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ABSTRACT

Conformal mapping is used to find exact, closed-form solutions for three classes of vortex sheet
rotating equilibria. The first involves multi-sheet equilibria of the Protas-Sakajo class: N-fold
symmetric equilibria consisting of multiple sheets stemming from a common origin. Conformal
mapping of the exterior of the vortex structure to the exterior of the unit disk enables the solution
construction using Fourier series. The solutions describe both the stream function field and the
circulation density along the sheets and are found for N = 2, 3, and 4.

The approach is effective in reproducing equilibria of a second class due to O’Neil: a single, straight
sheet in the presence of one or more point vortices. Finally, the method is used to construct new
equilibrium families sharing features of both Protas-Sakajo and O’Neil classes. Thatis,a N = 4
Protas-Sakajo equilibria together with four point vortices located unit distance from the origin either
(1) off each sheet tip, or (ii), on the bisector of the sheets. Members of each family are determined
by a parameter v measuring the total circulation of the sheets. For given y, equilbria properties are
determined numerical solution of a nonlinear algebraic equation. In case (ii), a non-rotating stationary
equilibria is found.

1 Introduction

The search for equilibrium vortex structures in two-dimensional flow of an inviscid fluid has a rich history, especially in
the case where the vorticity is confined to singular points, a problem which continues to generate interest, e.g. [1, 2, 3].
The next level of sophistication in which the vorticity is nonzero along two-dimensional curves — vortex sheets — has
yielded far fewer exact equilibrium solutions owing to the dual challenge of finding both the vorticity distribution (or,
equivalently, the circulation density) along the sheet and the shape of the sheet itself.

Recently [4] constructed a family of equilibria rotating with constant angular velocity consisting of an even number
N =2,4,--- | of straight vortex sheets emanating from a common center of rotation and with endpoints at the vertices
of a regular NV-polygon. The mathematical problem is formulated using the Birkoff-Rott equation with Riemann-Hilbert
methods used to derive an integral formula for the circulation density for N = 2,4, ---. The integral formula is
evaluated exactly for the case N = 2 recovering the classic single-sheet equilibrium solution [5, 6], and for the case
N = 4 where they find a closed-form expression for the circulation density of a four-sheet equilibria. For N > 4,
an integral formula for the circulation density along a sheet is derived and a numerical method is presented for its
evaluation.

Another relatively recent approach to finding exact rotating vortex sheet equilibria is that used by [7] requiring the
presence of both point vortices and a straight sheet. Complex analytic methods are used to formulate the problem as a
quadratic differential from which, for given vortex positions satisfying certain symmetry conditions, the length and
endpoints of the sheet and the circulation density along it are determined.

This work proposes an alternative approach to finding equilibria of both the Protas-Sakajo class, including the previously
unexplored case of an odd number of sheets stemming from the origin, and the O’Neil class. The emphasis is on
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describing and demonstrating the method by producing previously known solutions, as well as some new solutions. The
method, described in §2, conformally maps the exterior of the vortex sheet structure in the rotating frame to the exterior
of the unit circle in a mathematical plane where the stream function is solved for using Fourier series subject to the
boundary condition on the unit circle. The series is then summed explicitly to obtain closed-form solutions. Sections 3
and 4 illustrate the method by obtaining previously known Protas-Sakajo solutions for the circulation density in the
cases N = 2 and N = 4. A new solution for the N = 3 case is presented in §5. Explicit, closed-form expressions
for the stream function field are obtained in all these cases. The same approach is applied in §6 to construct rotating
equilibria of the O’Neil class. Specifically, exact solutions for the stream function and circulation density along a
single sheet are found for two examples: a single sheet and a point vortex where the vortex lies on the symmetry line
of the sheet and a single sheet of arbitrary circulation and two point vortices located on the symmetry line off each
tip of the sheet. The exact solutions for the along-sheet circulation densities take a different form to that of [7], but
numerical evidence is presented which suggests they are the equivalent. New exact solution families for hybrid four-fold
symmetric sheet and point vortex equilibria is obtained in §7. Remarks on generalisation, possible extensions and
further applications of the method are given in §8.

2 General formulation and conformal mapping

Suppose a multi-sheet vortex equilibria comprising of N-‘spokes’, N = 2,3, - - -, rotates with angular velocity €2. The
spokes, or sheets, have the same length L and are equally spaced about a common hub coinciding with the centre of
rotation z = 0, so that the structure has N-fold symmetry. One of the spokes is always taken to lie along z = x + 10,
x € [0, L]. In §§2-5 the problem is non-dimensionalised so that @ = 1 and L = 1.

Let the unbounded region exterior to the /N-sheet structure be Dy, N = 1,2,3,---. The conformal map from
the exterior of unit (-circle to Dy can be obtained by first mapping to the upper half of the w-plane using w =
tan(N ! cos~1(2N/2)) [8] (page 79), and then using the Mébius map ¢ = (1 — w) /(1 + 4w) to map to the exterior
of the (-circle giving

9
¢ =exp (—Z cos_l(zN/Q)) . (1)
N
The inverse of (1) is
N 2/N
z= {cos (12 log C)} . 2)
In a stationary frame, the stream function ¢ (x,y) is a real-valued harmonic function outside the sheet. Here the
convention u = —, and v = 1, is used, so that the vorticity is V2%. In a frame rotating with angular velocity Q2 = 1
the spokes coincide with streamlines along which, without loss of generality, 1/ = 0 ensuring the normal fluid velocity
on the sheets vanishes. In this frame, the stream function satisfies Poisson’s equation V21/) = —2, and can be expressed
in general as
1 o0
==z +alog|¢| +ag+Re > an( N, 3)
2 n=1

where a and ag are real, and the series representation preserves the N-fold symmetry. The first term on the RHS of (3)
is the contribution of the background rotation, and accounts for the inhomogeneous term in Poisson’s equation. Note
that o is a measure of the total circulation of the vortex structure. Note also that (=™ is an analytic function in Dy so
its real part is harmonic. The harmonic terms satisfy Laplace’s equation which is conformally invariant.

For given N, the task is to find the unknown coefficients o and a,,, n = 0,1,2--- subject to 1) = 0 on the sheets
0Dy, and a Kutta-type condition that the velocity field in Dy is bounded at the tips of the sheets i.e. |Vt| < oo as
z — exp(2min/N),n = 0,1,--- , N — 1. This condition need only be enforced at one of the tips, since symmetry
ensures it will then be satisfied at all tips. Symmetry also ensures that the average of the tangential velocities from
either side of the sheet vanish as required for equilibrium. The resulting vortex equilibrium has a well-defined flow field
everywhere including in the corner regions near the origin [4].

Once (3) is determined, the circulation density can be calculated by realising that along a spoke it is twice the tangential
velocity jump across the spoke. Without loss of generality, consider the spoke along the real axis so that the circulation
density is, by the anti-symmetry of the velocity field 1), across the sheet,

p(x) = —2u(z,0%) = 2¢,(2,07), =z €][0,1], 4)

where the sign is such that a positive sheet circulation locally induces an anticlockwise flow in a fixed reference frame.
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The following results for the operators 9/dz, /0y and their application to Ref(¢), where f(¢)) is an analytic function
are useful in the following sections:

Op = G0+ ez, 0y =1 (G0 — Tz, 5)
so that
dzRe(f(C)) =Re(C2fc),  9yRe(f(()) = —Im(C. f¢). (©)
In particular, the following results for constant a and k # 0 are used later
BxlogK—a:Re(C%a), 8y10g|C—a|:—Im(<C_a>, 7
and
dzReCF =kRe (¢.¢*1), 9yRelF = —kIm (¢.¢M71). (8)

3 Single sheet N = 2

Let N = 2, so that the two spokes of the equilibria form one continuous straight sheet along z € [-1,1], y = 0,
corresponding to the well known case of a finite, straight sheet rotating equilibrium-see e.g. [5, 6, 9].

The maps to and from the exterior of the slit [—1, 1] and the exterior of the unit {-circle are given by (1) and (2) with
N = 2, reducing to the well-known maps

(=z+ V221, z=%(<+<*1)- ©)

On the sheet dDo, ( = exp(if), so that, from (9), |2|? = cos? # = (cos 26 + 1)/2. Thus on D5, with N = 2 and
realising log || = 0, (3) gives the Fourier series problem

= 1
a0—|—ReZanC_2" = 1((:0529—1—1), (10)
n=1

from which by inspection ag = 1/4, a1 = 1/4 and all other coefficients vanish. Hence the stream function is
1 1 1
v =—5lal* +aloglC|+ ; + Re(7™ (11)

To determine «, the derivative ), is evaluated on y = 0 with x — 1~ and « chosen to ensure the derivative remains
bounded. In this NV = 2 case, the analysis determining « can be carried directly in the z-plane after rewriting (11)
purely in terms of z using (9). But here it is chosen to perform the calculation in the (-plane since this approach is more
convenient in the N = 3 and 4 cases that follow.

Differentiating (9) gives
i
z = 5 12
T = (12

and using (7) it follows 9, log |(| = —1/v1 — 22 on z = x + 04,
Differentiating the Re (2 term in (11) using (8) and (12) gives

x| < 1, and is singular at the tips as © — £1.

dyRe(™? = 2Im ((-¢"?) = 2Im ( (13)

1
V-2 ) '
From (9) the limit z = 2 — 17, corresponds to ¢ — 1 and so (13) gives the singular behaviour 9,Re (2 — 2/y/1 — 22
as x — +1. Eliminating the two singular terms in (11) then gives a = 1/2, so completing the derivation of the stream
function. By explicit differentiation of (11) with respect to z, and using (7) and (8), it can be shown that ¢),, = 0 as
x — 17, That is, the sheet tips are stagnation points since both velocity components vanish. Figure 1 presents a plot of
the streamlines. Note the total magnitude of the circulation of the sheet is 2ra = 7. This argument does not require the
branch of the square root to be specified, only that it is done consistently in the two singular terms.

Finally, to determine the circulation density p(x) along the sheet requires that the tangential velocity v, on one side of
the sheet be calculated (which amounts to choosing a particular branch of any roots involved). On y = 0, |z| < 1 using
(7) and (13) on (11) gives

1 1
=g+ (i) 1
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Figure 1: Streamlines (black) for the N = 2 and [N = 4 equilibria. The vortex sheets (thick blue lines) have unit length
from their centre of symmetry.

Using (9) (with z = z) in (14) and simplifying gives 1, = —v/1 — 22, and so from (4) p(z) = 2¢), = —2v/1 — 22 as
in e.g. [9]. The negative sign outside the square root in p(z) is unimportant: here the sheet circulation density must be
everywhere positive so that the negative square root is chosen for 0 < z < 1 implying p(z) > 0 leading to a self-driven
anti-clockwise rotation of the sheet which precisely counteracts the imposed clockwise (negative) background flow
represented by the —|z|?/2 term in the stream function (11).

4 The N = 4 equilibria

The four spokes are arranged such that their tips are located at =1 and 4. The derivation in this section recovers the
exact solution for the circulation density p(z) ~ z cosh™'(1/y/1 — %) found in [4], while additionally finding the
stream function for the flow in Dy.

From (1) and (2), the maps between D, and the exterior of the unit {-circle are
( =exp (; cos ! (22)> , 22 =cos(2ilog(). (15)

Analogous to the N = 2 case, it is necessary to find a Fourier series representation of |z|2/2 on dDy4. From (15),
|2|? = | cos 26| which has 27-periodic Fourier series

(_ n+1

= (—1

E %coséln&. (16)
n

n=1

2
20| = =
| cos 26| 7T+ 1

The stream function satisfying ¢ = 0 on 0D, is then

1)n+1

=<2 +alo |C|+l+gRe§:(_7
- oF @08 T n:14n2—

—4n
1 ¢ (17)

4
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By expressing as partial fractions, the series on the RHS of (17) can be summed explicitly giving

- ﬂ —4n _ _ 2 -2 —1 (=2
2 TS = (C T T (), ag
n=1
and so 1 1
W = _§|z\2 +alog|¢| + ;Re [(CC+¢?)tan™" (7). (19)

It is possible to express the stream function (19) purely in terms of z (and its conjugate), but the subsequent analysis is
most easily done in its present ‘hybrid” form involving both z and ( variables.
To determine « and p(z) the velocity field ¢, along the sheet is calculated, using the operator (5) and the general

derivative results (7) and (8). From (15), the result ¢, /¢ = iz/v/1 — z* is helpful in what follows. Differentiating (19)
and evaluating it on the sheet aligned with the positive real axis gives

[ _9/—3
Bulymnaelo = e = 2t |G (26 - 2 tan ) 4 (24 TR )
a2 (G o
= e A | (E T 2)—1@,
w2 i e ey o2y
S U A v (C ) 1)}’ (20

where (? = exp[—icos™!(x?)] in (20). Since { — 1 as z — 17, the singularity in ¢, at the sheet tip z = 1 implied by
(20) can be eliminated by the choice o = 2/7. Equation (19) now completely determines ¢ in D,. Figure 1 shows a
plot of the streamlines. The total magnitude of circulation of the 4-spoke equilibria is 2o = 4.

The circulation density on y = 0, z € [0, 1], is then, from (20),
T

vV1—24

Now (2 — (72 = —2isin(cos ™! 22) = —2iv/1 — 2% and substituting into (21), gives

plw) =20, = —%Im { (¢*=¢) tan‘l(C‘z)} : 1)

p(x) fgmlm [tanfl(C*Q)] ,

—Smlm [tanfl(ac2 +iv1— x4)} ,
—%x coth™ (1/v/1 — z#). (22)

Aside from the unimportant negative sign in (22) which has been previously remarked on in §3, the result (22) differs
from [4]’s equation (28b) by a factor 2/7; the factor 7 in the denominator should appear in their result, and the factor two
is needed for the choice Q2 = 1. Note that in (22), it is possible to express coth ™ (1/v/1 — z%) = tanh ™' (v/1 — z%),
but the former is chosen to make the comparison of (22) to [4] obvious.

S The N = 3 equilibria

This equilibria has been found numerically in [10]. Its analytical description is given here following the procedure used
inthe N = 2and N = 4 cases.

From (1) and (2), the maps between D3 and the exterior of the unit {-circle are

2% (s 3i 2/3
¢ =exp —gcos (z ) , 2= |cos 510g( . (23)

The Fourier series representation on dD3 of |z|> = | cos(36/2)|*/ can be found using e.g. Mathematica and is

e BT (1 2 /3,
| cos(30/2)] /3 = W (2 — 5;(_1) mc053n9> , (24)
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T

Figure 2: Streamlines (black) and unit length vortex sheets (thick blue lines) for the N = 3 equilibria (left) and
corresponding circulation density p(x) along the sheet y = 0, z € [0, 1] (right).

where T'() is the Gamma function and (z),, = z(x +1)--- (x +n — 1), where n = 1,2,--- , and ()9 = 1, is the
Pochhammer symbol.

Using (3) and (24), the stream function is
3I(7/6) 30(7/6) Vi1 3n
IAT(2/3)  ByRT (/3 Z S
3I(7/6) 30(7/6) 1 1.8 1
L/ (2/3) B/ [<3F< | ’3"<3>} |

where the sum has been expressed in terms of the hypergeometric function F' [11].

1
P = —§|z|2 + alog || +

1
= —5 2l +alog (] + (25)

As before, « is determined by examining the behaviour of singular terms of 1, as z =  — 17. Using (7) and (8) in
the limit that the tip z = = 1 is approached along the sheet

—a 3n
dyalo —~ —— . and ORe(" - ——. 26
verlogldl = =5 Y 26
Using (25) and (26), in order to remove the singularity it is required
9T (7 = /3
o= LG/ DMIE ¢7
5yV/Al(2/3) & /3), 1
30(7/6)
_ 27
2y/7I(2/3)° @7

where the infinite sum on the RHS of the first line of (27) has been explicitly evaluated (e.g. using Mathematica) giving
—5/6. The total magnitude of the circulation of the 3-spoke vortex is 2 = 3/7L'(7/6)/I'(2/3) = 3.64298.

The circulation density can be found from p(x) = 2¢,, ony = 0, x € [0, 1] by applying the results (6), (7) and (8) to
the series form of (25) to get

P\ /) (1 +§Rezn(l)n<1/3gn_l o (mmosl(ﬁ/z)))

VAl (2/3) VI — 23 (8/3) -1
_ 3L(7/6) Vv — § exp(2i cos™ (232 1 ; § — exp(2i cos ™1 (232
s (1 ke [expCzicos (@) F (.2 - eptzicos @) )| ). 9

Figure 2 show the streamlines and circulation density for the N = 3 equilibria, where the sign of the roots in (28) is
chosen so that p(x) > 0 for x € [0, 1]. Note that the circulation density vanishes at the origin as well as at the tip of the
spoke. This property was also found in [4] for all even N > 4.
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6 Rotating equilibria of the O’Neil class

6.1 Sheet plus one vortex

Consider now a single straight sheet together with a point vortex rotating steadily about the origin with constant angular
velocity © > 0. In the co-rotating frame the sheet occupies x € [¢ — r, ¢ + 7|, y = 0, where c is the center of the sheet
having length 27 > 0. In this and following sections the problem is non-dimensionalised so that the point vortex has
circulation I' = 27 and is located unit distance from the origin, here at z = 1. Note that ¢ + r < 1 so that the entire
sheet lies to the left of the point vortex. The task is to find €2, r and c.

The conformal map from the exterior of the sheet to the exterior of the unit (-disc and its inverse is

z—c++/(z—c)% —1r? r _
(= L (X1 9)
r 2
The stream function is now given by
Q = n _
¢:—§|z|2+alog\g|+ReZan( +log[¢ — ol —log|¢ — ¢57Y, (30)

n=0
where the contributions from the point vortex and its image in the unit {-circle have been included where (; =

(I1—c++/(1—=c¢)? —r2)/r > 1is the corresponding point vortex location in the {-plane under the map (29). Inclusion

of the —log | — ¢ 1 |, the vortex image in the unit circle, implies that the logarithmic terms alone satisfy the requirement
that |(| = 1 is a streamline. The total circulation of the sheet is equivalent to the net circulation associated with the
logarithmic terms inside the unit ¢-disk at { = 0,1/, and is 27 (o — 1).

To find the coefficients, ag, a1, - - -, the boundary condition ¢ = 0 on ¢ = exp(i6) is used. Noting that on the sheet
log (¢ = ¢0)/(¢ = G5 )| = log [¢ol. (29) gives
Rei —in0 — _log || + 2 2 7 L orecosf+ L cos 20 31)
ane =—1lo — | ¢® 4+ — + 2rccos — cos ,
mo slbol Ty 2 2

and so by inspection ag = — log |(o| + /2(c? +1r%/2), a1 = Qre, ag = Qr?/4 and all other coefficients vanish. The
stream function is now

Q Q 2 Qr2 _
v = —§|Z|2 + alog|¢] + 5(62 + %) + QrcRe¢™t + TTReC’2 + log CCCO _Col :

In this problem there is no symmetry in the real direction and so Kutta conditions must be enforced at both tips of the
sheet. The derivative v, is evaluated on y = 0 with x — ¢ &=, ¢ — %1 and « chosen to ensure the derivative remains
bounded. From (29)

(32)

7 (33)

so that
Gz _
= = (34)
C z=x€[c—r,c+T] T2 — (!I? - 0)2
is pure imaginary. Note that (34) has a different sign outside the square root compared to (12). This is not important
and is a consequence of differentiating (29) instead of (1). It can be reconciled by choosing the appropriate signs of the
square root. Using (33) and (34) in (7) and (8), the derivative of (32) evaluated at the tips is

1 1 1 Qr?
zbyz_x_wﬂ:W(a—quzco—ljFCOl?Qrc—Q). (35)
For (35) to be bounded at the tips it follows
2
o= 1_1401_1_1<0+Qrc+§2;, (36)
and )
o= 1717 1 erc+Q—T. (37)
1+ ¢, 14+ o 2
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Equations (36) and (37) are combined to give

1
Q= 38
e/ (1—¢)2—r2 (38)

The choice a = 2 is now made so that the sheet has the same total circulation as the point vortex.

For equilibrium it is required that the velocity, (u, v), at the point vortex location z = 1 to be zero. By symmetry u = 0
at z = 1 so it is sufficient to demand v = v, = 0 here. Since the non-self induced vortex velocity is being sought at
z = 1 via conformal mapping methods it is necessary to take into account the Routh correction term, see e.g. [6]. In
particular the non-self induced velocity of the vortex is

d
u—iv = %(F(z) +ilog(z — 1)), (39)
where F'is the complex potential in the z-plane. Equation (39) can be written as
) da¢ d ) ¢ d (. z—1
—w=——(F 1 — —— |l 4
w—iv = G (PO + itop(c — ) + 5 (110 (221 )). @0)

where z = f(() is the conformal map from the (- to the z-plane and is given by (29).

Standard manipulation involving Taylor series expansion [6] near z = 1, { = (j then gives

, f"(%)

o1 =—Im |=— (F 1 — —Re | ——%1, 41
vlocs = I | 5 22 (FUO) + ilog(¢ ), | ~ Re | Fd, @)
where the first term on the RHS of (41) is given by ¥, (f(¢))|¢, and excludes the singular term at { = (o, and can be
found from (32). The second term in (41) is the Routh correction term. Hence, the velocity at the point vortex is given

by
Il}‘z:l = d)z‘z:l,C:{o — 0y log |C - CO|C:<" ~Re |:2.j];/((§(())))2:| '

To evaluate ¢, at z = 1 and { = (, (32) is used with (7)-(8). The Routh correction term is evaluated using (33) and
(29). Hence, (42) becomes

1 2 Qre  Qr? 1
Vo = =0t ———— 2—0———>, 43
=1 (1c)2r2< (43)

(42)

where (o) f'(¢o)2/2 = ((1 —¢)* — r2)_1/2 (¢2 — 1)~! has been used. Setting (43) equal to zero and along with

(37), (38) and (p = (1 — ¢+ /(1 — ¢)? — r2)/r the three nonlinear algebraic equations are solved numerically using
Mathematica giving =~ 0.589, ¢ ~ —1.11, and r = 1.45 to three significant figures. This agrees with the alternative
analytical approach of [7] and also the numerical computation by [10]. Figure 3 shows the streamlines.

An expression for the circulation density p(z) = 2, is obtained by finding the derivative ¢, on z = = € [c — r,c + 7]

from (32) giving
_ 2 (I-¢)2—1r2 9 r2
plx) = R s (2—!— p— —Q(x —xc—2) , (44)

where the sign of the roots are chosen to give p(z) > 0 for z € [¢ — r, ¢ + r]. Figure 3 gives a comparison between
(44) and that obtained by O’Neil’s method (an appropriately scaled version which is given in [10]), namely

/2
2.2 1 '
PO’Neil(x) = 2Re <4Q — Oz — m . (45)

The comparison in figure 3 convincingly demonstrates the equivalence of (44) and (45), although this assertion remains
to be proved.

6.2 Sheet plus two vortices

Now consider the case where a single straight sheet and two point vortices rotate about the origin with constant angular
velocity © > 0. This arrangement is such that in the co-rotating frame the sheet lies on « € [—r,r] with0 <r < 1
analogous to the N = 2 case of §3, with point vortices at z = £1. Each point vortex has circulation I' = 27 and the
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Figure 3: Streamlines (black) for the single vortex sheet and point vortex (blue) (left) and corresponding circulation
density p(x) along the sheety = 0, z € [¢c — r, ¢ + 7] (blue) and points showing the solution given by [7] (orange)
(right).

total circulation of the sheet is left as a given parameter 27y and the task, for given 7, is to determine the unknowns €2
and r which in turn enable explicit expressions for the stream function and the circulation density of the sheet to be
found.

The conformal maps between the exteriors of the sheet and the unit {-disk are

z+ V22 —r? T _
(=——— z=35(+) (46)
T 2
In the rotating frame where the sheet and vortices are stationary, the stream function is
b= 4 (4 2)loglc] +Re S a4 log| S| (7)
2 S
n=0
where (o = (1 ++/1 —72)/r > 1. Applying 1) = 0 on { = exp(if) gives
0 ) QO 2 2
Renzoane_mg = —2log o] + 7 (2 + % cos 29) , (48)
where it can be seen ag = —2log |(o| + Q272 /4, ay = Qr? /4 and all other coefficients a,, vanish. By symmetry, the

Kutta condition v, = 0 need only be applied at one of the sheet tips z = r. Using (7), (8), (46) and (47) gives after
some simplification
Or? o4 2
2 7 V1I—r2
The velocity of the point vortex at z = 1 can be found using the same approach as in §6.1 that accounts for the Routh
correction. Upon setting the velocity at either of the point vortices to zero (it vanishes at the other by symmetry) gives
1 5 Qr? 2¢2 1

pe L (B 1)

1—7r2\2 266 G5~ G G —1

Equations (49) and (50) can be simplified further using the expression for ¢y in terms of 7 to give 2 = Q(r) as an
explicit function of 7 together with a nonlinear algebraic equation for r given ~:

(49)

(50)

1L+7r?
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Figure 4: Plot showing the radius of the sheet, r, (blue, left axis) and the angular velocity of the system, 2, (red, right
axis) as a function of the total circulation of the sheet, ~.

rd—Tr? 48

2= ———. 52
i 4(1—r2)%2 oY
Note that (51) shows that there are no equilibria with Q < 1/2, unlike point vortices where a central vortex with
opposite signed circulation can serve to slow the rotation of the satellite vortices at z = £1. The minimum §2 = 1/2
occurs in the limit » — 0 which (52) implies v — 0 i.e. a pair of point vortices located at z = +1. More generally, for
given 7y Figure 4 shows the dependence of €2 and r as y increases. Figure 5 shows two example streamline plots of the
equilibria for v = 2 for which (52) gives  ~ 0.767 and (51) gives 2 = 3.00, and for v = 0.5 having corresponding

r ~ 0.528 and 2 ~ 1.04.

Evaluating p(z) = 2¢y|,—zc[—r,] using (46), (47) and (7) - (8) and simplifying using (51) and (52) gives the circulation

density
r2 — g2 4 1472
o)== () 53)

where the square roots are chosen to be positive for « € [—r, r].

As in §6.1, the expression (53) can be compared graphically to that obtained by [7]. Although not shown, the agreement
is similarly good (for a given ) as that shown in figure 3 for the one sheet and one vortex case.

7 New four-sheet equilibria with point vortices

7.1 Point vortices off the tips of the sheets

The conformal mapping method is used in this section to construct a new four-sheet equilibria of the type in §4 with
the addition of four equal strength point vortices located off each tip. The sheets have length 0 < r < 1 and the point

10



Vortex equilibria by conformal mapping

Figure 5: Streamlines (black) for a single vortex sheet with point vortices at z = 41 (blue) when v = 2, » ~ 0.767 and
Q ~ 3.00 (left) and v = 0.5, 7 = 0.528 and €2 ~ 1.04 (right).

vortices are located at z = +1, £¢ and have circulation 27. Following the notation of §6.2, the total circulation of the
sheets is specified by the parameter .

The maps to and from the exterior of the sheets in the z-plane and the unit (-circle are the same as (15) scaled by r:

. 2
¢ =exp (—; cos™ ! <i2)> . 2% =1r?cos(2ilog (). (54)

The map (54) locates the vortices at +(y, =y in the (-plane, where

o= A1+ VI-ri>1 (55)

Accounting for the images of the vortices in the boundary of the unit disk, the stream function has the form

¢t -G

¢ -t

and the task is to find 2, r, a,, for given ~. As in §4 application of the condition ¢ = 0 on { = exp(if) determines a,,
and summing gives

Q 2 — —4n
¢:—§\Z| +(7+4)10g|C|+ReZanC + log

n=0

. (56)

¢-G
Go¢t =11
Proceeding as in §6.2, the unknowns §2 and r are found by enforcing the Kutta condition at the sheet tips and demanding

the velocity field vanish at the point vortices. By symmetry, it is sufficient to apply these conditions at z = r and z = 1
respectively.

Q5 Qr? 2 —2 —1 (=2
¥ =—5la” + (v + 4 log|¢| + ——Re [(¢* + (%) tan ™! ()] + log 57)

Differentiating (54) gives

C iz
2 S 58
L= (58)
which is singular as z — 7. The Kutta condition removes the singularity in the velocity field —1),, at z = r by requiring,
using (6) on (57),
T 1+ ¢
Q=— 4+4
e e (156
1
=— 4—4— 59
272 [W + V1—rt } ’ 69

11
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where (55) has been used to simplify the last term.

Next, the non-self induced velocity v = 1&1 where 1[) is the streamfunction with the singular term at the vortex at z = 1,
or equivalently ( = (p, removed, is calculated giving

1 3 4¢3 200 5 1 (-2
- :7(”7@ dty+g - e +——{(¢ =) tan () — 1} +RC.,,  (60)

where the Routh correction is

P

Z¢¢
RC. =—-—3 ,
27 =
1 1 1+t
_! oot (61)
2 (V1=-r% 1-—174
Setting (60) to zero and substituting (61) gives after some simplification
1 r*—5 2002 | 24/1 — 7 _
Q= —x 44+~ + + —tan™' ((5?) — 13 . (62)
V1—rd 2v/1 —rd T r
Combining (59) and (62) gives an equation for 2 purely in terms of r
rt+3
— , 63
21 —r4) [1— 2sin~" (r2)] (©3)
where, for given +, r can be found by numerical solution of the nonlinear equation
r2(rt +3) 4
=447 - —. 64
(1 —r4)[1— Zsin! (r2)] 7 V1—rt (9

In deriving (63) and (64), (55) followed by the simplification 2 tan—!(¢; %) = sin™*(r?) has been used.

When v = 0 (64) has solution r = 0, and by (63) Q = 3/2, corresponding to the expected angular velocity about the
origin of an ensemble of four identical point vortices of circulation 27 located at the vertices of the unit square with no
vortex sheets present. In the limit » — 1, from (64) and (63) both €2 and ~ become unbounded (so that the vorticity of
the sheets dominates that of the point vortices) such that /{2 — 2/7. This is consistent with the result in §4 for the
four-sheeted structure with no point vortices which has €2 = 1 and total circulation of the sheets o = 2/7. Figure 6
shows the behaviour of €2 and r as a function of v > 0, where MATLAB’s fsolve has been used to solve the nonlinear
algebraic equation (64) for r.

Evaluating p(x) = 2ty |.—zc0,r Using (54), (57) and (7) - (8) and simplifying using (59) gives the circulation density

8x 1 Vi—-rt  Q —— 1 T
p(:c):\/r4_x4 ;e +%\/7’ —zttanh™ /1 —zt/rt| | (65)

where all square roots are taken to be positive so that p(z) > 0 for z € [0, r]. In the limit @ — oo when the sheets
dominate the point vortices, (65) (with » = 1) is consistent with (22).

Figure 7 shows an example of the streamlines for the choice v = 1 which in turn gives ) ~ 2.53 and r ~ 0.630. The
circulation density along a sheet given by (65) is also shown for this choice.

7.2 Point vortices located on the bisectors of the sheets

Consider the same four-sheeted structure, but now with four identical point vortices of circulation 27 located midway
between each pair of sheets at unit distance from the origin i.e. + exp(=Lin/4). Using the map (54) (with now no
restriction on the sheet length except that it is 7 > 0) the images of the vortices in the {-plane are at 4 exp(+in/4),

where
1++v1 4
8= vi+vit+r > 1. (66)

r
Analogous to (57), the stream function satisfying 1) = 0 on || = 1 is
<4 + 64

0 Qr?
Y = —§|3|2 + (v +4)log [¢| + %Re (2 +¢72) tan™ (C72)] + log BiCAy1| (67)
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Figure 6: Plot showing the radius 7 (blue, left axis) for the §7.1 IV = 4 sheet and the angular velocity of the system, €2,
(red, right axis) as a function of the total circulation of the sheet, .

@O\
ol

0571

©
©
p(z)

0 01 02 03 04 05 06
€T

Figure 7: Streamlines (black) for the §7.1 N = 4 sheet (blue) and four point vortices (blue) when v = 1, 2 ~ 2.53 and
r ~ 0.630 (left) and corresponding circulation density p(z) along the sheet y = 0, = € [0, r] (right).
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The Kutta condition at z = r gives

o 1—p4
Q_zﬂ{”+4+4(1+m>}’

b+4—4 (68)

1
T 22 V1+ 7’4} 7
where (66) has been used to simplify the last term.

Following the same steps as in §7.1, the stationarity condition is, owing to symmetry, applied only to the vortex at
z = exp(im/4), and is equivalent to insisting J,7 + R.C. = 0 at that point, where p is the radial coordinate in the

z-plane, and, as in §7.1, ¢ is the streamfunction with the singular term removed and R.C. is the Routh correction. It can
be shown that 1

ORS¢ expiin/ty = s R (IO e penplinsay (69

Applying the operator d,, to (67), using (69), accounting for the Routh correction and setting the result to zero gives

0 mn1 (r*+5) 40 hl(1+¢1+ﬂ>
= 72 .

— + — cot (70)
™ r

1
—_— 44y —
¢L+w{ k 21+ %)

Equations (68) and (70) combine to give an equation for €2 purely in terms of r

0= 3-rt 1)
C 21474 [1— 2sinh ! (r2)]]

where, for given ~, r can be found by numerical solution of the nonlinear equation
r2(3 —r4 4
B-r 4
m(1+74) [1 = Zsinh™" (r?)] V147t
In writing (71) and (72) the simplification 2 coth™*[(1 4 v/T + %) /7] = sinh ™' (r) has been used.
In contrast to §7.1, solutions (71) and (72) exist for both positive and negative v. Moreover, for some choices of
~ multiple solutions for r are possible, leading to multiple equilibria e.g. v = 0 has solutions (r,2) = (0,3/2) or
~ (0.783,1.51), among others. A thorough investigation of such multiple equilibria is not pursued here. Note the

(0,3/2) solution coincides with the case when there are no sheets and the vortices located at the vertices of the unit
square rotate with, as expected, angular velocity 3/2.

(72)

Since solutions for v < 0 are now available, so that the multi-sheet structure has total circulation opposite in sign to the
point vortices, it follows that there is the possibility of a completely stationary equilibrium with 2 = 0. This possibility
is realised with the choice Q = 0, v = —2 and r = +/3 which solves the system (71) and (72). Note that O’Neil [12],
using a different method, gives a related example of a stationary structure involving three radial sheets with three point
vortices located on each of the bisectors of the sheets (see Fig. 11 of [12]).

Evaluating p(z) = 2¢, ‘z:wE[O,’r'] using (54), (67) and (6) - (8) and simplifying using (68) gives the circulation density

8 1 V1 4 Q
p(x):\/ z Sy +%\/r4—x4tanh71m ) (73)

rd— 2t | V1474 142t

where all square roots are taken to be positive.

Figure 8 shows examples of streamline plots and the corresponding circulation density p(z) for two different choices of
~. The top row show the case of the non-rotating stationary when v = —2. Note that p(x) is everywhere non-positive
on the sheet. The second example has zero net sheet circulation v = 0 and so p(x) changes sign accordingly along the
sheet. Note the existence of a streamline which intersects the sheet: it does so at the point at which p(z) = 0 and so is a
stagnation point on the sheet.

8 Remarks

Attempts at applying the mapping method to find equilibria of the Protas-Sakajo class for /N > 5 failed because of the
lack of a sufficiently simple Fourier series representation of | 2|2 = | cos(N8/2)|*/" on the unit ¢ circle. But the method,

14



Vortex equilibria by conformal mapping

0 02 04 06 08 1 12 14
X

0 0.2 0.4 0.6 0.8
X

Figure 8: Streamlines (black) for the §7.2 N = 4 sheet (blue) and four point vortices (blue) when v = —2, Q = 0 and
r = v/3 (top left) and v = 0, Q ~ 1.51 and 7 ~ 0.783 (bottom left) with corresponding circulation density p(z) along
the sheet y = 0, = € [0, r] (right) .
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which requires seeking a harmonic function subject to known behaviour on a slit, or slits, and having logarithmic
behaviour at infinity, suggests the problem can be tackled accurately and efficiently using numerical methods of the
type developed over recent years by Trefethen, Costa, Baddoo, and others e.g. [13, 14, 15]. These methods effectively
use least square methods to compute the Fourier coefficients. Such a numerical approach to computing vortex equilibria
including those involving sheets and some of the examples considered in this work is explored in [10]. In fact, as
demonstrated in [10], this numerical procedure is also able to accommodate the presence of point vortices, enabling
equilibria of the O’Neil class to be similarly computed.

Further examples of O’Neil-type equilibria involving a single rectilinear sheet along the real axis with an arbitrary
number of point vortices can, in principle, be constructed exactly using the present conformal mapping method.
However, it is likely that, in order to satisfy the Kutta condition at the tips, the point vortices need to be arranged
symmetrically with respect to the sheet i.e. in pairs located at z; and Zz;. Indeed [7] gives such an example with two
vortices located at z = (1 & 4)/2. Two or more non-collinear, but straight, sheets are also potentially amenable to
analysis by the conformal mapping method using methods of mapping multiply connected slit domains to the circular
domains e.g. [16].

In addition to the examples presented in this work, the conformal mapping is capable of calculating other families of
equilibria. For example, exact solutions of the type found in §7 for a three-sheet structure with three point vortices
either off the tips or midway between the sheets ought to be possible to derive. The procedure is the same as that for the
four-sheet structure, though there is the complexity of dealing with hypergeometric functions. Another possibility is
combining a multi-sheet structure with any number of symmetrically placed point vortices. A natural starting point in
this class would be to consider the equilibria for a four-sheet structure with eight point vortices located off the tips and
on the bisectors of the sheets. Note in this case the stationary vortex condition must be applied at two vortices e.g. one
on the positive real axis and another on the ray § = /4. This implies the need for an additional unknown, namely,
fixing the vortices off the tips to be unit distance from the origin but permitting those between the sheets to be at a
different distance which is to be determined. Evidence for the need for such differing distances is in [10] who find a
numerical solution for a single sheet along the real axis ~ [—0.687, 0.687] with point vortices located at z = 1 and
z ~ £0.901.

A more general possibility is to use the conformal mapping method to construct equilibria involving curved sheets.
O’Neil [17] approximates sheets as a distribution of a finite number of point vortices and so constructs equilibria
suggestive of curved sheets. In separate work, O’Neil [12] uses a complex function based method to find exact solutions
for translating dipole-like vorticity distribution involving a curved sheet and a point vortex. Finding exact solutions of
this class by conformal mapping is challenging since it is a free boundary problem with the shape of the curved sheet
needing to be calculated as part of the solution. Conformal mapping along with tools such as, for example, the Schwarz
function or series approximation of the conformal maps have been successfully employed in other free boundary vortex
equilibria problems e.g. [18], [10]. For this purpose the fact that the Joukowsky map (9) opens up arbitrary slits (i.e.
curved sheets) and not just straight sheets is likely of use.

Translating equilibria can also be considered using the methods used here. As pointed out in [9], a finite rectilinear
sheet is able to propagate steadily in the direction normal to itself, provided the existence of velocity singularities at
the sheet tips is deemed acceptable. It seems possible that more general classes of translating sheet equilibria exist,
including those for which the Kutta condition holds at the sheet tips. Mapping methods of the type presented here may
be a way of finding these equilibria.

Finally it is noted that the problem of finding equilibria involving both sheets and vortices is essentially a variant of the
Foppl problem in which the equilibrium location of point vortices near a body in a background flow is sought. The
classic Foppl problem involves a circular cylinder immersed in a uniform stream e.g. [6]. Here the body (fixed in the
rotating frame) is the sheet structure and uniform rotation provides the background flow. In the general Foppl problem
the use of Hamiltonian vortex methods, and in particular the transformation properties of the vortex Hamiltonian under
conformal mapping (which essentially accounts for the Routh correction), enables the consideration of non-circular
bodies e.g. [19, 20]. This suggests Hamiltonian methods may also be of use in finding new families of vortex sheet
equilibria when point vortices are present.

C.W. was supported by a UK Engineering and Physical Sciences Research Council PhD studentship, grant numbers
EP/T517793/1 and EP/W524335/1.
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