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A B S T R A C T

In surgical instrument segmentation, the increasing variety of instruments over time poses a significant
challenge for existing neural networks, as they are unable to effectively learn such incremental tasks and
suffer from catastrophic forgetting. When learning new data, the model experiences a sharp performance drop
on previously learned data. Although several continual learning methods have been proposed for incremental
understanding tasks in surgical scenarios, the issue of data imbalance often leads to a strong bias in the
segmentation head, resulting in poor performance. Data imbalance can occur in two forms: (i) class imbalance
between new and old data, and (ii) class imbalance within the same time point of data. Such imbalances
often cause the dominant classes to take over the training process of continual semantic segmentation (CSS).
To address this issue, we propose SurgCSS, a novel plug-and-play CSS framework for surgical instrument
segmentation under data imbalance. Specifically, we generate realistic surgical backgrounds through inpainting
and blend instrument foregrounds with the generated backgrounds in a class-aware manner to balance
the data distribution in various scenarios. We further propose the Class Desensitization Loss by employing
contrastive learning to correct edge biases caused by data imbalance. Moreover, we dynamically fuse the
weight parameters of the old and new models to achieve a better trade-off between the biased and unbiased
model weights. To investigate the data imbalance problem in surgical scenarios, we construct a new benchmark
for surgical instrument CSS by integrating four public datasets: EndoVis 2017, EndoVis 2018, CholecSeg8k,
and SAR-RAPR50. Extensive experiments demonstrate the effectiveness of the proposed framework, achieving
significant performance improvement against existing baselines. Our method demonstrates excellent potential
for clinical applications. The code is publicly available at github.com/Zzsf11/SurgCSS.
1. Introduction

Image segmentation of surgical instruments is crucial for advancing
fully autonomous robotic surgery, as it provides critical information to
understand dynamic and complex surgical scenes (Chen et al., 2024;
Nwoye et al., 2023; Maier-Hein et al., 2022; Cheng et al., 2025; Yu
et al., 2024b; Ranem et al., 2024). Recently, deep learning-based meth-
ods have shown promising results in solving increasingly challenging
tasks (Garcia-Peraza-Herrera et al., 2021; Colleoni et al., 2022; Lou
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et al., 2023; Liu et al., 2021; Alabi et al., 2025; Yu et al., 2024a).
However, collecting and aggregating a large-scale dataset for surgical
scenarios is difficult in practice due to high storage costs, licensing, and
privacy concerns, and the frequent updating of instruments (Zia et al.,
2023; Razzak et al., 2018; Wang et al., 2023b; Bai et al., 2023). Most
approaches suffer from catastrophic forgetting, where the performance
has a significant degradation when the past data are not available.
To address this challenge, Continual Learning (CL) methods aim to
enable models to learn new classes or tasks by training on new data
https://doi.org/10.1016/j.media.2025.103728
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while alleviating the catastrophic forgetting problem (Chaudhry et al.,
2018; Zhao et al., 2024; Li and Hoiem, 2017; Douillard et al., 2020; Li
t al., 2025; Ayromlou et al., 2024; Wang et al., 2023c). Nevertheless,
revious methods suffer significant performance degradation in robotic

surgical scenarios due to biased incremental learning updates, as illus-
trated in Fig. 1, which shows a pronounced bias in the segmentation
head weights for new and old classes.

Why is continual segmentation more challenging in robotic surgical
cenarios? We believe this stems from the combination of three factors:
i) the data distribution for instrument classes is highly imbalanced
ue to variations in surgical workflow, with different phase durations
nd erratic occurrences; (ii) the imbalance is exacerbated as the new
lass has a high probability of occurrence and is highly concentrated,
hereas the old class has a low probability of occurrence and is more
ispersed; and (iii) the visual similarity of instruments, with minimal
ifferences near class boundaries, further complicates segmentation.
ven worse, the unavailability of exemplar samples due to licensing and
rivacy constraints makes the task even more challenging. Additionally,
ttributes specific to surgical scenes lead to increased difficulty. Unlike
he relatively stable illumination in general settings, surgical illumi-
ation is highly directional and often positioned to highlight specific
reas. The anatomical complexity also leads to various illumination
egradation scenes. The diversity of surgical instruments and the sim-
lar visual characteristics also introduce further complexity. Besides,
n surgical scenes, camera viewpoints are often highly constrained,

leading to noise and reduced image quality, which further increases
the difficulty of applying segmentation models.

To address the class imbalance challenges, classical techniques have
been widely explored in machine learning to mitigate imbalanced
distributions. Recent studies (He et al., 2021) have analyzed the re-
ationship between class incremental learning and class imbalanced
earning, demonstrating that techniques from class imbalanced learning
re similar to class incremental learning methods. Wu et al. (2019), Liu
t al. (2022) and Zhao et al. (2020) have attributed the performance

degradation caused by sample imbalance to biases in the final fully
connected layer. These biases are mitigated by incorporating a bias
correction layer trained using a balanced validation set (Wu et al.,
2019) or normalizing the output weights (Zhao et al., 2020). While
these methods provide some improvement, they fall short in the con-
text of continual learning for surgical instrument segmentation, where
data imbalance is further exacerbated by privacy restrictions and the
inherent complexity of surgical workflows. Current continual semantic
segmentation approaches still lack effective strategies to improve per-
formance under imbalanced distribution scenarios, which are typical in
surgical environments.

In medical image analysis, data scarcity is often addressed by gen-
erating synthetic data, enabling knowledge sharing without exposing
patient-level information (Colleoni and Stoyanov, 2021; Colleoni et al.,
2022). Similarly, continual learning utilizes generative models to replay
synthesized data (Shin et al., 2017; Wu et al., 2018). However, updating
enerative models incrementally introduces challenges, including high

resource consumption and reduced system stability. In this case, Xu
et al. (2024) blended and augmented the foreground to the synthetic
background to avoid generating model updates. These methods provide
the flexibility to create a class-balanced dataset using any preferred
instrument, while also automatically generating the instrument anno-
ations. However, they simply crop patches without instruments from
he images and use these patches to train a generative model. In
his case, (i) the generated backgrounds are often distorted and may
ontain unforeseen artifacts and inconsistencies, (ii) the model can only
earn foreground information based on segmentation annotations from
uch data, but due to the distorted backgrounds, it is challenging for
he model to extract effective discriminative information between the
oreground and the background, and (iii) this approach limits the model
o generated background patches, neglecting the effective utilization of
2 
the scarce real samples available. Therefore, although this method is
straightforward, there is still significant room for improvement.

In this work, we propose SurgCSS, a novel plug-and-play approach
pecifically designed to mitigate the degradation caused by class imbal-
nce in the continual segmentation of robotic surgical scenes. We iden-
ify a significant bias in the segmentation head, analyze its root causes,
nd propose a two-stage pipeline to resolve this issue. Specifically,
e decouple the instrument foreground from the surgical background
nd construct a small class-balanced set using a class-aware blending
echnique, which is crucial in overcoming data scarcity in surgical

scenarios. Additionally, we design the Class Desensitization Loss (CDL)
function to reduce sensitivity to class boundary uncertainty, thereby
minimizing the impact of visual similarity between classes. After train-
ing the model on the small set, we apply a dynamic weight fusion
(DWF) strategy to merge the representation capabilities of the trained
and untrained models effectively. Our approach effectively addresses
the class imbalance between new and old data, as well as the class
imbalance within the same time point. We summarize our contributions
as follows:

• We propose a novel plug-and-play framework to address perfor-
mance degradation in class incremental surgical instrument seg-
mentation, specifically targeting imbalanced distributions under
data-scarce surgical scenarios.

• We introduce a class-aware blending with an inpainting mecha-
nism to decouple the instrument foreground from the high-fidelity
surgical background, effectively tackling the data scarcity issue.
The CDL is further proposed to minimize confusion between visu-
ally similar classes and correct segmentation boundary deviations.

• We develop a DWF strategy that combines the strengths of both
incremental and rebalance models, ensuring detailed class rep-
resentations are preserved while boosting overall segmentation
accuracy.

• By integrating four existing public datasets, we establish a new
large-scale benchmark for class incremental segmentation of sur-
gical instrument segmentation. Through extensive comparisons
and ablation studies on this benchmark, we demonstrate the
potential of our method for clinical applications.

2. Related work

2.1. Class-incremental continual learning

Class-Incremental Continual Learning aims for a model to learn
distinguishing features for new classes while preventing catastrophic
forgetting of previously learned classes. This requires balancing the
need for learning flexibility with maintaining memory stability (Wang
et al., 2024). In Continual Semantic Segmentation, a specific challenge
is background shift, which happens when pixels labeled as background
correspond to classes the model has already seen or will see later.
arly methods like MiB (Cermelli et al., 2020) addressed this by cal-
brating the loss for background pixels using prior model predictions.
LOP (Douillard et al., 2021) used a multi-scale pooling approach for

distillation. SSUL (Cha et al., 2021) used auxiliary data to improve
distillation and prevent forgetting. Other approaches focused on pre-
venting feature changes; RCIL (Zhang et al., 2022) and EWF (Xiao
et al., 2023) worked to reduce feature plasticity problems by combining
parameters from the new and old models. CIT (Ge et al., 2024) converts
the output of existing semantic segmentation models into a form that
does not depend on the specific class. IPSeg (Yu et al., 2025) uses
image posterior probabilities to align the optimization process across
different stages and reduce negative effects from optimizing each stage
separately. MoDA (Yang et al., 2024) helps the SAM encoder create
features that are clearly separated for different task types, providing
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Fig. 1. Experimental results on a surgical dataset confirm the presence of bias in the final layer, as observed through weight visualization of the segmentation head in task ‘‘13-1’’.
Heads 1–13 correspond to the old class, while heads 14–18 represent incremental classes, one by one (Best viewed in color). We visualize the bias within each class-specific output
channel of the final convolutional layer using two methods: a summation average of activations (left) and a t-SNE embedding of the feature space (right).
accurate task-specific information for continual learning. EIR (Yin et al.,
2025) reduces background changes in new images by combining stored
examples with the new images. CoMBO (Fang et al., 2025) adds an
extra part to handle learning new classes while preserving the original
information used for distillation. These recent methods represent the
current advances in general continual segmentation scenarios.

Continual segmentation is also being explored in medical image
analysis. Xu et al. (2024) uses synthetic data with class-aware tem-
perature normalization to enhance model rigidity while preserving
privacy in robotic surgery. Zhang et al. (2023) propose replacing
the conventional output layer with a set of lightweight, class-specific
heads. Ji et al. (2023) demonstrates that continually training, followed
by freezing the encoder, combined with incrementally added decoders,
can effectively extract sufficiently representative image features for
new classes, allowing them to be validly segmented. Elskhawy et al.
(2020) introduces an approach that disentangles the feature space
into task-specific and task-invariant features. Zhu et al. (2024) em-
ploys lightweight low-rank adaptation (LoRA) to efficiently extend pre-
trained segmentation models for segmenting new organs. Sadegheih
et al. (2025) introduces a mixture-of-experts mechanism and dual
knowledge distillation for brain lesion segmentation. Anand et al.
(2024) proposes the construction of a common label space to facili-
tate incremental learning across different datasets. Guo et al. (2025)
introduces segmentation models that can handle a comprehensive set
of fine-grained whole-body anatomies from diverse, partially labeled
datasets in CT segmentation.

However, previous continual segmentation methods that use dis-
tillation may struggle with visual similarities between different in-
struments or anatomical structures, particularly near class boundaries.
Methods focused on parameter fusion or regularization may not in-
herently address the severe class imbalance. Additionally, while data
limitations represent a significant challenge in medical continual learn-
ing tasks, previous research in medical image analysis has primarily
focused on modifying model architectures to improve performance,
often neglecting the critical issue of data scarcity and imbalance. In
this paper, we further explore the specific challenges and solutions
related to surgical instrument semantic segmentation, a domain marked
by imbalanced data, privacy concerns, and the complexity of surgical
workflows.

2.2. Learning with class imbalance

Class imbalance in deep learning is a significant challenge arising
from the disproportionate representation of classes in training datasets,
which often leads to biased models favoring the majority class. To
address this issue, various techniques have been proposed, broadly
categorized into data-level, algorithm-level, and hybrid methods. Data-
level methods (Hensman and Masko, 2015; Lee et al., 2016) focus
3 
on modifying the dataset to reduce class imbalance by adjusting the
training data distribution, either through duplicating samples from the
minority class or removing samples from the majority class. In con-
trast, algorithm-level approaches (Lin, 2017; Wang et al., 2016) involve
modifying the learning process or the loss function to account for class
imbalance. Recently, researchers have increasingly focused on address-
ing class imbalance in continual learning. For instance, He et al. (2021)
examined the relationship between class imbalance and performance
degradation in continual learning. Wu et al. (2019) proposed a bias
correction method that targets the fully connected layer, addressing
the bias caused by class imbalance and effectively narrowing the per-
formance gap between old and new classes. Furthermore, Liu et al.
(2022) tackled class imbalance in long-tailed datasets by introducing
a learnable weight-scaling layer to mitigate bias. This approach is
particularly relevant to continual learning scenarios and aligns closely
with our task of semantic segmentation for surgical instruments.

2.3. Image synthesis

Surgical image scarcity, driven by privacy concerns and workflow
complexities, challenges deep learning application development. To
address this, synthetic datasets blend open-source surgical instrument
images with real or simulated backgrounds, enabling targeted data
generation (Wang et al., 2022; Garcia-Peraza-Herrera et al., 2021).
However, these methods face limitations such as manual data collection
costs and limited source availability. Generative models, particularly
GANs, have improved data augmentation by synthesizing surgical im-
ages (Zaffino et al., 2021; Shin et al., 2018; Hamghalam et al., 2020;
Lee et al., 2019; Rivoir et al., 2021), and unpaired image-to-image
translation has enhanced image quality (Pfeiffer et al., 2019). Recently,
diffusion models (DMs) have demonstrated superior performance, em-
ploying semantic maps for high-quality surgical image synthesis (Zhou
et al., 2024) and latent consistency-distilled approaches for unpaired
translation (Venkatesh et al., 2024). Advanced methods now gen-
erate high-resolution surgical videos from text prompts alone (Cho
et al., 2024). Compare to other data augmentation methods like copy-
paste (Ghiasi et al., 2021) and cutpaste (Li et al., 2021), image synthesis
methods offer the capability to generate entirely new visual contexts
and object appearances, create variations that extend beyond basic
geometric or color transformations, and potentially produce more re-
alistic and diverse data that better reflects the complexity of surgical
environments. Our inpainting-based approach further addresses data
limitations by generating realistic, class-balanced datasets.

3. Methodology

The proposed two-stage method addresses a continual learning
scenario relevant to real-world clinical applications, where models must
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Fig. 2. Framework of our two-stage class-incremental continual segmentation method. Following the incremental training stage, similar to previous approaches, we introduce (a)
an additional rebalance stage using a synthetic balanced dataset. During this stage, (b) a Class Desensitization Loss is applied to reduce class bias introduced in the incremental
stage. A Dynamic Weight Fusion, shown in the purple dotted box, is performed between the biased model and the unbiased model to integrate knowledge derived from more
diverse real-world data.
adapt incrementally to new classes after deployment. The training pro-
cess is divided into two stages, as illustrated in Fig. 2. In the incremental
stage, similar to existing methods, the process begins with a model that
has already been trained on prior classes at step 𝑡 − 1. The goal is to
incrementally update the model to recognize a new class at step 𝑡 while
preserving its performance on previously learned classes. We introduce
an additional rebalance stage to address the class imbalance problem
caused during incremental training. In this stage, the model from the in-
cremental stage undergoes a post-training process specifically designed
to further enhance performance. Unlike conventional approaches, the
rebalance stage balances weight updates while keeping the backbone
parameters frozen. This is achieved using a synthetic dataset for fine-
tuning, ensuring that core feature extraction remains unaltered. By
introducing the rebalance stage, our method effectively addresses chal-
lenges in class-incremental learning, significantly improving robustness
and stability in robotic surgical settings.

3.1. Problem formulation: Incremental stage

Let us define the dataset at each step as 𝑡 = {𝑥𝑖, 𝑦𝑖}, where 𝑥𝑖
represents the data and 𝑦𝑖 is the associated label. The label space
for the training task 𝑇 is given as 𝐶𝑡 ∪ {𝑐𝑏}, where 𝐶𝑡 contains all
classes involved in the task, and 𝑐𝑏 corresponds to the background.
Typically, classification loss is handled using cross-entropy loss. Due
to the disjoint nature of class sets across tasks, i.e., 𝐶𝑖 ∩ 𝐶𝑗 = ∅, the
objectives differ significantly between tasks, often causing catastrophic
forgetting. To mitigate this, knowledge distillation is a widely adopted
method. In continual learning, distillation is generally categorized into
two types: feature-based distillation and logits-based distillation, which
can be expressed as:

𝐹 𝐷 = 1
|𝑡|

∑

(𝑥𝑖 ,𝑦𝑖)∼𝑡

‖

‖

𝛹𝑜𝑙 𝑑 (𝑥𝑖) − 𝛹𝑛𝑒𝑤(𝑥𝑖)‖‖
2 (1)

𝐿𝐷 = 1
|𝑡|

∑

(𝑥𝑖 ,𝑦𝑖)∼𝑡

𝐾 𝐿 (

𝛷𝑜𝑙 𝑑 (𝛹𝑜𝑙 𝑑 (𝑥𝑖)), 𝛷𝑛𝑒𝑤(𝛹𝑛𝑒𝑤(𝑥𝑖))
)

(2)

𝛹𝑜𝑙 𝑑/𝛷𝑜𝑙 𝑑 and 𝛹𝑛𝑒𝑤/𝛷𝑛𝑒𝑤 denote the feature extractor/classifier from
the previous old model and incremental new model, respectively, and
𝐷 is the corresponding dataset.

The softmax cross-entropy loss is used as the classification loss,
which is computed as follows:

𝐶 𝐸 = 1
| |

∑

−𝑦𝑖 log
[

𝛷𝑛𝑒𝑤(𝑥𝑖)
]

(3)

𝑡 (𝑥𝑖 ,𝑦𝑖)∼𝑡

4 
𝛷𝑛𝑒𝑤(𝑥𝑖) is the output probability of new classifier.
This approach introduces a significant bias toward new classes due

to the imbalance between the abundant samples of new classes and
the limited exemplars from old classes. During training, the current
model starts with the weights of the previous model, with an additional
output channel added to handle segmentation for the new class. These
class-specific parameters are highly prone to overfitting on the current
class. By examining the weights of the segmentation head for both new
and old classes, as illustrated in Fig. 1, it is evident that the bias in
class predictions results from uneven weight updates. Our work aims
to address and correct the bias in the segmentation head.

3.2. Proposed method: Rebalance stage

Building on our finding that the segmentation head is heavily
biased, we propose a simple and effective bias correction method. Our
approach introduces additional training stages, as illustrated in Fig. 2.
The basic idea is to alleviate the bias by learning a balanced distribution
of both old and new classes (shown in Fig. 2). First, we train the
feature extractor and segmentation head using the baseline method.
In the rebalance stage, we freeze the feature extractor and fine-tune
the segmentation head on a synthetic, class-balanced set with a class-
desensitizing loss, using a few epochs to address the imbalance between
new and old classes through balanced updates. After fine-tuning, we
apply a DWF between the original and fine-tuned weights to integrate
prior knowledge, enhancing the model’s generalization ability. This
section details the generation of the synthetic class-balanced set, the
class-desensitizing loss, and the DWF method.

3.2.1. Inpaint and blending
A balanced dataset is essential for rebalancing and removing bias.

However, in incremental surgical segmentation, acquiring such a
dataset is challenging. We pioneer the integration of inpainting and
blending techniques into the continual learning setting. Specifically,
we utilize an inpainting model to generate background images. The
foreground instrument is cropped separately and then overlaid onto
the generated background images to address data limitations. We
carefully control the sample class distribution to avoid class imbalance,
effectively addressing issues of data scarcity and reducing the need for
costly, time-intensive labeling.

In surgical settings, backgrounds are highly valuable, but due to
privacy concerns and operational constraints, obtaining and storing a
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Fig. 3. Construction of a rebalance dataset through inpainting: During training, the model performs a reconstruction task on background-masked regions. At inference time, it is
used to remove existing foreground instruments to isolate the background.
large number of background images is not feasible. Available samples
are often coupled with specific foreground categories, resulting in
an unbalanced dataset. Although recent efforts have used generative
models for data synthesis, these models often struggle with high-quality
generation due to the detailed nature of surgical backgrounds and
the similarity of many surgical instruments in the foreground (Xu
et al., 2024). By using inpainting, we can reuse existing backgrounds
and flexibly create a balanced dataset. Compared to direct generative
models, inpainting provides better detail preservation as it retains more
of the original information.

Given the remarkable performance demonstrated by diffusion mod-
els recently, we chose to use latent diffusion models (LDM) to generate
the background images (Rombach et al., 2022). However, robotic surgi-
cal images differ significantly from natural images, so directly applying
existing models is not ideal due to domain gaps. To address this,
we fine-tune the pre-trained LDM on our surgical dataset. Specifi-
cally, we first fine-tune the pre-trained LDM autoencoder, and then
train the U-Net component. During training, we mask out the surgical
background regions in the images, allowing the model to learn the
background inpainting process. Subsequently, during inference, the
inpainting model is used to remove the foreground surgical instruments
from the given data samples, generating clean background images. The
inpainting data samples are illustrated in Fig. 3. The dataset is denoted
as 𝑟 = {,}, where  represents the background obtained through
inpainting, and  = {𝑓 𝑖} denotes the foreground instrument, with each
𝑓 𝑖 corresponding to different class 𝑖.

In the surgical setting, various environmental disturbances can lead
to performance deviations between training and test datasets. Insuffi-
cient model robustness under these conditions may result in predic-
tion errors, potentially compromising procedural safety (Garcia-Peraza-
Herrera et al., 2021; Wang et al., 2023a). To address this, we enhance
both backgrounds and foregrounds through augmentations such as rota-
tion, scaling, and flipping. In this procedure, we allow up to a specified
number of surgical instruments to appear simultaneously in a single
background image. We then blend the augmented foreground and back-
ground images to generate composite images along with corresponding
multi-class masks.

3.2.2. Class desensitization loss
After obtaining clean background images, our next challenge is to

use these backgrounds for model training in a way that allows for
balanced updates, reducing bias, and improving performance. Addition-
ally, it is also a challenge to avoid introducing a gap between synthetic
and real data. As demonstrated in Fig. 1, the average summation and t-
SNE have shown that the segmentation heads have a strong bias toward
certain classes.
5 
Motivated by contrastive learning (Michieli and Zanuttigh, 2021;
Wu et al., 2023), we design the Class Desensitization Loss (CDL) as
our objective function, employing contrastive learning with class-aware
blending to mitigate the bias introduced in incremental stages. Con-
trastive learning supports representation learning for both old and new
classes by enhancing intra-class compactness and inter-class separation.
By enabling the model to learn more robust and discriminative feature
representations, CDL also addresses biases that might arise from the
synthetic-real domain shift by acting as a corrective mechanism.

We use our existing backgrounds and instrument foregrounds to
perform class-aware blending. First, we randomly select an instrument
foreground and blend it into the background according to the blending
method described above. Then, we use the existing model to predict the
label of this foreground. As previously discussed, biased models tend to
misclassify certain classes as other similar classes, which may lead to
errors in category prediction when applied to the initial blended image.
Based on the predicted label, we select a foreground of the predicted
class and blend it again. The resulting samples are used for training and
loss computation, as shown in Fig. 2(b). The overall algorithm of CDL
is shown in Algorithm 1.

Algorithm 1 Class Desensitization Loss
Input: Model  ; rebalanced dataset rebalance = {,}; blending number 𝑁
Output: Class Desensitization Loss CD
1: Randomly select a foreground object 𝑓 𝑖

0 and a background 𝑏0 from dataset


2: Blend 𝑓 𝑖
0 with 𝑏0 to create a blended image 𝐼0 and assign it label 𝑌0

3: Use model  to predict the label 𝑌0 for the foreground in 𝐼0
4: if 𝑌0 is the background class then
5: Set the new blending class 𝐶 ← 𝑖
6: else if 𝑌0 ≠ 𝑌0 then
7: Set the new blending class 𝐶 ← 𝑐, where 𝑐 is the incorrectly predicted

class
8: end if
9: for 𝑗 = 1 to 𝑁 do

10: Randomly select a foreground object 𝑓𝐶
𝑗

11: Blend 𝑓𝐶
𝑗 into 𝐼𝑗−1 to create a blended image 𝐼𝑗 with label 𝑌𝑗

12: end for
13: Compute the loss CD( (I𝑗 ), 𝑌𝑗 )

The samples contain different classes that can confuse the model,
which can be addressed by the CDL using contrastive learning, defined
as:

 = 1 (

𝑦 ⋅ ‖𝐱 − 𝐱 ‖

2 + (1 − 𝑦) ⋅max(0, 𝑚 − ‖𝐱 − 𝐱 ‖

2)
)

(4)
𝐶 𝐷 2 1 2 2 1 2 2
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Fig. 4. Illustration of the class distribution in the collected dataset, ordered from the most frequent to the least frequent class.
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𝐶 𝐸 = −
𝐶
∑

𝑐=1
𝑌 log(𝑌 ) (5)

𝐵 𝐶 𝐸 = −[𝑌 log(𝑌 ) + (1 − 𝑌 ) log(1 − 𝑌 )] (6)

where 𝐱1 and 𝐱2 represent the features of the confused classes, com-
puted via global averaging. The variable 𝑦 serves as the label to indicate
the positive or negative class, 𝑌 and 𝑌 are the predicted probabilities
and ground truth, and 𝑚 represents the margin for the contrastive
difference. This loss operates alongside the conventional pixel-wise
cross-entropy loss, 𝐿𝐶 𝐸 , and the binary cross-entropy loss, 𝐿𝐵 𝐶 𝐸 , offer-
ing a complementary approach to improve segmentation performance.
The combination is intentional: while pixel-wise cross-entropy loss
focuses on predicting the correct label for each sample, CDL targets
effective data representation by considering the relationships between
different samples.

Thus, the training objective is to optimize the following combined
oss:

 = 𝛼𝐶 𝐷 + 𝛽(𝐶 𝐸 + 𝐵 𝐶 𝐸 ) (7)

where 𝛼, 𝛽 represent the respective weights for each loss component.

3.2.3. Dynamic weight fusion
The primary concept of our Dynamic Weight Fusion (DWF) is to

enhance the model’s generalization capability while maintaining bal-
anced representations. Although the incremental model may exhibit a
significant bias toward certain classes, it often encodes more detailed
knowledge about these classes. This is because the training dataset
during the incremental stage is typically more diverse than the one used
in the rebalance stage. To effectively retain general knowledge while
preserving an unbiased representation, we propose the DWF strategy to
further improve performance. Specifically, after the rebalance stage, we
have two models: one trained during the incremental stage (𝜃ori) and
another after the rebalancing process (𝜃re). We introduce an additional
parameter 𝜆, which serves as a weight fusion factor, enabling us to
combine the parameters of these two models in a specified ratio. This
ratio acts as a balancing factor. The operation for dynamic weight
fusion can thus be expressed as:

𝜃fused = 𝜆 ⋅ 𝜃ori + (1 − 𝜆) ⋅ 𝜃re (8)

This formulation ensures that the model benefits from both the detailed
knowledge retained in 𝜃 and the balanced representation provided by
ori
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𝜃re, allowing for improved performance while mitigating biases. While
𝜆 serves as a control ratio for parameter magnitudes, we also introduce
a constraint on the selection of fusion parameters to mitigate the bias
present in 𝜃ori. To address this, we define 𝛼, a dynamic threshold
parameter, based on the most variable parameters after rebalancing.
These parameters are likely to represent general knowledge learned
from a large dataset, which is at risk of being lost during rebalancing.
The threshold 𝛼 is computed as follows:

𝛼 = min(top-𝑘(|𝜃ori − 𝜃re|)), (9)

where top-𝑘(|𝜃ori − 𝜃re|) identifies the 𝑘-largest differences between 𝜃ori
and 𝜃re, capturing the parameters most affected by rebalancing. The
overall strategy can be expressed as:

𝜃fused =

{

𝜃ori, if |𝜃ori − 𝜃re| < 𝛼 ,
(1 − 𝜆)𝜃ori + 𝜆𝜃re, if |𝜃ori − 𝜃re| ≥ 𝛼 , (10)

indicating that weight fusion is applied selectively to parameters likely
to be significantly influenced by class imbalance. This targeted fusion
nsures the preservation of general knowledge while addressing the
ssues introduced during the incremental training stage.

4. Experiments

4.1. Implementation

4.1.1. Datasets
We collected a new dataset to assess our method. The motivation

behind collecting the new dataset stems from the limitations identified
in previous datasets, which include a restricted number of instrument
classes and the challenge of class imbalance in real-world surgical
workflows. In surgical environments, some instruments are used more
frequently than others, leading to highly imbalanced data distributions.
Addressing this imbalance is crucial for evaluating the robustness of
Continual Learning (CL) models under realistic conditions, where the

odel must adapt to new classes without access to past data (a scenario
prone to catastrophic forgetting).

Our dataset is merged from four public datasets: EndoVis 2017
ataset (Allan et al., 2019), EndoVis 2018 Dataset (Allan et al., 2020),
holecSeg8k (Hong et al., 2020), and SAR-RAPR50 (Psychogyios et al.,

2023). The EndoVis 2017 and 2018 datasets primarily focus on the
segmentation of robotic instruments in minimally invasive surgeries,
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Fig. 5. Demonstration of visually similar samples across different classes in our dataset. We present several surgical instruments with similar appearances, including Bipolar Forceps,
Prograsp Forceps, Grasping Retractor, and Grasper.
Table 1
Performance comparison across different continual learning tasks (13-1, 13-5, 9-3, and 17-1, ‘‘x-y’’ denotes that x is the number of old classes and y is the number of
incremental classes introduced in each step). Results are reported for methods without continual learning (WO CL), including the old model at time point 𝑡 = 0 and naive
fine-tuning (FT), and those with continual learning (W CL). The metrics presented are for base, new, and all classes, with the offline training serving as an upper bound.

Method 13-1 (5 steps) 13-5 (1 step) 9-3 (3 steps) 17-1 (1 step)

Base New All Base New All Base New All Base New All

Old Model (t = 0) 61.29 0.00 45.16 61.29 0.00 45.16 60.62 0.00 31.90 56.93 0.00 53.93
FT 0.00 17.67 8.53 0.00 32.39 13.71 0.00 10.99 9.52 0.00 5.49 8.77

EWC (Kirkpatrick et al., 2017) 0.00 10.98 5.30 0.00 52.60 22.25 0.00 7.65 8.75 0.00 5.47 8.73
LwF (Li and Hoiem, 2017) 1.48 21.82 11.30 14.04 14.23 20.11 3.56 27.42 18.35 23.14 4.64 23.31
LwF-MC (Rebuffi et al., 2017) 0.32 17.48 9.05 10.07 13.49 14.35 5.63 19.31 16.02 10.62 15.18 15.98
ILT (Michieli and Zanuttigh, 2019) 0.92 21.70 11.23 16.10 23.03 23.16 10.77 20.04 19.01 35.51 7.13 35.77
MiB (Cermelli et al., 2020) 7.98 25.21 17.11 13.56 19.41 19.52 30.79 7.86 24.98 35.04 7.45 36.79
RCIL (Zhang et al., 2022) 50.08 4.86 40.64 26.22 48.53 42.66 0.38 22.95 22.64 52.32 8.41 50.59
CAT-SD (Xu et al., 2024) 44.70 6.29 37.32 49.50 11.24 41.45 4.95 5.55 9.67 55.31 9.00 52.58
MBS (Park et al., 2024) 30.85 7.64 24.40 46.93 40.54 45.15 35.92 18.16 34.12 46.43 49.41 46.59
NeST (Xie et al., 2024) 29.61 24.08 28.08 39.59 30.05 37.89 18.56 8.26 13.41 45.64 9.44 43.63

PLOP (Douillard et al., 2021) 12.09 19.69 18.49 44.14 23.38 41.47 4.56 18.37 14.90 39.11 8.32 41.06
PLOP+Ours 52.50 18.74 45.99 55.02 23.37 48.93 34.63 11.94 28.33 57.19 19.25 54.43
Improvement +40.41 −0.95 +27.50 +10.88 −0.01 +7.46 +30.07 −6.43 +13.43 +18.08 +10.93 +13.37

EWF (Xiao et al., 2023) 54.82 5.12 43.98 50.90 26.83 43.22 35.96 0.00 23.77 57.15 0.05 53.93
EWF+Ours 62.37 8.70 50.13 60.83 20.18 45.62 63.96 18.80 46.68 59.01 8.88 55.33
Improvement +7.55 +3.58 +6.15 +9.93 −6.65 +2.40 +28.00 +18.80 +22.91 +1.86 +8.83 +1.40

Offline 58.00 60.43 60.77 58.00 60.43 60.77 58.00 60.43 60.77 58.00 60.43 60.77
offering detailed pixel-wise annotations for da Vinci robotic tools,
including articulating parts such as shafts, jaws, and wrists, as well
as surgical devices like ultrasound probes and suturing instruments.
CholecSeg8k provides segmentation data for key instruments used in
laparoscopic cholecystectomy, including graspers and electrocautery
tools, alongside complex anatomical backgrounds. SAR-RARP50 con-
tains segmentation annotations for robotic instruments in the context
of radical prostatectomy surgeries. Our newly collected dataset ex-
pands the number of instrument classes compared to previous datasets,
as shown in Fig. 4. The integrated dataset contains 18 instrument
classes, with a highly imbalanced distribution. It includes 66 videos
with a total of 26,638 frames, of which 19,938 are in the training
set and 6705 are in the test set. The resolution ranges from 1920
to 800 pixels, originating from RGB endoscopic videos. Each frame
was annotated instance by instance, with separate annotated masks
provided for each object. Additionally, the dataset includes several
visually similar classes, resembling real robotic surgical scenes. Fig. 5
presents examples of categories with similar appearances.

4.1.2. Experiments setting
In our surgical instrument segmentation scenario, we assume that

the training data from the time point(t = 0) is no longer accessible
during the subsequent incremental learning stages. We define four
tasks: 13-1 (5 steps), 13-5 (1 step), 9-3 (3 steps), and 17-1 (1 step), all
set under the overlapped protocol. ‘‘x-y’’ denotes that 𝑥 is the number
of old classes and 𝑦 is the number of incremental classes introduced
in each step. At each step, the model has access to the new dataset,
but previous datasets are not available for further training. Similar to
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the overlapped protocol described earlier, the training set at each stage
may include images containing pixels belonging to classes that are yet
to be learned in future steps, with these pixels labeled as background.
This setting allows us to evaluate the effectiveness of the incremental
learning approach when handling new instrument classes while dealing
with the limitations imposed by inaccessible prior data.

4.1.3. Implementation details
We used the DeepLabv3+ architecture (Chen et al., 2018) with

the ResNet-101 backbone (He et al., 2016) for segmentation tasks.
We compared our proposed method against the following baselines
and state-of-the-art solutions: EWC (Kirkpatrick et al., 2017), LwF (Li
and Hoiem, 2017), LwF-MC (Rebuffi et al., 2017), ILT (Michieli and
Zanuttigh, 2019), MiB (Cermelli et al., 2020), RCIL (Zhang et al., 2022),
CAT-SD (Xu et al., 2024), MBS (Park et al., 2024), NeST (Xie et al.,
2024), PLOP (Douillard et al., 2021), and EWF (Xiao et al., 2023). Con-
sistent with prior approaches, in-place activated batch normalization
was set in the backbone. All input images were resized to 224 × 224
for uniformity. Using the SGD optimizer, we set the initial learn rate as
0.06 and 0.006 for the continual learning steps, and the batch size is
set to 12. For the incremental stage, we set the training to 20 epochs
per step. Taking the 13-1 (5 steps) setting as an example, PLOP requires
approximately 6 h for training, and other baseline methods also require
similar training time. The rebalance stage is set to 1 step with 3 epochs,
which takes around 0.5 h. The training of the rebalance stage requires
around 9 GB of VRAM. All experiments are conducted on two NVIDIA
RTX 3090 GPUs.
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Table 2
Performance comparison across different datasets for the 13-1 continual learning task. Results are reported for methods without continual learning (WO CL), including the
old model at time point 𝑡 = 0 and naive fine-tuning (FT), and those with continual learning (W CL). The metrics include performance on base, new, and all classes, with
offline training serving as the upper bound.

Method CholecSeg8k EndoVis 2017 EndoVis 2018 SAR-RAPR50

Base New All Base New All Base New All Base New All

Old Model (t = 0) 62.53 0.00 44.66 83.82 0.00 55.88 73.33 0.00 61.10 61.69 0.00 52.97
FT 0.00 0.00 31.60 0.00 0.00 11.00 0.00 0.00 12.02 0.00 75.05 24.49

EWC (Kirkpatrick et al., 2017) 0.00 0.00 41.26 0.00 0.00 16.63 0.21 0.97 12.91 0.00 74.82 23.45
LwF (Li and Hoiem, 2017) 0.00 78.39 58.30 0.00 0.44 11.78 0.00 0.05 12.81 0.00 66.23 22.69
LwF-MC (Rebuffi et al., 2017) 0.00 18.40 37.86 0.00 0.00 11.03 0.00 0.00 12.14 0.00 19.56 16.55
ILT (Michieli and Zanuttigh, 2019) 0.00 59.66 51.94 0.00 0.00 11.26 0.00 0.00 12.24 0.00 36.75 18.70
MiB (Cermelli et al., 2020) 47.41 15.80 31.60 22.00 2.75 11.00 14.49 6.21 12.42 16.15 20.93 20.93
RCIL (Zhang et al., 2022) 66.63 31.19 65.31 44.07 21.47 41.91 38.50 22.34 43.85 51.03 0.00 49.75
CAT-SD (Xu et al., 2024) 42.22 53.63 64.44 33.74 3.26 30.36 22.55 2.13 30.35 37.06 33.73 43.82
MBS (Park et al., 2024) 27.20 34.53 41.52 35.54 10.83 37.12 18.93 10.16 23.12 27.96 18.32 23.21
NeST (Xie et al., 2024) 31.23 29.53 40.95 28.79 13.37 29.62 18.02 12.61 25.49 28.28 23.77 26.42

PLOP (Douillard et al., 2021) 0.00 68.52 55.65 14.59 6.18 21.80 13.16 6.90 24.15 0.00 43.28 18.61
PLOP+Ours 59.70 45.69 67.86 46.28 67.98 60.84 63.68 25.55 62.91 11.55 12.66 23.82
Improvement +59.70 −22.83 +12.21 +31.69 +61.80 +39.04 +50.52 +18.65 +38.76 +11.55 −30.62 +5.21

EWF (Xiao et al., 2023) 63.46 67.46 76.46 57.65 31.25 52.73 51.67 41.99 56.82 49.53 0.01 48.99
EWF+Ours 67.12 70.04 78.57 50.31 48.05 55.36 58.90 49.07 63.00 51.68 0.02 50.84
Improvement +3.66 +2.58 +2.11 −7.34 +16.80 +2.63 +7.23 +7.08 +6.18 +2.15 +0.01 +1.85

Offline 64.68 74.97 79.59 64.47 65.33 59.10 50.11 56.55 49.56 77.91 67.15 58.76
Fig. 6. Visual comparison with different state-of-the-art methods (Task 13-1 on our surgical dataset).
The model testing and weight initialization followed the same ap-
proach as outlined earlier. Specifically, the best-performing model from
each step was selected based on the highest mean Intersection over
Union (IoU) achieved on the validation set. For each continual learning
step, the model was initialized with the weights of the previously
trained model, ensuring that knowledge from earlier steps was retained.
During the continual learning step, the old model acted as a teacher,
providing logits for distillation loss calculation, while the model was
optimized using both cross-entropy loss and distillation losses. This ap-
proach enabled us to learn new classes incrementally while maintaining
performance in previously learned classes.

4.2. Experimental results

We conduct extensive experiments and evaluations to validate
our proposed approach and investigate the effectiveness of privacy-
preserving continual learning in robotic surgery. Our method is com-
pared against several state-of-the-art continual learning approaches,
which can be categorized into four groups. One category includes
approaches based on penalty computation, such as EWC (Kirkpatrick
et al., 2017), which employ strategies to compute the importance of
parameters for old classes, safeguarding those critical parameters to
prevent forgetting. The second category consists of methods based on
8 
knowledge distillation, originally designed for continual image classi-
fication, including LwF (Li and Hoiem, 2017) and LwF-MC (Rebuffi
et al., 2017). These methods have demonstrated impressive perfor-
mance when applied to semantic segmentation tasks. The third cate-
gory focuses on approaches specifically designed for continual seman-
tic segmentation, such as ILT (Michieli and Zanuttigh, 2019), which
combines both feature- and output-level knowledge distillation, and
MiB (Cermelli et al., 2020), which relies solely on output-level knowl-
edge distillation to address the background shift problem. Recently,
some weight fusion methods have been proposed to improve knowledge
transfer and enhance model robustness, including RCIL (Zhang et al.,
2022) and EWF (Xiao et al., 2023). Additionally, we record the results
of the fine-tuning approach (FT) as the lower bound for segmentation
performance, since FT updates the model with new classes without
any additional constraints, leading to the most severe catastrophic
forgetting. The upper bound is represented by the results from the
offline training approach (Offline), where images and annotations for
all classes are available during training. To ensure a fair compari-
son, we implement all competitors using the same base segmentation
network, as well as identical computing environments and common
hyperparameter settings.

In Tables 1 and 2, we present a statistical comparison of our method
with existing approaches across tasks 13-1, 13-5, 9-3, and 17-1 on our
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Table 3
Ablation study on the Class Desensitization Loss and dynamic weight fusion
in our rebalance stage.

Setting 𝐶 𝐷 WF 13-1 13-5 9-3 17-1

Incremental stage – – 43.98 43.22 23.77 53.93

Rebalance stage
✗ ✗ 45.88 45.29 41.38 50.09
✓ ✗ 49.83 43.06 45.75 54.64
✓ ✓ 50.13 45.62 46.68 55.33

surgical dataset, as well as task 13-5 on the four-component dataset.
Our observations indicate that, regardless of the method employed,
old class forgetting remains a challenge when learning new classes.
Furthermore, learning new classes can be negatively impacted when
methods impose excessive constraints. While weight fusion methods

aintain base class performance, they limit the plasticity required
or learning new classes. By addressing the class bias between base
nd new classes, our method not only preserves the knowledge of

base classes but also enhances their performance. For instance, on
3-1 setting, our algorithm achieves performance gains of 27.5% and
.15% mIoU for PLOP and EWF, respectively, by effectively mitigating
ias. This mitigation further improves the performance of the base
lass by 40.41% and 7.55%, respectively, while the slight decrease in
he performance of the new class may be attributed to the reduction
n predictable pixels. The differences in improvements between the
wo baseline methods are primarily because PLOP (Douillard et al.,

2021) relies on feature distillation to limit representation capacity,
hile EWF (Xiao et al., 2023) employs a more robust weight fusion

technique. The distinction in their principles leads to differences in
plasticity, which results in varying degrees of performance improve-
ment. Notably, as continual learning progresses, the model updates
increasingly favor new classes, resulting in greater bias. This trend
further highlights the effectiveness of our method in addressing such
challenges. Fig. 1 provides evidence for the bias mitigation capabilities
of our proposed framework. The increased uniformity in the distribu-
ion of the summation average and t-SNE embeddings demonstrates a
ignificant reduction in class bias.

These findings underscore the robustness and effectiveness of our
pproach in mitigating bias, preserving base class knowledge, and
mproving overall performance across diverse tasks. Fig. 6 shows the

visual comparison with the offline and partial competitors. We observe
that our method consistently provides better predictions for Vessel
Sealer, Other, Ultrasound Probe, Grasping Retractor Sealer, Large Nee-
dle Driver, Catheter, and Grasper, each represented by different colors.
Additionally, our predictions are comparable to those of the best-
performing offline method, as evidenced by fewer instances of over-
predicting and under-predicting, as well as reduced confusion among
different instrument classes.

4.3. Ablation study

In this part, we demonstrate and analyze the effectiveness of the
Class Desensitization Loss and its blending method. We also provide
an analysis of our Dynamic Weight Fusion Strategy. We use 13-1
(5 steps) for the ablation experiments. Table 3 presents the ablation
tudy on the impact of each proposed module, including the rebalance

stage, Class Desensitization Loss, and Dynamic Weight Fusion. With
the inclusion of the rebalance stage, performance improves by 1.90%,
2.07%, and 17.61% in the 13-1, 13-5, and 9-3 tasks, respectively.
This demonstrates that a simple bias adjustment step can significantly
enhance the performance of continual segmentation models. However,
in the 17-1 task, a slight decrease in performance is observed, primarily
due to the fewer continual learning steps, where incremental classes
have not introduced significant class bias. This effect is mitigated by the
Class Desensitization Loss, which results in a 4.55% improvement in the
17-1 task by clarifying the class boundary. We also perform a quality
9 
Fig. 7. Ablation study on the class desensitization loss via the t-SNE visualization on
he feature space.

Table 4
Ablation study on the Class Desensitization Loss using
cluster metrics on the t-SNE embedding.
𝐶 𝐷 DB Index ↓ CH Index ↑ WCSS ↓

✗ 3.56 1.13 31445.56
✓ 2.13 3.02 11366.84

Table 5
Comparisons of our ablation study on different blending methods and
sample numbers.

Method Number Base classes New classes All classes

Random

100 44.20 2.64 36.02
300 48.39 5.43 39.66
500 50.83 7.69 41.93
1000 54.08 7.33 44.05

Class-aware

100 46.65 7.02 38.78
300 49.38 4.50 40.09
500 58.77 6.21 46.97
1000 62.02 8.49 49.83

analysis to ensure that the bias has been mitigated, as demonstrated
by the t-SNE feature in Fig. 7, accompanied by qualitative cluster
metrics in Table 4. The DB Index, CH Index, and WCSS have signifi-
cantly improved, showing a more uniform distribution, which serves
as evidence of the efficiency. Additionally, the Dynamic Weight Fusion
strategy proves to be a versatile method for combining previous models,
enhancing the generalization ability on real samples. Ultimately, our

ethod strikes a balance between enabling the learning of new classes
nd maintaining the ability to distinguish base classes.

4.3.1. Class-aware blending
In Table 5, we demonstrate the performance of different blending

ethods and sample numbers. We compare random blending with
lass-aware blending, verifying the effectiveness of our algorithm in

alleviating model bias caused by class imbalance through the use of
synthetic class samples. The results show that smaller sample sizes
(e.g., 100 samples) can negatively impact model performance, partic-
larly for new classes. However, as the number of samples increases,
he performance improves significantly, with the class-aware method

outperforming random blending. The class-aware blending method
leads to a better balance between base and new classes, resulting in
enhanced overall performance.

Table 6 illustrates that directly cropping the background from the
ample would reduce the effectiveness of the Class Desensitization Loss

enhancement. Moreover, in Table 7, we explore the synthesis quality
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Table 6
Comparisons of different background synthetic methods. Crop refers to directly cropping
the background from samples.

Method Base classes New classes All classes

Crop 56.10 6.47 45.21
Generate (DDPM, Ho et al., 2020) 44.02 5.79 36.49

Inpaint (LDM, Rombach et al., 2022) 62.37 8.70 50.13
Fig. 8. Visualization samples of our synthetic background inpainting.
Table 7
Synthesis quality comparison of different generation methods.

Method FID ↓ IS ↑ PSNR ↑

DDPM (Ho et al., 2020) 266.77 0.99 11.25
StyleGAN-XL (Sauer et al., 2022) 138.46 1.09 12.16

FLUX.1-Fill-dev (Labs, 2024) 158.60 1.86 11.06
LDM (Ours, Rombach et al., 2022) 48.26 1.30 12.40

of four generative models (DDPM, Ho et al., 2020, StyleGAN-XL, Sauer
et al., 2022, FLUX.1-Fill-dev, Labs, 2024, and LDM, Rombach et al.,
2022) applied to our inpainting task and finally select LDM (Rombach
et al., 2022) as our inpainting model. LDM exhibits strong perfor-
mance compared to other methods, as other methods mostly rely on
cropped patches instead of using the latent space, thus losing complete-
ness. Fig. 8 presents visualization examples of our inpainting solution,
and Fig. 9 provides the qualitative comparison of different synthetic
methods. Additionally, the performance of the generation method sig-
nificantly degrades due to its low quality. In contrast, our inpainting
method demonstrates a substantial performance improvement. Besides,
Table 8 shows the performance comparison under different loss weight
configurations, specifically varying the values of 𝛼 and 𝛽. When 𝛼 = 1.0
and 𝛽 = 1.0, the model performs best on base classes and overall classes,
leading to an improved performance of 3.96%.

In summary, our class-aware blending strategy combines foreground
and background through a simple overlay. While this approach may
introduce certain data inconsistencies and biases due to the lack of
effective modeling between foreground and background, it has already
proven effective in improving the performance of downstream segmen-
tation tasks. Our work does not focus on developing generative models
specifically for surgical applications. Instead, the generative model can
serve as a simple and effective solution to address the downstream
continual segmentation task in the surgical domain. Furthermore, our
generation-based approach can also enhance privacy protection and
improve data scalability (Wang et al., 2022, 2023a).

4.3.2. Fusion strategy
In Table 9, we demonstrate the performance of different fusion

strategies and their corresponding parameter selections. The Replace
method involves directly selecting the top-𝑘 parameter values from the
previous model to rebalance the current model. However, this approach
10 
Table 8
Comparisons of our ablation study on the weight of the Class
Desensitization Loss (Task 13-1 on our surgical dataset).

𝛼 𝛽 Base classes New classes All classes

1.0 0.0 56.54 7.76 45.92
0.0 1.0 61.33 9.90 49.65
1.0 1.0 61.98 8.74 49.84
1.0 2.0 59.98 5.79 47.74
2.0 1.0 61.65 7.82 49.36
2.0 2.0 57.22 4.64 45.48

results in a performance decline, as it can reintroduce biased parame-
ters into the model. For example, when top-𝑘 = 1%, the performance
drops to 45.88% for all classes, with a notable decrease in base class
accuracy (55.98%). As 𝑘 increases (e.g., top-𝑘 = 50%), the performance
continues to degrade further (43.80% overall), illustrating the detri-
mental effect of bringing biased parameters back into the model. In
contrast, our Weighted Fusion strategy balances the knowledge from
the previous model while maintaining the model’s state unbiased.
This method shows a clear improvement over the Replace strategy.
Specifically, when using top-𝑘 = 10% and 𝜆 = 0.01, the model achieves
the highest overall performance at 50.13%, with a 0.3% improvement
over the baseline (49.83%). The weighted fusion approach also allows
for better retention of both base and new class performance, as evi-
denced by the slight improvements in both categories. Notably, limiting
the number of fused parameters (e.g., top-𝑘 = 10%) helps prevent
performance degradation, keeping the model less prone to bias. These
results emphasize the effectiveness of the weighted fusion strategy in
enhancing model performance, offering a robust solution for continual
learning scenarios where knowledge from previous models must be
incorporated without introducing bias.

5. Discussion and conclusion

In this work, we propose a novel two-stage pipeline to address
the critical challenge of class imbalance in continual segmentation for
robotic surgical scenes, a challenge exacerbated by privacy constraints
and the complexity of surgical workflows. Our SurgCSS framework
includes the class-aware blending with inpainting to generate a class-
balanced dataset by separating instrument foregrounds from surgical
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Fig. 9. Qualitative comparison of different generation methods.
Table 9
Comparisons of our ablation study on the fusion parameter selection top-𝑘 and
merged weight 𝜆 (Task 13-1 on our surgical dataset).

Method top-𝑘 𝜆 Base classes New classes All classes

None – – 62.02 8.49 49.83

Replace

1% – 55.98 9.31 45.88
10% – 56.38 5.87 45.25
30% – 54.76 5.32 44.00
50% – 54.69 5.05 43.80

Weighted

10% 0.1 62.41 8.13 49.97
10% 0.3 62.34 8.11 49.92
30% 0.05 61.34 7.94 49.19
50% 0.1 58.56 7.16 47.09
10% 0.01 62.37 8.70 50.13

backgrounds, alongside the CDL based on contrastive learning to re-
duce confusion between similar classes. Additionally, a DWF strategy
combines incremental and rebalance models to enhance class represen-
tation and improve overall segmentation accuracy. Experimental results
demonstrate that (i) there is significant performance degradation due
to class imbalance when directly applying conventional segmentation
techniques; (ii) existing continual learning methods, while alleviating
catastrophic forgetting, fail to address class imbalance effectively in
surgical contexts; and (iii) our two-stage pipeline successfully balances
performance across old and new classes, outperforming state-of-the-
art continual learning methods with average 11.82% improvement in
robotic surgical scenarios.

This is a fundamental work focusing on resolving the combined
issues of class imbalance, catastrophic forgetting, and privacy concerns
in the context of robotic surgical segmentation. The framework can
be extended to other medical imaging tasks (e.g., organ segmentation
or lesion detection), as these tasks often share similar challenges such
as imbalanced class distributions and insufficient data. To address
these challenges, our proposed inpainting synthetic data generation
11 
method and Class Desensitization Loss offer flexible, generalized so-
lutions that reduce class bias and improve model robustness across
various applications in the medical domain. However, our proposed
framework still has some limitations: (i) Although the final deployed
segmentation model remains identical to the previous model without
introducing additional parameters, it still requires offline data gener-
ation and extra training for the generative model, which significantly
increases the training cost. (ii) Any defects or artifacts in the synthetic
data can negatively affect the model’s performance, particularly when
distinguishing between visually similar instrument classes. (iii) The
generative model, trained on the background characteristics of the ini-
tial dataset, may require retraining or substantial updates to effectively
generate data for significantly different surgical domains, leading to
extra computational costs. Therefore, future work should rigorously
validate the feasibility, robustness, and applicability of the proposed
continual learning approach and generative framework in real-world
clinical environments, including addressing lightweight deployment
and real-time inference challenges in actual hospital settings. Addition-
ally, our continual learning approach can be effectively applied to adapt
visual foundation models, such as SAM (Kirillov et al., 2023), to various
downstream medical applications, mitigating catastrophic forgetting of
the originally learned computer vision patterns.
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