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Abstract

In strongly correlated systems, quantum fluctuations play a crucial role in the or-

dering at low temperatures, leading to various exotic ground states. The critical

points usually correspond to some universal scaling behaviours, which can be de-

scribed phenomenologically by the Ginzburg-Landau-Wilson paradigm. However,

it breaks down in systems where gapless fermionic excitations or topological fea-

tures play a key role. Understanding such cases is crucial to explaining complex

behaviors in quantum materials, such as unconventional magnetism and quantum

spin liquids.

This thesis focuses on some different scenarios where the presence of gapless

fermions alters the behavior of the phase transitions. Firstly, we use the perturbative

and numerical renormalisation group to study the role of Kondo fluctuations in an

anisotropic Kondo model to explain the moment reorientation and hard-direction

ordering in Kondo materials. Secondly, we study the antiferromagnetic quantum

criticality when the local moments are Kondo-coupled to Dirac fermions, and show

that the Néel critical point is stable against the particle-hole fluctuations. In the last

part, both the magnetic and topological phase transitions of the Kitaev-Ising model

are studied and compared through different Majorana fermion representations, and

then a renormalisation group approach is applied to the topological phase transition

of the gapless and gapped quantum spin liquid states. It turns out that in the presence

of other magnetic interactions, the topological phase transition can be studied in a

similar manner as the symmetry-breaking phase transitions of semi-Dirac fermions.

The results in this thesis contribute to the theoretical understanding of

fermionic quantum criticality and the nature of novel quantum phase transitions
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in strongly correlated electron systems.
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Âi j = iψ̂iψ̂ j of the gapless Majorana modes ψ̂ , obtained after in-

tegrating the gapped modes η̂ . . . . . . . . . . . . . . . . . . . . . 139



List of Figures 17

6.4 (a) Fermionic polarization bubble diagram that gives rise to the non-

analytic IR propagator of the bosonic fluctuation field. Panels (b)

and (c) show the diagram that contribute to the perturbative renor-

malization of the free-fermion action and the Yukawa coupling, re-

spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of Tables

6.1 Critical exponents for the topological phase transition between the

gapless and gapped Kitaev QSL phases in (2+1) dimensions, calcu-

lated to one-loop order. . . . . . . . . . . . . . . . . . . . . . . . . 142



Chapter 1

Introduction

Fluctuations are a fundamental ingredient of many-body physics. They are usually

discussed in the context of phase transitions, as they represent the deviation of a

physical quantity from its equilibrium value. When the deviation becomes critical,

the system may end up in a different equilibrium, indicating a phase transition. In

our everyday lives, thermal fluctuations are the key to phase transitions like solid-

liquid and liquid-gas transitions. In the quantum regime, a different type of fluctu-

ations, namely quantum fluctuations, which are rooted in the uncertainty principle,

can be significant and lead to phase transitions even at zero temperature. In analogy

to thermal fluctuations, quantum fluctuations become strong in systems at the vicin-

ity of a quantum critical point, and leads to a wide range of quantum phases at zero

temperature. Understanding the role of quantum fluctuations in phase transitions is

the key to unravelling the mysteries in strongly correlated electron systems such as

the origin of the linear resistivity in strange metals [1], and the microscopic theory

of unconventional superconductivity [2].

However, the general difficulty of solving such strongly correlated many-body

problems remains the ultimate shadow over the field of condensed matter physics.

The number of coupled Schrödinger equations one needs to solve for a typical

condensed matter problem is astronomical (∼ 1023) even for cutting-edge high-

performance computers. Though there are methods like density functional theory

in which the wave functions are mapped to electron density functional to reduce the

complexity [3], solving the simplified problems is still extremely challenging when
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the electron-electron interaction is strong. Fortunately, the ordering in many-body

systems corresponds to some emergent collective excitations of the system, render-

ing the microscopic details irrelevant at the critical point. The phase transition can

thus be studied at a phenomenological level by defining a proper order parameter

of the ordered phase and working with the theory of such order parameters. This

technique, the so-called Ginzburg-Landau theory, was later completed by the renor-

malisation group method developed by Wilson[4, 5], and became the paradigm for

explaining the symmetry-breaking phase transitions in which all other degrees of

freedom apart from the order parameter are gapped.

Though extremely powerful, the Ginzburg-Landau-Wilson paradigm is not the

full story of second-order phase transitions. Firstly, for a gapless system, there is

no way to systematically integrate out the fermions without eliminating the low-

energy order parameter modes at the same time. In such cases, the effective theory

must also involve fermions explicitly, giving rise to the so-called fermion-induced

quantum criticality[6]. Secondly, spontaneous symmetry-breaking is the key to a

non-zero order parameter, but it is not a necessary ingredient of phase transitions.

Followed by the discovery of the quantum Hall effect in 1980s [7, 8], a new kind of

phase transition surfaced, in which the symmetry remains the same in both phases

but the topology of how the quantum states wind the parameter space differs. Ob-

viously, a local order parameter theory cannot be constructed to describe such a

change in the global topology. To properly define and categorise different topolog-

ical phases, one needs the language of category theory [9]. In general, phases with

nontrivial topology can be distinguished as symmetry-protected trivial (SPT) states

and symmetry-enriched topological (SET) states. The latter one has the so-called

topological order, which is deeply connected to the large degeneracy and long-range

quantum entanglement in the ground states [9]. Furthermore, topological order is

usually followed by the emergence of gauge fields and fractionalisation of quasi-

particles, which could in principle connect a symmetry-breaking ordered phase and

a topologically ordered phase. Examples of such include the deconfined quantum

criticality between the antiferromagnetic and resonating valence bond state on a
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square lattice[10, 11].

In this thesis, we focus our study on the fermion-induced quantum criticality in

gapless systems. The presence of a Fermi surface introduces the fermion fluctuation

on top of the order parameter fluctuation, and their interplay can lead to interesting

quantum criticality distinct from that of a pure order parameter theory. It is not hard

to realise that the shape of the Fermi surface plays a crucial role, and here we will

only consider the simple cases in which the Fermi surface is either a point (Dirac

semimetals), or a perfect small sphere (metals). The scenarios discussed are quite

different at the microscopic level, but the phase transitions turn out to be similar.

Here we first briefly introduce the scenarios that will be discussed in this thesis.

For a typical strongly correlated electron system, the underlying low-energy degrees

of freedom are charge and spin. Generically, the electrons are subject to long-range

Coulomb interactions. However, the scattering events of electrons and holes around

the Fermi surface effectively screen the Coulomb interaction, leaving only a short-

range residue of it. In this spirit, the simplest model one can write down is the

so-called Hubbard model:

Ĥ =− ∑
⟨i j⟩,σ

ti j(c
†
iσ c jσ +H.c.)+U ∑

i
n̂i↑n̂i↓ (1.1)

in which the first term is the kinetic energy of electrons, and the second represents

the on-site Coulomb repulsion of the electrons. Depending on the specific system

and problem, the strength of U may vary, leading to different effective low-energy

simplifications of the problem by separating the two degrees of freedom. For exam-

ple, when the Hubbard repulsion is weak, the kinetic energy dominates the physics,

and the interaction of electrons can just be taken as an adiabatic renormalisation of

the parameters of a non-interacting Fermi gas, leaving us the famous Fermi liquid

theory. In this case, all that matters is the charge degree of freedom, as the interplay

of the mobile electron spins averages out. On the other hand, at the strong U limit

of a half-filled Hubbard model, the energy penalty for two electrons to sit on the

same site is infinite, and the ground state is naturally that there is one electron per
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Figure 1.1: Honeycomb structure of graphene. In each unit cell, there are two sites (A, B),
corresponding to the sublattice degree of freedom.

site. This is called a Mott insulating state. Since the charge degree of freedom is

completely localised, one can then only keep the electron spins into consideration,

and end up with the spin-1/2 Heisenberg model. Furthermore, there exist cases in

which both degrees of freedom are important, such as the Kondo lattice model. In

a Kondo lattice model, The d and f electrons in the transition metal elements are

highly localised, whose spin degree of freedom is then coupled to the conduction

electrons in the system. The resulting Hamiltonian contains both fermion and spin

operators. The richness in the effective low-energy descriptions in turn leads to a

plethora of exotic ordered states at low energy. The quantum fluctuations of the

dominating interactions can then tune the system through various kinds of quantum

phase transitions, whose criticality and universality are intriguing both theoretically

and experimentally.

1.1 Dirac electrons in graphene
The electrons in graphene are an example of where the interesting physics mainly

lies in the charge channel. Graphene is a two-dimensional single layer of carbon

atoms sitting on a honeycomb lattice, as shown in Fig.1.1. The simplest way of

obtaining a single-layer graphene is to exfoliate it from graphite by a tape. Though

it has been more than two decades since its first discovery, graphene remained one

of the most popular 2d materials in research until today. Despite the simple struc-

ture, various physics can be found in it, such as massless Dirac fermions [12] and
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Figure 1.2: The energy dispersion of electrons in graphene. Six Dirac points with linear
band touching appear at the corners of the Brillouin zone.

anomalous quantum Hall effect [13]. Then more recently, it was realised that a

new layer of richness in physics can simply be added to the system by putting a

second layer on top of the single layer - the discovery of flat bands and unconven-

tional superconductivity in twisted double-layer graphene has stimulated the idea of

’twistronics’[14].

Here we focus on the Dirac fermions in graphene. The electrons on the outer

shell that contribute to the conductivity are from the s and three p orbitals, therefore

the low energy microscopic model is just electrons on a honeycomb lattice at half-

filling. This is simply a single-particle Hamiltonian written as

H =−t ∑
r

∑
j=1,2,3

(
c†

A(r)cB(r+δ j)+H.c.
)
,δδδ = (0,aaa111,aaa222) (1.2)

where t is the hopping strength between nearest neighbor sites, and aaa111,aaa111 are the lat-

tice vectors. The single particle Hamiltonian can be simply diagonalized by Fourier

transforming to the momentum space, giving rise to the energy dispersions:

E±(k) =±t

√
3+4cos(

3kx

2
)cos(

√
3ky

2
)+2cos(

√
3kx) , (1.3)

and the electronic band dispersion is shown in fig.1.2. It is evident that
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there are zero energy solutions at the two equivalent high symmetry points K(′) =

±4π/3
√

3(1,0), which correspond to the so-called valley degree of freedom. One

can then zoom in and expand the dispersions around one of the zero-energy points,

which in turn gives linear dispersion E(k) = vF |k|. The linear dependence in mo-

mentum indicates the emergent Lorentz invariance at the K(K′) points, and the

corresponding fermions are Dirac fermions. The relativistic nature of the Dirac

fermions arouses broad interests both theoretically and experimentally. It makes

a perfect playground to study high energy physics like QED3, and the linear dis-

persion guarantees ballistic transport of electrons which has huge potential in the

semiconductor industry. From the point of this thesis, the Dirac fermions are per-

fect since they are low-energy fermionic excitations with only a point-like Fermi

surface at half-filling.

1.2 Quantum Spin liquids

The spin degree of freedom is the origin of magnetism in materials. Normally, the

rotation symmetry of spins is broken at low temperatures, forming ground states

with long-range magnetic order like ferromagnetism, antiferromagnetism, nematic

and stripe orders. However, there are rare cases in which the spins remain disordered

even at zero temperature due to frustrations. Such exotic ground states, dubbed

quantum spin liquids (QSL), are a type of symmetry-enriched topologically ordered

state. The idea was first proposed by Phil Anderson as a related problem in explain-

ing high-temperature superconductivity [15, 16, 17], which considered a ground

state with a combination of paired spin singlets. The resonating valence bond (RVB)

state was later joined by a family of other spin-disordered ground states. The com-

mon properties among them are the emergent gauge fields and fractionalised quasi-

particles. For example, the ground state of a J1 − J2 Heisenberg model on a trian-

gular/kagome lattice could be a spin liquid with spinon excitations[18, 19, 20, 21],

and one of the main characters of this thesis, the Kitaev model [22], has a ground

state with emergent Z2 gauge fields and relativistic Majorana fermions.

Though theorists have predicted QSL states in some materials [23, 24, 25, 26,
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27, 28, 29, 30], the experimental confirmation remains elusive [31]. This is mainly

due to the competition between a magnetic order and a QSL state. It is thus impor-

tant to study the stability of a QSL against different types of spin interactions, and

the nature of the phase transition to magnetically ordered phases. Furthermore, a

phase transition between a QSL and an ordered phase could be described by a theory

of the emergent quasiparticles and the gauge fields, giving rise to exotic quantum

criticality like QED3 [32, 33, 34, 35, 36, 37] and fractionalised criticality [38].

1.3 Kondo physics
The origin of the study of Kondo physics can be dated back to the 1930s when

the resistivity of Au was shown experimentally to increase as the temperature de-

creased at very low temperatures [39]. The observation was puzzling, as in a metal

one expects the resistivity to be proportional to T 2, which is a result of low en-

ergy electron-electron scattering. Only thirty years later, the inverse temperature

dependence was found to be a product of the magnetic nature of the materials - the

localised electrons scatter the conduction electrons strongly at low temperatures,

even if the impurity concentration is very low. The physics of mobile electrons in-

teracting with localised spins was then dubbed ’Kondo physics’, named after the

Japanese physicist who proposed the idea of impurity scattering of electrons.

In Kondo’s calculation [40], he came up with the simplest effective model by

considering only a single impurity in a conduction band. The Hamiltonian reads

H = ∑
kσ

εkσ c†
kσ

ckσ + JKS(0) · s, (1.4)

where S(0) is the impurity spin at the origin, and s the spin of conduction electrons.

With the perturbation theory up to 3rd order, he showed that the resistivity of such

a model has a minimum at a certain temperature scale TK that depends on the ex-

ponential of the electron-impurity interaction strength J, TK ∝ e
1

−2ρJ , after which

the resistivity blows up to infinity at zero temperature. The temperature scale TK

is now called the Kondo temperature, which in real materials could range from a

few Kelvins to a hundred due to its exponential nature. The diverging resistivity at
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the lowest temperature is of course unphysical, but it nevertheless contains impor-

tant hints to what’s really happening: The Kondo effect is non-perturbative which

cannot be understood by a finite order perturbative expansion.

The understanding of the physics below the Kondo temperature was then

pushed forward by Phillip Anderson, who proposed that the Kondo problem can

be viewed as a scaling problem [41]. By performing the well-known ’poorman’s

scaling’, he derived the renormalisation of the Kondo interaction strength J, which

flows to infinity in the IR limit, indicating the non-perturbative nature of the prob-

lem. The idea of coarse-graining the system by integrating out the high energy

fluctuations around the Fermi surface shares the very spirit of the renormalisation

group (RG). Later, Kenneth Wilson came up with a numerical approach to system-

atically approach the low-energy Kondo physics in a non-perturbative way, dubbed

the numerical renormalisation group (NRG) [4, 5]. It is well understood that at low

temperatures, the conduction electrons form a cloud to screen the impurity spin.

Depending on the number of conducting channels (bands) and size of the impurity

spin, the system could either be overscreened or underscreened, and the rest of the

system mainly determines the low energy physics after the screening.

1.4 Outline of the Thesis

This thesis focuses on the exotic fluctuation-induced phases in Kondo materials and

Kitaev quantum spin liquids and the nature of the associated quantum phase transi-

tions. The central idea is to use a renormalisation group to study the universality of

continuous quantum phase transitions beyond the conventional Ginzburg-Landau-

Wilson paradigm, more precisely, the fermion-induced quantum criticality due to

the presence of Fermi surfaces.

In Chapter 2, we first introduce the general techniques of Ginzburg-Landau

order parameter theory and Wilson’s momentum-shell renormalisation group, with

an emphasis on the physical idea of the universality of continuous phase transitions

rather than the detailed maths. As an example, we then study the renormalisation

of the simple model, the φ 4 theory, where the order parameter fields φ are scalar
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fields. After that, cases where the low-energy effective theory cannot be represented

simply by a pure order parameter theory are motivated, revealing the necessity of

going beyond the Ginzburg-Landau-Wilson paradigm. We show that starting from

the low energy theory of electrons in graphene, we naturally arrive at the so-called

family of fermion-induced quantum criticality, which could be described by the

Gross-Neveu-Yukawa (GNY) theory.

In Chapter 3, starting with the origin where the idea of renormalisation group

was first introduced into condensed matter physics, we scrutinize an anisotropic

Kondo model by perturbative and numerical renormalisation group, to explain the

magnetic moment reorientation observed in many Kondo lattice materials. We show

that the interplay between the anisotropic Kondo coupling and single-ion anisotropy

can lead to a non-trivial RG flow where the single-ion anisotropy changes signs in

certain parameter regimes, indicating a crossing of magnetic susceptibilities along

different directions. Such interplay of quantum fluctuations could explain the meta-

magnetic phase transition in many Kondo materials.

Then in Chapter 4 we apply the modern momentum-shell renormalisation

group to a honeycomb model, where the local moments are connected to the itiner-

ant electrons with Dirac fermions through Kondo interaction, as our first example of

Dirac fermion-induced quantum criticality. We examine the impact of Dirac elec-

trons on the Néel quantum critical point. The results suggest that the Néel criticality

is quasi-stable against the screening effect from particle-hole fluctuations in certain

parameter regime, outside of which the anti-ferromagnetic order is destroyed by the

Kondo fluctuation. This illustrates the exotic criticality one can find in systems with

gapless fermions.

Chapter 5 and 6 is dedicated to the more exotic case of Kitaev honeycomb lat-

tice, where the ground state is a gapless Z2 quantum spin liquid with emergent rela-

tivistic Majorana fermions. In Chapter 5, We first use different fermion representa-

tions to study the phase diagram of the Kitaev model in the presence of Ising inter-

action, and show that the phase transition between the gapless and gapped QSL can

also be induced by short-range magnetic interactions. The topological phase transi-
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tion is very similar to the semimetal-insulator transition that happens in graphene,

suggesting the low-energy theory is again GNY-like. Hence, in the Chapter 6, we

start from the microscopic Kitaev-Ising model to derive the effective field theory of

such topological phase transition. The nature of the transition is then shown to be

a GNY theory of Majorana fermions with semi-Dirac dispersion, in analogy to the

case of complex fermions. The criticality of the topological phase transition in the

Kitaev-Ising model corresponds to a new universality class of Majorana fermions.

At last, in Chapter 7, we summarise and conclude the general results and re-

mark on future research directions.



Chapter 2

Phase Transitions and

Renormalisation Group

In this chapter, we briefly introduce the main tools for studying the critical behavior

of phase transitions: the Ginzburg-Landau-Wilson paradigm which describes con-

ventional symmetry-breaking phase transitions in gapped electron systems, and the

Gross-Neveu-Yukawa theory which describes the ones in gapless electron systems.

Note that the aim of this introduction is not to be exhaustive but self-contained.

There are already detailed and well-structured reviews and notes on the topics, and

interested readers will be pointed to the related materials when appropriate.

2.1 Ginzburg-Landau theory and Universality
The first general phenomenological view of phase transitions is based on the con-

cept of order parameters, which describes symmetry-breaking phase transitions. In

the ordered phase of such a transition, a certain symmetry of the Hamiltonian is

spontaneously broken, resulting in a ground state without such a symmetry. De-

pending on the microscopic details of the systems, a phase transition can happen

at different parameters. However, for any symmetry-breaking phase transition, one

can define an order parameter φ which is an observable that takes zero in the disor-

dered phase and becomes finite in the ordered one. For example, for a ferromagnetic

phase transition, the order parameter is the magnetization, and for a charge density

wave state, the order parameter is the difference in fermion number density between
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sites. The nature of an order parameter depends on the specific phase transition to

study, it could be a scalar, a vector or a tensor. Since we are only interested in the

long-wavelength collective behavior of the system, it is natural to coarse-grain the

system by going to the continuum limit and leaving out the details of the lattice.

In this way, the order parameter becomes a field φ(x) defined in real space. In the

vicinity of the critical point, one can then write down a general field theory of the

order parameter fields to describe the thermodynamic behavior of the system:

F =
∫

dx[aφ(x)2 +bφ(x)4 + · · ·

+ c(∇φ(x))2 +d((∇2
φ(x))2)+ f φ(x)2(∇φ(x))2 + · · · ], (2.1)

which is known as the Ginzburg-Landau free energy. Though the phenomenological

parameters (a,b, · · ·) depend on the microscopic details, the form of the expression

is only constrained by the symmetry and dimensionality of the system. This al-

ready suggests the possibility of some hidden universality behind different phase

transitions.

The partition function can be written as a functional integral of the order pa-

rameter fields:

Z =
∫

Dφ(x)e−F [φ(x)], (2.2)

which is in general hard to evaluate. However, one can consider a mean-field ap-

proximation of the free energy by considering only the saddle-point solution of the

functional integral Fm f ≃ min[F [φ(x)]], which has the greatest contribution in the

Boltzmann factor according to the least action principle. We here consider the case

where c > 0, in which the saddle-point solution is simply a uniform distribution of

φ(x) = φ . This for example corresponds to the ferromagnetic phase transition of an

Ising magnet. Near the ferromagnetic phase transition, the free energy density can

be well approximated by only the lowest powers in the expansion,

fm f ≡
Fm f

V
= aφ

2 +bφ
4, (2.3)
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whose behavior mainly depends on the sign of a. For a > 0, the minimum of fm f

occurs at the origin, suggesting the system is paramagnetic. If a < 0, the minima

take finite values of φ when b > 0, which corresponds to the symmetry-broken

ferromagnetic ground state.

The above treatment gives the classical effective field theory to describe the

phase transition. It is straightforward to extend to a quantum phase transition by

rewriting the quantum statistical partition function Z =Tre−βH into the path integral

formalism

Z =
∫

Dφ(x,τ)e−S[φ ], (2.4)

where

S[φ ] =
∫

β

0
dτ

∫
dx [aφ(x)2 +bφ(x)4 + · · · ]. (2.5)

The imaginary time iτ := β here can be viewed as a Wick rotation of the axis, which

represents the Boltzmann weight as an imaginary time evolution operator. In this

way, a d-dimensional quantum field theory corresponds to a classical field theory

in d + 1 dimensions [42]. In the rest of the thesis, we will use the imaginary time

path integral formalism only. The equivalence of the temporal and spatial integrals

is salient when one works at T = 0.

With the partition function known, one can utilise it to calculate the behaviors

of all physical observables near the critical point. For more details, readers are asked

to consult [43]. At the critical point of a continuous phase transition, quantities like

correlation length and susceptibility diverge as a power law of the temperature. The

powers form a set of critical exponents which uniquely determine the nature of the

phase transition. The values of the exponents are determined by the symmetry and

dimensionality of the problem only, regardless of the microscopic details, which

leads us to one of the keystones of the modern theory of phase transitions: Uni-

versality. Though qualitatively convincing, one would expect the critical exponents

obtained by the mean-field treatment to be wrong quantitatively, as the fluctuation

of the order parameter fields is neglected. However, the speculation is only partly

true, as there exists a lower critical dimension in which a phase transition can-
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not happen. For example, the Mermin-Wagner theorem proves that a spontaneous

symmetry-breaking phase transition cannot happen in two or lower dimensions if

the symmetry is continuous [44]. Furthermore, there also exists an upper critical

dimension in which the mean-field theory is exact. This can be understood easily in

the next section after introducing the renormalisation group.

The Landau-Ginzburg theory tells us that a phase transition can be understood

by an effective theory of the order parameter. Different phase transitions with the

same symmetry and dimensionality might belong to the same universality class,

sharing the same set of critical exponents. However, such phase transitions can

happen in drastically different length/energy scales. This seems to suggest the the-

ory is scale-invariant. Also, how can one systematically include the fluctuation

of the order parameter in the calculation to make quantitative predictions beyond

mean-field theory? In order to answer these questions, another puzzle piece named

the renormalisation group is needed.

2.2 Perturbative Renormalisation Group

The concept of renormalisation group was first introduced to tackle the ultravio-

let divergences in high-energy physics in 1950s [45]. When calculating physical

quantities with quantum field theory, one naturally encounters the problem that the

momentum integral diverges at k → ∞, as the integrand is a function of k. This can-

not be the case as the quantities are finite experimentally. To reconcile the disaster

of infinity, one needs to introduce a cutoff Λ to the integration range. The backfire

of such practice is that the physical observables will now become Λ-dependent, but

the dependence of Λ can be absorbed by a redefinition of the coupling strengths.

This is the core concept of the renormalisation group. At first, the treatment was

only regarded as a compromise to get meaningful results. The underlying physical

meaning of RG was only clearer after its introduction to condensed matter physics

by Kandanoff [46] and Wilson [4, 5].

From a modern perspective, the cutoff in length/energy indicates the scale

where the effective theory breaks down. In condensed matter physics, the natural
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cutoff corresponds to the size of a unit cell. Within the range where the effective the-

ory is valid, one can coarse-grain the system by eliminating the high-energy (short-

range) fluctuations, and the coupling parameters in the bare theory start running.

By doing so iteratively, one relates the bare theory at the original high-energy (short

wavelength) scale to a theory with a different set of parameters at a lower energy

(long wavelength) scale. The coupling parameters will flow to some asymptotic

values, where the theory becomes scale invariant. Such a fixed point corresponds

to the critical point of a continuous phase transition. This is the reason why phase

transitions at different scales exhibit exactly the same behavior of divergence when

approaching the critical point. At the critical point of a continuous phase transition,

the correlation length diverges, and the system has no characteristic length scale,

therefore the theory looks completely the same for all scales.

2.2.1 Renormalisation group transformation

Here we briefly introduce the procedure of the perturbative RG transformation in

momentum space. Detailed derivation can be found in [4, 47]. In general, we are

interested in the partition function

Z =
∫

Dφ(ω,k)e−S[φ(ω,k)]. (2.6)

Note that this is just the Fourier transformed version of the quantum field theory

in frequency-momentum space, where ω is the Matsubara frequency. There are

three steps: First, for a system with cutoff Λ, we perform an infinitesimal scale

transformation of the frequency-momentum coordinates:

ω
′ = ωe−zdℓ,k′ = ke−dℓ, (2.7)

where z is called the dynamical exponent which tracks the scaling of the imaginary

time. Second, we split the modes into fast (φ> = φ(k),Λe−dl ≤ k ≤ Λ) and slow

(φ< = φ(k),0 < k < Λe−dl) modes. The action can then be written as S[φ<,φ>] =
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S0[φ<]+S0[φ>]+SI[φ>,φ<], and the partition function

Z =
∫

Dφ<Dφ>e−S0[φ<]e−S0[φ>]e−SI [φ>,φ<]

=
∫

Dφ<e−S0[φ<]Dφ>e−S0[φ>]e−SI [φ>,φ<]

≡
∫

Dφ<e−S′[φ<], (2.8)

where the effective action S′ can be written as

e−S′[φ<] = e−S0[φ<]
∫

Dφ>e−S0[φ>]e−SI [φ>,φ<]

= e−S0[φ<]

∫
Dφ>e−S0[φ>]e−SI [φ>,φ<]∫

Dφ>e−S0[φ>]

∫
Dφ>e−S0[φ>]

= e−S0[φ<]⟨e−SI [φ>,φ<]⟩0,>. (2.9)

The notation ⟨ ⟩0,> stands for the average with respect to the fast modes. This

allows us to describe the physics of the slow modes by ’integrating out’ the fast

modes. However, a theory obtained by the above procedure will have a different

cutoff and thus not directly comparable to the bare theory. A final step that rescales

the frequency and momenta back to the original cutoff is needed. In addition, there

could be some mathematical redundancy as the action can have an overall factor

that does not affect any of the physics after renormalisation. Such redundancy can

be lifted by rescaling φ and fixing the quadratic term from flowing. This point will

be clearer in the next section when the RG of the scalar φ 4 theory is shown.

One notion related to the rescaling of φ is the scaling dimension of an ob-

servable Ô. In general, any operator can be written as a function of the momenta

Ô(k), thus by rescaling the momenta, the operator also gains a nontrivial scaling

Ô′ = Ôe[Ô]dℓ. The scaling dimension [O] characterises the importance of the oper-

ator under RG. If [Ô] > 0, the term is relevant under RG, as the coupling strength

of such term will increase under RG. If Ô is negative, the operator is regarded as

irrelevant as the coupling strength flows to zero. Extra care must be taken to han-

dle the marginal case in which [Ô] = 0, as the diagrammatic contribution by the
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RG calculation could either render the operator relevant or irrelevant. Now we are

at the stage to understand the unexplained origin of the upper critical dimension

where the mean-field theory is exact. The scaling dimension of operators obviously

will depend on the dimensionality of the problem. As the dimension increases, the

operators in general become more and more irrelevant, until a point where all the

operators that describe interactions in the system are rendered irrelevant. The re-

maining theory under RG will be a free theory of φ , whose behavior can be fully

captured by the mean-field theory.

The RG method maps the theory at some scale to a theory with different cou-

pling strengths at a new scale. Through RG one effectively coarse-grains the theory,

zooming into the low-energy physics, and rescaling the low-energy sector back to

the original cutoff to keep track of the flows of the parameters until they reach a

fixed point. Since in the RG process one loses the information from the fast modes

sector, the mapping is not bijective, meaning the ’renormalisation group’ is not

strictly a group, but a semi-group. In any case, the sloppiness in the nomenclature

cannot hide the power of RG, especially in the study of quantum criticality.

Before diving into the RG of a scalar order parameter theory, we comment on

the perturbativity of the momentum-shell RG scheme introduced above. Since we

are only interested in calculating ⟨e−SI [φ>,φ<]⟩0,>, one can expand out the exponen-

tial and calculate the contributions order by order, diagrammatically this means to

sum up the contribution of all the possible linked Feynman diagrams. The integrals

to be worked out are all defined on a frequency-momentum shell, which suggests

the integrals are rather simple if there is full rotational symmetry. This seems to

give an unrealistic illusion that the ⟨e−SI [φ>,φ<]⟩0,> can be worked out easily with

precision up to any order. Unfortunately, this is not the case as any Feynman di-

agrams involving more than one loop cannot be worked out simply on-shell. One

will have to integrate over the real axis to get the higher-order contributions. With

this said, ideally we need a small parameter in the theory like always. Expanding

in the orders of the small parameter might give us analytic control for results even

in one-loop order. Finding a small parameter is not always possible as the problems
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we are interested in are in the strong interaction regime. Fortunately, the fact that

the expansion we do is mostly asymptotic expansion helps.

Two common methods are used to control the expansion. The first is the so-

called ε-expansion proposed by Wilson, in which he utilised the advantage of the

exactness of mean-field theory in the upper critical dimension. One can take the

continuum limit of the dimensionality and introduce a small deviation ε in the di-

mensionality away from the upper critical dimension. Then the RG corrections will

be in orders of ε . Another more traditional way is to introduce a large number of

flavors to the fields considered. The theory will then contain a sum over the field

flavors, which blows up when N → +∞. To get around this and maintain the scale

invariance of some coupling g, one needs to define the coupling as g ∼ O(1/N).

Therefore in the large-N limit, the coupling strength becomes perturbative and the

expansion is controlled in orders of 1/N. In the remainder of the thesis, we will

utilise these two methods to control the calculation.

2.2.2 Simple Example: φ 4 Theory

We now perform an RG analysis of a simple theory that has only a scalar order

parameter. Such a φ 4 theory can be used to describe a phase transition with a broken

Z2 symmetry. The partition function in the d-dimensional k-space can be written as

Z =
∫

Dφ(k)e−S[φ(k)], (2.10)

where the action has the form

S = Sφ +SI, (2.11)

Sφ =
1
2

∫
Λ

0

ddk
(2π)d φ(k)(k2 +m2)φ(k), (2.12)

SI = λ

∫
Λ

0
∏

i=1,2,3,4

ddki

(2π)d φ(k1)φ(k2)φ(k3)φ(k4)δ (k1 +k2 +k3 +k4). (2.13)

where k = (ω ≡ k0,k1,k2, · · · ,kd−1) is the d-dimensional frequency-momenta, and

k = |k|, and m2 is the mass term.
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2.2.2.1 Tree Level Scaling

Before attacking ⟨e−SI [φ>,φ<]⟩0,>, we first look at the tree level scaling. As defined

in the previous section, the momenta are rescaled as k′ = ke−dℓ. Note that here

z = 1 as the frequency is equivalent to the momenta. To get the scaling dimension

of φ , we fix the quadratic term from flowing: 2[φ ] + d + 2 = 0 ⇒ [φ ] = −(d +

2)/2. The scaling dimension of the mass term is then [m2] = d + 2[φ ] = 2, which

suggests that the mass m2 is relevant under RG. Similarly, we can work out the

scaling dimension of the quartic coupling strength [λ ] = 3d − 4[φ ] = 4− d. (One

needs to be careful as the d-dimensional delta function has dimension −d.) That

is to say, for d > 4, the quartic interaction is irrelevant under RG. This provides

an upper bound on the dimensionality in which the theory remains interacting. At

’upper critical dimension’ d = 4, the effective theory is just a free theory of the order

parameter, which provides a mounting point for us to perform a 4− ε expansion.

One may ask why the higher-order terms in φ are neglected. The answer also

lies in the tree-level scaling: As we can observe in the above calculation of scaling

dimensions, higher order terms in φ are less and less relevant since [φ ] < 0. Since

for d = 4, the quartic term is already marginal, higher-order terms will for sure be

irrelevant under RG. For a similar reason, the coupling λ is just a constant rather

than a function of k. In general, the coupling is a function of the momenta λ (k),

which can be expressed as a Taylor series in k: λ (k) = λ0+λ2k2+O(k4), and only

the constant term is relevant under RG.

2.2.2.2 One Loop Corrections

The key is to expand out ⟨e−SI [φ>,φ<]⟩0,> to get a series of n-point functions:

⟨e−SI [φ>,φ<]⟩0,> = ⟨
∞

∑
n=1

(−1)nSn
I

n!
⟩1PI, con.

0,> ≡ δS[φ<] (2.14)

Each order of the expansion corresponds to a set of Feynman diagrams with n ex-

ternal φ fields. Fortunately, the so-called linked-cluster theorem suggests that only

the connected (con.) one particle irreducible (1PI) diagrams have non-zero contri-

butions, which help eliminate most of the diagrams in the expansion.
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Figure 2.1: One-loop diagrams of the φ 4 theory. The diagram on the left corrects the
bosonic self-energy, and the one on the right corrects the φ 4 interaction strength
λ .

In one-loop order, the correction is simply

δS = ⟨SI⟩0,>− 1
2
⟨S2

I ⟩0,>, (2.15)

which corresponds to the two Feynman diagrams shown in Fig.2.1. The first di-

agram corrects the boson propagator and mass, and the second term corrects the

quartic coupling strength λ .

In order to calculate the diagrams one needs to make use of the bosonic prop-

agator

⟨φ(k)φ(q)⟩= Gφ (k)δ (k+q) =
δ (k+q)
k2 +m2 , (2.16)

which defines the contraction rule of the fields. The diagram that corrects the

quadratic propagator gives

⟨Sλ ⟩= 6λ

∫
Λ

Λe−dℓ

ddq
(2π)d Gφ (q)

∫
Λe−dℓ

0

ddk
(2π)d φ(k)2

= 12Sd
Λddℓ

Λ2 +m2 λ × 1
2

∫
Λe−dℓ

0
φ(k)2. (2.17)

The factor of 6 in the first line is the combinatorial factor from the equivalent ways

of contractions. Since the high-energy modes to be integrated out are on the mo-

mentum shell Λe−dℓ < |q| < Λ, the integral can be done by simply switching to

the spherical coordinates. Sd = 2πd/2/(Γ(d/2)(2π)d) is the surface area element

of a d−sphere. The shell integral leaves no dependence on the external momenta k,
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therefore it only corrects the mass m2. The second diagram in Fig.2.1 corrects the

quartic interaction, which evaluates to

−1
2
⟨S2

λ
⟩=−36Sd

Λddℓ
(Λ2 +m2)2 λ

2
∫ <

k1,k2,k3

φ(k1)φ(k2)φ(k3)φ(−k1 −k2 −k3).

(2.18)

2.2.2.3 RG Equations and Fixed Points

The RG scaling equations of the parameters can be derived by combining the tree-

level scaling and the diagrammatic corrections, which leads to

dm2

dℓ
= 2m2 +12Sd

Λd

Λ2 +m2 λ , (2.19)

dλ

dℓ
= (4−d)λ −36Sd

Λd

(Λ2 +m2)2 λ
2. (2.20)

The RG equations are differential equations of the parameters with respect to the

’time step’ ℓ. The parameters flow to some fixed point as the time step goes to in-

finity, or in other words, the system goes to the long-wavelength limit. Recall that

we only took the first order (one-loop) term in the cumulant expansion when calcu-

lating the diagrammatic corrections. This is only justified by doing an ε-expansion

around the upper critical dimension d∗ = 4. Substituting d = 4− ε into the RG

equations and solving for the fixed points where dm2/dℓ = 0 and dλ/dℓ = 0, one

gets two sets of solutions: (m∗,λ∗) = (0,0) and (m∗,λ∗) = (−Λ2ε/6,2π2ε/9). The

RG flow of the parameters and the fixed points are shown in Fig.2.2. The origin

is the Gaussian fixed point where all the interaction vanishes and the left theory is

simply a free theory of massless bosons. This fixed point is unstable, as an infinites-

imal perturbation will drive the parameters to flow away from this fixed point. The

nontrivial fixed point at finite values of m2 and λ is called the Wilson-Fisher fixed

point, which is an interacting fixed point that governs the symmetry-breaking phase

transition described by the φ 4 theory.

The subtlety of the above derivation is that we perform the integration of the

high-energy modes over a frequency-momenta shell. In principle, the frequency

integral should be done on the whole real axis. However, it can be shown that the
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Figure 2.2: RG flow of the parameters. The Gaussian fixed point at the origin corresponds
to the free theory without any interactions. It is unstable against infinitesimal
perturbations. The Wilson-Fisher fixed point, on the other hand, is an interact-
ing fixed with finite values of m2 and λ̃ .

nature of the fixed points is insensitive to the cutoff scheme used in RG, though the

exact values of the coupling parameters at the fixed points will.

2.3 From Graphene to Gross-Neveu-Yukawa Theory

The Ginzburg-Landau-Wilson paradigm provides a compact way to understand con-

tinuous phase transitions at a phenomenological level. In a gapped electron sys-

tem, using a pure order parameter theory to describe a symmetry-breaking phase

transition makes perfect sense, as the only low-energy degree of freedom is the

bosonic order parameter field. However, as mentioned in the Introduction, there are

cases where the GLW paradigm fails, which include topological phase transitions

in which no symmetry is spontaneously broken, and fermion-induced quantum crit-

icality where the fermions are gapless and hence cannot be integrated out in the
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low-energy theory. The difference is that, for a topological phase transition, usually

no order parameter can be defined as the symmetry remains untouched, while for

fermion-induced criticality, the fermions can simply be added on top of a symmetry-

breaking phase transition.

On the other hand, RG can also be used in other scenarios without phase transi-

tions. After all, when first proposed, RG was used to explain the low-energy physics

of the single-impurity Kondo problem, where there’s no phase transition at all. In

general, one can use RG as a tool to extract the low-energy physics of an interacting

system away from the exactly solvable point. Examples are to study the transport

property in low dimensions [48, 49, 50], or to compare the relevance of different

fermion interactions and the corresponding instability susceptibilities and decide

which instability wins [51, 52, 53]. Since we are interested in strongly correlated

electron systems, it is natural to consider RG for fermions instead of the bosons in

an order parameter theory.

Here we leave out the details of introducing the fermionic RG and only point

the interested readers to this review [47], as in the next chapter we will use perturba-

tive RG to face its primaeval archenemy in condensed matter physics, for which the

method was designed: an anisotropic Kondo model. The RG used there is merely a

slightly more complicated version of the original design, therefore by itself instruc-

tive and tractable. The main difference to bear in mind is the Grassmann algebra of

the fermionic field operators which gives the right anti-commutation relation of the

fermions [42].

2.3.1 Phase Transitions in Graphene: Dirac Fermion-induced

Quantum Criticality

How do we describe a symmetry-breaking phase transition if the electron dispersion

is gapless? We need an order parameter theory for the phase transition while keep-

ing track of the fermions, as they are crucial to the correct low-energy physics. Such

a resulting low-energy theory includes three types of interaction: the lowest order

fermion-fermion interactions, boson-boson interactions, and a Yukawa interaction

that couples the fermions and bosons. In order to study the low-energy fluctuations
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of the fermions, we expand the momentum around the Fermi surface. The RG will

then rely on the shape of the Fermi surface, as accounted for in [47]. To ease the

pain we want a Fermi surface as simple as possible, which makes the half-filled

Dirac semimetals with a point-like Fermi surface a perfect candidate.

2.3.1.1 Hubbard-Stratonovich Transformation

In real materials, the electrons are usually subject to long-range Coulomb interac-

tions. If metallic then the fermion fluctuations near the Fermi surface will screen

the Coulomb interaction, giving rise to an effective short-range interaction. If one

only considers nearest neighbor interactions in graphene, the Hamiltonian can be

written as

Ĥ =−t ∑
⟨i, j⟩

(c†
i c j +h.c)+U ∑

⟨i, j⟩
n̂in̂ j. (2.21)

Recall that the low-energy theory near the Fermi surface is described by relativistic

Dirac fermions. In the continuum limit, this gives rise to a Gross-Neveu model[54],

which in the path integral form reads

S =S0 +SI,

S0 =− i
∫

r
ψ̄ψψ(τ,r)(∂τσ0 ⊗ τ0 + vF∂∂∂ ·σσσ ⊗ τz)ψψψ(τ,r), (2.22)

SI =4U
∫

r1,r2,r3,r4

ψ̄ψψA(r1)τ0ψψψA(r2)ψ̄ψψB(r3)τ0ψψψB(r4), (2.23)

where ψψψ are Dirac fermion fields, and r = (τ,r) is the d+1 dimensional space-time

coordinates. σ ,τ are Pauli matrices corresponding to the spin and sublattice degrees

of freedom. As the interaction becomes stronger, the electrons on the honeycomb

lattice will go through a phase transition from a Dirac semimetal to a charge density

wave (CDW) insulator. In the CDW phase, a net difference in electron density

on the sublattice sites is established, corresponding to chiral symmetry breaking.

The order parameter of the CDW phase is the expectation value φ ≡ ⟨ψ̄ψψσz ⊗ τ0ψψψ⟩.
Therefore we rewrite the interaction in the standard way as

ψ̄ψψAτ0ψψψAψ̄ψψBτ0ψψψB =
1
4
[(ψ̄ψψσ0 ⊗ τ0ψψψ)2 − (ψ̄ψψσz ⊗ τ0ψψψ)2], (2.24)
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the first term is a uniform density which can be neglected. To introduce the order pa-

rameter field φ into the theory, we perform a Hubbard-Stratonovich transformation,

which utilises the property of the Gaussian integral

ex2
=

1
4π2

∫
e(−y2−2xy)dy. (2.25)

By introducing φ as an auxiliary field which conjugates to ψ̄ψψσz ⊗ τ0ψψψ , we have

e−U
∫
(ψ̄ψψσz⊗τ0ψψψ)2

=
∫

DφeU
∫
(φ 2+2φψ̄ψψσz⊗τ0ψψψ), (2.26)

and the partition function now becomes

Z =
∫

DφD [ψ̄ψψ,ψψψ]e−
∫
(Uφ 2+ψ̄ψψ(∂τ σ0⊗τ0+vF ∂∂∂ ·σσσ⊗τz)ψψψ+2Uφψ̄ψψσz⊗τ0ψψψ). (2.27)

The resulting theory includes both the fermion fields and the bosonic order pa-

rameter field, and a Yukawa interaction that couples them. This is the so-called

Gross-Neveu-Yukawa theory, which defines a new family of universality classes for

the Dirac-semimetal systems.

2.3.2 Gross-Neveu-Yukawa Theory

Since a detailed RG analysis of a GNY theory in which the order parameter field

follows a non-linear σ model will be scrutinized in Chapter 4, it is a bit redundant

to go through the details. Here we briefly sketch the momentum-shell RG of the

GNY theory. The large-N expansion technique is used to control the results. We
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start with the d +1 dimensional GNY theory in k-space:

S = Sψψψ +Sφ +SY +Sλ , (2.28)

Sψψψ =
∫

k
ψ̄ψψ(ω,k)(−iωσ0 ⊗ τ0 + vFk ·σσσ ⊗ τ0)ψψψ(ω,k), (2.29)

Sφ =
1
2

∫
k
φ(ω,k)(ω2 + c2k2 +m2)φ(ω,k), (2.30)

SY =
g√
N f

∫
k,q

φ(q)ψ̄ψψ(k)σz ⊗ τ0ψψψ(k+q), (2.31)

Sλ = λ

∫
k1,k2,k3

φ(k1)φ(k2)φ(k3)φ(−k1 − k2 − k3). (2.32)

Note that more terms are involved in the theory compared to Eq. 2.27. This is

because a full theory of the order parameter field φ needs to be involved to make

the RG calculation self-consistent. The matrix structure of the Yukawa coupling

SY depends on the mean-field channel in which we apply the Hubbard-Stratonovich

transformation, so it may vary depending on the specific phase transition. Here φ is

a scalar field for the CDW transition, but can be a vector or tensor depending on the

specific symmetry that’s broken. The spin degree of freedom τ is not involved in

the matrix structure but acts merely as an extra factor of 2 in the theory. Therefore

in the following calculation, we absorb the spins by redefining N f . c,vF are the

velocities for φ ,ψψψ , respectively.

2.3.2.1 Failure of 4-ε at finite ε

Since the bosonic order parameter field is still a φ 4 theory, it is natural for us to seek

comfort from the 4− ε expansion as it produces reasonable results even for ε = 1.

However, the luck does not extend to the GNY theory. It turns out the RG of the

GNY theory is much more sensitive to the dimensionality than the pure φ 4 theory.

To see this, one can derive the RG equations of the two velocities (vF ,c) through

different cutoff schemes. The slightly tedious derivation of the RG equations can

be found in [55]. In the paper, the authors have used the spherical and cylindrical

cutoff schemes to derive the RG corrections, and found that at infinitesimal ε , both

schemes give the same fixed point at vF = 1,c = vF , indicating the emergence of

Lorentz invariance at the fixed point. However, if one goes away from the critical
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FIG. 2. Polarization bubble diagram describing the IR regulator
of the bosonic propagator and the self-energy correction of the
bosons in the momentum shell.

For the multicomponent order parameters of the SDW
and superconducting phases, the polarization is diagonal,
!i j (q⃗) = !(q⃗)δi j , reflecting the underlying O(3) and U(1)
symmetries. In the limit of small q0, qx and at qy = 0, the
leading term is [25]
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where Nf is the number of fermion flavors. This contribution
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C. Self-energy and vertex corrections

Using the propagators (22) and (24) for fermionic and
bosonic fields, respectively, we can now go beyond the tree
level scaling and extract one-loop corrections to the propa-
gators and the Yukawa coupling. As mentioned before, the
bosonic φ4 is irrelevant and can be dropped.

We first concern ourselves with the one-loop renormal-
ization of the regularized bosonic propagator (24). The only
component that is of interest is in the qy direction as the
dependence on linear momentum and frequency directions in
the propagator comes from the IR, which is not renormalized
under the RG. The one-loop bosonic self-energy is depicted
in Fig. 2 and takes the form

!>(q⃗) = g2

2
Tr

∫ >

k⃗
YiGψ (k⃗)YiGψ (k⃗ + q⃗), (25)

where
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k⃗ means integration over the UV modes within
the frequency-momentum shell of width %z dℓ, as defined
in Eq. (13). Note that in the above expression, the order
parameter field component i is not summed over and that
the result is the same for all components. The leading terms
of the self-energy have the form !>(q⃗) = !0q2

0 + !xq2
x +

!yq2
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φ
. Expanding the fermionic propagator to second

order in qy, then performing the coordinate transformation
(16) and integrating over the energy shell, we find that the
renormalization of the c2

y coefficient is given by
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Although the mass of the bosons m2
φ also runs in the RG flow,

for now it will be fine tuned to zero at the critical surface.
We will address the renormalization of m2

φ in detail later on
in Secs. III F and III G, when we examine the vicinity of the
quantum multicritical point.

FIG. 3. (a) Self-energy correction to the fermionic propagator in
one loop. (b) Vertex correction diagram to the Yukawa coupling.
The bosonic propagator is represented by the wavy line while the
fermionic propagator by the straight line.

Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to

"(k⃗) = −g2
Nb∑

i

∫ >

q⃗
Gφ (q⃗)YiGψ (k⃗ + q⃗)Yi. (27)

After shell integration, it takes the form

"(k⃗) = s0 ⊗
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(0(k0σ
0 + vkxσ

x ) + (y
k2

y

2m
σy

]

zdℓ, (28)

where
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2Nf
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%

)
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0
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2 sin θ
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√
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0
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cos 2θ + 2 cos 4θ

x−1 cos θ +
√

sin θ
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are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,

$i = g3
Nb∑

j

∫ >

q⃗
Gφ (q⃗)Y jGψ (q⃗)YiGψ (q⃗)Y j . (33)

The matrix $i is proportional to the Yukawa matrix Yi, $i =
g* Yizdℓ, where we have absorbed a factor of g2 in the
definition of *. Performing the shell integral we obtain

* = −2 − Nb

2Nf
F3

(
2Nf

√
2mg2

vc2
y

√
%

)

(34)

with

F3(x) = 1
4π2

∫ π
2

0
dθ

1

x−1 cos θ +
√

sin θ

sin θ√
cos θ

. (35)

Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to
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are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,
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∫ >
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Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to
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Nb∑
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∫ >
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Gφ (q⃗)YiGψ (k⃗ + q⃗)Yi. (27)
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are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,
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∫ >
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Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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Figure 2.3: The related one-loop diagrams of the GNY theory in D < 4. (a)The fermion
polarisation bubble diagram gives rise to the non-analytic Landau damping on
the bosonic field. (b)The diagram corrects the fermionic self-energy. (c)The
diagram corrects the Yukawa interaction.

dimension, i.e., ε becomes finite, vF = c = 1 is no longer a fixed point in the cylin-

drical scheme but remains untouched in the spherical scheme. That is to say, at

lower dimensions, the two cutoff schemes give different sets of critical exponents.

This is unphysical. As mentioned in the previous section, although the exact value

of the fixed point may be cutoff-dependent, the nature of the fixed point should not.

Furthermore, the issue remains at the large-N f limit: As long as we move away from

the upper critical dimension, the results become completely scheme-dependent.

2.3.2.2 Landau Damping

The strong dependence on dimensionality suggests that the problem is probably in

the scaling dimension of the fields. In other words, the scaling form of the free

theory might be incorrect. Indeed, it was found in [56] that the missing ingredient

is the order parameter screening. The Yukawa coupling relates the fermion to the

bosons, therefore the scattering events of electrons and holes near the Fermi surface

will also exert an impact on the order parameter field, in the same spirit as the

screening of the long-range Coulomb interaction and the Kondo screening of the

impurity spin. This is a non-perturbative effect, dubbed Landau damping, which

cannot be captured within a perturbative RG scheme. To account for such screening

effect, one needs to follow the standard way of calculating the Coulomb screening

using a random phase approximation (RPA) and re-sum up the fermion polarisation

bubble up to infinite orders. Diagrammatically this simply means to calculate the

diagram correction in Fig.2.3(a) by taking the integral over the whole real axis. The
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boson self-energy correction is then

Π(q) =
g2

N f

∫
k
Gψψψ(k+q)Gψψψ(k). (2.33)

The integral has an IR divergence at q = 0, this suggests that the main contribution

of the order parameter screening comes from the low-energy modes, which are not

accounted for in the perturbative RG scheme. Regularising the results by removing

the Π(0) singularity, one arrives at the following form:

Π(k) = αDg2(ω2 + vFk2)
D−2

2 +m2, (2.34)

where αD is some prefactor that relies on the dimension D. One can see that for

D ≥ 4, Π(k) has a higher power in |k| than the quadratic k2 term in the bare theory.

Therefore the term is irrelevant under RG and could be neglected. However, for

D < 4, the zero-energy particle-hole fluctuations of the Dirac fermions at the Fermi

surface effectively screen the order parameter field, giving rise to a self-energy cor-

rection that has a lower power in |k|, rendering the k2 term coming from the bare

φ 4 theory subleading. In the RG sense, the self-energy contribution from the Lan-

dau damping is the most relevant term, and should be kept in the calculation. This

non-analytic term will not flow under RG, leaving us the flexibility of choosing

the scaling dimension of the bosonic fields [φ ]. We can fix [φ ] by choosing the

Yukawa coupling to be marginal, which gives [φ ] = −2− [g]. This in turn ren-

ders the φ 4 term irrelevant, and more importantly, cures the problem of unphysical

cutoff-scheme dependence [55].

2.3.2.3 Fixed Point at Large-N f

The inclusion of the gapless Dirac fermions has significantly changed the scaling

of the order parameter fields, and made our theory much more simple: We can drop

the subleading k2 term in the bosonic propagator, and the φ 4 interaction, and only
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consider the renormalisation of the rest:

S = Sψψψ +Sφ +SY , (2.35)

Sψψψ =
∫

k
ψ̄ψψ(ω,k)(−iωσ0 + vFk ·σσσ)ψψψ(ω,k), (2.36)

Sφ = αDg2
∫

k
φ(ω,k)(ω2 + c2k2)

D−2
2 φ(ω,k), (2.37)

SY =
g√
N f

∫
k,q

φ(q)ψ̄ψψ(k)σzψψψ(k+q), (2.38)

(2.39)

Now that we have fixed the problem of cutoff-dependent results, we can choose to

work in the spherical scheme, and the velocities vF and c can be safely set to one.

The related one-loop diagrams are shown in Fig.2.3. The fermionic self-energy

correction has the form

Σdℓ
∫

k
ψ̄ψψ(ω,k)(−iωσ0 + vFk ·σσσ)ψψψ(ω,k), (2.40)

where Σdℓ is given by

Σdℓ=− g2

N f

∫ >

q
σzGψψψ(q+ k)σzGφ (q)

=− g2

N f

∫ >

q
σz

i(Ω+ω)σ0 +(q+k) ·σσσ
(Ω+ω)2 +(q+k)2 σz

1
αDg2 (Ω

2 +q2)−
D−2

2

=− SD

αDN f

∫
Λ

Λe−dℓ
dq q−2−D−2

2

=−(D−2)SD

DαDN f
dl. (2.41)

In the calculation, we have expanded out the external momenta k and only keep the

terms that are linear in k.
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Similarly, the correction to the Yukawa coupling is evaluated as

Ωσzdl =
g

N3/2
f

∫ >

q
σzGψψψ(q)σzGψψψ(q)σzGφ (q)

=− g

αDN3/2
f

dl. (2.42)

Combining all the one-loop corrections we can then derive the critical expo-

nents, whose exact values are not important here. One may realise that, by fixing

the scaling dimension of φ by making the Yukawa coupling marginal, no param-

eter flows under RG. That is to say, the theory is always scale-invariant, and we

stay at the nontrivial fixed point throughout the whole calculation. One important

observation to note is that, under the RG, not only do the bosonic φ fields gain

an anomalous dimension from the diagrammatic corrections, but so do the fermion

fields. The non-zero fermion anomalous dimension suggests that the quasi-particle

residue in the fermion spectral function renormalises to zero [56], i.e., the quasi-

particle picture of the Fermi liquid theory breaks down. Such non-Fermi liquid

behavior [57, 58, 59, 60] near a quantum critical point is a natural result of the

fermion-induced criticality, and should be related to the physics within the so-called

’quantum critical fan’, such as unconventional superconductivity [61].

One last fact to face is that the one-loop results should only be valid in the

large-N f limit, but in reality the fermions in graphene have N f = 4, which is not

large at all. However, as in the case of ε expansion for the φ 4 theory when ε = 1,

the results seem to be convergent reasonably well [62].

2.4 Discussion
In this chapter, we have introduced the Ginzburg-Landau-Wilson paradigm of phase

transition. Accompanied by the powerful renormalisation group method, the order

parameter theory developed by Ginzburg and Landau is extremely successful in de-

scribing the symmetry-breaking phase transitions in gapped electron systems. This

leads to the discovery of similarity of critical systems at different scales, and the

universal behaviors of physical observables near a critical point.
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We then studied the RG of the simple scalar φ 4 theory, through an ε expansion

at the upper critical dimension. The RG led us to two fixed points, the Gaussian

fixed point, corresponding to the free theory, and the Wilson-Fisher fixed point, an

interacting fixed point that governs the continuous phase transition.

However, for gapless electron systems, a pure order parameter theory is not

enough. In order to study a symmetry-breaking phase transition in presence of

electrons with a Fermi surface, one has to include the fermions in the low-energy

theory. The geometry of the Fermi surface is crucial to the critical behaviors. We

therefore considered the case in which the fermions have the simplest point-like

Fermi surface, like the Dirac fermions in graphene. Such a low-energy theory near

the Fermi surface corresponds to the Gross-Neveu theory in particle physics. Then

a Hubbard-Stratonovich transformation is needed to enforce the bosonic order pa-

rameter field into the theory, which rewrites the four-fermion interaction term into

a Yukawa coupling that relates the fermions and bosons.

Such a GNY theory indicates a new family of universality. The most significant

feature of such a fermion-induced criticality is Landau damping. The zero-energy

fluctuations of the fermions screen the order parameter propagator, generating a

non-analytic correction to the bosonic self-energy which dominates in dimensions

lower than 4. The gapless fermions thus induce a change in the scaling of the

bosons, and the bosons in turn slap back and affect the scaling of fermions, leaving

a brand new scaling behavior that is strongly dimensionality-dependent, but rather

straightforward.



Chapter 3

Magnetic Hard-direction Ordering in

the Anisotropic Kondo Model

We start with the original problem that RG was introduced to attack: The Kondo

problem. The methods used in this chapter are perturbative numerical RG which

are merely a modern version of the original ones developed by Anderson [63] and

Wilson [4, 5]. We will show that those simple methods on an old problem can

still give some interesting physics that might be able to provide insight into an

experimentally wide observed phenomenon.

The original work in this chapter was published in Magnetic hard-direction

ordering in anisotropic Kondo systems, M. P. Kwasigroch, H. Hu, F. Krüger, A. G.

Green, Physical Review B 105 (22), 224418.[64].

3.1 Introduction
Fluctuations are at the heart of many complex ordering phenomena, leading to the

formation of exotic phases of matter. Examples include nematic order in iron-based

superconductors [65, 66], driven by strong spin fluctuations above the magnetic or-

dering temperature [67], and p-wave spin-triplet superconductivity near ferromag-

netic quantum critical points [68, 69]. In the latter case, the required attraction in

the p-wave channel is generated by fluctuations. This mechanism is very similar in

spirit to fluctuation generated Casimir and Van-der-Waals forces [70].

In itinerant ferromagnets the coupling between the magnetic order parameter
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and soft electronic particle-hole fluctuations leads to a plethora of exotic ordering

phenomena [71]. It is responsible for fluctuation induced first-order behaviour at

low temperatures [72, 73, 74, 75], observed experimentally in many systems [76,

77, 78, 79, 80]. Since the phase space for electronic fluctuations can be enhanced

by deformations of the Fermi surface, metallic ferromagnets are very susceptible

towards the formation of spin nematic [73], modulated superconducting [81] or

incommensurate magnetic order [82, 83, 84, 85, 86].

Fluctuations can also have counter-intuitive effects upon the direction of mag-

netic order parameters. A notable example is the partially ordered phase of MnSi,

in which the helimagnetic ordering vector rotates away from the lattice favored di-

rections [87, 88]. Magnetic hard-axis ordering in metallic ferromagnets is fairly

wide spread [89, 90]. Such a moment re-orientation can arise as combined effect of

fluctuations and magnetic frustration in a local moment model [91]. In an alterna-

tive scenario the effect was attributed to soft electronic particle-hole fluctuations in

a purely itinerant model with spin-orbit induced anisotropy [92].

In this chapter we show that electronic fluctuations can drive magnetic hard-

axis ordering in anisotropic Kondo materials. As first established by Kondo [93], the

scattering of electrons by local moments gives rise to logarithmic corrections to the

magnetic susceptibility. In the presence of magnetic anisotropy, these logarithmic

corrections depend upon direction. Near the Kondo scale, these terms can com-

pletely overwhelm the crystal-field anisotropy experienced by the local moment,

driving a moment re-orientation.

We identify a generic mechanism for magnetic hard-axis ordering that fully

accounts for the following experimental facts [89]: (i) All the materials that show

hard-axis ordering are Kondo systems. (ii) The susceptibility crossing occurs above

the magnetic ordering temperature Tc. (iii) In tetragonal systems the moment re-

orientation can occur from easy plane to hard axis [94, 95, 96, 97], or the other

way round, from easy axis to hard plane [98, 99]. (iv) The effect also occurs in

systems that show a first-order magnetic transition [100, 101]. (v) Similar magnetic

hard-axis ordering is observed in Kondo systems that order antiferromagnetically
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[102, 103, 104].

The chapter is organized as follows. In Sec. 3.2, we introduce the S = 1, N-

channel single-impurity Kondo model with single-ion anisotropy. The interplay of

Kondo screening and anisotropy is studied within perturbative RG in Sec. 3.3. We

show that near the Kondo scale the single-ion anisotropy can change sign, indica-

tive of a reorientation of the dressed magnetic moment. In Sec. 3.4, we use the

numerical renormalization group (NRG) to investigate the strong-coupling behav-

ior of the single-channel Kondo model of an S = 1 spin with single-ion anisotropy

and demonstrate that a crossing of the magnetic susceptibilities can occur far below

the Kondo temperature in systems with easy-plane anisotropy. Finally, in Sec. 3.5,

we summarize and discuss our results.

3.2 The Anisotropic Kondo Model
Since the magnetic susceptibility crossing occurs above Tc, irrespective of the order

of the transition and the nature of the ordered state, the dominant effect can be un-

derstood on the level of a single-impurity Kondo model with single-ion anisotropy,

Ĥ =
N

∑
n=1

|εk|<Λ

∑
k

εkψψψ
†
knψψψkn +αΛ

(
Ŝz)2

+
1

N2

N

∑
n=1

∑
k,q

∑
γ=x,y,z

Jγ Ŝγ
ψψψ

†
knσσσ γψψψqn. (3.1)

Here ψψψ
†
kn = (c†

kn↑,c
†
kn↓) with c†

knσ
the creation operator of an electronic quasi-

particle with momentum k and spin σ in channel n = 1, . . .N. The first term sim-

ply denotes N identical bands with dispersion εk, subject to an energy cut-off Λ.

The second term is the single-ion anisotropy of the local moment spin (S ≥ 1) in

a tetragonal crystal, expressed in units of Λ. In the following we will investigate

both easy-axis (α < 0) and easy-plane (α > 0) anisotropies. The last term in the

Hamiltonian denotes the Kondo coupling between the impurity spin and the con-

duction electrons, where σσσ γ are the standard Pauli matrices. Assuming tetragonal

symmetry we have Kondo couplings Jxy := Jx = Jy and Jz.
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3.3 Perturbative Renormalisation Group
To analyze the scale dependence of the single-ion anisotropy α and the Kondo cou-

plings Jxy and Jz, we integrate out processes to second order in the Kondo cou-

plings that involve the creation of particles or holes in the infinitesimal energy

shells Λe−dℓ < |εk| < Λ. This procedure, dubbed “poor man’s scaling”, was first

applied by Anderson [63] to the anisotropic S = 1/2 one-channel Kondo model. For

S = 1/2, anisotropy only enters through the Kondo couplings Jxy and Jz.

Here we generalize to N channels and an S ≥ 1 impurity subject to single-ion

anisotropy. Moreover, in the spirit of the conventional RG treatment we rescale to

the original cut-off at each RG step. The partition function of the single-impurity

Kondo model can be written down in the path-integral representation as follows

Z =
∫

DS(τ) Dψψψ
†
kn(τ)Dψψψkn(τ) e−S0−U , (3.2)

where S(τ) = (Sx(τ),Sy(τ),Sz(τ)) is the impurity spin, ψψψ
†
kn(τ) = (c†

kn↑(τ),ckn↓(τ))

the Grassmann variables describing the conduction electrons, and

S0 =
∫

β

0
dτ

N

∑
n=1

|εk|<Λ

∑
k

ψψψ
†
kn(τ)(∂τ + εk)ψψψkn(τ)+Simp[S(τ)],

U =
∫

β

0
dτ

N

∑
n=1

∑
k,q

∑
γ=x,y,z

JγSγ(τ)ψψψ†
kn(τ)σσσ γψψψqn(τ).

(3.3)

S0 is the action corresponding to the Hamiltonian Ĥ0 = ∑k,n,σ εkc†
knσ

cknσ +

αΛ
(
Ŝz)2 and Simp[S(τ)] is the action of a free impurity with a spin quantum number

s and Hamiltonian Ĥimp = αΛ
(
Ŝz)2. This latter action contains the necessary terms

that enforce constraints satisfied by S(τ). We do not give an explicit form here,

which will depend on the representation used, e.g. Abrikosov pseudofermions,

spin-coherent states, Schwinger bosons, etc., and is not important for subsequent

representation-independent calculations. Note also that every sum over electron

momenta k includes the normalization factor of 1/
√

Ns, where Ns is the number of

electron lattice sites.



3.3. Perturbative Renormalisation Group 54

3.3.1 Integrating out fast modes

We begin the renormalization group procedure by integrating out fast fermion

modes ψψψ
†
kn(τ) with Λe−dℓ < |εk| < Λ. To second order in the Kondo exchange

U , the renormalized actions can be written as

S′0 =
∫

β

0
dτ

|εk|<Λe−dℓ

∑
k,n

ψψψ
†
kn(τ)(∂τ + εk)ψψψkn(τ)+Simp[S(τ)],

U ′ =
∫

β

0
dτ

|εk,q|<Λe−dℓ

∑
k,q,n

∑
γ=x,y,z

JγSγ(τ)ψψψ†
kn(τ)σσσ γψψψqn(τ)−

1
2
⟨U2⟩conn.

fast , (3.4)

where the expectation value is taken with respect to the part of S0 describing the

fast modes. We write −1
2⟨U2⟩conn.

fast as the following sum

−1
2
⟨U2⟩conn.

fast = u1J2
xy +u2J2

z +u3JzJxy, (3.5)

and we will now go through the calculation of each of the coefficients u1,u2,u3.

3.3.1.1 J2
xy coefficient

The J2
xy coefficient is given by the following expectation value

u1 = −
∫

dτ1dτ2

N

∑
n,m=1

|εk,k′ |<Λedℓ

∑
k,k′

Λe−dℓ<|εq,q′ |<Λ

∑
q,q′

(
S+(τ2)S−(τ1) ckm↑(τ2)c

†
k′n↑(τ1)

×
〈

c†
qm↓(τ2)cq′n↓(τ1)

〉
+S−(τ2)S+(τ1) ckm↓(τ2)c

†
k′n↓(τ1)

〈
c†

qm↑(τ2)cq′n↑(τ1)
〉)

,

= −ρdℓΛ
∫

dτ1dτ2 ∑
n

∑
k,k′∈slow

sign(τ2 − τ1)e−|τ2−τ1|Λ
(

S+(τ2)S−(τ1) ckn↑(τ2)c
†
k′n↑(τ1)

+S−(τ2)S+(τ1) ckn↓(τ2)c
†
k′n↓(τ1)

)
≡ u(1)1 +u(2)1 , (3.6)

where ∑q,q′∈fast⟨c†
qmσ (τ2)cq′nσ (τ1)⟩ = δmnρdℓΛsign(τ2 − τ1)e−|τ2−τ1|Λ in the limit

βΛ → ∞. It is useful to introduce new variables τ = 1
2(τ1+τ2) and ∆ = τ2−τ1, and

split the integration over ∆ into ∆ > 0 and ∆ < 0 regions. In the limit Λ → ∞, when
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|∆| → 0, we can write the first term as

u(1)1 =−ρdℓΛ∑
n

∑
k,k′∈slow

∫
dτ

(∫
∆>0

d∆ e−Λ∆ ⟨τ|e∆Ĥ0/2ĉkn↑Ŝ+e−∆Ĥ0 ĉ†
k′n↑Ŝ−e∆Ĥ0/2|τ⟩

+
∫

∆<0
d∆ eΛ∆ ⟨τ|e−∆Ĥ0/2ĉ†

k′n↑Ŝ−e∆Ĥ0 ĉkn↑Ŝ+e−∆Ĥ0/2|τ⟩
)
,

(3.7)

where we have transformed to the operator representation of the expansion of the

partition function in powers of Jγ , and |τ⟩ are the path-integral coherent states in

terms of which the partition function is written down. Integrating over ∆, we obtain

u(1)1 = −ρdℓΛ∑
n

∑
k,k′∈slow

∫
dτ

〈
τ

∣∣∣∣∣ Ŝ+Ŝ−ĉkn↑ĉ†
k′n↑

Λ(1+α(1−2Ŝz)
+

Ŝ−Ŝ+ĉ†
k′n↑ĉkn↑

Λ(1+α(1+2Ŝz)

∣∣∣∣∣τ
〉

= 2ρdℓ∑
n

∑
k,k′∈slow

∫
dτ c†

kn↑(τ)ck′n↑(τ)
(
(1−α (1−2s(s+1)))Sz(τ)−2α (Sz(τ))3

)
−2Nρ

2
Λdℓ

∫
dτ (1−α(1−2Sz (τ))

(
s(s+1)− (Sz(τ))2 +Sz(τ)

)
+O(α2),

(3.8)

where we have neglected terms proportional to εkΛ−1 in the first line and terms

second order in α in the second line. Following the same steps, we obtain for the

second term in Eq. 3.6

u(2)1 = −ρdℓΛ∑
n

∑
k,k′∈slow

∫
dτ

〈
τ

∣∣∣∣∣ Ŝ−Ŝ+ĉkn↓ĉ†
k′n↓

Λ(1+α(1+2Ŝz)
+

Ŝ+Ŝ−ĉ†
k′n↓ĉkn↓

Λ(1+α(1−2Ŝz)

∣∣∣∣∣τ
〉

= −2ρdℓ∑
n

∑
k,k′∈slow

∫
dτ c†

kn↓(τ)ck′n↓(τ)
(
(1−α (1−2s(s+1)))Sz(τ)−2α (Sz(τ))3

)
−2Nρ

2
Λdℓ

∫
dτ (1−α(1+2Sz(τ)))

(
s(s+1)− (Sz(τ))2 −Sz(τ)

)
.

(3.9)
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Putting u(1)1 and u(2)1 together, we obtain the coefficient of the J2
xy term,

u1 = 2ρdℓ∑
n

∑
k,k′∈slow

∫
dτ

(
c†

kn↑(τ)ck′n↑(τ)− c†
kn↓(τ)ck′n↓(τ)

)
×
(
(1−α (1−2s(s+1)))Sz(τ)−2α (Sz(τ))3

)
+4Nρ

2dℓ(1−3α)Λ
∫

dτ (Sz(τ))2 + const.+O(α2), (3.10)

The J2
xy coefficient contains terms proportional to (Sz(τ))2, which renormalize

α by 4NJ2
xyρ2dℓ(1− 3α), as well as terms proportional to c†

σ (τ)cσ (τ)Sz(τ) and

c†
σ (τ)cσ (τ)(Sz(τ))3. For s = 1, (Sz(τ))3 = Sz(τ), and both of these renormalize Jz.

For s > 1, terms proportional to c†
σ (τ)cσ (τ)(Sz(τ))3 generate a new coupling that

is not present in the original model. We will neglect these for s > 1 and only keep

terms proportional to c†
σ (τ)cσ (τ)Sz(τ), which renormalize Jz. (Note that our result

is exact for s = 1.) We thus obtain the following renormalization of Jz

J′z =


Jz +2ρdℓJ2

xy(1+α) for s = 1,

Jz +2ρdℓJ2
xy (1−α (1−2s(s+1))) for s > 1,

3.3.1.2 J2
z coefficient

The J2
z coefficient is given by

u2 =−∑
σ

N

∑
n,m

<

∑
k,k′

>

∑
q,q′

∫
dτ1dτ2 Sz(τ2)Sz(τ1)ckmσ (τ2)c

†
k′nσ

(τ1)
〈

c†
q′mσ

(τ2)cqnσ (τ1)
〉
.(3.11)

Following the same steps as for the J2
xy coefficient u1, we rewrite u2 as

u2 = −ρΛdℓ∑
n

∑
k,k′∈slow

∫
dτ

(∫
∆>0

d∆ e−Λ∆ ⟨τ|e∆Ĥ0/2ĉknσ Ŝze−∆Ĥ0 ĉ†
k′nσ

Ŝze∆Ĥ0/2|τ⟩

+
∫

∆<0
d∆ eΛ∆ ⟨τ|e−∆Ĥ0/2ĉ†

k′nσ
Ŝze∆Ĥ0 ĉknσ Ŝze−∆Ĥ0/2|τ⟩

)
= −ρdℓ∑

n
∑

k,k′∈slow

∫
dτ

〈
τ

∣∣∣(Ŝz)2
(ĉknσ ĉ†

k′nσ
+ ĉ†

k′nσ
ĉknσ )

∣∣∣τ〉
= −4Nρ

2dℓ
∫

dτ (Sz(τ))2 . (3.12)
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Hence, the J2
z term renormalizes α by −4NJzρ

2dℓ. Combining the renormalization

of α from the J2
xy and J2

z terms, its overall renormalization is given by

α
′ = α +4NJ2

xyρ
2dℓ(1−3α)−4NJ2

z ρ
2dℓ. (3.13)

3.3.1.3 JxyJz coefficient

The coefficient of the JxyJz term is given by

u3 =
N

∑
n,m=1

∑
k,k′∈slow

∑
q,q′∈fast

∫
dτ1dτ2

(
S+(τ2)Sz(τ1) ckm↑(τ2)c

†
k′n↓(τ1)

〈
c†

q′m↓(τ2)cqn↓(τ1)
〉

−Sz(τ2)S+(τ1) ckm↑(τ2)c
†
k′n↓(τ1)

〈
c†

q′m↑(τ2)cqn↑(τ1)
〉)

+h.c.

≡
(

u(1)3 +u(2)3

)
+h.c. (3.14)

Following the same steps as for the J2
xy coefficient, we can rewrite the first of the

above terms as follows

u(1)3 = ρΛdℓ∑
n

∑
k,k′∈slow

∫
dτ

(∫
∆>0

d∆ e−Λ∆ ⟨τ|e∆Ĥ0/2ĉkn↑Ŝ+e−∆Ĥ0 ĉ†
k′n↓Ŝze∆Ĥ0/2|τ⟩

+
∫

∆<0
d∆ eΛ∆ ⟨τ|e−∆Ĥ0/2ĉ†

k′n↓Ŝze∆Ĥ0 ĉkn↑Ŝ+e−∆Ĥ0/2|τ⟩
)

= ρdℓ∑
n

∑
k,k′∈slow

∫
dτ

〈
τ

∣∣∣∣∣ĉ†
k′n↓ĉkn↑

(
Ŝz

Ŝz − α

2 (1−2Ŝz)
Ŝ+−S+

Ŝz

1− α

2 (1+2Ŝz)

)∣∣∣∣∣τ
〉

= ρdℓ∑
n

∑
k,k′∈slow

∫
dτ

〈
τ

∣∣∣ĉ†
k′n↓ĉkn↑

(
1− α

2
−2α

((
Ŝz)2 − Ŝz

))
Ŝ+
∣∣∣τ〉+O(α2)

=
(

1− α

2

)
ρdℓ∑

n
∑

k,k′∈slow

∫
dτ c†

k′n↓(τ)ckn↑(τ)S+(τ)+O(α2),

(3.15)

where the last line is exact for s = 1, and for s > 1, higher order terms that generate

new couplings have been neglected. Applying the same steps to the second term in
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Eq. 3.14 we obtain

u(2)3 = −ρdℓ∑
n

∑
k,k′∈slow

∫
dτ

〈
τ

∣∣∣∣∣ĉ†
k′n↓ĉkn↑

(
S+

Ŝz

1− α

2 (1+2Ŝz)
− Ŝz

1− α

2 (1−2Ŝz)
Ŝ+
)∣∣∣∣∣τ

〉
= ρdl ∑

n
∑

k,k′∈slow

∫
dτ

〈
τ

∣∣∣ĉ†
k′n↓ĉkn↑

(
1− α

2
−2α

((
Ŝz)2 − Ŝz

))
Ŝ+
∣∣∣τ〉+O(α2)

=
(

1− α

2

)
ρdℓ∑

n
∑

k,k′∈slow

∫
dτ c†

k′n↓(τ)ckn↑(τ)S+(τ)+O(α2)

(3.16)

Putting the two parts of u3 together, we obtain

u3 = 2
(

1− α

2

)
ρdℓ∑

n
∑

k,k′∈slow

∫
dτ

(
c†

k′n↓(τ)ckn↑(τ)S+(τ)+h.c.
)

(3.17)

The JxyJz term thus renormalizes the Jxy coupling

J′xy = Jxy +2ρdℓJxyJz

(
1− α

2

)
. (3.18)

3.3.2 Restoring the cutoff

In the neighborhood of the Fermi surface defined by |εk|< Λ, we can approximate

the sum over k states as

∑
k

∝

∫
dk⊥dk∥, (3.19)

where dk⊥ and dk∥ correspond to local changes in components of k perpendicu-

lar and parallel to the Fermi surface respectively. In particular, k⊥ measures the

perpendicular distance to the Fermi surface in k-space. We will also assume a con-

stant density of states throughout the Fermi surface neighbourhood, as well as a

linear energy dispersion εk ∝ k⊥. With the above assumptions in mind, the follow-

ing rescaling will restore the energy cutoff, which has been reduced to Λe−dℓ by
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integrating out the fast modes

k⊥ → e−dℓk⊥

τ → edℓ
τ

c†
nσ (k⊥,k∥,τ) → edℓ/2c†

nσ (k⊥,k∥,τ), (3.20)

The only couplings that will acquire naive scaling as a result are

α → edℓ
α,

β → e−dℓ
β . (3.21)

3.3.3 RG flow equations

We can now put together the renormalisations generated by −1
2⟨U2⟩conn.

fast , and listed

in sec. 3.3.1, and the rescaling given in sec. 3.3.2, to obtain the following RG flow

equations

dgz

dℓ
=


g2

xy(1+α)) for s = 1,

g2
xy(1+α)(1−α (1−2s(s+1))) for s > 1,

dgxy

dℓ
= gxygz

(
1− α

2

)
,

dα

dℓ
= α +N

(
g2

xy −g2
z
)
−3Ng2

xyα, (3.22)

where we have introduced the dimensionless couplings gxy := 2Jxyρ and gz := 2Jzρ .

The flow equations are exact in the limit Λ → ∞ and α → 0. They describe the RG

flow fully for s = 1. For s > 1, new terms in the Hamiltonian, proportional to(
Ŝz)3, ŜzŜ+,

(
Ŝz)2

Ŝ+ and their hermitian conjugates, are generated. These were not

present in the original anisotropic Kondo model and have been neglected.

The above system of equations exhibits two possible runaway behaviours: (i)

anisotropy runaway {|α| → ∞,gxy → 0,gz → const}, (ii) Kondo runaway {|α| →
0,gxy → ∞,gz → ∞}. The regime we fall in is determined by which parameter
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diverges faster. We can illustrate this with the example of initially small anisotropy

α(0), and initially small Kondo couplings gxy(0) = gz(0). At short RG times ℓ,

α(ℓ) = α(0)eℓ and gγ(ℓ) = (g−1
γ (0)− ℓ)−1. Hence, if |α(0)|e−1/gγ (0), α becomes

of order one first and we fall into the anisotropy runaway regime. Otherwise, gγ

becomes of order one first and we fall into the Kondo runaway regime. Before the

Kondo couplings increase beyond the validity of the weak-coupling RG approach,

a sign change of α can occur.

Since the qualitative behaviour of the RG flow is the same for all values of

S ≥ 1 and N, we focus on the under-screened case with S = 1 and N = 1 from now

on. The weak-coupling RG equations are

dgz

dℓ
= g2

xy(1+α),
dgxy

dℓ
= gxygz(1−

α

2
),

dα

dℓ
= α +g2

xy −g2
z −3g2

xyα, (3.23)

where gγ = 2ρJγ are the dimensionless Kondo couplings. For simplicity, we have

adopted the usual assumption [63] of a constant density of states ρ . The scale

parameter ℓ is related to temperature, ℓ= log(Λ/T ).

In the absence of anisotropy, gxy = gz and α = 0, the system remains isotropic

under the RG flow, as expected. For α = 0, the RG equations for gxy and gz take the

familiar form [63]. In the relevant regime of antiferromagnetic Kondo couplings the

flow is towards strong coupling, gγ → ∞, corresponding to the Kondo regime.

This picture is incomplete, however, since the anisotropy in the Kondo cou-

plings generates single-ion anisotropy due to the
(
g2

xy −g2
z
)

term in the RG equa-

tion for α . This leads to a flow out of the α = 0 plane. For gxy > gz the flow is to

positive α , corresponding to easy-plane anisotropy, while for gxy < gz an easy axis

anisotropy is generated. Finite α modifies the RG flow of the Kondo couplings, e.g.,

easy-plane anisotropy (α > 0) leads to gz growing faster than gxy. The interplay of

these effects ultimately leads to the moment re-orientation that is the main subject

of this work.

In Fig. 3.1, the evolution of the coupling constants under the RG is shown.
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Easy Plane 
Anisotropy

Easy Axis 
Anisotropy

Figure 3.1: RG flow of the single-ion anisotropy α and Kondo couplings gxy, gz. The
direction of the flow is shown by blue arrows and the transparent grey surface
separates regions of increasing and decreasing α . The trajectories (A),(B),(C)
correspond to an initial easy-plane anisotropy α(0) = 0.1 and increasing values
of gxy(0) = gz(0): (A) For weak gγ(0) the anisotropy stabilizes the moment and
supresses Kondo screening. (B) For intermediate values of gγ(0), α changes
sign before gγ diverge. This indicates a moment re-orientation above the Kondo
temperature. (C) For large gγ(0) the Kondo scale is reached before moment re-
orientation can occur. (A′),(B′) and (C′) show the analogous behaviour for an
initial easy-axis anisotropy α(0) =−0.1.
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For the trajectories (A), (B) and (C) we have chosen an easy-plane anisotropy

α(0) = 0.1 and initially isotropic Kondo couplings, gxy(0) = gz(0). In the regime of

weak Kondo coupling (A), α keeps growing, leaving the regime where the RG equa-

tions are valid. This behaviour indicates that the single ion anisotropy stabilizes the

moment, preventing Kondo screening. Magnetic hard-axis ordering therefore does

not occur for sufficiently strong anisotropy, compared to the Kondo coupling, which

is consistent with experimental observations [89].

For (B) the growing splitting of the increasing Kondo couplings reverse the

flow of α at a scale ℓmax, corresponding to the point where the trajectory crosses

the grey surface in Fig. (3.1), defined by α + g2
xy − g2

z − 3g2
xyα = 0. At some scale

ℓ0, corresponding to a temperature T0 = Λe−ℓ0 , α changes sign, indicating a re-

orientation of the moment. At a larger scale ℓ∗ > ℓ0 the rapidly increasing Kondo

couplings diverge, corresponding to the Kondo temperature TK = Λe−ℓ∗ < T0.

If the initial Kondo couplings are too large (C), the Kondo scale is reached

before a moment re-orientation occurs. Note that this strong coupling regime lies

beyond the validity of the perturbative RG treatment. The trajectories (A′), (B′) and

(C′) show the completely analogous behaviour for the case of easy-axis anisotropy.

3.4 Numerical Renormalisation Group

In order to investigate if hard-direction ordering of under-screened moments could

occur in the strong-coupling regime at temperatures far below the Kondo temper-

ature TK , we employ the numerical renormalization group (NRG). Previous NRG

studies [105] analyzed the effects of single-ion anisotropy on the Kondo screening

mechanism and on possible non-Fermi-liquid behaviour, but did not investigate the

behaviour of magnetic susceptibilities along different directions. It is important to

stress that in the strong-coupling regime the physics will crucially depend on S and

N. Here we only investigate the single-channel Kondo model for S = 1.

First, we give a brief overview of the numerical process of the NRG. A detailed

derivation of the mapping can be found in Wilson’s original paper [4]. The idea is

to discretise the RG rescaling to make the calculation numerically compatible. To



3.4. Numerical Renormalisation Group 63

do so, the original Hamiltonian is mapped to an iterative Hamiltonian of the form

H =
∞

∑
n=0

∑
σ

tn( f †
nσ fn+1σ+ f †

n+1σ
fnσ )+ Jz( f †

0↑ f0↑− f †
0↓ f0↓)Sz

+ J±( f †
0↑ f0↓S−− f †

0↓ f0↑S+)−α(Sz)2,

(3.24)

where

tn =
[(1+Λ−1)/2]Λ−n/2(1−Λ−n−1)

[(1−Λ−2n−1)(1−Λ−2n−3)]1/2 (3.25)

is the hopping parameter that only depends on the energy scaling factor Λ. fn are

the electrons on the n-th site of the chain, and the impurity spin sits on the origin

of the chain. In this language, only the electron on the first site interacts with the

impurity spin directly. The Hamiltonian can be further recast into a recursive form

HN = Λ
(N−1)/2{

N−1

∑
n=0

∑
σ

tn( f †
nσ fn+1σ+ f †

n+1σ
fnσ )+ Jz( f †

0↑ f0↑− f †
0↓ f0↓)Sz

+ J±( f †
0↑ f0↓S−− f †

0↓ f0↑S+)−α(Sz)2}.
(3.26)

In each numerical iteration, the Hamiltonian is diagonalized to find the lowest-

lying energy states. Just like the RG procedures mentioned in chapter 2, the en-

ergy scale gets smaller and smaller as N increases due to the prefactor Λ(N−1)/2.

Therefore in each iteration, the energy needs to be rescaled back to the original

scale. Then an extra electron site is added to the chain, and by re-diagonalising

the new Hamiltonian we slowly evolve the low-energy states towards the long-

wavelength limit. By repeating the above procedure, the Kondo Hamiltonian starts

from the weak coupling regime and ends up in the strong coupling regime in a

non-perturbative way.

In principle, the results obtained through this process are only exact in the limit

of Λ → 1,N → ∞, but it has been shown that the calculation converges quickly after

a few dozen iterations, and the results are reasonable even at Λ = 2. However one

may realise that the dimensionality of the Hilbert space scales as 4N , which blows

up quickly after several iterations. To avoid this we need to set a cutoff on the size

of the Hilbert space and only keep the lowest energy eigenvalues in each step. This
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is justified as we are interested in the ground state behavior of the system at low

temperatures.

Implementing the NRG scheme allows us to work out the renormalisation of

the theory outside the perturbative regime. In the strong-coupling regime, the ex-

perimentally relevant quantity is not χ
imp
γ , but the impurity contribution to the total

susceptibility, χcont
γ , defined as the difference between the total susceptibility of

the system with and without the impurity. As the temperature is lowered, the im-

purity increasingly ’outsources’ its magnetic moment to the conduction electrons.

While the total z-angular momentum is conserved and the dressed impurity states

are eigenstates of Ĵz, the conduction electrons are carrying an increasing fraction of

the impurity’s angular momentum which is no longer negligible at T ∼ TK .

We first benchmark our NRG results against those of Ref. [105], where the total

susceptibility χcont
z in the z-direction was calculated for systems with easy-plane and

easy-axis anisotropy. Our NRG results, show excellent agreement with the results

of that work. However, the reference did not include the total susceptibility in the

x-direction χcont
x , which is a dynamical, rather than thermodynamic quantity, as

[Ĥ, Ĵx] ̸= 0. In this case, the computation of χcont
x is equivalent to calculating the

entire spectral density function, which is a more involved process [106].

Fig. 3.2 shows the total susceptibilities χcont
γ for the same parameters of the

anisotropic Kondo model (S = 1, N = 1, gγ = 0.1, α = ±10−5) along both, the

z-axis and directions in the xy-plane. Unlike in the weak-coupling regime where

moment re-orientation can occur regardless of the sign of α , at strong coupling

(T ≪ TK) we only observe a crossing of magnetic susceptibilities in the case of

easy-plane anisotropy (α > 0).

The crossing of total susceptibilities can be understood in terms of the sub-

spaces with different total angular momentum Jz. Without Kondo screening the

states are product states of the impurity and conduction electrons. We can divide the

Jz = 0 subspace into sectors (m,n) = (0,0),(1,−1),(−1,1), where m,n are the z-

angular momenta of the impurity and conduction electrons, respectively. In the limit

T ≪ Λ, it costs energy to inject angular momentum into the Fermi sea and it costs
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energy for the impurity to have m ̸= 0. Hence, sectors (1,−1),(−1,1) are higher

in energy than the (0,0) sector and Kondo exchange gives weak mixing between

the sectors. For the Jz = 1 subspace the relevant sectors are (m,n) = (1,0),(0,1).

These are much closer in energy than Jz = 0 sectors, because the cost of injecting

angular momentum into the Fermi sea can be offset by lowering the m quantum

number of the impurity. The sectors resonate more strongly and Kondo exchange

gives stronger mixing between them. As a result, the Jz = 1 subspace is lowered

in energy more strongly than the Jz = 0 subspace, allowing for the possibility of a

susceptibility crossing at T ≪ TK .

The negative susceptibility contributions at lowest temperatures in Fig. 3.2(a)

result from the discretization of the conduction electron band in Wilson’s NRG

[107, 108]. This is equivalent to being away from the thermodynamic limit, where

there is a finite number of conduction electron sites Ns, resulting in a non-zero Curie

moment T χ of the free conduction electrons. When the impurity becomes entangled

with the conduction electrons, it leads to a reduction of the conduction electron’s

Curie moment. This can lead to a negative contribution in the difference of total

susceptibilities with and without the impurity. The susceptibility crossing takes

place above the temperature where the contribution becomes negative and is robust

against changes of the discretization. To some extent the numerical discretization

mimics that in a realistic system there is a finite density of impurities and hence a

finite number of conduction electron sites per impurity, even in the thermodynamic

limit.

3.5 Conlusion and Discussion

We have presented a perturbative RG analysis of the single impurity Kondo model

with single-ion anisotropy. Our main finding is that fluctuations near the Kondo

temperature TK can drive a reorientation of the moment away from the lattice fa-

vored direction at T0 > TK . This hard-direction ordering occurs over a wide range

of parameters and for different types of anisotropy. As additional proof of principle,

we have shown that a crossing of magnetic susceptibilities occurs in second-order
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Figure 3.2: Impurity contribution to the susceptibility for the single-channel S = 1 Kondo
models with gγ = 0.1 and (a) easy-plane (α = 10−5) and (b) easy-axis (α =
−10−5) anisotropies. Note that moment re-orientation, signalled by a crossing
of the susceptibilities, only occurs in the case of easy-plane anisotropy.

perturbation theory, for all values of N and S = 1.

It is important to stress that magnetic hard-direction ordering could occur even

at temperatures above T0, since the RKKY interaction, JRKKY
γ ∼ g2

γ , is significantly

enhanced along the hard direction, e.g., for a system with easy plane anisotropy

we find gz > gxy significantly above T0. As a result, the susceptibility along this

direction would diverge first, giving rise to magnetic hard-direction ordering.

Using NRG, we investigated the strong-coupling behavior of the under-

screened S = 1 single-channel Kondo model with single-ion anisotropy. We found

that in this regime a crossing of magnetic susceptibilities can occur, but only in

systems with easy-plane anisotropy. While the NRG results are robust at strong

coupling, they crucially depend on the Hilbert space truncation and energy dis-

cretization in the intermediate temperature regime [105, 109], making it impossible

to numerically resolve susceptibility crossings and compare with our perturbative

calculations. One would expect that with increasing coupling strength the effect

becomes more asymmetric and eventually only survives in systems with easy-plane

anisotropy. This might explain why this case is more frequently observed in ex-

periments [89]. It would be interesting to investigate the strong coupling behavior



3.5. Conlusion and Discussion 67

of Kondo models with different S and N, as well as of closely related Coqblin-

Schrieffer models, which better describe systems with strong spin-orbit coupling.

For the latter, we found susceptibility crossings in perturbation theory and at strong

coupling in the infinitely narrow band limit.

The mechanism presented here is rooted in the interplay of Kondo fluctuations

and anisotropy on the single-impurity level. This would explain why hard-direction

ordering is observed in a range of Kondo lattice systems, irrespective of the order

and universality of the magnetic phase transition [89] and for both ferromagnetic

[94, 95, 96, 97, 98, 99, 100, 101, 110, 111, 112, 113] and antiferromagnetic ordering

[102, 103, 104].

Advances in Nanotechnology and scanning tunneling microscopy have led to

a revival of the Kondo effect [114], thanks to unprecedented control on the level of

single magnetic adatoms on metallic surfaces [115, 116, 117] or artificial magnetic

elements in quantum dots [118, 119]. Such experiments could in principle probe

the fluctuation-driven reorientation of a single magnetic impurity.

We argue that the magnetic hard-direction ordering observed in a wide range

of Kondo materials is predominantly driven by strong Kondo fluctuations. This

mechanism might be further enhanced by soft electronic particle-hole fluctuations

that can lead to moment reorientation near ferromagnetic critical points [92]. Such

a combined mechanism could be at play in YbNi4P2 which shows strong quantum

critical fluctuations [98].

Our work shows that strong fluctuations in anisotropic Kondo materials can

drive magnetic hard-direction ordering. It is to be expected that the interplay of col-

lective critical fluctuations and Kondo physics will lead to many more unexpected

ordering phenomena that are yet to be revealed.



Chapter 4

When Néel Criticality Meets Dirac

Fermions

In the previous chapter, we have shown how the anisotropy in Kondo interactions

can interplay with other magnetic anisotropies to induce crossings in magnetic sus-

ceptibilities which may eventually lead to ordering along the ’hard-axis’. This is a

nice example of how fluctuations in electronic degree of freedom could affect the

spins and account for exotic phenomena in the disordered phase. For such Kondo

lattice materials, the RKKY effect will take over the control at low temperatures,

leading to magnetic ordering. It is then natural to ask: how will the Kondo fluctua-

tion affect the magnetic phase transition?

In this chapter, we consider such a Néel phase transition of two-dimensional

quantum antiferromagnets, in which the spins are Kondo coupled to conduction

electrons with Dirac dispersions. The low energy theory is a non-linear sigma

model (NLσM) whose fields are coupled to Dirac fermions, forming a Gross-

Neveu-Yukawa theory with non-linear order parameter fields. The presence of the

Dirac fermions induces strong particle-hole fluctuations near the point-like Fermi

surface, damping the long-wavelength propagator of the Goldstone modes. One

would hence expect the Néel criticality to be significantly modified, or even de-

stroyed by the fermion fluctuations. Surprisingly, using the momentum-shell renor-

malization group (RG) technique, we found that the Landau damping is weakly

irrelevant at the Néel quantum critical point, even though the corresponding self-
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energy correction dominates over the quadratic gradient terms in the IR limit. That

is to say, the Néel quantum critical point is stable in the presence of Dirac fermions.

The original work in this chapter was published in Stability of the Néel quantum

critical point in the presence of Dirac fermions, H. Hu, J. Lin, M. D. Uryszek, F.

Krüger, Physical Review B 107 (8), 085113.[120]

4.1 Introduction

The discovery of topological insulators [121, 122] has initiated an explosion of

research into Dirac or Weyl semimetals and topological aspects of electronic band-

structures [123, 124, 125, 126]. Dirac fermions with relativistic dispersion around

point-like Fermi surfaces can arise as low-energy excitations of weakly interacting

electron systems. The most prominent example is graphene, which can be described

by a tight-binding model of electrons on the half-filled honeycomb lattice. More

recently, it was realized that strong correlations in heavy-fermion systems, result-

ing in the hybridization between conduction electrons and heavy f electron bands,

can give rise to topological Kondo insulators [127, 128] or topologically protected

Weyl-Kondo semimetals in three-dimensional crystals without inversion symmetry

[129, 130].

Because of their point-like Fermi surfaces nodal semi- metals provide the

simplest setting to study fermionic quantum criticality. While Dirac semimet-

als are stable against weak repulsive interactions, a consequence of the vanish-

ing density of states at the Fermi level, sufficiently strong short-range interactions

can give rise to a range of competing instabilities. For the extended Hubbard

model on the half-filled honeycomb lattice rich phase diagrams were established

[131, 132, 133, 134, 135, 136, 137, 138, 139, 140], showing antiferromagnetic,

charge ordered, Kekule and topological Haldane phases. The symmetry-breaking

transitions are accompanied by the opening of a gap in the electronic spectrum.

Since the fermionic particle-hole excitations are gapless at such quantum

phase transitions, the critical behavior falls outside the Ginzburg-Landau-Wilson

paradigm of a pure order parameter description [141]. Instead, the nature of the tran-
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sitions can be studied within a field theory that describes the coupling of the bosonic

order parameter field, which is introduced through a Hubbard-Stratonovich decou-

pling of the interaction vertex, to the gapless Dirac fermions [142, 143, 144]. This is

known as the Gross-Neveu-Yukawa (GNY) theory, which describes chiral symme-

try breaking and spontaneous mass generation in high-energy physics [145, 146]. At

the fermion-induced GNY fixed point, the fermions acquire an anomalous dimen-

sion, resulting in the fermion spectral functions with branch cuts rather than quasi-

particle poles [143]. Such non-Fermi liquid behavior is the hallmark of fermionic

quantum criticality.

Far below the upper critical dimension, the GNY model can be analyzed in

the limit of a large number N f of Dirac fermion flavors, which allows for a sys-

tematic calculation of critical exponents in powers of 1/N f , using techniques from

particle physics [147, 148, 149, 150, 151, 152]. In the condensed matter language,

the correct IR scaling form of the bosonic propagator can be understood in terms

of Landau damping of long-wavelength order parameter fluctuations by electronic

particle-hole fluctuations [56]. For Dirac fermions in D = d +1 space-time dimen-

sions, this results in a self-energy correction Π(k,ω) ∼ (k2 + ω2)(D−2)/2 to the

inverse boson propagator [153]. For D < 4, below the upper critical dimension,

the self-energy contribution dominates over the regular quadratic gradient terms

in the IR limit. In order to correctly describe the universal critical behavior, the

dressed RPA order-parameter propagator needs to be used as input for subsequent

momentum-shell RG calculations [56].

In this chapter we consider a field theory in two spatial dimension that is very

similar to the GNY theory for the antiferromagnetic phase transition on the half-

filled honeycomb lattice, driven by an on-site Hubbard repulsion. However, here

we consider a situation where the dynamical order parameter field is not generated

through a Hubbard-Stratonovich transformation of a fermion interaction, but is in-

stead given by the Néel order parameter field N⃗ of a local-moment quantum antifer-

romagnet. While the Kondo coupling between local moments and Dirac electrons

takes precisely the form of the Yukawa coupling of the GNY theory, there are crucial
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differences in the bosonic sector of the field theory. The Néel transition of a two-

dimension quantum antiferromagnet is described by a quantum non-linear σ model

(NLσM) [154, 155] that describes spatial and temporal fluctuations of a unit vector

field N⃗, corresponding to long-wavelength, transverse spin-wave fluctuations. As

we will show later, because of the constraint of the NLσM the critical behavior is

very different from that of the GNY theory.

The outline of this chapter is as follows. In Sec. 4.2 we introduce the RG

of the original NLσM in 2+1 space-time dimensions as a warm-up. Unlike the φ 4

model, the ε expansion is done near the lower critical dimension, where the model is

asymptotically free. The Kondo coupling to Dirac fermions is included in Sec. 4.3.

In Sec. 4.3.2 we discuss the importance of Landau damping of the Néel order param-

eter fluctuations by low-energy electronic particle-hole fluctuations, and analyze the

Landau-damped NLσM. Using momentum-shell RG, we demonstrate that Landau

damping is weakly irrelevant at the Néel quantum critical point but increases in the

ordered state, indicating that spin-wave excitations are damped. The full set of RG

equations, including the Yukawa coupling, are derived in Sec. 4.3.3 and analyzed

in Sec. 4.3.4. We show that while the Yukawa coupling is weakly relevant at the

Néel quantum critical point, sufficiently strong Landau damping renders the critical

point quasi-stable for any realistic system size for N f ≥ 4 and thermodynamically

stable for N f < 4. In the latter case, a new multi-critical point captures the transi-

tion between Néel critical and Kondo run-away regimes. We analyze the universal

critical behavior associated with this fixed point. As demonstrated in Sec. 4.3.5, the

behavior in D = 3 space-time dimensions is not accessible within an ε-expansion

above the lower critical dimension, D = 2+ ε . Finally, in Sec. 4.4 we summarize

and discuss our results.

4.2 Néel Quantum Criticality

The long-wavelength behaviour of the antiferromagnetic phase transition of the

quantum Heisenberg model can be described by the O(3) quantum non-linear σ

model [156, 157]. Here we briefly introduce the derivation from a microscopic
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Heisenberg model to the field theory and derive the RG equations associated with

the critical point.

4.2.1 Non-Linear σ Model

We start with a generic spin Hamiltonian for a quantum antiferromagnet on a bi-

partite lattice in d-dimensions, e.g. a hypercubic lattice,

Ĥloc = J ∑
⟨i, j⟩

ŜSSi · ŜSS j + · · · (4.1)

where ŜSSi denotes a spin-S operator on lattice site i, the sum is over nearest-neighbour

bonds, and J > 0 denotes the antiferromagnetic superexchange between neighbour-

ing sites. The ellipsis in Eq. (4.1) denote longer-range couplings or ring exchanges

that frustrate the Néel order and might be tuned to drive the system towards a quan-

tum phase transition.

As a next step, we express the Heisenberg model Ĥloc in terms of an imaginary-

time path integral over spin-coherent states |N⃗i(τ)⟩, which satisfy ŜSSi|N⃗i(τ)⟩ =
SiN⃗i(τ)|N⃗i(τ)⟩, and decompose the unit-vector fields N⃗i(τ) into the staggered Néel

order parameter field n⃗i(τ) and fluctuations L⃗i(τ)⊥ n⃗i(τ),

N⃗i(τ) = εi⃗ni(τ)

√
1−a2d⃗L2

i (τ)+ad⃗Li(τ), (4.2)

where εi = +1 on sublattice A and εi = −1 on sublattice B of the bi-partite lattice,

and a denotes the lattice constant. After taking the continuum limit, we obtain the

action

Sloc[⃗n, L⃗] =
1
2

∫
∞

0
dτ

∫
ddr
{

ρS (∇⃗n)2 +χ⊥⃗L2 −2iS⃗L · (⃗n×∂τ n⃗)
}
,

where the spin stiffness and transverse spin susceptibility for the d dimensional

hypercubic lattice are given by ρS = JS2a2−d and χ⊥ = 2JS2dad , respectively. The

last term in Sloc is the smooth contribution from the Berry phase. For the AFM phase

transition, this term can be neglected. However, it is worth noticing that this term
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plays a crucial role in skyrmion generations and the possible deconfined quantum

critical point of the Heisenberg model on certain lattices which drives the system

into a resonant valence bond (RVB) state [10].

Since the L⃗ field is massive, it can be integrated out through a Gaussian integral.

Carrying out the integral over the massive L⃗ field, we obtain the final action for the

staggered Néel order parameter field n⃗,

S[⃗n] =
1

2g

∫
∞

0
dτ

∫
ddr
{
(∇⃗n)2 +

1
c2 (∂τ n⃗)2

}
. (4.3)

This is the so-called NLσM, whose non-linearity is enforced through the constraint

n⃗2 = 1. Here g = 1/ρS is the inverse spin stiffness and c = JSa
√

2 is the spin-wave

velocity.

4.2.2 Field Decomposition

Before running the RG scheme, the non-linear constraint needs to be taken care of.

The partition function in the path integral language reads

Z =
∫

D n⃗δ (⃗n2 −1)e−S[⃗n],

S[⃗n] =
1

2g

∫
dDx (∇⃗n)2, (4.4)

where we have rescaled the temporal and spatial coordinates to the dimensional

units:x = (x0,x), where x0 = Λcτ, x = Λr. The cutoff Λ is set to be one for sim-

plicity. To incorporate the constraint in the calculation, we then apply the standard

trick used in [158]. Generally speaking, for the O(N) NLσM, one can single out

the component σ along the direction that the system orders, and write the fields as

n⃗ = (⃗π,σ). Since σ is the ordering direction, one can assume the fluctuation along

this direction to be small, and use the constraint to rewrite the component by the

left N − 1 components: σ =
√

1− π⃗2. The delta function in the partition function

can then be used to eliminate the σ component, leaving us a theory of π⃗ fields with
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(b)

Figure 4.1: The vertices included in the non-linear σ model after the field decomposition.
(a) The first diagram is the four-boson interaction vertex of the π⃗ fields, where
the two blue lines represent the ones with the gradient. The mass-like term of
the π⃗ fields is shown in the second diagram. (b) The four-boson interaction
generated from the inclusion of an artificial magnetic field.

N −1 components:

Z =
∫

D π⃗

∫
Dσ ∏

x
δ (σ2 + π⃗

2 −1)e−S[⃗π,σ ]

=
∫

D π⃗

∫
Dσ ∏

x

δ (σ −
√

1− π⃗2)

2σ
e−S[⃗π,σ ]

=
∫

D π⃗ ∏
x
(

1
2
√

1− π⃗2
)ρdDxe−S[⃗π]

=
∫

D π⃗e−S′[π⃗],

with the action

S′ [⃗π] =
1
2g

∫
dDx

[
((∇π⃗)2 +

(
∇

√
1− π⃗2

)2
]
−ρ

∫
dDx ln

1
2
√

1− π⃗2

≈ 1
2g

∫
dDx

[
(∇π⃗)2 +(⃗π ·∇π⃗)2]− ρ

2

∫
dDx π⃗

2. (4.5)

The second line is obtained by a Taylor expansion of the square root and the log up

to the leading order in π⃗ . By eliminating one component of the Néel vector field,

the Dirac function in the measure gives rise to an extra mass-like term in the action,

where ρ is the density of states. As it will become clear later, this term is crucial to

the correct physics. The corresponding vertices are shown in fig 4.1(a). The blue

boson fields in the first diagram correspond to the two π⃗ fields with the gradient.
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(b)

Figure 4.2: Feynman diagrams used in the RG calculation of the NLσM. (a) Contribution
from the one-loop diagram which contracts the two blue boson lines exactly
cancels the contribution from the mass-like term generated from the field de-
composition. As a result, no mass term is generated under RG. (b) The one-loop
diagram that corrects the bare propagator.

4.2.3 Renormalisation Group Analysis

The standard momentum-shell RG can be applied to study the criticality. To do so,

we first Fourier transform the action to frequency-momentum space. The resulting

action has the form

S′ [⃗π] =
1

2g

∫
k
k2

π⃗(k) · π⃗(−k)− ρ

2

∫
k
π⃗(k) · π⃗(−k)

− 1
2g ∑

αβ

∫
k1k2k3k4

δ (k1 + k2 + k3 + k4)(k2 · k4)πα(k1)πα(k2)πβ (k3)πβ (k4),

(4.6)

where k = (ω ,⃗k) is the frequency-momentum vector. From the kinetic term one can

obtain the propagator of the Néel vector fields as the inverse of the kernel:

⟨πα(k)πβ (k
′)⟩0 =

g
k2 δαβ δ (k+ k′). (4.7)

We then use a symmetric scheme by performing the shell integrals over a spherical

frequency-momentum shell, which treats the frequency and momenta on equal foot-

ing. It is worth emphasizing that applying the cutoff on the frequency/imaginary

time axis won’t affect the physics that we are interested here, as the univer-

sal behaviour of the theory should not be aware of any effect from the cutoff



4.2. Néel Quantum Criticality 76

scheme. Following the standard approach, we rescale the frequency and momenta

as k⃗ → k⃗edl,ω → ezdl , and the order parameter fields as π⃗ → π⃗e∆dl , with ∆ being

the scaling dimension of the π⃗ fields. Note that all the terms are local, which means

the whole theory is Lorentz invariant, and the dynamical exponent z does not flow

under RG. In this case, the only flowing parameters are the inverse spin stiffness g

and the mass. Since the 1/(2g) factor appears in the kinetic term, its RG flow can

be obtained by just calculating the self-energy diagram. The related Feynman dia-

grams are shown in Fig 4.2. The mass renormalisation from the one-loop diagram

is

− 1
2g ∑

αβ

∫ <

k1k2

∫ >

q1q2

δ (k1 + k2 +q1 +q2)q1 ·q2πα(k1)πβ (k2)⟨πα(q1)πβ (q2)⟩0

=− 1
2

∫ <

k

∫ >

q
q · (−q)⃗π(k) · π⃗(−k)

1
q2

= δm2
∫ <

k
π⃗(k) · π⃗(−k), (4.8)

where

δm2 =
1
2

∫ > dDq
(2π)D =

1
2

SD

(2π)D

∫ 1

e−dl
dq qD−1 =

SD

2(2π)D dl. (4.9)

SD = 2π
D+1

2 /Γ(D+1
2 ) is the surface area of a D-sphere. However, note that the

density of states ρ that appears in the mass-like term derived from the non-linear

measure can be expressed as an integral over the Brillouin Zone: ρ = Ns
VBZ

=
∫ dDk

(2π)D ,

hence the term is rescaled as

− 1
2

SD

(2π)D

∫ 1

e−dl
dq qD−1

∫ <

k
π⃗(k) · π⃗(−k)

=− 1
2

SD

(2π)D dl
∫ <

k
π⃗(k) · π⃗(−k). (4.10)

This contribution exactly cancels out δm2, leaving the boson fields massless. Phys-

ically speaking it makes perfect sense, since the Néel order parameter fields are

Goldstone modes generated due to the spontaneous breaking of the SO(3) rotational

symmetry of the spin, and therefore should remain gapless under RG.

The bosonic self-energy diagram is obtained by contracting the two boson



4.2. Néel Quantum Criticality 77

lines without derivatives, as shown in Fig.4.2(b). The contribution has the form

δg
∫<

k k2π⃗(k) · π⃗(−k), with the shell integral δg = − 1
2g
∫>

q
g
q2 = SD

2(2π)D dl. The RG

equation of the inverse stiffness g can then be easily derived by rescaling everything

back to the original cutoff:

(
1

2g(l)
+

SD

2(2π)D dl
)∫ <

k
k2

π⃗(k) · π⃗(−k)

=e(D+2−2∆)

(
1

2g(l)
+

SD

2(2π)D dl
)∫

k
k2

π⃗(k) · π⃗(−k)

≈
(

1
2g(l)

− D+2−2∆

2g(l)
dl +

SD

2(2π)D dl
)∫

k
k2

π⃗(k) · π⃗(−k)

≡ 1
2g(l +dl)

∫
k
k2

π⃗(k) · π⃗(−k),

=⇒− D+2−2∆

2g
dl +

SD

2(2π)D dl =− 1
2g2

dg
dl

dl

=⇒dg
dl

= (D+2−2∆)g− SD

(2π)D g2. (4.11)

However, one still needs to determine the scaling dimension ∆ of the π⃗ fields. Un-

like the φ 4 theory, NLSM has the inverse spin stiffness g in both the kinetic term and

the interaction. Therefore we can not obtain ∆ by simply keeping the kinetic term

from flowing. The proper way to get ∆ is to first derive the corrections to the inter-

acting term, which will be another RG equation for g, and then demand the two RG

equations to be the same and solve for ∆. In doing so one will have to evaluate all

the one-loop diagrams that correct (⃗π ·∇π⃗). Without the help of the large-N theory,

there are more than a dozen related Feynman diagrams. Though many of the dia-

grams cancel with each other, the calculation is still tedious. Alternatively, Nelson

and Pelcovits[158] managed to circumvent the difficulty by introducing a fictitious

magnetic field to the Néel order parameter fields. The idea is that the scaling of

a magnetic field should be trivial under RG. By calculating the scaling relation of

the magnetic field, we get another equation which can be combined with the RG

equation of g to help us fix ∆. If we apply the magnetic field along the ordering

direction σ , then through the previous field decomposition we can again following

the same analysis above, and write down a theory of π⃗ fields, only with additional
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quadratic and quartic terms:

−h
g

∫
dDxσ =− h

g

∫
dDx

√
1− π⃗2

≈ h
2g

∫
dDx π⃗

2 +
h

8g

∫
dDx π⃗

4

=
h

2g

∫
k

π⃗(k)⃗π(−k)

+
h

8g

∫
k1k2k3k4

δ (k1 + k2 + k3 + k4) (⃗π(k1) · π⃗(k2)) (⃗π(k3) · π⃗(k4))

(4.12)

Since there is a quadratic term, the RG equation of h can be calculated by evaluating

the diagrams that correct this term, which are similar to the ones we calculated

above. The one-loop diagrams after the inclusion of a magnetic field are shown in

fig 4.3. The quadratic term derived in eq.4.12 adds to the pure NLSM, giving the

field-dependent propagator

⟨πα(k)πβ (k
′)⟩0 =

g
k2 +h

δαβ δ (k+ k′). (4.13)

As a result, the previously calculated ∆m2 is modified accordingly. However, the

ρ term from the non-linear measure stays the same as the no-field case under RG.

One can then check that, the cancellation still holds once the additional mass term

from the new vertex is included. This is shown in fig 4.3(a).

The field renormalisation is obtained through the diagram in fig 4.3(c):

δh
∫ <

k
π⃗(k) · π⃗(k)

=2× h
8g

∫ <

k1k2

∫ >

q1q2

δ (k1 + k2 +q1 +q2)∑
αβ

πα(k1)πα(k2)⟨πβ (q1)πβ (q2)⟩0

=
h

4(1+h)
(N −1)

SD

(2π)Ddl

∫ <

k
π⃗(k) · π⃗(k). (4.14)



4.2. Néel Quantum Criticality 79

1

ω

ω

ε

ε

ω

ω

ε

ε

ϑ

1

ω

ω

ε

ε

ω

ω

ε

ε

ϑ

<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+
<latexit sha1_base64="lmQfQhUSbV50vGG/AxTWKzVEzXk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqheh6MVjFfsBbSib7aRdutmE3Y1QQv+BFw+KePUfefPfuG1z0OqDgcd7M8zMCxLBtXHdL6ewsrq2vlHcLG1t7+zulfcPWjpOFcMmi0WsOgHVKLjEpuFGYCdRSKNAYDsY38z89iMqzWP5YCYJ+hEdSh5yRo2V7q/cfrniVt05yF/i5aQCORr98mdvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mlU3JilQEJY2VLGjJXf05kNNJ6EgW2M6JmpJe9mfif101NeOlnXCapQckWi8JUEBOT2dtkwBUyIyaWUKa4vZWwEVWUGRtOyYbgLb/8l7TOql6tWrs7r9Sv8ziKcATHcAoeXEAdbqEBTWAQwhO8wKszdp6dN+d90Vpw8plD+AXn4xv+QI0G</latexit>

= 0

<latexit sha1_base64="/ZQ4uhoe3Iq6UJWOmtxEGU1Fltc=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXJHoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI97xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4pXrVTvL0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8AjD2NVQ==</latexit>

(a)
<latexit sha1_base64="7CDz+hFii/hnzm/SPcG6JVj1JjA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoMgCGFXJHoMevGYgHlAsoTZSW8yZnZ2mZkVQsgXePGgiFc/yZt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWM7mZ+6wmV5rF8MOME/YgOJA85o8ZK9YteseSW3TnIKvEyUoIMtV7xq9uPWRqhNExQrTuemxh/QpXhTOC00E01JpSN6AA7lkoaofYn80On5MwqfRLGypY0ZK7+npjQSOtxFNjOiJqhXvZm4n9eJzXhjT/hMkkNSrZYFKaCmJjMviZ9rpAZMbaEMsXtrYQNqaLM2GwKNgRv+eVV0rwse5VypX5Vqt5mceThBE7hHDy4hircQw0awADhGV7hzXl0Xpx352PRmnOymWP4A+fzB3UXjLo=</latexit>

+

1

ω

ω

ε

ε

ω

ω

ε

ε

ϑ

1

ω

ω

ε

ε

ω

ω

ε

ε

ϑ

1

ω

ω

ε

ε

ω

ω

ε

ε

ϑ

<latexit sha1_base64="yaE0A6BiX3P/IX8my1C+yNhqcO4=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXJHoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh3Jw3iuW3Io7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqaFxWvWqneX5ZqN1kceTiBUyiDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AjcKNVg==</latexit>

(b)
<latexit sha1_base64="fuaK+lzswX/n1m5gphIpxwzqzr8=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoMQL2FXJHoMevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlhzI77xVLbsWdg6wSLyMlyFDvFb+6/ZilEUrDBNW647mJ8SdUGc4ETgvdVGNC2YgOsGOppBFqfzI/dUrOrNInYaxsSUPm6u+JCY20HkeB7YyoGeplbyb+53VSE177Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNi4pXrVTvL0u1myyOPJzAKZTBgyuowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Aj0eNVw==</latexit>

(c)

Figure 4.3: One-loop diagrams correspond to the NLSM with a magnetic field. (a) Under
the magnetic field the propagator of the order parameter field depends also on h.
Therefore the diagrammatic cancellation now involves a third diagram gener-
ated from the new vertex. (b) The diagram that corrects the bosonic propagator.
(c) The diagram that generates the mass, corresponding to the renormalisation
of the magnetic field h.

Combining the tree-level scaling, we can derive the RG equations for h:

d
dl
(

h
2g

) =− (D−2∆)
h
2g

+δh

=− (D−2∆)
h
2g

+
N −1

2
SD

(2π)D
h

1+h

≡ ∆
h
2g

.

In the last line, we use the fact that the magnetic field is a ’mass’ term that renor-

malises trivially under RG. In other words, it should renormalise in the same way

as the order parameter fields. Solving the equation gives the scaling dimension ∆ of

fields π:

∆ = d − N −1
2

SD

(2π)D
g

1+h
. (4.15)

Happily setting h = 0, and plugging eq.4.15 back into eq.4.11, we finally obtain the

RG equation for g:
dg
dl

= (2−D)g+(N −2)
SD

(2π)D g2. (4.16)

One can immediately see that for D = 2+ ε and N = 3, there exists a non-trivial

unstable fixed point at gc ≈ 2πε . This is the Néel fixed point that governs the anti-

ferromagnetic phase transition. For g < gc, the system flows to the Gaussian fixed

point, corresponding to the spin-disordered case, and for g > gc, the AFM order is
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stabilised as the system approaches the frozen spin limit. (Of course, the latter part

falls out of the framework of the perturbative RG once g → O(1).)

4.3 Inclusion of Dirac Fermions

4.3.1 The model

Now we include the Kondo coupling between the spins and Dirac fermions and

study the impact of the latter to the Néel quantum criticality. Our starting model is a

(2+1)d NLσM whose vector fields N⃗ are coupled to N f copies of two-component

Dirac electrons via the conventional Yukawa coupling. On a microscopic level, this

model could be realized in the low-energy limit of a quantum antiferromagnet on

the honeycomb lattice with Kondo coupling to noninteracting electrons that move

on either the same or adjacent honeycomb lattice at half-filling. For this realization

we would have N f = 4 due to twofold spin and valley degeneracies. The effec-

tive continuum field theory at zero temperature is given by the imaginary-time path

integral over the action S = S f +SN +SY , with contributions

S f =
∫

q,ω
ψψψ(q,ω)

(
−i

ω

vF
+qxτx +qyτy

)
ψψψ(q,ω),

SN =
1

2g

∫
d2r

∫
∞

0
dτ

{
(∇N⃗)2 +

1
c2 (∂τ N⃗)2

}
,

SY =
λ√
N f

∫
d2r

∫
∞

0
dτψψψ

(
N⃗ · σ⃗ ⊗ τz

)
ψψψ, (4.17)

where S f describes two-dimensional Dirac fermions with Fermi velocity vF , written

in terms of fermionic Grassmann fields ψψψ . The term SN is the conventional NLσM

in terms of the staggered three-component Néel order parameter field N⃗(r,τ) which

satisfies the constraint N⃗2(r,τ) = 1, as discussed in the previous section. The last

contribution SY is the Yukawa coupling between the local moments and Dirac elec-

trons. Here σ⃗ is the vector of spin Pauli matrices, while the Pauli matrices τα act on

sub-lattice space. Note that since N⃗ describes the staggered magnetization the cou-

pling has an opposite sign on the two sublattices, resulting in the additional τz. The

low-energy continuum field theory is subject to a UV momentum cut-off, |q| ≤ Λ,
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corresponding to the finite size of the Brillouin Zone.

The field theory is very similar to the Heisenberg GNY theory in Chapter 3.

However, a crucial difference is the constraint of the NLσM which has important

consequences for the universal critical behavior. As pointed out in the context of

GNY theories, the Landau damping of the bosonic order parameter fluctuations by

electronic particle-hole fluctuations gives rise to a self-energy contribution

Π(q,ω) = γ

√
q2 +ω2/v2

F (4.18)

to the inverse boson propagator in two spatial dimensions. This non-analytic self-

energy correction arrises from the diagram in Fig. 4.4(a) from integration of fermion

modes near zero momenta and frequency. It is therefore not generated within the

momentum shell RG, but needs to be included to correctly capture the universal

critical behavior of GNY theories [56, 153]. The form of the Landau damping does

not depend on the number of order parameter components and is not affected by

the fixed-length constraint of the Néel order parameter field. Note that although the

bare Landau damping parameter γ0 is determined by the square of the bare Yukawa

coupling, γ0 ∼ λ 2
0 , this relation is not preserved under the RG. We therefore treat γ

and λ as independent coupling constants.

Under the RG there will be a non-trivial flow of the velocities c and vF . For

simplicity, we will focus on the case vF = c, which is preserved under the RG.

For convenience, we rescale to dimensionless momenta k = q/Λ and frequencies

k0 = ω/(cΛ) and absorb the additional prefactors in a redefinition of the coupling

constants. Since both the order parameter and fermion sectors are relativistic and

frequency and momenta enter the zero-temperature field theory in the same way,

the quantum critical behaviour will be described by a dynamical exponent z = 1.

We will therefore treat frequency and momenta on an equal footing and impose an

isotropic cut-off in 2+1 dimensions,
√

k2 + k2
0 ≤ 1. Note that the universal critical

behavior is independent of the choice of the UV cut-off scheme.
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4.3.2 Landau Damped NLσM

We start by investigating the effects of Landau damping on the Néel transition in

the case of vanishing Yukawa coupling, λ = 0. Our starting point is the NLσM

SN =
1
2g

∫
k
Ω

−1(k)N⃗(k) · N⃗(−k), (4.19)

where we have defined k = (k,k0) and
∫

k =
∫ dk0

2π

∫ d2k
(2π)2 , subject to the cut-off |k| ≤

1, for brevity, and include the Landau damping γ in the inverse propagator,

Ω
−1(k) = k2 + γ|k|= k2 + k2

0 + γ

√
k2 + k2

0. (4.20)

We use the same decomposition scheme showed in sec.4.2.2 to single out the

ordering direction N⃗ = (⃗π,σ) and use the constraint σ(r,τ) =
√

1− π⃗2(r,τ) to

eliminate σ and derive an effective action in terms of the transverse fields π⃗ . Since

the form of Landau damping is defined in momentum space, we need the Fourier

transform of the constraint: σ(k) = δ (k)− 1
2
∫

q π⃗(q)⃗π(k − q). This results in the

effective action

SN =
1

2g

∫
k
Ω

−1(k)⃗π(k) · π⃗(−k)− ρ

2

∫
k
π⃗(k) · π⃗(−k)

+
1

16g

∫
k1,...,k4

δ (k1 + k2 + k3 + k4)
[
Ω

−1(k1 + k2)

+Ω
−1(k3 + k4)

]
[⃗π(k1) · π⃗(k2)] [⃗π(k3) · π⃗(k4)] , (4.21)

where ρ is the density and the corresponding term arises from exponentiation

and expansion of 1/(2
√

1− π⃗2(r,τ)) from the path-integral measure. Note that

the Landau-damped propagator also enter the form of the four-boson interaction

through the Taylor expansion and alters the simple gradient form in the bare NLSM

in eq.4.6.

We integrate out modes with momenta and frequencies from an infinitesimal

shell near the cut-off, e−dℓ ≤
√

k2 + k2
0 ≤ 1, followed by a rescaling of momenta,

k→ kedℓ, and frequencies, k0 → k0ezdℓ, with dynamical exponent z= 1. In addition,
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Figure 4.4: One-loop diagrams relevant to our RG calculation. Solid lines represent
fermionic degrees of freedom, wiggly lines the bosonic order parameter fields.
(a) The fermionic bubble diagram integrated over small momenta and frequen-
cies gives rise to the non-analytic Landau damping of long-wavelength order
parameter fluctuations. The momentum-shell contribution of this diagram con-
tributes to the renormalization of the coupling constant g of the NLσM. (b)-(d)
Diagrams relevant for the RG of the Landau-damped NLσM. The diagram (b)
is identical to zero, (c) renormalizes the quadratic gradient terms and hence the
coupling constant g. The unphysical mass term generated by (c) is cancelled
by the contribution (d) from the functional integral measure. (e) The fermionic
self-energy diagram renormalizes the overall prefactor of the free fermion ac-
tion S f . The scaling dimension of the fermion fields is determined such that the
prefactor remains constant. (f) Diagram contributing to the renormalization of
the Yukawa coupling λ .

we rescale the transverse spin-fluctuation fields as π⃗(k)→ π⃗(k)e−∆π dℓ.

At one-loop order, the contraction of two order parameter fields,

⟨πα(k)πβ (k
′)⟩0 = gδαβ δ (k+ k′)Ω(k), (4.22)

gives rise to the renormalization of the quadratic action by the quartic vertex. The

diagram in Fig. 4.4(b) vanishes because of Ω−1(0) = 0. The diagram shown in
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Fig. 4.4(c) gives rise to a term ∼ k2π⃗(k) · π⃗(−k) and hence a renormalization of

the coupling constant g. In addition, it produces a mass term ∼ π⃗(k) · π⃗(−k) which

cancels exactly with the trivial term from the reduction of the density ρ by the shell

contribution [Fig. 4.4(d)]. Evaluating the momentum shell and frequency integrals

and combining with the rescaling contributions, we obtain the RG equations

d
dℓ

(
1

2g

)
= (−5+2∆π)

1
2g

+
1

(2π)2
1+ γ/3
1+ γ

, (4.23)

d
dℓ

(
γ

2g

)
= (−4+2∆π)

γ

2g
. (4.24)

The scaling dimension ∆π of the transverse spin-fluctuation fields needs to be

determined such that the constraint of the NLσM is satisfied on all scales. This is

only the case if the coupling constant g in front of the quartic vertex renormalizes in

exactly the same way as the g in front of the quadratic action. Instead of evaluating

the second-order, one-loop diagrams that renormalize the vertex, we employ a trick

invented by Nelson and Pelcovits [158] to include a staggered magnetic field term

− h
2g
∫

r,τ σ(r,τ) in the action. Since the scaling of the magnetic field should not

depend on the field direction, and since the staggered magnetic field couples linearly

to the Néel order parameter field, the scaling dimension of the applied field is equal

to that of the order-parameter field itself,

d
dℓ

(
h

2g

)
= ∆π

h
2g

. (4.25)

On the other hand, we can use the constraint to expand σ(r,τ) in terms of the

π⃗ fields and explicitly compute the one-loop renormalization of the applied field,

d
dℓ

(
h

2g

)
= (−3+2∆π)

h
2g

+
1

(2π)2
h

1+ γ
. (4.26)

Equating Eqs. (4.25) and (4.26), we obtain

∆π = 3− 2
(2π)2

g
1+ γ

, (4.27)
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which results in the coupled RG equations

dg̃
dℓ

= −g̃+
1− γ/3
1+ γ

g̃2, (4.28)

dγ

dℓ
= γ

[
1− 1+ γ/3

1+ γ
g̃
]
, (4.29)

for g̃ = 2
(2π)2 g and the Landau damping γ .

For γ = 0 we recover the RG equation of the conventional NLσM in 2+1 space-

time dimensions. This RG equation exhibits two fixed points: the attractive, Néel

ordered fixed point at g̃ = 0 and the critical fixed point at g̃ = g̃c = 1. For g̃(0) <

1 the RG flow is towards g̃ = 0, corresponding to a freezing of transverse spin-

fluctuations on larger and larger scales. On the other hand, for g̃(0)> 1, g̃(ℓ)→ ∞,

corresponding to a vanishing of the spin stiffness and indicative of the destruction

of long-range order by spatial and temporal fluctuations.

The coupled RG equations (4.28) and (4.29) do not exhibit any additional fixed

points at finite γ . The RG flow in the g̃-γ plane is shown in Fig. 4.5. In the anti-

ferromagnetically ordered phase, γ(ℓ) increases, indicative of damped spin-wave

excitations. At the critical fixed point of the Néel transition the Landau damping γ

is weakly irrelevant. The separatrix between the Néel antiferromagnet and the quan-

tum disordered phase is given by g̃ ≈ 1+ 4
3γ − 4

9γ2. Along the separatrix and for an

initial value γ0 = γ(0)≪ 1, the Landau damping vanishes as γ(ℓ) = γ0/(1+ 2
3γ0ℓ).

4.3.3 Including the Yukawa coupling to Dirac fermions

We now include the Yukawa coupling SY between the order parameter field to

N f copies of two-component Dirac fermion fields, as given in Eq. (6.3). The

momentum-shell contribution of the diagram Fig. 4.4(a) will give rise to an ad-

ditional correction to the NLσM,

δSN = −1
2

λ 2

N f

∫ <

q
N⃗(q) · N⃗(−q)

×
∫ >

k
Tr
{

τzGψ(k)τzGψ(k+q)
}
, (4.30)
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Figure 4.5: RG flow of the Landau damped NLσM as a function of the rescaled inverse
spin stiffness g̃ = g/gc and Landau damping γ . The red line separates the
Néel AFM from the paramagnet. Along this separatrix, γ renormalizes to zero,
demonstrating that the Néel quantum critical point Pc is stable against Landau
damping. The increase of γ in the ordered phase indicates that spin-wave exci-
tations are damped.

where
∫<

q and
∫>

k denote frequency-momentum integrals over |q| ≤ e−dℓ and e−dℓ≤
|k| ≤ 1, respectively. The fermionic Green function in each of the N f copies is given

by

Gψ(k) =
ik0 + kxτx + kyτy

k2
0 +k2 . (4.31)

Note that the trace in Eq. (4.30) results in an additional factor of N f . Expanding

external momenta/frequencies q = (q,q0) to quadratic order, we obtain

δSN =−1
3

λ
2 2
(2π)2 dℓ

∫ <

q
q2N⃗(q) · N⃗(−q), (4.32)

resulting in an additional contribution d
(

1
2g

)
= −1

3λ 2 2
(2π)2 dℓ to the renormaliza-
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tion of the coupling constant. This changes the RG equations for g̃ and γ to

dg̃
dℓ

= −g̃+
[

1− γ/3
1+ γ

+
2
3

λ
2
]

g̃2, (4.33)

dγ

dℓ
= γ

[
1− 1+ γ/3

1+ γ
g̃+

1
3

λ
2g̃
]
. (4.34)

In order to determine the renormalization of the Yukawa coupling constant λ ,

we first need to determine the scaling dimension ∆ψ of the fermion fields. The

diagram in Fig. 4.4(e) results in a correction

δS f = −2λ 2g
N f

∫ <

k
ψ(k)

(∫ >

q
D(q)τzGψ(k+q)τz

)
ψ(k)

=
2

3N f

1
1+ γ

λ
2g̃dℓ

∫ <

k
ψ(k)G−1

ψ (k)ψ(k), (4.35)

where the factor of two arises from the number of components of the transverse

spin-fluctuation field π⃗ , Nπ = 2.

After rescaling frequency and momenta as before and fermion fields as ψ(k)→
ψ(k)e−∆ψ dℓ, we demand that that the prefactor of S f remains scale-invariant, which

results in

∆ψ = 2− 1
3N f

1
1+ γ

λ
2g̃. (4.36)

The diagram that contributes to the renormalization of the Yukawa vertex is

shown in Fig. 4.4(f) and equals

δSY =
gλ 3√

N f
3 ∑

i

∫ <

k1,k2

πi(k1 − k2)ψ(k1)Ωiψ(k2), (4.37)

with coupling matrices

Ωi = ∑
j

∫ >

q
D(q)(σ j ⊗ τz)Gψ(q)(σi ⊗ τz)

×Gψ(q)(σ j ⊗ τz). (4.38)

Since Gψ is independent of spin, we can evaluate the products of spin Pauli

matrices and carry out the sum over j, ∑ j σ jσiσ j = (2−Nπ)σi. The momentum-
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shell integral is trivial and we indeed find that Ωi is proportional to the original

Yukawa coupling matrix σi ⊗ τz,

Ωi =
2

(2π)2 (Nπ −2)
1

1+ γ
dℓ(σi ⊗ τz). (4.39)

However, the result crucially depends upon the number Nπ of order-parameter

components, as discussed in the literature [159, 55]. While the results for Nπ = 1

and Nπ = 3 are equal but of opposite sign, the diagram vanishes in the relevant case

of Nπ = 2 components, δSY = 0.

The rescaling of momenta, frequencies and fields gives rise to the RG equation

dλ

dℓ
= (−6+∆π +2∆ψ)λ

= λ

[
1− g̃

1+ γ
− 2

3N f

λ 2g̃
1+ γ

]
(4.40)

for the Yukawa coupling λ .

4.3.4 RG Analysis

We will now discuss the coupled RG equations for the inverse spin stiffness g̃ (4.33),

the Landau damping γ of the Néel order parameter (4.34) and the Yukawa coupling

λ to the Dirac fermions (4.40). In Sec. 4.3.2 we found that in the absence of Yukawa

coupling (λ = 0), the Landau damping γ is weakly irrelevant at the Néel quantum

critical point Pc.

Let us first investigate the stability of Pc against Yukawa coupling in the

absence of Landau damping (γ = 0). In this case the RG equations reduce to

dg̃/dℓ=−g̃+
(
1+ 2

3λ 2) g̃2 and dλ/dℓ= λ

(
1− g̃− 2

3N f
λ 2g̃

)
. In this case we find

a separatrix g̃= 1− 2
3λ 2, along which the flow of the Yukawa coupling increases ac-

cording to dλ/dℓ= 2
3(1−1/N f )λ

3, resulting in λ (ℓ) = λ0/
√

1− 4
3λ 2

0 (1−1/N f )ℓ.

The Néel quantum critical point is therefore very weakly unstable against the

Yukawa coupling to Dirac fermions. The RG flow in the g̃-λ plane is shown in

Fig. 4.6.

To determine the critical surface in the three-dimensional parameter space of
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Figure 4.6: RG flow as a function of inverse spin stiffness g̃ = g/gc and Yukawa coupling
λ to Dirac fermions with N f = 4 flavors. At the Néel quantum critical point
Pc, the Yukawa coupling is a weakly relevant perturbation, indicated by the
increase of λ along the separatrix shown in red.

g̃, γ and λ , we insert a polynomial ansatz g̃ = f (γ,λ ) into the RG equations (4.33),

(4.34) and (4.40). To second order we obtain

g̃ = 1+
4
3

γ − 4
9

γ
2 − 2

3
λ

2. (4.41)

The critical surface is shown in Fig. 4.7. As expected, the critical surface con-

tains the separatrices in the λ = 0 and γ = 0 planes. For initial values of the coupling

constants slightly outside the surface, the RG flow is away from the surface: the in-

verse spin stiffness g̃ renormalizes to zero on one side, indicative of a freezing of

spin-wave fluctuations, and to infinity on the other side, corresponding to a quantum

disordered state. The Landau damping γ has a stabilizing effect on the Néel order,

while the Yukawa coupling λ has a destabilizing effect.

To analyze the competition between γ and λ within the critical surface we
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Figure 4.7: RG flow within the critical surface for N f = 4, relevant to Dirac electrons on
the honeycomb lattice. The Néel quantum critical point Pc is stable against
Landau damping γ but unstable against Yukawa coupling λ . For sufficiently
strong Landau damping, the RG flow is towards Pc until the trajectories turn to
hit the magenta lines, which are given by γ ′(ℓ) = 0 and λ ′(ℓ) = 0, respectively,
and closely track each other. At this point the RG flow becomes extremely slow
and the parameters acquire small metastable values.

replace g̃ in the corresponding RG equations, using Eq. (4.41),

dγ

dℓ
= −2

3
γ

2 +
2
3

γ
3 + γλ

2 (4.42)

dλ

dℓ
= −1

3
γλ +

7
9

γ
2
λ +

2
3
(1−1/N f )λ

3, (4.43)
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where we have expanded up to cubic order in the coupling constants. For N f ≥ 4, the

RG equations only exhibit a single fixed point at λ = 0 and γ = 0, corresponding to

the Néel quantum critical point Pc. The RG flow in the critical surface and several

trajectories obtained from numerical integration of the RG equations (4.42) and

(4.43) are shown in Fig. 4.7 for the case N f = 4.

The RG flow is best understood in terms of the lines along which (i) γ ′(ℓ) = 0

and (ii) λ ′(ℓ) = 0, shown in magenta in Fig. 4.7, and given by (i) λ 2 = 2
3(γ − γ2)

and (ii) λ 2 = 1
2(1−1/N f )

(γ − 7
3γ2), respectively. These lines merge at Pc and because

of they exhibit the same asymptotic functional form, λ ∼ √
γ , they closely track

each other. As a result, the RG flow becomes very slow in the vicinity of this pair

of lines and it is not possible for trajectories to cross them on scales relevant to any

realistic system size.

The case N f = 4, relevant to Dirac electrons on the honeycomb lattice, is the

most extreme since in this case the coefficients of the leading
√

γ terms are identical.

For weak Landau damping, λ 2 > 2
3γ , corresponding to points above the magenta

lines, the flow is towards the regime of strong Yukawa coupling. This indicates that

the Néel quantum critical Pc point becomes unstable toward Kondo physics, which

falls outside the validity of our analysis.

On the other hand, if the Landau damping is sufficiently strong, λ 2 < 2
3γ , both

λ (ℓ) and γ(ℓ) decrease under the RG. The corresponding trajectories approach Pc

until they eventually turn to hit the magenta lines. Here the RG flow practically

comes to a standstill and λ (ℓ) and γ(ℓ) reach metastable plateaux values γ∗ and

λ 2
∗ ≈ 2

3γ∗. The non-zero Yukawa coupling leads to the opening of a small elec-

tronic gap ∆ ∼ λ∗|⟨N⃗(r,τ)⟩| in the Néel ordered phase where the spin-rotational

symmetry is broken. On the critical surface the finite values γ∗ and λ∗ result in an

anomalous contribution to the scaling dimension ∆ψ of the fermion fields, giving

rise to non-Fermi liquid behavior. However, the corresponding critical exponents

are non-universal since the behavior is not associated with a true fixed point.

For N f < 4 the RG equations (4.42) and (4.43) exhibit an additional fixed point
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Figure 4.8: RG flow of the Landau damping γ and the Yukawa coupling λ within the crit-
ical surface for N f = 2. The Néel quantum critical point Pc is thermodynami-
cally stable in the blue region. In the purple region the flow is towards increas-
ing λ , indicative of strong coupling Kondo physics. The transition between the
two regimes is controlled by a new multi-critical point P̃c.

P̃c at

γ̃c =
4−N f

4+3N f
, λ̃

2
c =

8
3

N f (4−N f )

(4+3N f )2 , (4.44)

which merges with the Néel quantum critical point Pc as N f → 4, showing again

that the case N f = 4 is marginal.

In Fig. 4.8 the RG flow of γ and λ within the critical surface is shown for the

representative case N f = 2. In the blue region the RG flow is towards Pc, demon-

strating that the Néel fixed point is thermodynamically stable rather than metastable.

In the regime of small Yukawa coupling λ , this stability is achieved by finite but

very small Landau damping γ . In the purple region the RG flow is towards large

values of γ and λ , beyond the validity of our RG equations. The transition be-

tween this Kondo run-away regime and the Néel critical region is described by the

multi-critical fixed point P̃c.

We proceed to analyze the universal critical behavior of the multi-critical point
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P̃c for general N f < 4. The correlation length exponent ν̃ can be obtained from

linearizing the RG equation for the inverse spin stiffness (4.33) around the critical

value g̃c ≈ 1+ 4
3 γ̃c − 2

3 λ̃ 2
c . The resulting RG equation is of the general form d(g̃−

g̃c)/dℓ = ν̃−1(g̃− g̃c). A short calculation gives ν̃ = 1 which is identical to the

correlation-length exponent ν = 1 at the Néel quantum critical point Pc.

From the scaling dimension ∆π (4.27) of the transverse spin fluctuations fields

π⃗ we obtain the anomalous dimension ηπ = 1 at the Néel critical point Pc and

η̃π =
g̃c

1+ γ̃c
≈ 1+

1
9
(4−N f )(12−7N f )

(4+3N f )2 (4.45)

at the new multi-critical point P̃c. The additional contribution to η̃π results in a

slightly different exponent of the algebraic order parameter correlations at critical-

ity, ⟨⃗π(r)⃗π(0)⟩ ∼ r−D+2−η̃π , and corrections to other critical exponents, which can

be obtained from the conventional scaling and hyper-scaling relations.

Due to the finite value λ̃c (4.44) of the Yukawa coupling at P̃c, the symmetry-

breaking transition will be accompanied with the opening of a gap [143]

∆ ∼ (g̃c − g̃)zν̃ = (g̃c − g̃) (4.46)

in the Dirac fermion spectrum for g̃ < g̃c, in the Néel ordered phase. Moreover, at

P̃c the fermions acquire a small anomalous dimension [see Eq. (4.36)],

η̃ψ =
1

3N f

λ̃ 2
c g̃c

1+ γ̃c
≈ 8

9
4−N f

(4+3N f )2 , (4.47)

which implies that the fermion Green’s function has branch cuts rather than quasi-

particle poles. The multicritical point P̃c is therefore associated with non-Fermi

liquid behavior. From a scaling analysis of the fermionic spectral function [143] we

find that the quasiparticle pole strength vanishes as

Z ∼ (g̃− g̃c)
(z−1+η̃ψ )ν̃ = (g̃− g̃c)

η̃ψ (4.48)

as the critical point is approached from the semi-metallic, non-magnetic phase (g̃ >
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g̃c).

4.3.5 Comparison with the ε-expansion

We now address the question whether the same qualitative behavior can be found

within an ε-expansion above the lower critical dimension, D = 2+ ε . Although

such an expansion gives analytic control of the criticality of the NLσM [158, 160],

the Padé-Borel extrapolation to ε = 1 may be problematic due to a lack of sign

oscillations in the coefficients of the ε-expansion of 1/ν [161].

An additional problem arrises when the NLσM is coupled to Dirac fermions

since the form of the resulting Landau damping of the Néel order parameter field

explicitly depends on the dimension D, Π(k) = γ|k|D−2. At one-loop order the RG

equations for the inverse spin stiffness g̃ = g/(2π) and the Landau damping γ in

D = 2+ ε are given by

dg̃
dℓ

= −ε g̃+
1− γε2/4

1+ γ
g̃2, (4.49)

dγ

dℓ
= γ

[
2− ε − 1+ γε2/4

1+ γ
g̃
]
, (4.50)

where we have determined the scaling dimension of the order parameter field ∆π =

2+ε − g̃/(1+γ) from the renormalization of an auxiliary magnetic field, as before.

Without Landau damping, γ = 0, we obtain the Néel quantum critical point

at g̃c = ε . At the critical spin stiffness the linearized RG equation for γ is equal

to dγ/dℓ = 2(1− ε)γ , showing that near the lower critical dimension the Landau

damping is a relevant perturbation.

Interestingly, the shell contribution of diagram in Fig. 4.4(a) is equal to zero in

D = 2 due to a vanishing angular integral. As a result, the Yukawa coupling λ does

not contribute to the renormalization of g̃ and γ , unlike in D = 3.

For similar reasons, the angular integration over the D = 2 dimensional shell

causes the fermionic self-energy diagram, shown in Fig. 4.4(e), to vanish. The

fermion field does therefore not acquire an anomalous dimension and the scaling

dimension is trivial, ∆ψ = (3+ ε)/2. From the scaling dimensions ∆π and ∆ψ we
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obtain the renormaization of the Yukawa coupling,

dλ

dℓ
= λ

[
1− g̃

1+ γ

]
. (4.51)

At g̃c = ε and γ = 0 the RG equation reduces to dλ/dℓ = (1− ε)λ , demon-

strating that the Yukawa coupling is a relevant perturbation at the Néel quantum

critical point for ε < 1. Note that for ε = 1 both the the Landau damping γ and the

Yukawa coupling λ become marginal, consistent with our calculation in D = 3.

4.4 Discussion
We have investigated the stability of the Néel quantum critical point of a two-

dimensional quantum antiferromagnet with a Kondo coupling to N f flavors of two-

component Dirac fermion fields. For N f = 4 this would describe Dirac electrons on

the honeycomb lattice with two-fold spin and valley degeneracies.

The resulting long-wavelength field theory is given by a NLσM with a Yukawa

coupling to the Dirac fermion fields. It is crucial to account for the Landau damping

of the Néel order parameter field. From simple scaling arguments, the resulting self-

energy correction to the order-parameter propagator is expected to dominate the IR

physics.

At first glance the field theory seems very similar to the Heisenberg GNY the-

ory, which describes the criticality in a purely itinerant model with strong local re-

pulsions between the Dirac electrons. There are crucial differences, however. While

in the GNY theory the quantum phase transition is tuned by the mass of the order

parameter field, the NLσM only contains gradient terms and the criticality occurs

as a function of the inverse spin-stiffness. It is therefore essential to follow the

scale dependence of the order parameter propagator with both the quadratic gradi-

ent terms and the non-analytic self energy correction arising from Landau damping.

In GNY theories on the other hand, the quadratic gradient terms can be discarded.

Another important difference is that the scaling dimension of the transverse

spin-fluctuation field of the NLσM is fixed by the requirement that the constraint

N⃗2 = 1 is satisfied on all length scales. As a result, the boson scaling dimension
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cannot be used to enforce scale invariance of the Yukawa coupling, in contrast to

the large- N f GNY theory.

We have employed momentum-shell RG to analyze the scale dependence of

the inverse spin stiffness g, the Landau damping γ and the Yukawa coupling λ .

Although γ and λ are initially linked to each other via the fermionic polarization

diagram, the two parameters flow independently under the RG. At the Néel quan-

tum critical point the scaling dimensions of both γ and λ vanish and a bifurcation

analysis is required. We have investigated the coupled RG flow of the two pertur-

bations within the critical surface g = f (γ,λ ) which contains the unperturbed Néel

quantum critical point and separates the regions where transverse spin fluctuations

freeze or diverge, respectively.

The flow within the critical surface shows that while the Landau damping γ

is weakly irrelevant at the Néel critical point, the Yukawa coupling λ is a weakly

relevant perturbation. Interestingly, the interplay between the two parameters cru-

cially depends on the number N f of Dirac fermion flavors. For N f ≥ 4, sufficiently

strong Landau damping renders the Néel quantum critical point metastable. This

is evident from an RG flow towards the Néel critical point up to scales larger than

those relevant to experiments. This behavior is most pronounced for the marginal

case N f = 4, representing Dirac electrons on the honeycomb lattice,

For N f < 4 the Néel critical point becomes thermodynamically stable over

a region where the Landau damping dominates over the Yukawa coupling. We

have established a new multicritical point on the critical surface which controls the

transition between the Néel-critical and Kondo-runaway regimes. The finite values

of γ and λ result in distinct critical exponents and an anomalous dimension of the

fermion fields, correponding to non-Fermi-liquid behavior.



Chapter 5

Emergent Dirac Fermions in Kitaev

Quantum Spin Liquids I: Majorana

Mean-Field Theories

We have shown that even though the Dirac fermions have the simplest point-like

Fermi surface, their zero-energy particle-hole fluctuations can significantly alter and

complicate a quantum criticality. Another fold of complexity can be introduced if

the fermions are originated from fractionalisation. Fractionalisation happens when

a quasiparticle breaks into a set of new quasiparticles, each carrying a fraction of

the properties. Unlike the integer quasiparticles, the fractionalised quasiparticle ex-

citations have no elementary correspondence in particle physics. Typical examples

are the fractional quantum Hall effect, where the fermions fractionalise into anyons

carrying a fraction of the electron charges, and the spin-charge separation in one di-

mension, where the electrons break up into spinons that carry only the spin degree of

freedom and holons that only inherit the electron charges. Since the fractionalised

excitations have different physical properties or even follow different statistics, the

quantum criticality can be more exotic once involved.

In the following two chapters, we focus on the phase transitions of the Kitaev

honeycomb model. The model is S = 1/2 exactly solvable with a Z2 quantum spin

liquid (QSL) ground state. In the ground state, the spins fractionalise into Majorana

fermions and Z2 gauge fields. We will first introduce the exact solvability of the
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pure Kitaev model, and then add additional Ising interaction to it to move the system

away from the exactly solvable point. Different fermionisation methods will then

be used to study the phase transitions at a mean-field level. In doing so, we will

get hints that a topological phase transition in such a model could be described

by a Gross-Neveu-Yukawa type theory, though the Dirac fermions are spinless and

chargeless Majorana fermions.

The original work in this chapter was published in Majorana-fermion mean

field theories of Kitaev quantum spin liquids, S. G. Saheli, J. Lin, H. Hu, F. Krüger,

Physical Review B 109 (1), 014407.[162].

5.1 Introduction

Quantum Spin Liquids (QSLs) [163, 164, 165] are a novel class of materials in

which geometric and/or exchange frustration suppresses magnetic order down to

absolute zero temperature. Because of the topological character of the ground-state

wave function with a special type of long-range quantum entanglement, QSLs ex-

hibit exotic fractional excitations [166], which are believed to hold great potential

for quantum communication and computation [167]. These concepts were put on

a firm footing in the seminal work by Alexei Kitaev [22] who constructed an ex-

actly solvable QSL model on the honeycomb lattice and demonstrated that the spins

break-up (fractionalize) into a set of Majorana fermions. The emergent fermions

essentially behave as the electrons in graphene with a relativistic Dirac dispersion,

although they do not carry electric charge and are coupled to gauge fields.

Although the bond-directional dependence of the Ising exchange anisotropy

in the Kitaev model might seem artificial, it was later realized that, as a result of

spin-orbital entanglement [168], the Kitaev couplings can play a dominant role in

honeycomb Iridates and Ruthenates, such as Na2IrO3 [169, 170, 171, 172, 173],

α-Li2IrO3 [171], β -Li2IrO3 [174], γ-Li2IrO3 [175] and α-RuCl3 [176, 177, 178].

However, small additional magnetic interactions such as Heisenberg terms drive

these systems into a magnetically ordered state that forms at low temperatures.

Nevertheless, at higher temperatures or in applied magnetic field signatures of the
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nearby Kitaev QSL state are seen [179].

While the theoretical interest in the novel fundamental physics of QSLs is con-

siderable, the experimental identification of QSLs has proven difficult. While the

emergent fermions have manifestations in specific heat and thermal transport prop-

erties [179, 180, 181], rather indirect evidence comes from the lack of magnetic

ordering seen in NMR, µSR and neutron diffraction, as well as from the absence of

sharp quasiparticle excitations in neutron scattering. Unlike in the case of Heisen-

berg spin-1/2 chain systems where the measured intensity variation is quantitatively

understood from the continuum of fractionalized spinon excitations [182, 183], in

the case of two-dimensional QSLs theoretical techniques are yet to be developed to

quantitatively understand finite temperature excitation spectra.

A possible way to distinguish signatures of fractionalization from diffuse scat-

tering originating from disorder or short ranged and lived quasiparticle excitations is

through entanglement witnesses such as quantum Fisher information [184] which

can be directly computed from the dynamic susceptibilities measured in inelastic

neutron scattering experiments [185]. In the case of the idealized Kitaev model it

was demonstrated theoretically [186, 187] that the magnetic structure factor shows

signatures of fractionalized Majorana fermions and fluxes of Z2 gauge fields that are

in qualitative agreement with the finite-temperature excitation spectrum of α-RuCl3

[177, 178]. More recently, the theoretical approach was extended beyond the inte-

grable point of the pure Kitaev model, using an augmented parton mean-field the-

ory based on the Kitaev Majorana representation [188]. Finally, by combining the

density-matrix renormalization (DMRG) ground state method and a matrix-product

state (MPS) based dynamical algorithm [189] it was demonstrated that the spectra

of the Kitaev-Heisenberg model close to the QSL phase show proximate spin-liquid

features.

Although the physics of the Kitaev model is naturally captured in terms of

Majorana fermions, phase diagrams of the Kitaev-Heisenberg model and extensions

thereof were calculated in terms of complex spin-1/2 fermionic spinons, either on

the level of SU(2) slave fermion mean-field theory [190, 191] or numerically by
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means of pseudo-fermion functional renormalization group [171, 192, 193].

In this chapter we compute zero and finite temperature mean-field phase di-

agrams in terms of fractionalized Majorana fermion degrees of freedom. There

exist different type of representations of the spin-1/2 operators in terms of Majo-

rana fermions which are equivalent for the description of the ground-state prop-

erties of the pure isotropic or anisotropic Kitaev model [194, 195], but not nec-

essarily if finite-temperature excitations are considered or additional interactions

are taken into account. We focus on two representations, the one originally in-

troduced by Kitaev [22] and the two-dimensional Jordan-Wigner transformation

(JWT) [196, 197, 194, 198].

In addition to Kitaev and Heisenberg exchange we will consider magnetic ex-

change anisotropy, which as a result of the directional dependence of the Kitaev

coupling induces spatial anisotropy. For the pure Kitaev model anisotropy is known

to result in a topological phase transition [22] from a QSL hosting gapless Majorana

and gapped flux excitations to a gapped Z2 one with Abelian excitations [189].

The outline of the chapter is as follows. In Sec. 5.2 we first give an brief

introduction of the pure Kitaev model, and then motivate the Hamiltonian of the

anisotropic S = 1/2 Kitaev-Heisenberg model on the honeycomb lattice. The two-

dimensional JWT and consecutive mean-field decoupling scheme are introduced in

Sec. 5.3, where the underlying string operator is defined such that the fermionized

Hamiltonian remains local in the extreme Ising limit of the Heisenberg exchange

interaction. In Sec. 5.4 we map the spin Hamiltonian to a set of four Majorana

fermions, following the original construction by Kitaev, and enforce the Hilbert

space constraint through a Lagrange multiplier. We discuss the mean-field decou-

pling of the interaction terms in bond and magnetization channels and determine

the Lagrange multiplier as a function of the mean-field parameters.

Our results are presented in Sec. 5.5. We first demonstrate that the two mean-

field theories result in identical phase boundaries for the topological transition be-

tween the gapless and gapped Kitaev QSLs. Interestingly, the anisotropy of the

Kitaev coupling and the Ising exchange cooperate in driving the transition.We then
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determine the antiferromagnetic instability driven by the Ising exchange. This tran-

sition is strongly first order and not correctly described by the JWT mean-field the-

ory. We finally determine the finite-temperature phase diagram and show that the

magnetic phase transition becomes continuous above a certain temperature. At this

temperature scale, the specific heat above the Kitaev QSL shows a peak, indicating

a crossover between a fractionalized paramagnet with frozen Z2 flux excitations to a

conventional paramagnetic state at higher temperatures. In Sec. 5.6 we summarize

and discuss our results.

5.2 The Kitaev Model and Beyond

5.2.1 Kitaev Model

The Kitaev model is one of the rare models that are exactly solvable. It describes a

spin-1/2 Hamiltonian on a honeycomb lattice with bond-oriental spin-spin interac-

tions, as shown in fig. 5.1. The Hamiltonian can be simply written as:

Ĥ = ∑
γ=x,y,z

∑
⟨i, j⟩γ

Kγ σ̂
γ

i σ̂
γ

j . (5.1)

On each bond, there’s only an anisotropic interaction between the corresponding

spin component of the nearest neighbour spins. Though it seems artificial at first

glance, its exact solvability and exotic QSL ground state make it a popular model

in the community.

In order to solve the model, one needs to first fermionise the spin Hamiltonian

with Majorana fermions by defining the transformation: σ̂
γ

i = iη̂0
i η̂

γ

i , where η0
i and

η
γ

i ,γ = (x,y,z) are different Majorana fermions on lattice site i. This transforms the

spin Hamiltonian into an interacting theory of four Majorana fermions:

Ĥ = ∑
r

η
0
A(r)η

0
B(r+a1)η

x
A(r)η

x
B(r+a1)

+η
0
A(r)η

0
B(r+a2)η

y
A(r)η

y
B(r+a2)

+η
0
A(r)η

0
B(r)η

z
A(r)η

z
B(r), (5.2)
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where A,B are the sublattice indices in a unit cell, and a1,a2 are the two lattice

vectors of the honeycomb lattice. Note that a pair of Majorana fermions can be

combined to form a complex fermion, suggesting that our new Hilbert space is ac-

tually twice as large as the original spin space. Therefore a constraint on η0
i ηx

i η
y
i η

z
i

is needed to project the states onto the ’physical’ Hilbert space.

The Hamiltonian can be further reduced once realising that the bond oper-

ators uγ

i , defined as the product of the bond-dependent Majorana fermion oper-

ators uγ

i (r) = iηγ

A(r)η
γ

B(r + δ⃗γ), δ⃗γ = (a1,a2,0), commute with the Hamiltonian,[
uγ

i (r),H
]
= 0. This suggests that the bond operators can be diagonalised simulta-

neously with the Hamiltonian. Another observation is that uγ

i
2
= 1, leading to the

simple eigenvalues ±1. Due to its property, the bond operator uγ

i is also called emer-

gent Z2 gauge field. However, as the name suggests, uγ

i itself is only a gauge degree

of freedom, not physically observable. On the other hand, the collective behaviour

of the product of six connected bond operators on a hexagon, Bp = ux
1uy

2uz
3ux

4uy
5uz

6,

dubbed the plaquette operator, is a physical observable which also commutes with

the Hamiltonian, with eigenvalues ±1. In analogy to the magnetic flux induced by a

magnetic field, the eigenvalues of the plaquette operators can be viewed as Z2 fluxes

on the hexagons, with Bp = 1 corresponding to zero flux, and Bp =−1 as π flux.

It seems that if we know the flux configuration of the ground state, we can re-

place the bond operators with their eigenvalues in the Hamiltonian and get a single-

particle theory. Fortunately, this is exactly the case. According to Lieb’s theorem,

the ground state on a honeycomb lattice is flux-free. That is to say, Bp = 1 for all

plaquettes. One can therefore immediately choose the simplest gauge by setting all

bond operators to have eigenvalues of 1. The left Hamiltonian,

H = ∑
r

(
η

0
A(r)η

0
B(r)+η

0
A(r)η

0
B(r+a1)+η

0
A(r)η

0
B(r+a2)

)
, (5.3)

should be very familiar to the readers - It resembles the electrons in graphene. In-

deed, the energy dispersion of the Majorana fermions η0
i is identical to that of the

electrons on a honeycomb lattice, with six Dirac cones sitting on the corners of the

Brillouin zone, as shown in fig.5.1(b). The ground state is thus called a gapless Z2
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quantum spin liquid state. In analogy to Dirac fermions on a honeycomb lattice,

anisotropy in the Kitaev coupling Kγ will cause a pair of Dirac points with different

valley indices to move towards each other. At the critical value, the two Dirac points

merge and form a semi-Dirac cone, after which a gap opens in the spectrum, corre-

sponding to a gapped QSL state. Apart from anisotropy, Kitaev has also shown in

[22] that a magnetic field along [111] direction can also open a gap in the dispersion,

and the gapped state has a well-defined first Chern number.

Before we end the section and move away from the exact solvable point, some

discussions on the underlying physics are due. Firstly, the emergence of Z2 gauge

fields suggests that QSLs are topologically non-trivial. In fact, the gapless Z2 QSL

state is sometimes called a symmetry-protected topological (SPT) state, as the gap-

less nature is protected by inversion and time-reversal symmetry, resembling Dirac

semimetals. additionally, the gapped QSLs belong to the category of symmetry-

enriched topological (SET) states. Readers are referred to [199] for a detailed cat-

egorisation and explanation. Secondly, The Kitaev model is a good example of

fractionalisation, where a spin 1/2 breaks into four spinless, chargeless Majorana

fermions. Three of them correspond to the emergent Z2 gauge fields, which are

localised in the zero-flux ground state, while the left Majorana fermion remains

mobile, in resemblance to the complex fermion in graphene. Though fractional-

isation is only a mathematical choice of rewriting the spin operators, we see that

with the appropriate representation, the fractionalised quasiparticles have distinct

dynamics, and therefore can be treated as independent degrees of freedom. Such

fractionalisation can also be reflected through physical observations. For example,

due to the different dynamics of the fractional degrees of freedom, there will be two

different typical energy/temperature scales. A fraction of the total entropy will be

released at each energy/temperature scale, resulting in a two-step thermalisation as

proposed in [200, 201, 202]. However, for observables like the spin-spin correlation,

the translation to the fractionalised quasiparticle language is not so straightforward.

At last, though being a model with anisotropic bond-oriental interactions as ’unnat-

ural’ or ’toy’ as one could imagine, the Kitaev model turns out to be realistic. As
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uncovered in the neat work by Kalliulin [168], the Kitaev coupling is dominant in a

family of transition metal oxides with strong spin-orbit coupling. Nowadays, many

of them have suggested that they are in, or very close, to a Kitaev QSL ground state,

although decisive proof remains elusive.

5.2.2 Kitaev-Ising model

Our starting model is the anisotropic S = 1/2 Kitaev-Heisenberg model on the hon-

eycomb lattice in the limit of an extreme Ising anisotropy in the Heisenberg sector.

The Hamiltonian of the model is given by

Ĥ = ∑
γ=x,y,z

∑
⟨i, j⟩γ

Kγ σ̂
γ

i σ̂
γ

j + J ∑
⟨i, j⟩

σ̂
z
i σ̂

z
j , (5.4)

where σ̂ γ are the spin-1/2 operators in units of h̄/2, Ŝγ = h̄
2 σ̂ γ , satisfying the spin

commutator relations [σ̂α
i , σ̂

β

j ] = 2δi jεαβγ σ̂
γ

i .

The Kitaev couplings Kγ are illustrated in Fig. 5.1(a). Along each of the three

inequivalent nearest neighbor bonds, labelled by γ = x,y,z, different spin compo-

nents are coupled, e.g. along the x-bonds the Kitaev coupling is Kxσ̂ x
i σ̂ x

j . In this

work we consider antiferromagnetic Kitaev couplings and allow the coupling be-

tween spin-z components to be stronger than those between the x and y compo-

nents, Kz ≥ Kx = Ky = K > 0. Because of the bond-directional nature of the Kitaev

coupling, this spin-exchange anisotropy is linked to a strong spatial anisotropy.

By symmetry one should also expect spin-exchange anisotropy in the Heisen-

berg interactions. For reasons that we will explain later we focus on the case of very

strong Ising anisotropy, J = Jz > 0 and Jx = Jy = 0.

The zero-temperature phase diagram of the model is controlled by the two

dimensionless parameters

α =
J
K

and δ =
Kz −K

K
. (5.5)

For α = 0 the model reduces to an anisotropic Kitaev model which is exactly

solvable in terms of Majorana fermions, either by using the original Kitaev con-



5.2. The Kitaev Model and Beyond 105

(a)

A

B <latexit sha1_base64="+2AjJ8SwqvQPlUd26/ULzEJgyNA=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiQi6sJFwY3LCvYBTSmT6U07dDIJMxOhhP6GGxeKuPVn3Pk3TtostPXAwOGce7lnTpAIro3rfjultfWNza3ydmVnd2//oHp41NZxqhi2WCxi1Q2oRsEltgw3AruJQhoFAjvB5C73O0+oNI/lo5km2I/oSPKQM2qs5PsRNeMgzOhs4A2qNbfuzkFWiVeQGhRoDqpf/jBmaYTSMEG17nluYvoZVYYzgbOKn2pMKJvQEfYslTRC3c/mmWfkzCpDEsbKPmnIXP29kdFI62kU2Mk8o172cvE/r5ea8KafcZmkBiVbHApTQUxM8gLIkCtkRkwtoUxxm5WwMVWUGVtTxZbgLX95lbQv6t5V/fLhsta4Leoowwmcwjl4cA0NuIcmtIBBAs/wCm9O6rw4787HYrTkFDvH8AfO5w8IX5Gs</latexit>a1
<latexit sha1_base64="ABBqqmLWNF3jptZK9rE1VY82oZw=">AAAB83icbVDLSgMxFL1TX7W+qi7dBIvgqsyUoi5cFNy4rGAf0BlKJs20oZlkSDJCGfobblwo4tafceffmGlnoa0HAodz7uWenDDhTBvX/XZKG5tb2zvl3cre/sHhUfX4pKtlqgjtEMml6odYU84E7RhmOO0niuI45LQXTu9yv/dElWZSPJpZQoMYjwWLGMHGSr4fYzMJowzPh41htebW3QXQOvEKUoMC7WH1yx9JksZUGMKx1gPPTUyQYWUY4XRe8VNNE0ymeEwHlgocUx1ki8xzdGGVEYqksk8YtFB/b2Q41noWh3Yyz6hXvVz8zxukJroJMiaS1FBBloeilCMjUV4AGjFFieEzSzBRzGZFZIIVJsbWVLEleKtfXifdRt27qjcfmrXWbVFHGc7gHC7Bg2towT20oQMEEniGV3hzUufFeXc+lqMlp9g5hT9wPn8ACeORrQ==</latexit>a2

<latexit sha1_base64="ZUd+XjiWfNzJ194JqI5WHdmvNnY=">AAAB6HicdVDLSgNBEJyNrxhfUY9eBoPgadmNG82Ch4AXjwmYByRLmJ30JmNmH8zMiiHkC7x4UMSrn+TNv3E2iaCiBQ1FVTfdXX7CmVSW9WHkVlbX1jfym4Wt7Z3dveL+QUvGqaDQpDGPRccnEjiLoKmY4tBJBJDQ59D2x1eZ374DIVkc3ahJAl5IhhELGCVKS437frFkmW61UnHK2DIty3UqZ5q4rmtXbWxrJUMJLVHvF997g5imIUSKciJl17YS5U2JUIxymBV6qYSE0DEZQlfTiIQgven80Bk+0coAB7HQFSk8V79PTEko5ST0dWdI1Ej+9jLxL6+bqqDqTVmUpAoiulgUpByrGGdf4wETQBWfaEKoYPpWTEdEEKp0NgUdwten+H/SKpv2uek0nFLtchlHHh2hY3SKbHSBauga1VETUQToAT2hZ+PWeDRejNdFa85YzhyiHzDePgFrHI1a</latexit>x
<latexit sha1_base64="ta75jkYZDfPkFyedqEqhue3Yxvs=">AAAB6HicdVBNSwMxEJ2tX7V+VT16CRbBU8mWUlvwUPDisQVbC+1Ssmm2jc1mlyQrLKW/wIsHRbz6k7z5b8y2FVT0wcDjvRlm5vmx4Npg/OHk1tY3Nrfy24Wd3b39g+LhUVdHiaKsQyMRqZ5PNBNcso7hRrBerBgJfcFu/elV5t/eM6V5JG9MGjMvJGPJA06JsVI7HRZLuIwtajWUEbeOXUsajXql0kDuwsK4BCu0hsX3wSiiScikoYJo3XdxbLwZUYZTweaFQaJZTOiUjFnfUklCpr3Z4tA5OrPKCAWRsiUNWqjfJ2Yk1DoNfdsZEjPRv71M/MvrJyaoezMu48QwSZeLgkQgE6HsazTiilEjUksIVdzeiuiEKEKNzaZgQ/j6FP1PupWyWytX29VS83IVRx5O4BTOwYULaMI1tKADFBg8wBM8O3fOo/PivC5bc85q5hh+wHn7BEAxjT0=</latexit>y

<latexit sha1_base64="oxHVQzDJrEhnmrdtURw0Uw5anF8=">AAAB6HicdVBNS8NAEN3Ur1q/qh69LBbBU0jS2lbwUPDisQVrC20om+2kXbv5YHcj1NBf4MWDIl79Sd78N27aCir6YODx3gwz87yYM6ks68PIrayurW/kNwtb2zu7e8X9gxsZJYJCm0Y8El2PSOAshLZiikM3FkACj0PHm1xmfucOhGRReK2mMbgBGYXMZ5QoLbXuB8WSZZ7Xq86Zgy3TsmpOuZoRp1ZxytjWSoYSWqI5KL73hxFNAggV5UTKnm3Fyk2JUIxymBX6iYSY0AkZQU/TkAQg3XR+6AyfaGWI/UjoChWeq98nUhJIOQ083RkQNZa/vUz8y+slyq+7KQvjREFIF4v8hGMV4exrPGQCqOJTTQgVTN+K6ZgIQpXOpqBD+PoU/09uHNOumpVWpdS4WMaRR0foGJ0iG9VQA12hJmojigA9oCf0bNwaj8aL8bpozRnLmUP0A8bbJ01ZjUU=</latexit>z

<latexit sha1_base64="zOQ9Xht1ssP433QcGb6tkOgZlGo=">AAAB8XicbVC7SgNBFL0bXzG+opY2g0GwCrsS1MIiYGMZwTwwWcLs5G4yZHZ2mZkVwpK/sLFQxNa/sfNvnCRbaOKBgcM59zLnniARXBvX/XYKa+sbm1vF7dLO7t7+QfnwqKXjVDFssljEqhNQjYJLbBpuBHYShTQKBLaD8e3Mbz+h0jyWD2aSoB/RoeQhZ9RY6bEXUTMKwkxN++WKW3XnIKvEy0kFcjT65a/eIGZphNIwQbXuem5i/Iwqw5nAaamXakwoG9Mhdi2VNELtZ/PEU3JmlQEJY2WfNGSu/t7IaKT1JArs5CyhXvZm4n9eNzXhtZ9xmaQGJVt8FKaCmJjMzicDrpAZMbGEMsVtVsJGVFFmbEklW4K3fPIqaV1Uvctq7b5Wqd/kdRThBE7hHDy4gjrcQQOawEDCM7zCm6OdF+fd+ViMFpx85xj+wPn8AfU7kRk=</latexit>r

Dirac 
point

<latexit sha1_base64="W3OJHGcCLl6tgEVvplbojyFExf4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8ziKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNl0o3h</latexit>

kx

<latexit sha1_base64="fMYZzAYOTgxrphDroLe+J0kTBbs=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPBi8eK9gPaUDbbSbt0swm7GyGE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ndLa+sbmVnm7srO7t39QPTxq6zhVDFssFrHqBlSj4BJbhhuB3UQhjQKBnWByO/M7T6g0j+WjyRL0IzqSPOSMGis9TAbZoFpz6+4cZJV4BalBgeag+tUfxiyNUBomqNY9z02Mn1NlOBM4rfRTjQllEzrCnqWSRqj9fH7qlJxZZUjCWNmShszV3xM5jbTOosB2RtSM9bI3E//zeqkJb/ycyyQ1KNliUZgKYmIy+5sMuUJmRGYJZYrbWwkbU0WZselUbAje8surpH1R967ql/eXtUajiKMMJ3AK5+DBNTTgDprQAgYjeIZXeHOE8+K8Ox+L1pJTzBzDHzifP2dWjeI=</latexit>

ky
<latexit sha1_base64="rh0cOcv3961Jlr9Ie8KUXimg7a8=">AAAB83icbVDLSsNAFL2pr1pfVZduBosgCCWRoi4LbgQ3FewDmlAm00k7dDIJ8xBK6G+4caGIW3/GnX/jpM1CWw8MHM65l3vmhClnSrvut1NaW9/Y3CpvV3Z29/YPqodHHZUYSWibJDyRvRArypmgbc00p71UUhyHnHbDyW3ud5+oVCwRj3qa0iDGI8EiRrC2ku/HWI/DKLufDS4G1Zpbd+dAq8QrSA0KtAbVL3+YEBNToQnHSvU9N9VBhqVmhNNZxTeKpphM8Ij2LRU4pirI5pln6MwqQxQl0j6h0Vz9vZHhWKlpHNrJPKNa9nLxP69vdHQTZEykRlNBFociw5FOUF4AGjJJieZTSzCRzGZFZIwlJtrWVLEleMtfXiWdy7p3VW88NGrNZlFHGU7gFM7Bg2towh20oA0EUniGV3hzjPPivDsfi9GSU+wcwx84nz/e0pGU</latexit>

K+

<latexit sha1_base64="W+hylsNhJhzWk/6cMqCliA0MBnM=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgxpJIUZcFN4KbCvYBTSiT6aQdOpmEeQgl9DfcuFDErT/jzr9x0mahrQcGDufcyz1zwpQzpV332ymtrW9sbpW3Kzu7e/sH1cOjjkqMJLRNEp7IXogV5UzQtmaa014qKY5DTrvh5Db3u09UKpaIRz1NaRDjkWARI1hbyfdjrMdhlN3PBheDas2tu3OgVeIVpAYFWoPqlz9MiImp0IRjpfqem+ogw1Izwums4htFU0wmeET7lgocUxVk88wzdGaVIYoSaZ/QaK7+3shwrNQ0Du1knlEte7n4n9c3OroJMiZSo6kgi0OR4UgnKC8ADZmkRPOpJZhIZrMiMsYSE21rqtgSvOUvr5LOZd27qjceGrVms6ijDCdwCufgwTU04Q5a0AYCKTzDK7w5xnlx3p2PxWjJKXaO4Q+czx/h2pGW</latexit>

K�

<latexit sha1_base64="UxUlIGW2dSifclmMxluURDujjJ8=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8cK9gPbUCbbTbt0s4m7G6GE/gkvHhTx6t/x5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVlDVoLGLVDlAzwSVrGG4EayeKYRQI1gpGN1O/9cSU5rG8N+OE+REOJA85RWOldpeiyK4fJr1yxa26M5Bl4uWkAjnqvfJXtx/TNGLSUIFadzw3MX6GynAq2KTUTTVLkI5wwDqWSoyY9rPZvRNyYpU+CWNlSxoyU39PZBhpPY4C2xmhGepFbyr+53VSE175GZdJapik80VhKoiJyfR50ueKUSPGliBV3N5K6BAVUmMjKtkQvMWXl0nzrOpdVM/vziu1Wh5HEY7gGE7Bg0uowS3UoQEUBDzDK7w5j86L8+58zFsLTj5zCH/gfP4A/JiP8Q==</latexit>BZ

(b)

Figure 5.1: (a) Illustration of the Kitaev model on the honeycomb lattice. The three in-
equivalent nearest neighbor bonds are labelled by γ = x,y,z and shown in dif-
ferent colors. Along a bond in the γ direction only the spin components Sγ

between the neighboring sites are coupled. We allow the Kitaev couplings to
be anisotropic and include an additions Ising exchange between spin-z com-
ponents on all nearest neighbor bonds. The unit cell of the honeycomb lat-
tice, shaded in grey, contains two lattice sites labelled by A and B. (b) The
pure Kitaev model is exactly solvable in terms of Majorana fermions. In the
isotropic limit one band is gapless with Dirac points at the corners K+ and
K− of the hexagonal Brillouin zone (BZ). With increasing anisotropy δ and
Ising exchange α the Dirac points move along the edges of the BZ and eventu-
ally merge, corresponding to a topological phase transition to a gapped Kitaev
QSL. Sufficiently strong α results in a first-order transition to an antiferromag-
net with fully gapped Majorana fermion spectrum.

struction [22] or a two-dimensional Jordan-Wigner transformation [194]. In both

cases one obtains flat bands, corresponding to local flux excitations, and a gapless

dispersive band with Dirac points at the Fermi level. In the isotropic Kitaev model

(δ = 0) the Dirac points are located at the corners K± = 2π(±1/(3
√

3,1/3) of the

hexagonal Brillouin zone (BZ) [see Fig. 5.1(b)]. Anisotropy in the Kitaev couplings

is known to drive a topological phase transition from a gapless to a gapped QSL

[22]. With Increasing anisotropy δ , the Dirac points move along the edges of the

BZ and merge when δc = 1, corresponding to Kz/K = 2. At this point the dispersive

Majorana band exhibits a semi-Dirac point at 2π(0,1/3), which is a quadratic band

touching point along the edge but relativistic in the transverse direction. For values

δ > 1 the excitations become gapped. This behavior is very similar to the topologi-
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cal phase transition proposed to occur for electrons moving in strained honeycomb

lattices [203, 204, 205, 55, 153] and observed experimentally in black phosphorus

[206, 207].

We will see that α = J/K has a similar effect on the Dirac band and cooper-

ates with the anisotropy in driving the topological phase transition. In addition, the

flux excitations become weakly dispersive for α > 0. As one might expect, suffi-

ciently strong α leads to a first-order transition between a Kitaev QSL and an Ising

antiferromagnet with a gapped Majorana fermion spectrum of strongly hybridized

bands.

5.3 Majorana fermions from Jordan-Wigner trans-

formation

The Jordan-Wigner transformation (JWT) is usually used to express one-

dimensional S = 1/2 spin Hamiltonians in terms of spinless fermions with creation

and annihilation operators d̂†
n , d̂n, where n labels the site along the one-dimensional

lattice. It is natural to identify the no-fermions state |0⟩ with the eigenstate | ↑⟩ of

the σ̂ z spin operator and the singly occupied state |1⟩ with | ↓⟩. However, since

spin operators on different sites commute while fermionic operators anti-commute,

it is not possible to define a local transformation. Instead one needs to include a

semi-infinite string operator

D̂n = ∏
ℓ<n

(1−2d̂†
ℓ d̂ℓ). (5.6)

to match the quantum statistics of spins and fermions and define the one-

dimensional JWT as

σ̂
z
n = 1−2d̂†

n d̂n = (d̂†
n + d̂n)(d̂†

n − d̂n), (5.7)

σ̂
x
n = D̂n(d̂†

n + d̂n), (5.8)

σ̂
y
n = iD̂n(d̂†

n − d̂n). (5.9)
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Figure 5.2: Illustration of the snake string operators used in the two-dimensional Jordan-
Wigner transformation (JWT) of the Kitaev-Ising model.

It is easy to check that the string operator is hermitian, D̂†
n = D̂n, and satisfies D̂2

n = 1,

D̂nD̂n+1 = 1−2d̂†
n d̂n and [d̂†

n , D̂n] = [d̂n, D̂n] = 0.

These properties of the string operator ensure that one-dimensional spin Hamil-

tonians with short-ranged spin interactions remain short ranged after JWT. The gen-

eralization of the JWT to two dimensions is problematic for several reasons. Firstly,

the string operator connecting a given lattice site to infinity is not uniquely defined,

and in principle gauge transformations corresponding to deformations of the string

need to be taken into account [208]. Secondly, nearest neighbor sites in the two di-

mensional lattice are not necessarily nearest neighbors along the string. As a result,

the fermionized Hamiltonian will contain non-local interactions involving segments

of string operators.

The Kitaev model on the honeycomb lattice is an example where the second

problem of non-locality can be circumvented by defining snake string operators

[196, 197, 194] shown in Fig. 5.2. In this case, the x and y bonds, which involve the

string operators, couple nearest neighbors along the string. Using that D̂nD̂n+1 =

1−2d̂†
n d̂n we obtain

σ̂
x
n σ̂

x
n+1 = (d̂†

n − d̂n)(d̂
†
n+1 + d̂n+1), (5.10)

σ̂
y
n σ̂

y
n+1 = (d̂†

n+1 − d̂n+1)(d̂†
n + d̂n). (5.11)
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Note that the z bonds connect spins that are not nearest neighbors along the snake

string. As a result, any Hamiltonian that involves couplings between the x or y

spin components along the z bonds, e.g. the Kitaev-Heisenberg model, would be

non-local in terms of the Jordan-Wigner fermions. This however is not the case for

the pure Kitaev model or for our model with additional Ising couplings σ̂
z
i σ̂

z
j on all

nearest-neighbor bonds.

The resulting Hamiltonian of the Kitaev-Ising model is given by

Ĥ/K = ∑
r

∑
i=1,2

(d̂†
A,r − d̂A,r)(d̂

†
B,r+ai

+ d̂B,r+ai)

+α ∑
r

∑
i=1,2

(d̂†
A,r + d̂A,r)(d̂

†
A,r − d̂A,r)

×(d̂†
B,r+ai

+ d̂B,r+ai)(d̂
†
B,r+ai

− d̂B,r+ai)

+(1+δ +α)∑
r
(d̂†

A,r + d̂A,r)(d̂
†
A,r − d̂A,r)

×(d̂†
B,r + d̂B,r)(d̂

†
B,r − d̂B,r), (5.12)

where (α,r) denote the sites of the two-dimensional honeycomb lattice, with r the

unit cell spanned by a1 and a2 and α = A,B the atom in the unit cell, as illustrated in

Fig. 5.1(a). The dimensionless coupling constants α and δ are defined in Eq. (5.5).

The interaction terms, which arise from the σ̂
z
i σ̂

z
j terms in the spin Hamiltonian, are

of strength J along the x and y bonds and of strength Kz + J along the z bonds.

The Hamiltonian is naturally expressed in terms of Majorana fermions,

ĉA(r) = i[d̂†
A(r)− d̂A(r)],

η̂
z
A(r) = d̂†

A(r)+ d̂A(r), (5.13)

on sub-lattice A and

ĉB(r) = d̂†
B(r)+ d̂B(r),

η̂
z
B(r) = i[d̂†

B(r)− d̂B(r)], (5.14)

on sub-lattice B. The meaning of the superscript z on the Majorana fermion η will
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become clear when we compare with the mean-field theory based on the Kitaev

representation of the spin operators in terms of Majorana fermions. The resulting

Hamiltonian is given by

Ĥ/K = −i∑
r

∑
i=1,2

ĉA(r)ĉB(r+ai)

+α ∑
r

∑
i=1,2

ĉA(r)η̂z
A(r)ĉB(r+ai)η̂

z
B(r+ai)

+(1+δ +α)∑
r

ĉA(r)η̂z
A(r)ĉB(r)η̂z

B(r). (5.15)

The Majorana operators satisfy ĉ†
σ (r) = ĉσ (r). (η̂z

σ (r))† = η̂z
σ (r) and the

anti-commutator relations {ĉσ (r), ĉσ ′(r′)} = {η̂z
σ (r), η̂

z
σ ′(r′)} = 2δσ ,σ ′δr,r′ and

{ĉσ (r), η̂z
σ ′(r′)}= 0.

5.3.1 Mean-Field Theory

We perform a self-consistent mean-field decoupling of the interactions in both the

bond and density channels. The former is required to recover the physics of the

Kitaev model. We define the averages

ar,r′ = −i
〈
η̂

z
A(r)η̂

z
B(r

′)
〉

(5.16)

br,r′ = −i
〈
ĉA(r)ĉB(r′)

〉
, (5.17)

where a⊥ = ar,r+ai and b⊥ = br,r+ai for the x and y bonds and az = ar,r and bz = br,r

for the z bonds. The local staggered magnetization of the antiferromagnetic state is

given by

m = i⟨ĉσ (r)η̂z
σ (r)⟩ . (5.18)

Note that this is indeed the staggered magnetization since the roles of η̂z and ĉ

are switched between the two sub-lattices. All mean-field parameters, a⊥, az, b⊥,

bz and m, are real since the corresponding operators are hermitian. After Fourier
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transform,

ĉσ (r) =
1√
2N ∑

k

{
eikrĉ†

σ (k)+ e−ikrĉσ (k)
}
, (5.19)

η̂
z
σ (r) =

1√
2N ∑

k

{
eikr(η̂z

σ )
†(k)+ e−ikr

η̂
z
σ (k)

}
, (5.20)

where N denotes the number of unit cells and the momenta k are from the hexagonal

Brillouin zone (BZ ) shown in Fig. 5.2(a), the resulting mean-field Hamiltonian in

momentum space is given by

Ĥmf

NK
=

i
N ∑

k
Ψ̂

†
k


0 −γ∗c −M 0

γc 0 0 −M

M 0 0 −γ∗z

0 M γz 0

Ψ̂k (5.21)

−(1+δ +α)azbz −2αa⊥b⊥+(1+δ +3α)m2.

Here Ψ̂k = (ĉA(k), ĉB(k), η̂z
A(k), η̂

z
B(k))

T and M = (1+δ +3α)m, for brevity, and

we have defined the complex valued functions

γc(k) = (1+δ +α)az +(1+αa⊥)
(

eika1 + eika2
)
, (5.22)

γz(k) = (1+δ +α)bz +αb⊥
(

eika1 + eika2
)
. (5.23)

The energy eigenvalues of the mean-field Hamiltonian are given by (in units of

the Kitaev coupling K)

ε
2
1,2(k) =

|γc|2 + |γz|2
2

+M2

±
√( |γc|2 −|γz|2

2

)2

+ |γc + γz|2M2, (5.24)
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resulting in the free energy density

f = −t ∑
n=1,2

∑
σ=±1

∫
k

ln
(

e−σ |εn(k)|/t +1
)

(5.25)

−(1+δ +α)azbz −2αa⊥b⊥+(1+δ +3α)m2,

with t = T/K the dimensionless temperature and

∫
k
. . .=

1
VBZ

∫
BZ

d2k . . . , (5.26)

for brevity, where VBZ denotes the volume of the hexagonal Brillouin zone.

Minimizing the free-energy density f with respect to the mean-field parameters

ξ ∈ {az,bz,a⊥,b⊥,m}, ∂ξ f = 0, we obtain the self-consistency equations

az = − 1
1+δ +α

∫
k

Fbz(ξξξ ,k), (5.27)

bz = − 1
1+δ +α

∫
k

Faz(ξξξ ,k), (5.28)

a⊥ = − 1
2α

∫
k

Fb⊥(ξξξ ,k), (5.29)

b⊥ = − 1
2α

∫
k

Fa⊥(ξξξ ,k), (5.30)

m =
1
2

1
1+δ +3α

∫
k

Fm(ξξξ ,k), (5.31)

where we have defined

Fξ (ξξξ ,k) = ∑
n=1,2

tanh
( |εn(ξξξ ,k)|

2t

)
∂ξ |εn(ξξξ ,k)|. (5.32)

5.4 Kitaev Majorana Fermions

We will now discuss the mean-field scheme based on the local mapping of the spin-

1/2 operators σ̂
γ

i (γ = x,y,z) to a set of four Majorana fermion operators η̂
µ

i , (µ =

0,x,y,z) on each lattice site i, as discussed in the seminal paper by Kitaev [22]. The
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Majorana fermion operators satisfy (η̂
µ

i )
† = η̂

µ

i and the Clifford algebra

{η̂
µ

i , η̂
ν
j }= 2δi jδµν . (5.33)

In terms of the Majorana fermions the spin operators are expressed as

σ̂
γ

i = iη̂0
i η̂

γ

i . (5.34)

This Majorana representation of spins is over-complete and the physical

Hilbert space is obtained by imposing the local constraint η̂0
i η̂x

i η̂
y
i η̂

z
i = 1. It is

indeed straightforward to check that the constraint ensures that the spin commuta-

tor relations are preserved. Using the properties of the Majorana fermion operators,

Eq. (5.33), it is possible to rewrite the constraint as [209]

η̂
0
i η̂

γ

i +
1
2

εαβγ η̂
α
i η̂

β

i = 0, (5.35)

which is quadratic in the Majorana operators. Since the antiferromagnetism will

develop along the z direction in spin space, it is sufficient to use the constraint

η̂0
i η̂

z
i + η̂x

i η̂
y
i = 0. We follow Ref. [209] and impose the constraint through a La-

grange multiplier field λi,

δ Ĥλ = iK ∑
i

λi(η̂
0
i η̂

z
i + η̂

x
i η̂

y
i ). (5.36)

While λi is not expected to enlarge the two-site unit cell of the honeycomb

lattice, it could take different values on the A and B sites within the unit cell. We

found that λA = λB = 0 in the gapless and gapped QSL phases and λA =−λB ̸= 0 in

the antiferromagnetic phase. From now on we will therefore only include a single

Lagrange multiplier

λ = λA =−λB. (5.37)

In the following we will define ĉi = η̂0
i to aid comparison with the mean-

field theory based on the two-dimensional JWT. Expressing the spin operators in
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Figure 5.3: Using the Kitaev construction, each S = 1/2 spin operator is represented in
terms of a set of four Majorana fermions, subject to a local constraint.

terms of Majorana fermions, using Eq. (5.34), the Hamiltonian contains only quartic

interaction terms,

Ĥ/K = ∑
r
{ĉA(r)ĉB(r+a1)η̂

x
A(r)η̂

x
B(r+a1) (5.38)

+ĉA(r)ĉB(r+a2)η̂
y
A(r)η̂

y
B(r+a2)

+ (1+δ +α)ĉA(r)ĉB(r)η̂z
A(r)η̂

z
B(r)

}
+α ∑

r
∑

i=1,2
ĉA(r)ĉB(r+ai)η̂

z
A(r)η̂

z
B(r+ai).

5.4.1 Mean-field theory

As for the case of the 2d JWT we will perform a simultaneous mean-field decou-

pling in the bond and site-diagonal magnetic channels. We introduce the bond

mean-field parameters

Aγ

r,r′ = i⟨η̂γ

A(r)η̂
γ

B(r
′)⟩, (5.39)

Br,r′ = i⟨ĉA(r)ĉB(r′)⟩, (5.40)
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and define A⊥ = Ax
r,r+a1

= Ay
r,r+a2

, A′
⊥ = Az

r,r+ai
, Az = Az

r,r, B⊥ = Br,r+ai , Bz = Br,r

for the relevant nearest neighbor bonds. The staggered magnetization is given by

the expectation values

m = i⟨ĉA(r)η̂z
A(r)⟩=−i⟨ĉB(r)η̂z

B(r)⟩. (5.41)

After mean-field decoupling and Fourier transformation, as defined in Eqs.

(5.19,5.20), the mean-field Hamiltonian is

Ĥmf +δHλ

KN
=

i
N ∑

k

{

Ψ̂
†
k


0 −γ∗c −(M−λ ) 0

γc 0 0 (M−λ )

(M−λ ) 0 0 −γ∗z

0 −(M−λ ) γz 0

Ψ̂k

+ Φ̂
†
k


0 −γ∗x λ 0

γx 0 0 −λ

−λ 0 0 −γ∗y

0 λ γy 0

Φ̂k

}

+(1+δ +α)AzBz +2Ã⊥B⊥+(1+δ +3α)m2, (5.42)

where Ψk =
(
ĉA(k), ĉB(k), η̂z

A(k), η̂
z
B(k)

)T , Φk =
(
η̂x

A(k), η̂
x
B(k), η̂

y
A(k), η̂

y
B(k)

)T ,

M = (1+δ +3α)m, Ã⊥ = A⊥+αA′
⊥,

γc(k) = (1+δ +α)Az + Ã⊥
(

eika1 + eika2
)
, (5.43)

γz(k) = (1+δ +α)Bz +αB⊥
(

eika1 + eika2
)
, (5.44)

γx(k) = B⊥eika1 and γy(k) = B⊥eika2 . The resulting energy eigenvalues ±|ε1,2(k)|
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and ±|ε3,4(k)| are given by

ε
2
1,2(k) =

|γc|2 + |γz|2
2

+(M−λ )2 (5.45)

±
√( |γc|2 −|γz|2

2

)2

+ |γc − γz|2(M−λ )2,

ε
2
3,4(k) = B2

⊥+λ
2 ±λ |γx − γy| (5.46)

= B2
⊥+λ

2 ±2B⊥λ sin

(√
3

2
kx

)
.

Minimizing the free-energy density,

f = −t
4

∑
n=1

∑
σ=±1

∫
k

ln
(

e−σ |εn(k)|/t +1
)

(5.47)

+(1+δ +α)AzBz +2Ã⊥B⊥+(1+δ +3α)m2,

with respect to ξ ∈ {Az,Bz, Ã⊥,B⊥,m}, ∂ξ f = 0, we obtain the self-consistency

equations

Az =
1

1+δ +α

∫
k

FBz(ξξξ ,k), (5.48)

Bz =
1

1+δ +α

∫
k

FAz(ξξξ ,k), (5.49)

Ã⊥ =
1
2

∫
k

FB⊥(ξξξ ,k), (5.50)

B⊥ =
1
2

∫
k

FÃ⊥(ξξξ ,k), (5.51)

m =
1
2

1
1+δ +3α

∫
k

Fm(ξξξ ,k), (5.52)

where the functions Fξ (ξξξ ,k) are defined as in Eq. (5.32) but with the sum running

over the four bands n = 1, . . . ,4 given in Eqs. (5.45) and (5.46).
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Figure 5.4: The function m = Ω(λ/B⊥, t/B⊥) relating the Lagrange multiplier λ to the
staggered magnetization m, the bond mean-field parameter B⊥ and the dimen-
sionless temperature t = T/K.

5.4.2 Determination of the Lagrange multiplier

The Lagrange multiplier λ is closely linked to the staggered magnetization m, which

satisfies the self-consistency equation

m =
1
2 ∑

n=1,2

∫
k

tanh
( |εn(k)|

2t

)
∂M|εn(k)|, (5.53)

where M = (1+δ +3α)m. Note that the bands n = 3,4 do not depend on M. From

∂λ f = 0 and using that ∂λ {|ε1(k)|+ |ε2(k)|}=−∂M {|ε1(k)|+ |ε2(k)|} we obtain

m =
1
2 ∑

n=3,4

∫
k

tanh
( |εn(k)|

2t

)
∂λ |εn(k)|

= Ω

(
λ

B⊥
,

t
B⊥

)
, (5.54)
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where the function Ω is independent of m and given by the momentum integral

Ω(x,y) =
1
2 ∑

κ=±1

∫
k

∂x

√
1+ x2 +2κxsin

(√
3/2kx

)

× tanh


√

1+ x2 +2κxsin
(√

3/2kx
)

2y

 . (5.55)

It is straightforward to compute the function Ω(x,y) numerically. The resulting

relation between m, λ/B⊥ and t/B⊥ is shown in Fig. 5.4 for positive values of the

staggered magnetization. The domain of negative magnetizations is obtained for

negative Lagrange multipliers, Ω(−x,y) =−Ω(x,y). This result shows that the La-

grange multiplier is zero in the non-magnetic phases and non-zero if the staggered

magnetization is finite.

In the following, we will minimize the free-energy density f (5.47) at given

temperature t with respect to the mean-field parameters Az, Bz, Ã⊥, B⊥ and m by

solving the corresponding self-consistency integral equations iteratively. At each

step of the iteration we determine the Lagrange multiplier λ from the values of B⊥

and m, using the equation m = Ω(λ/B⊥, t/B⊥).

5.5 Results

5.5.1 Topological Phase Transition

We start by discussing the zero-temperature topological phase transition between

the gapless and gapped Kitaev QSL states as a function of the anisotropy δ =

(Kz −K)/K of the Kitaev couplings and the relative strength α = J/K of the Ising

coupling.

For α = 0 the Kitaev model is exactly solvable and the topological phase tran-

sition is known to occur at δc = 1, as derived in the triangle inequalities in Kitaev’s

original paper [22]. At this point the Dirac points of the dispersive low energy band

merge, forming a semi Dirac point. We expect that the anisotropy induced by the

Ising coupling α has a similar effect. However, sufficiently strong α will induce an

antiferromagnetic state, which we will consider later.
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In the absence of magnetization, m = 0, the dispersion of the low-energy band

is simply given by ±|γc(k)|, where γc(k) = u+ v
(
eika1 + eika2

)
. The coefficients u

and v are functions of δ , α and of the mean-field parameters, as defined in Eq. (5.22)

for the JWT and in Eq. (5.43) for the Kitaev representation.

Rather than computing the momentum separation of the Dirac points in the

gapless QSL or the the size of the energy gap on the other side of the transition, it is

more convenient to compute the ratio r = |u/v|. While for r < 2 the band exhibits

gapless Dirac points at zero energy, for r > 2 the Majorana fermion spectrum be-

comes gapped. We can therefore simply determine the topological phase transition

at rc = 2 by using a bi-section method.

Let us first determine the topological phase boundary using the mean-field the-

ory based on the JWT. In this case the parameter r = |u/v| is given by

r :=
(1+δ +α)|az|

1+αa⊥
. (5.56)

For α = 0 the Kitaev model is exactly solvable in terms of Jordan-Wigner

fermions since the local operator (ĉ†
A,r + ĉA,r)(ĉ

†
B,r − ĉB,r) = −iη̂z

A(r)η̂
z
B(r) com-

mutes with the Hamiltonian. Although we don’t require a mean-field treatment in

this case, it is interesting to understand how the correct value of the topological

phase transition, δc = 1 (Kz/K = 2), is recovered within our mean-field theory. In

fact, the mean-field theory becomes trivial for the pure anisotropic Kitaev model

since the local flux excitations are dispersionless, with corresponding bands at en-

ergies ±|γz(k)| = ±(1+ δ )|bz|. The free energy is independent of the mean-field

parameters a⊥ and b⊥ and at zero temperature, t = 0, we obtain the mean-field

parameters az and bz from minimizing the energy

ε(az,bz) = − 1
VBZ

∫
BZ

d2k
∣∣∣(1+δ )az + eika1 + eika2

∣∣∣
−(1+δ )(|bz|+azbz). (5.57)

From ∂ε/∂bz = 0 we obtain az = 1 if bz < 0 and az =−1 if bz > 0, regardless

of the value of the anisotropy δ . Let us focus on the first case. Inserting az = 1 into
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<latexit sha1_base64="AiPJoJfe6JTwC9fErKRbv6rzw1E=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4WndLUS9CwYvQSwX7Ie1Ssmm2DU2yS5IVaumv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM20879tZWV1b39jMbeW3d3b39gsHhw0dp4rQOol5rFoh1pQzSeuGGU5biaJYhJw2w+HN1G8+UqVZLO/NKKGBwH3JIkawsdJDtft0Xr0uuV63UPRcbwa0TPyMFCFDrVv46vRikgoqDeFY67bvJSYYY2UY4XSS76SaJpgMcZ+2LZVYUB2MZwdP0KlVeiiKlS1p0Ez9PTHGQuuRCG2nwGagF72p+J/XTk10FYyZTFJDJZkvilKOTIym36MeU5QYPrIEE8XsrYgMsMLE2IzyNgR/8eVl0ii5/oVbvisXK6UsjhwcwwmcgQ+XUIFbqEEdCAh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AAtzjzg=</latexit>

Kz/K = 2.0

<latexit sha1_base64="MsM5R3yUD9AIwYM0kN5Uu3KTEaI=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4ikko6kUoeBF6qWA/pA1ls920S3eTsLsRauiv8OJBEa/+HG/+G7dtDtr6YODx3gwz84KEM6Ud59taWV1b39gsbBW3d3b39ksHh00Vp5LQBol5LNsBVpSziDY005y2E0mxCDhtBaObqd96pFKxOLrX44T6Ag8iFjKCtZEear2n89q1Z3u9UtmxnRnQMnFzUoYc9V7pq9uPSSpopAnHSnVcJ9F+hqVmhNNJsZsqmmAywgPaMTTCgio/mx08QadG6aMwlqYijWbq74kMC6XGIjCdAuuhWvSm4n9eJ9XhlZ+xKEk1jch8UZhypGM0/R71maRE87EhmEhmbkVkiCUm2mRUNCG4iy8vk6Znuxd25a5Srnp5HAU4hhM4AxcuoQq3UIcGEBDwDK/wZknrxXq3PuatK1Y+cwR/YH3+AA57jzo=</latexit>

Kz/K = 2.2

<latexit sha1_base64="Z8yaUOot6vj/u3DEiwSGe+gBgTM=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4WndLUS9CwYvQSwX7Ie1Ssmm2DU2yS5IVaumv8OJBEa/+HG/+G9N2D9r6YODx3gwz88KEM20879tZWV1b39jMbeW3d3b39gsHhw0dp4rQOol5rFoh1pQzSeuGGU5biaJYhJw2w+HN1G8+UqVZLO/NKKGBwH3JIkawsdJDtft0Xr323XK3UPRcbwa0TPyMFCFDrVv46vRikgoqDeFY67bvJSYYY2UY4XSS76SaJpgMcZ+2LZVYUB2MZwdP0KlVeiiKlS1p0Ez9PTHGQuuRCG2nwGagF72p+J/XTk10FYyZTFJDJZkvilKOTIym36MeU5QYPrIEE8XsrYgMsMLE2IzyNgR/8eVl0ii5/oVbvisXK6UsjhwcwwmcgQ+XUIFbqEEdCAh4hld4c5Tz4rw7H/PWFSebOYI/cD5/AA/9jzs=</latexit>

Kz/K = 1.4
<latexit sha1_base64="Y4vD6LwIPNngWzpmjMnPgHbM090=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBU0xK0V6EghfRSwX7AW0om+2mXbrZhN2NUEJ/hBcPinj193jz37htc9DWBwOP92aYmRcknCntut9WYW19Y3OruF3a2d3bP7APj1oqTiWhTRLzWHYCrChngjY105x2EklxFHDaDsY3M7/9RKVisXjUk4T6ER4KFjKCtZHadxf3165T69tl13HnQKvEy0kZcjT69ldvEJM0okITjpXqem6i/QxLzQin01IvVTTBZIyHtGuowBFVfjY/d4rOjDJAYSxNCY3m6u+JDEdKTaLAdEZYj9SyNxP/87qpDmt+xkSSairIYlGYcqRjNPsdDZikRPOJIZhIZm5FZIQlJtokVDIheMsvr5JWxfEunepDtVyv5HEU4QRO4Rw8uII63EIDmkBgDM/wCm9WYr1Y79bHorVg5TPH8AfW5w96Do5Q</latexit>

J/K = 0.8

<latexit sha1_base64="gbK9tYLlvdpfMXTEIrFxf0cijhA=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbBU0xqUS9CwYvopYL9gDaUzXbTLt1swu5GKKE/wosHRbz6e7z5b9y2OWjrg4HHezPMzAsSzpR23W+rsLK6tr5R3Cxtbe/s7tn7B00Vp5LQBol5LNsBVpQzQRuaaU7biaQ4CjhtBaObqd96olKxWDzqcUL9CA8ECxnB2kitu7P7a88579ll13FnQMvEy0kZctR79le3H5M0okITjpXqeG6i/QxLzQink1I3VTTBZIQHtGOowBFVfjY7d4JOjNJHYSxNCY1m6u+JDEdKjaPAdEZYD9WiNxX/8zqpDq/8jIkk1VSQ+aIw5UjHaPo76jNJieZjQzCRzNyKyBBLTLRJqGRC8BZfXibNiuNdONWHarlWyeMowhEcwyl4cAk1uIU6NIDACJ7hFd6sxHqx3q2PeWvBymcO4Q+szx90AI5M</latexit>

J/K = 1.3

<latexit sha1_base64="r3RtoY98BY6Dryz/14HXHXVgHyU=">AAAB7nicbVDLSsNAFL2pr1pfUZduBovgKialPjZCwY3opoJ9QBvKZDpph04mYWYilNCPcONCEbd+jzv/xmmbhbYeuHA4517uvSdIOFPadb+twsrq2vpGcbO0tb2zu2fvHzRVnEpCGyTmsWwHWFHOBG1opjltJ5LiKOC0FYxupn7riUrFYvGoxwn1IzwQLGQEayO17s7urz3nvGeXXcedAS0TLydlyFHv2V/dfkzSiApNOFaq47mJ9jMsNSOcTkrdVNEEkxEe0I6hAkdU+dns3Ak6MUofhbE0JTSaqb8nMhwpNY4C0xlhPVSL3lT8z+ukOrzyMyaSVFNB5ovClCMdo+nvqM8kJZqPDcFEMnMrIkMsMdEmoZIJwVt8eZk0K4534VQfquVaJY+jCEdwDKfgwSXU4Bbq0AACI3iGV3izEuvFerc+5q0FK585hD+wPn8AdwiOTg==</latexit>

J/K = 1.5

<latexit sha1_base64="E9eiNCbK2x6QNTUZkk85ZFBXyTA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9SIUvIinivYD2lA22027dLMJuxOhhP4ELx4U8eov8ua/cdvmoK0PBh7vzTAzL0ikMOi6387K6tr6xmZhq7i9s7u3Xzo4bJo41Yw3WCxj3Q6o4VIo3kCBkrcTzWkUSN4KRjdTv/XEtRGxesRxwv2IDpQIBaNopYe7a7dXKrsVdwayTLyclCFHvVf66vZjlkZcIZPUmI7nJuhnVKNgkk+K3dTwhLIRHfCOpYpG3PjZ7NQJObVKn4SxtqWQzNTfExmNjBlHge2MKA7NojcV//M6KYZXfiZUkiJXbL4oTCXBmEz/Jn2hOUM5toQyLeythA2ppgxtOkUbgrf48jJpnle8i0r1vlquVfM4CnAMJ3AGHlxCDW6hDg1gMIBneIU3RzovzrvzMW9dcfKZI/gD5/MHjxeNSg==</latexit>

J = 0
<latexit sha1_base64="exNPciInnWTrMTPFhCbrjIDkJ8g=">AAAB7HicbVBNSwMxEJ2tX7V+VT16CRbBU9mVol6EghehlwpuW2iXkk2zbWiSXZKsUJf+Bi8eFPHqD/LmvzFt96CtDwYe780wMy9MONPGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFWE+iTmseqEWFPOJPUNM5x2EkWxCDlth+Pbmd9+pEqzWD6YSUIDgYeSRYxgYyW/0X+6afTLFbfqzoFWiZeTCuRo9stfvUFMUkGlIRxr3fXcxAQZVoYRTqelXqppgskYD2nXUokF1UE2P3aKzqwyQFGsbEmD5urviQwLrScitJ0Cm5Fe9mbif143NdF1kDGZpIZKslgUpRyZGM0+RwOmKDF8YgkmitlbERlhhYmx+ZRsCN7yy6ukdVH1Lqu1+1qlXsvjKMIJnMI5eHAFdbiDJvhAgMEzvMKbI50X5935WLQWnHzmGP7A+fwBTwSOUw==</latexit>

Kz = K

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡
<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡
<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡ <latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡ <latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx
<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx

<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx
<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx

<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx
<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡ <latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡
<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2

<latexit sha1_base64="PNmnlg/VseG4xBbW5b8Avx8LvfI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSSlqMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5fVfqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/lcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH+QejOg=</latexit>�2

<latexit sha1_base64="Ysbopyf6ykGDA1PlXgQLwFYRP70=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBd9GMrw==</latexit>

0

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2

<latexit sha1_base64="PNmnlg/VseG4xBbW5b8Avx8LvfI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSSlqMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5fVfqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/lcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH+QejOg=</latexit>�2
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Figure 5.5: Evaluation of the Majorana fermion mean-field spectra across the topological
phase transition between a gapless and gapped Kitaev QSL, as a function of (a)
the anisotropy Kz/K in the pure Kitaev model and (b) the Ising coupling J/K
in the case Kz = K. Note that the two mean-field schemes give identical results.
At the topological phase transition the Dirac points merge along the edge of the
Brillouin zone, as schematically shown in Fig. 5.1(b).

∂ε/∂az = 0 we obtain

bz =− 1
VBZ

∫
BZ

d2k
cos(ka1)+ cos(ka2)

|1+δ + eika1 + eika2| , (5.58)
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Figure 5.6: Topological phase boundary between a gapless and gapped Kitaev QSL as a
function of the Ising coupling α = J/K and the anisotropy δ = (Kz −K)/K
of the Kitaev couplings. Note that the mean field schemes based on the two-
dimensional JWT and on the Kitaev Majorana representation give identical re-
sults. Potential magnetic instabilities are not considered here.

which is indeed negative. Note that for az = −1 we obtain the same value for bz

but with a positive sign. This solution is equivalent to the first solution but with a

momentum shift of the entire excitation spectrum. We obtain r = 1+δ , and hence

a topological phase transition at δc = 1, which is equivalent to Kz/K = 2.

The resulting mean-field spectra are shown in Fig. 5.1(a) for different values

of δ . With increasing δ the Dirac points approach each other along one of the edges

of the hexagonal Brillouin zone, as illustrated in Fig. 5.1(b), and merge at δc = 1,

forming a semi-Dirac point. For δ > 1 the spectrum becomes gapped. The other

bands remain gapped and dispersionless across the topological phase transitions and

only slightly change in energy.

As a next step we investigate the effect of the Ising coupling α = J/K on the

isotropic Kitaev model, δ = 0 (Kz = K). From Eqs. (5.22) and (5.23) it is clear

that the gapped bands of flux excitations become weakly dispersive and that the

Ising coupling induces anisotropy in the gapless Majorana bands. For α > 0 the

mean-field theory is no longer trivial and the free energy becomes a function of
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the four mean-field parameters az, bz, a⊥ and b⊥. As shown in Fig. 5.5(b), the

effect of the Ising coupling on the gapless Dirac band is very similar to that of the

anisotropy in the Kitaev couplings, and the system undergoes a topological phase

transition at αc ≈ 1.3. However, we expect that this transition will be pre-empted

by an antiferromagnetic instability. The topological phase boundary as a function

of both, δ and α is shown in Fig. 5.6.

We briefly discuss the mean-field theory for the topological phase transition

base on the Kitaev Majorana representation. This treatment involves a larger num-

ber of degrees of freedom with one gapless Dirac band and three gapped bands of

flux excitations. In addition, we have to incorporate a Lagrange multiplier λ to

enforce the local constraints on the Majorana fermions. However, as we have seen

in Sec. 5.4.2, λ is identical to zero in the non-magnetic QSL states. This leads to

a drastic simplification of the spectrum since for λ = 0 the ηx and ηy bands don’t

hybridize and remain flat across the topological transition with degenerate energies

±|γx(k)|=±|γy(k)|=±B⊥, even if the Ising coupling α is included. For all values

of the anisotropy δ and the Ising coupling α the mean-field dispersions ±|γc(k)| and

±|γz(k)| of the other two Majorana bands are identical to those of the two Majorana

bands in the JWT treatment. It is therefore not surprising that the two mean-field

treatments result in identical phase boundaries for the topological phase transition

between the gapless and gapped Kitaev QSLs, as shown in Fig. 5.6.

5.5.2 Antiferromagnetism

In the previous section we have not included the possibility of the formation of

an antiferromagnetic state with finite staggered magnetization m. For m ̸= 0 the

Lagrange multiplier λ in the Kitaev Majorana mean-field theory is no longer zero

and acquires a value of the order of the magnetization (see Fig. 5.4). As a result,

the ηx and ηy Majorana fermions hybridize and form dispersive bands with energies

±ε3,4(k) (5.46). This shows that the ηx, ηy fermions are not simply spectators as in

the case of the topological phase transition but play a crucial role in the energetics

of the antiferromagnetic transition. Since these degrees of freedom are neglected in

the JWT with fixed string orientation, we expect that the corresponding mean-field
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Figure 5.7: Zero-temperature phase diagram of the anisotropic Kitaev-Ising model as
a function of the relative strength α = J/K of the Ising coupling and the
anisotropy δ = (Kz −K)/K of the Kitaev couplings. While the two mean-field
theories give identical phase boundaries for the topological phase transition be-
tween the gapless and gapped Kitaev QSLs, the treatment based on the JWT
fails to correctly describe the first-order transition to the antiferromagnetically
ordered state.

theory does not correctly describe the magnetic instability.

As shown in Fig. 5.7, there is indeed a significant discrepancy between the

zero-temperature magnetic phase boundaries calculated within the two mean-field

theories. We find that the magnetic phase transition is strongly first order with a

jump in magnetization close to the fully polarized value. This is not surprising. The

antiferromagnetic ordering is driven by an Ising exchange and as a result quantum

fluctuations are frozen out at low temperatures, resulting in a large ordered moment.

Moreover, transverse spin fluctuations are active only along the one-dimensional

zig-zag chains formed by the x and y bonds.

5.5.3 Finite Temperature Phase Diagram

In the previous section we have identified problems with the mean-field theory

based on the JWT for states with finite magnetization. Neglecting the flux exci-

tations of the η̂x and η̂y Majorana fermions by using a particular gauge choice of

the string operator in the 2d JWT, we also induce pathologies at finite temperatures.
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(a) 2d Jordan-Wigner (b) Kitaev Majorana

Figure 5.8: Illustration of the flux excitations in terms of the (a) 2d JWT and (b) the Kitaev
Majorana representation. Excited bonds are shown as thick lines and plaquettes
with non-zero flux are shaded grey.

In order to illustrate this we focus on the pure isotropic Kitaev model. In this case

we obtain the mean-field dispersions ε1(k) = |γc(k)| = |az + eika1 + eika2 | for the

dispersive Dirac band and ε2(k) = |γz(k)| = |bz| for the flat band. As discussed

in Sec. 5.5.1, at zero temperature the minimization of the energy density ε(az,bz)

with respect to az and bz results in two equivalent mean-field solutions, e.g. one

with a negative value of bz and az = 1. This reproduces the correct excitation spec-

trum of the isotropic Kitaev model with Dirac points at the corners of the hexagonal

Brillouin zone. Let us now investigate the mean-field solution at finite temperature

t = T/K. Minimizing the free energy density f (az,bz) with respect to bz we obtain

the simple relation

az =− tanh
(

bz

2t

)
. (5.59)

While for bz < 0 we recover az = 1 as t → 0, at any finite temperature az < 1. This

corresponds to a mean-field dispersion with Dirac points displaced along the edges

of the Brillouin zone, in the same way as for an anisotropic Kitaev model with

Kz < K. This is clearly unphysical and caused by an artificial symmetry breaking

due to the fixed orientation of the string operator.

The different finite-temperature response of the JWT and Kitaev-Majorana

mean-field treatments can also be understood in terms of thermal excitations of

the gapped flux excitations. As pointed out by Kitaev [22], expressing the spin-1/2

operators as σ̂
γ

i = iη̂0
i η̂

γ

i (γ = x,y,z), the Z2 flux through a hexagon is given by

the product Ŵp of the nearest-neighbor bond operators Âγ

⟨i, j⟩γ
= iη̂γ

i η̂
γ

j around the

plaquette. The bond operators square up to the identity operator and hence have
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eigenvalues plus or minus one. The plaquette carries a flux if an odd number of

bonds around it are excited (Ŵp = −1). In the case of the pure (anisotropic) Ki-

taev model, the bond operators are local and Ŵp commutes with the Hamiltonian.

As a result, the Hamiltonian can be diagonalised for each flux configuration and

the ground state corresponds to the zero flux sector, resulting in a non-interacting

Hamiltonian for the dispersive η̂0 Majorana fermion.

Both the 2d JWT and the Kitaev Majorana approaches correctly describe the

zero flux sector and hence the ground-state properties of the anisotropic Kitaev

model. At first glance, it might seem that the two approaches enumerate flux ex-

citations differently since the JWT only includes bond excitations on the z links.

However, the choice of the string operator in the JWT is a gauge degree of freedom

and the Kitaev Majorana fermions are subject to local constraints. In the end, both

mappings are exact and therefore equivalent. The problems arise when the finite-

temperature mean-field average over bond operators is taken for a fixed orientation

of the string. In Fig. 5.8 the bond excitations and resulting fluxes are sketched for

the two approaches.

It is also worth mentioning that for the particular Kitaev-Ising model only the

bond excitations on the z links acquire dynamics, resulting in the same mean-field

dispersion of the η̂z Majorana fermion as in the mean-field treatment based on the

JWT. This is the reason why both approaches result in the same zero-temperature

phase boundary for the topological phase transition between the gapless and gapped

QSL states. Note that this is a special feature of the Ising exchange J. For a Heisen-

berg coupling the η̂x and η̂y fermions acquire dynamics as well.

Because of the problems with the finite temperature mean-field theory based on

the two-dimensional JWT, we will use the Kitaev Majorana fermion representation

to determine finite temperature phase diagrams, following the procedure outlined

in Sec. 5.4. In Fig. 5.8 a representative phase diagram is shown as a function of

the Ising coupling α = J/K and the dimensionless temperature t = T/K for a fixed

values δ = 0.2 of the anisotropy of the Kitaev couplings. For this value of δ we find

a zero-temperature phase transition from a gapless Kitaev QSL to an antiferromag-
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Figure 5.9: Finite-temperature mean-field phase diagram of the anisotropic Kitaev-Ising
model as a function of the relative strength of the Ising coupling α = J/K and
the dimensionless temperature t = T/K for a value of δ = 0.2 of the anisotropy
of the Kitaev couplings.

netic state at αc ≈ 0.2. This transition is strongly first order. At small temperatures

the antiferromagnetic transition remains first order and is very steep. As one might

expect, the magnetic transition becomes continuous above a certain temperature.

Let us now investigate the finite-temperature behavior in the regime of small

values of J/K where the zero-temperature ground state is a gapless Kitaev QSL.

An important energy scale is the gap ∆ of the flux excitations which is equal to

∆/K ≈ 0.26 for the isotropic Kitaev model [22]. While for T ≪ ∆ the typical sep-

aration between fluxes is exponentially large and the thermal average of the flux

operator ⟨Ŵp⟩ close to +1, at temperatures T > ∆, the flux excitations proliferate

with high probability on all plaquettes, resulting in ⟨Ŵp⟩ = 0 of the flux operator.

One might therefore expect a finite-temperature confinement transition from a QSL

with deconfined Majorana fermions to a paramagnet where the Majorana fermions

are confined via the flux excitations of the emergent Z2 gauge field [165]. However,

it is known that in two dimensions gauge theories are confining at any non-zero

temperature. Hence the Kitaev QSL exists only at zero temperature and even an

exponentially small density of thermally excited fluxes is sufficient to destroy the
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QSL state. Nevertheless, interesting finite temperature crossovers are seen in quan-

tum Monte Carlo simulations of the two-dimensional Kitaev model, using Majorana

fermion representations [200, 201, 210].

In order to identify finite-temperature crossovers, we compute the specific heat

per unit cell,

C =−t
∂ 2 f
∂ t2 , (5.60)

where f (t) denotes the mean-field free energy density f = F/(NK) (5.47) as a

function of the dimensionless temperature t = T/K. In Fig. 5.10 the temperature

evolution of the specific heat is shown for systems with an anisotropy δ = 0.2 of

the Kitaev couplings and increasing values α = J/K of the Ising coupling, up to

the value α = 0.2, which is slightly below the critical value of the t = 0 first-order

transition between the Kitaev QSL and the Ising antiferromagnet. Unlike in previ-

ous work using quantum Monte Carlo simulations of finite systems [200, 201, 210],

where two separate specific-heat peaks are found, our mean-field results only show

a single peak at a temperature T ≈ ∆, where ∆ is the energy gap of flux excitations.

Note that for the pure Kitaev model (α = 0) the anisotropy δ = 0.2 gives rise to a

small splitting of the flux gaps, ∆z/K ≈ 0.29 and ∆⊥/K ≈ 0.24, resulting in a slight

broadening of the crossover peak in the specific heat. With increasing Ising cou-

pling α the splitting further increases up to values ∆z/K ≈ 0.32 and ∆⊥/K ≈ 0.22

for α = 0.2. Note that α also gives dynamics to the bond excitations along the z

links, adding to the broadening of the crossover. At high temperatures, T > ∆, we

recover a conventional paramagnet, and the Curie-Weiss dependence C ∼ 1/T is

clearly observed above temperatures of the order of the bandwidth of the Majorana

fermions. At temperature T < ∆ flux excitations are exponentially suppressed and

signatures of fractionalization become visible. The crossover to a fractionalized

paramagnet at low temperatures is indicated by a color gradient in the phase dia-

gram, Fig. 5.9. The energy scale of the crossover coincides with the point at which

the magnetic phase transition becomes continuous.

The inset of Fig. 5.10 shows the specific heat contribution from the gapless

Majorana fermion band at lowest temperatures. As expected, we observe the C0 ∼



5.6. Discussion and Conclusion 127

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

<latexit sha1_base64="nXh7Arjs4Gzbq/XwkSUQA3YBO3U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe5KUI8BL4KXiHlBsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rGsm3GCfkQHkoecUWOlx/rFfa9YcsvuHGSVeBkpQYZar/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXpa9q3LloVKqVrI48nACp3AOHlxDFe6gBg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDsfmNYQ==</latexit>

T/K

<latexit sha1_base64="fc5gF34ZPZgx5nmicSLX0Alfpr0=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KokU9VjoxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8GkPvc7T6g0j+WDmSboR3QkecgZNVZq1gelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDOz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20ryveTaXarJZr1TyOApzDBVyBB7dQg3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBlJ2Mwg==</latexit> C

<latexit sha1_base64="VX/zbAAeT5vydzhCBe+dHv8/Wbg=">AAAB7HicdVDLSsNAFJ34rPVVdelmsAiuYhKSPhZCwY3opoJpC20ok+mkHTqZhJmJUEK/wY0LRdz6Qe78G6cPQUUPXDiccy/33hOmjEplWR/Gyura+sZmYau4vbO7t186OGzJJBOY+DhhieiESBJGOfEVVYx0UkFQHDLSDseXM799T4SkCb9Tk5QEMRpyGlGMlJb86/ObC6tfKlumU695lgct03XculfXpOLZ1WoF2qY1Rxks0eyX3nuDBGcx4QozJGXXtlIV5EgoihmZFnuZJCnCYzQkXU05iokM8vmxU3iqlQGMEqGLKzhXv0/kKJZyEoe6M0ZqJH97M/Evr5upqBbklKeZIhwvFkUZgyqBs8/hgAqCFZtogrCg+laIR0ggrHQ+RR3C16fwf9JyTLtiurduueEs4yiAY3ACzoANqqABrkAT+AADCh7AE3g2uPFovBivi9YVYzlzBH7AePsEGuqONA==</latexit>

J/K = 0

<latexit sha1_base64="tVw0b7Cu03kZ0CW1WTOEwzVjwIg=">AAAB73icdVDLSgMxFM34rPVVdekmWARX46SM7XQhFNyIbirYB7RDyaSZNjSTGZOMUEp/wo0LRdz6O+78GzNtBRU9cOFwzr3ce0+QcKa043xYS8srq2vruY385tb2zm5hb7+p4lQS2iAxj2U7wIpyJmhDM81pO5EURwGnrWB0kfmteyoVi8WtHifUj/BAsJARrI3Uvjq9PndsdNYrFB3bqyLklqFjl6puxUMwM7yyU4HIdmYoggXqvcJ7tx+TNKJCE46V6iAn0f4ES80Ip9N8N1U0wWSEB7RjqMARVf5kdu8UHhulD8NYmhIaztTvExMcKTWOAtMZYT1Uv71M/MvrpDr0/AkTSaqpIPNFYcqhjmH2POwzSYnmY0MwkczcCskQS0y0iShvQvj6FP5PmiUblW33xi3WSos4cuAQHIETgEAF1MAlqIMGIICDB/AEnq0769F6sV7nrUvWYuYA/ID19glkWY7f</latexit>

J/K = 0.15

<latexit sha1_base64="3CPwYg5Q2goppk9/RCykgf3iHds=">AAAB73icdVDLSgMxFM34rPVVdekmWARXY6ad1ulCKLgR3VSwD2iHkkkzbWgmMyYZoZT+hBsXirj1d9z5N6YPQUUPXDiccy/33hMknCmN0Ie1tLyyurae2chubm3v7Ob29hsqTiWhdRLzWLYCrChngtY105y2EklxFHDaDIYXU795T6VisbjVo4T6Ee4LFjKCtZFaV6fX58hGpW4uj2zPLXvFIkR2yXU9r2SIgyrFigsdG82QBwvUurn3Ti8maUSFJhwr1XZQov0xlpoRTifZTqpogskQ92nbUIEjqvzx7N4JPDZKD4axNCU0nKnfJ8Y4UmoUBaYzwnqgfntT8S+vnerQ88dMJKmmgswXhSmHOobT52GPSUo0HxmCiWTmVkgGWGKiTURZE8LXp/B/0ijYTtl2b9x8tbCIIwMOwRE4AQ44A1VwCWqgDgjg4AE8gWfrznq0XqzXeeuStZg5AD9gvX0Cah+O4w==</latexit>

J/K = 0.05
<latexit sha1_base64="DWeEhQb0mQJm9JjiywW6BA+B160=">AAAB7nicdVDLSgMxFM3UV62vqks3wSK4GpMyndaFUHAjuqlgH9AOJZNm2tDMgyQjlKEf4caFIm79Hnf+jelDUNEDFw7n3Mu99/iJ4Eoj9GHlVlbX1jfym4Wt7Z3dveL+QUvFqaSsSWMRy45PFBM8Yk3NtWCdRDIS+oK1/fHlzG/fM6l4HN3pScK8kAwjHnBKtJHa12c3F8jG/WIJ2c45qtYciGzXcdwKNgRXkItrENtojhJYotEvvvcGMU1DFmkqiFJdjBLtZURqTgWbFnqpYgmhYzJkXUMjEjLlZfNzp/DEKAMYxNJUpOFc/T6RkVCpSeibzpDokfrtzcS/vG6qg5qX8ShJNYvoYlGQCqhjOPsdDrhkVIuJIYRKbm6FdEQkodokVDAhfH0K/yetso1d27l1SvXyMo48OALH4BRgUAV1cAUaoAkoGIMH8ASercR6tF6s10VrzlrOHIIfsN4+AeIkjpg=</latexit>

J/K = 0.1

<latexit sha1_base64="CGsUsPTyf1vwHXsNNjUf4+TR3SY=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARP48xkslyEgBfRSwSzQDKEnk5P0qRnobtHCEM+wosHRbz6Pd78GzuLoKIPCh7vVVFVz084k8qyPoyV1bX1jc3cVn57Z3dvv3Bw2JJxKghtkpjHouNjSTmLaFMxxWknERSHPqdtf3w589v3VEgWR3dqklAvxMOIBYxgpaX29fnNhWU6/ULRMt2y7ZTKyDJLNbtq1zSpuCXHrSHbtOYowhKNfuG9N4hJGtJIEY6l7NpWorwMC8UIp9N8L5U0wWSMh7SraYRDKr1sfu4UnWplgIJY6IoUmqvfJzIcSjkJfd0ZYjWSv72Z+JfXTVVQ8zIWJamiEVksClKOVIxmv6MBE5QoPtEEE8H0rYiMsMBE6YTyOoSvT9H/pOWYdsV0b91i3VnGkYNjOIEzsKEKdbiCBjSBwBge4AmejcR4NF6M10XrirGcOYIfMN4+Ad05jpU=</latexit>

J/K = 0.2

<latexit sha1_base64="+8keTtCg/W25OTAoHq6i/81Oi0U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMdCLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMGnO/88S1EbF6xGnC/YiOlAgFo2ilh8bAHZQrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4a2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVe+6WruvVeq1PI4inME5XIIHN1CHO2hCCxiM4Ble4c2Rzovz7nwsWwtOPnMKf+B8/gC4F41l</latexit> C
0

0.00 0.02 0.04 0.06 0.08 0.10
0.00

0.01

0.02

0.03

0.04

<latexit sha1_base64="nXh7Arjs4Gzbq/XwkSUQA3YBO3U=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe5KUI8BL4KXiHlBsoTZSW8yZHZ2mZkVQsgnePGgiFe/yJt/4yTZgyYWNBRV3XR3BYng2rjut5NbW9/Y3MpvF3Z29/YPiodHTR2nimGDxSJW7YBqFFxiw3AjsJ0opFEgsBWMbmd+6wmV5rGsm3GCfkQHkoecUWOlx/rFfa9YcsvuHGSVeBkpQYZar/jV7ccsjVAaJqjWHc9NjD+hynAmcFrophoTykZ0gB1LJY1Q+5P5qVNyZpU+CWNlSxoyV39PTGik9TgKbGdEzVAvezPxP6+TmvDGn3CZpAYlWywKU0FMTGZ/kz5XyIwYW0KZ4vZWwoZUUWZsOgUbgrf88ippXpa9q3LloVKqVrI48nACp3AOHlxDFe6gBg1gMIBneIU3RzgvzrvzsWjNOdnMMfyB8/kDsfmNYQ==</latexit>

T/K

<latexit sha1_base64="1EvQLEC7TjGAi5MzSWKrKlHA7pc=">AAAB73icbVBNSwMxEJ2tX7V+VT16CRbBU9ktRT0WvHis0C9o15JNs21okl2TrFCW/gkvHhTx6t/x5r8x2+5BWx8MPN6bYWZeEHOmjet+O4WNza3tneJuaW//4PCofHzS0VGiCG2TiEeqF2BNOZO0bZjhtBcrikXAaTeY3mZ+94kqzSLZMrOY+gKPJQsZwcZKvYFmArUeasNyxa26C6B14uWkAjmaw/LXYBSRRFBpCMda9z03Nn6KlWGE03lpkGgaYzLFY9q3VGJBtZ8u7p2jC6uMUBgpW9Kghfp7IsVC65kIbKfAZqJXvUz8z+snJrzxUybjxFBJlovChCMToex5NGKKEsNnlmCimL0VkQlWmBgbUcmG4K2+vE46tap3Va3f1yuNeh5HEc7gHC7Bg2towB00oQ0EODzDK7w5j86L8+58LFsLTj5zCn/gfP4AREOPbg==</latexit>

⇠ T 2

<latexit sha1_base64="XJOTrNwjzrF03ly+pcmGBYCC2AA=">AAAB73icbVBNSwMxEJ3Ur1q/qh69BIvgqe5KUY8FLx4rtLXQLiWbZtvQJLsmWaEs/RNePCji1b/jzX9j2u5BWx8MPN6bYWZemAhurOd9o8La+sbmVnG7tLO7t39QPjxqmzjVlLVoLGLdCYlhgivWstwK1kk0IzIU7CEc3878hyemDY9V004SFkgyVDzilFgndXqGS+xfNPvlilf15sCrxM9JBXI0+uWv3iCmqWTKUkGM6fpeYoOMaMupYNNSLzUsIXRMhqzrqCKSmSCb3zvFZ04Z4CjWrpTFc/X3REakMRMZuk5J7MgsezPxP6+b2ugmyLhKUssUXSyKUoFtjGfP4wHXjFoxcYRQzd2tmI6IJtS6iEouBH/55VXSvqz6V9Xafa1Sr+VxFOEETuEcfLiGOtxBA1pAQcAzvMIbekQv6B19LFoLKJ85hj9Anz/6/48+</latexit>⇠ 1/T

Figure 5.10: Specific heat C per unit cell as a function of the dimensionless temperature
T/K, for an anisotropy δ = 0.2 of the Kitaev couplings and different values
of α = J/K, corresponding to a gapless Kitaev QSL ground state. The peak
is located at the energy scale of the gapped flux excitations and indicates a
crossover from a fractionalized paramagnet with frozen flux excitations to
a conventional paramagnet at high temperatures. In the latter the expected
Curie dependence C ∼ 1/T is observed. The inset shows the low-temperature
specific heat contribution C0 of the gapless Majorana fermion band, showing
the T 2 dependence expected for Dirac fermions in d = 2.

T 2 dependence expected for Dirac fermions in two spatial dimensions.

5.6 Discussion and Conclusion
In this chapter we have determined zero- and finite-temperature phase diagrams

of the anisotropic, antiferromagnetic Kitaev-Heisenberg model on the honeycomb

lattice, using parton mean-field theories based on two different Majorana fermion

representations of the S = 1/2 spin operators: the one used by Kitaev [22] and a

two-dimensional Jordan-Wigner transformation (JWT) [196, 197, 194, 198]. Both

mappings have been used to obtain the exact solution of the anisotropic Kitaev

model [22, 197].

In order to ensure that the Hamiltonian remains local after JWT, we studied a

particular limit of the model, keeping the anisotropy in the Kitaev couplings finite

while taking the extreme limit of an infinitely strong Ising anisotropy in the Heisen-
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berg sector. For this model, it is possible to use the same snake-string operators in

the JWT as for the pure anisotropic Kitaev model [196, 197, 194, 198], resulting

in two Majorana modes. For sufficiently weak anisotropy and Ising coupling the

low-energy band is gapless with Dirac points on the edges of the hexagonal Bril-

louin zone. The other band of gapped flux excitations is flat for the anisotropic

Kitaev model but becomes weakly dispersive in the presence of the additional Ising

coupling.

On the other hand, following Kitaev’s approach [22], the spin-1/2 operators

are mapped to a set of four Majorana fermions with three modes corresponding to

gapped flux excitations. The Majorana fermion operators are subject to local con-

straints which we reformulated in a quadratic form and enforced through a Lagrange

multiplier, following a previous study [209] of the magnetic field dependence of the

pure Kitaev model.

Perhaps surprisingly, the two mean-field theories result in identical zero-

temperature phase boundaries for the topological phase transition between the gap-

less and gapped Kitaev QSL states. The reason is that for an Ising exchange

α = J/K only the bond excitations along the z links, which are accounted for in

both approaches, acquire dynamics. The two additional gapped modes in the Ki-

taev mean-field theory remain flat across the transition and don’t contribute to the

physics. The mean-field dispersion of the remaining two bands is identical to the

mean-field spectrum based on the JWT. The mean-field treatments give the correct

value Kz/K = 2 for the topological phase transition of the anisotropic Kitaev model.

The Ising coupling J/K is an additional source of anisotropy and cooperates with

the anisotropy in the Kitaev couplings in driving the topological phase transition.

We demonstrated that all three bands of flux excitations play a crucial role for

the antiferromagnetic instability and the finite-temperature behavior. The mean-

field theory based on the two-dimensional JWT therefore fails to correctly describe

the finite temperature phase diagrams. Even for an isotropic Kitaev model we found

an anisotropic response at finite temperatures. We believe that this unphysical be-

havior is not an intrinsic problem of the two-dimensional JWT since the choice
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of the string operator is a gauge degree of freedom. However, taking a finite-

temperature mean-field average over the bond operators leads to artificial anisotropy

that depends upon the choice of the string. Recent progress has been made in for-

mulating a JWT in two and three dimensions that keeps locality and all relevant

symmetries manifest [211, 208]. This is achieved through operators that create local

deformations of the JW string operator. A mean-field theory based on such a gauge

invariant formulation of the JWT would not suffer from artificial symmetry break-

ing. Given the increased complexity it remains unclear, however, if this approach if

useful for practical calculations when dealing with realistic spin Hamiltonians.

We instead used the parton mean-field theory formulated in terms of the Kitaev

Majorana fermions to obtain the finite-temperature phase diagram of the anisotropic

Kitaev-Ising model. As expected, sufficiently strong Ising exchange results in a

first-order transition from the gapless and gapped QSLs to an antiferromagnetic

phase with fully gapped Majorana fermion spectrum. Unfortunately, we are not

aware of numerical results in the literature for the magnetic instability of the antifer-

romagnetic Kitaev-Ising model. The critical mean-field value (J/K)c ≈ 0.2 for the

first-order transition between the Kitaev QSL and the Ising antiferromagnet is con-

siderably larger than the value (J/K)c ≈ 0.035 for the isotropic Kitaev-Heisenberg

model, computed with tensor-network algorithms [212].

Although the QSL states only exist at zero temperature, the magnetic phase

transition remains first order at low temperatures and becomes continuous above

a certain temperature. While we believe that this behavior is generic and similar

to other QSL systems, the first-order behavior is particularly strong for the present

model. This is due to the extreme Ising anisotropy and the one-dimensionality of

transverse spin fluctuations in the magnetically ordered phase.

At the temperature where the magnetic phase transition becomes second order

we also observe a crossover on the QSL side from a fractionalised paramagnet at

low temperatures with exponentially suppressed flux excitations to a conventional

paramagnet at high temperatures. As expected, the crossover temperature scale,

which we identify through a peak in the specific heat, is set by the energy gap ∆ of
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flux excitations, which is equal to ∆/K ≈ 0.26 for the isotropic Kitaev model [22]

and slightly split into ∆z and ∆⊥ by small anisotropy and the Ising exchange. This

splitting leads to a broadening of the crossover.

Interestingly, quantum Monte-Carlo (QMC) simulations of (anisotropic) Ki-

taev models show a two step thermalization of the QSL state, identified by two

clearly separated specific heat peaks at temperatures TL and TH [200, 201, 210].

This is in contrast with the single crossover we found within our mean-field treat-

ment. For the isotropic Kitaev model the peaks are found at TL/K ≈ 0.012 and

TH/K ≈ 0.37 [210]. Neither of the crossover temperatures is close to the flux gap

∆/K ≈ 0.26 [22] of the isotropic Kitaev model. The authors identify the lower tem-

perature peak at TL with the flux gap and attribute TH to a feature in the density of

states of the itinerant Majorana fermions. However, at TH the entropy per spin drops

from ln2 to 1
2 ln2 and the thermal average ⟨Ŵp⟩ of the plaquette operator becomes

non-zero, suggesting that flux excitations start to freeze out at the temperature TH .

The reason why we don’t see a crossover at the much lower temperature TL is likely

because at mean-field level the local constraints on the Majorana fermions are only

treated on average and the interaction vertex is not properly taken into account.

Such correlation effects could give rise to the formation of a bound state at this new

energy scale. The inclusion of diagrammatic corrections beyond mean-field could

potentially provide an analytical confirmation of the QMC result.

The main purpose of our work was to compare different Majorana fermion

mean-field theories for Kitaev QSLs. In order to ensure locality of the Hamiltonian

after JWT we focused on a very specific, fine tuned spin model. A similar Kitaev-

Ising model, but with ferromagnetic exchange couplings, was studied in Ref. [202]

for the same reasons, e.g. to ensure locality after a two-dimensional JWT. Interest-

ingly, in the regime of strong anisotropy of the Kitaev couplings this model exhibits

a spin-nematic phase in between the gapped Kitaev QSL and the ferromagnetic

phase.

It is important to stress that the parton mean-field theory based on the Ki-

taev mapping to a set of four Majorana fermions, subject to constraints enforced
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by Lagrange multipliers, is applicable to a much wider class of extended Kitaev-

Heisenberg models [188, 189, 190, 191, 192, 193, 213, 214, 215, 216, 217], includ-

ing those relevant to real materials [169, 170, 171, 172, 173, 171, 174, 175, 176,

177, 178].



Chapter 6

Emergent Dirac Fermions in Kitaev

Quantum Spin Liquids II:

Renormalisation Group Analysis

The mean-field theory of the Kitaev-Ising model tells us that the topological phase

transition between the gapless and gapped Z2 spin liquids can also be induced in

presence of other magnetic interactions. The phase transition is analogous to the

semimetal-insulator transition of Dirac fermions in graphene, only now we have

Majorana fermions instead of complex fermions. The additional magnetic inter-

action moves the system away from the exactly solvable point, thus acting like an

interaction term on top of the free theory of Dirac fermions. This suggests that

the underlying IR theory of such a phase transition could be described by a GNY-

like theory! Bearing this in mind, we now derive the long-wavelength theory of

the topological phase transition based on the mean-field dispersion in last chapter,

and investigate the topological phase transition as a fermion-induced criticality of

Majorana fermions.

The original work in this chapter was published in Nature of Topological Phase

Transition of Kitaev Quantum Spin Liquids, H. Hu, F. Krüger, Physical Review

Letters 133 (1), 146603.[218].
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6.1 Introduction

The spin-1/2 honeycomb Kitaev model [22] [Fig. 6.1(a)] has been at the forefront

of research into quantum spin liquids (QSLs) [163, 164, 165] since it is exactly

solvable after fractionalizing the spin operators into a set of Majorana fermions

[22, 194, 195]. Some of these correspond to local bond excitations which are linked

to Z2 fluxes through the plaquettes of the honeycomb lattice. Since the fluxes are

conserved, the Kitaev model can be diagonalized for each flux configuration, result-

ing in a non-interacting Hamiltonian for the remaining Majorana fermion species.

In the ground state, zero-flux sector, this results in a Dirac dispersion identical to

that of electrons in graphene.

Anisotropy of the Kitaev couplings can drive a topological phase transition

from a gapless to a gapped Z2 Kitaev QSL [22]. In the regime of large anisotropy,

the latter can be mapped to the toric code model which exhibits anyonic excita-

tions and plays an important role in the context of quantum computation and quan-

tum error correction [219]. Approaching the topological phase transition from the

gapless QSL side, the Dirac points of the gapless Majorana bands move along the

edge of the Brillouin zone [Fig. 6.1(b)] and eventually merge, forming a semi-Dirac

point with a quadratic and a linear band touching direction. For larger anisotropies

the spectrum becomes gapped. This behavior is very similar to the topological

phase transition proposed to occur for electrons in strained honeycomb lattices

[203, 204, 205] and was observed experimentally in black phosphorus [206, 207].

At first glance, the bond-directional exchange of the Kitaev model seems ar-

tificial, but it was realized that because of strong spin-orbital mixing [168, 220],

the Kitaev model can be approximately realized in layered honeycomb iridates

[169, 170, 171, 172, 173, 175, 174] and the halide α-RuCl3 [176, 177, 178]. Al-

though in these materials the additional magnetic interactions are still slightly too

large, leading to magnetic ordering at low temperatures, the experimental realiza-

tion of a Kitaev QSL is certainly within reach.

In the presence of additional magnetic interactions, such as Heisenberg or

Gamma couplings [164, 188], the model is no longer exactly solvable since the flux
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plaquette operators do not commute with the full Hamiltonian and the gapped Ma-

jorana modes, which correspond to flux excitations, acquire dynamics. While the

selection of magnetically ordered states crucially depends on the nature of the ad-

ditional couplings, the topological phase transition between the gapless and gapped

Kitaev QSLs is expected to be universal.

In this chapter we analyze the nature of the topological quantum phase

transition away from the exactly solvable point. To achieve this we perform a

renormalization-group (RG) analysis of the effective Gross-Neveu-Yukawa (GNY)

quantum field theory that describes the coupling of the dynamical Ising order pa-

rameter field to the gapless Majorana fermion semi-Dirac modes.

6.2 From Microscopic Model to Effective Field The-

ory
Instead of starting with the generic form of the effective field theory, we explicitly

derive it for a specific microscopic model. Our starting point is the Kitaev model

with couplings Kγ > 0 along nearest-neighbour bonds ⟨i, j⟩γ (γ = x,y,z), perturbed

by an antiferromagnetic nearest-neighbor Ising exchange J > 0 [202, 162],

Ĥ = ∑
γ=x,y,z

∑
⟨i, j⟩γ

Kγ σ̂
γ

i σ̂
γ

j + J ∑
⟨i, j⟩

σ̂
z
i σ̂

z
j . (6.1)

Here the operators σ̂
γ

i denote spin-1/2 operators in units of h̄/2, satisfying the spin-

commutation algebra [σ̂α
i , σ̂

β

j ] = 2δi jεαβγ σ̂
γ

i . In order to drive a topological phase

transition, we allow for anisotropy Kz > Kx = Ky = K. For J = 0, the topological

phase transition is known to occur at Kz/K = 2 [22].

We map this Kitaev-Ising model to a Hamiltonian in terms of spinless

fermions, using a two-dimensional Jordan-Wigner transformation (JWT) with a

string operator along the one-dimensional contour shown in Fig. 6.1(c). The

mapping, which was used as an alternative way to obtain the exact solution of

the pure Kitaev model [194], is defined as σ̂ z
n = 1− 2ĉ†

nĉn = (ĉ†
n + ĉn)(ĉ†

n − ĉn),

σ̂ x
n = D̂n(ĉ†

n + ĉn) and σ̂
y
n = iD̂n(ĉ†

n − ĉn). Here n labels the position along the
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Figure 6.1: (a) Illustration of the bond-directional Ising exchanges Kγ σ̂
γ

i σ̂
γ

j along the bonds
γ = x,y,z of the honeycomb Kitaev model. The unit cell contains two lattice
sites (A,B) and is spanned by the lattice vectors a1,2 = (±

√
3

2 , 3
2). (b) As a

function of anisotropy (Kz −K)/K the Dirac points of the gapless Majorana
bands move along the edge of the Brillouin zone and merge at the topological
phase transition between the gapless and gapped QSL states. (c) Snake string
operator used for the two-dimensional Jordan-Wigner transformation.

string and the string operator D̂n = ∏ℓ<n(1− 2ĉ†
ℓ ĉℓ) is required to match the spin

commutation and fermion anti-commutation relations. The x and y bonds on the

honeycomb lattice are nearest-neighbour bonds along the string. Although the cou-

pling terms along these bonds involve spin components σ̂ x and σ̂ y, the property

D̂nD̂n+1 = 1−2ĉ†
nĉn ensures that the fermionized Hamiltonian remains local in the

sense that no terms beyond nearest-neighbor coupling arise. The z bonds connect

spins that are not nearest neighbors along the snake string. As a result, any Hamil-

tonian that involves couplings between the x or y spin components along the z bonds

would become non-local. This however is not the case for the Kitaev Ising model
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(6.1).

In terms of Majorana fermions ψ̂A(r) = i[ĉ†
A(r)− ĉA(r)], η̂A(r) = ĉ†

A(r) +

ĉA(r), ψ̂B(r) = ĉ†
B(r)+ ĉB(r) and η̂B(r) = i[ĉ†

B(r)− ĉB(r)] the Hamiltonian is

Ĥ = −iK ∑
r

∑
i=1,2

ψ̂A(r)ψ̂B(r+ai)

+J ∑
r

∑
i=1,2

[iψ̂A(r)ψ̂B(r+ai)] [iη̂A(r)η̂B(r+ai)]

+(Kz + J)∑
r
[iψ̂A(r)ψ̂B(r)] [iη̂A(r)η̂B(r)], (6.2)

where {ψ̂α(r), ψ̂α ′(r′)}= {η̂α(r), η̂α ′(r′)}= 2δα,α ′δr,r′ and {ψ̂α(r), η̂α ′(r′)}= 0.

Even for the pure Kitaev model, J = 0, this seems to be an interacting problem.

However, in this case the η̂ Majorana fermions only live on isolated z bonds and the

bond operators B̂z(r) = iη̂A(r)η̂B(r), which have eigenvalues ±1, commute with

the Hamiltonian, [B̂z(r),Ĥ ] = 0. In the absence of flux excitations, we can replace

all operators B̂z(r) with the negative eigenvalue. This results in a non-interacting

Hamiltonian for the ψ̂ Majorana fermions with energy dispersion εψ,±(k) =±|Kz+

K(eik·a1 + eik·a2)|. For Kz/K < 2 we obtain gapless excitations with a pair of Dirac

points. These merge at Kz/K = 2 into a semi-Dirac point at Ks = (0, 2π

3 ). For

Kz/K > 2 the spectrum is gapped.

For non-zero J the η̂ Majorana fermions acquire dynamics and [B̂z(r),Ĥ ] ̸= 0.

In this case, the model is no longer exactly solvable. An approximate phase diagram

of the Kitaev-Ising model can be obtained using mean-field theory [162], where

the bond expectation values Aγ = ⟨iψ̂A(r)ψ̂B(r + δδδ γ)⟩ and Bγ = ⟨iη̂A(r)η̂B(r +

δδδ γ)⟩ (δδδ x = a1, δδδ y = a2, δδδ z = 000), as well as the staggered magnetization m =

⟨iψ̂A(r)η̂A(r)⟩ = −⟨iψ̂B(r)η̂B(r)⟩ are determined self-consistently. This results in

the phase diagram shown in Fig. 6.2.

As expected, a relatively small Ising exchange J leads to a first-order transition

to an antiferromagnetic state. Importantly, a continuous topological phase transition

between a gapless and a gapped Kitaev QSL still occurs for sufficiently small J.

The insets of Fig. 6.2 show the evolution of the mean-field dispersion across this

transition. While the gapless ψ̂ Majorana modes behave in the same way as for the
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<latexit sha1_base64="Ysbopyf6ykGDA1PlXgQLwFYRP70=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBd9GMrw==</latexit>

0

<latexit sha1_base64="wijEP/qVNwGiMmbGQAMSozy5OKE=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyWRoi4LblxWsA9oQplMJ+3QySTMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyScKe0439bK6tr6xmZpq7y9s7u3bx8ctlWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTjG9yv/NApWKxuNeThPoRHgoWMoK1kfr2sUcTxXgsql6E9SgIs/H0vG9XnJozA1ombkEqUKDZt7+8QUzSiApNOFaq5zqJ9jMsNSOcTsteqmiCyRgPac9QgSOq/GyWforOjDJAYSzNExrN1N8bGY6UmkSBmcwjqkUvF//zeqkOr/2MiSTVVJD5oTDlSMcorwINmKRE84khmEhmsiIywhITbQormxLcxS8vk/ZFzb2s1e/qlUa9qKMEJ3AKVXDhChpwC01oAYFHeIZXeLOerBfr3fqYj65Yxc4R/IH1+QOVW5VG</latexit> ✏(
k
)

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡
<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2

<latexit sha1_base64="PNmnlg/VseG4xBbW5b8Avx8LvfI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSSlqMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5fVfqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/lcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH+QejOg=</latexit>�2

<latexit sha1_base64="Ysbopyf6ykGDA1PlXgQLwFYRP70=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBd9GMrw==</latexit>

0

<latexit sha1_base64="Tm5sqdmZVR2kOF+uL0PFHrZUeFg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vjw4rGi/YA2lM120i7dbMLuRgihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5nfmdJ1Sax/LRZAn6ER1JHnJGjZUeJoNsUKm6NXcOskq8glShQHNQ+eoPY5ZGKA0TVOue5ybGz6kynAmclvupxoSyCR1hz1JJI9R+Pj91Ss6tMiRhrGxJQ+bq74mcRlpnUWA7I2rGetmbif95vdSEN37OZZIalGyxKEwFMTGZ/U2GXCEzIrOEMsXtrYSNqaLM2HTKNgRv+eVV0r6seVe1+n292qgXcZTgFM7gAjy4hgbcQRNawGAEz/AKb45wXpx352PRuuYUMyfwB87nD2O6jdY=</latexit>

ky
<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx

<latexit sha1_base64="wijEP/qVNwGiMmbGQAMSozy5OKE=">AAAB/XicbVDLSsNAFL3xWesrPnZuBotQNyWRoi4LblxWsA9oQplMJ+3QySTMTIQair/ixoUibv0Pd/6NkzYLbT0wcDjnXu6ZEyScKe0439bK6tr6xmZpq7y9s7u3bx8ctlWcSkJbJOax7AZYUc4EbWmmOe0mkuIo4LQTjG9yv/NApWKxuNeThPoRHgoWMoK1kfr2sUcTxXgsql6E9SgIs/H0vG9XnJozA1ombkEqUKDZt7+8QUzSiApNOFaq5zqJ9jMsNSOcTsteqmiCyRgPac9QgSOq/GyWforOjDJAYSzNExrN1N8bGY6UmkSBmcwjqkUvF//zeqkOr/2MiSTVVJD5oTDlSMcorwINmKRE84khmEhmsiIywhITbQormxLcxS8vk/ZFzb2s1e/qlUa9qKMEJ3AKVXDhChpwC01oAYFHeIZXeLOerBfr3fqYj65Yxc4R/IH1+QOVW5VG</latexit> ✏(
k
)

<latexit sha1_base64="Tm5sqdmZVR2kOF+uL0PFHrZUeFg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KokU9Vjw4rGi/YA2lM120i7dbMLuRgihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEsG1cd1vZ219Y3Nru7RT3t3bPzisHB23dZwqhi0Wi1h1A6pRcIktw43AbqKQRoHATjC5nfmdJ1Sax/LRZAn6ER1JHnJGjZUeJoNsUKm6NXcOskq8glShQHNQ+eoPY5ZGKA0TVOue5ybGz6kynAmclvupxoSyCR1hz1JJI9R+Pj91Ss6tMiRhrGxJQ+bq74mcRlpnUWA7I2rGetmbif95vdSEN37OZZIalGyxKEwFMTGZ/U2GXCEzIrOEMsXtrYSNqaLM2HTKNgRv+eVV0r6seVe1+n292qgXcZTgFM7gAjy4hgbcQRNawGAEz/AKb45wXpx352PRuuYUMyfwB87nD2O6jdY=</latexit>

ky

<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡
<latexit sha1_base64="tev/tjbEqt5tIxhargal/Hk6V9Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Qe0oWy2m3bpZhN2J2IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GNzO//ci1EbF6wEnC/YgOlQgFo2il+3H/qV+uuFV3DrJKvJxUIEejX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophtd+JlSSIldssShMJcGYzP4mA6E5QzmxhDIt7K2EjaimDG06JRuCt/zyKmldVL3Lau2uVqnX8jiKcAKncA4eXEEdbqEBTWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNiNo3V</latexit>

kx

<latexit sha1_base64="UeJibGoo5XgSw6VDRqtkaZQmxhs=">AAAB63icbVBNSwMxEJ34WetX1aOXYBG8WHalqMeCF48V7Ae0S8mm2TY0yS5JVihL/4IXD4p49Q9589+YbfegrQ8GHu/NMDMvTAQ31vO+0dr6xubWdmmnvLu3f3BYOTpumzjVlLVoLGLdDYlhgivWstwK1k00IzIUrBNO7nK/88S04bF6tNOEBZKMFI84JTaXLvsJH1SqXs2bA68SvyBVKNAcVL76w5imkilLBTGm53uJDTKiLaeCzcr91LCE0AkZsZ6jikhmgmx+6wyfO2WIo1i7UhbP1d8TGZHGTGXoOiWxY7Ps5eJ/Xi+10W2QcZWklim6WBSlAtsY54/jIdeMWjF1hFDN3a2Yjokm1Lp4yi4Ef/nlVdK+qvnXtfpDvdqoF3GU4BTO4AJ8uIEG3EMTWkBhDM/wCm9Iohf0jj4WrWuomDmBP0CfP7gYjf8=</latexit>�⇡
<latexit sha1_base64="GRTx9UE549UFTtn84IT+hG+Y9xA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD/1EDMoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+2rqlev1u5rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP051jcg=</latexit>⇡

<latexit sha1_base64="46DBnhVwhqSoBOpi9CXwLf5t7gU=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUrA5KZbfiLkDWiZeTMuRoDEpf/WHM0gilYYJq3fPcxPgZVYYzgbNiP9WYUDahI+xZKmmE2s8Wh87IpVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNkUbgrf68jppVyvedaXWrJXrtTyOApzDBVyBBzdQh3toQAsYIDzDK7w5j86L8+58LFs3nHzmDP7A+fwBetmMsQ==</latexit>

2

<latexit sha1_base64="PNmnlg/VseG4xBbW5b8Avx8LvfI=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4sSSlqMeCF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2Mb2d++4lrI2L1iJOE+xEdKhEKRtFKD5fVfqnsVtw5yCrxclKGHI1+6as3iFkacYVMUmO6npugn1GNgkk+LfZSwxPKxnTIu5YqGnHjZ/NLp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YY3viZUEmKXLHFojCVBGMye5sMhOYM5cQSyrSwtxI2opoytOEUbQje8surpFWteFeV2n2tXK/lcRTgFM7gAjy4hjrcQQOawCCEZ3iFN2fsvDjvzseidc3JZ07gD5zPH+QejOg=</latexit>�2

<latexit sha1_base64="Ysbopyf6ykGDA1PlXgQLwFYRP70=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q7KFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W962qtWavUa3kcRTiDc7gED26gDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBd9GMrw==</latexit>

0

ga
pp

ed
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-Q
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K-QSL

<latexit sha1_base64="2+i6CxBtEaST4DvEHwQUUW1ipog=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKe5KiB4DXkQvEc0DkiXMTnqTIbOzy8ysEEI+wYsHRbz6Rd78GyfJHjRa0FBUddPdFSSCa+O6X05uZXVtfSO/Wdja3tndK+4fNHWcKoYNFotYtQOqUXCJDcONwHaikEaBwFYwupr5rUdUmsfywYwT9CM6kDzkjBor3d+c3faKJbfszkH+Ei8jJchQ7xU/u/2YpRFKwwTVuuO5ifEnVBnOBE4L3VRjQtmIDrBjqaQRan8yP3VKTqzSJ2GsbElD5urPiQmNtB5Hge2MqBnqZW8m/ud1UhNe+hMuk9SgZItFYSqIicnsb9LnCpkRY0soU9zeStiQKsqMTadgQ/CWX/5Lmudlr1qu3FVKtWoWRx6O4BhOwYMLqME11KEBDAbwBC/w6gjn2Xlz3hetOSebOYRfcD6+AaNXjVk=</latexit>
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Figure 6.2: Mean-field phase diagram as a function of the anisotropy (Kz −K)/K and the
Ising exchange J/K. The evolution of the Majorana fermion spectrum across
the topological phase transition between the gapless and gapped quantum spin
liquid phases is shown in the insets.

pure anisotropic Kitaev model, a key difference is that the gapped η̂ modes become

dispersive.

In order to understand the nature of the topological quantum phase transition,

it is essential to include fluctuations beyond mean-field theory, arising from the

interaction vertex. We recast the problem using a Grassmann path integral with
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action

S =
∫

k
ψψψ

†
k

 −ik0 −iξ ∗
k

iξk −ik0

ψψψk +
∫

k
ηηη

†
k

 −ik0 −iλ ∗
k

iλk −ik0

ηηηk

+∑
γ

gγ ∑
r

∫
τ

[iψA(r,τ)ψB(r+δδδ γ ,τ)]

× [iηA(r,τ)ηB(r+δδδ γ ,τ)], (6.3)

where τ denotes imaginary time, k the two-dimensional momentum, k0 frequency,

and k = (k0,k). The complex functions ξk = ∑γ aγeikδδδ γ and λk = ∑γ bγeikδδδ γ are

linked to the mean-field dispersions, εψ,±(k) =±|ξk| and εη ,±(k) =±|λk|, respec-

tively. We have written the interactions as gγ , for brevity. Because of symmetry

gx = gy, ax = ay and bx = by. Note that bz/bx,y > 2 since the η Majorana fermion

bands are gapped.

As the next step, we integrate out the gapped Majorana modes η , which results

in an effective interaction for the gapless ψ Majorana fermions,

Sint = ∑
αβγ

ρ
γ

αβ ∑
r

∫
τ

[iψA(r−δδδ α +δδδ γ ,τ)ψB(r+δδδ γ ,τ)]

× [iψA(r,τ)ψB(r+δδδ β ,τ)], (6.4)

ρ
γ

αβ
=

1
2 ∑

ε

gαgβ bγbε

∫
q

e−iq(δδδ α+δδδ β−δδδ γ−δδδ ε )

(q2
0 + |λq|2)2 , (6.5)

with α ̸= γ and β ̸= γ . The different types of interactions ρ
γ

αβ
are visualized in

Fig. 6.3 and correspond to the coupling of bond operators Âα and Âβ linked through

a γ bond.

It is important to stress that for J = 0 we obtain gx = gy = 0 and bx = by = 0

since interactions are restricted to the z bonds and the η bands are dispersionless.

In this case all interactions ρ
γ

αβ
are equal to zero and we obtain a theory of non-

interaction ψ Majorana fermions.

As the final step, we perform a Hubbard-Stratonovich decoupling of the in-

teractions. For reasons that will become clear later, we only need to work out

the coupling between the dynamical order-parameter field and the semi-Dirac



6.2. From Microscopic Model to Effective Field Theory 139

<latexit sha1_base64="Eg6gvFE2XUCPA5fzjrfUkQqVBpA=">AAACGHicbZDLSsNAFIYnXmu9RV26CRbBVU2kqAuFghuXFewF2hgm00k7dDITZibSGPoYbnwVNy4Ucdudb+OkDVhbfxj4+M85nDm/H1EilW1/G0vLK6tr64WN4ubW9s6uubffkDwWCNcRp1y0fCgxJQzXFVEUtyKBYehT3PQHN1m9+YiFJJzdqyTCbgh7jAQEQaUtzzztiD730uFw9PB0PeUk+eXhDCdZj2eW7LI9kbUITg4lkKvmmeNOl6M4xEwhCqVsO3ak3BQKRRDFo2InljiCaAB7uK2RwRBLN50cNrKOtdO1Ai70Y8qauLMTKQylTEJfd4ZQ9eV8LTP/q7VjFVy6KWFRrDBD00VBTC3FrSwlq0sERoomGiASRP/VQn0oIFI6y6IOwZk/eREaZ2XnvFy5q5SqV3kcBXAIjsAJcMAFqIJbUAN1gMAzeAXv4MN4Md6MT+Nr2rpk5DMH4I+M8Q8cfKJP</latexit>

⇢z
xx = ⇢z

yy = ⇢z
xy = ⇢z

yx

<latexit sha1_base64="Q61Tjli8mSGguF8HYL8nLTdZlrs=">AAACGHicbZDLSgMxFIYzXmu9jbp0EyyCqzojRV0oFNy4rGAv0I5DJk3b0EwyJBnpdOhjuPFV3LhQxG13vo1pO4va+kPg4z/ncHL+IGJUacf5sVZW19Y3NnNb+e2d3b19++CwpkQsMaliwYRsBEgRRjmpaqoZaUSSoDBgpB707yb1+jORigr+qJOIeCHqctqhGGlj+fZ5S/aEnw6Go6fkdsaJ4UHGw2SOB6bHtwtO0ZkKLoObQQFkqvj2uNUWOA4J15ghpZquE2kvRVJTzMgo34oViRDuoy5pGuQoJMpLp4eN4Klx2rAjpHlcw6k7P5GiUKkkDExniHRPLdYm5n+1Zqw7115KeRRrwvFsUSdmUAs4SQm2qSRYs8QAwpKav0LcQxJhbbLMmxDcxZOXoXZRdC+LpYdSoXyTxZEDx+AEnAEXXIEyuAcVUAUYvIA38AE+rVfr3fqyvmetK1Y2cwT+yBr/Ahydok8=</latexit>

⇢y
xz = ⇢x

yz = ⇢x
zy = ⇢y

zx

<latexit sha1_base64="DEc4HgOpLPFM44TzBZnVbI/y808=">AAACAHicbZDLSgMxFIYzXmu9jbpw4SZYBFdlRoq6UCi4cVnBXqAdh0yaaUMzyZBkxHaYja/ixoUibn0Md76NaTugtv4Q+PjPOZycP4gZVdpxvqyFxaXlldXCWnF9Y3Nr297ZbSiRSEzqWDAhWwFShFFO6ppqRlqxJCgKGGkGg6txvXlPpKKC3+phTLwI9TgNKUbaWL6935F94aejUXb3cPnDQ98uOWVnIjgPbg4lkKvm25+drsBJRLjGDCnVdp1YeymSmmJGsmInUSRGeIB6pG2Qo4goL50ckMEj43RhKKR5XMOJ+3siRZFSwygwnRHSfTVbG5v/1dqJDs+9lPI40YTj6aIwYVALOE4DdqkkWLOhAYQlNX+FuI8kwtpkVjQhuLMnz0PjpOyelis3lVL1Io+jAA7AITgGLjgDVXANaqAOMMjAE3gBr9aj9Wy9We/T1gUrn9kDf2R9fAMZHJde</latexit>

⇢x
zz = ⇢y

zz

<latexit sha1_base64="iEynVgvF3oBBy5fjt7aCVjxu5e0=">AAACAHicbZDLSgMxFIYz9VbrbdSFCzfBIrgqM1LUhULBjcsK9gLtdMikaRuaSYYkIx2G2fgqblwo4tbHcOfbmLaz0NYfAh//OYeT8wcRo0o7zrdVWFldW98obpa2tnd29+z9g6YSscSkgQUTsh0gRRjlpKGpZqQdSYLCgJFWML6d1luPRCoq+INOIuKFaMjpgGKkjeXbR105En46mWS95GbOSZL1Jr5ddirOTHAZ3BzKIFfdt7+6fYHjkHCNGVKq4zqR9lIkNcWMZKVurEiE8BgNSccgRyFRXjo7IIOnxunDgZDmcQ1n7u+JFIVKJWFgOkOkR2qxNjX/q3ViPbjyUsqjWBOO54sGMYNawGkasE8lwZolBhCW1PwV4hGSCGuTWcmE4C6evAzN84p7UaneV8u16zyOIjgGJ+AMuOAS1MAdqIMGwCADz+AVvFlP1ov1bn3MWwtWPnMI/sj6/AEPy5dY</latexit>

⇢y
xx = ⇢x

yy

Figure 6.3: Illustration of the interaction terms between the bond-operators Âi j = iψ̂iψ̂ j of
the gapless Majorana modes ψ̂ , obtained after integrating the gapped modes η̂ .

Majorana fermions. The form of the coupling can be obtained more easily

from a mean-field decoupling with φγ(r) = ⟨iψ̂A(r)ψ̂B(r+ δδδ γ)⟩. This results in

∑r,γ Ωγ(r)[iψ̂A(r)ψ̂B(r+ δδδ γ)], where the fields Ωγ(r) are certain combinations of

φγ(r), e.g. Ωz(r) = 2(ρx
zz +ρ

y
zz)φz(r)+2ρ

y
xzφx(r)+2ρx

yzφy(r). After Fourier trans-

form and expansion around the semi-Dirac point Ks = (0, 2π

3 ) we obtain the Yukawa

coupling term of the low energy field theory,

SY [φ , ψ̄ψψ,ψψψ] =
g√
N

∫
k,q

φ(q)ψ̄ψψ(k)σσσ yψψψ(k+q), (6.6)

where σσσ y denotes a Pauli matrix in sublattice space and the Ising fluctuation field

is given by g√
N

φ(q) = Ωz(q)− Ωx(q)− Ωy(q). Note that we generalized to N

flavours of semi-Dirac fermions and scaled the coupling accordingly. Expanding

the quadratic part S0[ψ̄ψψ,ψψψ] of the action (6.3) around Ks we obtain

S0[ψ̄ψψ,ψψψ] =
∫

k
ψ̄ψψk
[
−ik0 + kLσσσ x +

(
k2

Q +∆
)

σσσ y
]

ψψψk, (6.7)
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where kL = 3aky and kQ =
√

3a
2 qx (a = ax = ay) are the rescaled momenta along the

linear and quadratic directions, respectively and ∆ = az−2a is the tuning parameter

of the topological phase transition, where ∆ = 0 at the critical point. As one might

have anticipated, the dynamical bosonic fluctuation field φ(q) in SY (6.6) couples in

the same way as the static tuning parameter ∆ in S0 (6.7). The bosonic action S[φ ]

that is generated under perturbative RG is of the conventional Ginzburg-Landau

form. However, this neglects the non-analytic bosonic self-energy correction Π(q)

due to the Landau damping of the order parameter fluctuations by gapless fermionic

particle-hole fluctuations. Since Π(q) dominates over the regular terms in the IR, it

is crucial to use the quadratic bosonic action

S0[φ ] =
∫

k
φ(−k)G−1

φ
(k)φ(k) (6.8)

with G−1
φ
(q) = Π(q) as starting point for subsequent perturbative RG calcula-

tion [221]. Using the correct infrared (IR) scaling form of the propagator, the

fluctuation corrections under RG are independent of the choice of the ultravio-

let (UV) cut-off scheme and therefore universal [222]. The bosonic self energy

Π(q) = g2/N
∫

k Tr
[
Gψψψ(k)σσσ yGψψψ(k+q)σσσ y

]
is obtained by calculating the fermion

polarization bubble digram [Fig. 6.4(a)] over the full range of frequencies and mo-

menta where the non-analyticity arrises from the IR contribution (k → 0). Un-

fortunately, for the case of semi-Dirac fermions this integral cannot be computed

analytically. Following the procedure in Ref. [222], we obtain

Π(q) =
g2

8π2 |qQ|F
(

q2
0 +q2

L

q4
Q

)
, (6.9)

where the function F(u) for u ∈ [0,∞) is defined through the integral

F(u) =
∫ 1

0
dt
∫

∞

−∞

d p

×
[
(p+1)4 + p2(p+1)2 +(1− t)u
(p+1)4t + p4(1− t)+ t(1+ t)u

−2
]
. (6.10)

The field theory S0[ψ̄ψψ,ψψψ]+S0[φ ]+SY [φ , ψ̄ψψ,ψψψ] for the topological phase tran-
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FIG. 2. Polarization bubble diagram describing the IR regulator
of the bosonic propagator and the self-energy correction of the
bosons in the momentum shell.

For the multicomponent order parameters of the SDW
and superconducting phases, the polarization is diagonal,
!i j (q⃗) = !(q⃗)δi j , reflecting the underlying O(3) and U(1)
symmetries. In the limit of small q0, qx and at qy = 0, the
leading term is [25]

!IR(q⃗) = Nf g2

√
2m
v

(
q2

0 + v2q2
x

) 1
4 , (23)

where Nf is the number of fermion flavors. This contribution
to the kernel of Sφ regularizes the bosonic propagator in the
IR at the critical surface (m2

φ = 0),

G−1
φ (q⃗) = Nf g2

√
2m
v

(
q2

0 + v2q2
x

) 1
4 + c2

yq2
y . (24)

C. Self-energy and vertex corrections

Using the propagators (22) and (24) for fermionic and
bosonic fields, respectively, we can now go beyond the tree
level scaling and extract one-loop corrections to the propa-
gators and the Yukawa coupling. As mentioned before, the
bosonic φ4 is irrelevant and can be dropped.

We first concern ourselves with the one-loop renormal-
ization of the regularized bosonic propagator (24). The only
component that is of interest is in the qy direction as the
dependence on linear momentum and frequency directions in
the propagator comes from the IR, which is not renormalized
under the RG. The one-loop bosonic self-energy is depicted
in Fig. 2 and takes the form

!>(q⃗) = g2

2
Tr

∫ >

k⃗
YiGψ (k⃗)YiGψ (k⃗ + q⃗), (25)

where
∫ >

k⃗ means integration over the UV modes within
the frequency-momentum shell of width %z dℓ, as defined
in Eq. (13). Note that in the above expression, the order
parameter field component i is not summed over and that
the result is the same for all components. The leading terms
of the self-energy have the form !>(q⃗) = !0q2

0 + !xq2
x +

!yq2
y + !m2

φ
. Expanding the fermionic propagator to second

order in qy, then performing the coordinate transformation
(16) and integrating over the energy shell, we find that the
renormalization of the c2

y coefficient is given by

d
(
c2

y

)
= 2Nf

11
21π2

√
2m
v

g2

√
%

zdℓ ≡ !yzdℓ. (26)

Although the mass of the bosons m2
φ also runs in the RG flow,

for now it will be fine tuned to zero at the critical surface.
We will address the renormalization of m2

φ in detail later on
in Secs. III F and III G, when we examine the vicinity of the
quantum multicritical point.

FIG. 3. (a) Self-energy correction to the fermionic propagator in
one loop. (b) Vertex correction diagram to the Yukawa coupling.
The bosonic propagator is represented by the wavy line while the
fermionic propagator by the straight line.

Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to

"(k⃗) = −g2
Nb∑

i

∫ >

q⃗
Gφ (q⃗)YiGψ (k⃗ + q⃗)Yi. (27)

After shell integration, it takes the form

"(k⃗) = s0 ⊗
[

(0(k0σ
0 + vkxσ

x ) + (y
k2

y

2m
σy

]

zdℓ, (28)

where

(0 = Nb

2Nf
F1

(
2Nf

√
2mg2

vc2
y

√
%

)
, (29)

(y = Nb

2Nf
F2

(
2Nf

√
2mg2

vc2
y

√
%

)
, (30)

with (x = (0, and

F1(x) = 1
4π2

∫ π
2

0
dθ

(cos θ )
3
2 sin θ

x−1 cos θ +
√

sin θ
, (31)

F2(x) = 1
4π2

∫ π
2

0
dθ

cos 2θ + 2 cos 4θ

x−1 cos θ +
√

sin θ

sin θ√
cos θ

(32)

are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,

$i = g3
Nb∑

j

∫ >

q⃗
Gφ (q⃗)Y jGψ (q⃗)YiGψ (q⃗)Y j . (33)

The matrix $i is proportional to the Yukawa matrix Yi, $i =
g* Yizdℓ, where we have absorbed a factor of g2 in the
definition of *. Performing the shell integral we obtain

* = −2 − Nb

2Nf
F3

(
2Nf

√
2mg2

vc2
y

√
%

)

(34)

with

F3(x) = 1
4π2

∫ π
2

0
dθ

1

x−1 cos θ +
√

sin θ

sin θ√
cos θ

. (35)

Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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where Nf is the number of fermion flavors. This contribution
to the kernel of Sφ regularizes the bosonic propagator in the
IR at the critical surface (m2
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C. Self-energy and vertex corrections

Using the propagators (22) and (24) for fermionic and
bosonic fields, respectively, we can now go beyond the tree
level scaling and extract one-loop corrections to the propa-
gators and the Yukawa coupling. As mentioned before, the
bosonic φ4 is irrelevant and can be dropped.

We first concern ourselves with the one-loop renormal-
ization of the regularized bosonic propagator (24). The only
component that is of interest is in the qy direction as the
dependence on linear momentum and frequency directions in
the propagator comes from the IR, which is not renormalized
under the RG. The one-loop bosonic self-energy is depicted
in Fig. 2 and takes the form
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∫ >
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YiGψ (k⃗)YiGψ (k⃗ + q⃗), (25)

where
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k⃗ means integration over the UV modes within
the frequency-momentum shell of width %z dℓ, as defined
in Eq. (13). Note that in the above expression, the order
parameter field component i is not summed over and that
the result is the same for all components. The leading terms
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x +
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Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to

"(k⃗) = −g2
Nb∑

i

∫ >

q⃗
Gφ (q⃗)YiGψ (k⃗ + q⃗)Yi. (27)

After shell integration, it takes the form

"(k⃗) = s0 ⊗
[

(0(k0σ
0 + vkxσ

x ) + (y
k2

y

2m
σy

]

zdℓ, (28)

where

(0 = Nb

2Nf
F1

(
2Nf

√
2mg2

vc2
y

√
%

)
, (29)

(y = Nb

2Nf
F2

(
2Nf

√
2mg2

vc2
y

√
%

)
, (30)

with (x = (0, and

F1(x) = 1
4π2

∫ π
2

0
dθ

(cos θ )
3
2 sin θ

x−1 cos θ +
√

sin θ
, (31)

F2(x) = 1
4π2

∫ π
2

0
dθ

cos 2θ + 2 cos 4θ

x−1 cos θ +
√

sin θ

sin θ√
cos θ

(32)

are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,

$i = g3
Nb∑

j

∫ >

q⃗
Gφ (q⃗)Y jGψ (q⃗)YiGψ (q⃗)Y j . (33)

The matrix $i is proportional to the Yukawa matrix Yi, $i =
g* Yizdℓ, where we have absorbed a factor of g2 in the
definition of *. Performing the shell integral we obtain

* = −2 − Nb

2Nf
F3

(
2Nf

√
2mg2

vc2
y

√
%

)

(34)

with

F3(x) = 1
4π2

∫ π
2

0
dθ

1

x−1 cos θ +
√

sin θ

sin θ√
cos θ

. (35)

Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].
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and superconducting phases, the polarization is diagonal,
!i j (q⃗) = !(q⃗)δi j , reflecting the underlying O(3) and U(1)
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where Nf is the number of fermion flavors. This contribution
to the kernel of Sφ regularizes the bosonic propagator in the
IR at the critical surface (m2

φ = 0),

G−1
φ (q⃗) = Nf g2

√
2m
v

(
q2

0 + v2q2
x

) 1
4 + c2

yq2
y . (24)

C. Self-energy and vertex corrections

Using the propagators (22) and (24) for fermionic and
bosonic fields, respectively, we can now go beyond the tree
level scaling and extract one-loop corrections to the propa-
gators and the Yukawa coupling. As mentioned before, the
bosonic φ4 is irrelevant and can be dropped.

We first concern ourselves with the one-loop renormal-
ization of the regularized bosonic propagator (24). The only
component that is of interest is in the qy direction as the
dependence on linear momentum and frequency directions in
the propagator comes from the IR, which is not renormalized
under the RG. The one-loop bosonic self-energy is depicted
in Fig. 2 and takes the form

!>(q⃗) = g2

2
Tr

∫ >

k⃗
YiGψ (k⃗)YiGψ (k⃗ + q⃗), (25)

where
∫ >

k⃗ means integration over the UV modes within
the frequency-momentum shell of width %z dℓ, as defined
in Eq. (13). Note that in the above expression, the order
parameter field component i is not summed over and that
the result is the same for all components. The leading terms
of the self-energy have the form !>(q⃗) = !0q2

0 + !xq2
x +

!yq2
y + !m2

φ
. Expanding the fermionic propagator to second

order in qy, then performing the coordinate transformation
(16) and integrating over the energy shell, we find that the
renormalization of the c2

y coefficient is given by

d
(
c2

y

)
= 2Nf

11
21π2

√
2m
v

g2

√
%

zdℓ ≡ !yzdℓ. (26)

Although the mass of the bosons m2
φ also runs in the RG flow,

for now it will be fine tuned to zero at the critical surface.
We will address the renormalization of m2

φ in detail later on
in Secs. III F and III G, when we examine the vicinity of the
quantum multicritical point.

FIG. 3. (a) Self-energy correction to the fermionic propagator in
one loop. (b) Vertex correction diagram to the Yukawa coupling.
The bosonic propagator is represented by the wavy line while the
fermionic propagator by the straight line.

Next, we turn our attention to the one-loop fermionic self-
energy [Fig. 3(a)], which is equal to

"(k⃗) = −g2
Nb∑

i

∫ >

q⃗
Gφ (q⃗)YiGψ (k⃗ + q⃗)Yi. (27)

After shell integration, it takes the form

"(k⃗) = s0 ⊗
[

(0(k0σ
0 + vkxσ

x ) + (y
k2

y

2m
σy

]

zdℓ, (28)

where

(0 = Nb

2Nf
F1

(
2Nf

√
2mg2

vc2
y

√
%

)
, (29)

(y = Nb

2Nf
F2

(
2Nf

√
2mg2

vc2
y

√
%

)
, (30)

with (x = (0, and

F1(x) = 1
4π2

∫ π
2

0
dθ

(cos θ )
3
2 sin θ

x−1 cos θ +
√

sin θ
, (31)

F2(x) = 1
4π2

∫ π
2

0
dθ

cos 2θ + 2 cos 4θ

x−1 cos θ +
√

sin θ

sin θ√
cos θ

(32)

are defined as integral functions.
The renormalization of the Yukawa vertex at one-loop

order is obtained from the diagram shown in Fig. 3(b) with
the external frequencies and momenta set to zero,

$i = g3
Nb∑

j

∫ >

q⃗
Gφ (q⃗)Y jGψ (q⃗)YiGψ (q⃗)Y j . (33)

The matrix $i is proportional to the Yukawa matrix Yi, $i =
g* Yizdℓ, where we have absorbed a factor of g2 in the
definition of *. Performing the shell integral we obtain

* = −2 − Nb

2Nf
F3

(
2Nf

√
2mg2

vc2
y

√
%

)

(34)

with

F3(x) = 1
4π2

∫ π
2

0
dθ

1

x−1 cos θ +
√

sin θ

sin θ√
cos θ

. (35)

Note that the vertex correction to the Yukawa coupling g
has opposite sign for the CDW (Nb = 1) and SDW (Nb = 3)
instabilities and vanishes in the case of a superconductor
(Nb = 2), as reported in previous studies [27].

155101-5

(a) (b) (c)

Figure 6.4: (a) Fermionic polarization bubble diagram that gives rise to the non-analytic IR
propagator of the bosonic fluctuation field. Panels (b) and (c) show the diagram
that contribute to the perturbative renormalization of the free-fermion action
and the Yukawa coupling, respectively.

sition between the gapless and gapped Kitaev QSL states is very similar to the GNY

theory that describes the quantum criticality of semi-Dirac fermions in 2+1 dimen-

sions due to spontaneous symmetry breaking [222, 223, 224, 225, 159]. A key

difference, however, is that for the symmetry-breaking transitions the Yukawa cou-

pling is through the σσσ z channel, which upon condensation of the order parameter

results in the opening of a conventional mass gap in the fermion spectrum. The

different form of the Yukawa coupling (6.6) through σσσ y changes the form of the

IR propagator Gφ (q) and of perturbative RG diagrams, resulting in distinct critical

behavior.

6.3 Renormalisation Group Analysis
To set up the RG calculation, we consider shells in frequency-momentum space,

ε2 = k2
0 +k2

L+k4
Q with cut-off ε ≤ Λ and integrate out modes from the infinitesimal

shell Λe−dℓ ≤ ε ≤ Λ, followed by a rescaling k0 → k0e−dℓ, kL → kLe−dℓ and kQ →
kQe−zQdℓ to the old cut-off. Note that at tree-level zQ = 1/2. We further rescale the

fields as ψ → ψe−(∆ψ/2)dℓ and φ → φe−(∆φ/2)dℓ.

The fermionic self-energy correction ΣΣΣ(k)dℓ = −g2/N
∫>

q Gφ (q)σσσ yGψψψ(k +

q)σσσ y, which corresponds to the diagram in Fig. 6.4(b), is of the same form as the

original kernel in S0[ψ̄ψψ,ψψψ],

ΣΣΣ(k)dℓ=
[
Σ0(−ik0σσσ0 + kLσσσ x)+(ΣQk2

y +Σ∆∆)σσσ y
]

dℓ, (6.11)

where the coefficients are evaluated in terms of generalized spherical coordi-

nates k0 = ε sinθ cosφ , kL = ε sinθ sinφ and k2
Q = ε cosθ (θ ∈ [0,π/2], φ ∈ [0,2π],
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zQ ν
−1
∆

ηψψψ ηφ

1
2 − 0.0387

N 1− 0.2912
N

0.1093
N −0.6093

N

Table 6.1: Critical exponents for the topological phase transition between the gapless and
gapped Kitaev QSL phases in (2+1) dimensions, calculated to one-loop order.

ε ∈ [Λe−dℓ,Λ]) with Jacobian determinant J(ε,θ ,φ) = 1
2ε3/2 sinθ/

√
cosθ . The re-

maining integrals over u = tan2 θ are computed numerically. The detailed calcula-

tion can be found in appendix A, here we only list the results:

Σ0 =
1

2N

∫
∞

0
du

1
(u+1)2F(u)

≈ 0.1511
N

, (6.12)

ΣQ = − 1
2N

∫
∞

0
du

u2 −12u+3
(u+1)3F(u)

≈ 0.0163
N

, (6.13)

Σ∆ = − 1
2N

∫
∞

0
du

u−1
(u+1)2F(u)

≈−0.4312
N

. (6.14)

From the diagram shown in Fig. 6.4(c) be obtain the correction Ωσσσ ydℓ =

(g2/N)
∫>

q Gφ (q)σσσ yGψψψ(q)σσσ yGψψψ(q)σσσ y to the Yukawa coupling matrix, where the

shell integral gives Ω = Σ∆.

From the perturbative RG corrections we can extract critical exponents. De-

manding that the fermion propagator at the transition (∆ = 0) remains scale in-

variant, we obtain the scaling exponent zQ = 1
2 + 1

2ΣQ − 1
2Σ0 of the quadratic

momentum direction kQ relative to the linear directions k0 and kL, and the scal-

ing dimension ∆ψψψ = −7
2 +

3
2Σ0 − 1

2ΣQ = −7
2 +ηψψψ of the Majorana fermion field,

where ηψψψ denotes the anomalous dimension. The correlation length exponent

ν∆ of the topological phase transition is defined through the RG equation for ∆,

∂ℓ∆ = (1−Σ0 +Σ∆)∆ = ν
−1
∆

∆. Finally, imposing that the Yukawa coupling g re-

mains scale invariant, we obtain the scaling dimension of the bosonic fluctuation

field, ∆φ =−3+ηφ with ηφ = 2Ω−Σ0 −ΣQ.

The resulting numerical values of the critical exponents are summarized in Ta-

ble 6.1. For completeness, let us also investigate the relevance of the φ 4 vertex at

the topological phase transition. At tree-level, the scaling dimension of the coeffi-

cient is equal to [λ ] = −3(2+ zQ)−2∆φ = −3/2, demonstrating that the vertex is
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strongly irrelevant and hence can be neglected.

6.4 Discussion and Conclusion
To summarize, we have derived the effective field theory for the topological quan-

tum phase transition between the gapless and gapped Kitaev QSL phases. For the

pure, exactly solvable Kitaev model the problem reduces to a free-fermion field

theory. Away from the exactly solvable point, the field theory is of the GNY type

and describes the coupling between an Ising fluctuation field to the gapless semi-

Dirac Majorana fermion modes. We determined the critical exponents from an RG

analysis and demonstrated that the universality of the topological phase transition

is different to that describing symmetry-breaking phase transitions of semi-Dirac

fermions.

The exponent ν∆ is linked to the opening of the energy gap in the Majorana

fermion spectrum, ∆ ∼ (δ − δc)
ν∆ , as well as to the separation of the Dirac points

on the gapless QSL side, (δk) ∼ (δc − δ )ν∆/2. It could in principle be determined

experimentally by measuring the evolution of the magnetic excitation continuum

across the topological phase transition. However, it remains a challenge to realize

the topological phase transition in experiment since uniaxial strain would not only

affect the anisotropy of the Kitaev couplings but also distort the lattice, resulting in

an increase of other magnetic exchange couplings.

The Kiteav QSL is a novel and exotic state of matter due to its long range

entanglement and the fractionalization of spin degrees of freedom into Majorana

fermions. Our work shows that the quantum criticality associated with a topological

phase transition adds another layer of complexity. At the transition the emergent

Majorana fermions acquire an anomalous dimension, indicative of a breakdown of

the quasiparticle picture and the formation of a Majorana non-Fermi liquid state.



Chapter 7

Closing Remarks

We now conclude the thesis by summarising the work discussed in this thesis. Since

detailed discussions have already been given at the end of each chapter, here we

only focus on the general aspects and their connections. Then the conclusion will

be followed by a brief outlook to point out potential future directions.

7.1 Conclusion
In this thesis, the effect of quantum fluctuations of fermions on phase transitions in

different scenarios is studied. We have shown that the low energy fermion scattering

near the Fermi surface can (1) complicate the interplay between Kondo exchange

anisotropy and single-ion spin anisotropy, which may lead to the hard-direction or-

dering in such systems, or (2) challenge the stability of Néel quantum critical point

so that in the presence of Dirac fermions the Néel fixed point is only stable at a cer-

tain parameter range; Even more interestingly, (3) the fluctuation of emergent Ma-

jorana fermions in Kitaev quantum spin liquids can also give rise to similar physics

as such in graphene, which provides an ideal angle to understand the properties and

phase transitions of QSL in the better-understood fermion language. In this spirit,

we showed that the topological phase transition between the gapless and gapped

QSL states induced by Kitaev anisotropy and extra magnetic interactions can be

described by a Gross-Neveu-Yukawa theory, corresponding to a new universality

class.

In Chapter 3, an anisotropic Kondo model was utilised to explain the magnetic
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hard-direction ordering observed in some Kondo lattice materials. A perturbative

RG calculation showed that the RG flow of the magnitude of single-ion anisotropy

may change sign at some length scale, indicating the previously hard direction be-

comes the new easy one. This is a generic effect due to the interplay between two

types of anisotropies through fermionic fluctuations near the Fermi surface. The

generality of the mechanism is further supported by a numerical RG calculation

and an analytic solution at the extremely narrow bandwidth limit, where crossings

also exist in the susceptibilities. This suggests that the mechanism works even away

from the perturbative regime. Though this is a single impurity result, one can expect

the same mechanism to also work in a Kondo lattice following the reasoning that the

RKKY effect is a second-order effect of the Kondo coupling and should enhance

the difference in the renormalised anisotropies so that the magnetic susceptibility

diverges first along the ’hard-direction’, giving rise to hard-direction magnetic or-

der. Though there’s no criticality in the calculation, the non-perturbative fermion

scattering by the impurity near the Fermi surface can already show that exotic be-

haviours can arise in the presence of fermions.

In Chapter 4, we examined the effect of particle-hole fluctuation of Dirac

fermions to a quantum critical point, namely the Néel quantum critical point in

2D. The Dirac fermions interact with the local moments through a Kondo coupling.

Regardless of the simple point-like Fermi surface, in 2D the zero energy fluctua-

tions near the Fermi surface can damp the order parameter field propagator in a

similar manner as how fermionic fluctuations screen the long-range Coulomb inter-

action in 3D. The damping of the order parameter field is also a non-perturbative

effect that can be treated by an RPA resummation of fermion polarisation bubble

diagrams to infinite order. Consequently one gets a non-analytic contribution to the

order parameter field self-energy that dorminates in the IR. In this spirit, a GNY

model in which the bosonic fields are described by an NLσM is used to study the

Néel criticality. Surprisingly, though of lower order in momenta, the Landau damp-

ing propagator γ is irrelevant near the Néel critical point, while the Kondo coupling

λ is relevant. The RG flow is dependent on the number of Dirac fermion flavors
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N f . In the physical case N f = 4, representing the Dirac fermions on a honeycomb

lattice, although no new fixed point is present, the RG flow in a certain region is

extremely slow, indicating the stability of the N’eel fixed point against the Kondo

fluctuation of the Dirac fermions. This is because the N f = 4 is the critical case.

For N f < 4, a new multi-critical point emerges.

In Chapter 5, we switched to the exactly solvable Kitaev honeycomb model,

where the spin interactions are bond-orientally anisotropic. It is known that in such

a model the ground state is a Z2 QSL, and the spins fractionalise into Z2 gauge fields

and Majorana fermions with Dirac dispersion. In the presence of an additional anti-

ferromagnetic Ising interaction term, the model is no longer exactly solvable. At the

large Ising limit, the ground state is known to be antiferromagnetic. A mean-field

decoupling with both Kitaev’s Majorana fermion representation and Jordan-Wigner

fermions representation is enacted to map out the phase diagram. The two repre-

sentations result in the same topological phase boundary but predict the magnetic

phase transition at different coupling strengths. This is probably due to the different

treatments in the gauge fields at the mean-field level. We also obtain the finite tem-

perature phase diagram of the magnetic phase transition along with the specific heat,

which at low temperatures shows the signature of Dirac fermions, and crossover to

the full spin half behavior when the temperature reaches the size of the flux gap.

From the results in Chapter 5, we saw that the topological phase transition be-

tween the gapped and gapless QSL mainly concerns the mobile Majorana fermions

only, as the Lagrange multiplier related to the flux excitations stays zero through-

out the transition. The phase transition therefore resembles the semimetal-insulator

transition in real electron systems like graphene. With this in mind, we derived the

low-energy effective field theory of the topological phase transition from the micro-

scopic Kitaev-Ising model. For the pure Kitaev model, the low-energy theory is a

free Majorana fermion theory, indicating the exact solvability of the model. With

any additional magnetic interactions, the theory becomes interactive, and hence can

be studied with the GNY language. Due to the distinct mathematical properties of

the Majorana fermions, the resulting critical exponents are different from the ones
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derived from complex Dirac fermions, corresponding to a new GNY universality

class. This could in principle be confirmed by experimental measurements.

As a general conclusion, we applied the field-theoretical technique of pertur-

bative renormalisation group associated with some numerical methods to study the

phases and phase transitions in Kondo systems and Kitaev quantum spin liquids.

The transitions are mainly driven by the quantum fluctuations of electrons near the

Fermi surface. We focused on the situation of Dirac fermions where the Fermi sur-

face is just a single point. The low-energy description of the associated quantum

phase transitions in this case can be described by the Gross-Neveu-Yukawa the-

ory. The results elucidated the importance of going beyond the Landau-Ginzburg

paradigm and considering the order parameter screening in such gapless fermionic

systems, and provided hints to a plethora of such fermion-induced quantum criti-

cality.

7.2 Outlook

First, the results in Chapter 3 are based on a single-impurity calculation, therefore

no magnetic ordering along the hard direction can be observed after the crossing.

We have reasoned in Chapter 3 that the RKKY effect should help stabilise the mag-

netic order along the anisotropy-favored direction, and this could in principle be

observed in a Kondo lattice model. The key is that the susceptibilities first cross

in the Kondo regime, after which the RKKY effect takes over the control and the

susceptibility diverges along the new ’easy direction’. Such a Doniach diagram can

be observed at the mean-field level [226]. However, the Kondo hybridization is con-

sidered an order parameter in the mean-field theory. Though still possible, it is in

general hard for the magnetic phase to coexist with Kondo hybridization [227, 228].

On the other hand, the real Kondo materials that exhibit the hard direction ordering

usually contain transition metals like Hf and Ce, meaning the systems have strong

spin-orbit coupling. In such cases, the only good quantum number is the total angu-

lar momentum, and the systems are better described by a Coqblin-Schieffer model

[229]. It would be interesting to see if the mechanism works in such a model.
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The calculation in Chapter 4 can be extended to study the effect of Dirac

fermions on other more exotic fermion-induced quantum criticalities, such as the

deconfined quantum criticality in the presence of Dirac fermions. It is suggested

that the Heisenberg model with next-nearest neighbor interactions on a honeycomb

lattice can have an RVB ground state. Therefore by tuning the strength of the next-

nearest neighbor interaction, one can tune the system through a phase transition

between an antiferromagnet and an RVB solid. The corresponding low-energy the-

ory is described by a non-linear σ model associated with an emergent gauge field.

On top of it, one can add another layer of complexity by Kondo coupling the spins

to Dirac electrons, which will then lead to a theory of fermions, bosons and gauge

fields. If it’s a U(1) gauge field, then the field theory is analogous to the quan-

tum electrodynamics in high energy theory, but in two spatial dimensions (QED3).

The combination of deconfined quantum criticality and fermion-induced criticality

can provide new insights into our understanding of the theory of phase transitions

beyond the Landau-Ginzburg paradigm.

The Kondo coupling can also be introduced to connect the Kitaev QSLs and

complex Dirac fermions, which then form the so-called fractionalised Fermi-liquid

where the Luttinger theorem breaks down. It is argued in [230] that at mean-field

level, the Majorana fermions can become the glue of the pairing between complex

Dirac fermions to form a p-wave superconductor. In such cases, the low-energy

theory again will be described by fermions, bosons and emergent gauge fields. Ad-

ditionally, recent numerics show evidence that the Kitaev QSL can go through a

phase transition between a Z2 QSL and a U(1) QSL [231]. If this is the case, the

criticality will be similar to the Z2 to U(1) transition in Dirac QSLs with fraction-

alised spinon excitations [232, 233] due to the nature of Majorana fermions, and

thus worth investigating.

Apart from the specific directions that may be interesting for future research,

we should bear in mind that the Dirac fermion-induced quantum criticality is just a

simple example of the family of quantum phase transitions in gapless systems. The

problem will be both more complicated and interesting if taking into account the
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shape of the Fermi surface. A natural step further is to consider the quantum phase

transitions in nodal-line semimetals where the Fermi surface is a closed contour, or

even in real metals with a full Fermi surface. Besides, we have already seen that the

Dirac fermion-induced criticality in general leads to some non-Fermi liquid behav-

ior. Moving to semimetallic and metallic systems with a more complicated Fermi

surface will shed light on the general understanding of non-Fermi liquid theory.



Appendix A

RG analysis of the Interacting

Majorana fermion theory

A.1 Landau-damped Bosonic IR propagator

The fermion polarization bubble diagram is regularized by subtracting the q = 0

contribution: Π(q)→ Π(q)−Π(0),

Π(q) =
g2

N

∫
k
Tr
[
Gψ(k+q)σyGψ(k)σy −Gψ(k)σyGψ(k)σy

]
= g2

∫
k

{
(k0 +q0)q0 +(kL +qL)qL +(kQ +qQ)

2[k2
Q +(kQ +qQ)

2]

ε2
k ε2

q+k
−2

k4
Q

ε4
k

}
,

(A.1)

where we have used Gψ(k) = (ik0+kLσx+k2
Qσy)/ε2

k , and ε2
k = k2

0+k2
L+k4

Q. Taking

the trace results in an N factor that cancels with the 1/N in the prefactor. The

integral in Eq. (A.1) can be rendered radially symmetric in k0 and kL directions by

utilizing the Feynman parametrization:

1
anbm =

Γ(n+m)

Γ(n)Γ(m)

∫ 1

0
dt

tn−1(1− t)m−1

[ta+(1− t)b]n+m , (A.2)

where we have chosen a = ε2
k+q, b = ε2

k , n = m = 1. Shifting the variables as

(k0,kL)→ (k0,kL)− t(q0,qL) and converting to the radial coordinate y2 = k2
0 + k2

L,

Eq. (A.1) becomes
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Π(q)= g2

(2π)2

∫
∞

−∞
dkQ

∫
∞

0 dy y
{∫ 1

0 dt
(1−t)(q2

0+q2
L)+(kQ+qQ)

2[k2
Q+(kQ+qQ)

2]

[y2+t(1−t)(q2
0+q2

L)+(1−t)k4
Q+t(kQ+qQ)4]2

−2
k4

Q

(y2+k4
Q)

2

}
= g2

8π2

∫
∞

−∞
dkQ

{∫ 1
0 dt

(1−t)(q2
0+q2

L)+(kQ+qQ)
2[k2

Q+(kQ+qQ)
2]

t(1−t)(q2
0+q2

L)+(1−t)k4
Q+t(kQ+qQ)4 −2

}

= g2

8π2 |qQ|
∫

∞

−∞
d p

∫ 1
0 dt

(1−t)
q2
0+q2

L
q4
Q

+(1+p)4+(1+p2)p2

t(1−t)
q2
0+q2

L
q4
Q

+(1−t)p4+t(1+p)4
−2


= g2

8π2 |qQ|F(
q2

0+q2
L

q4
Q

).

In the second line we have used the radial integral identity in D dimension:

∫
∞

0
dy

yD−1+α

(yβ +M)n
=

Γ(D+α

β
)Γ(n− D+α

β
)

βΓ(n)Mn−D+α

β

, (A.3)

and in the last line, we have introduced variable substitution p = kQ/ |qQ|.

A.2 Majorana Fermion self-energy correction

It can be shown in general that the RG corrections are cut-off independent [55, 222].

Therefore for simplicity, we use a spherical cut-off scheme and perform the shell

integrals over the (2+1)d frequency-momenta shell. We introduce the generalized

spherical coordinates (k0 = ε sinθ cosφ , kL = ε sinθ sinφ , k2
Q = ε cosθ) with the

Jacobian J(ε,θ ,φ) = 1
2ε3/2 sinθ(cosθ)−1/2, and the shell integrals are calculated

in the range ε ∈ [Λe−dl,Λ], θ ∈ [0,π/2], φ ∈ [0,2π].

The fermion self-energy correction at one-loop level has the form

ΣΣΣ(k)dℓ = −g2

N

∫ >

q
Gφ (q)σσσ yGψψψ(k+q)σσσ y

= −8π2

N

∫ >

q
|qQ|−1 1

F(tan2 θ)
σσσ y

i(k0 +q0)σσσ0 +(kL +qL)σσσ x +[(kQ +qQ)
2 +∆]σσσ y

ε(k+q)2 σσσ y

=
[
Σ0(−ik0σσσ0 + kLσσσ x)+(ΣQk2

y +Σ∆∆)σσσ y
]

dℓ. (A.4)

We expand out the outer-momenta k in the integrand and keep the leading order to

get the form of the kernel in S0[ψ]. In the following, we derive the explicit form of
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Σ0, ΣQ and Σ∆ separately.

Σ0 = −8π2

N

∫ >

q
|qQ|−1 1

F(tan2 θ)

(
1
ε2

q
−2

q2
0

ε4
q

)

=
1
N

∫
Λ

Λe−dl
dε

∫
π/2

0
dθ ε

−1 tanθ cos2
θ

1
F(tan2 θ)

=
1

2N
dℓ
∫

∞

0
du

1
(u+1)2

1
F(u)

. (A.5)

In the last step, we have made the variable substitution u = tan2 θ , (u+ 1)−1du =

2tanθdθ . In the same spirit, one can obtain

ΣQ =
8π2

N

∫ >

q
|qQ|−1 1

F(tan2 θ)

(
1
ε2

q
−14

q4
Q
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+16

q8
Q

ε6
q

)

= − 1
N
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Λ
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π/2

0
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, (A.6)

and

Σ∆ =
8π2

N

∫ >

q
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1
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q
−2

q4
Q

ε4
q

)

= − 1
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π/2

0
dθε
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1
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θ
)

= − 1
2N
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∫

∞

0
du

u−1
(u+1)2

1
F(u)

. (A.7)
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A.3 Correction to Yukawa coupling
At one-loop level, the shell integral that renormalizes the Yukawa coupling has no

dependence on outer-momenta:

Ωσσσ ydℓ =
g2

N

∫ >

q
σσσ yGψ(q)σσσ yGψ(q)σσσ yGφ (q)

= −8π2

N

∫ >

q
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F(tan2 θ)

q2
0 +q2

L −q4
Q

ε4
q

σσσ y

= − 1
N

dℓ
∫

π/2

0
dθ tanθ

1
F(tan2 θ)

(
1−2cos2

θ
)

σσσ y

= − 1
2N

dℓ
∫

∞

0
du

u−1
(u+1)2

1
F(u)

σσσ y. (A.8)
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[73] Andrey V. Chubukov, Catherine Pépin, and Jerome Rech. Instability of the

quantum-critical point of itinerant ferromagnets. Phys. Rev. Lett., 92:147003,

Apr 2004.

[74] D. Belitz, T. R. Kirkpatrick, and Thomas Vojta. How generic scale invariance

influences quantum and classical phase transitions. Rev. Mod. Phys., 77:579–

632, Jul 2005.

[75] T. R. Kirkpatrick and D. Belitz. Universal low-temperature tricritical point in

metallic ferromagnets and ferrimagnets. Phys. Rev. B, 85:134451, Apr 2012.

[76] C. Pfleiderer, S. R. Julian, and G. G. Lonzarich. Non-fermi-liquid nature of

the normal state of itinerant-electron ferromagnets. Nature, 414(6862):427–

430, 2001.

[77] Y. J. Uemura, T. Goko, I. M. Gat-Malureanu, J. P. Carlo, P. L. Russo, A. T.

Savici, A. Aczel, G. J. MacDougall, J. A. Rodriguez, G. M. Luke, S. R.



Bibliography 162

Dunsiger, A. McCollam, J. Arai, Ch. Pfleiderer, P. Böni, K. Yoshimura,
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[98] Alexander Steppke, Robert Küchler, Stefan Lausberg, Edit Lengyel, Lucia

Steinke, Robert Borth, Thomas Lühmann, Cornelius Krellner, Michael Nick-

las, Christoph Geibel, Frank Steglich, and Manuel Brando. Ferromagnetic

quantum critical point in the heavy-fermion metal ybni4(p1-xasx)2. Science,

339(6122):933–936, 2013.

[99] Binod K. Rai, Macy Stavinoha, J. Banda, D. Hafner, Katherine A. Benavides,

D. A. Sokolov, Julia Y. Chan, M. Brando, C.-L. Huang, and E. Morosan.

Ferromagnetic ordering along the hard axis in the kondo lattice ybir3ge7.

Phys. Rev. B, 99:121109, Mar 2019.



Bibliography 165

[100] Yuji Muro, Duhwa Eom, Naoya Takeda, and Masayasu Ishikawa. Contrast-

ing kondo-lattice behavior in cetsi 3 and cetge 3 (t=rh and ir). Journal of the

Physical Society of Japan, 67(10):3601–3604, 1998.

[101] V. K. Anand, A. D. Hillier, D. T. Adroja, D. D. Khalyavin, P. Manuel, G. An-

dre, S. Rols, and M. M. Koza. Understanding the magnetism in noncen-

trosymmetric ceirge3: Muon spin relaxation and neutron scattering studies.

Phys. Rev. B, 97:184422, May 2018.

[102] Akihiro Kondo, Koichi Kindo, Keisuke Kunimori, Hiroki Nohara, Hiroshi

Tanida, Masafumi Sera, Riki Kobayashi, Takashi Nishioka, and Masahiro

Matsumura. Marked change in the ground state of ceru2al10 induced by

small amount of rh substitution. Journal of the Physical Society of Japan,

82(5):054709, 2013.

[103] D. D. Khalyavin, D. T. Adroja, P. Manuel, J. Kawabata, K. Umeo, T. Taka-

batake, and A. M. Strydom. Change of magnetic ground state by light elec-

tron doping in ceos2al10. Phys. Rev. B, 88:060403, Aug 2013.

[104] Tetsuya Takeuchi, Tetsutaro Inoue, Kiyohiro Sugiyama, Dai Aoki, Yoshi-

humi Tokiwa, Yoshinori Haga, Koichi Kindo, and Yoshichika Onuki. Mag-

netic and thermal properties of ceirin5 and cerhin5. Journal of the Physical

Society of Japan, 70(3):877–883, 2001.
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of the néel quantum critical point in the presence of dirac fermions. Phys.

Rev. B, 107:085113, Feb 2023.

[121] M. Z. Hasan and C. L. Kane. Colloquium: Topological insulators. Rev. Mod.

Phys., 82:3045–3067, Nov 2010.

[122] Xiao-Liang Qi and Shou-Cheng Zhang. Topological insulators and super-

conductors. Rev. Mod. Phys., 83:1057–1110, Oct 2011.

[123] Oskar Vafek and Ashvin Vishwanath. Dirac fermions in solids: From high-tc

cuprates and graphene to topological insulators and weyl semimetals. Annual

Review of Condensed Matter Physics, 5(1):83–112, 2014.

[124] Binghai Yan and Claudia Felser. Topological materials: Weyl semimetals.

Annual Review of Condensed Matter Physics, 8(1):337–354, 2017.

[125] N. P. Armitage, E. J. Mele, and Ashvin Vishwanath. Weyl and dirac semimet-

als in three-dimensional solids. Rev. Mod. Phys., 90:015001, Jan 2018.

[126] M. Zahid Hasan, Guoqing Chang, Ilya Belopolski, Guang Bian, Su-Yang Xu,

and Jia-Xin Yin. Weyl, dirac and high-fold chiral fermions in topological

quantum matter. Nature Reviews Materials, 6(9):784–803, 2021.



Bibliography 168

[127] Maxim Dzero, Kai Sun, Victor Galitski, and Piers Coleman. Topological

kondo insulators. Phys. Rev. Lett., 104:106408, Mar 2010.

[128] Maxim Dzero, Jing Xia, Victor Galitski, and Piers Coleman. Topological

kondo insulators. Annual Review of Condensed Matter Physics, 7(1):249–

280, 2016.

[129] Hsin-Hua Lai, Sarah E. Grefe, Silke Paschen, and Qimiao Si.

Weyl&#x2013;kondo semimetal in heavy-fermion systems. Proceedings of

the National Academy of Sciences, 115(1):93–97, 2018.

[130] Sami Dzsaber, Xinlin Yan, Mathieu Taupin, Gaku Eguchi, Andrey Prokofiev,

Toni Shiroka, Peter Blaha, Oleg Rubel, Sarah E. Grefe, Hsin-Hua Lai,

Qimiao Si, and Silke Paschen. Giant spontaneous hall effect in a nonmag-

netic weyl&#x2013;kondo semimetal. Proceedings of the National Academy

of Sciences, 118(8):e2013386118, 2021.

[131] Adolfo G. Grushin, Eduardo V. Castro, Alberto Cortijo, Fernando de Juan,

Marı́a A. H. Vozmediano, and Belén Valenzuela. Charge instabilities and

topological phases in the extended hubbard model on the honeycomb lattice

with enlarged unit cell. Phys. Rev. B, 87:085136, Feb 2013.

[132] Noel A. Garcı́a-Martı́nez, Adolfo G. Grushin, Titus Neupert, Belén Valen-

zuela, and Eduardo V. Castro. Interaction-driven phases in the half-filled

spinless honeycomb lattice from exact diagonalization. Phys. Rev. B,

88:245123, Dec 2013.

[133] Maria Daghofer and Martin Hohenadler. Phases of correlated spinless

fermions on the honeycomb lattice. Phys. Rev. B, 89:035103, Jan 2014.
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[153] Mikolaj D. Uryszek, Frank Krüger, and Elliot Christou. Fermionic criticality

of anisotropic nodal point semimetals away from the upper critical dimen-



Bibliography 171

sion: Exact exponents to leading order in 1
N f

. Phys. Rev. Res., 2:043265, Nov

2020.

[154] Sudip Chakravarty, Bertrand I. Halperin, and David R. Nelson. Low-

temperature behavior of two-dimensional quantum antiferromagnets. Phys.

Rev. Lett., 60:1057–1060, Mar 1988.

[155] Sudip Chakravarty, Bertrand I. Halperin, and David R. Nelson. Two-

dimensional quantum heisenberg antiferromagnet at low temperatures. Phys.

Rev. B, 39:2344–2371, Feb 1989.

[156] Sudip Chakravarty, Bertrand I. Halperin, and David R. Nelson. Two-

dimensional quantum heisenberg antiferromagnet at low temperatures. Phys.

Rev. B, 39:2344–2371, Feb 1989.

[157] Sudip Chakravarty, Bertrand I. Halperin, and David R. Nelson. Low-

temperature behavior of two-dimensional quantum antiferromagnets. Phys.

Rev. Lett., 60:1057–1060, Mar 1988.

[158] David R. Nelson and Robert A. Pelcovits. Momentum-shell recursion rela-

tions, anisotropic spins, and liquid crystals in 2+ ε dimensions. Phys. Rev.

B, 16:2191–2199, Sep 1977.

[159] Shouvik Sur and Bitan Roy. Unifying interacting nodal semimetals: A new

route to strong coupling. Phys. Rev. Lett., 123:207601, Nov 2019.

[160] A.M. Polyakov. Interaction of goldstone particles in two dimensions. appli-

cations to ferromagnets and massive yang-mills fields. Physics Letters B,

59(1):79–81, 1975.

[161] S Hikami and E Brezin. Three-loop calculations in the two-dimensional non-

linear model. Journal of Physics A: Mathematical and General, 11(6):1141–

1150, jun 1978.



Bibliography 172

[162] Shahnam Ghanbari Saheli, Jennifer Lin, Huanzhi Hu, and Frank Krüger.
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