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Abstract
1.	 Global calls for greater ocean protection have sparked renewed interest in very 

large marine protected areas (VLMPAs, >100,000 km2) to achieve management 
targets; however, their conservation value is debated.

2.	 We assessed the suitability of a VLMPA (640,000 km2) in the Indian Ocean for 
capturing the movements of resident mobile marine megafauna. We found that 
95% of foraging, breeding and/or locally migrating individuals occurred within the 
VLMPA despite variable habitat use; adult hawksbill turtles (Eretmochelys imbri-
cata, n = 22, 6124 tracking days) foraged on mesophotic banks (>30 m depth), reef 
manta rays (Mobula alfredi, n = 23, 652 tracking days) used shallow submerged 
banks, and seabirds (red-footed boobies Sula sula, brown boobies Sula leucogaster, 
wedge-tailed shearwaters Ardenna pacifica, n = 257, 1084 tracking days) collec-
tively foraged throughout coastal to pelagic waters.

3.	 To understand the size of MPA necessary to encompass resident mobile species, 
we assessed overlap with smaller and larger hypothetical MPAs. An MPA meet-
ing the minimum threshold of a VLMPA (>100,000 km2) would encompass 97% 
of manta and 94% of turtle locations, and 59% of all seabird locations because of 
their more pelagic distribution.

4.	 Synthesis and applications. Our results provide clear evidence for the value of 
the large scale of the Chagos Archipelago very large marine protected area for 
protection of taxonomically diverse mobile megafauna. Further, we highlight 
the value of the VLMPA approach as a strategy towards achieving 30% ocean 
protection by 2030.
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1  |  INTRODUC TION

Very large marine protected areas (VLMPAs, >100,000 km2) are 
often seen as a critical tool for meeting international calls for in-
creased global ocean protection (Toonen et al., 2013), such as the 
‘30 × 30’ target for 30% protection by 2030, which is central to the 
United Nations Kunming–Montreal Global Biodiversity Agreement. 
Indeed, the world's 100 largest marine protected areas (MPAs) pro-
vide nearly 90% of global marine spatial protection coverage (Pike 
et al., 2024). However, it could be argued that such a route to conser-
vation planning might miss species-specific resource needs (Belote 
et al., 2021), and the value of VLMPAs to highly mobile taxa remains 
ambiguous (Conners et al., 2022). Where animals show basin-wide 
or global-scale movements, they will not remain continuously within 
even the world's largest marine protected areas (Beal et al., 2021; 
Gilmour et al., 2022; Trevail, Nicoll, et al., 2023), which typically ex-
tend across 1000 km. In this context, there have been well-justified 
calls for enhanced protection in other areas that wide-ranging ani-
mals move through, including better management of high seas areas 
beyond national jurisdiction (Harrison et al., 2018; Sala et al., 2021; 
Sequeira et al., 2019).

Set against this backdrop, VLMPAs can still have benefits for ses-
sile animals and algae, or those that move over shorter distances, for 
example coral reef-associated fauna (Sala et al., 2021). Importantly, 
no-take marine reserves provide the most effective tool for bio-
diversity resilience when ecosystem complexity is restored (Sala 
& Giakoumi,  2018), including marine megafauna populations 
(Hammerschlag et al., 2019), which have roles in, for example, nutri-
ent transfer (Graham et al., 2018) and food web stabilisation (Rooney 
et al., 2006). Furthermore, marine megafauna can be important indi-
cators of ecosystem processes, and therefore, their distributions are 
useful for establishing marine protected area boundaries (Hooker & 
Gerber, 2004). Therefore, given the pressing need to protect more 
of the global oceans with high-quality conservation measures (Pike 
et al., 2024), and empirically assess existing MPA adequacy (Conners 
et al., 2022), we aim to address the suitability of a VLMPA to protect 
a diverse range of mobile megafauna species during breeding, forag-
ing and local migrations.

The Chagos Archipelago fully protected marine protected 
area was designated in 2010, and remains one of the largest 
MPAs globally at 640,000 km2 (Figure  1a). The VLMPA not only 
supports the world's largest contiguous undamaged reef area 
(Sheppard et  al.,  2012), but also surrounding offshore habitats, 
such as open ocean areas and a network of seamounts that pro-
vide foraging grounds for globally important megafauna commu-
nities, which are some of the most pristine of their kind (Hays 
et al., 2020). The protection of such pelagic habitats is considered 
an important benefit of VLMPAs (Toonen et  al., 2013); however, 

mismatches between the scale of VLMPAs and marine megafauna 
ranges and/or critical habitats are still a cause for concern (Agardy 
et al., 2011; Conners et al., 2022). Here, we assess the extent to 
which the Chagos VMPA encompasses movements and habitats 
of marine vertebrates with diverse home ranges: Chondrichthyes 
(reef manta rays) that forage for nearshore and mesopelagic zoo-
plankton (Harris et al., 2023; Peel et al., 2019), Reptilia (sea turtles) 
that forage on submerged atoll reefs (Hays et al., 2024), and Aves 
(seabirds) that surface feed in pelagic areas (Trevail et  al.,  2024; 
Trevail, Wood, et al., 2023) often in association with sub-surface 
predators (Jaquemet et  al.,  2004). We also test how variation in 
MPA size might benefit different levels of taxonomic diversity, and 
hence, our study will offer insight into the value of differing sizes 
of MPAs for global conservation planning.

2  |  MATERIAL S AND METHODS

2.1  |  Tracking at-sea movements

Between 2015 and 2024, 23 reef manta rays (Mobula alfredi; 12 
adults, eight juveniles, and five of unknown maturity) were tracked 
with a combination of towed Argos tags (SPOT-253C = 5, SPOT-
253G = 8 and SPLASH10-F (Fastloc-GPS) = 10, Wildlife Computers, 
Seattle, Washington, USA) within their foraging grounds (Figure 1b). 
Tags were deployed to the upper right dorsal musculature with a 
titanium anchor attached to a one-metre-long stainless-steel tether 
with a mid-line swivel, using a modified Hawaiian hand sling while 
swimming behind the animal. Prior to being tagged, each individual 
was identified as unique by photographing their distinct ventral spot 
pattern and their age was determined visually (Stevens,  2017). To 
estimate the most likely movement paths from manta ray satellite 
telemetry locations, the hierarchical version of the Bayesian state-
space model of the first difference correlated random walk (hDCRW) 
was fitted to all data to correct errors associated with locations and 
regularise position estimates to a 5-h time-step. The model was 
fitted in R 4.3.1 using the bsam R package, which implements the 
model using Markov chains Monte Carlo (MCMC) via JAGS software 
(Jonsen et al., 2013). Two independent MCMC chains were run using 
10,000 adaptive (burn-in) samples, and then, every 50th sample of 
5000 was drawn from the posterior distribution to reduce within-
chain autocorrelation. Model convergence was assessed using the 
‘diag_ssm’ function in the bsam package, which uses Gelman and 
Rubin's shrink factor (Jonsen et al., 2013).

Central-place foraging movements of breeding adult seabirds 
were recorded from four colonies within the Chagos Archipelago 
(Figure  1b). Red-footed boobies (Sula sula) were tracked using ar-
chival GPS loggers (igotU GT-120, Mobile Action/Axytrek marine, 

K E Y W O R D S
biologging, chagos archipelago, manta ray, marine conservation, movement ecology, MPA, 
seabirds, turtles
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    |  3TREVAIL et al.

Technosmart) at Barton Point (7.23° S, 72.43° E), East Island (7.23° S, 
72.42° E); Nelson's Island (5.68° S, 72.32° E); and Danger Island 
(6.39° S, 71.24° E) during 2016, 2018–2019, and 2022–2023 (Trevail, 
Wood, et al., 2023). Brown boobies (Sula leucogaster) were tracked 
using archival GPS loggers (igotU GT-120, Mobile Action) at Nelson's 
Island and Danger Island during 2018–2019 (Trevail et  al.,  2024). 
Wedge-tailed shearwaters (Ardenna pacifica) were tracked using 
remote-download GPS loggers (Axytrek remote, Technosmart/
nanofix GEO + RF, Pathtrack) during 2023–2024 at Nelson's Island. 
Loggers were attached to the central 2–4 tail feathers with TESA 
tape and were set to record a position every 5–15 min. All seabirds 
were tracked during pre-breeding, incubation, or chick-rearing. 
Central-place foraging trips were identified using a 1 km threshold 

from the colony, and fixes at the breeding colony were removed 
(Trevail et al., 2024).

Adult female hawksbill turtles (Eretmochelys imbricata) were 
equipped with Fastloc-GPS Argos tags (SPLASH10-BF, Wildlife 
Computers, Seattle, Washington, USA) after they had completed 
nesting on Diego Garcia during 2018 and 2019 (Hays et al., 2024; 
Figure 1b). Tags were attached to a cleaned and lightly sandpapered 
area of the carapace using epoxy, which was then smoothed and 
covered with anti-fouling paint (Esteban et al., 2017).

All seabird tracking was approved by ethics committees at the 
Institute of Zoology, Zoological Society London, and the University 
of Exeter, under licence from the British Trust for Ornithology and 
through research permit numbers 0001SE18, 007SE18, 0000SE19, 

F I G U R E  1  Marine megafauna species tracked throughout the Chagos Archipelago marine protected area (MPA), one of a global network 
of very large MPAs. (a) Global implemented and >60% fully/highly protected, implemented but <60% fully/highly protected, and designated 
but 0% fully/highly protected, very large marine protected areas (VLMPAs) with the study site indicated by a black arrow (b) tag deployment 
locations within the Chagos Archipelago MPA. (c) A reef manta ray photographed before tag deployment to determine unique ventral spot 
patterning (photo: Simon Hilbourne Manta Trust). (d) A breeding red-footed booby with its GPS logger obscured under its tail feathers 
(photo: authors). (e) A hawksbill turtle equipped with a Fastloc-GPS Argos tag after nesting (photo: authors). In panel (b), point shape varies 
by class, and where multiple species were tracked at a single site, points are connected to the deployment location by coloured lines. Areas 
shallower than approximately 100 m are shaded grey, and islands are solid black. Marine protected areas >100,000 km as assessed by Pike 
et al. (2024) were accessed via the MPA Atlas (https://​mpatl​as.​org/​large​-​mpas/​) and downloaded from the World Database on Protected 
Areas (prote​ctedp​lanet.​net; UNEP-WCMC and IUCN, 2021). We note that <10 newly designated MPAs were unavailable from the WDPA 
as of January 2025.
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0006SE19, 000SE22 and 0011SE22. All reef manta ray tagging ac-
tivities were approved by the University of Plymouth Animals in 
Science Ethics Committee under permit ETHICS-55-2023. Hawksbill 
turtle tracking work was approved by Swansea University and 
Deakin University Ethics Committees and through research permit 
numbers 0009SE18 and 0011SE19.

2.2  |  Spatial distributions

To identify class hotspots (i.e. manta, seabird, and turtles), we es-
timated core (50%) and home range (90%) utilisation distributions 
across the entire tracking period using fixed bandwidths of 5, 15 
and 5 km, respectively, in the R package eks (Duong, 2024). These 
bandwidths reduced the over-fragmentation observed with default 
or automatic bandwidths and were based on the daily movement 
ranges of the classes. We calculated utilisation distributions for each 
species, and then aggregated areas at class level to ensure equal spe-
cies representation. To map areas where multiple classes overlap, 
we counted species presence across a hexagonal grid with a cell di-
ameter of 20 km encompassing the MPA and the full extent of the 
tracks and present the total number of classes present per grid cell, 
akin to a measure of richness (Trevail, Nicoll, et al., 2023).

To understand habitat types used by each class, we ex-
tracted ETOPO 2022 bathymetry from the National Oceanic and 
Atmospheric Administration (NOAA) via the R package marmap 
(Pante et al., 2023). While there are many environmental variables 
that can enhance mechanistic understanding of species distribu-
tions (e.g. Dunn, Freeman, et al., 2024), here we are interested in 
whether the Chagos Archipelago MPA captures used habitats at 
a broad scale, and therefore, we use bathymetry as a proxy for 
habitat types. Surrounding the Chagos Archipelago, shallow ba-
thymetry values indicate productive shallow and mesophotic 
reefs (0–100 m) and seagrass meadows (Esteban et  al.,  2018; 
Hays et al., 2024). Intermediate depths and steep slopes around 
submerged banks and seamounts (>50 m deep) cause physical 
oceanographic processes that enhance accessible productivity 
to higher trophic levels (Robinson et  al.,  2023). Deeper waters 

(>2000 m) comprise pelagic, typically oligotrophic areas, but can 
include ephemeral processes that cause prey fluctuations. We 
first calculated the mean bathymetry within each 20 km hexagon 
grid cell (described above). To represent depth use by each class, 
we extracted mean bathymetry values from hexagons within core 
(50%) utilisation distributions. To represent depths encompassed 
by the MPA, we extracted mean bathymetry values from hexagons 
within the MPA boundary.

2.3  |  Required MPA size

To understand the size of MPA necessary to encompass the distri-
butions of these resident species, we assessed overlap with a set of 
smaller and larger hypothetical MPAs. We used land above sea level 
as our minimum hypothetical MPA area and increased the radius by 
20 km increments to the edge of the existing MPA at the Chagos 
Archipelago Exclusive Economic Zone boundary and then further by 
20 km increments from the edge of the existing MPA (max 100 km). 
We calculated the percentage of tracking fixes from each species 
that fell within each hypothetical MPA and the minimum size MPA 
required to encompass the entire core (50%) utilisation distribution 
of each class.

3  |  RESULTS

A total of 257 seabirds, 22 hawksbill turtles and 23 reef man-
tas were tracked, including a total of 7864 days of tracking (1084 
for birds, 6124 for turtles and 652 for manta) between 2015 and 
2024 (Figure  1). The mean tracking length for individuals of each 
class was 4.2 ± 0.3 days for seabirds, 278.4 ± 28.3 days for turtles, 
and 28.5 ± 18.2 days for reef manta rays (Table  1). Across these 
taxa, 95.3% of the individuals remained entirely within the Chagos 
Archipelago MPA for 99.1 ± 0.3% of the tracking period; only 5.5% 
of seabirds (n = 14) moved beyond the MPA boundary (<1.1 ± 0.33% 
of their time, Figure 2a). Core and home range areas of turtles and 
manta were exclusively within the MPA (Figure  2b), although the 

TA B L E  1  Sample sizes of manta rays, seabirds and turtles tracked within the Chagos Archipelago marine protected area (MPA).

Class Species Years Individuals
Total tracking 
days

Mean tracking days 
per individual ± 
standard error (range) References

Manta Reef manta ray, Mobula alfredi 2015–2024 23 656 28.5 ± 3.8 (6–75) This study

Seabird ALL 2016–2024 257 1084 4.2 ± 0.3 (1–33) This study

Brown booby, Sula sula 2018–2019 13 64 4.9 ± 0.4 (3–8) Trevail 
et al. (2024)

Red-footed booby, Sula 
leucogaster

2016–2023 207 640 3.1 ± 0.1 (1–10) Trevail, Wood, 
et al. (2023)

Wedge-tailed shearwater, 
Ardenna pacifica

2023–2024 37 380 10.3 ± 1.7 (1–33) This study

Turtle Hawksbill turtle, Eretmochelys 
imbricata

2018–2021 22 6124 278.4 ± 28.3 (38–503) Hays et al. (2024)
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    |  5TREVAIL et al.

ranges of seabirds extended beyond the MPA boundary, driven by 
larger ranges of wedge-tailed shearwaters (Figure 2b).

The areas used by the three classes were generally distinc-
tive; red-footed boobies and wedge-tailed shearwaters foraged 
in open ocean areas, hawksbill turtles foraged on mesophotic 
(>30 m) submerged banks and reef manta rays and brown boobies 
foraged in neritic areas, often close to islanded atolls (Figure 2b). 

While their high-use areas tended to differ, some areas were com-
monly used by all classes, particularly areas around the perimeter 
of the Great Chagos Bank, where all tracked species transited be-
tween foraging grounds (Figure 2c). Available habitat within the 
MPA encompassed recorded bathymetric ranges of all tracked 
species (Figure  2d). Turtles' core area comprised the shallow-
est habitats (mean bathymetry ± standard error: 438 ± 107 m, 

F I G U R E  2  The Chagos Archipelago marine protected area (MPA) (grey outline in panels a–c) encompasses >99% of at-sea movements 
of tracked species. (a) Reef manta rays (n = 23, 2015–2024, 100% of individuals remained in MPA), seabirds (n = 257, 2016–2024, 94.5% of 
individuals remained in MPA) and hawksbill turtles (n = 22, 2018–2021, 100% remained in MPA). Seabirds and turtles were tracked as adults 
from their breeding sites, and manta rays were tracked as adults (n = 12) and juveniles (n = 8) or unknown stages (n = 5) from their foraging 
grounds. (b) Spatial distribution of core areas varied among classes within the MPA (90% and 50% utilisation distributions shown in light 
and dark-shaded areas, respectively). Notably, seabirds foraged in pelagic areas away from the central Great Chagos Bank, manta rays used 
the areas between island atolls and submerged banks, and turtles' core areas were restricted to submerged banks. To aid visualisation, 
inset panels zoom in on the full extent of manta and turtle home ranges. (c) Tracking data from the three classes shows the extent of use 
throughout the Chagos Archipelago MPA, with areas of high overlap in neritic areas between island atolls. (d) Depths within the core area of 
each class (coloured relative density curves) range across the extent of bathymetry values within the Chagos Archipelago MPA (grey relative 
density curve). In panels (a–c), areas shallower than approximately 100 m are outlined in black, and islands are shown in solid black (more 
detail in Figure 1).
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range: 20–2385 m), followed by manta rays (825 ± 99.5 m, 
20–2735 m). Seabirds used foraging sites with the widest range 
of maximum depths (2842 ± 69.2 m, 11.8–5417 m), of which all are 
available within the MPA (3553 ± 29 m, −9.3–5407 m).

The size of the Chagos Archipelago MPA is necessary for sup-
porting the range of species tracked here, particularly pelagic taxa 
(Figure 3). The existing VLMPA (640,000 km2) encompassed 100% 
of reef manta ray, hawksbill turtle and brown booby tracking lo-
cations, 98.9% of red-footed booby tracking locations, and 92.5% 
of wedge-tailed shearwater tracking locations. The threshold for 
a very large MPA (>100,000 km2) would protect 100% of brown 
booby tracking locations, 97.4% of manta locations, 94.4% of 
hawksbill turtle locations, 60.3% of wedge-tailed shearwater lo-
cations and 58.1% of red-footed booby locations (Figure  3). The 
minimum MPA size to fully encompass the 50% core use areas of 
the tracked species would be 13,554 km2 for manta, 109,007 km2 
for turtles, and 640,846 km2 for seabirds, because a small portion 

of the core use area of wedge-tailed shearwaters extends beyond 
the existing MPA boundary (Figure 3c).

4  |  DISCUSSION

We show that the scale of the Chagos Archipelago VLMPA was 
essential to encompass the distributions and habitats of a diverse 
range of tracked taxa during their essential breeding and foraging 
periods. These results provide evidence for the value of VLMPAs in 
protecting diverse animals and habitats (Sala et al., 2021).

Our results show that VLMPAs may be an effective route to help 
protect a range of mobile megafauna species towards ‘30 × 30’ con-
servation targets. VLMPAs have been designated in most marine 
ecoregions across the globe; however, many lack appropriate con-
servation regulations and/or do not entirely restrict damaging ex-
tractive activities such as fishing (Wilhelm et al., 2014), and as such, 

F I G U R E  3  The Chagos Archipelago very large marine protected area (VLMPA) encompasses >92% of the tracks of all species, and the 
minimum VLMPA (>100,000 km2) would encompass >50%. (a) Hypothetical marine protected areas (MPAs) at 20 km increments from land 
out to the existing MPA at the extent of the Chagos Archipelago EEZ (exclusive economic zone), and then 20–100 km increments beyond the 
EEZ boundary. (b) Percentage overlap of tracking data with hypothetical MPAs. Vertical dashed lines illustrate the area of very large MPAs 
(VLMPA), the Chagos Archipelago VLMPA, and the areas required to encompass the 50% core areas of each Class coloured in accordance 
with MPA Area in panel (a). (c) minimum MPA sizes to encompass the 50% core areas of each class (coloured dashed lines), including 50% 
(light) and 90% (dark) core areas as in Figure 2b.
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    |  7TREVAIL et al.

MPA quality is lagging behind quantity (Pike et al., 2024). Evidence 
of the ecosystem value of such areas is therefore essential for ap-
propriate future management in existing VLMPAs (implemented but 
not fully protected/designated; Figure  1a) or for considering new 
MPA design. Importantly, we showed that different Classes of ma-
rine megafauna used a variety of areas within a VLMPA, but that the 
scale of the Chagos Archipelago VLMPA was essential to encom-
pass species distributions (Figure  3) and habitat ranges (Figure  2); 
including submerged banks around islanded and unislanded atolls 
(hawksbill turtles and manta ray), shelf edges (manta ray and brown 
boobies) and deep ocean pelagic areas (red-footed boobies and 
wedge-tailed shearwaters). While the patterns of movements were 
different among species, they all largely remained within the bound-
ary of the Chagos Archipelago VLMPA. Our results, therefore, argue 
for the value of VLMPAs in protecting diverse marine megafauna 
and their key habitats.

Smaller MPAs could still be effective in mitigating some threats, 
such as protecting species with smaller home ranges (Figure  3c), 
and are particularly valuable where scales of animal move-
ments align with scales of anthropogenic impact and governance 
(Lagabrielle et  al.,  2018). However, global marine ecosystems are 
affected by cumulative impacts (Halpern et al., 2008), and there-
fore threats to mobile species also exist across their foraging and 
migration areas, including targeted capture and bycatch in various 
fishing gear (Fuentes et al., 2023) during long-distance migrations 
not captured within this study (Shimada et al., 2020; Trevail, Nicoll, 
et  al.,  2023). Hence, MPAs that encompass important life stages 
such as immaturity, breeding, and foraging will have great value. 
Larger MPAs around tropical archipelagos will also have the ad-
vantage of protecting pelagic species, such as pelagic sharks and 
tunas that are generally exposed to high fishing pressure (Queiroz 
et al., 2019) with potential ‘spillover’ benefits beyond MPA bound-
aries (Lynham & Villaseñor-Derbez, 2024). The implementation of 
such conservation measures is particularly timely due to tropical 
atoll islands increasingly being viewed as conservation priorities be-
cause of the high biodiversity that they support (Dunn, Benkwitt, 
et al., 2024), including an estimated 31.2 million breeding seabirds 
globally (Steibl et al., 2024).

The Chagos Archipelago supports a diverse range of globally 
important populations of marine vertebrates (Hays et  al.,  2020; 
Koldewey et al., 2010). It is a global bright spot for reef fishes (Cinner 
et al., 2016) that are vulnerable to fishing pressure in smaller MPAs 
because of their large home areas (Graham & McClanahan,  2013). 
Concerning megafauna, the Chagos Archipelago MPA is estimated to 
support one of the world's largest breeding populations of the criti-
cally endangered hawksbill turtle, and an important nesting sanctu-
ary for migratory endangered green turtles, Chelonia mydas, both of 
which have been increasing in number since 1996 in the absence of 
human exploitation (Mortimer et al., 2020). Furthermore, the Chagos 
Archipelago supports >280,000 pairs of 18 species of breeding sea-
birds, of which four, including red-footed boobies, breed in num-
bers that qualify for globally Important Bird Area designation (Carr 
et al., 2021). The seabirds tracked here are representative of pelagic 

seabirds, foraging at similar distances to colonies in other ocean ba-
sins (Trevail et al., 2024; Trevail, Wood, et al., 2023), and therefore 
distributions likely encompass those of species with smaller home 
ranges such as terns and noddies (Soanes et  al.,  2015); however, 
additional local tracking of these species would confirm their key 
habitats and specific use of the VLMPA. Indeed, while the Chagos 
Archipelago MPA encompasses a broad range of depths (our proxy 
for varying habitat types), tropical seabird habitat selection within 
the region is also driven by a range of more dynamic abiotic factors 
(Dunn, Freeman, et al., 2024; Trevail, Nicoll, et al., 2023) as well as 
biotic factors (e.g. facultative and competitive interactions).

Preliminary models based on photographic ID suggest a total 
population size of >900 reef manta rays (Joanna L. Harris, unpub-
lished data) within the Chagos Archipelago, representing one of 
the world's largest populations. Like other mobulid species that 
face unsustainable depletion throughout much of the Indian Ocean 
(Fernando & Stewart,  2021), the Chagos Archipelago MPA, there-
fore, provides them essential refuge from fisheries, potentially 
making the local mobulid populations a stronghold for the species' 
survival (Harris, Collins, et al., 2024). Though manta ray movements 
are linked to areas of high primary productivity and prey density, 
often driven by winds and surface currents (Harris et al., 2020), here 
we show that their core foraging ranges were close to islanded atolls. 
Alongside reef manta rays, other large pelagic fish including sharks 
and tuna show periods of residency within the Chagos Archipelago 
MPA, habitat selection being driven by temperature and time of day 
as well as depth (Carlisle et  al.,  2019; Curnick et  al.,  2020). While 
manta rays could be supported by an MPA less than the VLMPA 
threshold (100,000 km2; Figure  3c), the larger actual size ensures 
protection of a greater diversity of taxa (Figure  3), underscoring 
the value of VLMPAs for mobile megafauna under appropriate en-
forcement (Collins et al., 2021). Additionally, the impacts of climate 
change, such as increasingly frequent and extreme El Niño events, 
can increase dispersive movements of reef shark species (Williamson 
et al., 2024). Therefore, larger MPAs could capture future climate-
driven changes in distributions.

Tracking durations and sample sizes varied among study species 
according to logistical and technological constraints. Nevertheless, 
tracking periods include key life stages and, for some taxa, are likely 
representative over longer durations. For example, hard-shelled tur-
tles have fidelity to both their foraging and breeding sites throughout 
adulthood (Shimada et al., 2020) and hence adult hawksbills likely 
spend their entire adult lives within the Chagos Archipelago MPA, 
their distributions largely being driven by the availability of meso-
photic reefs and benthic invertebrates (Hays et al., 2024). Similarly, 
seabirds in the Chagos Archipelago are highly faithful to their breed-
ing sites, and often forage in the same areas among breeding sea-
sons and years of variable environmental conditions (Trevail, Wood, 
et  al.,  2023). Although wedge-tailed shearwaters are migratory 
(Trevail, Nicoll, et al., 2023), red-footed boobies likely remain within 
the archipelago year-round, relying on terrestrial overnight roosts 
(Votier et al., 2024). While reef manta rays are capable of large-scale 
movements, they display high levels of site fidelity, often remaining 
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resident in, or seasonally returning to, specific locations that provide 
reliable food resources, cleaning stations, and refuge from preda-
tors for multiple decades (Harris, Hosegood, et  al.,  2024). While 
our results show the value of large MPAs for these taxa, migratory 
species, such as some seabirds, post-nesting green turtles and sev-
eral pelagic shark species, will often travel out of even the largest 
MPAs (Queiroz et  al.,  2019; Seminoff et  al.,  2008; Trevail, Nicoll, 
et al., 2023). However, these groups or life stages are probably best 
afforded high seas protection or policy change to reduce threats at 
ocean basin scales (Beal et al., 2021).

In summary, our results point to the role of VLMPAs in offering 
protection for diverse, endangered marine megafauna species, add-
ing value to the role of VLMPAs as a useful vehicle to increase the 
extent of ocean protection and help nations achieve their 30 × 30 
marine conservation goals. Specifically, the Chagos Archipelago 
MPA offers support to benthic foragers (turtles), pelagic plankti-
vores (manta ray), and oceanic predators (seabirds). These results are 
particularly pertinent given recent proposed sovereignty changes 
and ongoing spatial planning discussions in the region. In a world 
where human disturbance is altering animal movement patterns 
globally (Doherty et al., 2021), and appropriate strategies for future 
conservation progress are up for debate (Pike et al., 2024), it is en-
couraging that large marine reserves can support mobile species and 
their habitats.
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