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Abstract

We present a new method for calculating the high-dimensional conformational free

energy landscapes of flexible drug-like molecules. Using Density Peaks Advanced’s

density estimator, the free energy associated with individual configurations sampled

from an enhanced sampling simulation can be calculated in a gridless manner, thus

enabling the mapping of conformational ensembles in dimensionalities computa-

tionally inaccessible to grid-based methods. Due to the physics-based configura-

tional sampling, conformers can be characterized by the configurations correspond-

ing to the density peaks. The gridless nature of this method enables this character-

ization in the full dimensionality of a flexible molecule’s conformation space. This

method can produce per-point free energy maps, which enable the study of confor-

mational interchanges in a level of detail previously inaccessible. This method is

initially demonstrated on molecules with 2, 4, and 11-dimensional conformational

spaces and is presented alongside a set of consistency checks which enable the qual-

ity of the high-dimensional results to be assessed.

Finally, to further demonstrate the utility of the method, a study of the con-

formational landscapes of 4 different molecules is presented. Each molecule is

subjected to two distinct solvent environments, which have been linked experimen-

tally to conformational changes in these systems. The subsequent impact on the

high-dimensional free energy landscapes is explored through the use of Sketch-map

projections and visual inspections of the conformers generated by the method.

Impact Statement

The work carried out in this project enables the study of conformational mecha-

nisms at a level of detail previously only possible at high computational cost. One of
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the key motivators for this work is the challenge of understanding the link between

molecular flexibility and the polymorphism observed in pharmaceutical molecules.

The tools developed in this work will enable the understanding of how specific en-

vironments affect the conformers assumed by pharmaceutical molecules and will

enable these environments to be tuned, allowing for selective production of the de-

sired product.

The time it takes to bring a new drug to market is lengthy, and the need for

novel medicines and therapies is often urgent. Thus, tools which accelerate the

drug design process will be of great benefit to society. Computational modeling

tools, such as the one presented in this work, have the potential to enhance our

understanding of molecular behavior and eliminate the time-consuming, trial-and-

error-based methods which are so prevalent in drug design.
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Chapter 1

Context and Motivation

The role of flexibility in biology has long been known to be important. As early

as 1958, it was proposed that molecular substrates interact with enzyme active sites

not through rigid ’lock-and-key’ interactions, but through an induced fit, in which

the geometry of both the substrate and enzyme dynamically react to one another, re-

sulting in the binding interaction and the specific biological function of the enzyme

[2]. It is therefore not surprising that modern pharmaceuticals are often flexible

small molecules with variable geometries [3]. This flexibility poses challenges to

the pharmaceutical industry, as highly flexible molecules do not limit their vari-

ations in geometry solely to biological contexts, but rather exhibit diverse confor-

mational landscapes in many environments, including the gas phase, solution phase,

and solid state. That an active pharmaceutical ingredient (API) can assume different

conformations when organized into a crystal lattice, a phenomenon called confor-

mational polymorphism [4, 5], is of chief interest to the pharmaceutical industry.

The pharmacological properties of APIs can depend very strongly on the crystal’s

polymorphism, and understanding an API’s polymorphism has significant biolog-

ical, regulatory, and financial implications on the drug design and manufacturing

process [6].

Lucaioli et al. explored the conformational polymorphs of succinic acid in a

2018 study [7] and found that a novel conformational polymorph of succinic acid

crystallized out of a methanol solution that was laced with a series of impurities.

The novel polymorph was folded, in contrast with the two previously observed poly-
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morphs, which exhibited succinic acid in a flat conformation. The study further es-

tablishes through molecular dynamics (MD) simulations [8] that the conformation

of the novel polymorph is the dominant conformer in water, and crystal structure

prediction (CSP)[9] determined that the novel polymorph was more thermodynam-

ically stable than either of the previously observed polymorphs. It is remarkable

that even for a molecule as simple as succinic acid, there is no clear relationship

between the conformational distribution in solution, the thermodynamic stability

of the conformational polymorphs in theory, and the prevalence of experimentally

observed conformational polymorphs.

Marinova et al. have undertaken two studies on the conformational landscape

of ibuprofen, a pharmaceutical molecule of great importance [10]. They defined

the conformation space of ibuprofen in terms of two freely rotating dihedral angles,

here termed torsions, in the molecular structure. In the first study [11], the con-

formational landscape of ibuprofen in a variety of solvents was explored through

MD simulations. The simulations are carried out in bulk solvent, and then with an

ibuprofen molecule simulated in proximity to a slab of crystalline ibuprofen. The

study found that the extent to which the solvents hinder and promote conformational

pathways was exacerbated by the presence of the crystal face. The second study [12]

extended this approach to an analysis of ibuprofen’s conformational distribution in

the proximity of all of ibuprofen’s crystal faces, finding that conformational dynam-

ics is impacted not only by solvent or crystal face choice, but rather the combination

of the two.

The cases of succinic acid and ibuprofen demonstrate that the nature of a

molecule’s conformational dependence on its environment can be extremely com-

plex. However these studies focused on changes in geometry brought about by

changes in a small number of torsions. In the case of very flexible molecules,

wherein geometries are the function of a large number of torsions, the conforma-

tional space itself is complex and high-dimensional. Marinova et al. combined

enhanced sampling MD with unsupervised clustering methods to study the confor-

mational space of sildenafil [13], another highly relevant pharmaceutical product
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[14]. Sildenafil’s conformation is described in terms of six torsions, making its con-

formation space more complex than that of ibuprofen or succinic acid. As they did

to ibuprofen, Marinova et al. ran enhanced sampling MD simulations of sildenafil

in a variety of different solvents. Unlike ibuprofen, sildenafil’s 6-dimensional con-

formation space is both impossible to visualize and computationally challenging

to analyze. Density-based clustering, an analysis tool suited to high-dimensional

datasets, was therefore used to partition the conformation space into distinct con-

formers, and inform estimates of the free energy.

It is clear that understanding the conformational landscapes of APIs and how

they relate to their environments is an important and relevant challenge. Inspired by

the examples highlighted above, the aim of this project is to create general workflow

for the study of these conformational landscapes. As in the approach of Marinova et

al. above, a molecule’s conformation is defined using the values of the molecule’s

torsions [4] [13] . The conformation space is therefore always bounded and periodic

in all dimensions. Veber’s rules [15], a set of heuristics originally designed to pre-

dict whether a molecular structure would possess pharmacological properties, can

be used to identify the relevant torsions in any given molecular structure. Character-

izing conformers through the values of a set of torsions is not without precedent, and

a number of approaches are based on this definition. For example, Torsiflex[16] is a

software package that aims to explore a single molecule’s potential energy surface

utilizing a semi-random exploration of conformational spaces defined by torsions.

Other methods for studying the conformational distribution of flexible molecules

depend on quantum mechanical (QM) calculations [17, 18], machine learning algo-

rithms trained on structural data (GOAT) [19], or complex combinations of MD and

QM calculations (CREST) [20].

Rather than relying on stochastic algorithms for conformation space explo-

ration, MD simulations are used throughout this project as a means of sampling the

conformational spaces of the subject molecules. MD sampling is directly physics-

inspired, so the datasets generated through these simulations are rich in conforma-

tions that are physically relevant to the system within the simulated environment.
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The relatively low cost of MD enables long simulation times in any range of explic-

itly simulated environments. MD can also be augmented using enhanced sampling

methods, which can be tailored specifically to promote the exploration molecular

conformation spaces.

This project also continued the work of Marinova et al. by implementing

density-based clustering tools in the analysis of high-dimensional conformational

datasets, which reduce the computational cost of the analysis drastically as well as

enables a more human-intuitive understanding of these high-dimensional spaces.

The key relationship in this project is the natural partnership between MD simu-

lations and density-based clustering. Evaluating the density of a configuration in

conformation space where the configurations are sampled by MD is equivalent to

evaluating the relative probability associated with the region occupied by the confor-

mation. This is a direct result of the physics-inspired sampling of MD and makes

possible the calculation of free energies assigned directly to conformations. En-

hanced sampling methods may distort the underlying physical distributions, but the

same reweighing methods [21] which exist to correct biased distribution on grids

can be applied to the densities instead. As will be demonstrated here, by treat-

ing configurations sampled by MD as data points in conformation space in lieu of

grid points, higher-dimensional free energy landscapes become accessible which

preserve a high ’resolution’ in the more relevant, low free energy regions of confor-

mation space.

The treatment of molecular conformation spaces as high-dimensional periodic

spaces defined by torsions is very general, and this project aims to present an ap-

proach which is applicable to the study of a wide range of molecular systems in

any environment accessible by the wide range of MD simulation techniques. In

this spirit, all the techniques presented in this work are implemented as open source

software, available at https://github.com/ucecvan/Twister. Included in this reposi-

tory is an accessible tutorial, enabling the application of this work to novel systems.

A static version of this tutorial is shown in Appendix C.



Chapter 2

Theoretical Background

2.1 Molecular Dynamics
This section introduces the key concepts behind Molecular Dynamics (MD), the

sampling method used in this project. The term Molecular Dynamics describes a

family of methods for running computer simulations of physical systems. In an

MD simulation, a computational model representing a physical system is evolved

in time according to the laws of classical mechanics [8]. The simulation is carried

out by an MD engine, which keeps track of the position and velocity vectors of

all the particles (often atoms) in the simulation at every frame, and uses the forces

experienced by the particles at the latest frame to predict how the particles will

move in a given amount of time, generating the next frame. The time between

frames is referred to as the timestep (dt), and the record of the position and velocity

vectors of all particles in the system at every frame is referred to as a trajectory.

The forces experienced by particles are determined by their interactions with one

another, which are a function of their identity and relative position in space. These

functions are referred to as the force field used by an MD simulation [22]. The

following sections will explore each of these elements of an MD simulation, with a

focus on the specific methods used during this project.

2.1.1 The First Frame

As described briefly above, MD evolves a system in time by considering the forces

brought about by the position vectors of all the system’s particles. Choosing an
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initial set of positions and velocities for the particles in a system is therefore an

important part of the process. For some simple systems, selecting the positions of

all the particles could be as simple as manually specifying each atomic position,

but for more complicated systems, such as simulations of solvated systems, energy

minimization techniques are used to steer the system away from unphysical starting

states (such as those with overlapping atom positions or impossible bond angles) by

finding a local minimum in the potential energy of the system. The forces acting on

the system of N particles in terms of the potential energy is given by[22]:

F(r) =−dV (r)
dr

, (2.1)

where r is the vector of all individual particle positions ri, F(r) is the vector of

all the forces fi experienced by the particles in the system. V (r) is provided by the

force field, which is covered in detail in section 2.1.3.

F(r) =


f1x f1y f1z

f2x f2y f2z
...

...
...

fNx fNy fNz

 (2.2)

In order to find a local minimum in the potential energy, steepest descent [23]

(also called gradient descent) can be employed; from some starting configuration,

the local gradient of the potential energy is calculated and the system is moved a

small step down that gradient[24]. This process is repeated until a minimum is

reached. In practice, this is done by considering the forces acting on each particle

fi, given by

fi(ri) =−∂V (r)
∂ ri

, (2.3)

Each particle i’s position is moved in the direction of fi according to

r∗i = ri +
fi(ri)

max(F(r))
h, (2.4)
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where max(F(r)) is the highest force experienced by any individual particle

and h is the step size parameter. Following this, the potential energy of the new

configuration, V (r∗) is evaluated. If V (r∗) < V (r), this configuration is accepted,

and the process repeats from the new position, with h increased by a factor of 1.2.

If V (r∗) > V (r), this new configuration is rejected, and the process repeats from

the previous configuration with h reduced by a factor of 5. The algorithm continues

until interrupted or after F stops changing significantly with each configurational

change. The resulting system should be in a configuration which corresponds to a

local minimum in the potential energy surface and therefore serves a reasonable,

physically viable starting point for a molecular dynamics simulation.

Steepest descent is one of several viable energy minimization algorithms which

can be used to prepare a model system for MD simulation. It is described here

because it is the method used throughout the project.

Once the initial positions of all the particles have been determined, their initial

velocities must also be determined. This is done by selecting the system’s tempera-

ture T , generating the Maxwell-Boltzmann distribution of kinetic energies [25] for

each particle for that temperature and the particle’s mass,

f (vx,vy,vz) =
( m

2πkT

)3/2
exp

[
−

m(v2
x + v2

y + v2
z )

2kT

]
, (2.5)

then randomly assigning the velocity components to each particle in accor-

dance with that distribution, leaving each particle with velocity vi. In equation 2.5,

vx,vy, and vz all correspond to the velocities in the x,y, and z planes, m is the mass

of the particle, and k is the Boltzmann constant. Once positions and velocities have

been assigned to all particles in the system, MD propagation can begin, evolving

the system according to Newton’s equations of motion.

2.1.2 Propagation Algorithms

From an initial configuration, an MD simulation evolves under a propagation algo-

rithm, which uses the forces calculated by the force field, based on the positions

of the particles in the initial frame, to compute what the positions and velocities of
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the particles would be a short time dt later [26]. There are a range of propagation

algorithms available, but the Leapfrog algorithm will be outlined here, as it is the

algorithm used in the simulations carried out in this project. Firstly, for all particles,

their net acceleration is calculated from their net force experienced fi and their mass

mi,

ai =
fi

mi
, (2.6)

of each particle. Next, we describe the initial positions of all particles r(t) as

occurring at time t and the initial velocities v(t − 1
2dt) as being the velocities half of

a timestep before t. A new set of velocities is described at t + 1
2dt by

v
(

t +
1
2

dt
)
= v

(
t − 1

2
dt
)
+dt ·a(t). (2.7)

These new velocities are used to calculate new positions r(t +dt) as

r(t +dt) = r(t)+dt · v
(

t +
1
2

dt
)
. (2.8)

From the new positions, the force field reevaluates the forces on each particle

and then equations 2.6 - 2.8 are repeated in order to evolve the system a further

timestep. The process is repeated by a user-specified number of timesteps, with

the result being a record of particle positions and velocities at each timestep, called

frames. This forms a dataset commonly described as a trajectory.

It should be noted that under the Leapfrog algorithm, velocities and positions

are known at intervals offset by 1
2dt, hence the name of the algorithm. When the

velocity of particles at positions r(t) are needed, the velocities of the succeeding

and preceeding half-step are averaged,

v(t) =
1
2

(
v
(

t − 1
2

dt
)
+ v

(
t +

1
2

dt
))

. (2.9)
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2.1.3 Force Fields

In the above sections, the forces acting on each atom and their use in evolving

the positions and velocities of the system in time are frequently mentioned. These

forces are calculated as a function of the positions of the simulated particles, as well

as any specific interactions between them (bonds, etc.). Since a typical system of

interest will consist of atoms of many different elements, arranged into a variety

of environments, the number of parameters involved in replicating the number of

interactions between all the atoms will be large. For this reason, numerous force

fields have been developed, which contain all the potential functions and parameters

necessary to evaluate how every particle in a simulation interacts with every other

particle in given configuration, and the resulting potential of the system at said

configuration [27] [8]. The force acting on a particle then corresponds to the first

derivative of the potential at the position of said particle.

The force field used in this project is the General Amber Force Field (GAFF)

[28], a force field developed to be applicable to small, organic molecules. GAFF is

a Class I force field, which means it evaluates the potential of the system through a

function of form

V (r)= ∑
bonds

1
2

kr(ri j−r0)
2+ ∑

angles

1
2

kθ (θi jk−θ0)
2+ ∑

torsions
∑
n

kφ ,n[cos(nφi jkl+δn)+1]+

∑
non-bonded pairs

[
qiq j

4πε0ri j
+

Ai j

r12
i j

−
Bi j

r6
i j

]
(2.10)

The first term considers interactions between all atoms i, j which are joined by

a bond and separated by a distance of ri j. Here we we treat this interaction as a

harmonic potential [29], with an equilibrium distance of r0 and a force constant kr.

The second term considers the potential as it varies with bond angles θi jk for all

sequences of three sequentially bonded atoms i, j,k. This interaction is also treated

as a harmonic potential in terms of the angle and has a force constant of kθ and an

equilibrium angle of θ0.
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The third term considers the potential as it varies with the torsions φi jkl between

all sequences of four sequentially bonded atoms i, j,k, l. This is modelled with a

cosinusoidal function which has an amplitude of kφ ,n and splits the torsion angle

space into n minima.

The fourth term considers the potential between all atom pairs i, j except those

which are part of the same molecule and separated by only one or two bonds. Oth-

erwise, this term applies to all atom pairs, whether or not they are part of the same

molecule. These are modelled by a Lennard-Jones potential [30], and a classical

electrostatic point charge potential [25], with ri j representing the distance between

the atoms, qi q j the charges on each atom, Ai j and Bi j are parameters related to the

equilibrium distance between neutral atoms. ε0 is the vacuum permittivity.

In equation 2.10, ri j, θi jk, and φi jkl are functions of the positions of the atoms

in the simulation. The remaining parameters are selected by the force field de-

pending on the properties of the atoms themselves. GAFF, for instance, selects the

parameters in equation 2.10 based on 35 basic atom types, which include 5 carbon

types, 8 nitrogen types, 3 oxygen types, 5 sulfur types, 4 phosphorous, 6 hydrogen,

and 1 each for fluorine, chlorine, bromine, and iodine, as well as a further set of

advanced atom types. For elements with more than one atom type, the atom type,

and therefore the parameter set, is chosen based on the environment of the atom.

For instance, carbon atoms of different hybridizations are assigned different atom

types [28].

2.1.4 Common Tools and Approximations

The above section outline what can be described as the essential aspects of a sim-

ulation: the use of a force field to describe the potential energy of a configuration,

and the use of the resulting forces and a propagation algorithm to evolve the con-

figuration in time by a small timestep. In practice, however, many additional tools

and approximations are applied to a typical MD simulation in order to reduce the

computational cost or better control aspects of the simulation. The most relevant

methods to this project will be described in this section.
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2.1.4.1 Periodic Boundary Conditions and Cutoffs

One challenge in MD is the simulation of bulk materials and solutions using a simu-

lation box of limited size. Typically, this is achieved using periodic boundary condi-

tions [31], wherein the simulation box is treated as a unit cell in an infinite lattice of

replicas [8]. In practice this means that when an atom passes through a box bound-

ary, it reappears on the other side of the box. This also means that atoms interact

with each other across particle boundaries, and with their own replicas. It should be

noted that periodic boundary conditions cannot perfectly replicate bulk conditions.

For instance, if a system experiences fluctuations at a certain wavelength, these will

be impossible to reproduce with a box smaller than that wavelength.

In equation 2.10, presented in 2.1.3, the fourth term for bonded pairs considers

non-bonded interactions between all possible atom pairs (excluding those separated

by one or two bonds), regardless of the distance between them. This term in equa-

tion 2.10 is the sum of van der Waal’s (Lennard-Jones) potential and a classical

electrostatic potential, but here only the handling of the van der Waal’s potential

through a cutoff will be discussed (long-range electrostatics are handled using Par-

ticle Mesh Ewald[32], a method outlined in the next subsection). With periodic

boundary conditions in place, considering all interactions regardless of distance

becomes unfeasible, since the sum of every particle interacting with every other

particle an infinite number of times cannot be practically computed. As interatomic

interactions weaken as their separations increase, a cutoff distance rc can be de-

fined [33] beyond which we do not consider particles to interact with one another.

In order to minimize errors, this cutoff distance needs to be large enough that the

interactions are truly negligible at that distance. In the case of a Lennard-Jones po-

tential, the long-range term is the attractive term which decays with r−6. This rapid

decay means a relatively short cutoff distance (in the order of 1 nm) can be used.

In order to ensure that the potential function is continuous, the value of the

potential at the cutoff distance is subtracted from the entire potential

Vtr(r) =Vnb(r)−Vnb(rc) (2.11)
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This leaves Vtr(r) as the truncated potential, which ensures that the potential

smoothly vanishes at the cutoff distance. Since the entire function is shifted by a

constant amount, its derivative, and therefore the forces acting on the particle, are

unaffected by the shift. In applying the cutoff, the van der Waal’s force acting on

each particle is limited to contributions from the nearest particles only. This is a

reasonable approximation for evolving the position and velocities of each particle,

but the use of a cutoff and the resulting shift will have an impact on the calculation

of the overall properties of the entire system. This can be rationalized by consid-

ering that even though interactions between particles grow weaker with increasing

distance, the number of neighbors on a spherical shell radius r increases with r2.

Thus while the interactions between distant particle pairs are small, they are large

in number, and contribute meaningfully to the system’s potential energy and pres-

sure. Calculations of the system’s potential energy and pressure must therefore be

corrected to account for the missing long-range van der Waal’s interactions[34].

This long-range correction for the potential energy takes the form

VLR =
1
2

N
((

4
3

πρr3 −1
)

C6S− 4
3

πNρC6r−3
c

)
, (2.12)

where the potential being treated is the attractive term of the Lennard-Jones

potential, represented by C6r−6, ρ is the average number density of the system, S

is the amount the potential function has been shifted by, and N is the number of

particles in the system. The first term accounts for the potential lost to the shift,

while the second term corrects missing interactions beyond the cutoff.

The pressure of an ideal gas is given by

P =
2

3V
Ekin,

and to correct for non-ideality brought about by van der Waal’s interactions, the

share of the system’s kinetic energy which derives from the interaction of particles

with each other through van der Waal’s interactions must be accounted for,
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P =
2

3L3 (Ekin −Ξ), (2.13)

Where Ξ is this share of the kinetic energy, known as the system’s virial. The

virial of a pair of particles is described by

Ξi j =−1
2

ri jFi j = 3C6r−6
i j (2.14)

The virial’s dependence on the intermolecular forces means it will also be af-

fected by the cutoff, and so a correction term for the long-range virial is necessary

to compute the pressure of the system. This correction takes the form

ΞLR =
Nρ

2
(4πC6r−3

c ) (2.15)

2.1.4.2 Handling of long-range electrostatics with particle-mesh

Ewald

As detailed above, the computation of long-range interactions can be controlled by

introducing a cutoff distance beyond which the interactions are not considered to

impact the evolution of the system, and the calculation of the overall potential can

be corrected by adding a correction term to the total potential expression. Since this

expression requires the evaluation of the integral of the potential up to an infinite

distance, it is crucial that this integral converges with distance. As mentioned above,

this is indeed the case for van der Waals interactions modelled with a Lennard Jones

potential (see the fourth term of equation 2.10), but for electrostatic and dipolar in-

teractions (also in the fourth term of equation 2.10), this is not the case [8]. There-

fore, another method is needed to account for the electrostatic contribution to the

total potential in an infinite system. This can be accomplished using a computa-

tional method called Particle-Mesh Ewald (PME) [32].

To begin, an Ewald sum will be introduced. The total Coulombic potential

of a system of N point charges distributed inside a simulation box with periodic

boundary conditions in place is given by
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Vcoul =
1
2

N

∑
i=1

qiφ(ri). (2.16)

The net charge of the system is 0. This is the sum of the potentials φ(ri) at

position of particle i, ri, multiplied by i’s charge qi. These individual potentials are

given by

φ(ri) = ∑
j,n

q j

|ri j +nL|
, (2.17)

where the sum is over all neighboring particles j in all periodic images n. L is

the length of the sides of the periodic box, assumed to be cubic in this case. This

sum is not guaranteed to converge, and may converge slowly. To correct for this, a

diffuse cloud of the exact opposite charge is centered on each point charge. These

clouds diffuse according to a Gaussian distribution, and they serve to screen the

point charge. Thus, any potential between point charges is a function of only the

charge q which is not screened, a fraction which decays to 0 as the Guassian does.

Due to the rapidly decaying nature of the potential between charges, the total sum

can be computed as it must now converge. However, the effect of the screening

charges must be accounted for, so another set of diffuse charges, also centered on

the point charges is added with the same charge as the point charge, such as to

compensate for the charge of the screening charge distribution. These three terms-

the point charges, the screening cloud charges, and corrective cloud charges- sum

together to the same charge distribution is the just the point charges. Because the

rapidly decaying nature of the point charge is combined with the screening charge,

it can be handled in real-space. The corrective charges therefore account for the

long-range effect on the potential. For this reason, they are evaluated in recipro-

cal space, which is computationally advantageous. The total Coulombic potential

energy function, combining these real and reciprocal terms, takes the form

Vcoul =
1
2

N

∑
i ̸= j

qiq jerfc(
√

αri j)

ri j
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+
1

2L3 ∑
k ̸=0

4π

k2 |ρ(k)|
2exp(−k2/4α)

−(α/π)1/2
N

∑
i=1

q2
i , (2.18)

where α is a parameter that determines the width of the Gaussian shape of the

screening and corrective charge clouds, ρ is the charge distribution in the reciprocal

space, and k is the frequency vector in reciprocal space. The erfc function has the

form erfc(x) = 2√
π

∫
∞

x e−u2
du.

The first term of Equation 2.18 describes the potential of the point charges and

their screening clouds. The interactions of each particle i with all other particles

j calculated and summed. The factor of 1/2 accounts for the fact that adding up

interactions for every particle doubles the number of interactions between particle

pairs.

The second term of Equation 2.18 describes the potential of the corrective

clouds. The charge distribution surrounding each particle repeats infinitely in every

direction, due to the periodic boundary conditions. Therefore, this charge distri-

bution is a periodic function and its Fourier transform can be used to evaluate its

potential as a function of the frequency vectors of this periodic charge distribution.

The third term is a correction for the fact that by summing the first term and

second term together, each point charge in the first term is interacting with its own

corrective Gaussian in the second term. To correct for this, the interaction between

an overlaid point charge and the Gaussian charge is subtracted for every charge in

the system.

It should be noted that while both the first and second terms of equation 2.18

converge with increasing r and k, respectively, the rates of these convergences have

opposite dependencies on the widths of the Gaussian-shaped charge clouds, α . De-

creasing α leads to more rapid convergence of the first, real space term, but slower

convergence of the second, reciprocal space term. Therefore, in all practical meth-

ods based on the theory of Ewald sums, a compromise value of α must be selected.

In practice, Ewald summation is applied to the long-range interactions in the
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MD simulations carried out in this project through Particle-Mesh Ewald (PME). In

PME, the first term of equation 2.18 is calculated with a distance cutoff, similarly

to how van der Waal’s interactions are treated. This is possible because the combi-

nation of a screening charge and a point charge has a potential that decays rapidly

with distance. The second term of equation 2.18 is treated similarly, but with a

cutoff in reciprocal space instead. This is possible because high values of k con-

tribute little to the overall long-range potential of the charge distribution. In PME,

the charge distribution itself is assigned to a fine but discrete mesh, instead of being

distributed freely through space. This is because computing the Fourier transform

ρ(k) of the charge distribution can be performed relatively cheaply using the fast

Fourier transform (FFT) algorithm.

2.1.4.3 Bond Constraints

Simulations carried out throughout this project utilize the LINCS algorithm[35] for

constraining all bonds terminating in a hydrogen atom. The low mass of a hydrogen

atom results in high vibrational frequency when modeled with a classical potential.

Replacing this with a static bond can be more accurate in replicating the properties

[35] of a true bond, and allows a longer timestep to be used when modeling the

system. Since the vibrational modes of the H-bonds in the systems studied here are

not of interest, LINCS can be implemented without significant compromise on the

dynamics of the system. LINCS provides a framework for handling the evolution

of the system when certain bond lengths must be preserved after every evolution of

the system, regardless of the forces experienced by the atoms. In a system with K

constrained bonds, constraint functions are defined as

gi(r) = |ri1 − ri2|−di = 0, i = 1,2, ...,K, (2.19)

where ri represents the positions of the two atoms in bond i and di is the con-

strained bond length. These constraints are worked into the equation of motion for

the system,
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d2r
dt2 =−M−1 ∂

∂ r
(V −λg), (2.20)

where g is the vector of all of the constraint functions, V is the unconstrained

potential, and M is the matrix of atomic masses. It can be seen that λg is acting

in the manner of a constraint potential, where the parameter vector λ carries the

magnitude needed for each constraint to cancel out the potential V and preserve the

bond distance. The quantity B is now introduced:

B =
∂g
∂ r

,

so that the dot product BT λ = λ ·B can be seen as analogous to a constraint

force, with B containing the directions of all the constrained bonds. An expression

for the constraint force can be deduced to be

BT
λ =−BT (BM−1BT )−1 dB

dt
dr
dt

(2.21)

= MT
dB
dt

dr
dt

.

Where T is shorthand for M−1BT (BM−1BT )−1. This leads to a new, con-

strained equation of motion:

d2r
dt2 = (I −T B)M−1 f −T

dB
dt

dr
dt

, (2.22)

where I is the identity matrix. This constrained equation of motion can be used

to determine the propagation equations for the leap-frog algorithm (for details on

the unconstrained leap-frog algorithm, see section 2.1.2, in particular equations 2.7

and 2.8). The positions are propagated as follows:

r(t +dt) = (I −T (t)B(t)
(

r(t)+ v
(

t − 1
2

dt
)

dt +M−1 f (t)dt2
)
+T (t)d (2.23)

where the atom positions are first evolved according to the unconstrained po-
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tential, before setting the constrained bond lengths in direction B(t) to the distance

d. Velocities are then propagated as follows:

v
(

t +
1
2

dt
)
=

r(t +dt)− r(t)
dt

. (2.24)

2.1.4.4 Thermostats

To better replicate experimental conditions, simulations carried out in this project

are often run in the NVT ensemble (also called the canonical ensemble). This in-

volves the use of a thermostat, which replicates the effect of coupling the system to

a heat bath, allowing the exchange of energy in order to keep the system at a con-

stant temperature. Commonly used thermostats include the Berendsen thermostat

[36], the Langevin thermostat [27] and the Nose-Hoover thermostat [37, 38]. The

thermostat used for simulations in this project is the Bussi-Donadio-Parrinello, or

Bussi thermostat [39]. The temperature of a system is related to its kinetic energy

by

K =
N f

2β

β = (kBT )−1,

where N f is the system’s number of degrees of freedom, T is the absolute

temperature, and kB is the Boltzmann constant. The Bussi thermostat modifies the

velocities of particles in the system such that the average kinetic energy of the sys-

tem will reflect the target temperature. This is done by multiplying the velocities of

all particles by a scaling factor

α =

√
Kt

K
, (2.25)

where K is the current kinetic energy of the system, and Kt is a kinetic energy

randomly sampled for the canonical distribution of kinetic energies:

P(Kt) ∝ K
(N f /2)−1
t e

−Kt
kBT∗ , (2.26)
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where T ∗ is the target kinetic energy. Applying the scaling factor α over the

course of the simulation will result in an average kinetic energy which corresponds

to the target temperature. Because each time the scaling factor is applied the canon-

ical distribution for kinetic energies is being sampled, the canonical distribution

in kinetic energies is preserved. Additionally, since the same scaling factor is ap-

plied to all velocities, this thermostat does not affect the bond lengths of constrained

bonds. This preservation of the system’s dynamics is crucial for this project, since

the principal aim is to study how the molecule’s geometric configurations are phys-

ically sampled.

2.1.5 Calculating a Free Energy Surface from a Molecular Dy-

namics Trajectory

The overall free energy of a system[27] in the NVT ensemble is given by

F =−kBT ln(Q), (2.27)

where kB is Boltzmann’s constant, T is the absolute temperature, and Q is the

partition function of the system:

Q = ∑
i

exp(−Ei/kBT ), (2.28)

Where Ei is the energy of state i, and the Boltzmann factor is the exponent

being summed over all microstates. It is possible to evaluate the free energy of a

subset of the states, by only considering those microstates in equation 2.28. Each

microstate of the system corresponds to a unique set of atomic positions ri, but these

microstates can be classified by defining a function of these atomic positions S(r),

known as a collective variable (CV), and grouping microstates which lead to an

equivalent value of S(r).

The probability of finding the system in state j is related to the partition func-

tion by:
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Pj =
exp(−E j/kBT )

∑i exp(−Ei/kBT )
=

exp(−E j/kBT )
Q

. (2.29)

This link between the probability of encountering a microstate and its free en-

ergy is what allows for the use of MD for the estimation of free energy surfaces[21].

If two discrete regions m and l in S(r) are considered, the free energy difference be-

tween regions m and l are given by:

Fm −Fl =−kBT ln(PmQ)+ kBT ln(PlQ) = kBT ln
(

Pl

Pm

)
. (2.30)

Equation 2.30 demonstrates that the difference in free energy between two

regions of CV space does not depend on knowledge of Q. Thus, applying equation

2.27 to the probability distribution in terms of S, P(S) yields a free energy surface

where the relative free energies between different regions are correct:

F(S) =−kBT ln(P(S)). (2.31)

If the CV space is evenly split into discrete regions in S(r), an MD trajectory

can be used to build a normalized histogram H(S) which track how many frames

correspond to each region of S(r). Each bin then corresponds to the probability of

encountering the system within that region of S(r).

F(S) =−kBT ln(H(S)). (2.32)

Using equation 2.32 on a histogram constructed from an MD trajectory as-

sumes that all regions of the CV space were visited in the course of the simulation,

and that the simulation has run for enough time that the time spent in each region is

proportional to the probability of that region being sampled. This condition, ergod-

icity, is not trivial: simulations may run for a long time and at great computational

cost while stuck in local minima, leaving regions relatively unexplored or even com-

pletely unexplored at the end of the simulation. An entire branch of MD techniques,

known as enhanced sampling techniques[40], have arisen to achieve ergodic simula-

tions in reasonable timeframes. In this project, one such technique, Well-Tempered



2.2. Well-Tempered Metadynamics 43

Metadynamics (WTMetaD), is used to ensure ergodicity in simulations.

2.2 Well-Tempered Metadynamics

As described in Section 2.1.5, using a trajectory to calculate a FES requires the

trajectory to have ergodically sampled the relevant CV space. For systems where

this requires prohibitively long simulation times, a family of enhanced sampling

techniques offer solutions which enhance the sampling of the CV space without

necessitating longer simulation times. These include parallel tempering [41], bias

exchange metadynamics [42], umbrella sampling [43], and steered metadyamics

[44].

Here, Well-Tempered Metadynamics is used to promote sampling [45].The

principle of the process is to add a biased potential term to the overall potential of

the system, in such a way that frequently visited regions of CV space experience

artificial forces which push the system into previously unexplored regions. In order

to apply this bias, an appropriate set of CVs, S(r) must be described which suitably

split the system into regions of interest. The bias is defined in terms of these CVs,

and ensures the system explores these CVs. The form of the bias is

VB(S, t) = kB∆T ln
(

1+
ωH(S, t)

kB∆T

)
, (2.33)

where ∆T is a parameter with the units of temperature, ω is the energy rate,

a parameter which determines how much potential is deposited over the course of

the simulation, and H(S, t) is the histogram of the system’s configuration in CV

space. The time-dependency arises since the bias potential is added as the sim-

ulation evolves, so the histogram is built as the simulation progresses. This bias

potential is a monotonic function of H(S, t), which means more bias will be present

in the more frequently visited region, ensuring that its force displaces the system

into unexplored regions. Because the potential is applied over time as the system

evolves, the time derivative of the potential, the rate of deposition of the bias, is

more relevant to the implementation of metadynamics,
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V̇B(S, t) = ωexp
(
−VB(S, t)

kB∆T

)
δ (S, t), (2.34)

where δ (S, t) are delta functions in S and t, the time derivative of the histogram

H(S, t). In practice, delta functions are not used, and bias is instead deposited along

CV space in a Gaussian shape,

V̇B(S, t) = ωexp
(
−VB(S, t)

kB∆T

)
Wexp

(
S(r)−S(r(t))

2σ2

)
, (2.35)

where W is the height of the Gaussian and σ is the width of Gaussian. Equation

2.35 decays with 1/t, and the deposited Gaussians are distributed in CV space S(r)

centered on the point in CV space then occupied by the simulation, S(r(t)). The

time decay of Equation 2.35 means that the total deposited potential converges in

the limit t → ∞,

VB(S, t → ∞) =− ∆T
T +∆T

F(S)+C, (2.36)

where T is the temperature of the system and C is a constant that can largely be

ignored, since the relative free energy of different points on the surface is the main

interest. The bias affects the probability distribution of S as follows

P(S) ∝ exp
(
− F(S)

kB(T +∆T )

)
. (2.37)

Equation 2.37 demonstrates the utility of the ∆T parameter. At ∆T = 0, Well-

tempered metadynamics deposits no bias and the probability distribution follows on

from section 2.1.5. As ∆T → ∞, the bias deposited by the system does not converge

with time, corresponding to un-tempered, or standard metadynamics. Tuning ∆T

allows control over the rate of decay of bias deposition, and thus the convergence

of the bias.

Equation 2.37 allows for the recovery of F(S), but the bias deposited in terms

of S also distorts the probability distribution of variables T (r) in the system which

were not explicitly biased. Recovering the probability distribution of non-biased
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variables requires reweighing the distribution of those variables to account for the

bias[46]. The unbiased histogram of any variable can be recovered from the biased

histogram by applying the factor

H0(T (r)) = exp
(

VB(S(r), t → ∞)

kBT

)
H(T (r)), (2.38)

which assumes that the final bias VB(S(r), t → ∞) has been applied for the

entirety of the simulation. This assumption becomes valid as simulations run for

long after the deposited VB has converged, the rate of which can be managed by

modulating ∆T .

2.3 Unsupervised Clustering
Unsupervised clustering [47] refers to a family of computational methods which

partitions a dataset into discrete regions, termed ’clusters’. The adjective ’unsu-

pervised’ refers to the fact that unlike other, supervised machine learning methods,

the algorithm does not require training on a labelled dataset. Instead, unsupervised

clustering detects some underlying structural pattern within the data itself.

This project uses unsupervised clustering on a dataset of a molecule’s con-

formers obtained from an MD trajectory, where each conformer is described by the

values of torsions in the molecule. Within this conformation space, more frequently

observed conformations from the MD trajectory will form denser clusters of data

points, while uncommon conformations will mean regions of conformation space

remain sparsely populated. For this reason, a clustering method which separates

data based on density would be capable of sorting the dataset into discrete conform-

ers.

Density-based clustering techniques form a family of unsupervised clustering

algorithms that group data points within spatial datasets into clusters based on the

distance between data points within the data space. Algorithms in this family in-

clude DBSCAN [48] and Fast Search and Find of Density Peaks (FSFDP) [49].

There is precedent for the use of FSFDP in molecular conformation spaces, Mari-

nova et al. used it to study the conformation space of Sildenafil[13]. The working



2.3. Unsupervised Clustering 46

Figure 2.1: a: An example of a two-dimensional spatial dataset, where the data points are
clearly separated into two clusters. The points representing the two density
peaks, as identified using the decision graph, are indicated. b: the FSFDP de-
cision graph (dc = 1), where the indicated points 24 and 29 stand out clearly as
the two density peaks. c: The data points are colored according their assigned
cluster when points 24 and 29 are used as density peaks.

principles of FSFDP and its successor, Density Peaks Advanced (DPA)[50] will be

outlined here by exploring how these algorithms operate on unbiased MD-generated

conformational data.

2.3.1 Fast Search and Find of Density Peaks

FSFDP is a robust and computationally efficient density-based clustering method,

suitable for the types of conformational datasets generated by MD. The algorithm

determines, for each data point i in conformation space S, a local density ρi, cal-

culated by counting the number of other data points within a distance dc of i. The



2.3. Unsupervised Clustering 47

algorithm then calculates for each data point i the distance, δi, to the nearest neigh-

bor of higher local density. The point with the highest local density in the entire

dataset has no potential neighbor of higher density and is thus assigned a δi equal

to the distance between itself and the furthest point from itself.

For most points, the expected value of δi is small, as there should be neighbor-

ing points of higher density. The exceptions to this will be points of extremely low

local density, which will have long distances between themselves and any neigh-

bors, and points which are the densest point in their neighborhood, and so repre-

sent density peaks. These density peaks are surrounded by points of lower density,

and so must search into other neighborhoods to find points of higher local density.

Therefore, these density peaks represent something of an anomaly: they will have a

high ρ and a high δ simultaneously, and so can readily be identified by plotting ρ

and δ for all points. This plot is called decision graph, and cluster centers are iden-

tified from the high-δ high-ρ regions of the decision graph. These cluster centers,

once identified, become representative of each cluster. An example of this process

carried out on a simple two-dimensional dataset is presented in Figure 2.1 with an

example decision graph shown in Figure 2.1b

The remaining data points are assigned to the same cluster as that of their

nearest neighbor of higher density. The clusters, now complete, are split into core

and halo regions. For each cluster, this is done by identifying all points within dc

a point belonging to another cluster. These points are termed border points, and

the density of the densest border point becomes the cluster’s threshold density. All

points denser than the threshold are considered part of the cluster core, while those

with a lower density are part of the cluster halo.

This clustering algorithm is suitable for this project’s applications for several

reasons. Firstly, it clusters based on density peaks, which reflects the manner in

which a molecular dynamics simulation samples conformation space. It also has

the number of clusters arise naturally as part of the algorithm, instead of requiring

it as a user input prior to clustering taking place, as required in non-density based

algorithms, such as k-means clustering. In fact, the only user-specified parameter
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at all is dc, the distance used in local density calculations and in halo-core region

assignment. However, FSFDP’s use of a fixed radius in the calculation of a data

point’s density renders it less powerful in datasets where points populate regions

with a range of densities. A successor algorithm, Density Peaks Advanced, uses a

modified density estimator capable of adapting the size of the neighborhood con-

sidered when calculating each point’s density.

2.3.2 Density Peaks Advanced

Density Peaks Advanced (DPA)[50], a successor to FSFDP, is the primary clus-

tering algorithm used throughout this project. DPA estimates the probability as-

sociated with the ensemble of configurations projected in a given point i of the

configuration space S using the PAk density esitmator[51]. Like the simple radius

based density estimation in FSFDP, PAk is based on the Euclidean distances be-

tween point i and its nearest neighbors. Unlike FSFDP, the size of the hyperspheri-

cal neighborhood centered on i is determined by PAk for each individual data point.

An underpinning assumption of this method is that the density is constant in the

neighborhood of the point i. Hence, the number of nearest neighbors k is selected

to be as large as possible to maximize the data used in calculating the local density

while still representing a hypervolume of constant density. Each neighbor l can be

said to occupy the volume vl of the hyperspherical shell enclosed between hyper-

spheres of radii rl and rl−1. The sum of these volumes up to neighbor k is equal to

volume Vk of a hypersphere with radius rk. DPA leverages the fact that for a region

of constant density, the volumes will be drawn from an exponential distribution [52]

with a rate of this density ρ and that thus the log-likelihood function of ρ given a

set of k neighbors is given by

Li,k(ρ) = klog(ρ)−ρVk, (2.39)

The PAk estimator selects an appropriate k value using two models with dis-

tinct assumptions. Model one, M1, assumes that the densities of point i and its

j = k+ 1 nearest neighbor are independent, while model two, M2, assumes these
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densities are identical. Their log-likelihood functions are:

LM1 = klog
(

k2

VkVj

)
−2k (2.40)

LM2 = 2klog
(

2k
Vk +Vj

)
−2k. (2.41)

The two models are compared with a likelihood ratio test [53],

Dk =−2(LM2 −LM1) (2.42)

which increases as the two models differ. If Dk grows over a threshold Dthr (Dthr =

23.928 according to Ref. [50]) then the densities of i and j cannot be considered

constant. As such, PAk selects an appropriate k value by iteratively calculating Dk

to increasing values of k until the threshold is passed.

Once k has been determined for all points, a density value ρi is known for each

point through Equation 2.39.

In the classification step, DPA identifies peaks in the density as cluster centers.

To avoid every fluctuation in density from being identified as a distinct peak, the

DPA classifier is set to merge clusters which are separated by a saddle point between

the density peaks with a density difference less than a user-specified threshold from

the lower density peak. This provides an additional advantage over FSFDP, as a

manual interpretation of the decision graph is no longer required, and classification

is carried out fully automatically.

Once cluster centers have been determined, all remaining configurations are

assigned membership to the same cluster as their nearest neighbor of higher density

[50], as in FSFDP.

For both FSFDP and DPA, the most computationally expensive part of the pro-

cess is the construction of a distance matrix which captures the distances between

all pairs of data points. We therefore expect the cost of this approach to scale with

the square of dataset size. As the dimensionality of the space increases, an addi-

tional term is added to the Euclidean distance calculation carried out. We therefore
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expect the cost of the algorithm to scale linearly with dimensionality.

2.4 Two-Dimensional Projections with Sketch-Map

This project uses Sketch-map, a tool devised by Ceriotti et al [54], to project high-

dimensional spatial datasets into two dimensions, which allows them to be visual-

ized. The structure of a sample of configurations taken from an MD trajectory in a

high-dimensional conformation space is of central interest to this project. Visualiz-

ing some representation of this structure would aid in enabling an intuitive analysis

of these conformational spaces. Sketch-map has been designed with the specific

purpose of creating a two dimensional projection of high-dimensional data gener-

ated from molecular simulations, aiming to preserve the local structure between

isolated basins in the data space.

Sketch-map is based on an observation made when considering the histogram

of pairwise distances for a set of molecular configurations distributed in a high-

dimensional, periodic space. Figure 2.2 shows the distribution of pairwise distances

for configurations of sulfadiazine in its 4 dimensional conformation space, as sam-

pled by the simulations carried out in Chapter 4, but the shape of the histogram is

largely representative of these types of datasets in general. Ceriotti et al. observe

that the distribution assumes two shapes at either extreme of the distribution. Be-

tween 0 and 1 rad, the distribution takes on Gaussian form, while at distances longer

than 3.5 rad, the shape of the distribution matches that of a uniform distribution of

points in a periodic space[54]. Ceriotti et al. propose the Gaussian section of the dis-

tribution contains the distances between points within the same basins, and that the

distances within the uniform distribution are those between points in two separate

basins, distant from one another. Therefore, the intermediate stretch, between 1 rad

and 3.5 rad, contains the distances between configurations in neighboring basins.

Sketch-map seeks to create a two-dimensional projection of the high-dimensional

dataset by preserving these intermediate distances. It does this by transforming the

distance in both the original high-dimensional space and the low-dimensional pro-

jection using two sigmoid functions which reduce all short distances to 0 and extend
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all long distances to 1,

F(Ri j) = 1− (1+(2aD/bD −1)(R/α)aD)−bD/aD, (2.43)

f (ri j) = 1− (1+(2ad/bd −1)(r/α)ad)−bd/ad , (2.44)

where F(Ri j) maps the high dimensional distance Ri j to a sigmoid function,

and f (ri j) maps the low dimensional distance ri j to a sigmoid function. a, b, and

σ are the parameters of the sigmoid functions, determining the rate at which the

function approaches 0, the rate at which the function approaches 1, and the distance

at which the function is equal to 0.5, respectively. σ is the same for both F(Ri j) and

f (ri j), but the two functions have distinct a and b parameters, distinguished with a

D or d subscript. These parameters are all user specified. The mapping from Ri j to

ri j is obtained by minimizing

χ
2 = (∑

j ̸=i
wiw j)

−1
∑
j ̸=i

wiw j[F(Ri j)− f (ri j)]
2 (2.45)

where wi and w j are the weights on points i and j. In practice, minimizing the

above equation scales in cost with the square of the number of data points within

the dataset. Typically, a small sample of N landmark points are randomly selected

from the datset and χ2 for this landmark dataset is minimized to generate a set of

low-dimensional landmarks. To ensure that the distances between points in regions

of higher density are weighed more heavily, each landmark is assigned a weight

w equal to the number of data points from the complete dataset within its Voronoi

polyhedron within the landmark dataset [54].

Any non-landmark point X in the high-dimensional dataset can be projected

into x in the low dimensional space by minimizing

χ
2 = (

N

∑
i=1

wi)
−1

N

∑
i=1

wi[F(X −Xi)− f (x− xi)]
2 (2.46)

Where Xi is one of the high-dimensional landmark points and xi is its low di-
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Figure 2.2: A histogram of the distribution of pairwise distances between configurations of
sulfadiazine distributed in a periodice, 4-dimensional conformation space. The
distribution resemble a Gaussian between 0 and 1 rad and a uniform distribu-
tion between 3.5 and 7 rad. The intermediate distribution is reflective of the
structures of the basins within the conformation space, and it is these distances
preserved by Sketch-map.

mensional projection. This is typically done for all remaining non-landmark points

in the dataset.



Chapter 3

Methods

3.1 Summary of Approach

As an introduction to the workflow developed in this project, this section will pro-

vide a summary of the workflow, with subsequent sections covering the individual

components in more detail [55]. To begin, the subject molecule’s conformation is

defined using the values of the molecule’s torsions. [4] [13]. The space of possible

conformations is termed the molecule’s conformation space,

S = [γ1,γ2, ...,γD] ,

where γi is one of the D torsions of a given molecule. The conformation space

is therefore D-dimensional and always bounded and periodic in all dimensions.

Molecular dynamics (MD) simulations can be used to sample the conforma-

tional space and map the conformational FES of a given molecule. Sampling the

probability distribution with MD offers two key advantages; MD sampling is in-

herently physics-inspired and allows for the analysis of the molecule in various

environments and conditions. As discussed in Chapter 2, the physics-based nature

of the sampling means the distribution sampled in conformational space by the MD

simulation can be converted into a FES [21] through the relationship:

F(S) =−kBT ln p(S), (3.1)



3.1. Summary of Approach 54

where p(S) is the probability distribution in the conformational space, F(S) is

therefore the FES in conformational space S, kB is Boltzmann’s constant, and T is

the temperature.

To compute F(S), it is thus necessary to obtain an estimate of p(S), where all

energetically relevant regions are ergodically sampled. For the ergodic sampling

of a well-defined configuration space, metadynamics, which involves depositing

penalty biases dynamically as the simulation proceeds to promote sampling[40],

would be a typical approach. A description of well-tempered metadynamics is pre-

sented in Chapter 2. However, for the exhaustive sampling of a conformation space,

this approach is limited by the computational feasibility of storing the bias values

on a grid of the same dimensionality as the conformation space, which is the same

issue faced with the conventional method of FES construction. For this reason, in

practical applications, conventional metadynamics biases constructed in dimension-

alities higher than three are very rare. Alternatives for high-dimensional CV spaces,

such as bias-exchange metadynamics [42], have been developed. Still, these gener-

ally depend on the running of multiple replica simulations overseen by an exchange

scheme. To widely sample conformational space with a single simulation, concur-

rent [56] well-tempered metadynamics (WTMetaD) [45] is used here.

DPA, developed by d’Errico et al., splits a set of data points distributed in space

into clusters by grouping points within density peaks, a term referring to regions of

high data density (N.B. In this work, the term ’density’ refers to the density of

data points in S, unless otherwise noted). It does this partly by calculating the

local density of every region centered on every single point in the dataset. This

calculation is a function of the Euclidean distances between the point and its nearest

neighbors. A full description of DPA is provided in Chapter 2. Here, the process is

applied to a sample of N configurations in conformation space sampled by the MD

simulation. These local density calculations are extremely powerful in this context

for two key reasons: firstly, each additional dimension in S adds a single term to the

Euclidean distance calculation, so the cost with increasing dimensionality scales

linearly, and secondly these local densities map a distribution in much the same
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way as the previously described histogram, so the same reweighing and inversion

procedure may be applied to calculate the free energy. These free energies, unlike in

the above histogram, are not associated with a defined region of conformation space.

Rather, they are associated with a specific configuration sampled by the simulation.

Thus, this per point FES has no fixed spatial resolution; data is rich in regions that

have been heavily sampled and sparse in regions that have not been frequented.

This is advantageous as it means that while data in the local minima remains highly

dense due to the frequent sampling, little cost is incurred considering data from the

rarely visited, largely irrelevant high-energy regions. This approach contrasts with

the grid-based approach, where these high-energy regions are modeled in as high

a resolution as the more relevant local minima. Figure 3.1 shows a summary of

the workflow outlined here. Subsequent sections of this chapter will describe each

stage in more detail.

3.2 Simulation Details and Enhanced Sampling

Setup

3.2.1 Simulation Setup

As the high-dimensional free energy landscapes produced here depend solely on a

configurational dataset defined by the sampling of a molecule’s torsions, the anal-

ysis process subsequent to simulation is completely independent of the simulation

environment. As such, vacuum simulations are sufficient to demonstrate the impact

of conformational complexity on the resulting free energy landscapes, as is done

in Chapter 4. The impact of solvation on the conformation free energy surface is

explored in Chapter 5.

GAFF [28] force field parameters were used. The working principles of a

Class I force field, such as GAFF, are presented in 2.1.3. For all simulations under-

taken in this project, molecular structures were passed to Antechamber, part of the

AmberTools [57] package, which assigned atomtypes to all atoms within the struc-

tures. Suitable GAFF force field parameters were then selected using LEaP, another

component of AmberTools [57]. GAFF does not include an exhaustive selection
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Figure 3.1: A summary of the workflow presented in this chapter. Note that each compo-
nent operates independently, and the methodology used in each component can
be modified or replaced if desired by the user.
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of 4-atom torsion parameters. Where these were missing, GAFF’s 2-atom (specific

to the two central atoms) torsion parameters were substituted. As the simulations

in this project serve chiefly to provide data to exhibit the density-based free energy

estimation technique (see Chapter 4), and provide an example workflow for a set

of computational experiments on single molecules both in vacuum and in solution

(see Chapter 5), this degree of parameterization is sufficient. Note that the cost of

the density-based analysis is completely independent of the level of theory used in

the simulation.

Production simulations were run for 1 microsecond. GROMACS[23] was the

MD engine used. WTMetaD was carried out using the Plumed [58] plugin for

GROMACS. The simulations were carried out in the NVT ensemble, at a tem-

perature of 300K, maintained using the velocity-rescaling thermostat developed by

Bussi et al.[39]. The simulation box walls were set to be 5nm from the nearest

atom of the simulated molecule upon initialization, and all three spatial dimensions

were simulated using periodic boundary conditions. Short range van der Waal’s

and electrostatic interactions both had cut-offs of 1.5 nm. Long range electrostatics

were handled with the Particle Mesh Ewald (PME) method [32], as implemented by

GROMACS. All bonds terminating in a hydrogen atom were restrained with LINCS

[35].

For simulations carried out in solvent, the simulation box was set up as above,

and then populated with the solvent molecules. A steepest descent energy minimiza-

tion was carried out, followed by two 1 ns equilibration runs. The first equilibration

is conducted in the NVT ensemble, using the Bussi thermostat, and the second is

carried out in the NPT ensemble, using the Berendsen [36] barostat. For all solvated

simulations carried in water, the SPC/E water model was used [59].

For the determination of WTMetaD parameters, a short 10 ns unbiased sim-

ulation was run. The marginal FES in each torsion was computed on a 100-bin

1-dimensional histogram. A Gaussian Mixture Model (GMM) consisting of a sum

of Gaussian terms was fitted to the resulting FES, and the smallest width parameter

of one of the individual Gaussian hills, corresponding to the narrowest local mini-
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mum in the marginal FES, was considered as the minimum reference width for the

marginal under consideration. The width of the σ terms used to update the metady-

namics bias was set to half of the minimum reference width, or 0.1 rad, whichever

is larger.

3.2.2 Biasing in High Dimensional Spaces with Concurrent

Metadynamics

The conventional method [60] for the construction of a 2D conformational FES is

as follows. The WTMetaD biases are deposited in the 2D conformational space,

defined by two torsions, ensuring that the entire space is fully sampled over the

course of the simulation. The space is split into a 100 by 100 histogram. The distri-

bution of MD configurations throughout the histogram follows the system’s natural

probability distribution as distorted by the metadynamic bias. The total bias de-

posited in each bin is known, allowing this distortion of the probability distribution

to be reweighted. The resulting FES has a resolution equal to the fineness of the

grid, in this case (2π)/100 rad. This methodology is robust but scales poorly to

higher dimensional FESes. Both the bias deposition during the simulation and the

estimate of the probability distribution require the construction of a grid with the

same dimensionality as the conformation space. If the same resolution is desired,

increasing the number of torsions incurs an exponential cost on computational re-

sources, rapidly becoming unfeasible. We present these results in alanine dipeptide

in Chapter 4 to facilitate comparison. Here, an alternative way of both biasing

the simulations and modeling the high-dimensional probability distributions is pro-

posed which does not depend on high-dimensional grids. Furthermore, methods

for analyzing the resulting high dimensional FESes are explored, as their complete

visualization is impossible beyond 2 dimensions.

To avoid the exponentially increasing costs of depositing WTMetaD biases in

a high-dimensional conformational space, concurrent metadynamics [61] is used

in its place to promote sampling. This entails simultaneously depositing a single

one-dimensional bias for each torsion in the molecule, thus promoting exploration

of the rotation of that torsion.[40]. The cost of this approach scales linearly with
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dimensionality, as one additional monodimensional grid is needed for each addi-

tional torsion considered. The cost savings of this approach come with a trade-off;

conventional metadynamics promotes the exploration of the entire conformational

phase space and guarantees that previously visited configurations will be penalized

accordingly. Concurrent metadynamics does not explicitly bias the combinations of

any torsion values. It instead promotes the escaping from local free energy wells by

driving the rotation of individual torsions.

3.3 Per-Point Free Energies with DPA and Biased

Simulations

Following the end of the WTMetaD simulation, configurations from the simulation

were paired with the total deposited bias in each dihedral at the corresponding po-

sition in conformation space, in line with the final bias approximation. This was

achieved using Plumed, resulting in a dataset of configurations defined by their di-

hedral angles, accompanied by the final bias in each dihedral.

Using DPA’s PAk density estimator on configurations sampled from a WT-

metaD simulation produces densities that reflect a probability distribution perturbed

by the applied biases. These densities can be reweighed using the Zwanzig approach

[21] as:

ρ
∗
i = ρieβ (∑D

t=1 V t
i ), (3.2)

where ρ∗ is the reweighed density, β is equal to 1/kBT , V t
i is the bias in torsion

t, ∑
D
t=1V t

i represents the sum of the concurrent biases acting on the D torsions, for

configuration i. Practically, we evaluate ρ , the biased density, from configurations

generated in a quasi-static bias regime, as the bulk of the bias is deposited during

the early stages of the simulation and the bulk of sampled configurations are visited

when bias deposition is negligible. We therefore apply the final bias approximation

to obtain a time-independent value of V t
i acting on configuration i [46, 62, 63]. The

free energy Fi, associated with configuration i (thus termed per point), is computed

as
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Fi =−kBT ln ρ̄
∗
i , (3.3)

where ρ̄∗
i the smoothed density of point i. The procedure for determining the

smoothed densities is presented in 3.6.1.

3.4 Conformer Classification
In the classification step, DPA identifies peaks in the density as cluster centers, i.e.,

distinct conformers. This operation is equivalent to identifying local minima in

the D-dimensional FESes. For this step, we use the set of reweighted, smoothed

densities ρ̄∗
i .

Moreover, to avoid every fluctuation in density from being identified as a dis-

tinct peak, the DPA classifier is set to merge clusters separated by a saddle point

between the free energy basins (a conformational transition state) with free energy

less than 1 kBT higher than one of the cluster centers it connects. Once cluster cen-

ters have been determined, all remaining configurations are assigned membership

to the same cluster as their nearest neighbor of higher density [50]. With all config-

urations classified, clusters with a population smaller than 1% of the total sample

are discarded to avoid spurious clusters identified from anomalously isolated con-

figurations.

The ultimate product of this process is a set of cluster center configurations

representing the local minima of the D-dimensional conformational FES, called a

cluster set. Each cluster’s lowest free energy configuration, i.e., the cluster center,

provides the most representative configuration of a given conformer.

3.5 Consistency Analysis
The potential high dimensionality of S makes the visualization of per-point free en-

ergies difficult. A series of checks on the ergodicity of the sampling and consistency

of the DPA classification, therefore, provide confidence in the results.

Firstly, the convergence of the D monodimensional marginal free energy sur-

faces of each individual torsion is monitored to assess the ergodicity of the sam-
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pling. For a simulation of length τ , convergence of the marginals is assessed by

monitoring, on D histogams of nhist points, the quantity:

δFM(t) = n−1
hist

nhist

∑
i=1

|Fτ
i −F t

i | (3.4)

where simulation time t runs from [0,τ], F(t) is a monodimensional FES obtained

with data gathered up to time t, F(τ) is the same quantity computed with all the data

available. This quantity represents the average free energy difference per histogram

bin in any of the D monodimensional free energy surfaces.

Figure 4.2a displays an example of δFM(t) computed for φ and ψ torsional an-

gles of alanine dipeptide during concurrent metadynamics. The flattening of these

differences as the fraction of utilized trajectory increases indicates that the simula-

tion has been run for long enough that these torsions have been ergodically sampled.

This check is computationally inexpensive and offers a first qualitative check

on the quality of the configurational exploration obtained with concurrent WT-

metaD. If the marginal FES associated with a torsion is still evolving rapidly at

time τ , i.e., when the simulation ends, the sampling has not yet reached the ergodic

limit with respect to the configurations discovered.

However, the convergence of 1D marginal FESes tells us little about exploring

the conformational space in its full dimensionality. This is important as even sub-

stantial amounts of data may be distributed extremely sparsely in high dimensions.

As such, to build confidence in our results, we evaluate the statistical signifi-

cance of the conformer classification as a function of the dataset size.

For this purpose, a consistency check has been devised, which offers a sim-

ilarity score between two cluster-sets generated from different configurations. A

cluster set generated from a dataset of size N, CN can be compared with a reference

cluster set Cre f , which is generated with the largest number of configurations feasi-

ble. Each cluster center CN
i is matched with the nearest center in the reference set

Cre f
i , according to the Euclidean distances in S between members of the two cluster-

sets. This matching process is demonstrated in Fig. 3.2. Differences in free energy

∆Fi and position ∆di are determined and averaged across all matched pairs as ∆̄FN
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Figure 3.2: Sketch illustrating the pairing procedure used by the consistency metrics to
compare cluster-sets generated from datasets of different sizes. The configura-
tions shown are drawn from the simulation of alanine dipeptide but the principle
illustrated is general. The cluster centers obtained from the largest amount of
data form the reference set (shown in purple). Cluster centers generated from
smaller amounts of data (shown in red) are paired to the nearest cluster center
in the reference set, allowing comparison of distances and energy differences
between cluster centers. It is expected that as dataset sizes grow, the positions
and energies of the cluster centers will converge, as seen in Fig. 4.2c,d.

and ∆̄dN . This comparison to Cre f can be repeated for cluster-sets generated from

datasets of increasing N, and evolution of ∆̄FN and ∆̄dN with growing N can thus

be assessed. Once datasets are large enough, the positions and relative free energies

of minima would be expected to be independent of dataset size. The results of this

analysis on the case of alanine dipeptide are shown in Figure 4.2b,c,d.

The evolution of δFM(t) for all torsions is presented for every molecule in

this project, as are the evolutions of ∆̄FN and ∆̄dN as the number of configurations

rise from 5000 to 45000 in increments of 5000. Also presented are the number of

conformers detected by DPA at each dataset size.

3.6 Additional Heuristics
To augment the consistency and accuracy of the workflow described here, a set of

additional heuristics were implemented.

3.6.1 Density Smoothing

To mitigate the noise introduced by exponential reweighting[21], the density of

each point is averaged over a small hyperspherical domain. This step generates a

new smoothed set of densities ρ̄∗
i , at the cost of a small controllable loss in spatial
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resolution. This is done by replacing each point i’s density ρ∗
i with the average of

all densities within a radius of 0.1 rad, ρ̄∗
i . This mitigates the noise arising from the

reweighing process, which can be quite substantial, since densities are multiplied

by an exponential factor. Over the course of the project, a range of different radii

were tested for smoothing, and 0.1 rad was settled on and used for all the results

shown here. In the software package associated with this project, the radius is

a user-set parameter and can be tailored to the desired application. The cost of

addressing noise in this way is the loss of spatial resolution, which increases with

the smoothing radius. Larger smoothing radii include a larger amount of data in

the average, but risk factoring in data from regions far from the data point being

smoothed. The default smoothing radius is 0.1 rad.

3.6.2 Cluster Merging

As previously mentioned, DPA uses a density peak merging procedure to prevent

every small fluctuation in the local density from manifesting as a density peak. In

a modification from the original DPA methodology [50], density peaks identified

here were merged on energetic criteria: if two density peaks separated by a saddle

point were distributed such that the difference in density between the lower-density

peak and the saddle point was less than the equivalent of 1 kBT in energy, the lower

density peak would be merged into the higher density peak. This is functionally

equivalent to merging free energy basins separated by a free energy barrier smaller

than 1 kBT in height. This is a natural way to sort significant density peaks from

those arising from fluctuations, and is tunable. All the results presented in this work

use a value of 1kBT as the merging parameter, but different values can be used.

Increasing the value of the parameter will result in a smaller number of conformers,

which may result in better consistency when data is sparse. The trade-off for this

gain in consistency is the potential loss of thermodynamically distinct conformers

separated from more stable conformers by a relatively labile barrier.
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3.6.3 Filtering and Sampling Heuristics

Two heuristics are used to filter less relevant data from the workflow, in order to

optimize the usage of computational resources and eliminate less meaningful re-

sults. Firstly, when creating a sample of configurations from the MD simulation to

analyze, the subset of configurations chosen are taken from the final two-thirds of

the simulation. By not considering the first third of the simulation, we remove from

consideration a stage of the simulation which is sampling the configuration space as

significant amounts of metadynamic bias is being deposited, as this is incompatible

with the final-bias approximation we utilize in our reweighing scheme. Because

the number of configurations sampled by the MD simulation is much larger than

the upper size limit of the configurational dataset to be analyzed, this can be done

without compromising the size of the dataset.

Secondly, upon the first calculation of per-point free energies for the molecules

studied in vacuum, all configurations calculated to have a free energy over 100

kJmol−1 are removed from consideration. Due to sampling promoted by concur-

rent WTmetaD, the sampling of such high energy regions are inevitable. Despite

this, these configurations can be assumed to not be physically significant, and their

presence incurs both increased computational cost and increases the level of noise

encountered in the classification step. These high energy points are especially com-

mon for systems with high-dimensional conformation spaces, as isolated configu-

rations may be very distant from any other points and thus have a very high free

energy.



Chapter 4

Exploring Conformations in the Gas

Phase

4.1 Method Validation: Alanine Dipeptide

The workflow[55] outlined in this work was first tested on the Ramachandran plot

[64] of alanine dipeptide. This system was chosen for several reasons: the Ra-

machandran plot of alanine dipeptide is a commonly used model system in the field

of MD and enhanced sampling techniques, making it one of the best-studied con-

formational FESes available. Additionally, its low dimensionality allows for both

the visualization of the FES and access to more conventional methods of exploring

this conformational space. The principal results of this are shown in Figure 4.1.

The structure of alanine dipeptide, with φ and ψ indicated, is shown in Figure 4.1d.

The conventional FES of alanine dipeptide, obtained through histogramming and

reweighing of a trajectory generated through a WTMetaD MD simulation[60], is

shown in Figure 4.1a. A per point FES, generated from the same simulation but

with free energies calculated using the local densities of the sampled configura-

tions, as discussed in the Methods section, is shown in Figure 4.1b. From a visual

comparison, it clearly appears that the two FESes are in agreement, demonstrating

that the reweighted-DPA density estimate leads to results virtually indistinguishable

from standard histogramming-based approaches. Figure 4.1c shows a per point FES

generated using a trajectory from a concurrent metadynamics simulation where φ
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Figure 4.1: a: A conformational free energy surface for alanine dipeptide, obtained con-
ventionally, through constructing a reweighted probability distribution on a
histogram. b: The same free energy surface, constructed from a probability
distribution derived from the local densities of individual configurations sam-
pled from the simulation. The positions and free energies of local minima, as
identified by DPA, are overlaid. c: The same free energy surface, also con-
structed from local densities, sampling a simulation using 2 ×1D WTmetaD
biases in place of a conventional 2D bias. The positions and free energies of
local minima, as identified by DPA, are overlaid. d: Alanine dipeptide, with
the two relevant torsions φ and ψ highlighted. For a, b, c, the energies of the
FESes are indicated by a colormap in units of kJ mol−1.
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Figure 4.2: a: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in alanine dipeptide. b: Number of clusters identified
by clustering on datasets of size N. c: Evolution of the average positional
deviation, ∆̄d, with N for alanine dipeptide. d: Evolution of the average free
energy deviation, ∆̄F , with N for alanine dipeptide

and ψ are biased independently. Besides demonstrating the consistency of the free

energies obtained by concurrent biasing, the comparison between Figure 4.1b and

Figure 4.1c illustrates the trade-offs entailed using concurrent metadynamics. As

detailed in the Methods section, concurrent metadynamics promotes the sampling

of metastable states without guaranteeing an exhaustive sampling of the joint con-

figurational probability density. Nevertheless, all relevant free energy minima are

adequately sampled, and their positions and free energies agree with those obtained

by standard, two-dimensional metadynamics (Fig. 4.1).

The results of the consistency analysis techniques outlined in the Methods sec-

tion on the per-point FES outlined in Figure 4.1c are shown on Figure 4.2a-d. Figure
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4.2a shows the evolution of δF(t) for φ and ψ . The flattening of the curves shows

that the sampling of the two torsions is indeed ergodic over the timescale of the

simulation.

Figure 4.2c shows the mean conformer free energy difference ∆̄FN (defined

in the Methods section) obtained from clustering datasets of increasing N and a

reference dataset at N =50,000 configurations. Figure 4.2d shows a similar plot

displaying the mean separation of the cluster centers, ∆̄d. Figure 4.2b shows the

number of minima identified by DPA for each reduced-size dataset. The plot shows

that all reduced datasets agreed that there were three conformers, with the exception

of the 10,000-configuration dataset. In all other datasets, there is very good agree-

ment on the position and free energies of the local minima, with energy differences

well within 1 kJ mol−1 and mean separations hovering around 0.1 rad. It is surpris-

ing how little data is required to generate reasonable results in this 2-dimensional

case.

4.2 Applications to higher dimensional free energy

surfaces
Having demonstrated the workflow developed here on the two-dimensional case

of alanine dipeptide, this section now explored higher dimensional cases, where

visualization of the entire conformation space is not possible and conventional grid-

based methods become unfeasible. Sulfadiazine, with a 4-dimensional conforma-

tional space, and Candidate XXXII [65, 66], with an 11-dimensional conforma-

tional space, serve as a test for the ability of the workflow to handle conformational

complexity. Sketch-map [54] is used in these cases to project a 2D representation

of the high dimensional per-point FES for human interpretation.

4.2.1 Sulfadiazine

Sulfadiazine is an antibiotic molecule with a 4-dimensional conformational space;

its clinical relevance and intermediate complexity make it an ideal next step for the

method outlined here. A 4-dimensional space is too high to allow a FES to be fully
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Figure 4.3: 2D Sketch-map projection of sulfadiazine’s 4D conformation surface, with
molecular structure of sulfadiazine inset. Distances between configurations
are preserved over small separations but the axes themselves have no physi-
cal meaning.

visualized while still being low enough that reasonable data density can be obtained

(50,000 data points in a periodic 4D space results in an average density of roughly

32 configurations per rad4). The inset in Figure 4.3 shows the 4 torsions considered

in sulfadiazine. Using the same approach outlined above for alanine dipeptide, sul-

fadiazine’s conformational FES was studied by analyzing the configurations sam-

pled within a 1 µs single-molecule WTmetaD simulation. The resulting per-point

FES cannot be fully visualized without dimensionality reduction, so the relative

free energies and coordinates of each minimum are presented in Tab. 4.1. Figure

4.3 shows a 2D projection of the 4D per-point FES created using Sketch-map (cov-
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Figure 4.4: a: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in sulfadiazine. b: Number of clusters identified by
clustering on datasets of size N. c: Evolution of the average positional devi-
ation, ∆̄d, with N for sulfadiazine. d: Evolution of the average free energy
deviation, ∆̄F , with N for sulfadiazine

.

ered in detail in 2.4). This representation preserves the short-distance connectivity

between data points, allowing the visualization of distinct free energy basins and the

transition states between them, though the two axes of the new 2D projection are not

physically meaningful themselves [54]. It should be emphasized that the estimation

of densities and the determination of the number and coordinates of the free energy

minima are determined in the full 4-dimensional conformation space and that the

projection in Figure 4.3 serves only to assist in the visualization of the relationships

between different conformers. It is possible to combine the 4-dimensional informa-

tion presented in Table 4.1 with the 2-dimensional intuition provided by Figure 4.3.
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For example, the FES in Figure 4.3 appears to be bisected by a diagonal channel,

and indeed, by inspecting the torsion values of the conformer pairs (17, 2), (10, 6),

(21, 15), and (7, 8), it can be determined that these conformers pairs are identical,

and differ from each other in a symmetric rotation of π radians of γ3. This exam-

ple serves to show how these 2D projections may be manually interpreted and to

demonstrate how symmetry elements in the molecule’s conformation space can be

preserved in the 2D projection.

The results of the consistency metrics for sulfadiazine are shown in Figure

4.4a-d. In comparing these results to those in Figure 4.2a-d, it is possible to eval-

uate the impact of doubling the dimensionality of the conformation space on the

accuracy and data efficiency of the classification process. The plots of δF(t) for

the four torsions show that the four marginals in Figure 4.4a converge rapidly, pro-

viding evidence of ergodicity. Figure 4.4b shows that, with the exception of the

5000-point dataset, repeated analyses achieve a consistent number of 24 conform-

ers. Figure 4.4c,d shows the evolution of ∆̄d and ∆̄F respectively, as N increases

to a reference value of 50,000. Here, the differences between alanine dipeptide and

sulfadiazine become apparent. The mean free energy deviation jumps from being

nearly negligible to a range between 0.5 and 2 kJ mol−1, and positional deviation

increases from approximately 0.1 rad to between 0.3 and 0.4 rad. Sulfadiazine’s

energy deviation is still within 1 kBT, and the positional deviations still correspond

to very small changes in the molecular structure. However, the abrupt change fol-

lowing an increase in dimensionality highlights the importance of carrying out con-

sistency checks when working with highly unintuitive results that are difficult to

inspect visually. Due to the number of equivalent conformers related to one another

by symmetric transformations in sulfadiazine, it is possible to compare the free en-

ergies of equivalent conformers as an assessment of the reproducibility of the free

energy calculation. This is not recommended as a standard practice, as the presence

of symmetrically related conformers is system dependent and not guaranteed. How-

ever, in this case, comparing the differences between equivalent conformers reveals

deviations on the same order as the mean free energy deviations calculated in the
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Table 4.1: Labels, free energies and CV-space coordinates of sulfadiazine’s 24 conformers.
The labeling convention is consistent with that of Figure 4.3

Conformer Free Energy γ1 γ2 γ3 γ4
[kJ/mol]

0 0.72 -2.10 -1.51 -1.71 2.95
1 1.28 0.13 -1.52 -1.70 -2.98
2 0.75 -1.83 1.54 1.55 0.21
3 1.44 -0.13 -1.47 -1.62 -0.05
4 0.08 -1.94 1.62 -1.81 -2.93
5 1.05 0.09 1.58 1.64 2.86
6 0.00 1.75 1.42 1.92 -0.28
7 1.03 1.93 -1.31 -1.43 0.07
8 1.66 2.08 1.26 -1.49 0.23
9 0.67 -1.87 -1.60 1.30 -3.02

10 0.63 2.05 -1.66 1.68 0.15
11 1.56 -0.11 1.68 1.62 0.21
12 1.81 0.01 1.64 -1.55 0.17
13 0.21 -0.16 -1.65 1.62 -0.15
14 0.93 1.89 -1.53 1.85 3.13
15 1.02 -1.95 1.88 -1.76 0.31
16 1.20 0.06 -1.70 1.62 -3.08
17 1.40 -1.96 -1.77 1.40 0.15
18 1.58 1.88 1.63 1.74 -3.07
19 0.21 -2.04 1.83 1.55 2.93
20 0.80 2.00 1.54 -1.55 -2.81
21 0.47 -1.83 -1.59 -1.82 0.20
22 1.76 2.00 -1.77 -1.46 2.92
23 1.03 0.01 1.69 -1.58 2.90

smaller datasets (Figure 4.4d).

4.2.2 Target XXXII of the 7th CSP Blind Test

The final conformational FES explored in this chapter is that of Molecule XXXII,

a target from the 7th CSP Blind Test [65, 66], which are a set of Crystal Structure

Prediction (CSP) challenges issued by the Cambridge Crystallographic Data Centre

(CCDC). As a highly flexible drug-like molecule with a conformation space de-

fined by 11 torsions (shown inset in Figure 4.5), it is chosen here to test the limits

of our method. To facilitate comparison with results collected for alanine dipep-
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Figure 4.5: 2D Sketch-map projection of XXXII’s 11D conformation surface, with molec-
ular structure of XXXII inset. Distances between configurations are preserved
over small separations but the axes themselves have no physical meaning.

tide and sulfadiazine, the results presented here were generated using consistent

simulation and analysis parameters, including the use of the same number of con-

figurations. Using only 50,000 configurations in this high dimensional space results

in an average data density of approximately 8×10−5 configurations per rad11. De-

spite the extremely low data density, which is inherently linked to the complexity

of the conformational space, we show that meaningful results are achievable. This

is important as increasing the size of the dataset increases the cost of the analysis

quadratically; increasing dataset size is thus much more expensive than increasing
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Figure 4.6: a: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in XXXII. b: Number of clusters identified by cluster-
ing on datasets of size N. c: Evolution of the average positional deviation, ∆̄d,
with N for XXXII. d: Evolution of the average free energy deviation, ∆̄F , with
N for XXXII.

the dimensionality of the considered space. Figure 4.5 shows the projected 11-

dimensional per-point FES, with cluster centers corresponding to 11-dimensional

coordinates presented in Tab. 4.2. When comparing this FES to that of sulfadi-

azine in Figure 4.3, the features of XXXII can be seen reflected in its own FES.

The relative lack of symmetrical torsions results in a less symmetrical FES, and the

higher-dimensional FES is much sparser, illustrating that the computational savings

arise from a more efficient, rather than more exhaustive, sampling of conformational

space.

The consistency metrics in Figure 4.6a-d are, however, less reliable than those

obtained for sulfadiazine. Figure 4.6a shows well-converged marginal free energies,
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Table 4.2: Labels, free energies, and CV-space coordinates of XXXII’s 23 conformers. The
labeling convention is consistent with that of Figure 4.5

C FE γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11
[kJ/mol]

0 6.09 -1.27 0.89 1.12 0.34 -2.31 1.13 0.42 1.29 2.96 3.13 0.15
1 0.00 1.84 -1.52 3.06 -2.75 -2.24 1.29 0.20 1.12 2.95 -3.13 0.04
2 8.45 1.98 1.07 1.03 0.37 -2.24 1.12 0.85 -1.19 -3.05 3.09 0.12
3 6.20 1.24 1.05 1.25 -2.93 2.43 -1.11 2.65 -1.12 3.11 3.11 -0.08
4 3.40 -1.05 1.72 1.21 2.95 2.23 -1.21 2.28 1.10 -3.09 2.93 -0.10
5 8.69 1.71 0.85 1.17 0.58 -2.06 1.21 -0.22 1.19 -3.06 -2.94 0.20
6 15.67 -0.80 -1.39 3.04 -0.41 1.06 0.93 0.43 1.42 3.07 3.13 -0.34
7 2.17 1.14 -1.60 -3.06 -2.85 -2.00 1.39 -0.18 1.00 3.10 -2.94 0.09
8 16.12 -0.62 1.61 1.07 2.67 0.91 1.01 0.26 0.94 -3.04 3.02 -0.30
9 7.62 -1.75 0.93 1.03 0.56 -2.35 1.25 0.69 -1.06 2.97 -3.08 0.18

10 12.45 -0.61 -1.43 -3.09 -0.30 2.28 -1.13 2.41 1.11 2.99 3.09 -0.18
11 21.03 1.00 -1.16 2.81 -0.36 1.04 1.00 0.51 1.14 2.92 -3.02 -0.31
12 1.43 1.39 -1.58 -3.10 -2.64 -2.34 1.17 0.64 -0.89 -3.03 3.12 0.07
13 6.92 1.63 -1.60 -2.99 -2.70 -1.02 -0.97 2.73 -0.93 2.83 -2.92 0.04
14 5.96 -0.86 1.51 1.17 2.86 1.96 -0.94 2.64 -1.04 3.12 -3.05 -0.09
15 5.72 0.71 -1.49 3.04 -2.51 -2.39 1.24 0.53 3.03 3.03 -2.98 -0.09
16 10.98 2.07 -0.91 -3.01 -0.57 2.26 -1.36 2.17 1.23 3.13 3.09 -0.16
17 8.91 -1.40 -0.90 -3.10 -0.42 2.12 -1.16 2.32 1.26 3.03 -2.94 -0.12
18 6.88 -1.62 1.61 1.18 2.66 2.10 -1.19 2.85 -0.95 -3.12 2.92 0.03
19 9.53 1.55 -1.25 3.02 -0.56 2.09 -1.20 2.69 -0.91 2.98 3.11 -0.09
20 6.89 -2.12 -1.31 3.07 -0.62 2.07 -1.17 2.86 -1.06 3.06 3.11 -0.21
21 7.35 -2.30 1.20 1.18 0.55 -2.11 0.89 0.41 1.37 2.86 -2.81 0.09
22 6.13 1.23 0.85 1.16 0.27 -2.15 1.19 0.59 -0.89 3.14 -2.93 0.16

but Figure 4.6b shows that the number of conformers identified is less consistent

than in lower-dimensional cases. The number of metastable states identified as dis-

tinct conformers hovers between 22 and 25 for datasets sized 10000 and upwards.

Along with a fluctuating number of conformers, larger deviations in free energies

and positions are now observed, with ∆̄F between cluster sets now varying by up to

5 kJmol−1, and ∆̄d drifting by as much as one full radian, even at large dataset sizes.

Despite this drop in the quality of the results, it is still remarkable that a reasonably

intuitive understanding of such a high-dimensional conformational FES can be de-

rived from a limited amount of data in a computationally accessible way, even if its

value in this instance is chiefly qualitative. To further explore the consistency of the

FES in Figure 4.5, Figures A.2-A.10 in Appendix A contain the FES projection for
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each of the smaller datasets used in the consistency analysis, allowing the evolution

of this per-point FES to be observed. Inspection of this evolution in the FES seems

to reveal that the majority of the fluctuations in ∆̄F and ∆̄d observed arise in higher

energy conformers, with the low energy regions converging at lower N values. Al-

though this is not rigourously proved here, it is a reasonable expectation, as lower

energy regions have a high data density, resulting in free energy estimates based on

a greater amount of data.



Chapter 5

Exploring the Impact of Solvent on

the Conformational Landscapes of

Pharmaceutical Molecules

In order to further explore the utility of the approach outlined in this project, four

new compounds were selected for study that were not considered at any point during

method development and present environment dependent conformational behavior.

N-Phenylbenzohydroxamic acid (PBH), bicalutamide, taltirelin, and m-nisoldipine

were chosen because each molecule possesses a degree of molecular flexibility and

exhibits conformational polymorphism when crystallized under different solvent

conditions. Of these molecules, all except PBH are pharmaceutical molecules, and

all except m-nisoldipine have been observed to have their conformational distribu-

tion in the solution phase be affected by solvent choice. The main purpose of this

chapter is to demonstrate a workflow for the study of solvated simulations which

utilizes the high-dimensional conformational free energy landscapes and associated

conformer sets generated by the approach demonstrated in Chapters 3 and 4.

Each molecule was simulated in vacuum, as well as in a pair of solution envi-

ronments chosen to produce distinct conformational free energy landscapes based

on experimental results. For each of these simulations, per-point free energy land-

scapes were generated using the method outlined in Chapter 3. The calculation of

configurational free energies and conformer classification is carried out indepen-
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dently for each simulation; however, to enable comparison across different environ-

ments, the Sketch-map projections generated for the solvated cases use the same a,

b, and σ parameters and landmark points as determined from the post-processing of

a simulation in vacuum. This ensures that the resulting two-dimensional projection

is equivalent across the different environments.

As discussed in Chapter 3, the geometry of a conformer is represented by the

geometry of the configuration identified by DPA as a cluster center in conformation

space. This configuration is, by construction, the most representative of the geome-

tries found within its conformational basin. Molecular geometries can be compared

by evaluating their minimum root-mean square deviation (RMSD) overlap. Two

conformations are overlaid, and their relative orientations are changed such that the

quantity

RMSD =

√
1
N

N

∑
i=1

δ 2
i (5.1)

is minimized, where δi is the distance between the two equivalent atoms i in

each of the overlapped structures. Here, minimum RMSD is calculated using the

method developed by Coutsias et al. [67] as implemented by the software package

RDkit [68].

5.1 N-Phenylbenzohydroxamic acid
N-Phenylbenzohydroxamic acid (PBH) has a conformation space defined by three

torsions, as shown inset in Figure 5.1a. Of key interest is the central torsion γ2,

which determines whether the molecule exists in a cis or trans conformation. Exper-

imental studies carried out by Yamasaki et al. [69] indicate that the conformational

distribution of PBH depends on its solvent environment. Specifically, through IR

and H NMR spectroscopy, they identified the conformational distribution of PBH in

dichloromethane as overwhelmingly favoring the cis conformation, while the trans

conformer dominates in a 77:23 ratio in acetone. Furthermore, they also determined

that two different conformational polymorphs of PBH are isolated when recrystal-

lizing out of dichloromethane and acetone, with the conformations aligning with
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the dominant conformation in solution. The authors report that the cause of these

differences in solvated conformational distribution is unknown, making PBH a fas-

cinating case study for the approach undertaken in this chapter.

Figure 5.1: 2D Sketch-Map projection of PBH’s 3D conformational free energy landscape
in vacuum (a), dichloromethane(b), and acetone(c), with molecular structure of
PBH inset. Distances between configurations are preserved over small separa-
tions but the axes themselves have no physical meaning.

These experimental observations, paired with the relative simplicity of the con-

formation space make PBH an ideal starting point for the study of the impact of

solvents on the conformational distributions of small organic molecules. Firstly,

the approach detailed in Chapter 3 was applied to PBH, with a microsecond long

simulation in vacuum being carried out, with concurrent metadynamic biases pro-

moting the sampling of the three dihedrals. A total of 50,000 configurations were

sampled from the second half of this MD trajectory and analyzed according to the

method described in Chapter 4. The resulting three-dimensional per-point free en-

ergy landscape was projected into two dimensions using Sketch-map, with the pro-
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Figure 5.2: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in PBH, in vacuum, dichloromethane, and acetone.

Figure 5.3: a: Number of clusters identified by clustering on datasets of size N for PBH, in
vacuum, dichloromethane, and acetone. b: Evolution of the average positional
deviation, ∆̄d, with N for PBH, in vacuum, dichloromethane, and acetone. c:
evolution of the average free energy deviation, ∆̄F , with N for PBH, in vacuum,
dichloromethane, and acetone.

jection shown in Figure 5.1a. Concurrent WTMetaD simulations of a single PBH

molecule were then carried out in dichloromethane and acetone, using similar pa-

rameters as those used in vacuum. Per-point free energy landscapes were generated

for the solvated simulations using the same procedure as, but completely indepen-

dently from, the in-vacuum simulations. The resulting two-dimensional projections

of these solvated free energy landscapes are shown in Figures 5.1b and 5.1c, for

dichloromethane and acetone respectively. For each of the projections, an enlarged

image featuring the locations of the free energy minima marked with a numerical

label is available in Figures B.1, B.2, B.3 in Appendix B. These labels correspond

to the conformer indices in the left-hand columns of Tables B.1, B.2, and B.3, also
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Figure 5.4: A dual matrix presenting a pairwise comparison of conformers of PBH ob-
served in dichloromethane (rows) and acetone(columns). The color gradient
indicates the minimum RMSD between atoms between the two conformers,
while the number within each element indicates the stability of the conformer
in dichloromethane relative to the conformer in acetone.

in Appendix B, for PBH in vacuum, dichloromethane, and acetone, respectively.

These tables present the free energies of each conformer, as well as their coordi-

nates in the three-dimensional conformation space.

To monitor the quality of the high-dimensional results collected, the same con-

sistency procedures used in the previous chapters were applied here. Figure 5.2

shows the evolution of δFm(t) for each of the three torsions in PBH in each of the

three environments simulated. In all cases, it is clear that marginal free energies

have been sampled to convergence. The results of the high-dimensional consis-

tency checks are shown in Figure 5.3. Figure 5.3a shows the number of conformers

identified in each environment as the size of the dataset grows. While this number

is consistently 16 for PBH in vacuum, there are some anomalous results deviating
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Figure 5.5: a: The lowest energy conformation of PBH in dichloromethane, index 13 in
Table B.2 and Figure 5.1b. b: The lowest energy conformation of PBH in ace-
tone, index 14 in Table B.3 and Figure 5.1c. c: The experimentally observed
conformation of PBH when crystallized out of dichloromethane. d: The exper-
imentally observed conformation of PBH when crystallized out of acetone. For
all conformations, values of the torsions γ1, γ2, and γ3 are indicated in radians.

from this in dichloromethane. Complete consistency in the number of clusters is

never observed in acetone, though there are always more than 16 conformers iden-

tified.

This lack of consistency and increase in the number of conformers identified

reflects the distortion of the trans region of the free energy landscape observed in the

two-dimensional FES projections, as is further discussed below. Figure 5.3b shows

the evolution of ∆d̄ in each of the three environments as the size of the clustered

dataset increases. ∆d̄ does continue to decrease as dataset size increases, but even at

small dataset sizes, ∆d̄ is below 0.5 radians, indicating that equivalent conformers

are found at essentially the same location regardless of dataset size. Figure 5.3c

shows the evolution of ∆F̄ in all three environments as the size of the clustered

dataset grows. Again, there is a decreasing trend present in this quantity, but even

at small dataset sizes, the values of ∆F̄ indicate a consistent free energy ranking of

the conformers.

Comparing tabular results with the positions of the conformers in the projec-
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Figure 5.6: 4 common conformers of PBH in dichloromethane and acetone. For this sys-
tem, conformers are deemed common to both solvents if their overlaid struc-
tures present a minimum RMSD deviation of less than 0.5Å. Conformers in
dichloromethane are indicated with the label DCM, and have their molecular
structures shown in blue. Conformers in acetone are indicated with the label
ACE and their molecular structures are shown in red. The free energy in both
solvents, as well as the difference in free energy is indicated for each conformer,
and the conformers are ordered from those most stabilized in dichloromethane
to those most stabilized in acetone.

tions, it can be deduced that the 8 conformers which form two central rows corre-

spond to the cis conformers, with γ2 values close to 0, while the outer conformers

correspond to conformers in the trans configuration, with γ2 values close to π . 8

trans conformers are observed in vacuum and in dichloromethane, and 10 are ob-

served in acetone. This increase in the number of trans conformers in acetone is

accompanied by what appears to be the distortion of the trans regions in the PBH-

acetone Sketch-map. These distortions are visible at approximately (-2,4), (-2,-4),

(2,-4), and (2,4) in the projected coordinates of the projections shown in Figure 5.1.

These regions, which each consist of two clear free energy basins in vacuum, begin

to merge in dichloromethane and the number of basins becomes even less clear in

acetone. This distortion may explain why a consistent number of conformers is not

observed in Figure 5.3a. However, in all three environments, cis conformers appear

to be more thermodynamically stable, despite experimental results suggesting that

this should not be the case in acetone. Due to the high quality consistency metrics
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presented in Figure 5.2 and 5.3, as well as the low dimensionality of the confor-

mation space, it is likely that this not a failure of the analysis, but rather a failure

of the simulation to replicate experimental observations. Despite this, the relative

simplicity of PBH’s conformational space and the readily interpretable Sketch-map

projection make PBH a useful case for the development and demonstration of the

techniques used here to compare conformer-sets derived from simulations of the

same molecule in different environments. Ultimately, the main purpose of this

chapter is to demonstrate a workflow for the study of the impact of solvents on

conformational free energy landscapes, and PBH serves as a useful demonstration,

due to its simplicity.

Figure 5.5a and b show the two lowest-energy conformers of PBH in

dichloromethane and acetone respectively. Below them, in Figure 5.5c,d, are

the experimentally observed crystal structures of PBH when crystallized from

dichloromethane and acetone respectively. The crystal structures in both cases are

stabilized by hydrogen bonds between the carbonyl oxygen and the hydroxyl group,

forming a dimer when cis and a chain when trans. Despite the experimental results

reported by Yamasaki et al. [69] but as expected considering the projected land-

scapes, the cis conformation is the most stable conformer in both dichloromethane

and acetone.

Figure 5.4 compares the conformer-sets of PBH in dichloromethane and ace-

tone in a pair-wise matrix. Each element in the matrix combines two pieces of infor-

mation. The color gradient indicates the RMSD between the conformer pairs, while

the number indicates the stability of the conformer in dichloromethane relative to

the conformer in acetone. This matrix provides an interpretable comparison of all

combinations of conformers, while also rendering the relevant conformer pairs im-

mediately apparent. The key conformer pairs to consider from this matrix are those

separated by a small RMSD. These conformers are structurally very similar, indi-

cating that their geometries arise in both solvents. Therefore, any difference in their

thermodynamic stability must therefore arise due to solvent effects.

The symmetry of the rotations of γ1 and γ3 result in the conformational FES
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consisting of 4 equivalent regions. Figure 5.6 considers the common conformers

(here defined as conformers arising in both dichloromethane and acetone with a

minimum RMSD separation of less than 0.5 Å) of one such region. The com-

mon conformers are arranged by the difference in free energy of the conformers in

dichloromethane compared to the conformer in acetone. The free energies reported

for each conformer in a specific solvent are relative to the most-stable configura-

tion in that solvent, which has a free energy set to zero. Thus, ∆F as reported in

Figure 5.6 compares the stabilities of the conformers in each solvent relative to the

most stable conformer in that solvent, for both solvents. In this way, it is possi-

ble to compare the stabilizing effects of the solvent on geometries common to both

environments.

Within Figure 5.6, conformers in dichloromethane are labelled with DCM,

while those in acetone are labelled with ACE. DCM15-ACE16 and DCM4-ACE14

are trans and cis, respectively, and do not demonstrate a significant ∆F . How-

ever, DCM11-ACE4 and DCM14-ACE3, cis and trans, respectively, do demon-

strate slight stabilization effects in the direction suggested by experiment. The cis

conformer is stabilized slightly in dichloromethane while the trans conformer is sta-

bilized slightly in acetone. While this does not change the fact that in both solvents,

the most stable conformers overall are both cis (as shown in Figure 5.5), it is inter-

esting to note that some trans conformers are stabilized by acetone, as suggested by

experiment.

5.2 Bicalutamide

Bicalutamide is an anti-androgen compound used for the treatment of prostate can-

cer. It is highly flexible, with a conformational space described by the 7 dihedral

angles shown inset in Figure 5.7a. This flexibility results in two conformational

polymorphs being observed in the solid state, form I, shown in Figure 5.11c and

form II, shown in Figure 5.11d. Form I demonstrates an open conformation, while

form II adopts a more compact, closed conformation. Form I is the more thermody-

namically stable form, and is the form which typically arises upon recrystallization
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Figure 5.7: 2D Sketch-Map projection of bicalutamide’s 7D conformational free energy
landscape in vacuum (a), chloroform (b), and DMSO (c), with molecular struc-
ture of bicalutamide inset. Distances between configurations are preserved over
small separations but the axes themselves have no physical meaning.

Figure 5.8: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in bicalutamide, in vacuum, chloroform, and DMSO.

from most solvents [70]. It is stabilized by two intramolecular hydrogen bonds, N-

H···OH and O-H···OS [70]. Form II can be obtained from a melt of form I [71]. It

is also stabilized by N-H···OH, but a new hydrogen bond forms between N-H···OS,
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Figure 5.9: a: Number of clusters identified by clustering on datasets of size N for bi-
calutamide, in vacuum, chloroform, and DMSO. b: Evolution of the average
positional deviation, ∆̄d, with N for bicalutamide, in vacuum, chloroform, and
DMSO. c: evolution of the average free energy deviation, ∆̄F , with N for bica-
lutamide, in vacuum, chloroform, and DMSO.

displacing the O-H···OS bond [70]. Despite form I’s tendency to recrystallize out

of most solvents, Sobornova et al. discovered that solvent choice had a signifi-

cant impact on bicalutamide’s conformational distribution in solution [70]. Using

Nuclear Overhauser Effect (NOE) spectroscopy, they demonstrated that polar sol-

vents promote an open conformation, while non-polar solvents promote a closed

conformation. Here, the conformational free energy landscapes of bicalutamide,

simulated in vacuum, chloroform, and DMSO environments are explored using the

gridless method developed in this project. Simulations were carried out according to

the parameters defined in Chapter 3, and as usual, datasets of 50,000 configurations

were used to construct the per point FESes shown here.

Figure 5.8 shows the evolution of δFm(t) for each of the 7 torsions of bica-

lutamide in vacuum, dichloromethane, and DMSO. This figure demonstrates the

convergence of each of these one-dimensional marginal free energies. The results

of the higher dimensional consistency checks are shown in Figure 5.9. Figure 5.9a

shows that a consistent number of conformers was not arrived at in any of the en-

vironments simulated. This inconsistency in conformer number is characteristic of

free energy landscapes computed in high dimensions, reflecting the trend seen with

the consistency of Target XXXII shown in the previous chapter. Despite the num-

ber of conformers continuing to fluctuate as the largest dataset size is reached, the



5.2. Bicalutamide 88

Figure 5.10: A dual matrix presenting a pairwise comparison of conformers of bicalu-
tamide observed in chloroform (rows) and DMSO (columns). The color gra-
dient indicates the minimum RMSD between atoms between the two con-
formers, while the number within each element indicates the stability of the
conformer in chloroform relative to the conformer in DMSO.

average positions of equivalent conformers are fairly similar, as demonstrated by

Figure 5.9b. For the landscapes in vacuum and chloroform, equivalent conformers

are found on average less than 1.2 Euclidean radians from each other in a 7 di-

mensional space. This number is slightly less consistent in DMSO, with some ∆̄d

values being as high as 1.8 Euclidean radians, even towards the final dataset size.

Finally, considering the difference in free energies between equivalent conformers,

demonstrated in Figure 5.9c, it can be seen that in all three environments, conform-

ers deemed equivalent are within, on average, 5 kJmol−1 of each other. This not

as good an agreement as observed in the lower dimensional cases, however, it will
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Figure 5.11: a: The lowest energy conformation of bicalutamide in DMSO, index 5 in Ta-
ble B.5 and Figure 5.7b. b: The lowest energy conformation of bicalutamide
in chloroform, index 2 in Table B.6 and Figure 5.7c. c: The experimentally ob-
served conformation of bicalutamide form I. d: The experimentally observed
conformation of bicalutamide from II.

be sufficient when comparing the free energies of conformers that differ by more

than this amount. The inconsistency in results for this system is reflective of the

dimensionality of the conformation space, and the difference in these metrics be-

tween PBH and bicalutamide are comparable in scale to the difference between the

consistency metrics observed during the in-vacuo studies of alanine dipeptide and

target XXXII from the previous chapter.

The per-point free energy landscapes generated through the gridless analysis

are projected into two dimensions using Sketch-map. As in PBH, the parameters

and landmarks identified in vacuum were used to create all three projections. These

projections in vacuum, chloroform, and DMSO are shown in Figures 5.7a, 5.7b,

5.7c, respectively. For each of the projections, an enlarged image featuring the lo-

cations of the free energy minima marked with a numerical label is available in Fig-

ures B.4, B.5, B.6 in Appendix B. These labels correspond to the conformer indices

in the left-hand columns of Tables B.4, B.5, and B.6, also in Appendix B, for bica-

lutamide in vacuum, chloroform, and DMSO, respectively. Some of the structure
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Figure 5.12: 10 common conformers of bicalutamide in chloroform and DMSO. For this
system, conformers are deemed common to be both solvents if their overlaid
structures present a minimum RMSD deviation of less than 1.7Å . Conform-
ers in chloroform are indicated with the label CLF, and have their molecular
structures shown in blue. Conformers in DMSO are indicated with the la-
bel DMSO and their molecular structures are shown in red. The free energy
in both solvents, as well as the difference in free energy is indicated for each
conformer, and the conformers are ordered from those most stabilized in chlo-
roform to those most stabilized in DMSO.

present in the vacuum projection seems to be preserved in the chloroform projec-

tion, with the left-right gulf having been narrowed slightly and conformers being
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distributed more diffusely. The DMSO projection, however, appears significantly

different, with a new network of interconnected conformers appearing to be shown.

The quantitative utility of these projections is an interesting question in such high

dimensions; it is not possible to completely replicate the high-dimensional arrange-

ment of every sampled configuration in a two-dimensional projection, and with a

dimensional reduction from 7 to 2, it is likely that a large amount of information

is lost. Therefore, the utility of these extremely reduced projections may be lim-

ited to providing a visual source of intuition for the degree to which conformational

landscapes change in different environments.

Figure 5.11 compares the conformational free energy minima in each solvent

environment with the experimentally determined crystal structures. Figure 5.11a

shows the most stable conformer in DMSO, which has an open conformation, as

observed experimentally by Sobornova et al [70]. Despite this being an open con-

formation, it is distinct from the conformation observed in form I of bicalutamide,

illustrated in Figure 5.11c. The most stable conformer in chloroform is shown in

Figure 5.11b and demonstrates a closed conformation, again matching the experi-

mental observation of Sobornova et al[70]. Additionally, the conformation adopted

in chloroform corresponds closely with the conformation adopted in crystal form II,

shown in Figure 5.11d.

With confirmation that the most stable conformers in each environment line

up with experimental observation, a more extensive analysis on the relationships

between distinct conformers and solvent environment can be carried out. Figure

5.10 shows a double matrix comparing all bicalutamide conformers in chloroform

to all bicalutamide conformers in DMSO. Each element’s number corresponds to

the difference in free energy between the two conformers (relative to the most stable

conformers in their own environment). The color gradient indicates the similarity of

the structures, measured by their minimum RMSD separation, considering all atom

positions. Comparing Figure 5.10 to Figure 5.4, the equivalent figure for PBH, re-

veals that in PBH, there is approximately one set of conformer pairs with extremely

low RMSD separation for each row and column of the matrix, indicating that al-
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most every conformer in dichloromethane was also present in acetone. This not

the case in Figure 5.10, where there are relatively few conformers common to both

solvent environments. In order to study these common conformers more closely,

we define the set of common conformers to be those conformer pairs which exhibit

a minimum RMSD of less than 1.7 Å. There are 10 of these common conformers

for bicalutamide in chloroform and DMSO, and they are shown in Figure 5.12. The

overlapped conformers are shown in blue for chloroform and red for DMSO. It is in-

teresting to note that the fully closed conformation observed as the most stable form

in chloroform and in bicalutamide’s crystalline form II, shown in Figure 5.11b,d, is

not present as a common conformer, meaning it does not arise at all in DMSO. The

majority of the common conformers shown in Figure 5.12 seem to exhibit a semi-

open ’L’-shaped conformation, rather than the fully open and closed conformations

seen as the most stable conformers in DMSO and chloroform in Figure 5.11a,b. The

conformers in Figure 5.12 as ordered by ∆F where

∆F = FCLF −FDMSO,

where FCLF and FDMSO are the free energies of the conformers in chloroform

and DMSO respectively. Note that, as before, these individual free energies are

themselves relative to the lowest energy configuration within the free energy land-

scape.

Figure 5.12 thus seems to show that these ’L’-shaped conformers tend to be

stabilized in chloroform, the same environment that promotes the fully closed con-

former, and that common conformers with a greater open character tend to be sta-

bilized by DMSO.

It is also interesting to consider the common conformer labelled CLF5-

DMSO11, corresponding to the conformer 5 in the chloroform landscape and 11

in the DMSO landscape. This conformation closely resembles bicalutamide crystal

form I, as shown on Figure 5.11c. This common conformer has a low ∆F of 0.68

kJmol−1, indicating that is equally stabilized by both solvents, but has an FCLF of

16.22 kJmol−1 and an FDMSO of 15.54 kJmol−1, making it far from the most sta-
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ble conformer in either solvent. From this it can be inferred that while the form I

conformation is metastable in solution, packing effects are responsible for the con-

formational rearrangements leading to the observed conformational polymorph.

5.3 Taltirelin

Figure 5.13: 2D Sketch-Map projection of taltirelin’s 8D conformational free energy land-
scape in vacuum (a), water (b), and a water-methanol mixture (c), with molec-
ular structure of taltirelin inset. Distances between configurations are pre-
served over small separations but the axes themselves have no physical mean-
ing.

Taltirelin is a TRH analog used to treat spinocerebellar ataxia [72]. It has

an 8-dimensional conformation space with configurations defined by the 8 torsions

shown inset on Figure 5.13a. Experimentally, it exhibits two conformationally poly-

morphic crystal structures, as reported by Maruyama et al. [72]. The two conform-

ers are characterized by the distance between the 1-methyl carbon on the diazinane

ring and the 4 carbon in the imidazole group, as shown in Figure 5.17. This charac-
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Figure 5.14: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in taltirelin, in vacuum, water, and a water/methanol
mixture.

Figure 5.15: a: Number of clusters identified by clustering on datasets of size N for taltire-
lin, in vacuum, water, and a water/methanol mixture. b: Evolution of the
average positional deviation, ∆̄d, with N for taltirelin, in vacuum, water, and
a water/methanol mixture. c: evolution of the average free energy deviation,
∆̄F , with N for taltirelin, in vacuum, water, and a water/methanol mixture.

teristic interatomic distance is reported as being 2.9 Å in form I and 9.9 Å in form

II [1]. Both forms are stabilized by an intramolecular hydrogen bond N-H···O be-

tween the primary amide group and the donor carbonyl on the diazinane ring. Form

I is further stabilized by an N-H···O hydrogen bond between the secondary amine in

the diazinane ring and the donor carbonyl on the tertiary amide. Form II is instead

stabilized by a hydrogen bond N-H···O between the secondary amide and the donor

carbonyl on the primary amide [72]. Form I can be recrystallized from pure water,

while the addition of even a small amount of methanol will result in form II being

obtained [72]. In a further study [1], Maruyama et al. used NOE spectroscopy to

determine that methanol effects the conformational distribution of taltirelin in solu-
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Figure 5.16: A dual matrix presenting a pairwise comparison of conformers of taltirelin
observed in water (rows) and a water/methanol mixture(columns). The color
gradient indicates the minimum RMSD between atoms between the two con-
formers, while the number within each element indicates the stability of the
conformer in water relative to the conformer in the water/methanol mixture.
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Figure 5.17: a: The lowest energy conformation of taltirelin in water, index 19 in Table
B.8 and Figure 5.13b. b: One of the lowest energy conformations of taltirelin
in water/methanol, index 1 in Table B.9 and Figure 5.13c. c: One of the
lowest energy conformations of taltirelin in water/methanol, index 2 in Table
B.9 and Figure 5.13c. d: One of the lowest energy conformations of taltirelin
in water/methanol, index 8 in Table B.9 and Figure 5.13c. The free energies
of conformers b-d are within 0.5 kJ/mol of one another, thus all three can be
equally considered to be global free energy minima. All structures have the
characteristic distance between ring groups defined by Maruyama et al. [1]
shown.

tion, stabilizing form II. This stabilization effect could be in part responsible for the

eventual isolated polymorph.

As with the other molecules studied in this chapter, simulations of taltirelin

were carried out in vacuum as well as two distinct solvent environments, in this case

pure water, and an approximately 80:20 mixture of water and methanol. Simulations

were carried out as outlined in the Methods Chapter, and a gridless analysis was

carried out on 50,000 configurations sampled from each simulation.

Figure 5.14 shows that the 1-dimensional marginal free energies converge

within the simulation timeframe for all torsions. Higher dimensional consistency

metrics are plotted in Figure 5.15. Like in the other high-dimensional conformation

spaces studied in this work, the analysis does not assign a consistent number of con-

formers to taltirelin in any environment, as shown by Figure 5.15a. The fluctuation
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Figure 5.18: 6 common conformers of taltirelin in water and a water/methanol mixture.
For this system, conformers are deemed common to be both solvents if their
overlaid structures present a minimum RMSD deviation of less than 2.0Å.
Conformers in water are indicated with the label WAT, and have their molec-
ular structures shown in blue. Conformers in the water/methanol mixture are
indicated with the label WATMEO and their molecular structures are shown in
red. The free energy in both solvents, as well as the difference in free energy is
indicated for each conformer, and the conformers are ordered from those most
stabilized in water to those most stabilized in the water/methanol mixture.

seems to become minor for the three largest dataset sizes in vacuum and water, but

continues to drop steeply in water/methanol. It is interesting to note in this plot

that a consistently smaller number of conformers are observed in water/methanol

compared to pure water, across all dataset sizes.

Figure 5.15b,c shows how ∆̄d and ∆̄F evolve with dataset size, respectively.

The trend in ∆̄d shows that the positions of equivalent conformers drift by between

1 and 1.5 Euclidean radians. The trends in ∆̄F are particularly inconsistent, with

energies potentially deviating by up to 8 kJmol−1. As with bicalutamide and other

previously studied high-dimensional molecules, the high dimensionality and low

data-density result in these inconsistencies in conformer position and free energy.

Despite the low resolution of this approach in these cases, a meaningful interpre-

tation of these conformational free energy landscapes is still possible, due to the

wide range in free energies obtained for the different structures. If increased consis-

tency is required, it is likely that the expensive step of increasing dataset size would
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need to be taken, demanding the use of more powerful hardware. This is further

discussed in Chapter 6.

As with bicalutamide, 2-dimensional projections of taltirelin’s 8-dimensional

per-point free energy landscapes were created with Sketch-map, using the parameter

and landmarks used in the in-vacuo case. They are shown in Figures 5.13a, 5.13b,

5.13c, for taltirelin in vacuum, water, and water/methanol respectively. For each of

the projections, an enlarged image featuring the locations of the free energy minima

marked with a numerical label is available in Figures B.7, B.8, B.9 in Appendix

B. These labels correspond to the conformer indices in the left-hand columns of

Tables B.7, B.8, and B.9, also in Appendix B, for taltirelin in vacuum, water, and

water/methanol, respectively.

Examination of the three Sketch-map projections reveals a clearly defined land-

scape in vacuum, that becomes distorted when considering taltirelin in water, and

more distorted still when considering taltirelin in water/methanol. Furthermore,

there are regions of what appear to be low free energy in the water/methanol pro-

jection which have not been identified as conformers.

These are likely effects resulting from the decision to use the same Sketch-map

landmarks and parameters as those determined to be ideal for vacuum for all envi-

ronments, and not a failure of DPA to identify density peaks. Should the molecule’s

occupation of the conformation space in solution be sufficiently different from its

occupation in vacuum, it likely that the projection will be of poorer quality. This

suggests that the impact of solvent on taltirelin’s conformational distribution is ex-

tensive, with solvent extensively flattening the landscape. An interesting contrast

to this case are the Sketch-map projections of m-nisoldipine analyzed in the next

section, which change little across different environments.

Figure 5.17 shows the most stable conformers of taltirelin in both solvent envi-

ronments. Figure 5.17a shows the most stable form of taltirelin in water. Taltirelin

has three stable conformers within 0.55 kJmol−1 of each other in water/methanol,

thus all three conformers can be considered to equally the most stable. These are

shown in Figure 5.17b,c,d. For each of these structures, the characteristic inter-
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atomic distance[1] is shown. The short interatomic distance of 5.66 Å in water re-

sults in a similar molecular geometry as the distance of 2.9 Å observed in the crystal

form I. The three stable conformers in water/methanol demonstrate a diverse range

of values of the characteristic interatomic distance, ranging from the 10.48 Å shown

in Figure 5.17b (compare with the distance of 9.9 Å observed in the crystal form II)

to the 5.7 Å seen in Figure 5.17c.

These observations support the experimental observation that the addition of

methanol to an aqueous solution of taltirelin promotes the population of conforma-

tional states resembling that of crystal form II. As the solvent environment is still

predominantly aqueous, the conformers which dominate in pure water continue to

exist in water/methanol, but now coexist with forms specific to water/methanol.

Figure 5.16 shows a matrix comparing all the conformers observed in water

with all the conformers observed in water/methanol. As in Figures 5.10 and 5.4,

the numbers in each element correspond to ∆F and the color gradient represents

the minimum RMSD between the two structures. Despite the presence of three

almost equally favored conformers in the water/methanol environment, this envi-

ronment presents far fewer conformers overall. It is therefore of interest to vi-

sualize the shapes of the common conformers which feature in both water and wa-

ter/methanol. Figure 5.18 shows the 6 common conformers of taltirelin in water and

water/methanol, where conformers have been deemed to be common if their mini-

mum RMSD was smaller than 2 Å. These common conformers are ordered based on

whether their geometries are stabilized in pure water, or in the water/methanol mix-

ture, according to their ∆F . It is immediately apparent that the majority of the con-

formers stable in both solvents correspond to the form I conformer characterized by

the short interatomic distance. The only common conformer (WAT16-WATMEO4)

presenting an elongated distance is far more stable in water/methanol than in pure

water. This in agreement with the observation that the conformation characteristic

of form II is stabilized by the addition of methanol to aqueous solution, while the

conformation characteristic of form I is found in any aqueous solvent environment.
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5.4 m-Nisoldipine

Figure 5.19: 2D Sketch-Map projection of m-nisoldipine’s 8D conformational free energy
landscape in vacuum (a), an acetone-ethanol mixture(b), and an ethyl acetate
- hexane mixture(c), with molecular structure of m-nisoldipine inset. Dis-
tances between configurations are preserved over small separations but the
axes themselves have no physical meaning.

Figure 5.20: Evolution of the average free energy difference, δF(t), on the marginal free
energies of each torsion in m-nisoldipine, in vacuum, an acetone/ethanol mix-
ture, and an ethyl acetate/hexane mixture.



5.4. m-Nisoldipine 101

Figure 5.21: a: Number of clusters identified by clustering on datasets of size N for
m-nisoldipine, in vacuum, an acetone/ethanol mixture, and an ethyl ac-
etate/hexane mixture. b: Evolution of the average positional deviation, ∆̄d,
with N for m-nisoldipine, in vacuum, an acetone/ethanol mixture, and an ethyl
acetate/hexane mixture. c: evolution of the average free energy deviation, ∆̄F ,
with N for m-nisoldipine, in vacuum, an acetone/ethanol mixture, and an ethyl
acetate/hexane mixture.

m-Nisoldipine is a calcium ion agonist used to treat high blood pressure. Like

taltirelin, it has an 8-dimensional conformation space. This space is defined by the

8 torsions shown inset in Figure 5.19a. Unlike the other molecules in this chapter,

there are no experimental results regarding m-nisoldipine’s conformational distri-

bution in the solution phase. However, it does exhibit solvent-mediated conforma-

tional polymorphism in the solid state, with form A obtained through recrystalliza-

tion of a 1:1 mixture of acetone and ethanol, and form B obtained through recrys-

tallization of a 1:1 mixture of ethyl acetate and hexane. The conformers observed

in form A and B are shown in Figure 5.23c and d respectively. Both crystal forms

are primarily stabilized by an intermolecular hydrogen bond N-H···O between the

amine group and the carbonyl on the tert-butyl substituted ester[73].

As with the other molecules studied within this chapter, concurrent WTMetaD

simulations were run in vacuum and in both solvent environments, followed by the

creation of gridless free energy landscapes from 50,000 configurations distributed

within the conformational space.

Figure 5.20 shows the convergence of all 1-dimensional marginal FESs of all

8 torsions in the three simulation environments. Convergence occurs as expected

for all marginals within the simulation timescale. Higher dimensional consistency
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Figure 5.22: A dual matrix presenting a pairwise comparison of conformers of m-
nisoldipine observed in an acetone/ethanol mixture (rows) and a ethyl ac-
etate/hexane mixture(columns). The color gradient indicates the minimum
RMSD between atoms between the two conformers, while the number within
each element indicates the stability of the conformer in the acetone/ethanol
mixture relative to the conformer in the ethyl acetate/hexane mixture. For the
sake of legibility, this figure is available in a larger size in Figure B.13, in
Appendix B.

checks are shown in Figure 5.21. Figure 5.21a shows how the number of conform-

ers identified varies with dataset size, and as with other high-dimensional systems,

complete consistency is not observed in any of the environments. Results in vac-

uum and ethyl acetate/hexane appear more consistent than those in acetone/ethanol,

where swings of up to 8 conformers are present even towards the largest dataset

sizes employed. The large number of conformers in all environments is notewor-

thy, when compared to landscapes previously studied in this chapter. Figure 5.21b,c



5.4. m-Nisoldipine 103

Figure 5.23: a: The lowest energy conformation of m-nisoldipine in acetone/ethanol, index
45 in Table B.11 and Figure 5.19b. b: The lowest energy conformation of m-
nisoldipine in ethyl acetate/hexane, index 2 in Table B.12 and Figure 5.19c.
c: The experimentally observed conformation of m-nisoldipine form I. d: The
experimentally observed conformation of m-nisoldipine form II.

show the evolution of ∆̄d and ∆̄F respectively. These plots demonstrate that con-

formers are consistently placed with 0.6 Euclidean radians of separation from one

another for the two solvated environments, and that these conformers are within 4

kJmol−1 of one another. Considering that m-nisoldipine’s conformation space has

the same dimensionality as that of taltirelin, it is interesting to note that these con-

sistency metrics are considerably improved over those observed in the previously

considered molecule.

Figures 5.19a, 5.19b, 5.19c show the two-dimensional projection of the 8-

dimensional per-point conformational free energy landscapes in the three simula-

tion environments. For each of the projections, an enlarged image featuring the

locations of the free energy minima marked with a numerical label is available in

Figures B.10, B.11, B.12 in Appendix B. These labels correspond to the conformer

indices in the left-hand columns of Tables B.10, B.11, and B.12, also in Appendix
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Figure 5.24: 6 common conformers of m-nisoldipine in acetone/ethanol and a ethyl ac-
etate/hexane mixtures. For this system, conformers are deemed common to
both solvents if their overlaid structures present a minimum RMSD deviation
of less than 1.3Å. Conformers in acetone/ethanol are indicated with the label
ACEETH, and have their molecular structures shown in blue. Conformers in
the ethyl acetate/hexane mixture are indicated with the label ETAHEX and
their molecular structures are shown in red. The free energy in both solvents,
as well as the difference in free energy is indicated for each conformer, and
the conformers are ordered from those most stabilized in acetone/ethanol to
those most stabilized in the ethyl acetate/hexane mixture.

B, for m-nisoldipine in vacuum, acetone/ethanol, and ethyl acetate/hexane, respec-

tively. Unlike the projections observed for bicalutamide and taltirelin, the impact of

solvent on the projection appears to be minimal. The same distribution of states is

found across all three projections, suggesting that the conformational distribution of

m-nisoldipine is not largely affected by the bulk solvent environment. Furthermore,
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the character of the landscape is distinctly different from those seen in taltirelin

and bicalutamide, with a large number of clearly separated basins, all occupying

similar energy levels. Examination of Tables B.11 and B.12 shows that there are 4

conformers within 5 kJmol−1 of the minimum for m-nisoldipine in acetone/ethanol

and 5 conformers within 5 kJmol−1 of the minimum for m-nisoldipine in ethyl

acetate/hexane. This number grows to 21 in acetone/ethanol and 19 and ethyl ac-

etate/hexane for conformers within 10 kJmol−1 of the minimum, confirming this

observation gleaned from the projections.

Figure 5.23 compares the two most stable conformers in the solvent environ-

ments to crystal forms A and B. Unlike bicalutamide and taltirelin, this comparison

seems to reveal that both the two conformers in solution have more in common

with each other than the crystal forms to which their environments are experimen-

tally linked. Despite the fact that acetone/ethanol (most stable conformer shown in

Figure 5.23a) promotes crystal form A (shown in Figure 5.23c), and that ethyl ac-

etate/hexane (most stable conformer shown in Figure 5.23b) promotes crystal form

B (shown in Figure 5.23d), the orientation of the nitrobenzene ring and the isopropyl

ester groups have preferred orientations in solvent and crystal phases, regardless of

solvent and crystal form. The methyl ester group also appears to favor its orientation

in form B in both solvent environments.

Figure 5.22 shows a double matrix comparing the difference in conformer free

energy ∆F and minimum RMSD of every combination of conformers in both ace-

tone/ethanol and ethyl acetate/hexane. Compared to the equivalent matrices pre-

sented previously for PBH, bicalutamide and taltirelin, the large number of con-

formers in both of these environments makes this matrix cumbersome to interpret.

It does appear that many of the elements showing a low RMSD exhibit a relatively

small magnitude of ∆F , though to examine this more carefully, all conformers with

an RMSD separation of less than 1.3 Å are presented in Figure 5.24.

Consideration of these common conformers reveals that none of these struc-

tures, in either acetone/ethanol or ethyl acetate/hexane, exhibit the orientation of

the isopropyl ester group seen in the two crystal forms. The magnitude of ∆F at the
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extremes is also smaller than those observed in bicalutamide and taltirelin, with 4

of the 8 structures shown have a ∆F magnitude smaller than 2 kJmol−1 and 7 of the

8 have a ∆F magnitude smaller than 8 kJmol−1. Despite this, there is diversity in

the positions of the methyl ester, as well as the nitrobenzene ring. This consistent

with the observation made that the free energy landscapes shown in Figures 5.19a,

5.19b, 5.19c consist of many basins of similar free energy and that these landscapes

do not seem to be dramatically affected by solvent environment. From this, it must

be surmised that the impact of solvent choice on crystallization does arise in the

bulk solution phase.

5.5 Conclusion

In this chapter, the utility of the gridless per-point conformational free energy land-

scapes generated by the workflow developed in this project was demonstrated on

four molecular systems, studied in a pair of solvent environments associated with

distinct conformational behavior, either in solution, in the crystal phase or both.

MD simulations of the first molecule, PBH, did not replicate the experimentally

observed behavior, and the conformational polymorphism of m-nisoldipine was

not found to be linked to the conformational distribution of m-nisoldipine in so-

lution. However, results for bicalutamide and taltirelin seemed to support experi-

mental observations. For all molecules, a combination of Sketch-map projections,

energy-RMSD matrices, and renders of selected molecular structures allowed some

degree of analysis and understanding of the high-dimensional conformational free

energy landscapes. Despite this, the problem of inconsistency in conformer num-

ber, position, and free energy in high-dimensional molecules, initially observed in

Target XXXII in the previous chapter, persists in bicalutamide, taltirelin, and m-

nisoldipine. With a dataset size of 50,000 configurations representing the upper

limit possible using currently available hardware, the relationship between dataset

size, consistency, and conformation space dimensionality is still poorly understood.

It is likely that increasing the size of the datasets further would improve the qual-

ity of results, however, the difference in consistency metrics between taltirelin and
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m-nisoldipine (both with 8 dimensional conformation spaces), suggests that there is

also a system-dependent effect on consistency.



Chapter 6

Research Outlook

A new analysis method, based on the use of DPA clustering, creates high-

dimensional conformational FESes in a gridless, computationally accessible way,

allowing the conformational ensembles of highly flexible molecules to be charac-

terized in a systematic and efficient way which scales better than the conventional

grid-based approach. Pairing DPA’s density estimation tool with a dataset of con-

figurations generated through concurrent well-tempered metadynamics simulations

allows for quantitative per-point FES generation through a simple Zwanzig-based

reweighing scheme. DPA’s classification approach further allows for automatic,

high-dimensional interpretation of these FESes. This approach has been initially

demonstrated for systems with 2, 4, and 11-dimensional conformation spaces in

vacuum, before being used in a study on the relationship between solvent and con-

formational distribution for 4 conformationally complex molecules. The perfor-

mance of this method was tracked using a set of consistency metrics that enable its

application in realistic cases. The approach is entirely simulation agnostic, oper-

ating solely on the coordinates of configurations in conformation space and their

corresponding biases. We thus envision applications for simulations performed at a

broad range of theory levels and across various physical environments.

A key area for future study is the relationship between the dimensionality of

the conformation space, the size of the configurational dataset, and the quality of

the resulting consistency metrics. In this work, conformer-sets identified with the

method for molecules with a complex conformation space (7+ torsions) have failed
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to produce a consistent number of conformers and demonstrate inconsistencies in

the free energies and positions of the conformers identified. The majority of the

landscapes presented in this work are the result of clustering on datasets of 50,000

configurations. As the dimensionality increases, the density of data in conforma-

tion space decreases exponentially, a scenario demonstrated in the example of tar-

get XXXII, where the dataset possessed a data density of 8× 10−5 configurations

per rad11 in the 11-dimensional conformation space. To increase the consistency

observed in these cases, it is likely that increasing the size of the dataset will be

required, however, this is not a trivial step to take. As discussed in the Methods

chapter, the most computationally expensive stage of the process is computing the

pairwise Euclidean distance matrix for the conformational dataset. Thus, while the

increase in cost associated with increasing dimensionality scales linearly, the cost

associated with increasing dataset size scales quadratically. It should be stressed

that this cost is still much smaller than the exponential costs incurred in the con-

struction of high-dimensional grids, and that all the analysis carried out within this

project occurred on a desktop workstation, where dataset sizes could not realisti-

cally be pushed higher than the 50,000 configurations used here. There exists more

powerful hardware which could be used to explore this relationship between dataset

size and consistency. As briefly discussed in Chapter 5, the difference in the con-

sistency metrics for m-nisoldipine and taltirelin, both of which are 8-dimensional,

suggests that there are system-specific effects on the consistency of the free energy

landscape.

One potential solution to the inconsistencies observed in high-dimensional

conformation spaces lies in the work of Olehnovics et al. [74] [75]; using machine-

learned invertible maps [76], they calculate the relative free energies of states sam-

pled in separate simulations without the sampling of intermediate states to create

overlaps in the probability distribution. In the context of this work, this would be

equivalent running independent unbiased simulations in each of the conformational

basins detected, without any requirement for the simulation to explore the confor-

mation space. A potential workflow would involve using the free energy landscapes
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here as a rough roadmap, which then informs a set of unbiased simulations, each

of which explores one of conformer basins identified by the approach here. Due to

limitations in the training process, this approach would only be feasible for studies

of molecules in vacuum. That said, the potential to increase the precision of the free

energy estimates is high.

Another interesting direction of future research would be the study of confor-

mation space in a greater range of environments. Marinova et al. [11] produced

conformational FESes of ibuprofen along a range of stages of crystal growth, from

the solution bulk, to partial embedding in the crystal surface at the solution interface,

to a molecule embedded fully in the crystal bulk. For each of the transitions, the re-

duction in ibuprofen’s flexibility is plain to see in as the fraction of the FES accessed

shrinks. This work was based on a two-dimensional conformation space, with the

FESes generated on a grid. Observing the constriction of higher-dimensional con-

formation spaces as a molecule transitions from the solution to solid phase could

offer detailed mechanistic insight into the process of crystal growth.

The analysis method presented in this work has been demonstrated here on a

handful of molecules, some in vacuum, and some in solvated environments. How-

ever, the ultimate aim of this project was to create a tool with broad applicability,

suitable for a range of molecular conformation spaces analyzed by simulations at

any level of theory and in any environment. In this spirit, the code developed for

the analyses carried out here is publicly available and open source. Included in

this code is a tutorial notebook which facilitates its application. A record of this

notebook can be found in Appendix C. This tutorial should make the creation and

analysis of the ’per-point’ FESes outlined here widely accessible.

The code developed here is and available from

https://github.com/ucecvan/Twister.
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Jan Lud´, Alexander A Maryewski, Noa Marom, Hiroyuki Matsui, Alessan-

dra Mattei, R Alex Mayo, John W Melkumov, Bruno Mladineo, Sharmarke

Mohamed, Zahrasadat Momenzadeh Abardeh, Hari S Muddana, Naofumi

Nakayama, Kamal Singh Nayal, Marcus A Neumann, Rahul Nikhar, Shigeaki

Obata, Dana O’Connor, Artem R Oganov, Koji Okuwaki, Alberto Otero de-

la Roza, Sean Parkin, Antonio Parunov, Rafał Podeszwa, Alastair J A Price,

Louise S Price, Sarah L Price, Michael R Probert, Angeles Pulido, Gun-

jan Rajendra Ramteke, Atta Ur Rehman, Susan M Reutzel-Edens, Jutta Rogal,

Marta J Ross, Adrian F Rumson, Ghazala Sadiq, Zeinab M Saeed, Alireza Sal-

imi, Kiran Sasikumar, Sivakumar Sekharan, Kenneth Shankland, Baimei Shi,

Xuekun Shi, Kotaro Shinohara, A Geoffrey Skillman, Hongxing Song, Nina

Strasser, Jacco van de Streek, Isaac J Sugden, Guangxu Sun, Krzysztof Sza-

lewicz, Lu Tan, Kehan Tang, Frank Tarczynski, Christopher R Taylor, Alexan-
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Figure A.1: Computational cost of the analysis procedure as it increases with (a): the di-
mensionality of conformation space, on a dataset with a constant size of 10,000
molecular configurations, and (b): the size of 11-dimensional configurational
datasets. Cost is shown as the time taken to carry out the analysis on a standard
desktop workstation. The cost of the simulation used to generate the configura-
tions is not shown. Configurations of Target XXXII are used in both cases. As
expected, the cost increases linearly with dimensionality, and with the square
of dataset size.
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Figure A.2: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gener-
ated from a dataset of 5000 configurations. Shown here alongside other pro-
jections of Target XXXII’s FES generated with smaller datasets, to illustrate
the evolution of features of the FES as the size of the dataset increases.
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Figure A.3: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 10000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.4: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 15000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.5: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 20000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.6: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 25000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.7: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 30000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.8: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 35000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.9: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 45000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Figure A.10: 2D Sketch-map projection of the 11D per-point FES of Target XXXII gen-
erated from a dataset of 45000 configurations. Shown here alongside other
projections of Target XXXII’s FES generated with smaller datasets, to illus-
trate the evolution of features of the FES as the size of the dataset increases.
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Table B.1: Labels, free energies and CV-space coordinates of PBH’s conformers in vac-
uum. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3
[kJ/mol]

0 0.51 -0.64 -0.28 2.25
1 6.65 -0.70 3.06 0.93
2 6.41 0.80 -3.07 2.24
3 0.79 2.57 -0.29 2.29
4 0.00 -2.55 0.30 0.86
5 7.33 -0.80 3.08 -2.38
6 0.44 -0.68 -0.26 -0.89
7 7.07 -2.43 -3.12 -0.84
8 7.82 2.53 3.03 1.00
9 6.86 -2.43 -3.12 2.18

10 0.21 -2.50 0.23 -2.28
11 7.32 2.51 3.03 -2.29
12 0.66 2.54 -0.27 -1.01
13 0.40 0.55 0.38 0.79
14 6.29 0.78 -3.10 -0.85
15 0.00 0.66 0.25 -2.27

Table B.2: Labels, free energies and CV-space coordinates of PBH’s conformers in
dichloromethane. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3
[kJ/mol]

0 3.71 -2.52 -3.03 2.24
1 1.29 2.54 -0.20 -0.96
2 2.94 -0.82 -3.10 -2.22
3 0.54 -2.56 0.26 0.97
4 0.25 0.67 0.15 1.06
5 0.43 0.65 0.20 -2.14
6 2.83 -2.50 -3.04 -0.94
7 0.86 2.46 -0.19 2.26
8 2.68 2.50 -3.14 0.95
9 3.40 0.78 -3.10 -0.97

10 0.00 -0.60 -0.27 -0.89
11 1.08 -0.68 -0.17 2.15
12 2.36 2.36 3.07 -2.21
13 1.21 -2.45 0.13 -2.20
14 4.35 -0.83 3.10 1.01
15 3.66 0.75 -3.12 2.28
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Figure B.1: 2D Sketch-map projection of PBH’s 3D conformational free energy landscape
in vacuum, with molecular structure of PBH inset. Distances between config-
urations are preserved over small separations but the axes themselves have no
physical meaning.
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Figure B.2: 2D Sketch-map projection of PBH’s 3D conformational free energy landscape
in dichloromethane. Distances between configurations are preserved over
small separations but the axes themselves have no physical meaning.
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Figure B.3: 2D Sketch-map projection of PBH’s 3D conformational free energy landscape
in acetone. Distances between configurations are preserved over small separa-
tions but the axes themselves have no physical meaning.
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Table B.3: Labels, free energies and CV-space coordinates of PBH’s conformers in acetone.
The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3
[kJ/mol]

0 0.99 -2.55 0.26 0.91
1 3.28 2.43 3.04 0.97
2 3.76 -2.40 -3.08 -2.28
3 2.42 -0.68 3.10 0.81
4 2.76 -0.76 -0.16 2.22
5 4.21 -2.46 -3.14 0.96
6 2.67 2.46 -0.12 -0.92
7 2.10 -0.73 3.08 -2.28
8 4.76 0.66 -3.04 1.08
9 0.22 -2.56 0.27 -2.22

10 0.88 0.65 0.27 -2.28
11 3.29 0.70 -3.06 -0.86
12 2.11 2.57 3.02 -2.23
13 1.53 -0.79 0.02 -1.12
14 0.00 0.65 0.21 0.97
15 3.04 2.52 -0.19 2.17
16 4.30 0.81 -3.06 2.09
17 3.53 0.77 -3.05 -2.28
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Figure B.4: 2D Sketch-map projection of bicalutamide’s 3D conformational free energy
landscape in vacuum, with molecular structure of bicalutamide inset. Distances
between configurations are preserved over small separations but the axes them-
selves have no physical meaning.
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Figure B.5: 2D Sketch-map projection of bicalutamide’s 3D conformational free energy
landscape in chloroform. Distances between configurations are preserved over
small separations but the axes themselves have no physical meaning.
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Figure B.6: 2D Sketch-map projection of bicalutamide’s 3D conformational free energy
landscape in DMSO. Distances between configurations are preserved over
small separations but the axes themselves have no physical meaning.
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Table B.4: Labels, free energies and CV-space coordinates of bicalutamide’s conformers in
vacuum. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7
[kJ/mol]

0 8.16 -1.90 -3.06 -3.13 1.13 -1.38 2.96 1.45
1 15.83 -2.00 2.54 -3.06 1.50 -0.64 1.30 -2.36
2 4.09 2.37 -2.47 3.06 -2.23 1.02 -1.11 2.03
3 0.00 -0.02 -2.42 -3.11 -2.16 1.22 -1.23 -1.17
4 19.00 0.04 -2.25 2.91 -2.18 -3.03 -2.82 -1.72
5 0.52 2.11 -2.41 2.79 -2.23 1.23 -1.22 -1.07
6 1.17 -1.84 -2.41 2.86 -2.25 1.23 -1.15 -1.03
7 1.28 0.04 -2.65 2.85 -2.25 1.23 -1.05 1.95
8 21.50 -2.07 -2.64 2.87 -2.30 -3.01 -2.83 1.39
9 14.63 0.14 2.21 -2.92 1.14 -1.58 2.88 1.25
10 23.18 1.83 2.94 3.07 -2.30 -3.05 -2.75 1.39
11 2.23 -2.16 -2.63 3.09 -2.29 1.21 -1.09 2.05
12 12.55 2.16 2.49 -3.03 1.40 -1.08 -2.47 -1.42
13 14.18 0.15 2.58 -2.91 1.72 -0.80 1.53 -2.09
14 11.29 2.12 2.66 -3.02 1.15 -1.46 2.85 1.56
15 11.60 -0.21 2.36 -3.05 1.00 -1.51 2.86 -1.76
16 25.23 -0.15 -2.53 2.85 -2.09 -3.01 -2.51 1.46
17 7.03 1.81 -2.58 2.94 -2.02 1.01 -1.23 2.41
18 15.88 0.04 2.47 -3.13 0.80 0.70 0.78 -2.02
19 14.32 1.91 2.58 3.07 1.58 -0.82 1.40 -2.20
20 17.52 -0.01 2.65 -3.02 1.49 -0.55 1.11 0.74
21 9.81 -2.13 2.68 3.09 1.29 -1.38 2.85 -1.14
22 28.67 0.14 1.68 -0.12 1.36 0.68 0.95 -1.90
23 3.07 -2.08 -2.43 2.77 -2.08 0.99 -1.36 2.08
24 15.28 1.94 2.52 3.11 1.73 -0.82 1.45 0.92
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Table B.5: Labels, free energies and CV-space coordinates of bicalutamide’s conformers in
chloroform. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7
[kJ/mol]

0 21.65 -0.46 -2.17 2.77 -2.16 3.09 -3.02 -1.24
1 13.05 -2.12 2.77 2.93 1.45 -0.79 -3.03 1.91
2 2.60 2.39 2.82 2.93 -2.50 1.11 2.95 1.56
3 11.50 0.11 -2.66 2.83 -2.51 1.36 -0.75 -1.33
4 13.22 -2.29 -1.15 -3.12 1.23 -0.57 -3.08 1.80
5 16.22 -1.98 2.64 3.11 -1.97 -2.90 -2.71 -1.96
6 38.40 2.21 -1.34 -0.22 -1.10 -0.80 -0.92 1.76
7 9.66 -1.86 -2.42 -3.00 -2.27 1.24 -0.98 -1.07
8 3.47 -2.21 -2.75 -3.10 -2.70 0.98 2.53 -1.54
9 14.52 1.86 2.69 3.09 -1.96 -3.11 -2.90 1.72
10 13.28 0.26 -2.61 3.05 1.07 -1.64 2.88 -1.73
11 9.77 -2.23 2.54 3.03 1.52 -0.77 -2.79 -1.23
12 15.14 -2.23 -2.82 -2.99 -2.21 -3.10 -2.97 1.48
13 10.59 2.19 2.57 -3.01 -2.40 -2.97 -2.82 -1.59

Table B.6: Labels, free energies and CV-space coordinates of bicalutamide’s conformers in
DMSO. The labeling convention is consistent with that of Figure 5.7c

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7
[kJ/mol]

0 15.03 0.02 2.55 -3.07 0.88 0.89 0.90 -1.75
1 8.15 -0.24 -2.66 -2.90 -1.09 -0.82 -3.02 -1.64
2 16.50 2.21 -2.34 -3.01 1.00 0.83 0.88 -1.85
3 15.63 2.04 -2.59 2.93 -2.46 1.29 -0.92 2.09
4 19.20 0.10 -2.53 -3.08 2.77 -1.14 -1.69 -1.29
5 3.00 2.14 -0.61 3.04 -1.04 -1.02 2.95 1.14
6 30.15 -0.65 -1.47 0.17 -1.44 -0.90 3.08 1.45
7 19.53 -0.01 2.65 2.98 3.08 -1.38 2.57 1.67
8 6.43 -2.25 -2.44 3.13 -0.99 -0.90 -2.95 -1.76
9 13.55 -2.09 -0.93 -3.08 1.16 0.70 0.88 1.34
10 29.69 2.09 1.84 0.27 -1.29 -0.82 3.11 -1.61
11 15.54 0.03 -0.81 -3.07 2.47 -1.16 2.58 -1.27
12 17.20 1.86 -2.77 -3.13 3.11 -1.36 -1.60 2.21
13 13.81 -0.12 -2.58 -3.10 0.98 0.84 0.91 -1.63
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Figure B.7: 2D Sketch-map projection of taltirelin’s 3D conformational free energy land-
scape in vacuum, with molecular structure of taltirelin inset. Distances be-
tween configurations are preserved over small separations but the axes them-
selves have no physical meaning.
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Figure B.8: 2D Sketch-map projection of taltirelin’s 3D conformational free energy land-
scape in water. Distances between configurations are preserved over small
separations but the axes themselves have no physical meaning.
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Figure B.9: 2D Sketch-map projection of taltirelin’s 3D conformational free energy land-
scape in a water/methanol mixture. Distances between configurations are pre-
served over small separations but the axes themselves have no physical mean-
ing.
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Table B.7: Labels, free energies and CV-space coordinates of taltirelin’s conformers in vac-
uum. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 32.46 -1.21 2.29 1.84 2.91 -1.72 -2.39 -0.25 -0.09
1 21.95 1.49 0.60 1.71 2.76 -2.88 -1.71 2.75 -1.78
2 17.09 1.60 -2.48 1.29 0.13 1.30 1.83 1.85 -1.08
3 44.69 -1.39 2.09 1.60 -0.81 3.01 -2.97 -0.83 1.66
4 34.87 -0.95 2.38 1.57 2.79 -2.90 1.24 -0.67 0.36
5 55.04 2.84 1.35 -1.66 1.62 -0.86 -0.99 3.03 -2.03
6 32.91 -1.13 2.29 -3.09 2.70 0.93 -2.60 2.66 -1.38
7 19.97 1.61 3.04 3.01 2.61 0.82 -2.24 0.22 -0.44
8 23.30 1.53 -2.31 1.29 2.73 1.37 1.63 0.49 -0.50
9 12.05 1.68 3.01 -3.13 2.65 0.79 -2.52 2.92 -0.87
10 41.79 -0.04 2.99 3.04 -0.22 0.11 -1.64 2.35 -1.51
11 43.48 2.59 -2.25 -0.82 -0.16 -2.73 2.46 -1.48 2.09
12 6.75 2.03 -2.55 1.33 0.86 0.81 1.15 3.02 -1.21
13 45.46 -2.65 -0.53 2.97 2.79 1.09 -2.65 2.56 -1.56
14 43.02 -2.86 -0.47 3.09 2.59 -2.76 1.68 -0.43 1.42
15 6.94 2.19 -2.69 1.30 -0.41 0.65 1.63 -1.01 0.47
16 7.90 2.28 -2.55 0.89 -0.48 0.81 1.92 -1.11 1.39
17 19.45 2.16 -2.34 1.23 -0.80 3.14 -3.09 -0.84 1.74
18 26.16 2.47 -2.14 1.27 2.81 -1.69 -2.52 -0.52 -0.41
19 49.34 2.65 1.17 -1.85 0.99 -0.81 -1.07 0.28 -0.55
20 3.81 1.95 -2.21 1.32 0.46 1.07 1.21 3.01 -1.36
21 13.04 1.83 -2.50 1.68 1.46 -1.07 3.02 2.52 -1.44
22 20.98 1.79 -2.71 1.57 1.54 -2.86 1.71 2.73 -1.34
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Table B.8: Labels, free energies and CV-space coordinates of taltirelin’s conformers in wa-
ter. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 15.46 2.92 -2.71 3.05 -0.65 -0.77 2.62 -0.66 -1.11
1 5.25 2.51 -2.44 1.53 2.89 -1.58 -3.12 -0.41 -1.51
2 38.44 1.97 -2.87 1.58 -0.72 3.03 -2.18 -0.82 2.03
3 8.78 2.70 -2.49 1.83 2.36 -1.27 -0.77 -0.18 1.64
4 4.88 2.50 -2.70 1.94 1.47 -0.94 -1.14 -0.10 -1.37
5 11.32 2.20 -2.26 2.93 -0.36 -0.95 -1.20 -0.64 -1.72
6 38.58 2.10 -2.36 1.48 -0.56 -2.95 1.69 -0.95 1.90
7 21.89 -1.26 2.75 1.89 2.38 -1.33 1.57 2.85 -1.16
8 5.44 2.26 -2.29 1.77 2.56 0.87 -2.82 0.04 1.78
9 19.55 2.46 -2.37 1.31 2.86 0.83 -2.62 2.53 1.81
10 23.42 2.20 -2.75 1.35 -0.41 1.00 -1.32 -0.98 1.81
11 12.91 2.55 -2.75 -1.23 1.11 -1.11 -1.18 0.10 -1.43
12 23.69 -1.08 2.34 1.93 2.75 1.29 2.29 -0.00 -1.28
13 14.54 2.79 -2.36 1.54 1.49 -1.33 -2.89 3.02 -1.51
14 20.20 -1.44 2.38 -1.34 1.18 -0.97 2.17 0.17 1.54
15 37.92 2.54 -2.76 1.08 -0.53 -1.35 -0.91 -0.87 1.98
16 50.20 3.04 1.17 -1.40 1.01 -0.85 -0.51 0.43 1.60
17 30.14 2.21 -2.75 1.64 2.29 -2.83 -1.63 2.90 2.03
18 18.38 2.93 -2.77 -1.35 1.10 -1.12 2.21 0.38 1.09
19 0.00 2.95 -2.80 1.92 2.63 -0.94 -1.30 -0.03 -1.32
20 14.93 2.47 -2.51 -1.38 1.00 -1.17 1.32 0.36 -1.54
21 23.16 -1.33 1.96 2.94 2.16 3.07 1.02 -0.03 -1.25
22 22.04 -1.60 1.98 3.10 2.36 -2.76 -1.98 -0.25 -1.48
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Table B.9: Labels, free energies and CV-space coordinates of taltirelin’s conformers in a
water/methanol mixture. The labeling convention is consistent with that of Fig-
ure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 38.67 -1.35 -1.06 2.85 -0.37 -2.85 -3.07 -0.85 1.29
1 7.58 1.96 -1.80 3.06 -0.65 -0.81 -1.73 -0.40 -0.98
2 7.03 2.48 -2.33 -1.49 1.06 -0.87 1.82 0.16 -1.26
3 43.27 -3.05 0.05 1.45 2.88 0.97 1.72 2.80 2.25
4 14.73 -1.03 2.60 3.13 -0.77 2.90 1.23 -0.29 -1.30
5 45.28 -1.76 -0.38 1.48 1.60 -2.91 -2.38 2.79 -1.76
6 20.82 -1.32 2.18 -1.20 0.90 -0.92 -0.41 0.20 -1.57
7 17.82 1.57 -2.47 1.35 2.23 -2.95 -1.80 -0.13 -0.52
8 7.37 2.52 -2.34 3.02 -0.33 -1.03 2.59 -0.78 -1.02
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Figure B.10: 2D Sketch-map projection of m-nisoldipine’s 3D conformational free energy
landscape in vacuum, with molecular structure of m-nisoldipine inset. Dis-
tances between configurations are preserved over small separations but the
axes themselves have no physical meaning.



152

Figure B.11: 2D Sketch-map projection of m-nisoldipine’s 3D conformational free energy
landscape in an acetone/ethanol mixture. Distances between configurations
are preserved over small separations but the axes themselves have no physical
meaning.
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Figure B.12: 2D Sketch-map projection of m-nisoldipine’s 3D conformational free energy
landscape in an ethyl acetate/hexane mixture. Distances between configura-
tions are preserved over small separations but the axes themselves have no
physical meaning.
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Table B.10: Labels, free energies and CV-space coordinates of m-nisoldipine’s conformers
in vacuum. The labeling convention is consistent with that of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 21.47 0.07 0.78 -0.02 -2.96 -0.30 -3.00 -1.29 2.81
1 19.56 0.25 1.49 3.08 3.03 3.10 -3.07 -1.30 -3.04
2 4.93 -3.09 1.20 0.14 -3.07 3.01 3.05 -1.41 2.81
3 5.06 -3.11 1.31 0.17 -3.08 -3.12 -2.98 -2.82 -1.03
4 20.19 -0.45 -2.10 0.23 -3.13 -0.14 3.06 -1.44 -3.01
5 21.24 2.89 1.46 -2.58 3.06 -3.08 -3.14 -3.07 0.95
6 16.01 -0.33 -1.73 -3.10 -2.94 -3.08 2.84 3.12 2.86
7 9.00 2.96 1.38 0.23 -2.96 -2.85 -3.12 -2.37 1.24
8 27.17 -3.12 0.73 -0.06 2.99 -0.04 -2.90 3.06 3.00
9 20.71 -2.92 -1.84 0.03 3.06 0.21 3.07 -1.38 3.10
10 18.01 2.67 1.35 -3.01 2.89 3.13 -3.06 2.94 3.09
11 4.37 0.27 1.07 -0.03 -3.02 -2.89 -3.14 -3.08 2.93
12 18.27 -3.04 -1.61 -3.07 3.04 -2.98 -3.00 2.92 -1.17
13 17.31 -2.62 -2.27 -0.21 -3.02 -0.20 3.09 1.38 0.79
14 30.10 -2.96 0.64 -0.22 -3.07 0.11 -3.00 2.83 -1.13
15 10.26 -0.64 1.18 0.07 3.03 3.11 3.03 1.67 0.84
16 15.88 2.96 1.52 -2.79 -2.97 2.94 -2.99 -3.05 -1.17
17 20.79 -2.92 1.32 -2.85 -3.02 -3.07 3.09 -1.35 -2.88
18 18.53 2.91 0.78 -0.11 -3.06 -0.32 -3.01 1.19 1.06
19 19.03 0.26 1.40 -3.04 3.01 -3.08 2.83 -3.11 2.83
20 7.26 0.01 1.10 0.11 -3.14 2.90 3.03 -1.90 1.08
21 6.78 -0.14 -1.89 0.02 -2.84 -2.82 -3.11 -1.39 3.04
22 29.93 -2.86 -1.92 3.12 2.74 -0.28 -2.88 1.22 1.17
23 24.07 3.06 -2.01 -3.00 2.95 3.08 3.04 1.82 1.26
24 17.51 0.09 1.25 -2.82 2.94 3.07 -2.99 -2.99 1.38
25 24.60 0.27 -2.06 -2.93 -3.11 -0.32 -2.68 1.14 0.91
26 19.99 0.10 1.03 0.22 3.06 -0.40 -2.74 1.11 1.12
27 15.91 -0.06 1.32 -3.10 2.83 -3.09 -3.02 -3.04 -1.07
28 18.61 -3.06 -2.18 0.30 3.13 -0.26 -2.72 1.07 1.03
29 13.05 2.97 1.05 0.27 -3.12 -3.00 2.99 1.57 1.11
30 15.74 0.61 -1.92 3.12 3.13 -3.04 -2.96 3.06 1.15
31 3.50 -0.19 1.32 0.21 -2.93 -2.98 -3.11 -1.37 2.84
32 23.00 0.49 -1.99 3.02 3.11 2.93 -2.80 1.43 1.03
33 17.78 0.15 -2.06 0.04 3.05 -0.04 -2.81 1.16 0.95
34 14.67 0.35 -1.84 2.99 2.98 -3.05 2.85 -1.13 3.10
35 3.42 0.25 1.35 0.03 -3.12 3.00 -3.09 2.85 -1.13
36 0.00 2.91 1.08 -0.09 -3.07 3.00 3.08 -3.03 3.10
37 19.48 0.07 -1.69 2.72 -2.96 -3.09 3.06 3.11 -1.07
38 23.09 -3.09 -1.88 -2.99 -2.86 3.09 2.86 -1.61 1.21
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Table B.11: Labels, free energies and CV-space coordinates of m-nisoldipine’s conformers
in an acetone/ethanol mixture. The labeling convention is consistent with that
of Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 3.48 -2.86 -1.76 0.11 -3.04 -3.11 2.96 -3.11 -3.10
1 9.21 -0.28 -1.92 0.02 3.12 -0.06 -2.86 2.89 1.25
2 11.56 -0.53 -1.73 -3.11 3.00 3.01 -3.08 -1.26 2.89
3 5.54 0.34 -2.08 -0.06 2.95 3.13 3.13 1.33 1.20
4 12.67 -0.11 -1.66 -3.13 -2.97 -2.99 3.10 -2.77 -1.22
5 8.02 3.08 0.88 -0.24 2.95 -2.83 2.96 1.44 1.05
6 14.22 0.19 -1.89 3.10 -3.09 0.10 2.95 -2.88 -1.15
7 10.03 0.01 1.09 0.39 -3.10 3.01 -2.89 3.00 -0.99
8 8.86 -3.07 1.06 0.10 2.97 -3.11 3.14 -1.55 2.99
9 13.73 -0.72 0.88 -2.97 3.06 3.00 -2.93 1.18 1.02
10 16.02 -0.24 -2.10 3.12 3.13 0.13 2.81 -1.37 3.10
11 9.00 3.07 1.18 -2.91 2.88 3.11 -3.10 -2.92 2.78
12 6.95 -0.25 -1.99 0.00 2.86 -3.06 2.92 3.00 -0.75
13 7.83 -0.41 1.44 2.93 -3.02 -3.13 -3.00 -3.13 -0.99
14 22.94 0.04 -2.05 2.94 -3.04 -0.53 -3.00 1.31 0.75
15 5.87 -0.27 -1.83 0.14 -3.07 -3.05 2.89 -1.26 -3.10
16 14.87 -0.65 -1.99 3.03 -3.09 -3.02 -2.92 1.38 1.17
17 5.69 0.03 1.00 0.07 -2.96 3.06 -2.90 2.86 3.03
18 10.34 0.47 -1.85 0.15 -2.93 -0.03 2.93 3.07 -1.15
19 14.45 2.96 -1.82 -2.86 3.04 -0.15 3.03 -3.04 2.81
20 11.20 -2.49 0.83 -3.14 3.00 3.11 -3.07 -3.06 1.21
21 18.18 -2.76 1.39 0.18 -3.05 0.16 2.86 -1.23 3.11
22 5.31 0.04 1.29 0.03 3.07 3.07 2.94 -1.09 3.05
23 18.77 2.83 -2.23 3.03 2.83 -0.26 2.97 2.97 -1.01
24 23.03 -2.87 -2.22 -2.80 3.04 -0.36 -3.07 1.05 0.95
25 8.52 -0.55 1.15 -2.99 -2.98 3.11 3.05 -1.18 2.97
26 2.64 -2.89 -2.14 0.02 2.85 0.22 3.07 -2.99 -1.17
27 19.54 0.04 1.05 -2.88 2.93 -0.08 -2.90 3.11 0.94
28 11.56 -0.22 -1.72 0.02 -2.86 -2.78 3.05 -2.96 1.18
29 20.35 -0.53 1.28 -2.96 -3.02 -0.14 2.89 -1.22 3.02
30 14.55 0.15 -1.97 0.26 -3.10 -0.32 -2.63 1.20 1.06
31 15.67 -0.89 1.12 -0.10 -3.13 -0.12 -3.07 2.92 0.86
32 7.59 3.08 1.41 -3.01 3.07 -3.00 -3.06 3.07 -1.04
33 13.06 -0.38 0.85 -0.06 -3.09 0.13 3.12 -1.48 3.06
34 25.85 2.72 1.45 3.08 -2.92 0.41 3.01 1.11 0.94
35 1.88 -0.06 -2.04 -0.07 2.89 -3.09 -3.02 2.84 3.03
36 14.69 -2.84 -2.00 2.95 -2.94 2.94 3.13 1.45 0.83
37 8.41 0.22 1.23 -3.12 3.05 2.92 -2.99 -3.08 1.33
38 10.26 0.09 -1.96 3.05 3.02 2.93 2.96 -3.06 2.93
39 8.91 3.02 -2.09 -0.28 3.02 -2.96 -3.07 1.38 1.12
40 10.96 -2.92 1.29 -2.88 -3.01 2.99 -2.97 1.23 0.91
41 13.82 3.11 -2.22 0.25 3.07 0.01 2.97 -3.06 1.56
42 8.62 2.96 1.32 -3.11 -2.93 -3.11 2.96 -1.17 3.07
43 8.85 2.84 -1.83 -3.12 -3.13 3.08 -2.86 -1.41 3.08
44 5.06 3.07 1.53 0.07 -3.12 -3.09 -3.10 -2.95 -1.13
45 0.00 2.85 -2.13 -0.05 3.14 3.09 -3.14 -1.43 2.94
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Table B.12: Labels, free energies and CV-space coordinates of m-nisoldipine’s conformers
in an ethyl acetate/hexane. The labeling convention is consistent with that of
Figure 5.1a

Conformer Free Energy γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8
[kJ/mol]

0 13.25 0.60 -2.20 -0.31 -3.13 -0.11 -3.09 -2.92 1.25
1 9.99 0.18 1.35 -3.11 -3.02 3.14 -3.06 -1.46 -3.05
2 0.00 2.65 -1.98 0.16 3.06 3.10 3.10 3.04 -0.90
3 5.47 0.44 1.28 0.04 3.13 -3.01 -2.99 2.80 1.25
4 4.66 2.62 -1.95 0.10 2.90 3.11 -3.04 3.13 1.62
5 6.66 -3.10 -2.16 0.11 2.95 -0.11 -2.99 -3.10 1.38
6 3.34 -0.00 -1.72 3.03 -3.02 -2.97 3.09 -3.05 -1.00
7 6.60 3.00 1.08 -3.09 3.09 2.97 -3.01 3.12 -0.89
8 9.79 -3.02 -1.97 -3.12 2.96 -3.06 -3.08 -1.69 2.94
9 9.30 0.14 1.08 0.12 -2.88 3.11 3.08 1.10 0.93
10 10.11 -0.17 0.97 -3.06 3.01 3.09 3.07 2.94 -1.02
11 6.23 0.06 0.99 0.13 -3.07 3.09 3.09 1.92 -1.28
12 5.50 0.08 -2.13 -0.12 3.10 3.10 -3.10 1.62 1.06
13 10.49 -0.35 -2.19 0.20 -2.87 -0.10 -3.11 -2.60 3.00
14 3.03 -3.02 1.24 0.33 -3.06 2.96 3.11 3.04 -0.74
15 10.52 -0.48 -1.94 -3.08 -3.03 3.12 -3.09 -1.40 -3.07
16 8.82 2.89 -1.69 -3.07 -3.02 2.90 3.14 -2.99 -1.01
17 14.72 -3.10 -1.95 0.09 -3.04 -0.05 -2.71 1.26 0.88
18 10.24 0.26 -2.23 -3.13 -2.90 3.02 3.04 -3.08 -3.09
19 15.02 -2.46 0.99 -0.12 -3.08 -0.02 3.06 -1.52 3.02
20 12.16 3.09 1.12 0.06 2.90 -0.25 -3.12 -2.82 -1.05
21 20.07 -2.97 1.33 3.11 -2.99 -2.99 -3.04 1.32 1.05
22 5.76 0.27 -1.92 0.16 3.03 -2.96 2.91 -1.29 3.06
23 20.82 -2.52 -2.27 2.81 -3.05 -0.05 -3.07 1.34 0.77
24 8.33 0.07 -1.56 0.23 3.13 -3.05 2.89 2.92 -1.09
25 15.16 0.22 -1.84 0.12 3.12 -0.41 -2.66 1.25 0.99
26 14.27 0.17 1.13 0.17 -3.10 -0.19 -3.09 1.56 0.77
27 13.09 -2.75 -1.94 0.37 -2.79 3.05 3.11 -1.39 2.99
28 1.74 -2.86 1.15 -0.17 3.04 -3.08 -3.03 -2.86 1.30
29 11.02 3.02 -2.19 -3.05 -3.09 3.07 -2.94 1.48 1.00
30 19.18 -2.82 -1.83 3.07 3.13 0.24 2.89 -2.92 -1.03
31 5.10 0.02 -1.87 0.13 2.92 0.08 2.96 -3.01 -1.06
32 8.97 2.92 1.24 -0.02 3.00 -3.12 2.88 -1.14 3.14
33 5.86 -0.47 1.01 0.15 3.07 2.94 -3.13 -1.24 -3.09
34 13.07 3.13 -2.05 0.28 2.99 0.10 3.05 -1.25 3.12
35 11.94 -2.68 1.01 0.05 -2.99 -0.38 -3.06 2.78 1.14
36 22.94 -0.24 1.65 2.99 2.94 -3.11 -3.10 2.88 0.81
37 13.34 -0.34 -2.20 2.95 3.05 3.10 -2.89 1.14 1.10
38 19.60 -2.82 1.46 -2.79 3.03 -2.97 -3.09 -1.62 3.01
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Figure B.13: Figure 5.22, enlarged



Appendix C

Supplementary Materials: Example

of Code Tutorial

The following pages contain the static PDF of the jupyter notebook tutorial included

with this project’s code. This tutorial walks through the application of the analysis

method on the example of alanine dipeptide. The interactive notebook is available

at:

https://github.com/ucecvan/Twister.



In [1]:

This notebook is a walkthrough of the Twister module, which utilizes Density Peaks

Advanced Clustering to study the conformational free energy surfaces of organic molecules.

Twister takes as input a COLVAR file generated by the Plumed software package. This

COLVAR file should contain within a record of the MD trajectory through the values of the

torsions which describe the conformational space, as well as a record of the final bias in

each torsion at each of these points in conformational space.

The conformational space we are studying here is the Ramanchandran plot of alanine

dipeptide, or the conformational free energy surface of alanine dipeptide in terms of its phi

and psi angles. The COLVAR file in this directory is the product of 1 microsecond concurrent

WTmetaD simulation of alanine dipeptide in vacuo, where we are biasing both phi and psi

independently. The COLVAR file records in it's first column the time at which the simulation

trajectory was sampled, the second and third columns contain the values of phi and psi at

the indicated simulation time. The fourth and fifth columns contain the amount of bias on phi

and psi at the values in columns 2 and 3.

The COLVAR file should look something like this:

Twister can interpret COLVAR files with different numbers of torsions, and not all torsions

have to biased during metadynamics. All COLVAR files must be ordered as above, with

time, then torsion, and then bias columns. Twister interprets the COLVAR file using a biid

variable. biid is a list with elements representing the torsions in the molecule. Biased

torsions are indicated with a 1 and unbiased torsions with 0. The biid for the COLVAR file

above thus looks like:

In [2]:

We instantiate our Twister object for Alanine Dipeptide with the biid variable:

In [3]:

from Twister import Twister
import matplotlib.pyplot as plt

#! FIELDS time phi psi metad1.bias metad2.bias
#! SET min_phi -pi
#! SET max_phi pi
#! SET min_psi -pi
#! SET max_psi pi
 0.000000 -2.636189 2.965787 405.437016 401.372906
 0.200000 -2.826828 2.609132 405.375596 400.509111
 0.400000 -2.555259 3.072395 405.141060 400.972452
 0.600000 -2.886444 2.791932 405.068455 401.359558
 0.800000 -2.376418 2.984626 404.171513 401.329474
 1.000000 -2.491054 2.714065 404.815654 401.086567
 1.200000 -2.841954 2.599198 405.309145 400.442419
 1.400000 -2.873339 3.097467 405.146177 400.835999

biid = [1,1]

AD = Twister(biid)
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We read in the COLVAR file. The second argument specifies how many lines to skip at the

start of the file.

In [4]:

The ColvarLoader method automatically takes the last 2/3 of the COLVAR file, ignoring the

start of the trajectory, where metadynamic bias is deposited at a high rate. In this

demonstration notebook, we will be running our clustering on a further subset of just 5000

lines of the COLVAR file, so that the code can be demonstrated without excessive use of

computational resources. The Downsample method returns a random, non-repeated sample

of the current COLVAR attribute, which can be set using the ColvarSetter method. If it is

desirable to use a larger dataset, change the argument in Downsample below.

In [5]:

Once the desired COLVAR variable is loaded in, it is time to run the main Clustering method.

This method will run an initial DPA clustering on the biased distribution of datapoints in the

conformation space defined by the torsions in COLVAR. The resulting densities will then be

reweighed to account for the effect of the biases. DPA clustering will then be rerun on the

reweighed densities. The cluster centers will correspond to density peaks, which we treat as

maxima in the probability distribution. A Boltzmann inversion on all of the densities yields

the free energies associated with each configuration, and the density peaks correspond to

the conformational free energy minima. Running this method may take a few minutes,

depending on your machine. The processor and memory demand increases with the square

of the dataset size, so proceed with caution when increasing dataset size.

In [6]:

The results of the Clustering attribute are stored in several attirbutes. The DPA object itself

is stored in the DPAobj attribute. A summary of the properties of the cluster centers (free

energy minima) are presented in the RefClusters attribute. The free energies generated are

stored in energies, and the truncated free energies is stored in energies2 (see Note below).

Similarly, the truncated Colvar, coordinates, and biases are stored in Colvar2, coords2 and

bias2.

Note: As part of a heuristic to assist DPA in avoiding unneccesary noise, any data points

which present an energy over 100kJ/mol are removed from the dataset before a final

reclustering. This eliminates noise generated by data points in irelevant high-energy regions.

equivalent data points in the Colvar, coords, and biases attributes are also removed, so a

coherent truncated dataset is stored. In low dimensional cases, such alanine dipeptide,

here, it is highly unlikely that any points will have such low density/high energy, so the

energy cut-off datasets are the same as the original ones.

The RefClusters attribute contains the results for each of the cluster centers:

AD.ColvarLoader('COLVAR2',5)

Colvar5k = AD.DownSample(5000)
AD.ColvarSetter(Colvar5k)

AD.Clustering()
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In [7]:

The format of RefClusters is a dictionary containing an entry for each cluster center. The

keys are indexed from 0. Each entry follows the same format: First, the coordinates of center

are presented, then the biases. These are followed by the population of the cluster (the

number of other points assigned to the cluster by DPA). this is followed by the free energy of

the cluster in kJ/mol, and lastly the time the configuration was sampled by the simulation.

In [8]:

For alanine dipeptide, we can plot a per point FES using the coords2 and energies2

attributes

Out[7]: {0: [-1.363335,
  0.845914,
  411.329163,
  394.508638,
  1691,
  0.6597042006785401,
  82253.0],
 1: [1.208069,
  -0.83565,
  399.215922,
  399.895675,
  1372,
  8.162208056911219,
  39216.6],
 2: [-2.73749, 2.923128, 405.558802, 401.436067, 1922, 0.0, 5167
8.2]}

Out[8]: [-1.363335,
 0.845914,
 411.329163,
 394.508638,
 1691,
 0.6597042006785401,
 82253.0]

AD.RefClusters

AD.RefClusters[0]
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In [9]:

We can annotate the above plot with information from RefClusters, for instance labelling the

positions of the free energy minima with the free energy, rounded to 1 decimal place:

Out[9]: <matplotlib.colorbar.Colorbar at 0x7f79b4801550>

plt.figure(num = 1,figsize = (10,8), dpi =75)
plt.scatter(AD.coords2[:,0],AD.coords2[:,1], c = AD.energies2, cmap =
plt.colorbar()

Tutorial - Jupyter Notebook http://localhost:8888/notebooks/Tutorial.ipynb

4 of 9 27/03/2025, 11:27



In [10]:

In order to determine that 5000 data points (or however many were used) is sufficient to

capture the structure of the free energy surface, we repeat the clustering process on a

smaller number of data points, and see if the cluster centers are in the same positions, and

have the same relative free energies. We call this process Sampling Consistency Analysis

and it is automated by the SCAnalysis method. It takes as input a list of dataset sizes to be

tested. We will start at 500 data points, and add 500 at each iteration until we arrive at 4500.

Be aware that this process repeats the clustering process from scratch for each dataset

size, and can thus be quite time-consuming.

In [11]:

The results of the analysis are stored in the FAdata attribute.

plt.figure(num = 1,figsize = (10,8), dpi =75)
plt.scatter(AD.coords2[:,0],AD.coords2[:,1], c = AD.energies2, cmap =
plt.colorbar()

for i in AD.RefClusters:
plt.annotate(round(AD.RefClusters[i][5],1),(AD.RefClusters[i][0],

samplerange = range(500,5000,500)

AD.SCAnalysis(samplerange)
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In [12]:

All the results are lists where each member corresponds to one of datasets specified in

samplerange.

dlist contains the mean separation of equivalent clusters between the smaller dataset and

the complete dataset

elist contains the mean energy difference between between equivalent clusters in the

smaller dataset and complete datasets

nlist contains the dataset sizes, essentially a duplicate of samplerange

clist contains the number of clusters observed during each run on a smaller dataset

cdlist contains the equivalent to RefClusters for each clustering run on the smaller dataset

First, a check on the number of clusters identified per dataset size. For alanine dipeptide,

this should be 3 clusters. Due to the very small dataset sizes at the lower end of our sample

range, we may observe anomalies. As long as the second half of the plot remains constant,

this is a good sign.

In [13]:

Next we observe how the mean separation and energy differences evolve as we get closer

Out[13]: [<matplotlib.lines.Line2D at 0x7f79b488beb0>]

dlist = AD.FAdata[0]
elist = AD.FAdata[1]
nlist = AD.FAdata[2]
clist = AD.FAdata[3]
cdlist = AD.FAdata[4]

plt.plot(nlist,clist)
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to the final datset size. In the case of alanine dipeptide, the 5000-point FES we created

above is already very close to the theoretical optimum, so we expect, for the datasets closer

to 5000, to see positional differences of less than 0.25 rad, and energy differences of less

than 0.5 kJ/mol. Anomalies in the number of clusters identified in the plot above will be

reflected in the plots below.

In [14]:

Out[14]: [<matplotlib.lines.Line2D at 0x7f79b5881190>]

plt.plot(nlist,dlist)
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In [15]:

This notebook worked through the trivial two-dimensional case of alanine dipeptide, using a

small number of data points to illustrate the working principles of Twister in a cheap and

visually accessible way. It should be noted that things get more difficult when considering

cases where the conformational space is higher dimensional (a molecule with more

torsions). Firstly, as the dimensionality grows, so does the number of data points required to

map out the free energy surface. Secondly, when the dimensionality is higher than 2, a

complete visualization of the free energy surface in terms of every torsion becomes

impossible. In those cases, the results of the Sampling Consistency Analysis become even

more important when evaluating the quality of the results.

In this case study, all of the default parameters were used. However Twister can accept

custom distance metric in the attribute metric, for determining the separation between two

points in the conformation space, should the default Euclidean metric not be appropriate. All

energy calculations assume a simulation temperature of 300 K, unless a temperature is

specified in the T attribute. For noise reduction, densities calculated by DPA are smoothed

over a radius of 0.1 rad by default. This can be modified by changing attribute smoothrad.

Note that increasing this radius comes with increased computational cost and reduced

spatial resolution.

In [ ]:

Out[15]: [<matplotlib.lines.Line2D at 0x7f79b4f533a0>]

plt.plot(nlist,elist)
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