
·1⊕

 ⊕
(a,[e′]≡b)∈A×PExp/≡b

(
∑
i∈I

pi∂ (ei)(a, [e′]≡b)

) ·a ; e′


≡b

(Def. of [∂]−1
≡b

and Proposition 4.2.3)

=

⊕
i∈I

pi ·

∂ (ei)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈A×PExp/≡b

∂ (ei)(a, [e′]≡b) ·a ; e′


≡b

(Barycenter axiom)

=

⊕
i∈I

pi ·

∂ (ei)(✓) ·1⊕

 ⊕
(a,[e′]≡b)∈supp(∂ (ei))

∂ (ei)(a, [e′]≡b) ·a ; e′


≡b

(Proposition 4.2.3)

=

[⊕
i∈I

pi · ei

]
≡b

The last line of the proof above follows from Theorem 4.4.3.

We can also equip the coarser quotient, that is PExp/≡, with a PCA structure.

Lemma 4.4.12. The set PExp/≡ can be equipped with a positive convex algebra

structure, given by the following:

⊞
i∈I

pi · [ei] =

[⊕
i∈I

pi · ei

]

Moreover, [−]≡ : PExp/≡b → PExp/≡ is a PCA homomorphism.

Proof. The positive convex algebra structure on PExp/≡ is well-defined, because ≡

is a congruence and the definition on n-ary probabilistic choice (Proposition 4.2.2).

To show that [−]≡ is a PCA homomorphism, we argue the following:

[
⊞
i∈I

pi · [ei]≡b

]
≡

=

[⊕
i∈I

pi · ei

]
≡b


≡

(Lemma 4.4.11)

4.4. Soundness 183

=

[⊕
i∈I

pi · ei

]
=⊞

i∈I

pi · [ei] (Def. of PCA structure on PExp/≡)

=
n

⊞
i∈I

pi [[ei]≡b]≡

4.4.4 Step 3: Coalgebra structure

Having established the necessary algebraic structure, we move on to showing how we

can equip the quotient PExp/≡ with a structure of coalgebra for the functor G : Set→
Set. First, we focus on the G-coalgebra structure c : PExp/≡b →GPExp/≡b on the

finer quotient PExp/≡b, defined as the following composition of maps:

PExp/≡b DFPExp/≡b GDPExp/≡b GPExp/≡b
[∂]≡b

c

γPExp/≡b Gα≡b

Formally, we equip a quotient PExp/≡b with DF-coalgebra structure, which

exists due to soundness of ≡b with respect to bisimilarity. Then, we transform it

into a GD-coalgebra using the natural transformation γ : DF ⇒ GD. Determinis-

ing this coalgebra directly would lead to changing the state space to DPExp/≡b,

which we would like to avoid. Instead, we flatten each reachable subdistribu-

tion using the algebra map α≡b : DFPExp/≡b → PExp/≡b, thereby inducing a

G-coalgebra structure. This construction is closely related to the determinisation of(
PExp/≡b,γPExp/≡b

◦ [∂]≡b

)
. In particular, we have the following result

Lemma 4.4.13. The PCA structure map α≡b : DPExp/≡b → PExp/≡b is a G-

coalgebra homomorphism of the following type:

α≡b :
(
DPExp/≡b,(γPExp/≡b

◦ [∂]≡b)
♯
)
→ (PExp/≡b,c)

4.4. Soundness 184

Proof. We show that the following diagram commutes:

DPExp/≡b PExp/≡b

DDFPExp/≡b DFPExp/≡b

GDPExp/≡b

GDPExp/≡b GPExp/≡b

[∂]≡b

γPExp/≡0

Gα≡b

(γPExp/≡b
◦[∂]≡b)

♯

α≡b

Gα≡b

D[∂]≡b

µFPExp/≡b

For the top right square, we have the following:

[∂]≡b ◦α≡b = [∂]≡b ◦ [∂]
−1
≡b

◦µFPExp/≡b
◦D[∂]≡b (Def. of α≡b)

= µFPExp/≡b
◦D[∂]≡b (Corollary 4.4.9)

The commutativity of the bottom hexagon diagram follows directly from Proposi-

tion 4.3.4.

We can utilise the aformentioned G-coalgebra structure on PExp/≡b to induce

a corresponding G-coalgebra structure on the coarser quotient PExp/≡.

Lemma 4.4.14. There exists a unique G-coalgebra structure d : PExp/≡ →
GPExp/≡ such that the following diagram commutes:

PExp PExp/≡b PExp/≡

DFPExp DFPExp/≡b

GDPExp/≡b

GPExp/≡b GPExp/≡

[−]≡b

∂

[−]≡

[∂]≡b

d

DF [−]≡b
γPExp/≡b

Gα≡b

G[−]≡

The above lemma encapsulates the key step of the soundness proof. To establish

the existence of G-coalgebra structure on PExp/≡, we will rely on diagonal fill-in

4.4. Soundness 185

property [Gum00, Lemma 3.17] to show the existence of the G-coalgebra structure on

PExp/≡. Consequently, it suffices to demonstrate for all e, f ∈ PExp the following:

e ≡ f =⇒ G[−]≡ ◦ c(e) = G[−]≡ ◦ c(f) (4.4)

We begin by demonstrating that the map appearing in the equation on the right-hand

side of the implication above can be expressed explicitly.

Lemma 4.4.15. For all o ∈ [0,1] and indexed collections {pi}i∈I , {ai}i∈I , and

{ei}i∈I , such that pi ∈ [0,1], ai ∈ A and ei ∈ PExp for all i ∈ I and ∑i∈I pi ≤ 1−o,

we have that:

(G[−]≡ ◦ c)

[o ·1⊕

(⊕
i∈I

pi ·ai ; ei

)]
≡b

=

〈
o,λa.

[⊕
ai=a

pi · ei

]〉

Proof. We first observe the following:

c = G[−]≡ ◦Gα≡b ◦ γPExp/≡b
◦ [∂]≡b ◦ [−]≡b (Def. of c)

= Gα≡ ◦GD[−]≡ ◦ γPExp/≡b
◦ [∂]≡b ◦ [−]≡b (Lemma 4.4.12)

= Gα≡ ◦GD[−]≡ ◦ γPExp/≡b
◦DF [−]≡b ◦∂

([−]≡b is a DF-coalgebra homomorphism)

= Gα≡ ◦GD[−]≡ ◦GD[−]≡b ◦ γPExp ◦∂ (Proposition 4.3.3)

= Gα≡ ◦GD[−]◦ γPExp ◦∂ (Definition of [−])

= Gα≡ ◦ γPExp/≡ ◦DF [−]◦∂ (Proposition 4.3.3)

Using the above reasoning, we can obtain the following:

Gα≡ ◦ γPExp/≡ ◦DF [−]◦∂

(
o ·1⊕

(⊕
i∈I

pi ·ai ; ei

))

= Gα≡ ◦ γPExp/≡ ◦DF [−]

(
oδ✓+

(
∑
i∈I

piδ(ai,ei)

))
(Definition 4.3.6)

4.4. Soundness 186

= Gα≡ ◦ γPExp/≡

(
oδ✓+

(
∑
i∈I

piδ(ai,[ei])

))

= Gα≡

〈
o,λa. ∑

ai=a
piδ[ei]

〉
(Def. of γ)

=

〈
o,λa.

[⊕
ai=a

pi · e

]〉
(Theorem 4.2.6)

This establishes the desired result.

Since the proof of Lemma 4.4.14 requires passing through the quotient

PExp/≡b, which identifies the expressions modulo the axioms of the finer rela-

tion ≡b, remains only to verify the soundness of axioms (S0) and (D2) present in the

finer relation ≡.

Before proceeding, we first show that (S0) and (D2) can be reformulated in

a simpler yet equally expressive form, which simplifies checking their soundness.

Define the relation ≡̇ ⊆PExp×PExp as follows: Let ≡̇ ⊆PExp×PExp be a relation

defined by the following

1. If e ≡b f , then e ≡̇ f

2. a ; (e⊕p f) ≡̇ a ; e⊕p a ; f

3. a ;0 ≡̇ 0

for all e, f ∈ PExp, p ∈ [0,1] and a ∈ A. It can be easily seen that both relations are

equal.

Lemma 4.4.16. For all e, f ∈ PExp, e ≡ f if and only if e ≡̇ f

Proof. We split the proof into two cases.

e ≡̇ f =⇒ e ≡ f

This implication holds immediately. If e ≡b f , then e ≡ f . The remaining rules

stating that a ; (e⊕p f) ≡̇ a ; e⊕p a ; f and a ;0 ≡̇ 0 are special cases of (D2) and (S0)

axioms of ≡ specialised to single letters of the alphabet.

4.4. Soundness 187

e ≡ f =⇒ e ≡̇ f

Axioms of ≡ are either axioms of ≡b, which are already contained in ≡̇ or are

instances of (D2)/(S0) axioms. It suffices to show that latter two are derivable in ≡̇.

First, we show by induction that for all e ∈ PExp, e ;0 ≡̇ 0.

e = 0

e ;0 ≡̇ 0 ;0 (e = 0)

≡̇ 0 (0S)

e = 1

e ;0 ≡̇ 1 ;0 (e = 1)

≡̇ 0 (1S)

e = a

e ;0 ≡̇ a ;0 (e = a)

≡̇ 0 (Def. of ≡̇)

e = f ⊕p g

e ;0 ≡̇ (f ⊕p g) ;0 (e = f ⊕p g)

≡̇ f ;0⊕p g ;0 (D1)

≡̇ 0⊕p 0 (Induction hypothesis)

≡̇ 0 (C1)

e = f ; g

e ;0 ≡̇ (f ; g) ;0 (e = f ; g)

≡̇ f ; (g ;0) (S)

4.4. Soundness 188

≡̇ f ;0 (Induction hypothesis)

≡̇ 0 (Induction hypothesis)

e = f [p]

First, by Corollary 4.4.8 we know that f [p] ≡̇ g[r], such that E(g) = 0.

0 ≡̇ 0⊕r 0 (C1)

≡̇ g ;0⊕r 0 (Induction hypothesis)

Since E(g) = 0, we can use unique fixpoint axiom and obtain:

0 ≡̇ g[r] ;0 (Unique)

≡̇ f [p] ;0 (Corollary 4.4.8)

Secondly, we show by induction that for all e, f ,g ∈ PExp and p ∈ [0,1] we have

that e ; (f ⊕p g) ≡̇ e ; f ⊕p e ; g.

e = 0

e ; (f ⊕p g) ≡̇ 0 ; (f ⊕p g) (e = 0)

≡̇ 0 (0S)

≡̇ 0⊕p 0 (C1)

≡̇ 0 ; f ⊕p 0 ; g (0S)

e = 1

e ; (f ⊕p g) ≡̇ 1 ; (f ⊕p g) (e = 1)

≡̇ f ⊕p g (1S)

≡̇ 1 ; f ⊕p 1 ; g (1S)

4.4. Soundness 189

e = a

e ; (f ⊕p g) ≡̇ a ; (f ⊕p g) (e = a)

≡̇ a ; f ⊕p a ; g (Def. of ≡̇)

e = h⊕r i

e ; (f ⊕p g) ≡̇ (g⊕r h) ; (f ⊕p g) (e = h⊕r i)

≡̇ h ; (f ⊕p g)⊕r i ; (f ⊕p g) (D1)

≡̇ (h ; f ⊕p h ; g)⊕r (i ; f ⊕p i ; g) (Induction hypothesis)

≡̇ (h ; f ⊕r i ; f)⊕p (h ; g⊕r i ; g) (Lemma 4.4.4)

≡̇ (h⊕r i) ; f ⊕p (h⊕r i) ; g (D1)

e = h ; i

e ; (f ⊕p g) ≡̇ (h ; i) ; (f ⊕p g) (e = h ; i)

≡̇ h ; (i ; (f ⊕p g)) (S)

≡̇ h ; (i ; f ⊕p i ; g) (Induction hypothesis)

≡̇ (h ; (i ; f)⊕p h ; (i ; g)) (Induction hypothesis)

≡̇ (h ; i) ; f ⊕p (h ; i) ; g (S)

e = h[r]

First, by Corollary 4.4.8 we know that h[r] ≡̇ i[q], such that E(i) = 0.

Next, we derive the following:

i[q] ; f ⊕p i[q] ; g ≡̇ (i ; i[q]⊕q 1) ; f ⊕p (i ; i[q]⊕q 1) ; g (Unroll)

4.4. Soundness 190

≡̇ (i ; i[q] ; f ⊕q 1 ; f)⊕p (i ; i[q] ; g⊕q 1 ; g) (D1)

≡̇ (i ; i[q] ; f ⊕q f)⊕p (i ; i[q] ; g⊕q g) (0S)

≡̇ (i ; i[q] ; f ⊕p i ; i[q] ; g)⊕q (f ⊕p g) (Lemma 4.4.4)

≡̇ i ; (i[q] ; f ⊕p i[q] ; g)⊕q (f ⊕p g) (Induction hypothesis)

Since E(i) = 0, we can use (Unique) rule to derive

i[q] ; f ⊕p i[q] ; g ≡̇ i[q] ; (f ⊕p g)

Since h[r] ≡̇ i[q], we have that

h[r] ; f ⊕p h[r] ; g ≡̇ h[r] ; (f ⊕p g)

This completes the proof.

We now have all the ingredients to obtain the desired result.

Proof of Lemma 4.4.14. Assume e ≡ f . Because of Lemma 4.4.16, we have that

e ≡̇ f . We will argue that (G[−]≡ ◦ c)([e]≡b) = (G[−]≡ ◦ c)([f]≡b). Because of the

definition of ≡̇ we have only three cases to consider.

e ≡b f

In this case, it follows immediately that [e]≡b = [f]≡β
, which implies Equa-

tion (4.4).

b ; (g⊕p h) ≡̇ b ; g⊕p b ; h

Applying G[−]≡ ◦ c and using Lemma 4.4.15 to both sides immediately gives

(G[−]≡ ◦ c)[b ; (g⊕p h)]≡ = ⟨0,s⟩= (G[−]≡ ◦ c)[b ; g⊕p b ; h]≡

4.4. Soundness 191

where s : A → PExp/≡ is a function given by

s(a) =

[g⊕p h] if a = b

[0] otherwise

b ;0 ≡̇ 0

Once again, we apply Lemma 4.4.15 and obtain the following:

(G[−]≡ ◦ c)[b ;0]≡ = ⟨0,λa. [0]⟩= (G[−]≡ ◦ c)[0]≡

This leads to the desired result.

As a direct corollary of Lemma 4.4.15 and the result established above, we

obtain a concrete characterisation of the map d.

Corollary 4.4.17. For all [o ·1
⊕

i∈I pi ·ai ; ei] ∈ PExp/≡, we have that

d

([
o ·1

⊕
i∈I

pi ·ai ; ei

])
=

〈
o,λa.

[⊕
ai=a

pi · ei

]〉

4.4.5 Step 4: Soundness result

Through a simple finality argument, we can show that the unique G-coalgebra

homomorphism from the determinisation of the Antimirov transition system, can be

viewed as the following composition of homomorphisms, which we have obtained

in the earlier steps.

Lemma 4.4.18. The following diagram commutes:

DPExp DPExp/≡b PExp/≡b PExp/≡ [0,1]A
∗D[−]≡b

beh
(γPExp◦∂)♯

α≡b [−]≡ behd

Proof. By combining Lemma 4.4.2, Lemma 4.4.13, and Lemma 4.4.14, we

conclude that D[−]≡b ◦ α≡b ◦ [−]≡b is a G-coalgebra homomorphism from

4.5. Completeness 192(
DPExp,(γPExp ◦∂)♯

)
to (PExp/≡,d). Composing with a final map behd into

it, we obtain a G-coalgebra homomorphism rom
(
DPExp,(γPExp ◦∂)♯

)
into the final

coalgebra
(
[0,1]A

∗
, t
)

, which, by finality must be equal to beh(γPExp◦∂)♯ .

Since the language-assigning map relies on the homomorphism described above,

we can show the following:

Lemma 4.4.19. The function J−K : PExp→ [0,1]A
∗

assigning each expression to its

semantics satisfies: J−K = behd ◦ [−].

Proof.

J−K = †(γPExp ◦∂)♯ ◦ηPExp (Def. of J−K)

= behd ◦ [−]≡ ◦α≡b ◦D[−]≡b ◦ηPExp (Lemma 4.4.18)

= behd ◦ [−]≡ ◦α≡b ◦ηPExp/≡b
◦ [−]≡b (η is natural)

= behd ◦ [−]≡ ◦ [−]≡b (α≡ is an Eilenberg-Moore algebra)

= behd ◦ [−]

The last equality in the derivation above follows from the definition of [−].

We can now immediately conclude that provably equivalent expressions are

mapped to the same probabilistic languages, thus establishing soundness.

Theorem 4.4.20 (Soundness). For all e, f ∈ PExp, if e ≡ f then JeK = J f K.

4.5 Completeness
The completeness proof will follow a pattern of earlier work of Jacobs [Jac06],

Silva [Sil10] and Milius [Mil10] and show that the coalgebra structure on the

PExp/≡ is isomorphic to the subcoalgebra of an appropriate final coalgebra, ie.

the unique final coalgebra homomorphism from PExp/≡ is injective. The intuition

comes from the coalgebraic modelling of deterministic automata studied in the work

of Jacobs [Jac06]. In such a case, the final coalgebra is simply the automaton

4.5. Completeness 193

structure on the set of all formal languages, while the final homomorphism is given

by the map taking a state of the automaton to a language it denotes. Restricting the

attention to finite-state automata only yields regular languages. The set of regular

languages can be equipped with an automaton structure, in a way that inclusion map

into the final automaton on the set of all formal languages becomes a homomorphism.

In such a case, Kozen’s completeness proof of Kleene Algebra [Koz94] can be seen

as showing isomorphism of the automaton of regular languages and the automaton

structure on the regular expressions modulo KA axioms.

Unfortunately, we cannot immediately rely on the identical pattern. Our se-

mantics relies on determinising GPTS, but unfortunately, determinising a finite-state

GPTS can yield G-coalgebras with infinite carriers. For example, determinising a

single-state GPTS would yield a G-coalgebra over the set of subdistributions over

a singleton set, which is infinite. Luckily, all G-coalgebras we work with have

additional algebraic structure. This algebraic structure will allow us to rely on the

generalisations of the concept of finiteness beyond the category of sets, offered by

the theory of locally finite presentable categories [AR94]. Being equipped with those

abstract lenses, one can immediately see that the earlier mentioned infinite set of all

subdistributions over a singleton set is also a free PCA generated by a single element

and thus finitely presentable [SW15].

In particular, we will work with a rational fixpoint; a generalisation of the idea

of subcoalgebra of regular languages to coalgebras for finitary functors B : A→A

over locally finitely presentable categories. The rational fixpoint provides a semantic

domain for the behaviour of coalgebras whose carriers are finitely presentable in

the same way as regular languages provide a semantic domain for all finite-state

deterministic automata. The completeness proof will essentially rely on establishing

that the coalgebra structure on PExp/≡ satisfies the universal property of the rational

fixpoint.

We now move on to showing completeness through the steps described in

Section 4.3.3.

4.5. Completeness 194

4.5.1 Step 1: Algebra structure

Throughout the soundness proof, we have shown that the semantics of any expres-

sion e ∈ PExp can also be seen as the language of the state corresponding to the

equivalence class [e] in the deterministic transition system (G-coalgebra) defined on

the set PExp/≡. The completeness proof will rely on establishing that this coalgebra

possesses a universal property of rational fixpoint, that will imply completeness. A

first step in arguing so is observing that the coalgebra (PExp/≡,d) interacts well

with an algebra structure on PExp/≡ defined in Lemma 4.4.12. Thanks to the fact

that we can lift G : Set→ Set to G : PCA→ PCA, the set GPExp/≡ also carries the

algebra structure. In such a setting, the transition function d : PExp/≡→GPExp/≡

becomes an algebra homomorphism.

Lemma 4.5.1. d : PExp/≡→ GPExp/≡ is a PCA homomorphism

d : (PExp/≡,α≡)→G(PExp/≡,α≡)

Proof. We need to show that d (⊞i∈I pi · [ei]) =⊞i∈I pi ·d([ei]). As a consequence

of Theorem 4.4.3, we can safely assume that ei ≡ qi ·1⊕
⊕

j∈J ri
j ·ai

j ; ei
j for all i ∈ I

and hence d([ei]) =
〈

qi,λa.
[⊕

a=ai
j
ri

j · ei
j

]〉
. We show the following:

d

(
⊞
i∈I

pi · [ei]

)
= d

([⊕
i∈I

pi · ei

])
(Lemma 4.4.12)

= d

([⊕
i∈I

pi ·

(
qi ·1⊕

⊕
j∈J

ri
j ·ai

j ; ei
j

)])
(Def. of ei)

= d

⊕
i∈I

piqi ·1⊕
⊕

(i, j)∈I×J

piri
j ·ai

j ; ei
j

 (Lemma 4.2.4)

=

〈
∑
i∈I

piqi,λa.

⊕
a=ai

j

piri
j · ei

j

〉 (Corollary 4.4.17)

=

〈
∑
i∈I

piqi,λa.

⊕
i∈I

pi ·

⊕
a=ai

j

ri
j · ei

j

〉 (Lemma 4.2.4)

4.5. Completeness 195

=

〈
∑
i∈I

piqi,λa.⊞
i∈I

pi ·

⊕
a=ai

j

ri
j · ei

j

〉 (Lemma 4.4.12)

=⊞
i∈I

pi

〈
qi,λa.

⊕
a=ai

j

ri
j · ei

j

〉 (Def. of G)

=⊞
i∈I

pi ·d(ei) (Corollary 4.4.17)

This yields the desired result.

As a consequence of the result showed above, we have that

(
PExp/≡,d : (PExp/≡,α≡)→G (PExp/≡,α≡)

)
is a G-coalgebra.

4.5.2 Step 2: Proper functors

It can be easily noticed that the generalised determinisation of coalgebras with

finite carriers corresponds to algebraically structured coalgebras of a particular, well-

behaved kind. Namely, their carriers are algebras which are free finitely generated.

We write CoalgfreeB for the subcategory of CoalgB consisting only of B-coalgebras

with free finitely generated carriers. The recent work of Milius [Mil18] characterised

proper functors, for which in order to establish that some B-coalgebra is isomorphic

to the rational fixpoint it will suffice to look at coalgebras with free finitely generated

carriers.

We start by recalling the following definition:

Definition 4.5.2 ([Mil18, Remark 5.1]). A zig-zag in a category C is a diagram of

the form

Z0 Z2 . . . Zn

Z1 Z3 Zn−1

f0 f1 f2 f3 fn−2 fn−1

For a concrete category C (equipped with a faithful forgetful functor U : C → Set), we

4.5. Completeness 196

say that a zig-zag relates z0 ∈UZ0 and zn ∈UZn if there exist zi ∈UZi, i= 1, . . . ,n−1

such that U fi(zi) = zi+1 for i even and U fi(zi+1) = zi for i odd.

With the above definition in hand, we can recall the definition of the proper

functor:

Definition 4.5.3 ([Mil18, Definition 5.2]). Let T = (T,µ,η) be a finitary monad

over Set and let B : SetT → SetT be a functor that preserves surjective T -algebra

homomorphisms. We call B proper if for every pair (T B1,c1) and (T B2,c2) of B-

coalgebras with B1 and B2 finite sets and each two elements b1 ∈ B1 and b2 ∈ B2 with

ηB1(b1) ∼b ηB2(b2), there exists a zig-zag in CoalgB, which relates ηB1(b1) and

ηB2(b2), and whose nodes Zi are B are coalgebras with free and finitely generated

carrier.

Proper functors satisfy the following property, which is crucial for the complete-

ness argument presented in this chapter.

Theorem 4.5.4 ([Mil18, Corollary 5.9]). Let B : SetT → SetT be a proper functor.

Then a B-coalgebra (R,r) is isomorphic to the rational fixpoint if (R,r) is locally

finitely presentable and for every B-coalgebra (T X ,c) in CoalgfreeB there exists a

unique homomorphism from T X to R.

As much as G : PCA → PCA is known to be proper [SW18], not every G-

coalgebra with a free finitely generated carrier corresponds to a determinisation of

some (converted) GPTS. This is simply too general, as some G-coalgebras with

free finitely generated carriers might be determinisations of RPTS not correspond-

ing to any GPTS. To circumvent that, instead of looking at all coalgebras for the

functor G : PCA → PCA, we can restrict our attention in a way that will exclude

determinisations of RPTS not corresponding to any GPTS. To do so, define a functor

Ĝ : PCA→ PCA. Given a positive convex algebra X defined on a set X , we define:

ĜX={(o, f) ∈ [0,1]×XA | ∀a ∈ A.∃pi
a ∈ [0,1],xi

a ∈ X .

f (a) =⊞
i∈I

pi
axi

a and ∑
a∈A

∑
i∈I

pi
a ≤ 1−o}

4.5. Completeness 197

The PCA structure on ĜX, as well as the action of Ĝ on arrows is defined to be the

same as in the case of G. It can be immediately observed that Ĝ is a subfunctor of G.

Remark 4.5.5. Given that G preserves non-empty monomorphisms (Lemma 4.2.9)

and Ĝ coincides with G on arrows, it follows that Ĝ also preserves non-empty

monomorphisms.

Whenever the algebra structure is clear from the context, we write ĜX for ĜX.

Most importantly for us, thanks to the result of Sokolova and Woracek, we know that

Ĝ is also proper [SW18]. We can now see the following correspondence:

Lemma 4.5.6. DF -coalgebras with finite carriers are in one-to-one correspondence

with Ĝ-coalgebras with free finitely generated carriers.

β : X →DFX in Set

ξ : (DX ,µX)→ Ĝ(DX ,µX) in PCA
===============================

In other words, every coalgebra structure map ξ : (DX ,µX)→ Ĝ(DX ,µX) is given

by ξ = (γX ◦β)♯ for some unique β : X →DFX.

Proof. Since X is finite, we can assume that X = {si}i∈I for some finite set I. Be-

cause of the free-forgetful adjunction between PCA and Set, we have the following

correspondence of maps:

ζ : X →GDX on Set

ξ : (DX ,µX)→G(DX ,µX) on PCA
================================

First, we show that for all x ∈ X , we have that γX ◦β (x)∈ ĜDX . Pick an arbitrary x ∈

X . For every a∈A define pa
i = β (x)(a,si). This implies that (π2◦γX ◦β)(x)(a)(xi)=

pa
i if xi ∈ S. Therefore, we have

(γX ◦β)(x) =

〈
β (x)(✓),λa.∑

i∈I
pa

i δxa
i

〉

4.5. Completeness 198

Using the isomorphism between PCA and SetD, we can reformulate the above as

(γX ◦β)(x) =

〈
β (x)(✓),λa.⊞

i∈I

pa
i · xa

i

〉

where ⊞ denotes the structure map of PCA isomorphic to (DX ,µX), the free

Eilenberg-Moore algebra generated by X . From the well-definedness of β (x) it

follows that:

∑
a∈A

∑
i∈I

pa
i ≤ 1−β (x)(✓)

which establishes that γX ◦β (x) ∈ ĜDX .

For the converse, observe that every arrow ξ : (DX ,µX) → ĜD(DX ,µX) in

PCA arises as an extension of ζ : X →UĜ(DX ,µX). Furthermore, any such ζ can

be expressed as composition γX ◦β , where β (x)(✓) = π1 ◦ζ (x) and β (x)(a,x′) =

π2 ◦ ζ (x)(a)(x′). The fact that ζ (x) ∈ ĜDX ensures that β (x) is a well-defined

subdistribution. Finally, since γX is injective (Proposition 4.3.3), β is unique.

Next, we argue that the coalgebra structure on PExp/≡, which is at the centre

of attention of the completeness proof, happens also to be a Ĝ-coalgebra.

Lemma 4.5.7. ((PExp/≡,α≡),d) is a Ĝ-coalgebra.

Before we prove the lemma above, we establish two intermediate results. First,

we show the lemma allowing to establish that the coalgebra structure on PExp/≡

defined in Section 4.4.4 is also a Ĝ-coalgebra.

Lemma 4.5.8. Let (X ,α) be a PCA. Then for every ζ ∈ DFX we have that Gα ◦

γX(ζ) ∈ Ĝ(X ,α).

Proof. Let ζ ∈DFX . Recall that γX(ζ) = ⟨ζ (✓),λa.λx.ζ (a,x)⟩. Let S = {x ∈ X |

∃a ∈ A.(a,x) ∈ supp(ζ)}. Without the loss of generality, we can assume that S =

{si}i∈I for some finite set I. For every a ∈ A define pa
i = ζ (a,si). This implies that

(π2 ◦ γX)(ζ)(a)(xi) = pa
i if xi ∈ S or (π2 ◦ γX)(ζ)(a)(xi) = 0 otherwise. Therefore,

4.5. Completeness 199

we have the following:

(Gα ◦ γX)(ζ) =

〈
ζ (✓),λa.⊞

i∈I

pa
i · si

〉

Finally, since ζ ∈ DFX we have that ∑a∈A ∑i∈I pa
i ≤ 1− ζ (✓) which proves that

indeed the image of Gα ◦ γX belongs to Ĝ(X ,α).

Next, we show the following preservation result.

Lemma 4.5.9. Ĝ-coalgebras are closed under surjective G-coalgebra homomor-

phisms.

Proof. Let ((X ,αX),βX) be a Ĝ-coalgebra, ((Y,αY),βY) be a G-coalgebra and let

e : X → Y be a surjective G-homomorphism e : ((X ,αX),βX)→ ((Y,αY),βY). We

need to show that for all y ∈ Y , βY (y) ∈ UĜ(Y,αY). Pick an arbitrary y ∈ Y . Since

e : X → Y is surjective, we know that y = e(x). Let βX(x) = ⟨o, f ⟩. We have that:

βY (y) = (βY ◦ e)(x) = (Ge◦βX)(x) = ⟨o,e◦ f ⟩

Since βX(x) ∈ ĜX , we have that for all a ∈ A there exist pi
a ∈ [0,1] and xi

a ∈ X such

that f (a) =⊞i∈I pi
axi

a and ∑a ∑i∈I pi
a ≤ 1− o. Let e(xi

a) = yi
a. For all a ∈ A, we

have that:

(e◦ f)(a) = e

(
⊞
i∈I

pi
a · xi

a

)
=⊞

i∈I

pi
a · e(xi

a) =⊞
i∈I

pi
a · yi

a

Therefore, for all a ∈ A there exist pi
a ∈ [0,1] and yi

a ∈ X such that f (a) =⊞i∈I pi
ayi

a

and ∑a ∑i∈I pi
a ≤ 1−o, which completes the proof.

We are ready to prove the desired result.

Proof of Lemma 4.5.7. Recall that ((PExp/≡,α≡),d) is a quotient coalgebra of

(PExp/≡b,Gα≡b ◦ γPExp/≡b
◦ [∂]≡b)

4.5. Completeness 200

which by Lemma 4.5.8 is a Ĝ-coalgebra. Because of Lemma 4.5.9 so is (PExp/≡,d).

This completes the proof.

Moreover, when viewed as a Ĝ-coalgebra, we can show that ((PExp/≡,α≡),d)

forms a fixpoint of the functor, i.e. d is an isomorphism. This technical result will

play a crucial role in the completeness proof. Specifically, it enables us to establish a

correspondence between:

• Ĝ-coalgebra homomorphisms from Ĝ-coalgebras with free finitely generated

carriers into ((PExp/≡,α≡),d), and

• syntactic solutions to fixpoint systems of equations (that will be formally

introduced in Section 4.5.3) describing finite-state GPTS.

Lemma 4.5.10. d : (PExp,α≡)→ Ĝ(PExp,α≡) is an isomorphism

Proof. We construct a map d−1 : Ĝ(PExp/≡,α≡)→ (PExp/≡,α≡) and show that

d ◦ d−1 = id = d−1 ◦ d. Given that the forgetful functor U : PCA → Set is con-

servative (reflects isomorphisms), this will immediately imply that d−1 is a PCA

homomorphism. Given ⟨o, f ⟩ ∈ ĜX , such that for any a ∈ A, and f (a) =⊞i∈I pi
a[e

i
a]

for some pi
a ∈ [0,1], and [ei

a] ∈ PExp/≡, we define the following:

d−1⟨o, f ⟩=

o ·1⊕

 ⊕
(a,i)∈A×I

pi
a ·a ; ei

a


The expression inside the brackets is well defined as ∑a ∑i∈I pi

a ≤ 1−o. To show

that d−1 is well-defined, assume that we have g : A → PExp/≡, such that f (a) =

g(a) =⊞i∈I qi
a[h

i
a] for all a ∈ A and some qi

a ∈ [0,1] and [hi
a] ∈ PExp/≡. To begin,

due to the definition of the PCA structure on PExp/≡ (Lemma 4.4.12), we have that:

[⊕
i∈I

pi
a · ei

a

]
=⊞

i∈I

pi
a[e

i
a] =⊞

i∈I

qi
a[h

i
a] =

[⊕
i∈I

qi
a ·hi

a

]

4.5. Completeness 201

Using the above, we can show:

d−1⟨o, f ⟩=

o ·1⊕

 ⊕
(a,i)∈A×I

pi
a ·a ; ei

a


=

o ·1⊕

 ⊕
(a,i)∈A×I

qi
a ·a ; hi

a

 (≡ is a congruence)

= d−1⟨o,g⟩

This establishes the well-definedness of d−1. To verify one side of the isomorphism,

consider the following:

(d ◦d−1)(⟨o, f ⟩) = d

o ·1⊕

 ⊕
(a,i)∈A×I

pi
a ·a ; ei

a

 (Def. of d−1)

=

〈
o,λa.

[⊕
i∈I

pi
a · ei

a

]〉
(Corollary 4.4.17)

=

〈
o,⊞

i∈I

pi
a · [ei

a]

〉
(Lemma 4.4.12)

= ⟨o, f ⟩

For the converse direction, let[e] ∈ PExp/≡. By Theorem 4.4.3, we have that:

e ≡ o ·1⊕

 ⊕
(a,i)∈A×I

pi
a ·a ; ei

a


Next, note that:

(d−1 ◦d)([e]) = d−1

〈
o,λa.

[⊕
i∈I

pi
a · ei

a

]〉
(Corollary 4.4.17)

= d−1

〈
o,λa.⊞

i∈I

pi
a ·
[
ei

a
]〉

(Lemma 4.4.12)

=

o ·1⊕

 ⊕
(a,i)∈A×I

pi
a ·a ; ei

a

 (Def. of d−1)

4.5. Completeness 202

= d([e])

4.5.3 Step 3: Systems of equations

In order to establish that PExp/≡ is isomorphic to the rational fixpoint (which is the

property that will eventually imply completeness), we will show the satisfaction of

conditions of Theorem 4.5.4. One of the required things we need to show is that the

determinisation of an arbitrary finite-state GPTS admits a unique homomorphism

to the coalgebra carried by PExp/≡. In other words, we need to convert states of

an arbitrary finite-state GPTS to language equivalent expressions in a way which is

unique up to the axioms of ≡. This can be thought of as an abstract reformulation of

one direction of the Kleene theorem to the case of PRE. To make that possible, we

give a construction inspired by Brzozowski’s equation solving method [Brz64] of

converting a DFA to the corresponding regular expression. We start by stating the

necessary definitions.

Definition 4.5.11. A left-affine system on a finite non-empty set Q of unknowns is a

quadruple

S = (M : Q×Q → PExp, p : Q×Q → [0,1],b : Q → PExp,r : Q → [0,1])

such that for all q,q′ ∈ Q, ∑q′∈Q pq,q′ + rq = 1 and E(Mq,q′) = 0.

Example 4.5.12. Consider the set of unknowns Q = {q0,q1}. We define a left-affine

system S = (M, p,b,r) on Q with the following components:

• The function M : Q×Q → PExp is defined by:

M q0 q1

q0 0 a

q1 0 a

4.5. Completeness 203

• The function p : Q×Q → [0,1] is given by:

p q0 q1

q0 0 1

q1 0 1
4

• Functions b : Q → PExp and r : Q → [0,1] are defined as:

bx =

0 if x = q0

1 if x = q1

and r =

0 if x = q0

3
4 if x = q1

Definition 4.5.13. Let ≡c ⊆ PExp×PExp be a congruence relation. A map h : Q →

PExp is ≡c-solution if for all q ∈ Q we have that:

h(q)≡c

⊕
q′∈Q

pq,q′ ·Mq,q′ ; h(q′)

⊕ rq ·bq

Example 4.5.14. A ≡c-solution h : {q0,q1} → PExp to the system described in

Example 4.5.12, would need to satisfy the following:

h(q0)≡c a ; h(q1) h(q1)≡c a ; h(q1)⊕ 1
4
1

Definition 4.5.15. A system representing the finite-state DF-coalgebra (X ,β) is

given by S(β) = ⟨Mβ , pβ ,bβ ,rβ ⟩ where for all x,x′ ∈ X we have:

pβ

x,x′ = ∑
a′∈A

β (x)(a′,x′) rβ
x = 1− ∑

(a′,x′)∈supp(β (x))
β (x)(a′,x′)

Mβ

x,x′ =


⊕

a∈A
β (x)(a,x′)

pβ

x,x′
·a if pβ

x,x′ ̸= 0

0 otherwise
bβ

x =


β (x)(✓)

rβ
x

·1 if rβ
x ̸= 0

0 otherwise

Example 4.5.16. The left-affine system described in Example 4.5.12 corresponds to

the DF-coalgebra shown on the left-hand side of Example 4.1.2.

4.5. Completeness 204

The original Brzozowski’s equation-solving method is purely semantic, as it

crucially relies on Arden’s rule [Ard61] by providing solutions up to the language

equivalence to the systems of equations. As much as it would be enough for an

analogue of the one direction of Kleene’s theorem, for the purposes of our complete-

ness argument, we need to argue something stronger. Namely, we show that we

can uniquely solve each system purely through the means of syntactic manipulation

using the axioms of ≡. This is where the main complexity of the completeness proof

is located. We show this property, by re-adapting the key result of Salomaa [Sal66]

to the systems of equations of our interest.

The proof of the uniqueness of solutions theorem will proceed by induction

on the size of the systems of equations. We first show that systems with only one

unknown can be solved via the (Unique) fixpoint axiom. Systems of the size n+1 can

be reduced to systems of size n, by solving for one of the unknowns and substituting

the obtained equation with n unknowns to the remaining n equations. We note that

this reduction step is highly reliant on axioms (D2) and (S0). In particular, we

will rely on the following property to generalise left distributivity to arbitrary n-ary

convex sums.

Lemma 4.5.17. Let f ∈ PExp, I be a finite index set and let {pi}i∈I and {ei}i∈I be

indexed collections of probabilities and expressions, respectively. Then:(⊕
i∈I

pi · ei

)
; f ≡b

⊕
i∈I

pi · ei ; f

Proof. By induction. If I = /0, then:

f ;

(⊕
i∈I

pi · ei

)
≡ f ; 0

≡ 0 (S0)

≡
⊕
i∈I

pi · f ; ei (I = /0)

4.5. Completeness 205

If there exists j ∈ I such that p j = 1, then:

f ;

(⊕
i∈I

pi · ei

)
≡b f ; e j

≡

(⊕
i∈I

pi · f ; ei

)

Finally, for the induction step, we obtain the following:

f ;

(⊕
i∈I

pi · ei

)
≡ f ;

e j ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· ei


≡ f ; e j ⊕p j f ;

 ⊕
i∈I\{ j}

pi

1− p j
· ei

 (D1)

≡ f ; e j ⊕p j

 ⊕
i∈I\{ j}

pi

1− p j
· f ; ei

 (Induction hypothesis)

≡

(⊕
i∈I

pi · f ; ei

)

Before proceeding, we demonstrate how to solve a system of equations with

two unknowns.

Example 4.5.18. Consider the transition system from the left-hand side of Exam-

ple 4.1.2. Recall from Example 4.5.14, that a map h : {q0,q1} → PExp is an ≡-

solution to the system associated with that transition system, if and only if:

h(q0)≡ a ; h(q1) h(q1)≡ a ; h(q1)⊕ 1
4
1

Since E(a) = 0, we can apply the (Unique) axiom and e ;1≡ e to the equation on

the right to deduce that h(q1) ≡ a[
1
4]. Substituting it into the left equation yields

h(q0)≡ a ; a[
1
4].

Finally, we proceed to the central result.

Theorem 4.5.19. Every left-affine system of equations has a unique solution modulo

the equivalence relation ≡.

4.5. Completeness 206

Proof. We will write M= (M, p,b,r) for an arbitrary left-affine system of equations

on some finite set Q. Since Q is finite and non-empty, we can safely assume that

Q = {q1, . . .qn} for some positive n ∈ N. We proceed by induction on n.

Base case If Q = {q1}, then we set h(q1) = M1,1
[p1,1] ; b1. To see that it is indeed a

≡-solution, observe the following:

h(q1) = M1,1
[p1,1] ; b1 (Def. of h)

≡
(

M1,1 ; M1,1
[p1,1]⊕p1,1 1

)
; b1 (Unroll)

≡ M1,1 ; M1,1
[p1,1] ; b1 ⊕p1,1 b1 (D1)

≡ M1,1 ; h(q1)⊕p1,1 b1 (Def. of h)

≡ p1,1 · (M1,1 ; h(q1))⊕ (1− p1,1) ·b1

≡ p1,1 · (M1,1 ; h(q1))⊕ r1 ·b1 (r1 = 1− p1,1)

Given an another ≡-solution g : Q → PExp, we have that:

g(q1)≡ p1,1 · (M1,1 ; g(q1))⊕ r1 ·b1

≡ p1,1 · (M1,1 ; g(q1))⊕ (1− p1,1) ·b1 (r1 = 1− p1,1)

≡ M1,1 ; g(q1)⊕p1,1 b1

≡ M1,1
[p1,1] ; b1 ((Unique) and E(M1,1) = 0)

≡ h(q1)

Induction step Assume that all systems of the size n admit a unique ≡-solution. We

begin by demonstrating that the problem of finding a ≡-solution for a system with

n+1 unknowns can be reduced to finding ≡-solution to the system with n unknowns.

Let Q = {q1, . . . ,qn+1}. For h : Q → PExp to be a ≡-solution to the system M of

size n+1, it must satisfy the following equivalence:

h(qn+1)≡

(
n+1⊕
i=1

pn+1,i ·Mn+1,i ; h(qi)

)
⊕ rn+1 ·bn+1

4.5. Completeness 207

We can expand the (n+1)-ary sum in the equation above using Lemma 4.4.5 and

obtain the following:

h(qn+1)≡ Mn+1,n+1 ; h(qn+1)⊕pn+1,n+1((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; h(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

Since E(Mn+1,n+1) = 0, we can apply the (Unique) axiom to derive the following:

h(qn+1)≡ M[pn+1,n+1]
n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; h(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

Observe that the above expression depends only on h(q1), . . .h(qn).). We now

substitute the equation for h(qn+1) into the equations for h(q1), . . . ,h(qn). Before

proceeding, recall that for any q j, such that j ≤ n, we have:

h(q j)≡ p j,n+1 ·M j,n+1 ; h(qn+1)⊕

(
n⊕

i=1

p j,i ·M j,i ; h(qi)

)
⊕ r j ·b j

Substituting h(qn+1) now yields the following:

h(q j)≡

(
n⊕

i=1

p j,i ·M j,i ; h(qi)

)
⊕ r j ·b j

⊕ p j,n+1 ·M j,n+1 ; M
[pn+1,n+1]

n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; h(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

Applying Lemma 4.5.17, we can rewrite the above as:

h(q j)≡

(
n⊕

i=1

p j,i ·M j,i ; h(qi)

)
⊕ r j ·b j

⊕

(
n⊕

i=1

p j,n+1 pn+1,i

1− pn+1,n+1
·M j,n+1 ; M[pn+1,n+1]

n+1,n+1 ; Mn+1,i ; h(qi)

)
⊕

p j,n+1rn+1

1− pn+1,n+1
·
(

M j,n+1 ; M[pn+1,n+1]
n+1,n+1 ; bn+1

)

4.5. Completeness 208

To simplify the expression above, we introduce the following shorthand notation fo

i, j ∈ {1, . . . ,n}:

s j,i = p j,i +
p j,n+1 pn+1,i

1− pn+1,n+1

N j,i =
p j,i

s j,i
·M j,i ⊕

p j,n+1 pn+1,i

s j,i(1− pn+1,n+1)
·
(

M j,n+1 ; M[pn+1,n+1]
n+1,n+1 ; Mn+1,i

)

t j = r j +
p j,n+1rn+1

pn+1,n+1

c j =
r j

t j
·b j ⊕

p j,n+1rn+1

t j(1− pn+1,n+1)
·M j,n+1 ; M[pn+1,n+1]

n+1,n+1 ; bn+1

Note that E(N j,i) = 0 for all i, j ∈ {1, . . . ,n}. Now, applying Lemma 4.2.5 and

Lemma 4.4.7, we obtain the following for all j ∈ {1, . . . ,n}:

h(q j) =

(
n⊕

i=1

s j,i ·N j,i ; h(qi)

)
⊕ t j · c j

In other words, the restriction of h to {q1, . . . ,qn} must be a ≡-solution to the

left-affine system T = (N,s,c, t), which, by the induction hypothesis, has a unique

solution. This solution can be extended to the entire system S , by defining h(qn) as

follows:

h(qn+1)≡ M[pn+1,n+1]
n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; h(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

By applying the (Unroll) axiom and reversing the axiomatic manipulations outlined

above, it can be shown that this is indeed a ≡-solution to S.

To prove the ≡-uniqueness of h, assume that g : Q → PExp, is another ≡-

solution to the system S. Because of (Unique) axiom, we have that:

g(qn+1)≡ M[pn+1,n+1]
n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; g(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

4.5. Completeness 209

Substituting this into the equations for h(q1), . . . ,h(qn) and following the same steps

as before leads to the requirement that, for all j ∈ {1, . . . ,n}, we have:

g(q j) =

(
n⊕

i=1

s j,i ·N j,i ; g(qi)

)
⊕ t j · c j

By the induction hypothesis, the left-affine system of equations T admits a unique ≡-

solution. Therefore for all j ∈ {1, . . . ,n}, we have that g(q j)≡ h(q j). Consequently,

we have that:

g(qn+1)≡ M[pn+1,n+1]
n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; g(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)

≡ M[pn+1,n+1]
n+1,n+1 ;

((
n⊕

i=1

pn+1,i

1− pn+1,n+1
·Mn+1,i ; h(qi)

)
⊕ rn+1

1− pn+1,n+1
·bn+1

)
≡ h(qn+1)

This completes the proof.

4.5.4 Step 4: Correspondence of solutions and homomorphisms

We are not done yet, as in the last step we only proved properties of systems of

equations and their solutions, while our main interest is in appropriate Ĝ-coalgebras

and their homomorphisms. As desired, it turns out that ≡-solutions are in one-to-

one correspondence with Ĝ-coalgebra homomorphisms from determinisations of

(converted) finite state DF-coalgebras to the coalgebra structure on PExp/≡.

Lemma 4.5.20. For a finite set X, we have the following one-to-one correspondence:

Ĝ-coalgebra homomorphisms m : ((DX ,µX),(γX ◦β)♯)→ ((PExp/≡,α≡),d)

≡-solutions h : X → PExp to a system S(β) associated with DF-coalgebra (X ,β)
===

Before diving into the main argument, we establish the following helper lemma,

which provides a concrete characterization of ≡-solutions to systems associated with

DF-coalgebras.

4.5. Completeness 210

Lemma 4.5.21. Let (X ,β) be a finite-state DF-coalgebra. A map h : X → PExp is

a ≡-solution to the system S(β) if and only if for all x ∈ X, we have that:

h(x)≡

 ⊕
(a,x′)∈A×X

β (x)(a,x′) ·a ; h(x′)

⊕β (x)(✓) ·1

Proof. Fix an arbitrary x ∈ X . Recall that, if pβ

x,x′ = 0, then Mβ

x,x′ = 0≡
⊕

a∈A 0 ·a.

Because of that, we can safely assume that Mβ

x,x′ can be always written out in the

following form:

Mβ

x,x′ ≡
⊕
a∈A

sa
x,x′ ·a

where sa
x,x′ ∈ [0,1]. By definition of ≡-solution, we the following:

h(x)≡

(⊕
x′∈X

pβ

x,x′ ·M
β

x,x′ ; h(x′)

)
⊕ rβ

x ·bβ
x

≡

(⊕
x′∈X

pβ

x,x′ ·

(⊕
a∈A

sa
x,x′ ·a

)
; h(x′)

)
⊕ rβ

x ·bβ
x

≡

(⊕
x′∈X

pβ

x,x′ ·

(⊕
a∈A

sa
x,x′ ·a ; h(x′)

))
⊕ rβ

x ·bβ
x (Lemma 4.4.7)

≡

 ⊕
(a,x′)∈A×X

pβ

x,x′s
a
x,x′ ·a ; h(x′)

⊕β (x)(✓) ·1 (Lemma 4.2.4)

≡

 ⊕
(a,x′)∈A×X

β (x)(a,x′) ·a ; h(x′)

⊕β (x)(✓) ·1

The last step of the proof relies on the observation that for both cases of how Mβ

x,x′

is defined (Definition 4.5.15), we have that pβ

x,x′s
a
x,x′ = β (x)(a,x′). Similarly, in the

transition between the third and fourth lines, we apply the following identity:

rβ
x ·bβ

x ≡ β (x)(✓) ·1,

which holds for both cases in the definition of bβ
x (see Definition 4.5.15). The neces-

sity of distinguishing these two cases for Mβ

x,x′ and bβ
x arises from their definitions:

4.5. Completeness 211

trivial corner cases must be treated separately to avoid division by zero.

We are now ready to prove the main claim.

Proof of Lemma 4.5.20. First, assume that h : X → PExp is a solution to the sys-

tem S(β) associated with DF-coalgebra (X ,β). We show that ([−]◦h)♯ : DX →

PExp/≡ is a Ĝ-coalgebra homomorphism. In other words, we will claim the com-

mutativity of the diagram below.

X

DX PExp/≡

DFX

ĜDX ĜPExp/≡

ηX

([−]◦h)♯

[−]◦h

β

γX

(γX◦β)♯

Ĝ([−]◦h)♯

d

Because of Lemma 4.5.21, we have that for all x ∈ X :

h(x)≡

 ⊕
(a,x′)∈A×X

β (x)(a,x′) ·a ; h(x′)

⊕β (x)(✓) ·1

Let ν ∈DX . The convex extension of the map [−]◦h : X → PExp/≡ is given by the

following:

([−]◦h)♯(ν) =

 ⊕
x∈supp(ν)

ν(x) ·h(x)


Similarly, given β : X →DFX we have that:

(γX ◦β)♯(ν) =

〈
∑

x∈supp(ν)
ν(x)β (x)(✓),λa.λx′. ∑

x∈supp(ν)
ν(x)β (x)(a,x′)

〉

For any distribution ν ∈ DX , we have the following:

d ◦ ([−]◦h)♯(ν)

4.5. Completeness 212

= d

 ⊕
x∈supp(ν)

ν(x) ·

 ⊕
(a,x′)∈A×X

β (x)(a,x′) ·a ; h(x′)

⊕β (x)(✓) ·1


= d

 ⊕
(a,x′)∈A×X

(
∑

x∈supp(ν)
ν(x)β (x)(a,x′).

)
·a ; h(x′)


⊕

(
∑

x∈supp(ν)
ν(x)β (x)(✓)

)
·1

]
(Barycenter axiom)

=

〈
∑

x∈supp(ν)
ν(x)β (x)(✓),λa.

[⊕
x′∈X

(
∑

x∈supp(ν(x))
ν(x)β (x)(a,x′)

)
·h(x′)

]〉

Now, consider Ĝ([−]◦h)♯ ◦ (γX ◦β)♯(ν). We have the following:

Ĝ([−]◦h)♯ ◦ (γX ◦β)♯(ν)

= Ĝ([−]◦h)♯
〈

∑
x∈supp(ν)

ν(x)β (x)(✓),λa.λx′. ∑
x∈supp(ν)

ν(x)β (x)(a,x′)

〉

=

〈
∑

x∈supp(ν)
ν(x)β (x)(✓),λa.([−]◦h)♯

(
λx′. ∑

x∈supp(ν)
ν(x)β (x)(a,x′)

)〉

=

〈
∑

x∈supp(ν)
ν(x)β (x)(✓),λa.

[⊕
x′∈X

(
∑

x∈supp(ν)
ν(x)β (x)(a,x′)

)
·h(x′)

]〉

Hence, we obtain d ◦ ([−]◦h)♯(ν) = Ĝ([−]◦h)♯ ◦ (γX ◦β)♯, thus demonstrating that

([−]◦h)♯ is indeed a Ĝ-coalgebra homomorphism.

For the converse, let ((DX ,µX),(γX ◦ β)♯) be a Ĝ-coalgebra and let

m : DX → PExp/≡ be a Ĝ-coalgebra homomorphism from ((DX ,µX),(γX ◦β)♯) to

((PExp/≡,α≡),d). Recall that m arises uniquely as a convex extension of some

map h : X → PExp/≡. This map can be factored as h = [−]◦h, for some h → PExp.

Observe that any two such factorisations determine the same ≡-solution. In par-

ticular, let s : PExp/≡ → PExp be a section of [−] : PExp → PExp/≡ and define

h = s◦h.

Since m is a homomorphism, the inner square in the diagram above commutes.

Moreover, as the triangle diagrams also commute, it follows that the outer diagram

commutes as well. Recall Lemma 4.5.10, which states that d : PExp/≡→ ĜPExp/≡

4.5. Completeness 213

is an isomorphism. Consequently, for all x ∈ X we have the following:

([−]◦h)(x) = (d−1 ◦ Ĝ([−]◦h)♯ ◦ γx ◦β)(x)

= (d−1 ◦ Ĝ([−]◦h)♯)
〈
β (x)(✓),λa.λx′.β (x)(a,x′)

〉
= d−1

〈
β (x)(✓),λa.([−]◦h)♯(λx′.β (x)(a,x′))

〉
= d−1

〈
β (x)(✓),λa.

[⊕
x′∈X

β (x)(a,x′) ·h(x′)

]〉

= d−1

〈
β (x)(✓),λa.⊞

x′∈X

β (x)(a,x′) ·
[
h(x′)

]〉
(Lemma 4.4.12)

=

 ⊕
(a,x′)∈A×X

β (x)(a,x′) ·a ; h(x′)

β (x)(✓) ·1

 (Def. of d−1)

This establishes the desired result.

Aside from the completeness argument, the above result also gives us an ana-

logue of (one direction of) Kleene’s theorem for DF-coalgebras as a corollary.

The other direction, converting PRE to finite-state DF-coalgebras is given by the

Antimirov construction, described in Section 4.3.

Corollary 4.5.22. Let (X ,β) be a finite-state DF-coalgebra. For every state x ∈ X,

there exists an expression ex ∈ PExp, such that the probabilistic language denoted

by x is the same as JexK.

Proof. Let h : X → PExp be the solution to the system S(β) associated with a DF-

coalgebra (X ,β) existing because of Theorem 4.5.19. For each x ∈ X , set ex = h(x).

Recall that because of Lemma 4.5.20, ([−]◦h)♯ : DX → PExp/≡ is a Ĝ-coalgebra

homomorphism from (DX ,(γX ◦β)♯) to (PExp/≡,d). For any x ∈ X , we have the

following:

JexK = Jh(x)K (Def. of ex)

= behd([h(x)]) (Lemma 4.4.19)

= behd ◦ ([−]◦h)♯(ηX(x)) (Free-forgetful adjunction)

= beh(γX◦β)♯(ηX(x)) = Lang(X ,β)(x) (([−]◦h)♯ is a homomorphism)

4.5. Completeness 214

This completes the proof.

4.5.5 Step 5: Establish the universal property

The only remaining piece allowing us to use Theorem 4.5.4 is to claim that the Ĝ-

coalgebra is locally finitely presentable. We indirectly rely on finiteness of Antimirov

derivatives shown in Lemma 4.3.10.

Lemma 4.5.23. ((PExp/≡,α≡),d) is locally finitely presentable Ĝ-coalgebra.

Proof. We establish the simpler conditions of [Mil10, Definition III.7]. Recall that

in PCA locally presentable and locally generated objects coincide [SW15]. Because

of that, it suffices to show that every finitely generated subalgebra is contained

in finitely generated subcoalgebra. Let (Y,αY) be a finitely generated subalgebra

of (PExp/≡,α≡) generated by [e1], . . . , [en] ∈ PExp/≡ where 1 ≤ i ≤ n. We will

construct a finitely generated subalgebra (Z,αY) of (PExp/≡,α≡) such that [ei] ∈ Z

(hence containing (Y,αY) as subalgebra) that is subcoalgebra as well.

Recall that given an expression e ∈ PExp, we write ⟨e⟩∂ ⊆ PExp for the set of

all expressions reachable from e. By Lemma 4.3.10 that set is finite. Let (Z,αZ) be

a subalgebra of (PExp/≡,α≡) generated by the following set

{
[a ; e′] | a ∈ A,e′ ∈

i≤n⋃
i=1

⟨ei⟩∂

}
∪{1}

Note that this set is finite, as A is finite and there are only finitely many expressions

ei, each with finitely many derivatives. We proceed to showing that Z is closed under

the transitions of d. Pick an element z ∈ Z, given by the following:

z = p · [1]⊞⊞
j∈J

p j · [a j ; e′j]

Note that:

d([ak ; e′j]) = ⟨0, f j⟩ with f j(a) = [e′j] if a = a j or otherwise f (a) = [0]

d([1]) = ⟨1, f ⟩ with f (a) = [0] for all a ∈ A

4.5. Completeness 215

Therefore, we can conclude that:

d(z) =

〈
p,λa.

[⊕
a j=a

p j · e′j

]〉

As a consequence of Theorem 4.4.3, for all j ∈ J we have that [e′j] =[
q j ·1⊕

⊕
k∈K p j,k ·a j,k ; e′j,k

]
, where [e′i,k] ∈

⋃i≤n
i=1⟨ei⟩∂ and hence [a j,k ; e′j,k] ∈ Z for

all k ∈ K. To complete the proof, we will argue that d(z) ∈ Ĝ(Z,αZ). Observe the

following:

d(y) =

〈
p,λa.

[⊕
a j=a

p j ·

(
q j ·1⊕

⊕
k∈K

p j,k ·a j,k ; e′j,k

)]〉

=

〈
p,λa.

 ∑
a j=a

p jq j ·1⊕
⊕

(j,k)∈J×K
a j=a

p j pi,k ·a j,k ; e′j,k


〉

(Lemma 4.2.4)

=

〈
p,λa.

 ∑
a j=a

p jq j · [1]⊞ ⊞
(j,k)∈J×K

a j=a

p j pi, j ·
[
a j,k ; e′j,k

]
〉

(Lemma 4.4.12)

Now, it remains to observe the following for all a ∈ A:

∑
j,k∈J×K

a j=a

p j(pi,k +q j)≤ ∑
j∈J

p j ≤ 1− p

Hence d(y) ∈ Ĝ(Z,αZ), as desired.

We are now ready to obtain the following result.

Corollary 4.5.24. ((PExp/≡,α≡),d) is isomorphic to the rational fixpoint of the

functor Ĝ and is a subcoalgebra of the final Ĝ-coalgebra.

Proof. Follows from Lemma 4.5.6, Theorem 4.5.19, Lemma 4.5.20 and

Lemma 4.5.23. Since in PCA finitely presentable and finitely generated objects coin-

4.5. Completeness 216

cide (Theorem 4.2.7) and Ĝ preserves non-empty monomorphisms (Remark 4.5.5),

we have that the rational fixpoint of Ĝ is fully abstract (Theorem 4.2.8).

The only thing is to connect the final Ĝ-coalgebra with the final G-coalgebra,

which is carried by [0,1]A
∗
.

Lemma 4.5.25. The final Ĝ-coalgebra is a subcoalgebra of the final G-coalgebra.

Proof. Let νĜ be the final Ĝ-coalgebra and νG be the final G-coalgera. Since

νĜ can be seen as a G-coalgebra, there is a unique G-coalgebra homomorphism

beh
νĜ : νĜ → νG. Since D : Set → Set preserves epimorphisms [Gum00, Corol-

lary 3.16], we have that epi-mono factorisations in Set carry to epi-mono factori-

sations in PCA [Wiß22, Proposition 3.7]. Moreover, since G preserves non-empty

monomorphisms (Lemma 4.2.9), we can further lift epi-mono factorisations in PCA

to epi-mono factorisations in CoalgG [MPW20, Lemma 2.5]. Because of this, we

can factorise beh
νG in the following way:

νĜ Q νGe

beh
νĜ

m

In the above, Q is a G-coalgebra, e : νĜ → Q a surjective G-coalgebra homomor-

phism, and m : Q → νG an injective G-coalgebra homomorphism. We will argue

that e : νĜ → Q is an isomorphism.

First, we can use Lemma 4.5.9 to show that Q is a Ĝ-coalgebra and e : νĜ →

Q is a Ĝ-coalgebra homomorphism. Because of this there exists a unique map

behQ : Q → νĜ that is a Ĝ-coalgebra homomorphism. Then, behQ ◦ e : νĜ → νĜ is

a Ĝ-homomorphism that by finality of νĜ must be equal to id
νĜ .

To see that e◦behQ : Q → Q is an identity, observe that by finality of νG, the

following two maps must be equal:

m◦ e◦behQ = m◦ idQ

Since m : Q → νG is monic, we can cancel it on the left and obtain e◦behQ = idQ, as

4.6. Discussion 217

desired. Since e is an isomorphism, we have that beh
νĜ is injective, which completes

the proof.

A direct consequence of the above is the following:

Corollary 4.5.26. The map behd : PExp/≡→ [0,1]A
∗

is injective.

Proof. Recall that behd is a unique G-coalgebra homomorphism from ((PExp/≡,α≡),d)

to the final G-coalgebra carried by the set [0,1]A
∗
. Since ((PExp/≡,α≡),d) is the

rational fixpoint of the functor of Ĝ, behd can be factorised as follows:

PExp/≡ νĜ [0,1]A
∗

behd

Due to Corollary 4.5.24 and Lemma 4.5.25, the maps involved in the above factori-

sations are injective, which implies that behd is also injective.

At this point, showing completeness becomes straightforward.

Theorem 4.5.27. Let e, f ∈ PExp. If JeK = J f K, then e ≡ f .

Proof. We have the following:

JeK = J f K ⇐⇒ behd([e]) = behd([f]) (Lemma 4.4.19)

=⇒ [e] = [f] (behd is injective)

⇐⇒ e ≡ f

4.6 Discussion
In this chapter, we introduced probabilistic regular expressions (PRE), a probabilistic

counterpart to Kleene’s regular expressions. As the main technical contribution,

we presented a Salomaa-style inference system for reasoning about probabilistic

language equivalence of expressions and proved it sound and complete. Additionally,

we gave a two-way correspondence between languages denoted by PRE and finite-

state generative probabilistic transition systems. Our approach is coalgebraic and

4.6. Discussion 218

enabled us to reuse several recently proved results on fixpoints of functors and convex

algebras. This abstract outlook guided the choice of the right formalisms and enabled

us to isolate the key results we needed to prove to achieve completeness while at the

same time reusing existing results and avoiding repeating complicated combinatorial

proofs. The key technical lemma, on uniqueness of solutions to certain systems

of equations, is a generalisation of automata-theoretic constructions from the 60s

further exposing the bridge between our probabilistic generalisation and the classical

deterministic counterpart.

4.6.1 Related work

Probabilistic process algebras and their axiomatisations have been widely stud-

ied [BS01; SS00; MOW03; Ber22] with syntaxes featuring action prefixing and least

fixed point operators instead of the regular operations of sequential composition

and probabilistic loops. This line of research focussed on probabilistic bisimulation,

while probabilistic language equivalence, which we focus on, stems from automata

theory, e.g. the work on Rabin automata [Rab63]. Language equivalence of Rabin

automata has been studied from an algorithmic point of view [Kie+11; Kie+12].

Stochastic Regular Expressions (SRE) [Ros00; Bee17; GPG18], which were

one of the main inspirations for this chapter, can also be used to specify probabilistic

languages. The syntax of SRE features probabilistic Kleene star and n-ary proba-

bilistic choice, however, it does not include 0 and 1. The primary context of that line

of research was around genetic programming in probabilistic pattern matching, and

the topic of axiomatisation was simply not tackled.

PRE can be thought of as a fragment of ProbGKAT [Róż+23], a probabilistic

extension of a strictly deterministic fragment of Kleene Algebra with Tests, that was

studied only under the finer notion of bisimulation equivalence. The completeness

ProbGKAT was obtained through a different approach to ours, as it relied on a

powerful axiom scheme to solve systems of equations.

Our soundness result, as well as semantics via generalised determinisation,

were inspired by the work of Silva and Sokolova [SS11], who introduced a two-

sorted process calculus for reasoning about probabilistic language equivalence of

4.6. Discussion 219

GPTS. Unlike PRE, their language syntactically excludes the possibility of introduc-

ing recursion over terms which might immediately terminate. Moreover, contrary

to our completeness argument, their result hinges on the subset of axioms being

complete with respect to bisimilarity, similarly to the complete axiomatisation of

trace congruence of LTS due to Rabinovich [Rab93]. The use of coalgebra to

model trace/language semantics is a well-studied topic [JSS15; RJL21] and other

approaches besides generalised determinisation [Sil+10; BSS17] included the use

of Kleisli categories [HJS07] and coalgebraic modal logic [KR15]. We build on

the vast line of work on coalgebraic completeness theorems [Jac06; Sil10; SRS21;

Mil10; BMS13], coalgebraic semantics of probabilistic systems [VR99; Sok05] and

fixpoints of the functors [MPW20; Mil18; SW18].

4.6.2 Future work

A first natural direction is exploring whether one could obtain an algebraic ax-

iomatisation of PRE. Similarly to Salomaa’s system, our axiomatisation is unsound

under substitution of letters by arbitrary expressions in the case of the termination

operator used to give a side condition to the unique fixpoint axiom. We are interested

in whether one could give an alternative inference system in the style of Kozen’s

axiomatisation [Koz94], that would not need a side condition that only makes sense

in the free model. A good first step would be to define PRE operations over the

matrices of PRE, where the main challenge lies in defining a probabilistic Kleene

star of a matrix. A highly non-trivial task would be to internalise the transitions of

GPTS as matrices of PRE, analogously to Kozen’s proof [Koz94]. Then, one would

have to develop an analogue of the sliding rule of Kleene algebra (also called star

uniformity [GU24]) that would allow one to capture language equivalence of GPTS

via bisimulations of determinised transition systems. Crucially, the steps outlined

above would rely on developing axioms for PRE that remain sound upon going to

matrices over PRE.

As for the axioms, one could go for the inequational characterisation, in which

probabilistic Kleene star would arise as a least fixpoint of the unrolling operation

with respect to an appropriately defined order on expressions that would simulta-

4.6. Discussion 220

neously capture simulations of GPTS. The obvious difficulty lies in defining such

a well-behaved order on PRE. Another route could be to develop an analogue of a

strictly equational variant of Kozen’s axiomatisation [GU24] and take the sliding

rule (for PRE) as an inference rule. In both of these approaches, the need for a

non-algebraic side condition would disappear. As a consequence, one could consider

other interpretations of PRE beyond the free model. In particular, we conjecture

that one example of such models could be stochastic relations, that is, as arrows

in the Kleisli category of the subdistribution monad. Since this category is traced

monoidal [Jac10b], one could potentially use the categorical trace to define a well-

behaved probabilistic Kleene star on stochastic relations. Altogether, this would

provide a probabilistic analogue of the widely used relational interpretation of regular

expressions [Koz94].

Finally, an interesting direction would be to ask if the finer relation ≡b is

complete with respect to the probabilistic bisimilarity. One could view it as a

probabilistic analogue of the problem of completeness of Kleene Algebra modulo

bisimilarity posed by Milner [Mil84], which was recently answered positively by

Grabmayer [Gra22].

Chapter 5

Conclusions and Future Work

We conclude the thesis, by summarising the key contributions and sketching the

potential directions for future work.

5.1 Completeness theorems for behavioural distances
The starting point of the first part of the thesis was a paper by Bacci, Bacci, Larsen

and Mardare [Bac+18a], who used a (relaxed version of) quantitative equational

theories [MPP16] to axiomatise probabilistic bisimilarity distance between terms of

probabilistic process algebra of Stark and Smolka [SS00]. While that result heavily

hinged on properties of Kantorovich lifting used to define the behavioural distance,

the key observation was that properties necessary for completeness proof are not

exclusive to Kantorovich lifting, but rather can be adapted to other instances of

behavioural distances stemming from the abstract coalgebraic framework [Bal+18].

In Chapter 2, we have focused on the simplest and most intuitive instantiation

of the coalgebraic framework in the case of deterministic automata. As a central

contribution, we have obtained a sound and complete axiomatisation of the shortest-

distinguishing-word distance between regular expressions. An interesting difference

between our result and previous work was the fact that Kleene’s star does not break

non-expansivity (unlike µ-recursion operator in the case of probabilistic bisimilar-

ity distance [Bac+18a]) that allowed us to rely on the framework of quantitative

equational theories, without any ad-hoc modifications to it.

In Chapter 3, we looked at a more involved case of Milner’s charts [Mil84], a

5.1. Completeness theorems for behavioural distances 222

straightforward generalisation of nondeterministic automata with variable outputs

that presents a compelling setting to study behavioural distances, as it shifts focus

from linear-time behaviours to branching-time semantics and represents a crucial

step towards more complicated models, such as weighted transition systems [LFT11].

Rather than directly following Milner and using an involved process algebraic syntax

with binders and µ-recursion operator, we have relied on a compositional, string

diagrammatic syntax, building on a previous line of work on string diagrammatic

approaches to automata theory [Pie+24; Ant+25].

One of the key contributions of Chapter 3 was providing an axiomatic system

for reasoning about distances between string diagrams. Besides the recent work

of Lobbia et al [Lob+24], who provided basic examples of total variation distance

between stochastic matrices and preorders on matrices, our work is the first one

to propose a sound and complete quantitative calculus of string diagrams. Despite

multiple similarities, our axiomatisation cannot be expressed in the framework of

Lobbia et al [Lob+24], which only permits purely equational axioms. Reconciling

these two, by providing a more general framework for quantitive axiomatisations of

string diagrams permitting implicational rules and axiom schemes is an interesting

research direction.

As much as the usage of Hausdorff distance in defining behavioural distance

of charts led to a more involved completeness proof, the proof strategy was es-

sentially the same as in Chapter 2 and in the work of Bacci, Bacci, Larsen and

Mardare [Bac+18a]. This suggests the possibility of developing a more generic

framework of axiomatisations of behavioural distances parametric on the branching

type of the system and the associated lifting. One of the directions could be following

the work of Schmid et al [Sch+22], who generalised Milner’s charts and an algebra

of regular behaviours to coalgebras for the type functor T (V +A× (−)), where

T : Set→ Set is an underlying functor of a monad T and a family of process algebras

parametric on algebraic operations appearing in the presentation of T. We envision

that such a framework would rely on liftings of T : Set→ Set to T : PMet→ PMet

that are nonexpansive with respect to sup norm and the lifted monad T can be

5.2. Probabilistic language equivalence 223

presented as a quantitative theory in which one can arbitrarily closely approximate

the distance between terms, from the approximations of distances between the vari-

ables. A good starting point could be the class of quantitative theories studied by

Mardare et al [MPP16], where all the axioms are so-called continuous equation

schematas, that precisely enable such approximations. Additionally, it would be

interesting to see if such a general framework of axiomatisations of behavioural dis-

tances could be reconciled with work on fixpoint extension of quantitative equational

theories [MPP21].

5.2 Probabilistic language equivalence

The second part of the thesis explored obtaining a sound and complete axiomatisation

of language equivalence of generative probabilistic transition systems [GSS95]

through the syntax of probabilistic regular expressions generalising Kleene’s regular

expressions to a probabilistic setting. Our starting point were recent hard results

on properties of convex algebras and fixpoints that Milius [Mil18], Sokolova and

Woracek [SW15; SW18]. Those results enabled the use of an abstract framework of

proper functors [Mil18] that allowed us to reduce an involved completeness problem

to a generalisation of automata-theoretic results that were studied by Salomaa [Sal66],

Kleene [Kle51] and Brzozowski [Brz64] more than fifty years ago. Our work

provided further evidence that proper functors are a good abstraction for coalgebraic

completeness theorems, that cast completeness as proving a certain universal property

obtained by uniquely solving finite systems of fixpoint equations.

In the conclusion of Chapter 4, we left several interesting areas for future

work, such as obtaining an algebraic axiomatisation in the style of Kozen [Koz94].

Besides this concrete direction, a natural broader research direction would be to

extend a generic calculus for weighted automata of Bonsangue et al [BMS13] to

coalgebras over arbitrary proper functors. We stipulate that this would crucially

rely on extracting the syntax from the presentation of the functor, as was the case

in the work of Bonsangue and Kurz [BK06], Silva [Sil10] and more generally in

coalgebraic modal logic [Sch08].

5.2. Probabilistic language equivalence 224

Finally, there is a natural research question intersecting both parts of the thesis,

namely axiomatising behavioural distance between probabilistic languages denoted

by probabilistic regular expressions. The generic framework of coalgebraic be-

havioural distances can be applied to linear-time behaviours obtained via generalised

determinisation [Sil+10] through lifting distributive laws [Bal+18]. In the case

of generative probabilistic transition systems, this would yield a variant of a total

variation distance between observable words. An immediate obstacle is that one

of the key properties used in quantitative completeness theorems in the first part

of the thesis was the finiteness of the state-spaces. Unfortunately, as mentioned

in Chapter 4, determinising a finite-state generative probabilistic transition system

always results in an infinite state-space. The usage of proper functors was crucial in

allowing us to reduce completeness to looking at state-spaces that freely generated

convex combinations of finitely many elements. We hope that a similar approach

could be helpful in a quantitative case.

Appendix A

Omitted proofs from Chapter 4

This chapter contains the omitted proofs from Chapter 4, in particular the soundness

of ≡b with respect to bisimilarity of DF-coalgebras and the intermediate results

leading to it.

A.1 Couplings of subdistributions
Below, we recall the notions surrounding couplings of (sub)probability distributions,

which we use to concretely characterise bisimulations of DF-coalgebras.

Definition A.1.1 ([Hsu17, Definition 2.1.2]). Given two subdistributions ν1,ν2 over

X and Y respectively, a subdistribution ν over X ×Y is called coupling if:

1. For all x ∈ X , ν1(x) = ν [{x}×Y]

2. For all y ∈ Y , ν2(y) = ν [X ×{y}]

It can be straightforwardly observed that a coupling ν of (ν1,ν2) is finitely

supported if and only if both ν1 and ν2 are finitely supported.

Definition A.1.2 ([Hsu17, Definition 2.1.7]). Let ν1,ν2 be subdistributions over X

and Y respectively and let R ⊆ X ×Y be a relation. A subdistribution ν over X ×Y

is a witness for the R-lifting of (ν1,ν2) if:

1. ν is a coupling for (ν1,ν2)

2. supp(ν)⊆ R

A.2. Relation lifting 226

If there exists ν satisfying these two conditions, we say ν1 and ν2 are related

by the lifting of R and write ⟨ν1,ν2⟩ ∈ Lift(R). It can be immediately observed that

⟨ν1,ν2⟩ ∈ Lift(R) implies ⟨ν2,ν1⟩ ∈ Lift(R−1).

Given a relation R ⊆ X ×Y and a set B ⊆ X , we will write R(B)⊆ Y for the set

given by R(B) = {y ∈ Y | ⟨x,y⟩ ∈ R and x ∈ B}. We will write R−1 ⊆ Y ×X for the

converse relation given by R−1 = {⟨y,x⟩ ∈ Y ×X | ⟨x,y⟩ ∈ R}.

Theorem A.1.3 ([Hsu17, Theorem 2.1.11]). Let ν1, ν2 be subdistributions over X

and Y respectively and let R ⊆ X ×Y be a relation. Then ⟨ν1,ν2⟩ ∈ Lift(R) implies

ν1[B]≤ ν2[R(B)] for every subset B ⊆ X. The converse holds if ν1 and ν2 have equal

weight.

Lemma A.1.4. Let ν1, ν2 be subdistributions over X and Y respectively and let

R ⊆ X ×Y be a relation. ⟨ν1,ν2⟩ ∈ Lift(R) if and only if:

1. For all B ⊆ X, ν1[B]≤ ν2[R(B)]

2. For all C ⊆ Y , ν2[C]≤ ν1[R−1(C)]

Proof. Assume that ⟨ν1,ν2⟩ ∈ Lift(R). Recall, that in such a case ⟨ν2,ν1⟩ ∈

Lift(R−1). Applying Theorem A.1.3 yields 1 and 2 respectively.

For the converse, assume 1 and 2 do hold. We have the following:

|ν1|= ν1[X]≤ ν2[R(X)] (1)

≤ ν2[Y] (R(X)⊆ Y)

= |ν2|

By a symmetric reasoning involving 2 , we can show that |ν2| ≤ |ν1| and therefore

|ν1|= |ν2|. Since condition 1 holds, we can use Theorem A.1.3 to conclude that

⟨ν1,ν2⟩ ∈ Lift(R).

A.2 Relation lifting
Definition A.2.1 ([Sok05, Definition 3.6.1]). Let R ⊆ X ×Y be a relation, and B

a Set endofunctor. The relation R can be lifted to relation Rel(B)(R) ⊆ BX ×BY

A.2. Relation lifting 227

defined by

⟨x,y⟩ ∈ Rel(B)(R) ⇐⇒ ∃z ∈ BR such that Bπ1(z) = x and Bπ2(z) = y

Lemma A.2.2 ([Sok05, Lemma 3.6.4]). Let B : Set→ Set be an arbitrary endofunc-

tor on Set. A relation R ⊆ X ×Y is a bisimulation between the B-coalgebras (X ,β)

and (Y,γ) if and only if:

⟨x,y⟩ ∈ R =⇒ ⟨β (x),γ(y)⟩ ∈ Rel(B)(R)

Lemma A.2.3. For any R ⊆ X ×Y

1. Rel(F)(R) = {⟨✓,✓⟩}∪{⟨a,x⟩,⟨a,y⟩) | a ∈ A,⟨x,y⟩ ∈ R}

2. Rel(DF)(R) = Lift(Rel(F)(R))

Proof. Using the inductive definition of relation liftings from [Sok05, Lemma 3.6.7].

Lemma A.2.4. Let ν1 ∈ DFX, ν2 ∈ DFY and let R ⊆ X ×Y . The necessary and

sufficient conditions for ⟨ν1,ν2⟩ ∈ Rel(DF)(R) are:

1. ν1(✓) = ν2(✓)

2. For all B ⊆ X and all a ∈ A, ν1[{a}×B]≤ ν2[{a}×R(B)]

3. For all C ⊆ Y and all a ∈ A, ν2[{a}×C]≤ ν1[{a}×R−1(C)]

Proof. Assume that (ν1,ν2) ∈ Rel(DF)(R). By Lemma A.2.3, it is equivalent to ν1

and ν2 being related by the lifting of Rel(F)(R). First, observe that:

1. Rel(F)(R)({✓}) = {✓}

2. Rel(F)(R)({a}×B) = {a}×R(B) for all a ∈ A, and B ⊆ X

First, we have the following:

ν1(✓) = ν1[{✓}]

A.2. Relation lifting 228

≤ ν2[R({✓})] (Lemma A.1.4)

≤ ν2[{✓}]

≤ ν1[R−1({✓})]

≤ ν1(✓)

which proves ν1(✓) = ν2(✓), establishing 1 . Now, pick an arbitrary a ∈ A and

B ⊆ X . We have that:

ν1[{a}×B]≤ ν2[Rel(F)(R)({a}×B)] (Lemma A.1.4)

= ν2[{a}×R(B)]

which proves 2 . Symmetric reasoning involving R−1 allows to prove 3 .

For the converse, assume that conditions 1 , 2 and 3 hold. Let M ⊆FX . We

can partition M in the following way:

M = {o | o ∈ {✓}∩M}∪
⋃
a∈A

{a}×{x | (a,x) ∈ M}

We have the following:

ν1[B] = ν1[{o | o ∈ {✓}∩M}]+ ∑
a∈A

ν1[{a}×{x | (a,x) ∈ M}]

= [✓ ∈ M] ν1(✓)+ ∑
a∈A

ν1[{a}×{x | (a,x) ∈ M}]

≤ [✓ ∈ M] ν2(✓)+ ∑
a∈A

ν2[{a}×R({x | (a,x) ∈ M})] (1 and 2)

= ν2[{o | o ∈ {✓}∩M}]+ ∑
a∈A

ν2[{a}×R({x | (a,x) ∈ M})]

= ν2[{o | o ∈ {✓}∩M}]+ν2[Rel(F)(R)((A×X)∩M)]

= ν2[Rel(F)(R)(M)]

Recall that relation liftings preserve inverse relations [HJ04] and therefore

Rel(F)(R)−1 = Rel(F)(R−1). A similar reasoning to the one before allows us to

A.2. Relation lifting 229

conclude that for all N ⊆ FY we have that ν2[N] ≤ ν1[Rel(F)(R)−1(N)]. Finally,

we can apply Lemma A.1.4 to conclude that ⟨ν1,ν2⟩ ∈ Lift(Rel(F)(R)).

Lemma A.2.5. A relation R ⊆ X ×Y is a bisimulation between DF-coalgebras

(X ,β) and (Y,γ) if and only if for all (x,y) ∈ R, we have that:

1. β (x)(✓) = γ(y)(✓)

2. For all a ∈ A, and for all B ⊆ X, we have that:

β (x)[{a}×B]≤ γ(y)[{a}×R(B)]

3. For all a ∈ A, and for all C ⊆ Y , we have that:

γ(y)[{a}×C]≤ γ(y)[{a}×R−1(C)]

Proof. Consequence of Lemma A.2.2 and Lemma A.2.4.

Lemma A.2.6. Let (X ,β) be a DF-coalgebra, R⊆X ×X be an equivalence relation,

⟨x,y⟩ ∈ R and a ∈ A. We have that:

1. For all G ⊆ X, β (x)[{a}×G]≤ β (y)[{a}×R(G)]

2. For all H ⊆ X, β (y)[{a}×H]≤ β (x)[{a}×R−1(H)]

if and only if β (x)[{a}×Q] = β (y)[{a}×Q] for all equivalence classes Q ∈ X/R.

Proof. First assume that 1 and 2 do hold. We have that:

β (x)[{a}×Q]≤ β (y)[{a}×R(Q)]

= β (y)[{a}×Q] (R is an equivalence relation)

Since R = R−1 we can employ the symmetric reasoning and show that β (y)[{a}×

Q]≤ β (x)[{a}×Q], which allows us to conclude that β (x)[{a}×Q] = β (y)[{a}×

Q].

A.3. Soundness argument 230

For the converse, let G ⊆ X be an arbitrary set. Let G/R be the quotient of G by

the relation R and let X/R be the quotient of X by R. Observe that G/R is a partition

of G and X/R is a partition of X .

For each equivalence class P∈G/R, there exists an equivalence class QP ∈X/R,

such that P⊆QP =R(P), which implies that β (x)[{a}×P]≤ β (x)[{a}×QP]. Using

additivity of subprobabilities of disjoint sets we can conclude the following:

β (x)[{a}×G] = β (x)

{a}×
⋃

P∈G/R

P


= ∑

P∈G/R
β (x)[{a}×P]

≤ ∑
P∈G/R

β (y)[{a}×QP]

= β (y)

{a}×
⋃

P∈G/R

QP


= β (y)

{a}×
⋃

P∈G/R

R(P)


= β (y)[{a}×R(G)]

We can show 2 via symmetric line of reasoning to the one above.

A.3 Soundness argument
Given a set Q ⊆ PExp and an expression f ∈ PExp, we will write Q/ f for the set

given by {e ∈ PExp | e ; f ∈ Q}.

Lemma A.3.1. If R ⊆ PExp×PExp is a congruence relation and (e, f) ∈ R then for

all G ⊆ PExp, R(G/e)⊆ R(G)/ f .

Proof. If g ∈ R(G/e), then there exists some h ∈ G/e such that (h,g) ∈ R. Since h ∈

G/e, also h ; e ∈ G. Because R is a congruence relation, we have that (h ; e,g ; f) ∈ R

and hence g ; f ∈ R(G), which in turn implies that g ∈ G/ f .

Lemma A.3.2. Let e, f ∈ PExp and let Q ∈ PExp/≡b. Now (Q/ f)/e = Q/e ; f

A.3. Soundness argument 231

Proof. Let g ∈ Q; we derive as follows

g ∈ (Q/ f)/e ⇐⇒ g ; e ∈ Q/ f ⇐⇒ (g ; e) ; f ∈ Q

⇐⇒ g ; (e ; f) ∈ Q ⇐⇒ g ∈ Q/e ; f

Here, the second to last step follows by associativity (S).

Lemma A.3.3. Let e, f ∈ PExp, R ⊆ PExp×PExp a congruence relation and let

Q ∈ PExp/R. If ⟨e, f ⟩ ∈ R, then Q/e = Q/ f

Proof.

g ∈ Q/e ⇐⇒ g ; e ∈ Q ⇐⇒ g ; f ∈ Q ⇐⇒ g ∈ Q/ f

Lemma A.3.4. For all e, f ∈ PExp, a ∈ A, G ⊆ PExp we have that:

∂ (e ; f)[{a}×G] = ∂ (e)(✓)∂ (f)[{a}×G]+∂ (e)[{a}×G/ f]

Proof. A straightforward calculation using the definition of the Antimirov derivative.

∂ (e ; f)[{a}×G] = ∑
g∈G

∂ (e ; f)(a,g)

= ∑
g∈G

∂ (e)(✓)∂ (f)(a,g)+ ∑
g; f∈G

∂ (e)(a,g)

= ∂ (e)(✓) ∑
g∈G

∂ (f)(a,g)+ ∑
g; f∈G

∂ (e)(a,g)

= ∂ (e)(✓)∂ (f)[{a}×G]+∂ (e)[{a}×G/ f]

Lemma A.3.5. Let e ∈ PExp, r ∈ [0,1], G ⊆ PExp and r∂ (e)(✓) ̸= 1. We have that:

∂

(
e[r]
)
[{a}×G] =

r∂ (e)[{a}×G/e[r]]
1− r∂ (e)(✓)

A.3. Soundness argument 232

Proof. A straightforward calculation using the definition of the Antimirov derivative.

∂

(
e[r]
)
[{a}×G] = ∑

g∈G
∂

(
e[r]
)
(a,g)

= ∑
g;e[r]∈G

r∂ (e)(a,g)
1− r∂ (e)(✓)

=
r∂ (e)[{a}×G/e[r]]

1− r∂ (e)(✓)

Lemma 4.4.1. The relation ≡b ⊆ PExp×PExp is a bisimulation equivalence.

Proof. We proceed by structural induction on the length derivation of ≡b, we show

that all conditions of Lemma A.2.5 are satisfied. In most of the cases, we will

rely on simpler coinditions from Lemma A.2.6. For the first few cases, we will

rely on even simpler characterisation. In particular, observe that if for some e, f ∈

PExp, ∂ (e) = ∂ (f), then immediately ∂ (e)(✓) = ∂ (f)(✓) and for all a ∈ A, Q ∈

PExp/≡b we have that ∂ (e)[{a}×Q] = ∂ (f)[{a}×Q]. In other words, equality of

subdistributions obtained by applying the coalgebra structure map to some pair states

implies that they are bisimilar.

e⊕1 f ≡b e For all e, f ∈ PExp, x ∈ FPExp we have that:

∂ (e⊕1 f)(x) = 1∂ (e)(x)+0∂ (f)(x) = ∂ (e)(x)

Since ∂ (e⊕1 f) = ∂ (e), then e⊕1 f and e are bisimilar.

e⊕p f ≡b f ⊕1−p e For all e, f ∈ PExp, p ∈ [0,1] and x ∈ FPExp we have that

∂ (e⊕p f)(x) = p∂ (e)(x)+(1− p)∂ (f)

= (1− p)∂ (f)(x)+(1− (1− p))∂ (e)(x)

= ∂ (f ⊕1−p e)(x)

Since ∂ (e⊕p f) = ∂ (f ⊕1−p e), then e⊕p f and f ⊕1−p e are bisimilar.

(e⊕p f)⊕q g ≡b e⊕pq

(
f ⊕ (1−p)q

1−pq
g
)

For all e, f ,g ∈ PExp, p,q ∈ [0,1] such that

A.3. Soundness argument 233

pq ̸= 1 and for all x ∈ FPExp we have the following:

∂
(
(e⊕p f)⊕q g

)
(x) = q∂ (e⊕p f)(x)+(1−q)∂ (g)(x)

= pq∂ (e)(x)+(1− p)q∂ (f)(x)+(1−q)∂ (g)(x)

= pq∂ (e)(x)

+(1− pq)
(
(1− p)q
1− pq

∂ (f)(x)+
1−q

1− pq
∂ (g)(x)

)
= pq∂ (e)(x)+(1− pq)∂

(
f ⊕ (1−p)q

1−pq
g
)
(x)

= ∂

(
e⊕pq

(
f ⊕ (1−p)q

1−pq
g
))

(x)

Since ∂
(
(e⊕p f)⊕q g

)
= ∂

(
e⊕pq

(
f ⊕ (1−p)q

1−pq
g
))

, then (e⊕p f)⊕q g and e⊕pq(
f ⊕ (1−p)q

1−pq
g
)

are bisimilar.

e ;1≡b e For all e ∈ PExp, we have that

∂ (e ;1)(✓) = ∂ (e)(✓)δ✓(✓) = ∂ (e)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (e ;1)[{a}×Q] = ∂ (e)[{a}×Q/1]+∂ (e)(✓)∂ (1)[{a}×Q] (Lemma A.3.4)

= ∂ (e)[{a}×Q/1]

= ∑
q;1∈Q

∂ (e)(a,q)

= ∑
q∈Q

∂ (e)(a,q) (S1)

= ∂ (e)[{a}×Q]

1 ; e ≡b e For all e ∈ PExp, we have that:

∂ (1 ; e)(✓) = δ✓(✓)∂ (e)(✓) = ∂ (e)(✓)

A.3. Soundness argument 234

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (1 ; e)[{a}×Q] = ∂ (1)[{a}×Q/e]+∂ (1)(✓)∂ (e)[{a}×Q] (Lemma A.3.4)

= ∂ (e)[{a}×Q]

0 ; e ≡b 0 For all e ∈ PExp we have that:

∂ (0 ; e)(✓) = ∂ (0)(✓)∂ (e)(✓) = 0 = ∂ (0)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (0 ; e)[{a}×Q] = ∂ (0)[{a}×Q/e]+∂ (0)(✓)∂ (e)[{a}×Q]

= 0 = ∂ (0)[{a}×Q]

e ; (f ; g)≡b (e ; f) ; g For all e, f ,g ∈ PExp we have that:

∂ (e ; (f ; g))(✓) = ∂ (e)(✓)∂ (f ; g)(✓)

= ∂ (e)(✓)∂ (f)(✓)∂ (g)(✓)

= ∂ (e ; f)(✓)∂ (g)(✓)

= ∂ ((e ; f) ; g)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (e ; (f ; g))[{a}×Q]

=∂ (e)[{a}×Q/ f ; g]+∂ (e)(✓)∂ (f ; g)[{a}×Q] (Lemma A.3.4)

=∂ (e)[{a}×Q/g/ f]+∂ (e)(✓)∂ (f)[{a}×Q/g]

+∂ (e)(✓)∂ (f)(✓)∂ (g)[{a}×Q] (Lemma A.3.2)

=∂ (e ; f)[{a}×Q/ f]+∂ (e ; f)(✓)∂ (g)[{a}×Q] (Lemma A.3.4)

=∂ ((e ; f) ; g)[{a}×Q] (Lemma A.3.4)

A.3. Soundness argument 235

(e⊕p f) ; g ≡b e ; g⊕p f ; g For all e, f ,g ∈ PExp and p ∈ [0,1] we have that:

∂ ((e⊕p f) ; g)(✓) = ∂ (e⊕p f)(✓)∂ (g)(✓)

= p∂ (e)(✓)∂ (g)(✓)+(1− p)∂ (f)(✓)∂ (g)(✓)

= p∂ (e ; g)(✓)+(1− p)∂ (f ; g)(✓)

= ∂ (e ; g⊕p f ; g)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ ((e⊕p f) ; g)[{a}×Q]

= ∂ (e⊕p f)[{a}×Q/g]+∂ (e⊕p f)(✓)∂ (g)[{a}×Q] (Lemma A.3.4)

= p∂ (e)[{a}×Q]+ p∂ (e)(✓)[{a}×Q]

(1− p)∂ (f)[{a}×Q]+ (1− p)∂ (f)(✓)[{a}×Q]

= p∂ (e ; g)[{a}×Q]+ (1− p)∂ (f ; g)[{a}×Q] (Lemma A.3.4)

= ∂ (e ; g⊕p f ; g)[{a}×Q]

e[p] ≡b e ; e[p]⊕p 1 Let e ∈ PExp and p ∈ [0,1]. We distinguish two subcases. If

∂ (e)(✓) = 1 and p = 1, then:

∂ (e[p])(✓) = 0 = ∂ (e)(✓)∂ (e[p])(✓) = ∂ (e ; e[p]⊕p 1)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (e[p])[{a}×Q] = 0

= ∂ (e)[{a}×Q]+∂ (e[p])[{a}×Q]

= ∂ (e)[{a}×Q/e[p]]+∂ (e)(✓)∂ (e[p])[{a}×Q]

= ∂ (e ; e[p])[{a}×Q]

= ∂ (e ; e[p]⊕p 1)[{a}×Q]

A.3. Soundness argument 236

From now on, we can safely assume that p∂ (e)(✓) ̸= 1. We have that:

∂ (e[p])(✓) =
1− p

1− p∂ (e)(✓)

=
(1− p)(1+ p∂ (e)(✓)− p∂ (e)(✓))

1− p∂ (e)(✓)

=
(1− p)(p∂ (e)(✓))

1− p∂ (e)(✓)
+

(1− p)(1− p∂ (e)(✓))

1− p∂ (e)(✓)

= p∂ (e)(✓)
1− p

1− p∂ (e)(✓)
+(1− p)

= p∂ (e)(✓)∂ (e[p])(✓)+(1− p)

Let a ∈ A and Q ∈ PExp/≡b. We have that:

∂ (e[p])[{a}×Q]

=
p∂ (e)[{a}×Q/e[p]]

1− p∂ (e)(✓)
(Lemma A.3.5)

=p∂ (e)[{a}×Q/e[p]]
1

1− p∂ (e)(✓)

=p∂ (e)[{a}×Q/e[p]]
1− p∂ (e)(✓)+ p∂ (e)(✓)

1− p∂ (e)(✓)

=p∂ (e)[{a}×Q/e[p]]
(

1+
p∂ (e)(✓)

1− p∂ (e)(✓)

)
=p∂ (e)[{a}×Q/e[p]]+ p∂ (e)(✓)

p∂ (e)[{a}×Q/e[p]]
1− p∂ (e)(✓)

=p∂ (e)[{a}×Q/e[p]]+ p∂ (e)(✓)∂ (e[p])[{a}×Q] (Lemma A.3.5)

=p∂ (e ; e[p])[{a}×Q] (Lemma A.3.4)

=∂ (e ; e[p]⊕p 1)[{a}×Q]

(e⊕p 1)
[q] ≡b e

[
pq

1−(1−p)q

]

Let e ∈ PExp and let p,q ∈ [0,1] such that (1− p)q ̸= 1. Observe, that in such a

A.3. Soundness argument 237

situation pq
1−(1−p)q ̸= 1. First, consider the following:

∂

(
(e⊕p 1)

[q]
)
(✓) =

1−q
1−q∂ (e⊕p 1)(✓)

=
1−q

1−q(1− p)− pq∂ (e)(✓)

=
1−q

(1−q(1− p))
(

1− pq
1−q(1−p)∂ (e)(✓)

)
=

1−q
1−q(1−p)

1− pq
1−q(1−p)∂ (e)(✓)

=
1− pq

1−q(1−p)

1− pq
1−q(1−p)∂ (e)(✓)

= ∂

(
e
[

pq
1−(1−p)q

])
(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that the following holds:

∂

(
(e⊕p 1)

[q]
)
[{a}×Q]

=
q∂ (e⊕p 1)[{a}×Q/(e⊕p 1)

[q]]

1−q∂ (e⊕p 1)(✓)
(Lemma A.3.5)

=
pq∂ (e)[{a}×Q/(e⊕p 1)

[q]]

1− (1− p)q− pq∂ (e)(✓)

=
pq∂ (e)[{a}×Q/(e⊕p 1)[q]]

(1− (1− p)q)
(

1− pq
1−(1−p)q∂ (e)(✓)

)
=

pq
1−(1−p)q∂ (e)[{a}×Q/(e⊕p 1)[q]]

(1− (1− p)q)
(

1− pq
1−(1−p)q∂ (e)(✓)

)
=

pq
1−(1−p)q∂ (e)[{a}×Q/e

[
pq

1−(1−p)q

]
]

(1− (1− p)q)
(

1− pq
1−(1−p)q∂ (e)(✓)

) (Lemma A.3.3)

=∂

(
e
[

pq
1−(1−p)q

])
[{a}×Q]

From g ≡b e ; g⊕p f and E(g) = 0 derive g ≡b e[p] ; f Let e, f ,g ∈ PExp, such that

g ≡ e ; g⊕p f and E(e) = 0. Recall that by Lemma 4.3.9, we have that ∂ (e)(✓) = 0.

A.3. Soundness argument 238

First, observe that:

∂ (g)(✓) = ∂ (e ; g⊕p f)(✓) (Induction hypothesis)

= p∂ (e)(✓)∂ (g)(✓)+(1− p)∂ (f)(✓)

= (1− p)∂ (f)(✓)

=
1− p

1− p∂ (e)(✓)
∂ (f)(✓)

= ∂ (e[p])(✓)∂ (f)(✓)

= ∂ (e[p] ; f)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (g)[{a}×Q]

=∂ (e ; g⊕p f)[{a}×Q]

(Induction hypothesis)

=p∂ (e ; g)[{a}×Q]+ (1− p)∂ (f)[{a}×Q]

=p∂ (e)[{a}×Q/g]+ p∂ (e)(✓)∂ (g)[{a}×Q]

+ (1− p)∂ (f)[{a}×Q]

=p∂ (e)[{a}×Q/g]+ (1− p)∂ (f)[{a}×Q]

=p∂ (e)[{a}×Q/e[p] ; f]+ (1− p)∂ (f)[{a}×Q] (Lemma A.3.3)

=p∂ (e)[{a}× (Q/ f)/e[p]]+ (1− p)∂ (f)[{a}×Q] (Lemma A.3.2)

=
p∂ (e)[{a}× (Q/ f)/e[p]]

1− p∂ (e)(✓)
+

1− p
1− p∂ (e)(✓)

∂ (f)[{a}×Q]

=∂ (e[p])[{a}×Q/ f]+∂ (e[p])(✓)∂ (f)[{a}×Q] (Lemma A.3.5)

=∂ (e[p] ; f)[{a}×Q] (Lemma A.3.4)

reflexivity, transitivity and symmetry We omit the proof, as it is trivial.

From e ≡b g and f ≡b h derive that e⊕p f ≡b g⊕p h Let e, f ,g,h ∈ PExp, such

A.3. Soundness argument 239

that e ≡b g and f ≡b h. We have that

∂ (e⊕p f)(✓) = p∂ (e)(✓)+(1− p)∂ (f)(✓)

= p∂ (g)(✓)+(1− p)∂ (h)(✓) (Induction hypothesis)

= ∂ (g⊕p h)(✓)

For all a ∈ A and Q ∈ PExp/≡b we have that:

∂ (e⊕p f)[{a}×Q]

=p∂ (e)[{a}×Q]+ (1− p)∂ (f)[{a}×Q]

=p∂ (g)[{a}×Q]+ (1− p)∂ (h)[{a}×Q] (Induction hypothesis)

=∂ (g⊕p h)[{a}×Q]

From e ≡b g and f ≡b h derive that e ; f ≡b g ; h Let e, f ,g,h ∈ PExp, such that

e ≡b g and f ≡b h. We have that:

∂ (e ; f)(✓) = ∂ (e)(✓)∂ (f)(✓)

= ∂ (g)(✓)∂ (h)(✓) (Induction hypothesis)

= ∂ (g ; h)(✓)

For all a ∈ A and G ⊆ PExp, we have that:

∂ (e ; f)[{a}×G]

=∂ (e)[{a}×G/ f]+∂ (e)(✓)∂ (f)[{a}×G] (Lemma A.3.4)

≤∂ (g)[{a}×R(G/ f)]+∂ (g)(✓)∂ (h)[{a}×R(G)]

≤∂ (g)[{a}×R(G)/h]+∂ (g)(✓)∂ (h)[{a}×R(G)] (Lemma A.3.1)

=∂ (g ; h)[{a}×R(G)] (Lemma A.3.4)

Condition that ∂ (g ; h)[{a}×G]≤ ∂ (e ; f)[{a}×R−1(G)] can be shown by a

symmetric argument.

A.3. Soundness argument 240

From e ≡b f derive e[p] ≡b f [p] Let e, f ∈ PExp such that e ≡b f . We distinguish

two subcases. First, consider the situation when p = 1 and ∂ (e)(✓) = 1. Observe

that by induction hypothesis we have that ∂ (f)(✓) = 1. We have that ∂ (e[p]) = 0=

∂ (f [p]). Hence, e[p] and f [p] are bisimilar.

From now on, we can safely assume that p∂ (e)(✓) ̸= 1 and p∂ (f)(✓) ̸= 1. We

have that:

∂

(
e[p]
)
(✓) =

1− p
1− p∂ (e)(✓)

=
1− p

1− p∂ (f)(✓)
(Induction hypothesis)

= ∂

(
f [p]
)
(✓)

For all a ∈ A and G ⊆ PExp we have that:

∂

(
e[p]
)
[{a}×G] =

p∂ (e)[{a}×G/e[p]]
1− p∂ (e)(✓)

(Lemma A.3.5)

≤ p∂ (f)[{a}×R(G/e[p])]
1− p∂ (f)(✓)

(Induction hypothesis)

≤ p∂ (f)[{a}×R(G)/ f [p]]
1− p∂ (f)(✓)

(Lemma A.3.1)

= ∂

(
e[p]
)
[{a}×R(G)]

Condition that ∂

(
f [p]
)
[{a}×G]≤ ∂

(
e[p]
)
[{a}×R−1(G)] can be shown by

a symmetric argument.

Bibliography

[AHS02] Samson Abramsky, Esfandiar Haghverdi, and Philip J. Scott. “Geome-

try of Interaction and Linear Combinatory Algebras”. In: Math. Struct.

Comput. Sci. 12.5 (2002), pp. 625–665 (cit. on p. 135).

[AK95] Jiří Adámek and Václav Koubek. “On the greatest fixed point of a set

functor”. In: Theoretical Computer Science 150.1 (1995), pp. 57–75.

ISSN: 0304-3975 (cit. on p. 40).

[AM89] Peter Aczel and Nax Paul Mendler. “A Final Coalgebra Theorem”. In:

Category Theory and Computer Science, Manchester, UK, September

5-8, 1989, Proceedings. Ed. by David H. Pitt, David E. Rydeheard,

Peter Dybjer, Andrew M. Pitts, and Axel Poigné. Vol. 389. Lecture

Notes in Computer Science. Springer, 1989, pp. 357–365 (cit. on p. 30).

[AMV06] Jiří Adámek, Stefan Milius, and Jiri Velebil. “Iterative algebras at

work”. In: Math. Struct. Comput. Sci. 16.6 (2006), pp. 1085–1131 (cit.

on pp. 153, 154).

[And+14] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jean-

nin, Dexter Kozen, Cole Schlesinger, and David Walker. “NetKAT:

semantic foundations for networks”. In: POPL. 2014, pp. 113–126

(cit. on pp. 5, 16, 138).

[Ant+25] Thibaut Antoine, Robin Piedeleu, Alexandra Silva, and Fabio Zanasi.

“A Complete Diagrammatic Calculus for Automata Simulation”. In:

33rd EACSL Annual Conference on Computer Science Logic, CSL 2025,

February 10-14, 2025, Amsterdam, Netherlands. Ed. by Jörg Endrullis

BIBLIOGRAPHY 242

and Sylvain Schmitz. Vol. 326. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2025, 27:1–27:22 (cit. on pp. 23, 65, 84, 133,

222).

[Ant96] Valentin Antimirov. “Partial derivatives of regular expressions and

finite automaton constructions”. In: Theoretical Computer Science

155.2 (1996), pp. 291–319. ISSN: 0304-3975 (cit. on pp. 138, 154,

159).

[AR94] J. Adamek and J. Rosicky. Locally Presentable and Accessible Cate-

gories. London Mathematical Society Lecture Note Series. Cambridge

University Press, 1994 (cit. on pp. 146, 193).

[Ard61] Dean N. Arden. “Delayed-logic and finite-state machines”. In: 2nd

Annual Symposium on Switching Circuit Theory and Logical Design

(SWCT 1961). 1961, pp. 133–151 (cit. on pp. 16, 204).

[AT11] Samson Abramsky and Nikos Tzevelekos. “Introduction to Categories

and Categorical Logic”. In: CoRR abs/1102.1313 (2011). arXiv: 1102.

1313 (cit. on p. 29).

[Bac+18a] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. “A

Complete Quantitative Deduction System for the Bisimilarity Distance

on Markov Chains”. In: Log. Methods Comput. Sci. 14.4 (2018) (cit. on

pp. 19, 27, 28, 42, 47, 53, 55, 61, 134, 221, 222).

[Bac+18b] Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare.

“Complete Axiomatization for the Total Variation Distance of Markov

Chains”. In: Proceedings of the Thirty-Fourth Conference on the Math-

ematical Foundations of Programming Semantics, MFPS 2018, Dal-

housie University, Halifax, Canada, June 6-9, 2018. Ed. by Sam Staton.

Vol. 341. Electronic Notes in Theoretical Computer Science. Elsevier,

2018, pp. 27–39 (cit. on pp. 19, 27, 61).

https://arxiv.org/abs/1102.1313
https://arxiv.org/abs/1102.1313

BIBLIOGRAPHY 243

[Bac+18c] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon D.

Plotkin. “An Algebraic Theory of Markov Processes”. In: Proceedings

of the 33rd Annual ACM/IEEE Symposium on Logic in Computer

Science, LICS 2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar

and Erich Grädel. ACM, 2018, pp. 679–688 (cit. on pp. 19, 27, 61,

134).

[Bac+24] Giorgio Bacci, Radu Mardare, Prakash Panangaden, and Gordon

Plotkin. “Sum and Tensor of Quantitative Effects”. In: Logical Meth-

ods in Computer Science Volume 20, Issue 4, 9 (Oct. 2024). ISSN:

1860-5974 (cit. on pp. 61, 134).

[Bac76] Roland Carl Backhouse. “Closure algorithms and the star-height prob-

lem of regular languages”. PhD thesis. Imperial College London, UK,

1976 (cit. on p. 167).

[Bal+18] Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König.

“Coalgebraic Behavioral Metrics”. In: Log. Methods Comput. Sci. 14.3

(2018) (cit. on pp. 18, 21, 27, 28, 36, 37, 39–42, 53, 54, 72, 73, 133,

221, 224).

[Bee17] Tobias Beeh. “Transformations between Markov Chains and Stochastic

Regular Expressions”. MA thesis. University of Stuttgart, 2017 (cit. on

pp. 20, 218).

[Ber22] Marco Bernardo. “Probabilistic Trace and Testing Semantics: The

Importance of Being Coherent”. In: Found. Trends Program. Lang. 7.4

(2022), pp. 244–332 (cit. on p. 218).

[BÉT93] Stephen L. Bloom, Zoltan Ésik, and Dirk Taubner. “Iteration Theories

of Synchronization Trees”. In: Inf. Comput. 102.1 (1993), pp. 1–55

(cit. on pp. 63, 135, 139).

[BK06] Marcello M. Bonsangue and Alexander Kurz. “Presenting Functors

by Operations and Equations”. In: Foundations of Software Science

and Computation Structures, 9th International Conference, FOSSACS

BIBLIOGRAPHY 244

2006, Held as Part of the Joint European Conferences on Theory and

Practice of Software, ETAPS 2006, Vienna, Austria, March 25-31, 2006,

Proceedings. Ed. by Luca Aceto and Anna Ingólfsdóttir. Vol. 3921.

Lecture Notes in Computer Science. Springer, 2006, pp. 172–186 (cit.

on p. 223).

[BKP18] Filippo Bonchi, Barbara König, and Daniela Petrisan. “Up-To Tech-

niques for Behavioural Metrics via Fibrations”. In: 29th International

Conference on Concurrency Theory, CONCUR 2018, September 4-7,

2018, Beijing, China. Ed. by Sven Schewe and Lijun Zhang. Vol. 118.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018, 17:1–

17:17 (cit. on pp. 18, 40).

[BMR19] Spencer Breiner, Carl A. Miller, and Neil J. Ross. “Graphical Methods

in Device-Independent Quantum Cryptography”. In: Quantum 3 (May

2019), p. 146. ISSN: 2521-327X (cit. on p. 134).

[BMS13] Marcello M. Bonsangue, Stefan Milius, and Alexandra Silva. “Sound

and Complete Axiomatizations of Coalgebraic Language Equivalence”.

In: ACM Trans. Comput. Log. 14.1 (2013), 7:1–7:52 (cit. on pp. 219,

223).

[Bof90] Maurice Boffa. “Une remarque sur les systèmes complets d’identités

rationnelles”. In: RAIRO Theor. Informatics Appl. 24 (1990), pp. 419–

423 (cit. on pp. 16, 137).

[Bon+19] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Pawel Sobocinski,

and Fabio Zanasi. “Diagrammatic algebra: from linear to concurrent

systems”. In: Proc. ACM Program. Lang. 3.POPL (2019), 25:1–25:28

(cit. on p. 64).

[Bre12] Franck van Breugel. “On behavioural pseudometrics and closure or-

dinals”. In: Inf. Process. Lett. 112.19 (2012), pp. 715–718 (cit. on

p. 55).

BIBLIOGRAPHY 245

[BRV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic.

Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-

versity Press, 2001 (cit. on p. 66).

[Brz64] Janusz A. Brzozowski. “Derivatives of Regular Expressions”. In: J.

ACM 11.4 (1964), pp. 481–494 (cit. on pp. 28, 33, 35, 58, 139, 140,

166, 202, 223).

[BS01] Emanuele Bandini and Roberto Segala. “Axiomatizations for Proba-

bilistic Bisimulation”. In: Automata, Languages and Programming,

28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,

2001, Proceedings. Ed. by Fernando Orejas, Paul G. Spirakis, and Jan

van Leeuwen. Vol. 2076. Lecture Notes in Computer Science. Springer,

2001, pp. 370–381 (cit. on p. 218).

[BS81] Stanley Burris and H P Sankappanavar. A Course in Universal Algebra.

en. Lecture Notes in Statistics. New York, NY: Springer, Nov. 1981

(cit. on pp. 42, 44).

[BSS17] Filippo Bonchi, Alexandra Silva, and Ana Sokolova. “The Power of

Convex Algebras”. In: 28th International Conference on Concurrency

Theory (CONCUR 2017). Ed. by Roland Meyer and Uwe Nestmann.

Vol. 85. Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-

matik, 2017, 23:1–23:18. ISBN: 978-3-95977-048-4 (cit. on pp. 149,

219).

[BT06] T. Birsan and D. Tiba. “One Hundred Years Since the Introduction

of the Set Distance by Dimitrie Pompeiu”. In: System Modeling and

Optimization. Ed. by F. Ceragioli, A. Dontchev, H. Futura, K. Marti,

and L. Pandolfi. Boston, MA: Springer US, 2006, pp. 35–39. ISBN:

978-0-387-33006-8 (cit. on p. 72).

[BW01] Franck van Breugel and James Worrell. “Towards Quantitative Verifi-

cation of Probabilistic Transition Systems”. In: Automata, Languages

BIBLIOGRAPHY 246

and Programming, 28th International Colloquium, ICALP 2001, Crete,

Greece, July 8-12, 2001, Proceedings. Ed. by Fernando Orejas, Paul G.

Spirakis, and Jan van Leeuwen. Vol. 2076. Lecture Notes in Computer

Science. Springer, 2001, pp. 421–432 (cit. on pp. 5, 18, 133).

[BZ82] J. W. de Bakker and Jeffery I. Zucker. “Processes and the Denotational

Semantics of Concurrency”. In: Inf. Control. 54.1/2 (1982), pp. 70–120

(cit. on p. 134).

[Cas+21] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark

Rowland. “MICo: Improved representations via sampling-based state

similarity for Markov decision processes”. In: Advances in Neural

Information Processing Systems 34: Annual Conference on Neural

Information Processing Systems 2021, NeurIPS 2021, December 6-

14, 2021, virtual. Ed. by Marc’Aurelio Ranzato, Alina Beygelzimer,

Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan. 2021,

pp. 30113–30126 (cit. on p. 6).

[CD08] Bob Coecke and Ross Duncan. “Interacting Quantum Observables”.

In: Automata, Languages and Programming, 35th International Collo-

quium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings,

Part II - Track B: Logic, Semantics, and Theory of Programming &

Track C: Security and Cryptography Foundations. Ed. by Luca Aceto,

Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna

Ingólfsdóttir, and Igor Walukiewicz. Vol. 5126. Lecture Notes in Com-

puter Science. Springer, 2008, pp. 298–310 (cit. on p. 64).

[Che+22] Mingshuai Chen, Joost-Pieter Katoen, Lutz Klinkenberg, and Tobias

Winkler. “Does a Program Yield the Right Distribution? - Verifying

Probabilistic Programs via Generating Functions”. In: Computer Aided

Verification - 34th International Conference, CAV 2022, Haifa, Israel,

August 7-10, 2022, Proceedings, Part I. Ed. by Sharon Shoham and

Yakir Vizel. Vol. 13371. Lecture Notes in Computer Science. Springer,

2022, pp. 79–101 (cit. on p. 138).

BIBLIOGRAPHY 247

[CK25] Balder ten Cate and Tobias Kappé. “Algebras for Deterministic Com-

putation Are Inherently Incomplete”. In: Proc. ACM Program. Lang.

9.POPL (2025), pp. 718–744 (cit. on p. 135).

[Con12] J.H. Conway. Regular Algebra and Finite Machines. Chapman and

Hall mathematics series. Dover Publications, Incorporated, 2012. ISBN:

9780486485836 (cit. on p. 16).

[DAn+24] Keri D’Angelo, Sebastian Gurke, Johanna Maria Kirss, Barbara König,

Matina Najafi, Wojciech Różowski, and Paul Wild. “Behavioural Met-

rics: Compositionality of the Kantorovich Lifting and an Application to

Up-To Techniques”. In: 35th International Conference on Concurrency

Theory, CONCUR 2024, September 9-13, 2024, Calgary, Canada. Ed.

by Rupak Majumdar and Alexandra Silva. Vol. 311. LIPIcs. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2024, 20:1–20:19 (cit. on

p. 40).

[Des+04] Josée Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panan-

gaden. “Metrics for labelled Markov processes”. In: Theor. Comput.

Sci. 318.3 (2004), pp. 323–354 (cit. on pp. 5, 18, 61, 133).

[DGL14] Pedro R. D’Argenio, Daniel Gebler, and Matias David Lee. “Axioma-

tizing Bisimulation Equivalences and Metrics from Probabilistic SOS

Rules”. In: Foundations of Software Science and Computation Struc-

tures - 17th International Conference, FOSSACS 2014, Held as Part

of the European Joint Conferences on Theory and Practice of Soft-

ware, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings.

Ed. by Anca Muscholl. Vol. 8412. Lecture Notes in Computer Science.

Springer, 2014, pp. 289–303 (cit. on pp. 60, 134).

[Dob08] Ernst-Erich Doberkat. “Erratum and Addendum: Eilenberg-Moore alge-

bras for stochastic relations”. In: Inf. Comput. 206.12 (2008), pp. 1476–

1484 (cit. on pp. 151, 153).

BIBLIOGRAPHY 248

[DP02] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order.

2nd ed. Cambridge University Press, 2002 (cit. on p. 29).

[Ési99] Z Ésik. “Group Axioms for Iteration”. In: Information and Computation

148.2 (1999), pp. 131–180. ISSN: 0890-5401 (cit. on pp. 63, 82, 83, 92,

135).

[FHS22] Tiago Ferreira, Gerco van Heerdt, and Alexandra Silva. “Tree-Based

Adaptive Model Learning”. In: A Journey from Process Algebra via

Timed Automata to Model Learning - Essays Dedicated to Frits Vaan-

drager on the Occasion of His 60th Birthday. Ed. by Nils Jansen,

Mariëlle Stoelinga, and Petra van den Bos. Vol. 13560. Lecture Notes

in Computer Science. Springer, 2022, pp. 164–179 (cit. on p. 60).

[GKS22] Dan R. Ghica, George Kaye, and David Sprunger. “Full abstraction for

digital circuits”. In: CoRR abs/2201.10456 (2022). arXiv: 2201.10456

(cit. on p. 64).

[GPG18] Sinem Getir, Esteban Pavese, and Lars Grunske. “Formal Semantics

for Probabilistic Verification of Stochastic Regular Expressions”. In:

Proceedings of the 27th International Workshop on Concurrency, Spec-

ification and Programming, Berlin, Germany, September 24-26, 2018.

Ed. by Bernd-Holger Schlingloff and Samira Akili. Vol. 2240. CEUR

Workshop Proceedings. CEUR-WS.org, 2018 (cit. on p. 218).

[GR84] William G. Golson and William C. Rounds. “Connections between two

theories of concurrency: metric spaces and synchronization trees”. In:

Inf. Control 57.2–3 (May 1984), pp. 102–124. ISSN: 0019-9958 (cit. on

p. 134).

[Gra22] Clemens Armin Grabmayer. “Milner’s Proof System for Regular Ex-

pressions Modulo Bisimilarity is Complete: Crystallization: Near-

Collapsing Process Graph Interpretations of Regular Expressions”. In:

LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer

https://arxiv.org/abs/2201.10456

BIBLIOGRAPHY 249

Science, Haifa, Israel, August 2 - 5, 2022. Ed. by Christel Baier and

Dana Fisman. ACM, 2022, 34:1–34:13 (cit. on pp. 64, 220).

[GSS95] Rob J. van Glabbeek, Scott A. Smolka, and Bernhard Steffen. “Reactive,

Generative and Stratified Models of Probabilistic Processes”. In: Inf.

Comput. 121.1 (1995), pp. 59–80 (cit. on pp. 6, 24, 137, 156, 223).

[GU24] Sergey Goncharov and Tarmo Uustalu. “A Unifying Categorical View

of Nondeterministic Iteration and Tests”. In: 35th International Con-

ference on Concurrency Theory, CONCUR 2024, September 9-13,

2024, Calgary, Canada. Ed. by Rupak Majumdar and Alexandra Silva.

Vol. 311. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2024, 25:1–25:22 (cit. on pp. 139, 219, 220).

[Gum00] H. Peter Gumm. Elements Of The General Theory Of Coalgebras. 2000

(cit. on pp. 20, 28, 154, 185, 216).

[Hag00] Esfandiar Haghverdi. “A categorical approach to linear logic, geometry

of proofs and full completeness”. PhD thesis. University of Ottawa,

Canada, 2000 (cit. on pp. 83, 135).

[Has97] Masahito Hasegawa. “Models of sharing graphs : a categorical seman-

tics of let and letrec”. PhD thesis. University of Edinburgh, UK, 1997

(cit. on pp. 83, 135).

[HJ04] Jesse Hughes and Bart Jacobs. “Simulations in coalgebra”. In: Theor.

Comput. Sci. 327.1-2 (2004), pp. 71–108 (cit. on p. 228).

[HJ98] Claudio Hermida and Bart Jacobs. “Structural Induction and Coinduc-

tion in a Fibrational Setting”. In: Inf. Comput. 145.2 (1998), pp. 107–

152 (cit. on p. 40).

[HJS07] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. “Generic Trace Seman-

tics via Coinduction”. In: Log. Methods Comput. Sci. 3.4 (2007) (cit. on

p. 219).

BIBLIOGRAPHY 250

[HKC18] Ichiro Hasuo, Toshiki Kataoka, and Kenta Cho. “Coinductive predicates

and final sequences in a fibration”. In: Math. Struct. Comput. Sci. 28.4

(2018), pp. 562–611 (cit. on p. 40).

[HM85] Matthew Hennessy and Robin Milner. “Algebraic laws for nondeter-

minism and concurrency”. In: J. ACM 32.1 (Jan. 1985), pp. 137–161.

ISSN: 0004-5411 (cit. on pp. 64, 66, 67, 79).

[Hou21] Nicholas Gauguin Houghton-Larsen. A Mathematical Framework for

Causally Structured Dilations and its Relation to Quantum Self-Testing.

2021. arXiv: 2103.02302 [quant-ph] (cit. on p. 134).

[Hsu17] Justin Hsu. “Probabilistic Couplings for Probabilistic Reasoning”. PhD

thesis. University of Pennsylvania, 2017 (cit. on pp. 225, 226).

[Jac06] Bart Jacobs. “A Bialgebraic Review of Deterministic Automata, Reg-

ular Expressions and Languages”. In: Algebra, Meaning, and Com-

putation, Essays Dedicated to Joseph A. Goguen on the Occasion of

His 65th Birthday. Ed. by Kokichi Futatsugi, Jean-Pierre Jouannaud,

and José Meseguer. Vol. 4060. Lecture Notes in Computer Science.

Springer, 2006, pp. 375–404 (cit. on pp. 21, 192, 219).

[Jac10a] Bart Jacobs. “Convexity, Duality and Effects”. In: Theoretical Com-

puter Science - 6th IFIP TC 1/WG 2.2 International Conference, TCS

2010, Held as Part of WCC 2010, Brisbane, Australia, September

20-23, 2010. Proceedings. Ed. by Cristian S. Calude and Vladimiro

Sassone. Vol. 323. IFIP Advances in Information and Communication

Technology. Springer, 2010, pp. 1–19 (cit. on p. 153).

[Jac10b] Bart Jacobs. “From Coalgebraic to Monoidal Traces”. In: Proceedings

of the Tenth Workshop on Coalgebraic Methods in Computer Science,

CMCS@ETAPS 2010, Paphos, Cyprus, March 26-28, 2010. Ed. by

Bart Jacobs, Milad Niqui, Jan J. M. M. Rutten, and Alexandra Silva.

Vol. 264. Electronic Notes in Theoretical Computer Science 2. Elsevier,

2010, pp. 125–140 (cit. on p. 220).

https://arxiv.org/abs/2103.02302

BIBLIOGRAPHY 251

[JL20] Mathias Claus Jensen and Kim Guldstrand Larsen. “A complete axiom-

atization of weighted branching bisimulation”. In: Acta Informatica

57.3-5 (2020), pp. 689–725 (cit. on p. 64).

[JSS15] Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace semantics via

determinization”. In: J. Comput. Syst. Sci. 81.5 (2015), pp. 859–879

(cit. on pp. 147, 158, 219).

[JSV96] André Joyal, Ross Street, and Dominic Verity. “Traced monoidal cate-

gories”. In: Mathematical Proceedings of the Cambridge Philosophical

Society 119.3 (1996), pp. 447–468 (cit. on pp. 79, 83, 93, 101, 102).

[Kap+18] Tobias Kappé, Paul Brunet, Alexandra Silva, and Fabio Zanasi. “Con-

current Kleene Algebra: Free Model and Completeness”. In: ESOP.

Vol. 10801. Lecture Notes in Computer Science. Springer, 2018,

pp. 856–882 (cit. on p. 16).

[Kel82] G.M. Kelly. Basic Concepts of Enriched Category Theory. Lecture note

series / London mathematical society. Cambridge University Press,

1982. ISBN: 9780521287029 (cit. on p. 103).

[Kie+11] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and

James Worrell. “Language Equivalence for Probabilistic Automata”. In:

Computer Aided Verification - 23rd International Conference, CAV

2011, Snowbird, UT, USA, July 14-20, 2011. Proceedings. Ed. by

Ganesh Gopalakrishnan and Shaz Qadeer. Vol. 6806. Lecture Notes in

Computer Science. Springer, 2011, pp. 526–540 (cit. on pp. 19, 218).

[Kie+12] Stefan Kiefer, Andrzej S. Murawski, Joël Ouaknine, Björn Wachter, and

James Worrell. “APEX: An Analyzer for Open Probabilistic Programs”.

In: Computer Aided Verification - 24th International Conference, CAV

2012, Berkeley, CA, USA, July 7-13, 2012 Proceedings. Ed. by P. Mad-

husudan and Sanjit A. Seshia. Vol. 7358. Lecture Notes in Computer

Science. Springer, 2012, pp. 693–698 (cit. on pp. 6, 19, 218).

BIBLIOGRAPHY 252

[KK05] Lucja Kot and Dexter Kozen. “Kleene Algebra and Bytecode Verifica-

tion”. In: Proceedings of the First Workshop on Bytecode Semantics,

Verification, Analysis and Transformation, Bytecode@ETAPS 2005, Ed-

inburgh, UK, April 9, 2005. Ed. by Fausto Spoto. Vol. 141. Electronic

Notes in Theoretical Computer Science 1. Elsevier, 2005, pp. 221–236

(cit. on p. 138).

[KL80] G.M. Kelly and M.L. Laplaza. “Coherence for compact closed cate-

gories”. In: Journal of Pure and Applied Algebra 19 (1980), pp. 193–

213. ISSN: 0022-4049 (cit. on pp. 79, 101, 106).

[Kle51] S.C. Kleene. Representation of Events in Nerve Nets and Finite Au-

tomata. Memorandum (Rand Corporation). Rand Corporation, 1951

(cit. on pp. 15, 137, 223).

[Koz94] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and the

Algebra of Regular Events”. In: Inf. Comput. 110.2 (1994), pp. 366–390

(cit. on pp. 5, 16, 48, 137, 138, 193, 219, 220, 223).

[KP00] Dexter Kozen and Maria-Christina Patron. “Certification of Compiler

Optimizations Using Kleene Algebra with Tests”. In: Computational

Logic - CL 2000, First International Conference, London, UK, 24-

28 July, 2000, Proceedings. Ed. by John W. Lloyd, Veronica Dahl,

Ulrich Furbach, Manfred Kerber, Kung-Kiu Lau, Catuscia Palamidessi,

Luis Moniz Pereira, Yehoshua Sagiv, and Peter J. Stuckey. Vol. 1861.

Lecture Notes in Computer Science. Springer, 2000, pp. 568–582 (cit.

on p. 138).

[KR15] Bartek Klin and Jurriaan Rot. “Coalgebraic Trace Semantics via For-

getful Logics”. In: Foundations of Software Science and Computation

Structures - 18th International Conference, FoSSaCS 2015, Held as

Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings.

BIBLIOGRAPHY 253

Ed. by Andrew M. Pitts. Vol. 9034. Lecture Notes in Computer Science.

Springer, 2015, pp. 151–166 (cit. on p. 219).

[Kro90] Daniel Krob. “A Complete System of B-Rational Identities”. In: Au-

tomata, Languages and Programming, 17th International Colloquium,

ICALP90, Warwick University, England, UK, July 16-20, 1990, Pro-

ceedings. Ed. by Mike Paterson. Vol. 443. Lecture Notes in Computer

Science. Springer, 1990, pp. 60–73 (cit. on pp. 16, 137).

[KS96] Dexter Kozen and Frederick Smith. “Kleene Algebra with Tests: Com-

pleteness and Decidability”. In: CSL. Vol. 1258. Lecture Notes in

Computer Science. Springer, 1996, pp. 244–259 (cit. on p. 16).

[KTW17] Aleks Kissinger, Sean Tull, and Bas Westerbaan. Picture-perfect Quan-

tum Key Distribution. 2017. arXiv: 1704.08668 [quant-ph] (cit. on

p. 134).

[Kwi90] Marta Z. Kwiatkowska. “A Metric for Traces”. In: Inf. Process. Lett.

35.3 (1990), pp. 129–135 (cit. on p. 60).

[LFT11] Kim G. Larsen, Uli Fahrenberg, and Claus R. Thrane. “Metrics for

weighted transition systems: Axiomatization and complexity”. In:

Theor. Comput. Sci. 412.28 (2011), pp. 3358–3369 (cit. on pp. 60,

63, 134, 222).

[Lob+24] Gabriele Lobbia, Wojciech Różowski, Ralph Sarkis, and Fabio Zanasi.

“Quantitative Monoidal Algebra: Axiomatising Distance with String

Diagrams”. In: CoRR abs/2410.09229 (2024). arXiv: 2410.09229 (cit.

on pp. 6, 103, 104, 134, 222).

[Lor21] Fosco Loregian. (Co)end Calculus. London Mathematical Society Lec-

ture Note Series. Cambridge University Press, 2021 (cit. on p. 105).

[LS91] Kim Guldstrand Larsen and Arne Skou. “Bisimulation through Proba-

bilistic Testing”. In: Inf. Comput. 94.1 (1991), pp. 1–28 (cit. on pp. 19,

155, 165, 168).

https://arxiv.org/abs/1704.08668
https://arxiv.org/abs/2410.09229

BIBLIOGRAPHY 254

[Mil10] Stefan Milius. “A Sound and Complete Calculus for Finite Stream

Circuits”. In: Proceedings of the 25th Annual IEEE Symposium on

Logic in Computer Science, LICS 2010, 11-14 July 2010, Edinburgh,

United Kingdom. IEEE Computer Society, 2010, pp. 421–430 (cit. on

pp. 21, 153, 192, 214, 219).

[Mil18] Stefan Milius. “Proper Functors and Fixed Points for Finite Behaviour”.

In: Log. Methods Comput. Sci. 14.3 (2018) (cit. on pp. 6, 21, 139, 166,

195, 196, 219, 223).

[Mil84] Robin Milner. “A Complete Inference System for a Class of Regular

Behaviours”. In: J. Comput. Syst. Sci. 28.3 (1984), pp. 439–466 (cit. on

pp. 17, 22, 23, 49, 63, 64, 68, 69, 91, 127, 133, 139, 167, 220, 221).

[Mos99] Lawrence S. Moss. “Coalgebraic Logic”. In: Ann. Pure Appl. Log.

96.1-3 (1999), pp. 277–317 (cit. on p. 127).

[MOW03] Michael W. Mislove, Joël Ouaknine, and James Worrell. “Axioms

for Probability and Nondeterminism”. In: Proceedings of the 10th

International Workshop on Expressiveness in Concurrency, EXPRESS

2003, Marseille, France, September 2, 2003. Ed. by Flavio Corradini

and Uwe Nestmann. Vol. 96. Electronic Notes in Theoretical Computer

Science. Elsevier, 2003, pp. 7–28 (cit. on p. 218).

[MPP16] Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. “Quan-

titative Algebraic Reasoning”. In: Proceedings of the 31st Annual

ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New

York, NY, USA, July 5-8, 2016. Ed. by Martin Grohe, Eric Koskinen,

and Natarajan Shankar. ACM, 2016, pp. 700–709 (cit. on pp. 22, 27,

28, 42, 43, 46, 48, 60, 61, 133, 134, 221, 223).

[MPP21] Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. “Fixed-

Points for Quantitative Equational Logics”. In: 36th Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,

June 29 - July 2, 2021. IEEE, 2021, pp. 1–13 (cit. on pp. 62, 223).

BIBLIOGRAPHY 255

[MPW20] Stefan Milius, Dirk Pattinson, and Thorsten Wißmann. “A new foun-

dation for finitary corecursion and iterative algebras”. In: Inf. Comput.

271 (2020), p. 104456 (cit. on pp. 154, 216, 219).

[MSV24] Matteo Mio, Ralph Sarkis, and Valeria Vignudelli. “Universal Quantita-

tive Algebra for Fuzzy Relations and Generalised Metric Spaces”. In:

Log. Methods Comput. Sci. 20.4 (2024) (cit. on pp. 133, 134).

[MU19] Stefan Milius and Henning Urbat. “Equational Axiomatization of Al-

gebras with Structure”. In: Foundations of Software Science and Com-

putation Structures - 22nd International Conference, FOSSACS 2019,

Held as Part of the European Joint Conferences on Theory and Practice

of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,

Proceedings. Ed. by Mikolaj Bojanczyk and Alex Simpson. Vol. 11425.

Lecture Notes in Computer Science. Springer, 2019, pp. 400–417 (cit.

on p. 133).

[Niv79] Maurice Nivat. “Infinite words, infinite trees, infinite computations”. In:

Foundations of computer science III 2 (1979), pp. 3–52 (cit. on p. 134).

[OKT53] Shigeo Ozaki, Sadao Kashiwagi, and Teruo Tsuboi. “Note on Normed

Rings”. In: Science Reports of the Tokyo Bunrika Daigaku, Section A

4.98/103 (1953), pp. 277–282. ISSN: 03713334 (cit. on p. 38).

[Par81] David Park. “Concurrency and automata on infinite sequences”. In:

Theoretical Computer Science. Ed. by Peter Deussen. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 1981, pp. 167–183. ISBN: 978-3-540-

38561-5 (cit. on p. 16).

[Per24] Paolo Perrone. “Markov Categories and Entropy”. In: IEEE Trans. Inf.

Theor. 70.3 (Mar. 2024), pp. 1671–1692. ISSN: 0018-9448 (cit. on

p. 134).

[Pie+24] Robin Piedeleu, Mateo Torres-Ruiz, Alexandra Silva, and Fabio Zanasi.

“A Complete Axiomatisation of Equivalence for Discrete Probabilistic

BIBLIOGRAPHY 256

Programming”. In: CoRR abs/2408.14701 (2024). arXiv: 2408.14701

(cit. on pp. 64, 222).

[PZ23a] Robin Piedeleu and Fabio Zanasi. “A Finite Axiomatisation of Finite-

State Automata Using String Diagrams”. In: Log. Methods Comput. Sci.

19.1 (2023) (cit. on pp. 23, 65, 84, 114, 115, 133).

[PZ23b] Robin Piedeleu and Fabio Zanasi. “An Introduction to String Diagrams

for Computer Scientists”. In: CoRR abs/2305.08768 (2023). arXiv:

2305.08768 (cit. on pp. 22, 64, 79, 84, 106).

[Rab63] Michael O. Rabin. “Probabilistic automata”. In: Information and Con-

trol 6.3 (1963), pp. 230–245. ISSN: 0019-9958 (cit. on pp. 16, 19, 156,

218).

[Rab93] Alexander Moshe Rabinovich. “A Complete Axiomatisation for Trace

Congruence of Finite State Behaviors”. In: Mathematical Foundations

of Programming Semantics, 9th International Conference, New Orleans,

LA, USA, April 7-10, 1993, Proceedings. Ed. by Stephen D. Brookes,

Michael G. Main, Austin Melton, Michael W. Mislove, and David A.

Schmidt. Vol. 802. Lecture Notes in Computer Science. Springer, 1993,

pp. 530–543 (cit. on p. 219).

[Red64] V. N. Redko. “On defining relations for the algebra of regular events”.

In: Ukrainskii Matematicheskii Zhurnal 16 (1 1964), pp. 120–126 (cit.

on p. 16).

[RJL21] Jurriaan Rot, Bart Jacobs, and Paul Blain Levy. “Steps and traces”. In:

J. Log. Comput. 31.6 (2021), pp. 1482–1525 (cit. on p. 219).

[Ros00] Brian J. Ross. “Probabilistic Pattern Matching and the Evolution of

Stochastic Regular Expressions”. In: Appl. Intell. 13.3 (2000), pp. 285–

300 (cit. on pp. 20, 138, 218).

[Róż+23] Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and

Alexandra Silva. “Probabilistic Guarded KAT Modulo Bisimilarity:

Completeness and Complexity”. In: 50th International Colloquium on

https://arxiv.org/abs/2408.14701
https://arxiv.org/abs/2305.08768

BIBLIOGRAPHY 257

Automata, Languages, and Programming, ICALP 2023, July 10-14,

2023, Paderborn, Germany. Ed. by Kousha Etessami, Uriel Feige, and

Gabriele Puppis. Vol. 261. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2023, 136:1–136:20 (cit. on pp. 62, 218).

[Róż+25] Wojciech Różowski, Robin Piedeleu, Alexandra Silva, and Fabio

Zanasi. “A Diagrammatic Axiomatisation of Behavioural Distance

of Nondeterministic Processes”. Under review. 2025 (cit. on p. 23).

[Róż24] Wojciech Różowski. “A Complete Quantitative Axiomatisation of Be-

havioural Distance of Regular Expressions”. In: 51st International Col-

loquium on Automata, Languages, and Programming (ICALP 2024).

Ed. by Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svens-

son. Vol. 297. Leibniz International Proceedings in Informatics (LIPIcs).

Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Infor-

matik, 2024, 149:1–149:20. ISBN: 978-3-95977-322-5 (cit. on p. 22).

[RS24] Wojciech Różowski and Alexandra Silva. “A Completeness Theorem

for Probabilistic Regular Expressions”. In: Proceedings of the 39th

Annual ACM/IEEE Symposium on Logic in Computer Science, LICS

2024, Tallinn, Estonia, July 8-11, 2024. Ed. by Pawel Sobocinski, Ugo

Dal Lago, and Javier Esparza. ACM, 2024, 66:1–66:14 (cit. on p. 24).

[RS59] M. O. Rabin and D. Scott. “Finite Automata and Their Decision Prob-

lems”. In: IBM Journal of Research and Development 3.2 (1959),

pp. 114–125 (cit. on p. 16).

[Rud90] Walter Rudin. Functional Analysis. en. 2nd ed. International Series in

Pure & Applied Mathematics. Maidenhead, England: McGraw Hill

Higher Education, Oct. 1990 (cit. on p. 38).

[Rut00] J.J.M.M. Rutten. “Universal coalgebra: a theory of systems”. In: The-

oretical Computer Science 249.1 (2000). Modern Algebra, pp. 3–80.

ISSN: 0304-3975 (cit. on pp. 20, 28, 30, 31, 58, 128, 133, 139, 168).

BIBLIOGRAPHY 258

[Sal66] Arto Salomaa. “Two Complete Axiom Systems for the Algebra of

Regular Events”. In: J. ACM 13.1 (Jan. 1966), pp. 158–169. ISSN:

0004-5411 (cit. on pp. 16, 28, 42, 47, 48, 58, 62, 137–140, 167, 204,

223).

[San11] Davide Sangiorgi. “Coinduction and the duality with induction”. In:

Introduction to Bisimulation and Coinduction. Cambridge University

Press, 2011, pp. 28–88 (cit. on p. 55).

[Sch+21] Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva.

“Guarded Kleene Algebra with Tests: Coequations, Coinduction, and

Completeness”. In: 48th International Colloquium on Automata, Lan-

guages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow,

Scotland (Virtual Conference). Ed. by Nikhil Bansal, Emanuela Merelli,

and James Worrell. Vol. 198. LIPIcs. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021, 142:1–142:14 (cit. on pp. 135, 163).

[Sch+22] Todd Schmid, Wojciech Różowski, Alexandra Silva, and Jurriaan Rot.

“Processes Parametrised by an Algebraic Theory”. In: 49th International

Colloquium on Automata, Languages, and Programming, ICALP 2022,

July 4-8, 2022, Paris, France. Ed. by Mikolaj Bojanczyk, Emanuela

Merelli, and David P. Woodruff. Vol. 229. LIPIcs. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2022, 132:1–132:20 (cit. on pp. 62,

222).

[Sch08] Lutz Schröder. “Expressivity of coalgebraic modal logic: The limits

and beyond”. In: Theor. Comput. Sci. 390.2-3 (2008), pp. 230–247

(cit. on p. 223).

[Sch61] M.P. Schützenberger. “On the definition of a family of automata”. In:

Information and Control 4.2 (1961), pp. 245–270. ISSN: 0019-9958

(cit. on p. 16).

BIBLIOGRAPHY 259

[Sel10] P. Selinger. “A Survey of Graphical Languages for Monoidal Cate-

gories”. In: New Structures for Physics. Springer Berlin Heidelberg,

2010, pp. 289–355. ISBN: 9783642128219 (cit. on pp. 22, 64, 79, 84).

[Sew95] Peter Michael Sewell. “The Algebra of Finite State Processes”. PhD

thesis. University of Edinburgh, 1995 (cit. on pp. 68, 69, 91, 135).

[Sil+10] Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan

J. M. M. Rutten. “Generalizing the powerset construction, coalge-

braically”. In: IARCS Annual Conference on Foundations of Software

Technology and Theoretical Computer Science, FSTTCS 2010, Decem-

ber 15-18, 2010, Chennai, India. Ed. by Kamal Lodaya and Meena

Mahajan. Vol. 8. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2010, pp. 272–283 (cit. on pp. 21, 147, 168, 219, 224).

[Sil10] A.M Silva. “Kleene coalgebra”. PhD thesis. Radboud Universiteit Ni-

jmegen, 2010 (cit. on pp. 34, 58, 62, 192, 219, 223).

[Smo+20] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen,

and Alexandra Silva. “Guarded Kleene algebra with tests: verification of

uninterpreted programs in nearly linear time”. In: Proc. ACM Program.

Lang. 4.POPL (2020), 61:1–61:28 (cit. on pp. 62, 135).

[Sok05] Ana Sokolova. “Coalgebraic analysis of probabilistic systems”. PhD

thesis. Technische Universiteit Eindhoven, 2005 (cit. on pp. 219, 226,

227).

[SP00] Alex K. Simpson and Gordon D. Plotkin. “Complete Axioms for Cat-

egorical Fixed-Point Operators”. In: 15th Annual IEEE Symposium

on Logic in Computer Science, Santa Barbara, California, USA, June

26-29, 2000. IEEE Computer Society, 2000, pp. 30–41 (cit. on p. 135).

[Spr+21] David Sprunger, Shin-ya Katsumata, Jérémy Dubut, and Ichiro Ha-

suo. “Fibrational bisimulations and quantitative reasoning: Extended

version”. In: J. Log. Comput. 31.6 (2021), pp. 1526–1559 (cit. on p. 40).

BIBLIOGRAPHY 260

[SRS21] Todd Schmid, Jurriaan Rot, and Alexandra Silva. “On Star Expres-

sions and Coalgebraic Completeness Theorems”. In: Proceedings 37th

Conference on Mathematical Foundations of Programming Seman-

tics, MFPS 2021, Hybrid: Salzburg, Austria and Online, 30th August -

2nd September, 2021. Ed. by Ana Sokolova. Vol. 351. EPTCS. 2021,

pp. 242–259 (cit. on pp. 67, 219).

[SS00] Eugene W. Stark and Scott A. Smolka. “A complete axiom system for

finite-state probabilistic processes”. In: Proof, Language, and Interac-

tion, Essays in Honour of Robin Milner. Ed. by Gordon D. Plotkin,

Colin Stirling, and Mads Tofte. The MIT Press, 2000, pp. 571–596

(cit. on pp. 19, 61, 64, 218, 221).

[SS11] Alexandra Silva and Ana Sokolova. “Sound and Complete Axiomatiza-

tion of Trace Semantics for Probabilistic Systems”. In: Twenty-seventh

Conference on the Mathematical Foundations of Programming Se-

mantics, MFPS 2011, Pittsburgh, PA, USA, May 25-28, 2011. Ed. by

Michael W. Mislove and Joël Ouaknine. Vol. 276. Electronic Notes in

Theoretical Computer Science. Elsevier, 2011, pp. 291–311 (cit. on

pp. 19, 21, 156–158, 218).

[Sto49] Michael H. Stone. “Postulates for the barycentric calculus”. In: Annali

di Matematica Pura ed Applicata 29 (1949), pp. 25–30 (cit. on p. 143).

[SW15] Ana Sokolova and Harald Woracek. “Congruences of convex algebras”.

In: Journal of Pure and Applied Algebra 219.8 (2015), pp. 3110–3148.

ISSN: 0022-4049 (cit. on pp. 139, 151, 153, 193, 214, 223).

[SW18] Ana Sokolova and Harald Woracek. “Proper Semirings and Proper Con-

vex Functors”. In: Foundations of Software Science and Computation

Structures - 21st International Conference, FOSSACS 2018, Held as

Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Pro-

ceedings. Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803. Lecture

BIBLIOGRAPHY 261

Notes in Computer Science. Springer, 2018, pp. 331–347 (cit. on pp. 21,

23, 139, 166, 196, 197, 219, 223).

[van12] Franck van Breugel. “On behavioural pseudometrics and closure ordi-

nals”. In: Information Processing Letters 112.19 (2012), pp. 715–718.

ISSN: 0020-0190 (cit. on pp. 38, 73).

[Vil09] Cédric Villani. Optimal Transport. Springer Berlin Heidelberg, 2009.

ISBN: 9783540710509 (cit. on p. 18).

[VR99] Erik P. de Vink and Jan J. M. M. Rutten. “Bisimulation for Probabilistic

Transition Systems: A Coalgebraic Approach”. In: Theor. Comput. Sci.

221.1-2 (1999), pp. 271–293 (cit. on pp. 20, 219).

[Wag+19] Jana Wagemaker, Marcello M. Bonsangue, Tobias Kappé, Jurriaan

Rot, and Alexandra Silva. “Completeness and Incompleteness of Syn-

chronous Kleene Algebra”. In: MPC. 2019, pp. 385–413 (cit. on pp. 16,

48).

[Wiß22] Thorsten Wißmann. “Minimality Notions via Factorization Systems

and Examples”. In: Log. Methods Comput. Sci. 18.3 (2022) (cit. on

p. 216).

[Zha+25] Cheng Zhang, Tobias Kappé, David E. Narváez, and Nico Naus. “CF-

GKAT: Efficient Validation of Control-Flow Transformations”. In: Proc.

ACM Program. Lang. 9.POPL (2025), pp. 600–626 (cit. on pp. 5, 135).

	Introduction
	Behavioural Distances
	Probabilistic Language Equivalence
	Coalgebra
	Overview of the thesis

	I Behavioural Distances
	Behavioural Distance of Regular Expressions
	Preliminaries
	Coalgebra
	Deterministic automata
	Regular expressions
	Brzozowski derivatives
	Pseudometric spaces
	Banach spaces

	Behavioural distance of deterministic automata
	Coalgebraic behavioural distances
	Behavioural distance of deterministic automata via functor lifting

	Quantitative Axiomatisation
	Quantitative equational theories
	Quantitative algebras
	Quantitative algebra of regular expressions
	The lack of the fixpoint axiom

	Completeness
	Behavioural distance of finite-state automata
	Completeness result

	Discussion

	Behavioural Distance of Nondeterministic Processes
	Preliminaries
	Charts
	Algebra of regular behaviours
	Behavioural distance of precharts
	Monoidal categories
	Conway theories
	Trace-fixpoint correspondence
	Int construction

	Monoidal Syntax
	Monoidal semantics
	RegBeh as a Conway theory
	Pseudometric structure on RegBeh
	A category of bidirectional regular behaviours
	Interlude: Connections to enriched category theory
	Functorial semantics

	Axiomatisation
	Completeness
	Left-to-right diagrams
	Co-copying
	One-to-n diagrams
	Completeness result

	Discussion

	II Probabilistic Language Equivalence
	Probabilistic Regular Expressions
	Overview
	Syntax
	Language semantics
	Generative probabilistic transition systems
	Axiomatisation of language equivalence of PRE

	Preliminaries
	Locally finitely presentable categories
	Monads and their algebras
	Generalised determinisation
	Subdistribution monad
	Positive convex algebras
	Rational fixpoint

	Operational semantics
	Language semantics of GPTS
	Antimirov derivatives
	Roadmap to soundness and completeness

	Soundness
	Step 1: Soundness with respect to bisimilarity
	Step 2a: Fundamental theorem
	Step 2b: Algebra structure
	Step 3: Coalgebra structure
	Step 4: Soundness result

	Completeness
	Step 1: Algebra structure
	Step 2: Proper functors
	Step 3: Systems of equations
	Step 4: Correspondence of solutions and homomorphisms
	Step 5: Establish the universal property

	Discussion
	Related work
	Future work

	Conclusions and Future Work
	Completeness theorems for behavioural distances
	Probabilistic language equivalence

	Appendices
	Omitted proofs from chapter4
	Couplings of subdistributions
	Relation lifting
	Soundness argument

