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ABSTRACT
In real-life interaction, we often need to communicate under challenging conditions, such as when speech is acoustically de-
graded. This issue is compounded by the fact that our attentional resources are often divided when we simultaneously need to 
engage in other tasks. The interaction between the perception of degraded speech and simultaneously performing additional cog-
nitive tasks is poorly understood. Here, we combined a dual-task paradigm with functional magnetic resonance imaging (fMRI) 
and machine learning to establish the neural network supporting degraded speech perception under divided attention. We pre-
sented 25 human participants with noise-vocoded sentences while they engaged in a concurrent visuomotor recognition task, 
employing a factorial design that manipulated both speech degradation and task difficulty. Participants listened to eight-band 
(easier) and four-band (more difficult) noise-vocoded sentences, while the Gabor task featured two difficulty levels, determined 
by the angular discrepancy of the target. We employed a machine learning algorithm (Extreme Gradient Boosting, XGBoost) to 
evaluate the set of brain areas that showed activity predicting the difficulty of the speech and dual tasks. The results illustrated 
intelligibility-related responses in frontal and cingulate cortices and bilateral insulae induced by divided attention. Machine 
learning further revealed modality-general and specific responses to speech and visual inputs, in a set of frontotemporal regions 
reported for domain-general cognitive functions such as attentional control, motor function, and performance monitoring. These 
results suggest that the management of attentional resources during challenging speech perception recruits a bilateral operculo-
frontal network also associated with processing acoustically degraded speech.

1   |   Introduction

Everyday listening often involves processing acoustically de-
graded speech (e.g., a poor telephone signal), yet listeners can 
maintain successful recognition in such suboptimal scenarios 
(McGettigan et  al.  2014; Shannon et  al.  1995). However, the 
cognitive functions (e.g., learning and attention; Carroll  1993) 
and their underlying neural substrates supporting degraded 
speech processing remain largely unexplored. In some cases, 

listeners must process such speech in distraction (e.g., chatting 
while driving), and recent studies using dual tasks show that 
degraded speech processing remains robust while attention is 
split between concurrent tasks (Gennari et al. 2018; Hunter and 
Pisoni 2018; Wang et al. 2023). Nevertheless, speech perception 
becomes less accurate for a hard compared to an easy concur-
rent task (e.g., visual search among different number of distrac-
tors; Mattys et al. 2014), suggesting a role of attention in speech 
processing.
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Previous studies used noise vocoding to investigate degraded 
speech processing in normal hearing listeners. Noise vocod-
ing is an acoustic degradation aiming to simulate the speech 
processing in cochlear implant users (Davis et al. 2005; Rosen 
et al. 1999), which removes spectral details while preserving 
low-frequency amplitude and temporal information (Shannon 
et  al.  1995). Behaviorally, speech recognition improves log-
arithmically with the number of frequency bands (Shannon 
et  al.  2004). Neurobiologically, frontal-temporal regions 
were found to be related to processing noise-vocoded speech. 
Increased blood-oxygen-level-dependent (BOLD) responses 
were located for less degraded sentences in the left anterior 
superior temporal sulcus and gyrus (STS and STG; Scott 
et  al.  2006), suggesting their sensitivity to acoustic-phonetic 
details. Degradation-dependent activities were also revealed 
for frontal regions like the left inferior frontal gyrus (IFG), 
insulae, anterior cingulate gyrus (ACG), and speech motor 
regions like the left precentral gyrus. Elevated responses 
were found in these regions for moderately degraded speech 
(four to six bands) compared to clear speech (Erb et al. 2013; 
Hervais-Adelman et al. 2012), insinuating the top-down pro-
cessing under effortful listening to degraded speech (Poldrack 
et al. 1999).

A few studies have explored the effects of distraction on process-
ing degraded speech. Using a selective attention paradigm (i.e., 
selecting a fraction of sensory inputs while ignoring distrac-
tions; Corbetta et al. 1991), Wild et al. (2012) found increased re-
sponses in the left IFG for degraded speech than for clear speech 
when listeners only attended to and performed the speech task 
but attempted to ignore concurrent distractors. When perform-
ing a distracting task while ignoring speech, STS activity was 
negatively correlated with the degree of speech degradation. 
Ritz et al. (2022) further showed that even low-load visual dis-
tractors diminished the BOLD response to even mildly degraded 
speech in bilateral STG (i.e., 12-band noise vocoding). These re-
sults imply that attention modulates IFG activity under effortful 
listening, and that distraction disrupts acoustic-phonetic pro-
cessing in superior temporal areas. Under selective attention, 
however, it is unclear whether the neural effect of distractors 
is due to distraction itself or because speech is task-irrelevant 
when attention is exhausted by a distraction task. Gennari 
et  al.  (2018) instead used a dual-task paradigm (to investigate 
divided attention; Hahn et al. 2008) where listeners split their 

attention between a syllable recognition task and a concurrent 
visual task. They revealed elevated responses in the paracingu-
late (PaCG) and ACG to a more difficult visual task, which was 
negatively correlated with the suppressed response in STG and 
the middle temporal gyrus (MTG). These findings revealed the 
neural signature for allocating attention across tasks.

In summary, past studies have explored the neural signatures 
associated with the effect of acoustic degradation and distrac-
tion on speech processing, but no studies have investigated how 
degradation and divided attention jointly affect speech process-
ing. Moreover, the brain substrates related to attentional allo-
cation under such conditions remain unexplored. We employed 
a powerful machine learning (ML) method to capture high-
dimensional and nonlinear neural interactions, enabling a com-
prehensive investigation of these dual challenges. Our findings 
revealed modality-general and specific responses to speech and 
visual inputs in relevant frontotemporal regions and found neu-
ral signatures for the dispensing of resources across tasks within 
this network.

2   |   Materials and Methods

2.1   |   Participants

Twenty-five participants (14 females [F] and 11 males [M] be-
tween 18 and 30 years of age [Y], mean = 24Y, standard devi-
ation [SD] = 4.6Y) completed the study. All self-declared to be 
monolingual British English speakers residing in the United 
Kingdom at the time of the experiment. All reported no neu-
rological disorders (including dyslexia), normal hearing, and 
normal or corrected-to-normal vision. All participants were re-
cruited via the university's recruitment platform Sona Systems 
(Sona Systems 2023) and paid at a rate corresponding to £12.50 
per hour. The experiment was approved by the Research Ethics 
Committee of University College London (#0599.001).

2.2   |   Speech Task

The speech task in the dual-task design used sentences from the 
Bamford–Kowal–Bench (BKB) corpus (Bench et  al.  1979) and 
Adaptive Sentence List (ASL; Macleod and Summerfield 1990) 
produced by a female speaker (Table  A1). Both sentence sets 
contain short and highly predictable sentences having simple 
vocabulary and syntax, for example, “He played with his train” 
(BKB) and “She brought her camera” (ASL). The recordings 
were collected in an anechoic chamber at UCL using a Type 4190 
microphone on a Brüel & Kjær 2231 sound level meter (sampling 
at 16 bit and 22.05 kHz), which was connected to a Sony 60ES 
digital audio tape recorder.

The BKB corpus consists of 336 sentences (each with three to 
four key words), and the ASL corpus contains 270 sentences 
(each with three key words). The sentence set was first normal-
ized to the same root mean square amplitude (70 dB; Kennedy-
Higgins et  al.  2020) in Praat (version 6.1.42; Boersma  2001) 
before being processed by a noise vocoder adapted from Rosen 
et  al.  (1999) in MATLAB (version R2021a; MathWorks). Six 
hundred and six sentences (also see Section  3.1 Practice and 

Summary

•	 Listeners recognizing degraded speech under a con-
current task showed increased responses in the 
frontal/cingulate cortices and insulae, signaling an 
upregulation of the executive network and effortful 
listening.

•	 Concurrent load effects predicted by the responses in 
these brain regions reflect the dynamic resource dis-
pensing between the two tasks.

•	 Machine learning provided a robust and explainable 
approach to revealing the dissociable task effects on 
activation patterns in a set of frontotemporal regions 
that were hidden by inferential statistics.
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Main Runs) were respectively band-pass filtered into four and 
eight logarithmically spaced frequency bands between 50 and 
5000 Hz following Greenwood's  (1990) frequency-position 
function. The frequencies of the lower band edges for the four-
band speech were 50 Hz, 311 Hz, 889 Hz, and 2169 Hz. For eight 
bands, the lower edges were 50 Hz, 155 Hz, 311 Hz, 544 Hz, 
889 Hz, 1404 Hz, 2169 Hz, and 3307 Hz. Each band's amplitude 
envelope was extracted using half-wave rectification and a low-
pass filter (cutoff at 300 Hz). This envelope was used to modulate 
a fragment of white noise, which was then filtered by the same 
band-pass filter used to extract the envelope, before all the band 
outputs were summed together.

2.3   |   Concurrent Visual Task

The concurrent task was a visual decision task where partici-
pants judged the orientation of a Gabor patch (Calder-Travis and 
Ma 2020). Each patch was a sine wave grating presented through 
a Gaussian window with a SD of 0.16 cm (cm) and a frequency 
of 2.80 cycles per cm (Figure 1). All stimuli were displayed on a 
gray background (RGB = [128, 128, 128]). Peaks and troughs of 
the sine waves took the possible maximum and minimum RGB 
values ([255, 255, 255] and [0, 0, 0], respectively) at the center of 
the Gaussian window. We also adjusted the phase of these Gabor 
patches to ensure there was always a peak of the sine wave at the 
center of the Gaussian window. Each Gabor patch was located at 
the center of the display.

3   |   Experimental Design and Statistical Analyses

3.1   |   Practice and Main Runs

This study comprised two types of tasks: a single speech task (for 
practice) and a dual speech-visual task (for practice and main 
runs, i.e., sessions). In the dual task, participants recognized a 
noise-vocoded sentence while judging whether a Gabor patch 
was angled at a target orientation (45° clockwise, Figure  1). 
Participants were not instructed to prioritize either task and were 
only told to perform both tasks together (Figure 2), as it would 
be hard to prevent participants from dynamically changing their 
allocations of resources over time, which might be particularly 
true for a real-life scenario. In each trial, a fixation cross was dis-
played at the screen's center for 200 ms. Participants then heard a 
noise-vocoded sentence whose midpoint was aligned to the mid-
point of a 2 s window. The Gabor patch appeared 150 ms prior 
to the midpoint of the sentence duration and ended at 150 ms 

following the midpoint. Subsequently, participants were given 
1.5 s to respond whether they understood the gist of the sentence 
and another 1.5 s to indicate whether the Gabor patch displayed 
the target orientation. Participants gave both responses by press-
ing the left (“Yes”) or right (“No”) arrow keys on a keyboard (for 
the practice run outside the scanner) or the left (“Yes”) or right 
(“No”) keys on a button box (for the runs in the scanner, see 
below). During the single-task practice, they only heard and re-
sponded to the speech stimuli, and each trial terminated after 
the gist response window.

Speech-task difficulty was manipulated with the number of fre-
quency bands: the easy task had eight bands, whereas the hard 
task had four bands. Following Calder-Travis and Ma (2020) and 
Wang et  al.  (2023), visual-task difficulty was manipulated by 
varying the difference in orientation between the target and non-
target trials (i.e., target-distractor angular discrepancy, or TD). 
The range of difference in orientations between a nontarget and a 
target (Δ) was 48° < Δ ≤ 60° for the easy task, and 6° < Δ ≤ 18° for 
the hard task. The orientations of the nontarget Gabor patches 
came from a uniform distribution, so that all possible nontarget 
orientations were equally likely to enter the sample.

The study took place at the Birkbeck-UCL Centre for 
Neuroimaging. Participants first read the information sheet and 
signed an informed consent form. They then performed two 
practice runs (i.e., sessions) outside the scanner. The first run 
included the single speech task with six trials in each block. The 
second run was four blocks of the dual task with four trials in 
each block. For both runs, there was a 12 s rest period between 
blocks. Task order was pseudo-randomized between blocks, 
such that each participant performed each condition once 
within each run. Stimuli were delivered over the 14-in. display 
(1920 × 1080 pixels) of a Lenovo X1 Carbon laptop and Etymotic 
Research ER4P in-ear sound monitors.

FIGURE 1    |    Examples for the target and nontarget Gabor patches 
used in the visual task. The plots of patches are for illustration purposes 
thus not scaled to their actual size. These examples do not exhaust all 
possible orientations of a nontarget patch.

FIGURE 2    |    Participants performing the dual task heard an eight- or 
four-band BKB sentence while they judged the orientation of a Gabor 
patch presented briefly. They then were prompted to indicate whether 
they understood the gist of the sentence and whether the Gabor patch 
was oriented at 45° clockwise from vertical. The plots of the fixation 
cross and the Gabor patch are for illustration only and not scaled to their 
actual size. fMRI data acquisition was a continuous scan with a repeti-
tion time (i.e., TR) of 1.3 s for each volume (also see Section 3.3).
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Participants then went through an functional magnetic res-
onance imaging (fMRI) safety screening before they were 
taken into the scanner suite and positioned on the scanner 
bed. Earphones were inserted (Sensimetrics S14 with Comply 
P-Series earbuds), and participants were given a button box 
for task response. Participants completed one practice run and 
six main runs in the scanner. The practice run contained four 
blocks of a dual task with four trials in each block. The main 
runs had eight blocks of a dual task with six trials within each 
block. The duration of the rest intervals was jittered within each 
run, with a mean of 12 s and a range of 10–14 s. Task order was 
pseudo-randomized between blocks, such that each participant 
performed each condition once within the practice run and 
twice within each main run. Participants were offered a 1-min 
break between the runs. Visual stimuli were displayed via a 
projector onto a 13-in. screen in the fMRI scanner (1920 × 1080 
pixels) and participants viewed the stimuli from around 20 cm 
from the screen.

For each participant, unique sentences were randomly drawn 
from the original set of 606 sentences for the practice and main 
runs. Half of the trials had a correct answer of “Yes” for the vi-
sual task within each block. After the main runs conclude, all 
but one participant (subject 06, for time constraint) had a struc-
tural scan before they vacated the scanner suite.

3.2   |   Post-Scan Task and Questionnaire

Immediately after the main runs, participants performed a sur-
prise memory task aiming to offer a secondary measure for how 
degraded speech was processed under divided attention as the 
in-scanner “gist” report was not a direct measure for the recog-
nition of sentence contents (Wild et al. 2012). In the post-scan 
task, participants indicated whether a sentence was presented 
during the main runs. Ninety-six extant sentences from the 
main runs (24 per task condition) and 32 new sentences (ran-
domly drawn from the unused set) comprised the task, where 
sentence order was randomized. In each trial, a sentence 
was shown at the center of the display, and participants were 
prompted to respond: “Did you hear the sentence in the main 
experiment?” in a 2-s time window by pressing the left (“Yes”) 
or right (“No”) arrow keys on a keyboard. The task proceeded to 
the next trial automatically after the response window. Stimuli 
were delivered using the laptop used for practice. After the ex-
periment, participants completed a questionnaire where they in-
dicated separately how much effort and attention they invested 
on a 0–100 scale for each task (see Questionnaire D1 for details).

3.3   |   fMRI Data Acquisition

fMRI scans were performed in a 3-Tesla PRISMA scanner with 
gradient-echo echo-planar imaging (EPI) using a 32-channel 
head coil (TR/TE = 1300 ms/35.20 ms, flip angle = 65°, 
FOV = 212 × 212 mm, slices = 62, slice thickness = 2 mm, 
voxel size = 2 × 2 × 2 mm). Volumes were acquired using a 
multiband sequence in an ascending interleaved order (ac-
celeration factor = 4). Two hundred and sixty volumes were 
acquired per participant per run. The first four volumes were 
discarded to allow the T1-relaxation time to become stable. A 

structural scan (MPRAGE-GRAPPA) was acquired using the 
following parameters: TR/TE = 2300 ms/2.98 ms, flip angle = 9°, 
FOV = 256 × 256 mm, slices = 208, slice thickness = 2 mm, voxel 
size = 1 × 1 × 1 mm.

3.4   |   Behavioral Data Analysis

3.4.1   |   Dual Task

The response for gist understanding in the speech task and the 
correctness for the visual task were the dependent measures 
(i.e., 0 or 1). We fit two GLMMs using the mixed() function in 
the afex R-package (version 1.3-0; Singmann et  al.  2016) for 
each task separately to uncover the relationship between the 
predictors and the behavioral responses in the main runs. The 
models assumed binomially distributed residuals and adopted 
a logit link function. Both models had Speech-Task Difficulty 
(i.e., easy, hard), Visual-Task Difficulty (i.e., easy, hard), and 
their interaction as predictors. Both models initially included 
random intercepts for Participant and Sentence, and random 
slopes for Speech-Task Difficulty, Visual-Task Difficulty, and 
their interaction by Participant and Sentence. To select an op-
timal fitting model for our data, we first removed random ef-
fects that caused a convergence failure (Mickan et  al.  2020). 
Next, we excluded the random effects whose inclusion yielded 
inaccurate estimates of the raw responses—a sign of overfit-
ting (Nannen  2003). Lastly, we applied a backward model se-
lection procedure using the anova() function, which conducted 
a chi-square test on the goodness-of-fit (i.e., the minus twice 
the log-likelihood) of two models. Each time, we performed a 
comparison between a model and a simpler model excluding a 
certain random effect and removed the effect from the model 
where it did not significantly contribute to the model fit. We con-
tinued such comparisons until we found the best-fitting model. 
The best-fitting model for speech-task correctness included ran-
dom intercepts for Participant and Sentence, as well as random 
slopes for Speech- and Visual-Task Difficulty by Participant and 
Speech-Task Difficulty by Sentence. The final model for visual-
task correctness included a random intercept for Participant and 
random slopes for Visual-Task Difficulty by Participant.

To conduct a 2 × 2 factorial analysis, the analysis of variance 
(ANOVA) tables were generated with the anova() function in the 
afex package. Here, hypothesis testing on the main effects and 
interaction was conducted via a chi-square model comparison 
on the log likelihood between a simpler model and the model 
having one more fixed-effect term in each step. Follow-up pair-
wise analyses (whenever a significant interaction term was pres-
ent) were conducted using the emmeans() and pairs() functions, 
all under the afex package. The p-value threshold was adjusted 
by Bonferroni's method for pairwise comparisons. The analysis 
included data from 23 participants as responses were missing 
from two participants (subjects 02 and 04) because of a configu-
ration error of the button box.

In the current study, TD was used to modulate the visual-task 
performance and to load on speech processing. Visual-task re-
sponses were predicted to be below or near the chance accuracy 
(50%) to a small TD stimulus as participants might struggle to 
reject a nontarget due to the small discrepancy. In contrast, for 
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large TD stimuli, responses were predicted to be consistently 
above chance level as a large TD makes it easy to discern a target 
(Calder-Travis and Ma 2020). In addition, speech-task responses 
might also be affected by TD, as a performance trade-off was 
predicted between the two tasks. As such, two separate GLMM 
were fitted using the mixed() function in the afex R-package to 
further examine how the visual-task correctness of the nontar-
get trials (i.e., correct-rejection rate; main runs) and the speech-
task correctness of these trials varied continuously as a function 
of TD under different visual- and speech-task difficulties. The 
model assumed binomially distributed residuals and adopted 
a logit link function, and had TD (in degrees), Speech-Task 
Difficulty (i.e., easy, hard), Visual-Task Difficulty (i.e., easy, 
hard), and their interaction as predictors. Both models initially 
included random intercepts for Participant and Sentence, and 
random slopes for TD, Speech-Task Difficulty, Visual-Task 
Difficulty, and their interaction by Participant and Sentence. 
The model selection procedure followed that of the main be-
havioral analysis outlined above. The final model for visual-
task correctness (nontarget trials) included a random intercept 
for Participant and random slopes for Visual-Task Difficulty 
by Participant. The best model for speech-task accuracy (of the 
nontarget trials in the visual task) had a random intercept for 
Participant and random slopes for Speech-Task Difficulty by 
Participant.

3.4.2   |   Post-Scan Task

Responses in the post-scan task were analyzed using signal de-
tection theory by subtracting the z-score of the proportion of hits 
from the z-score of the proportion of false alarm, giving a mea-
sure for the sensitivity of detecting sentences used for the main 
runs from the unheard sentences (i.e., d′; Macmillan  1993). 
The data was analyzed by a repeated-measure ANOVA in the 
afex R-package. The model included Speech-Task Difficulty, 
Visual-Task Difficulty, and their interaction as a predictor and 
Participant Rating as a response. The methods for the post hoc 
analysis (where applicable) followed that of the dual-task data. 
The analysis included data from 24 participants as one partici-
pant (subject 01) did not perform the task due to the time con-
straint of the scanning slot.

3.5   |   fMRI Data Analysis

3.5.1   |   General Linear Model

The imaging data were first checked for abnormalities and con-
verted from DICOM to NIFTI format using the dicom2nifti 
package (version 1.0.20230411; Li et al. 2016). Subsequent anal-
yses were conducted with Statistical Parametric Mapping 12 
(SPM, version 7771; Wellcome Centre for Human Neuroimaging, 
University College London) using a customized MATLAB 
script. First, the first functional EPI volume in each run was re-
aligned to the first volume of the first run, before each image 
in each run was registered to the first volume of that run. The 
functional volumes in each run were then co-registered onto 
the structural scan using linear transformation after manually 
defining the individual's anterior commissure as the reference 
point (i.e., [0, 0, 0]) on the structural image. For participants 

who had a structural scan, a deformation field was generated 
to probabilistically map the voxels of different tissue types 
in individual structural images to the tissues of the standard 
Montreal Neurological Institute 152 (MNI-152) template space. 
That deformation field was then used to respectively transform 
the co-registered structural and functional images for each run 
into the MNI space for subsequent group-level analysis. For the 
single participant who did not receive a structural scan, their 
functional images for each run were transformed into the MNI 
space using the transformation parameters estimated for the 
mapping between the mean functional image for each run and 
the MNI template. Functional volumes were smoothed using a 
6 × 6 × 6 mm full-width-half-maximum Gaussian kernel.

A model predicting what a canonical BOLD response for the 
current experiment should look like was created by convolving 
the experimental design (i.e., a continuous uniform function in-
volving the onset and duration of an experimental block) with a 
canonical hemodynamic response function (i.e., HRF; Lindquist 
et al. 2009). Signals at 1/128 Hz or lower were removed from the 
preprocessed time series of functional images to account for the 
low-frequency physical noise of the scanner. Next, GLMs predict-
ing the BOLD responses of the preprocessed functional images 
were fitted per participant, including the following predictors: 
(1) the canonical BOLD response (i.e., predictor-of-interest; con-
trast vectors: speech easy visual easy (Sp E Vis E) > rest [1 0 0 
0], speech easy visual hard (Sp E Vis H) > rest [0 1 0 0], speech 
hard visual easy (Sp H Vis E) > rest [0 0 1 0], speech hard vi-
sual hard (Sp H Vis H) > rest [0 0 0 1]; the contrast weights were 
replicated and scaled across runs); (2) the temporal derivative of 
the canonical BOLD response (to account for temporal delays 
in the acquisition slices of the hemodynamic responses over a 
whole volume); (3) the transformation parameters during image 
realignment (to account for the effect of head motion).

A GLM was fit to examine the effect of speech- and visual-task 
difficulties on the voxel-wise, whole-brain BOLD responses at 
a group level. We extracted and analyzed the β coefficients for 
the canonical BOLD term from the individual GLMs. Due to 
data loss (for subjects 01, 02, and 10), the analysis included 22 
participants. The model had Speech-Task Difficulty (i.e., easy, 
hard), Visual-Task Difficulty (i.e., easy, hard), and their interac-
tion as predictors. For each contrast (e.g., speech hard > speech 
easy), voxels were considered significant at a threshold corre-
sponding to a false positive rate of 5% (p < 0.05, family-wise error 
corrected).

3.5.2   |   Correlation Analysis

To establish the correlations between brain activity and be-
havioral effects of task difficulty, we used SPM to extract the 
mean β coefficients in those significant clusters identified by 
the whole-brain group analysis for the canonical BOLD term 
per condition per individual GLM. These values were then 
averaged across task conditions and correlated with partici-
pants' self-reported effort and attention measures, as well as 
their mean behavioral task response. Moreover, the difference 
in BOLD responses between the hard and easy task condi-
tions was correlated with the difference in behavioral task re-
sponses of these conditions.
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3.5.3   |   ML

3.5.3.1   |   Extreme Gradient Boosting (XGBoost).  The 
traditional voxel-based-mass-univariate approach using GLM is 
often biased toward focal response magnitude (i.e., β coefficients) 
between the corresponding voxels and can only detect the linear 
contribution of task conditions in predicting BOLD responses. 
Moreover, in hypothesis testing using GLM, the interpretation 
of results is usually constrained by a conventional statistical sig-
nificance threshold. For example, a conventional nonsignificant 
result cannot validate a null hypothesis as it only indicates a fail-
ure to reject it. These issues of GLM make it difficult to find spa-
tially distributed, subtle, and nonlinear differences in activation 
patterns across conditions (Davatzikos  2004). An alternative 
is analyzing the data in a multivariate approach, where an ML 
algorithm in a classification task seeks the relationship between 
input features X  (e.g., the neural activity in different brain 
regions) and an output Y  (e.g., discrete class values like the task 
conditions). Herein, the algorithm learns to find a separating 
plane in the multi-dimensional data space that divides the data 
into different classes (Kotsiantis et  al.  2006). Instead of being 
limited to comparing the cross-condition response magnitude 
of a specific voxel or region, this approach therefore allows us to 
identify information in the patterns of neural responses across 
brain regions (Weaverdyck et al. 2020).

XGBoost (Chen and Guestrin 2016) was used to predict task con-
ditions from neural response patterns and identify brain regions 
that impact most on classification. Gradient boosting is a model 
ensemble technique where multiple weak learning algorithms 
(e.g., simple classification trees) are sequentially trained and 
added to create a strong learner. After initiating the model to 
generate a prediction, the algorithm fits the model iteratively on 
the residual of the previous model and adds the predicted re-
sidual to the old prediction. Compared to traditional gradient 
boosting, XGBoost controls overfitting by penalizing the com-
plexity of weak learners, for example, via shrinking individual 
trees' leaf weights for a large sum of residuals (i.e., a more com-
plex model; Chen and Guestrin  2016; also see Equation (4) in 
Note A3).

XGBoost was chosen for the following reasons: (1) the algorithm 
has achieved state-of-the-art performance in many data mining 
competitions with scores outperforming more complex models 
like deep neural networks (Chen and Guestrin 2016); (2) the al-
gorithm is useful for learning nonlinear relationships because 
it holds no assumption about the relationships between vari-
ables compared to other methods like support vector machine, 

one of the most widely used algorithms for fMRI multivariate 
analysis (Chen and Guestrin  2016; Salcedo-Sanz et  al.  2014); 
and (3) tree-based models show robust performance even with 
small to medium datasets (Floares et al. 2017; Ghosh et al. 2017). 
XGBoost has been recently applied for diagnostic analysis using 
both MRI (Ryu et al. 2020; Wang et al. 2018) and fMRI images 
(Pang et al. 2021; Torlay et al. 2017): Across these four XGBoost 
imaging studies, sample sizes were in the range of 16–142 per 
category, and two to four categories were used for classifica-
tion. Thus, the sample size per class (N = 25) seems to be rather 
small in the current study. Nevertheless, XGBoost has shown 
exceptional accuracy in recognizing a small sample of patients 
with epilepsy (N = 16) from healthy participants (N = 39) based 
on the analysis of their language networks using fMRI images 
acquired under a phonological and a semantic task (Torlay 
et al. 2017). Therefore, XGBoost seems to be a viable and robust 
tool for multivariate analysis of fMRI activation patterns with a 
small to medium sample size.

3.5.3.2   |   Model Training and Evaluation.  One hundred 
unthresholded t-value statistical parametric maps (SPM t-maps) 
from individual GLMs were used as the input feature matrix X  
to XGBoost to predict an output vector Y  (i.e., task conditions). 
T-maps, instead of the raw preprocessed images were used, as 
they were also the input to the group-level GLM analysis, allow-
ing a direct comparison between the two approaches. There 
were 25 t-maps per condition, with parameters scaled across 
the six functional runs. Labels of task conditions were encoded 
as numeric values for the response vector Y . To avoid overfitting, 
the dimensions of the input t-maps (i.e., 79 × 95 × 79) were reduced 
by averaging the voxels per larger region of the cortex, accord-
ing to brain parcellation proposed by Schaefer et al. (2018) based 
on resting-state functional connectivity. Learning algorithms 
(see Note A3 for details) were implemented with the XGBoost 
(version 1.7.6; Chen and Guestrin 2016) and scikit-learn (version 
1.2.2; Pedregosa et al. 2011) Python packages on an Nvidia V100 
Tensor Core GPU (Python version 3.10).

Hyperparameters (see Table 1) and parcellation resolutions (i.e., 
numbers of features: 100, 200, 300, 400, and 500 parcels) were 
tested in an exhaustive grid search to find a baseline (whole 
brain) model with the parameters yielding the best validation 
accuracy. Here, the model was evaluated in a stratified five-
fold cross validation. For each combination of the hyperparam-
eters, the data was split into five parts, with each part having 
a balanced representation of class labels. Then, the model was 
trained and tested five times, each time using a different fold as 
the test set and the rest as the training set. The mean validation 

TABLE 1    |    Hyperparameters tested for the baseline XGBoost model.

Hyperparameters Description Tested values Best value

colsample_bytree The proportion of features to be randomly sampled per tree 0.1, 0.3, 0.5, 0.7 0.1

gamma The minimum loss reduction required to make a tree split 0, 1, 2, 3, 4, 5, 6, 7 0

learning_rate Learning rate 0.01, 0.04, 0.07, 0.1, 0.13 0.07

max_depth The maximum depth of a tree 1, 2, 3, 4, 5, 6 3

n_estimators Number of trees 50, 100, 150, 200, 250, 300 100

Note: Tested values denote the values tested in an extensive grid search. Best value denotes the values corresponding to the highest validation accuracy.
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accuracy per hyperparameter set was used as a metric for model 
performance. A held-out test set was not included considering 
the relatively small sample size, following previous imaging 
studies using XGBoost (Pang et al. 2021; Ryu et al. 2020; Torlay 
et  al.  2017; Wang et  al.  2018). After finding the best hyperpa-
rameters (Table 1), a binomial test was conducted to determine 
whether the observed model accuracy was due to chance by 
comparing the best accuracy against a binomial distribution of 
5760 configurations (see Table  1) having a sample size of 100 
and a probability of success of 0.25. The distribution generation 
and the binomial test were respectively conducted using the rbi-
nom() and pbinom() functions in the stats R-package (version 
4.3.2).

3.5.3.3   |   Feature Selection and Model Interpreta-
tion.  To select the most important features (i.e., brain 
regions) contributing to model prediction of task conditions, 
feature importance was evaluated by Shapley Additive Expla-
nations (SHAP; Lundberg and Lee 2017; Štrumbelj and Konon-
enko  2014). SHAP is based on game theory and the concept 
of Shapley values (Shapley  1953), which in the ML context 
explains individual feature value's contribution to the predic-
tion by offering interpretations at individual datapoint level 
regarding how a feature value drives specific prediction. For a 
class k, a positive Shapley value for a specific feature suggests 
that the presence of the feature increases the model's predic-
tion toward that class, whereas a negative Shapley value for a 
feature indicates that the presence of that feature decreases 
the model's prediction for that class (see Note A4 for compu-
tational details).

Feature selection was performed by ranking the features by their 
Shapley values and training models iteratively with the best hy-
perparameters and number of features found for the baseline 
model (Kha et  al.  2021). Shapley values were obtained with the 
TreeExplainer in the shap Python package (version 0.43; Lundberg 
et al. 2020). The iteration started with the model containing the top 
one feature. On each iteration, the immediately lower ranked fea-
ture was added to the model. If no improvements were observed 
for validation accuracy in five consecutive iterations, features 
corresponding to the latest peak accuracy over the past iterations 
were selected as the “best” feature set. A grid search was con-
ducted with the selected features to further determine the best hy-
perparameters for this feature set (see Table B1).

Shapley values in multiclass classification only reflect how 
changes in feature value impact predicting one class against 
all other classes, making inference for pairwise classes diffi-
cult. Therefore, binary classification models with the selected 
features were fitted for data from pairs of classes in a grid 
search for hyperparameters to uncover distinct regions sen-
sitive to speech- and/or visual-task difficulties (i.e., Sp H Vis 
E and Sp E Vis E, Sp H Vis H and Sp E Vis H, Sp E Vis H and 
Sp E Vis E, and Sp H Vis H and Sp H Vis E). A binomial test 
was conducted to determine whether the observed accuracies 
were due to chance by comparing the best accuracy against 
a binomial distribution of 5760 configurations (see Table B3) 
having a sample size of 100 and a probability of success of 0.5 
(the p-value threshold was adjusted by Bonferroni's method 
for four tests).

4   |   Results

4.1   |   Behavioral Results

4.1.1   |   Speech Task

Table 2 shows the fixed-effect outputs for the GLMM. Figure 3 
illustrates the proportion of sentences reported as “understood” 
by speech- and visual-task difficulty. The main effects of speech- 
and visual-task difficulty on sentence report were significant, 
but there was no interaction between the two predictors. The 
difficulty of the two tasks modulated speech recognition perfor-
mance in opposite directions. Listeners understood fewer sen-
tences for hard than for easy speech, but they understood more 
sentences when the visual task was hard than when it was easy 
(Sp E Vis E: 0.857 [SD = 0.11]; Sp H Vis E: 0.533 [SD = 0.15]; Sp E 
Vis H: 0.870 [SD = 0.09]; Sp H Vis H: 0.568 [SD = 0.20]).

TABLE 2    |    Model outputs for the GLMM assessing the fixed effects 
of Speech- and Visual-task difficulty on the proportion of “understood” 
for the speech task.

Df Chisq Chi Df p

DiffSpeech 12 59.91 1 < 0.001

DiffVisual 12 5.07 1 0.024

DiffSpeech:DiffVisual 12 0.82 1 0.366

Note: Bold values indicate statistically significant values.
Abbreviations: Chi Df: the degrees of freedom associated with the chi-squared 
distribution; Chisq: the fixed-effect term's chi-squared statistics (i.e., difference 
between the minus twice of the log likelihoods of the two models differing 
in that fixed-effect term); Df: degrees of freedom of the fixed-effect terms; 
DiffSpeech: Speech-task difficulty; DiffVisual: Visual-task difficulty.

FIGURE 3    |    Proportion of sentence reported as “understood” for the 
speech task. The fill of the boxes represents visual-task difficulty. X-axis 
shows speech-task difficulty. Points display the mean response per par-
ticipant, and lines connect the individual responses across conditions. 
Gray diamonds denote the mean of each task condition.
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In the post-scan recall task, there was a significant main ef-
fect of speech-task difficulty on the d′ score, but the main ef-
fect of visual-task difficulty and the interaction term were not 
significant. That is, listeners recalled more sentences from the 
easy-speech blocks than they did for the hard blocks—Sp E Vis 
E 0.400 [SD = 0.38]; Sp H Vis E: 0.204 [SD = 0.40]; Sp E Vis H: 
0.398 [SD = 0.36]; Sp H Vis H: 0.281 [SD = 0.39] (see Table B2 and 
Figure C1 for model outputs and visualized results).

4.1.2   |   Visual Task

Figure  4 illustrates the visual-task accuracy by visual- and 
speech-task difficulty. The main effect of visual-task difficulty 
and the interaction between the two tasks were significant (see 
Table  3 for model outputs). Visual-task difficulty significantly 
modulated visual-task accuracy—listeners performed signifi-
cantly worse in the hard than in the easy visual task for both 
difficulty levels of the speech task (Sp E Vis E: 0.849 [SD = 0.10]; 
Sp E Vis H: 0.655 [SD = 0.12]; Sp H Vis E: 0.820 [SD = 0.11]; Sp 
H Vis H: 0.669 [SD = 0.11]; both p's < 0.001). Notably, the speech 
task had a significantly larger impact on the visual-task accu-
racy when the visual task was easy than when performing the 
hard visual task. Performing the hard speech task significantly 
worsened the performance of the visual task compared to when 
the speech task was easy [lower by a proportion of 0.029; β 
(SE) = −0.23 (0.10), p = 0.020], whereas visual-task accuracy was 
comparable for both speech-task levels under a hard visual task 
[β (SE) = −0.07 (0.07), p = 0.37].

4.1.3   |   Effect of TD on Dual-Task Performance

As expected, the analysis on TD (Table  4 and Figure  5) fur-
ther showed that listeners' visual-task performance (i.e., 

correct-rejection rate) improved significantly and equally with 
increasing TD under a hard visual task for both easy and hard 
speech conditions [easy speech: β (SE) = 0.20 (0.02), p < 0.001; 
hard speech: β (SE) = 0.22 (0.02), p < 0.001]. Although perfor-
mance was below chance for a small TD (i.e., 6°–10°), distractors 
became discernable from a target for a TD larger than 10° (i.e., 
correct rejection > 0.5; easy speech: 11.4°, hard speech: 10.4°). 
By contrast, their visual-task performance remained consis-
tently high for the whole TD range under an easy visual task for 
both speech-task conditions [easy speech: β (SE) = −0.04 (0.04), 
p = 0.355; hard speech: β (SE) = 0.01 (0.04), p = 0.806]. These re-
sults confirmed that task difficulty manipulated via TD effec-
tively affected listeners' visual-task performance and listeners 
were able to perform above chance in most cases even for a chal-
lenging visual task.

The analysis on speech-task accuracy showed that sentence 
recognition was also affected by TD (Table  5 and Figure  6). 

FIGURE 4    |    Accuracy of the visual task. The fill of the boxes rep-
resents speech-task difficulty. The X-axis shows visual-task difficulty. 
Points display the mean response per participant, and lines connect 
the individual responses across conditions. Gray diamonds denote the 
mean of each task condition.

TABLE 3    |    Model outputs for the GLMM assessing the fixed effects 
of Visual- and Speech-task difficulty on Visual-task accuracy.

Df Chisq Chi Df p

DiffSpeech 6 1.67 1 0.197

DiffVisual 6 28.07 1 < 0.001

DiffSpeech:DiffVisual 6 5.72 1 0.017

Note: Bold values indicate statistically significant values.
Abbreviations: Chi Df: the degrees of freedom associated with the chi-squared 
distribution; Chisq: the fixed-effect term's chi-squared statistics (i.e., difference 
between the minus twice of the log likelihoods of the two models differing 
in that fixed-effect term); Df: degrees of freedom of the fixed-effect terms; 
DiffSpeech: Speech-task difficulty; DiffVisual: Visual-task difficulty.

TABLE 4    |    Model outputs for the GLMM assessing the fixed effects 
of TD, Speech-task difficulty, and Visual-task difficulty on the visual-
task accuracy of the nontarget visual-task trials.

Fixed effects

β
Std. 

error z p

(Intercept) −1.12 0.28 −4.03 < 0.001

TD 0.20 0.02 8.16 < 0.001

SpeechHard 
[SpeechEasy_VisualHard]

0.08 0.23 0.37 0.711

VisualEasy 
[SpeechEasy_VisualHard]

4.23 0.42 10.01 < 0.001

TD:SpeechHard 0.02 0.03 0.59 0.554

TD:VisualEasy −0.24 0.05 −5.00 < 0.001

SpeechHard:​VisualEasy 
[SpeechEasy_​VisualHard]

−0.58 0.45 −1.30 0.193

TD:SpeechHard:​
VisualEasy [SpeechEasy_​
VisualHard]

0.03 0.06 0.41 0.681

Note: The reference level is shown in brackets. Bold values indicate statistically 
significant values.
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Notably, listeners' speech-task performance generally deteri-
orated for a larger TD under a hard visual task. Specifically, 
speech performance seemed to drop significantly as TD be-
came larger under an easy visual task [β (SE) = −0.10 (0.03), 
p < 0.001] but only worsened marginally for a larger TD when 
both tasks were challenging [β (SE) = −0.04 (0.02), p = 0.06]. 

Sentence recognition performance, however, remained con-
sistently high for all TDs under an easy visual task for both 
speech-task conditions [easy speech: β (SE) = −0.02 (0.03), 
p = 0.555; hard speech: β (SE) = 0.002 (0.02), p = 0.923]. As 
such, TD had an opposite effect on the two tasks' performance 
for the hard visual condition—listeners performed better in 
the visual task but worse in the speech task for a larger TD, 
particularly when the speech task was easy. These results in-
sinuated a performance trade-off between the two tasks when 
under a challenging visual task, where better visual-task per-
formance (i.e., better correct rejection for a larger TD) corre-
sponded to worse speech-task performance (i.e., worse “gist” 
report for a larger TD).

4.2   |   fMRI Results

4.2.1   |   General Linear Model

Figure  7 shows the clusters of voxels illustrating a significant 
effect of speech hard > speech easy in the whole-brain analysis 
(Figure 7A) and individual GLMs' mean β coefficient estimates 
for these clusters (Figure 7B). Table 6 outlines MNI coordinates 
for the voxel having a peak BOLD response in different clusters 
of activation (anatomical labels were obtained from Harvard-
Oxford cortical structural atlas; https://​fsl.​fmrib.​ox.​ac.​uk/​fsl/​
fslwi​ki/​Atlases). Larger BOLD responses for the speech-hard 
than speech-easy conditions were found in bilateral insulae, bi-
lateral PaCG, and right superior frontal gyrus (SFG), consistent 
with these regions responding to degradation in speech (Erb 
et  al.  2013; Hervais-Adelman et  al.  2012; Ritz et  al.  2022) and 
increased task demand under distraction (Gennari et al. 2018). 
No clusters showed a significant effect of visual-task difficulty, 
nor an interaction between the two tasks.

FIGURE 5    |    GLMM-estimated correct-rejection rate of the visual 
task for the nontarget trials, displayed as a function of target-distractor 
angular discrepancy for an easy (middle purple line) and a hard speech 
task (middle yellow line) under an easy (left panel) and a hard visual 
task (right panel). Filled areas represent 95% confidence intervals.

TABLE 5    |    Model outputs for the GLMM assessing the fixed effects 
of TD, Speech-task difficulty, and Visual-task difficulty on the speech-
task accuracy of the nontarget visual-task trials.

Fixed effects

β
Std. 

error z p

(Intercept) 2.59 0.29 8.81 < 0.001

TD −0.10 0.03 −3.34 < 0.001

SpeechHard 
[SpeechEasy_VisualHard]

−2.14 0.29 −7.32 < 0.001

VisualEasy 
[SpeechEasy_VisualHard]

−0.78 0.30 −2.59 0.010

TD:SpeechHard 0.06 0.04 1.67 0.096

TD:VisualEasy 0.09 0.04 2.08 0.038

SpeechHard:​VisualEasy 
[SpeechEasy_​VisualHard]

0.32 0.36 0.89 0.376

TD:SPeechHard:​
VisualEasy [SpeechEasy_​
VisualHard]

−0.05 0.05 −0.94 0.349

Note: The reference level is shown in brackets. Bold values indicate statistically 
significant values.

FIGURE 6    |    GLMM-estimated proportion of sentence reported as 
“understood” for the speech task in the nontarget visual-task trials, dis-
played as a function of target-distractor angular discrepancy for an easy 
(middle purple line) and a hard speech task (middle yellow line) under 
an easy (left panel) and a hard visual task (right panel). Filled areas rep-
resent 95% confidence intervals.
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4.2.2   |   Correlation Analysis

Figure 8 examines the relationships between BOLD responses 
(i.e., GLM β estimates for the clusters showing a significant ef-
fect of speech hard > speech easy), scores for the effort and at-
tention questionnaire, as well as task behavioral responses. The 
figure shows the pairs of measures displaying a significant effect 
from an exploratory correlation analysis (see Figure C2).

In general, there was a negative correlation between the mean 
BOLD responses (across conditions) and the overall effort and 

attention scores—mean activity in left insula negatively cor-
related with the estimated attention to speech task (Figure 8A.1), 
and likewise for the activities in left PaCG (Figure  8A.2), left 
insula (Figure  8A.3), and right SFG (Figure  8A.4) negatively 
correlated with the attention score for the visual task. That is, 
listeners who showed stronger activation in the corresponding 
regions tended to report less attention to either task.

In addition, there was a positive correlation between the dif-
ference in right SFG responses for the hard and easy speech 
conditions and the difference in speech task response for these 

FIGURE 7    |    Effect of task difficulty on BOLD responses (i.e., β estimates for the canonical BOLD term from the individual GLMs). (A) The clus-
ters of voxels showing a significant effect of speech hard > speech easy were displayed in warm colors. Colors of the significant clusters reflect the t-
statistic values of the contrast (t > 5.06, p < 0.05, family-wise error corrected; cluster size > 0). (B) X-axis shows speech-task difficulty. Fill of the boxes 
represents visual-task difficulty. Panels show brain regions. Points display the mean beta estimate per participant averaged across the voxels in that 
region. Gray diamonds denote the mean of each task condition.
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conditions (Figure 8B.1)—listeners who showed a more elevated 
activation for the hard compared to easy speech task had a lower 
loss in speech-task performance when conducting a hard versus 
easy speech task. There was also a positive correlation between 
the mean responses in right PaCG and the mean speech-task per-
formance across conditions (Figure 8B.2)—listeners who had a 
stronger activation in right PaCG tended to also perform better 
in the speech task. These results suggest responses to acoustic 
degradation in the frontal and cingulate cortices were associated 
with attentional modulation across the concurrent tasks and al-
leviating degradation in speech (Gennari et al. 2018). These re-
sults suggest that increased BOLD responses in SFG and PaCG 
might have helped elicit better task performance in listeners.

4.2.3   |   XGBoost

4.2.3.1   |   Baseline (Whole Brain) Model.  The first step 
of the XGBoost analysis was to establish a baseline model using 
input features covering the whole brain for subsequent feature 
selection. The model with 400 feature inputs based on the Schae-
fer atlas (Schaefer et al. 2018) produced the best accuracy (among 
all tested number of features)—42% for the prediction during a 
five-fold cross validation (see Table 1 for best hyperparameters). 
An accuracy of 100% would indicate a successful prediction 
of all items in the validation set, whereas a random classification 
would result in a chance-level accuracy of 25%. The chance-level 
score given that the best model was selected from a binomial dis-
tribution of 5760 scores each having a sample size of 100 and a 
probability of success of 0.25 is 32/100. This score corresponds 
to a probability of 4.5% for observing a larger score given the null 
hypothesis is true (i.e., p = 0.045; green dashed line in Figure 9A). 
The binomial test comparing the best accuracy against this null 
distribution further confirmed that the model performed sig-
nificantly higher than chance (p < 0.001; navy dashed line in 
Figure 9A). The confusion matrix suggested that the model per-
formed equally well for classifying all four task conditions, with 
an accuracy between 40% and 44% and an error rate between 
16% and 24% per misclassified class (Figure 9B).

4.2.3.2   |   Model With Selected Features.  To identify cor-
tical areas that most significantly contributed to the classifica-
tion of task conditions for subsequent feature selection, feature 
importance was evaluated by SHAP values (see Figure C3 for fea-
ture ranking and Table A2 for the correspondent MNI coordi-
nates). Figure 10 shows the performance metrics of the models 

fitted iteratively with top features added to the model. Validation 
accuracy peaked at the 12th iteration (i.e., 51%) and no improve-
ments were observed for four consecutive iterations thereafter 
(until the 16th iteration). Therefore, the top 13 features were 
selected as the corresponding model had the last best accuracy 
(51%) within these 16 iterations. An extensive grid search find-
ing the best hyperparameters (Table B1) for the 13-feature model 
yielded a validation accuracy of 60% during cross validation.

Figure 11 further illustrates the confusion matrix (Figure 11A), 
and feature importance (i.e., mean SHAP value; Figure  11B) 
for the 13-feature model. The top features included regions 
that were also identified in the GLM analysis—right insula and 
right PaCG. The features also contained regions previously re-
ported for degraded speech processing: left SFG (McGettigan 
et al. 2017), left angular gyrus (Eisner et al. 2010), left precentral 
gyrus (Hervais-Adelman et  al.  2012; Nuttall et  al.  2016, 2022; 
Sohoglu et  al.  2012), and left postcentral gyrus (McGettigan 
et  al.  2017); visuospatial processing: left precentral gyrus 
(Windischberger et al. 2003), right ITG (Adab et al. 2014; Jackson 
et al. 2018; Zhang et al. 2011); and task-performance monitor-
ing: right frontal pole (Koechlin  2011; Tsujimoto et  al.  2011). 
Specifically, the following regions were also reported for their 
roles in attending to auditory or visuospatial signals: right 
IFG, left SFG, right MFG, left precentral gyrus and postcentral 
gyrus, left angular gyrus, left precuneus, and right fusiform 
(Balslev et al. 2013; Degerman et al. 2006; Gennari et al. 2018; 
Hampshire et  al.  2010; Japee et  al.  2015; Johansen-Berg and 
Matthews 2002).

4.2.3.3   |   Model Interpretation.  Figure  12 illustrates 
the results of the binary classification models based on the top 
13 features. The chance-level score given that the best model was 
selected from 5760 hyperparameter scores is 32/50 (64%), corre-
sponding to a probability of 1.64% for observing a larger score 
given the null hypothesis is true (i.e., p = 0.0164; green dashed 
line in Figure 12A). Here, p-threshold was corrected by Bonfer-
roni's method to 0.0125 as there were four classification models. 
The binomial test confirms that all models had an accuracy sur-
passing the chance level of 64% (see Figure 12A for the binomial 
test results, Table 7 for the models' accuracy scores and Table B3 
for best hyperparameters). Figure  12B shows how neural 
responses of the top 13 regions affect the predictions of the binary 
classification models containing classes differing in their task dif-
ficulty. Table 7 further expatiates the neural responses per region 
corresponding to a positive prediction (i.e., label 1) in the binary 

TABLE 6    |    Clusters showing significant activation for speech hard > speech easy in the group-level, whole-brain GLM.

Cluster labels t z p

MNI coordinates

Number of voxels in the clusterx y z

Right insula 6.14 5.57 0.001 38 22 0 101

Right PaCG 5.90 5.38 0.002 8 20 42 49

Right SFG 5.80 5.31 0.004 12 14 62 34

Left insula 5.60 5.15 0.007 −38 18 −2 11

Left PaCG 5.52 5.09 0.010 −2 26 42 20

Note: Parameter estimates were thresholded at t > 5.06, p < 0.05, family-wise error corrected. Coordinates show the voxels having a peak BOLD response. Clusters 
containing more than 0 voxels were displayed.
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12 of 20 Human Brain Mapping, 2025

classification, revealing the effects of task difficulty on neural 
activation patterns. These binary classification models revealed 
responses that were sensitive to both speech- and visual-task 

difficulties, that is, right PaCG, right insula, right IFG (orbitalis), 
and right MFG (i.e., modality-general responses). The models also 
identified modality-specific, raised responses either to a harder 

FIGURE 8    |    Simple regression models examining the relationship between the subjective attention ratings and BOLD responses (A), as well as be-
tween behavioral and BOLD responses (B). Points display the measures per participant. Filled areas represent 95% confidence intervals. Each model's 
regression function, model fit (R2), and p value are displayed at the top-left corner of each panel.
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speech task (i.e., left SFG, left postcentral gyrus, left angular gyrus, 
right frontal pole) or a more difficult visual task (i.e., right ITG, 
precentral gyrus; see Section 5 for more details).

5   |   Discussion

5.1   |   Behavioral Findings

Using a dual-task paradigm and ML, this study established 
how acoustic degradation and divided attention jointly af-
fected speech processing. Behaviorally, increasing the 

difficulty of one task impeded the accuracy of that task. The 
performance of one task was also modulated by the difficulty 
of the concurrent task. Specifically, speech recognition was 
better during a hard than an easy visual task, consistent with 
previous findings for noise-vocoded speech processing under 
a visual recognition task (Ward et  al.  2017). Despite no ex-
plicit instruction given for prioritizing either task, this find-
ing suggests that listeners might have prioritized the speech 
task performance. Specifically, if participants had prioritized 
performing the visual task over the speech task, a more de-
manding visual task would have hampered the speech perfor-
mance as a hard visual task would have drawn more resources 

FIGURE 9    |    (A) A theoretical binomial distribution of 5760 samples (i.e., the number of tested hyperparameters) each having a sample size of 
100 and a success rate of 0.25. X-axis shows the number of successes for classifying 100 images, and the Y-axis shows the proportion for each bin out 
of all samples. The chance-level score for one binomial sample is 25/100 (i.e., orange dashed line). The chance-level score given that the best model 
was picked out of 5760 hyperparameter configurations is 32/100, corresponding to a probability of 4.5% for observing a larger score given the null 
hypothesis is true (i.e., p = 0.045; green dashed line). The observed accuracy was 42/100 (p < 0.001; navy dashed line). (B) The confusion matrix rep-
resents the predicted against actual labels for each task condition for all 25 participants during the cross validation of the whole-brain model. Rows 
correspond to the actual task conditions and columns indicate the predicted task conditions. Numbers in the cell show the number of participants 
corresponding to the pair of actual and predicted labels. The color intensity of tiles reflects numeric value. Sp E Vis E: speech easy visual easy; Sp E 
Vis H: speech easy visual hard; Sp H Vis E: speech hard visual easy; Sp H Vis H: speech hard visual hard.
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from the speech task than an easy visual task does (Gennari 
et al. 2018). This interpretation has also been corroborated by 
Ward et al.  (2017), where listeners were explicitly instructed 
to prioritize speech task performance in a visual dual task and 
showed increased speech performance under a hard than an 
easy visual task.

Visual-task performance, on the other hand, was negatively 
affected by the speech task, also in line with the findings by 
Ward et al.  (2017), signaling increased listening effort for pro-
cessing more degraded speech (Johnsrude and Rodd  2015; 
Rodd et  al.  2010). The fact that this load effect was only ob-
servable for an easy task insinuates that task performance 
might be constrained by the availability of processing resources 
(Kahneman  1973). The hard visual task was challenging as 
it had a very small TD and was equally challenging for either 
speech task. Listeners would have showed slightly better visual 
performance under an easy speech task than under a hard one 
if they were able to spare more resources for the visual task. 
Finally, there was also a continuous positive effect of TD on 
visual-task responses for the hard visual condition, which had 
an opposite effect on the speech-task response. These findings 
insinuate the competition between the two tasks for limited pro-
cessing resources (Kahneman 1973).

5.2   |   Neuroimaging Findings With GLM

In the GLM analysis, performing a hard speech task (recog-
nizing four-band instead of eight-band speech) resulted in in-
creased BOLD responses in regions related to attentional control 
(i.e., PaCG; Gennari et  al.  2018) and increased task demand 
(i.e., insula, SFG; Erb et al. 2013; Hervais-Adelman et al. 2012; 

Ritz et al. 2022; Zekveld et al. 2014). The results are consistent 
with previous reports finding insula and SFG for their associ-
ation with increased listening effort (Erb et al.  2013; Hervais-
Adelman et al. 2012), including studies using objective measures 
for listening effort with pupillometry (Zekveld et al. 2014). Prior 
studies also showed the involvement of PaCG for attentional al-
location as a function of processing load for ambiguously pro-
duced syllables under divided attention (Gennari et  al.  2018). 
Our study extends this role of PaCG to processing sentence-level 
degraded speech. The neuroimaging findings are corroborated 
by the correlation of activation in these regions to listeners' 
behavioral task performance and self-reported attention score 
(Figure  8). Taken together, our results associate a set of fron-
tal and cingulate regions with resolving the elevated processing 
load of noise-vocoded speech under divided attention.

5.3   |   Neuroimaging Findings With XGBoost

The current study implemented XGBoost as a data-driven ap-
proach to explore the spatially dispersed and nonlinear neu-
ral activation patterns across the four dual-task conditions. 
Specifically, the pipeline involved (1) a whole-brain model to es-
tablish baseline performance, (2) feature ranking and selection 
according to Shapley values to reduce data dimensionality, (3) 
an optimal model fitted with the selected top features, and (4) 
binary classification models fitted with the selected features, en-
abling pairwise model interpretation with Shapley values. The 
optimal model predicted task conditions from neural responses 
with high accuracy and expanded the GLM findings by high-
lighting contributions on model predictions from 13 frontotem-
poral regions. The analysis unveiled greater BOLD responses in 
the right insula, right PaCG, and left SFG for increased speech-
task difficulty, corroborating with the GLM results. The analy-
sis further revealed neural responses that are general or specific 
to perceptual modalities (i.e., auditory or visual). Specifically, 
right PaCG, right insula, right IFG (orbitalis), and right MFG 
were sensitive to both speech- and visual-task difficulties, which 
might relate these regions to attentional control across modal-
ities. The finding is consistent with past evidence showing 
overlapped activations in PaCG and insula with increased task 
difficulty during selective attention to recognizing degraded 
(low-pass filtered) words or to deciding on the direction of a vi-
sual arrow (Eckert et al. 2009). Likewise, a previous study asked 
participants to actively listen out for a pitch change in a target 
sound embedded in naturalistic sounds and search for a color 
change of a target object in a naturalistic visual scene (Braga 
et al. 2013). The authors found that both tasks were associated 
with elevated responses in the right IFG and right MFG, corrob-
orating with the current finding.

In regard to modality-specific responses for speech-task diffi-
culty, XGBoost discovered increased responses to larger acoustic 
degradation under both visual-task conditions in left SFG, left 
postcentral gyrus, and angular gyrus. Left SFG responses res-
onate with our GLM findings. McGettigan et  al.  (2017) found 
left postcentral gyrus sensitive to increased acoustic degra-
dation under noise vocoding. Eisner et  al.  (2010) showed that 
elevated responses in left angular gyrus were associated with 
the learnability of noise-vocoded speech: neural activations in-
creased over the exposure to learnable (i.e., intelligible) speech 

FIGURE 10    |    The performance metrics of the models containing dif-
ferent number of features. Models were fitted with features having top 
mean SHAP values iteratively added to the model. Fills of the lines show 
performance metrics: The accuracy and the area under the receiver op-
erating characteristic curve (ROC AUC) of the test batches. The ROC 
was the true positive rate plotted as a function of the false positive rate 
for two classes. The AUC was the average AUC for all possible pair-
wise combinations of classes. A perfect model would score an AUC of 
1.0 while a random classification would score 0.5. The red dashed line 
shows the number of selected features for further analyses.
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but not for spectrally inverted speech. Therefore, the activation 
patterns for left postcentral gyrus and angular gyrus in the cur-
rent study might reflect degradation and learnability differences 
across the two speech-task conditions. The analysis also found 
degradation-related response under a hard visual task in fron-
tal pole, a region reported for self-monitoring of performance, 
especially for errors that are internally recognized and are not 
accompanied by explicit feedback (e.g., Ham et al. 2013; Sharp 
et al. 2010). More importantly, XGBoost detected distinct activa-
tion patterns for visual-task difficulty, which was unobserved 
in the GLM analysis. Modality-specific, more pronounced re-
sponses in left precentral gyrus and right pITG were found for 
increasing the visual-task difficulty under a hard speech task. 
This finding is consistent with the previous evidence for ele-
vated responses in precentral gyrus related to mental rotation 
of a visual object (Windischberger et  al.  2003) and in ITG as-
sociated with attending to specific features in an object for the 
purpose of visual recognition (Sigala and Logothetis 2002). As 
such, the finding illustrates pronounced feature-level process-
ing related to performing a hard visual task.

Critically, the XGBoost model also revealed neural signatures 
correlated with attentional allocation of resources across the 
two tasks: regions showing a modality-specific response to 
higher speech-task difficulty (i.e., left SFG, left postcentral 
gyrus) had a suppressed response to elevated visual-task diffi-
culty. Conversely, regions having a modality-specific response 
to increased visual-task difficulty showed a suppressed response 
to lifted speech-task difficulty (i.e., right pITG). These results 
resonate with Gennari et al. (2018), where visual-task difficulty 
decreased auditory-related activity under divided attention. As 
with Gennari et al. (2018), the trade-off between dual-task per-
formance in the current study is likely to be modulated by activ-
ities in attentional-control regions including PaCG and insula. 
This account is corroborated by the negative relationship be-
tween PaCG/insula and listeners' self-reported attention to the 
visual task. As such, these findings revealed the neural under-
pinnings for the interaction of acoustic degradation and divided 
attention in affecting speech processing—the BOLD signal and 
performance trade-off between the speech and a concurrent 
task under paracingulate attentional control.

FIGURE 11    |    (A) The confusion matrix represents the predicted against actual labels for each task condition for all 25 participants during the 
cross validation of the top 13-feature model with best hyperparameters. Rows correspond to the actual task conditions and columns indicate the 
predicted task conditions. Numbers in the cell show the number of participants corresponding to the pair of actual and predicted labels. The color 
intensity of tiles reflects numeric value. (B) Top 13 features ranked by their contribution (i.e., SHAP values) to classifying task conditions. X-axis dis-
plays the absolute SHAP values per class averaged across all data points. Color bars illustrate classes (i.e., task conditions), and the width of each bar 
represents the impact of a specific feature on differentiating a certain class from all other classes. MNI coordinates were shown in brackets. ITG: in-
ferior temporal gyrus; MFG: middle frontal gyrus; PoCG: postcentral gyrus; preCG: precentral gyrus; SFG: superior frontal gyrus; Sp E Vis E: speech 
easy visual easy; Sp E Vis H: speech easy visual hard; Sp H Vis E: speech hard visual easy; Sp H Vis H: speech hard visual hard.

 10970193, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70312 by Patti A
dank - T

est , W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 of 20 Human Brain Mapping, 2025

In summary, XGBoost extended the GLM findings by identify-
ing a set of 13 frontal-temporal regions, which highlighted both 
modality-general responses in right PaCG, right insula, right IFG, 
and right MFG related to attentional control over concurrent 

tasks, as well as modality-specific responses for respective pro-
cessing of degraded speech (i.e., left postcentral gyrus, left angular 
gyrus, right frontal pole) and visual input (i.e., right ITG, precen-
tral gyrus) under divided attention, which were undiscovered by 

FIGURE 12    |     Legend on next page.
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17 of 20

GLM. The analysis also revealed dynamic resource dispensing be-
tween the two tasks in these modality-specific regions.

5.4   |   Limitations

MRI scanner generates significant acoustic noise while scanning, 
for example, 110 dB for our 3-Tesla PRISMA scanner, and can 
attenuate listening-task performance and related brain activa-
tions (Elliott et al. 1999; Hall et al. 2009). A common method to 
counteract the noise effects during auditory experiment is sparse 
sampling, which introduces silent periods during stimulus presen-
tation at the cost of the number of acquired volumes (i.e., statis-
tical power; Okada and Nakai 2003). Another common scanning 
sequence is Interleaved Silent Steady-State Imaging (ISSS), which 
acquires images in brief bursts that are interleaved with silent pe-
riods (Schwarzbauer et al. 2006). This method was shown to be 
statistically more sensitive than the traditional sparse sampling 
but was not available at BUCNI (Mueller et  al.  2011). As such, 
we instead incorporated passive noise attenuation using earbuds 
sitting deep in ear canals, which is one of the most widely used 
methods for countering scanner noise and was shown to reduce 
the scanner noise to sufficiently low levels (i.e., by 25–30 dB) for 

task performance (Moelker and Pattynama 2003). All participants 
reported that they could hear the stimuli clearly amid the damp-
ened background noise after the in-scanner practice run.

Our speech task used “gist” report as a proxy for the performance 
of sentence understanding, following Wild et al.  (2012) to min-
imize the potential in-scanner head movements induced by a 
spoken response. As a trade-off, the response measures how well 
the participants think they understood the sentences, instead of 
a direct reflection on how well they understood the sentences. 
Therefore, listeners might have inaccurately estimated their true 
performance. Nevertheless, as discussed above, our speech-task 
responses illustrated a strong effect of speech-task difficulty, and 
the better performance under a hard visual task aligned well with 
the findings of Ward et al. (2017), where keyword-based, spoken 
responses were recorded for BKB sentences. Importantly, the dual-
task accuracy in Ward et al.  (2017) for both 8-band and 4-band 
speech (0.97 and 0.73) was higher than those in the current study 
(Sp E Vis E: 0.86, Sp H Vis E: 0.53), under a visual task that had 
a similar performance to our easy visual condition (current: 0.84, 
Ward et al.: 0.87). Moreover, the 8-band and 4-band performances 
in the current study also bracket that of the 6-band performance 
(0.61) from our previous dual-task study using the same speech 

FIGURE 12    |    (A) A theoretical binomial distribution of 5760 samples (i.e., the number of tested hyperparameters) each having a sample size of 
50 and a success rate of 0.5. X-axis shows the number of successes for classifying 50 images, and the Y-axis shows the proportion for each bin out of 
all samples. The chance-level score for one binomial sample is 25/50 (i.e., orange dashed line). The chance-level score given that the best model was 
picked out of 5760 hyperparameter configurations is 32/50 (64%), corresponding to a probability of 1.64% for observing a larger score given the null 
hypothesis is true (i.e., p = 0.0164; green dashed line; p-threshold corrected by Bonferroni's method to 0.0125). The observed scores were 38/50 (76%), 
38/50 (76%), 36/50 (72%), and 37/50 (74%) (all ps < 0.001; navy dashed lines). (B) The summary plot of how the top 13 features impact on the models' 
prediction. Each panel displays a binary classification model for pairwise task classes (coded as 1 and 0). The density curves per feature show the 
distributions of samples with regard to the SHAP values (X-axis). Color of the density curve displays the distribution of the original values of a feature 
over the sample. In each binary classifier (i.e., each panel), a positive Shapley value for a feature suggests that the presence of the feature increases 
the model's prediction toward class 1, whereas a negative Shapley value for a feature indicates that the presence of that feature decreases the model's 
prediction for class 1. MNI coordinates were shown in brackets.

TABLE 7    |    Neural responses of the top 13 features predicting a positive label (1) for binary classification models built to examine how task 
difficulty impacts neural activation patterns (also see Figure 12).

Task Pairwise classes

Neural responses per region predicting a positive label (1)

Elevated response Alleviated response

Speech Sp H Vis E (1) and Sp E Vis E (0)
Classification accuracy: 76%

Left postcentral gyrus, right IFG 
(orbitalis), left angular gyrus, right 

insula, left SFG, right MFG, right PaCG

Right frontal pole, right pITG

Sp H Vis H (1) and Sp E Vis H (0)
Classification accuracy: 76%

Right insula, left SFG, left angular 
gyrus, left postcentral gyrus, right 

frontal pole, right fusiform

Left precuneus cortex, right 
IFG (triangularis), right MFG

Visual Sp E Vis H (1) and Sp E Vis E (0)
Classification accuracy: 72%

Right IFG (orbitalis), right PaCG Right IFG (triangularis), 
right MFG, left SFG, 

left angular gyrus

Sp H Vis H (1) and Sp H Vis E (0)
Classification accuracy: 74%

Right insula, left precentral 
gyrus, right MFG, right pITG

Right IFG (triangularis), 
right IFG (orbitalis), left 

postcentral gyrus, left SFG, 
left precuneus cortex

Note: Labels of classes were coded as 1 and 0. The table only includes regions showing a positive impact (i.e., a positive SHAP value) on model predictions.
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stimuli but with a spoken response (Wang et al. 2023). Finally, this 
issue was also partially addressed by the inclusion of the post-scan 
surprise memory task, where listeners had a better recall for the 
easy speech than for the hard speech condition. As such, despite 
not providing a direct measure for speech performance, it is not 
likely that our listeners overestimated what they understood or 
provided an inaccurate estimate intentionally.

5.5   |   Summary

Overall, our results showed that manipulating speech and vi-
sual task difficulties under a dual task engages brain regions 
related to acoustic degradation, visual processing, and divided 
attention. Specifically, degraded speech processing under di-
vided attention was associated with elevated responses in the 
superior frontal, cingulate, and insular cortices for increased 
degradation in speech. High accuracy and explainable predic-
tion models of XGBoost further uncovered 13 frontotemporal 
brain areas for resource allocation under divided attention, 
featuring cross-regional activations sensitive to processing de-
graded speech (i.e., left SFG, left postcentral gyrus, left angular 
gyrus, right frontal pole), or visuospatial content (i.e., right ITG, 
precentral gyrus), or both (i.e., right PaCG, right insula, right 
IFG, and right MFG). A dissociable effect of speech and visual 
tasks was found in left SFG/left postcentral gyrus and right ITG, 
uncovering the joint effect of acoustic degradation and divided 
attention in speech processing.

Author Contributions

H.W., C.M., S.R., and P.A. designed the research. H.W. built the exper-
imental paradigm. H.W. and R.C. collected data. H.W. and J.S. contrib-
uted to analytic tools and pipelines. H.W. analyzed data. H.W. wrote the 
first draft of the manuscript. H.W., R.C., J.S., C.M., S.R., and P.A. edited 
the manuscript.

Acknowledgments

The authors thank Andrew Twaites, Parish Oliver, and Elise Kanber from 
the Department of Speech, Hearing and Phonetic Sciences at UCL for ad-
vice and discussion on data analysis. This work was supported by a Graduate 
Research Scholarship awarded to H.W. by UCL, award code 156630.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data that support the findings of this study are openly available 
in GitHub at https://​github.​com/​hwang​uc/​brain​-​xgboo​st-​divid​edatt​
n-​wangetal.

References

Adab, H. Z., I. D. Popivanov, W. Vanduffel, and R. Vogels. 2014. “Perceptual 
Learning of Simple Stimuli Modifies Stimulus Representations in 
Posterior Inferior Temporal Cortex.” Journal of Cognitive Neuroscience 
26, no. 10: 2187–2200. https://​doi.​org/​10.​1162/​jocn_a_​00641​.

Balslev, D., B. Odoj, and H. O. Karnath. 2013. “Role of Somatosensory 
Cortex in Visuospatial Attention.” Journal of Neuroscience 33, no. 46: 
18311–18318. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​1112-​13.​2013.

Bench, J., Å. Kowal, and J. Bamford. 1979. “The BKB (Bamford-Kowal-
Bench) Sentence Lists for Partially-Hearing Children.” British Journal of 
Audiology 13, no. 3: 108–112. https://​doi.​org/​10.​3109/​03005​36790​9078884.

Boersma, P. 2001. “Praat, a System for Doing Phonetics by Computer.” 
Glot International 5, no. 9–10: 341–345.

Braga, R. M., L. R. Wilson, D. J. Sharp, R. J. S. Wise, and R. Leech. 2013. 
“Separable Networks for Top-Down Attention to Auditory Non-Spatial 
and Visuospatial Modalities.” NeuroImage 74: 77–86. https://​doi.​org/​10.​
1016/j.​neuro​image.​2013.​02.​023.

Calder-Travis, J., and W. J. Ma. 2020. “Explaining the Effects of 
Distractor Statistics in Visual Search.” Journal of Vision 20, no. 13: 1–26. 
https://​doi.​org/​10.​1167/​jov.​20.​13.​11.

Carroll, J. B. 1993. Human Cognitive Abilities: A Survey of Factor-
Analytic Studies (No. 1). Cambridge University Press.

Chen, T., and C. Guestrin. 2016. “XGBoost: A Scalable Tree Boosting 
System.” In Proceedings of the ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, August 13–17, 2016, 785–
794. ACM. https://​doi.​org/​10.​1145/​29396​72.​2939785.

Corbetta, M., F. Miezin, S. Dobmeyer, G. Shulman, and S. Petersen. 
1991. “Selective and Divided Attention During Visual Discriminations 
of Shape, Color, and Speed: Functional Anatomy by Positron Emission 
Tomography.” Journal of Neuroscience 11, no. 8: 2383–2402. https://​doi.​
org/​10.​1523/​JNEUR​OSCI.​11-​08-​02383.​1991.

Davatzikos, C. 2004. “Why Voxel-Based Morphometric Analysis Should 
Be Used With Great Caution When Characterizing Group Differences.” 
NeuroImage 23, no. 1: 17–20. https://​doi.​org/​10.​1016/j.​neuro​image.​
2004.​05.​010.

Davis, M. H., I. S. Johnsrude, A. G. Hervais-Adelman, K. Taylor, and C. 
McGettigan. 2005. “Lexical Information Drives Perceptual Learning of 
Distorted Speech: Evidence From the Comprehension of Noise-Vocoded 
Sentences.” Journal of Experimental Psychology: General 134, no. 2: 
222–241. https://​doi.​org/​10.​1037/​0096-​3445.​134.2.​222.

Degerman, A., T. Rinne, J. Salmi, O. Salonen, and K. Alho. 2006. 
“Selective Attention to Sound Location or Pitch Studied With fMRI.” 
Brain Research 1077, no. 1: 123–134. https://​doi.​org/​10.​1016/j.​brain​res.​
2006.​01.​025.

Eckert, M. A., V. Menon, A. Walczak, et al. 2009. “At the Heart of the 
Ventral Attention System: The Right Anterior Insula.” Human Brain 
Mapping 30, no. 8: 2530–2541. https://​doi.​org/​10.​1002/​hbm.​20688​.

Eisner, F., C. McGettigan, A. Faulkner, S. Rosen, and S. K. Scott. 2010. 
“Inferior Frontal Gyrus Activation Predicts Individual Differences in 
Perceptual Learning of Cochlear-Implant Simulations.” Journal of 
Neuroscience 30, no. 21: 7179–7186. https://​doi.​org/​10.​1523/​JNEUR​
OSCI.​4040-​09.​2010.

Elliott, M. R., R. W. Bowtell, and P. G. Morris. 1999. “The Effect of 
Scanner Sound in Visual, Motor, and Auditory Functional MRI.” 
Magnetic Resonance in Medicine 41, no. 6: 1230–1235. https://​doi.​org/​10.​
1002/​(SICI)​1522-​2594(199906)​41:​6<​1230::​AID-​MRM20​>​3.0.​CO;​2-​1.

Erb, J., M. J. Henry, F. Eisner, and J. Obleser. 2013. “The Brain Dynamics 
of Rapid Perceptual Adaptation to Adverse Listening Conditions.” 
Journal of Neuroscience 33, no. 26: 10688–10697. https://​doi.​org/​10.​
1523/​JNEUR​OSCI.​4596-​12.​2013.

Floares, A. G., M. Ferisgan, D. Onita, A. Ciuparu, G. A. Calin, and F. B. 
Manolache. 2017. “The Smallest Sample Size for the Desired Diagnosis 
Accuracy.” International Journal of Oncology and Cancer Therapy 2: 
13–19. http://​cance​rgeno​me.​nih.​gov/​.

Gennari, S. P., R. E. Millman, M. Hymers, and S. L. Mattys. 2018. 
“Anterior Paracingulate and Cingulate Cortex Mediates the Effects of 
Cognitive Load on Speech Sound Discrimination.” NeuroImage 178: 
735–743. https://​doi.​org/​10.​1016/j.​neuro​image.​2018.​06.​035.

Ghosh, A., N. Manwani, and P. S. Sastry. 2017. “On the Robustness of 
Decision Tree Learning Under Label Noise.” In Advances in Knowledge 

 10970193, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70312 by Patti A
dank - T

est , W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/hwanguc/brain-xgboost-dividedattn-wangetal
https://github.com/hwanguc/brain-xgboost-dividedattn-wangetal
https://doi.org/10.1162/jocn_a_00641
https://doi.org/10.1523/JNEUROSCI.1112-13.2013
https://doi.org/10.3109/03005367909078884
https://doi.org/10.1016/j.neuroimage.2013.02.023
https://doi.org/10.1016/j.neuroimage.2013.02.023
https://doi.org/10.1167/jov.20.13.11
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1523/JNEUROSCI.11-08-02383.1991
https://doi.org/10.1523/JNEUROSCI.11-08-02383.1991
https://doi.org/10.1016/j.neuroimage.2004.05.010
https://doi.org/10.1016/j.neuroimage.2004.05.010
https://doi.org/10.1037/0096-3445.134.2.222
https://doi.org/10.1016/j.brainres.2006.01.025
https://doi.org/10.1016/j.brainres.2006.01.025
https://doi.org/10.1002/hbm.20688
https://doi.org/10.1523/JNEUROSCI.4040-09.2010
https://doi.org/10.1523/JNEUROSCI.4040-09.2010
https://doi.org/10.1002/(SICI)1522-2594(199906)41:6%3C1230::AID-MRM20%3E3.0.CO;2-1
https://doi.org/10.1002/(SICI)1522-2594(199906)41:6%3C1230::AID-MRM20%3E3.0.CO;2-1
https://doi.org/10.1523/JNEUROSCI.4596-12.2013
https://doi.org/10.1523/JNEUROSCI.4596-12.2013
http://cancergenome.nih.gov/
https://doi.org/10.1016/j.neuroimage.2018.06.035


19 of 20

Discovery and Data Mining. PAKDD 2017, 685–697. Springer. https://​
doi.​org/​10.​1007/​978-​3-​319-​57454​-​7_​53.

Greenwood, D. D. 1990. “A Cochlear Frequency-Position Function for 
Several Species—29 Years Later.” Journal of the Acoustical Society of 
America 87, no. 6: 2592–2605. https://​doi.​org/​10.​1121/1.​399052.

Hahn, B., F. A. Wolkenberg, T. J. Ross, et  al. 2008. “Divided Versus 
Selective Attention: Evidence for Common Processing Mechanisms.” 
Brain Research 1215: 137–146. https://​doi.​org/​10.​1016/j.​brain​res.​2008.​
03.​058.

Hall, D. A., J. Chambers, M. A. Akeroyd, J. R. Foster, R. Coxon, and A. R. 
Palmer. 2009. “Acoustic, Psychophysical, and Neuroimaging Measurements 
of the Effectiveness of Active Cancellation During Auditory Functional 
Magnetic Resonance Imaging.” Journal of the Acoustical Society of America 
125, no. 1: 347–359. https://​doi.​org/​10.​1121/1.​3021437.

Ham, T. E., X. De Boissezon, A. Leff, et  al. 2013. “Distinct Frontal 
Networks Are Involved in Adapting to Internally and Externally 
Signaled Errors.” Cerebral Cortex 23, no. 3: 703–713. https://​doi.​org/​10.​
1093/​cercor/​bhs056.

Hampshire, A., S. R. Chamberlain, M. M. Monti, J. Duncan, and A. M. 
Owen. 2010. “The Role of the Right Inferior Frontal Gyrus: Inhibition 
and Attentional Control.” NeuroImage 50, no. 3: 1313–1319. https://​doi.​
org/​10.​1016/j.​neuro​image.​2009.​12.​109.

Hervais-Adelman, A. G., R. P. Carlyon, I. S. Johnsrude, and M. H. 
Davis. 2012. “Brain Regions Recruited for the Effortful Comprehension 
of Noise-Vocoded Words.” Language & Cognitive Processes 27, no. 7–8: 
1145–1166. https://​doi.​org/​10.​1080/​01690​965.​2012.​662280.

Hunter, C. R., and D. B. Pisoni. 2018. “Extrinsic Cognitive Load Impairs 
Spoken Word Recognition in High- and Low-Predictability Sentences.” 
Ear and Hearing 39, no. 2: 378–389. https://​doi.​org/​10.​1097/​AUD.​00000​
00000​000493.

Jackson, R. L., C. J. Bajada, G. E. Rice, L. L. Cloutman, and M. A. 
Lambon Ralph. 2018. “An Emergent Functional Parcellation of the 
Temporal Cortex.” NeuroImage 170: 385–399. https://​doi.​org/​10.​1016/j.​
neuro​image.​2017.​04.​024.

Japee, S., K. Holiday, M. D. Satyshur, I. Mukai, and L. G. Ungerleider. 
2015. “A Role of Right Middle Frontal Gyrus in Reorienting of Attention: 
A Case Study.” Frontiers in Systems Neuroscience 9: 23. https://​doi.​org/​
10.​3389/​fnsys.​2015.​00023​.

Johansen-Berg, H., and P. M. Matthews. 2002. “Attention to Movement 
Modulates Activity in Sensori-Motor Areas, Including Primary Motor 
Cortex.” Experimental Brain Research 142, no. 1: 13–24. https://​doi.​org/​
10.​1007/​s0022​1-​001-​0905-​8.

Johnsrude, I. S., and J. M. Rodd. 2015. “Factors That Increase Processing 
Demands When Listening to Speech.” In Neurobiology of Language, ed-
ited by G. Hickok and S. L. Small, 491–502. Academic Press.

Kahneman, D. 1973. Attention and Effort. Prentice-Hall.

Kennedy-Higgins, D., J. T. Devlin, and P. Adank. 2020. “Cognitive 
Mechanisms Underpinning Successful Perception of Different Speech 
Distortions.” Journal of the Acoustical Society of America 147, no. 4: 
2728–2740. https://​doi.​org/​10.​1121/​10.​0001160.

Kha, Q. H., V. H. Le, T. N. K. Hung, and N. Q. K. Le. 2021. “Development 
and Validation of an Efficient MRI Radiomics Signature for Improving the 
Predictive Performance of 1p/19q Co-Deletion in Lower-Grade Gliomas.” 
Cancers 13, no. 21: 5398. https://​doi.​org/​10.​3390/​cance​rs132​15398​.

Koechlin, E. 2011. “Frontal Pole Function: What Is Specifically 
Human?” Trends in Cognitive Sciences 15, no. 6: 241–243. https://​doi.​
org/​10.​1016/j.​tics.​2011.​04.​005.

Kotsiantis, S. B., I. D. Zaharakis, and P. E. Pintelas. 2006. “Machine 
Learning: A Review of Classification and Combining Techniques.” 
Artificial Intelligence Review 26, no. 3: 159–190. https://​doi.​org/​10.​1007/​
s1046​2-​007-​9052-​3.

Li, X., P. S. Morgan, J. Ashburner, J. Smith, and C. Rorden. 2016. 
“The First Step for Neuroimaging Data Analysis: DICOM to NIfTI 
Conversion.” Journal of Neuroscience Methods 264: 47–56. https://​doi.​
org/​10.​1016/j.​jneum​eth.​2016.​03.​001.

Lindquist, M. A., J. Meng Loh, L. Y. Atlas, and T. D. Wager. 2009. 
“Modeling the Hemodynamic Response Function in fMRI: Efficiency, 
Bias and Mis-Modeling.” NeuroImage 45, no. 1: S187–S198. https://​doi.​
org/​10.​1016/j.​neuro​image.​2008.​10.​065.

Lundberg, S. M., G. Erion, H. Chen, et  al. 2020. “From Local 
Explanations to Global Understanding With Explainable AI for Trees.” 
Nature Machine Intelligence 2, no. 1: 2522–5839.

Lundberg, S. M., and S.-I. Lee. 2017. “A Unified Approach to 
Interpreting Model Predictions.” In Advances in Neural Information 
Processing Systems, 30. NIPS'17: Proceedings of the 31st International 
Conference on Neural Information Processing System, 4768–4777. 
Curran Associates Inc.

Macleod, A., and Q. Summerfield. 1990. “A Procedure for Measuring 
Auditory and Audiovisual Speech-Reception Thresholds for Sentences 
in Noise: Rationale, Evaluation, and Recommendations for Use.” British 
Journal of Audiology 24, no. 1: 29–43. https://​doi.​org/​10.​3109/​03005​
36900​9077840.

Macmillan, N. A. 1993. “Signal Detection Theory as Data Analysis 
Method and Psychological Decision Model.” In A Handbook for Data 
Analysis in the Behavioral Sciences: Methodological Issues, 21–57. 
Lawrence Erlbaum Associates, Inc.

Mattys, S. L., K. Barden, and A. G. Samuel. 2014. “Extrinsic Cognitive 
Load Impairs Low-Level Speech Perception.” Psychonomic Bulletin and 
Review 21, no. 3: 748–754. https://​doi.​org/​10.​3758/​s1342​3-​013-​0544-​7.

McGettigan, C., K. Jasmin, F. Eisner, et  al. 2017. “You Talkin’ 
to Me? Communicative Talker Gaze Activates Left-Lateralized 
Superior Temporal Cortex During Perception of Degraded Speech.” 
Neuropsychologia 100: 51–63. https://​doi.​org/​10.​1016/j.​neuro​psych​olo-
gia.​2017.​04.​013.

McGettigan, C., S. Rosen, and S. K. Scott. 2014. “Lexico-Semantic 
and Acoustic-Phonetic Processes in the Perception of Noise-Vocoded 
Speech: Implications for Cochlear Implantation.” Frontiers in Systems 
Neuroscience 8: 18. https://​doi.​org/​10.​3389/​fnsys.​2014.​00018​.

Mickan, A., J. M. McQueen, and K. Lemhöfer. 2020. “Between-
Language Competition as a Driving Force in Foreign Language 
Attrition.” Cognition 198: 104218. https://​doi.​org/​10.​1016/j.​cogni​tion.​
2020.​104218.

Moelker, A., and P. M. T. Pattynama. 2003. “Acoustic Noise Concerns in 
Functional Magnetic Resonance Imaging.” Human Brain Mapping 20, 
no. 3: 123–141. https://​doi.​org/​10.​1002/​hbm.​10134​.

Mueller, K., T. Mildner, T. Fritz, et  al. 2011. “Investigating Brain 
Response to Music: A Comparison of Different fMRI Acquisition 
Schemes.” NeuroImage 54, no. 1: 337–343. https://​doi.​org/​10.​1016/j.​
neuro​image.​2010.​08.​029.

Nannen, V. 2003. “The Paradox of Overfitting (Issue July 2003).” 
Master's dissertation, University of Groningen.

Nuttall, H. E., D. Kennedy-Higgins, J. Hogan, J. T. Devlin, and P. 
Adank. 2016. “The Effect of Speech Distortion on the Excitability of 
Articulatory Motor Cortex.” NeuroImage 128: 218–226. https://​doi.​org/​
10.​1016/j.​neuro​image.​2015.​12.​038.

Nuttall, H. E., G. Maegherman, J. T. Devlin, and P. Adank. 2022. 
“Speech Motor Facilitation Is Not Affected by Ageing but Is Modulated 
by Task Demands During Speech Perception.” Neuropsychologia 166: 
108135. https://​doi.​org/​10.​1016/j.​neuro​psych​ologia.​2021.​108135.

Okada, T., and T. Nakai. 2003. “Silent fMRI Acquisition Methods for 
Large Acoustic Noise During Scan.” Magnetic Resonance in Medical 
Sciences 2, no. 4: 181–187.

 10970193, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70312 by Patti A
dank - T

est , W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1007/978-3-319-57454-7_53
https://doi.org/10.1007/978-3-319-57454-7_53
https://doi.org/10.1121/1.399052
https://doi.org/10.1016/j.brainres.2008.03.058
https://doi.org/10.1016/j.brainres.2008.03.058
https://doi.org/10.1121/1.3021437
https://doi.org/10.1093/cercor/bhs056
https://doi.org/10.1093/cercor/bhs056
https://doi.org/10.1016/j.neuroimage.2009.12.109
https://doi.org/10.1016/j.neuroimage.2009.12.109
https://doi.org/10.1080/01690965.2012.662280
https://doi.org/10.1097/AUD.0000000000000493
https://doi.org/10.1097/AUD.0000000000000493
https://doi.org/10.1016/j.neuroimage.2017.04.024
https://doi.org/10.1016/j.neuroimage.2017.04.024
https://doi.org/10.3389/fnsys.2015.00023
https://doi.org/10.3389/fnsys.2015.00023
https://doi.org/10.1007/s00221-001-0905-8
https://doi.org/10.1007/s00221-001-0905-8
https://doi.org/10.1121/10.0001160
https://doi.org/10.3390/cancers13215398
https://doi.org/10.1016/j.tics.2011.04.005
https://doi.org/10.1016/j.tics.2011.04.005
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1007/s10462-007-9052-3
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.jneumeth.2016.03.001
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.1016/j.neuroimage.2008.10.065
https://doi.org/10.3109/03005369009077840
https://doi.org/10.3109/03005369009077840
https://doi.org/10.3758/s13423-013-0544-7
https://doi.org/10.1016/j.neuropsychologia.2017.04.013
https://doi.org/10.1016/j.neuropsychologia.2017.04.013
https://doi.org/10.3389/fnsys.2014.00018
https://doi.org/10.1016/j.cognition.2020.104218
https://doi.org/10.1016/j.cognition.2020.104218
https://doi.org/10.1002/hbm.10134
https://doi.org/10.1016/j.neuroimage.2010.08.029
https://doi.org/10.1016/j.neuroimage.2010.08.029
https://doi.org/10.1016/j.neuroimage.2015.12.038
https://doi.org/10.1016/j.neuroimage.2015.12.038
https://doi.org/10.1016/j.neuropsychologia.2021.108135


20 of 20 Human Brain Mapping, 2025

Pang, H. Z., Z. Y. Yu, H. M. Yu, et al. 2021. “Use of Machine Learning 
Method on Automatic Classification of Motor Subtype of Parkinson's 
Disease Based on Multilevel Indices of rs-fMRI.” Parkinsonism & Related 
Disorders 90: 65–72. https://​doi.​org/​10.​1016/j.​parkr​eldis.​2021.​08.​003.

Pedregosa, F., G. Varoquaux, A. Gramfort, et  al. 2011. “Scikit-learn: 
Machine Learning in Python.” Journal of Machine Learning Research 
12, no. 85: 2825–2830.

Poldrack, R. A., A. D. Wagner, M. W. Prull, J. E. Desmond, G. H. Glover, 
and J. D. E. Gabrieli. 1999. “Functional Specialization for Semantic 
and Phonological Processing in the Left Inferior Prefrontal Cortex.” 
NeuroImage 10, no. 1: 15–35. https://​doi.​org/​10.​1006/​nimg.​1999.​0441.

Ritz, H., C. J. Wild, and I. S. Johnsrude. 2022. “Parametric Cognitive 
Load Reveals Hidden Costs in the Neural Processing of Perfectly 
Intelligible Degraded Speech.” Journal of Neuroscience 42, no. 23: 4619–
4628. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​1777-​21.​2022.

Rodd, J. M., I. S. Johnsrude, and M. H. Davis. 2010. “The Role of Domain-
General Frontal Systems in Language Comprehension: Evidence From 
Dual-Task Interference and Semantic Ambiguity.” Brain and Language 
115, no. 3: 182–188. https://​doi.​org/​10.​1016/j.​bandl.​2010.​07.​005.

Rosen, S., A. Faulkner, and L. Wilkinson. 1999. “Adaptation by Normal 
Listeners to Upward Spectral Shifts of Speech: Implications for Cochlear 
Implants.” Journal of the Acoustical Society of America 106, no. 6: 3629–
3636. https://​doi.​org/​10.​1121/1.​428215.

Ryu, S.-E., D.-H. Shin, and K. Chung. 2020. “Prediction Model of 
Dementia Risk Based on XGBoost Using Derived Variable Extraction 
and Hyper Parameter Optimization.” IEEE Access 8: 177708–177720. 
https://​doi.​org/​10.​1109/​ACCESS.​2020.​3025553.

Salcedo-Sanz, S., J. L. Rojo-Álvarez, M. Martínez-Ramón, and G. Camps-
Valls. 2014. “Support Vector Machines in Engineering: An Overview.” 
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 
4, no. 3: 234–267. https://​doi.​org/​10.​1002/​widm.​1125.

Schaefer, A., R. Kong, E. M. Gordon, et  al. 2018. “Local-Global 
Parcellation of the Human Cerebral Cortex From Intrinsic Functional 
Connectivity MRI.” Cerebral Cortex 28, no. 9: 3095–3114. https://​doi.​
org/​10.​1093/​cercor/​bhx179.

Schwarzbauer, C., M. H. Davis, J. M. Rodd, and I. Johnsrude. 2006. 
“Interleaved Silent Steady State (ISSS) Imaging: A New Sparse Imaging 
Method Applied to Auditory fMRI.” NeuroImage 29, no. 3: 774–782. 
https://​doi.​org/​10.​1016/j.​neuro​image.​2005.​08.​025.

Scott, S. K., S. Rosen, H. Lang, and R. J. S. Wise. 2006. “Neural Correlates 
of Intelligibility in Speech Investigated With Noise Vocoded Speech—A 
Positron Emission Tomography Study.” Journal of the Acoustical Society 
of America 120, no. 2: 1075–1083. https://​doi.​org/​10.​1121/1.​2216725.

Shannon, R. V., Q. J. Fu, and J. Galvin 3rd. 2004. “The Number of Spectral 
Channels Required for Speech Recognition Depends on the Difficulty of 
the Listening Situation.” Acta Oto-Laryngologica. Supplementum 124, 
no. 552: 50–54. https://​doi.​org/​10.​1080/​03655​23041​0017562.

Shannon, R. V., F. G. Zeng, V. Kamath, J. Wygonski, and M. Ekelid. 
1995. “Speech Recognition With Primarily Temporal Cues.” Science 
270, no. 5234: 303–304. https://​doi.​org/​10.​1126/​scien​ce.​270.​5234.​303.

Shapley, L. S. 1953. “A Value for n-Person Games.” In Contributions to 
the Theory of Games (AM-28), vol. II, 307–318. Princeton University 
Press. https://​doi.​org/​10.​1515/​97814​00881​970-​018.

Sharp, D. J., V. Bonnelle, X. De Boissezon, et al. 2010. “Distinct Frontal 
Systems for Response Inhibition, Attentional Capture, and Error 
Processing.” Proceedings of the National Academy of Sciences of the 
United States of America 107, no. 13: 6106–6111. https://​doi.​org/​10.​1073/​
pnas.​10001​75107​.

Sigala, N., and N. K. Logothetis. 2002. “Visual Categorization Shapes 
Feature Selectivity in the Primate Temporal Cortex.” Nature 415, no. 
6869: 318–320. https://​doi.​org/​10.​1038/​415318a.

Singmann, H., B. Bolker, J. Westfall, and F. Aust. 2016. afex: Analysis of 
Factorial Experiments (R Package Version 1.3-0). https://​CRAN.​R-​proje​
ct.​org/​packa​ge=​afex.

Sohoglu, E., J. E. Peelle, R. P. Carlyon, and M. H. Davis. 2012. “Predictive 
Top-Down Integration of Prior Knowledge During Speech Perception.” 
Journal of Neuroscience 32, no. 25: 8443–8453. https://​doi.​org/​10.​1523/​
JNEUR​OSCI.​5069-​11.​2012.

Sona Systems. 2023. Sona Systems: Cloud-Based Participant 
Management Software. Sona Systems, Ltd.

Štrumbelj, E., and I. Kononenko. 2014. “Explaining Prediction Models 
and Individual Predictions With Feature Contributions.” Knowledge 
and Information Systems 41, no. 3: 647–665. https://​doi.​org/​10.​1007/​
s1011​5-​013-​0679-​x.

Torlay, L., M. Perrone-Bertolotti, E. Thomas, and M. Baciu. 2017. 
“Machine Learning–XGBoost Analysis of Language Networks to 
Classify Patients With Epilepsy.” Brain Informatics 4, no. 3: 159–169. 
https://​doi.​org/​10.​1007/​s4070​8-​017-​0065-​7.

Tsujimoto, S., A. Genovesio, and S. P. Wise. 2011. “Frontal Pole Cortex: 
Encoding Ends at the End of the Endbrain.” Trends in Cognitive Sciences 
15, no. 4: 169–176. https://​doi.​org/​10.​1016/j.​tics.​2011.​02.​001.

Wang, H., R. Chen, Y. Yan, C. McGettigan, S. Rosen, and P. Adank. 
2023. “Perceptual Learning of Noise-Vocoded Speech Under Divided 
Attention.” Trends in Hearing 27: 23312165231192297. https://​doi.​org/​
10.​1177/​23312​16523​1192297.

Wang, Y., N. Zhang, F. Yan, and Y. Gao. 2018. “Magnetic Resonance 
Imaging Study of Gray Matter in Schizophrenia Based on XGBoost.” 
Journal of Integrative Neuroscience 17, no. 4: 331–336. https://​doi.​org/​10.​
31083/​j.​jin.​2018.​04.​0410.

Ward, K. M., J. Shen, P. E. Souza, and T. M. Grieco-Calub. 2017. “Age-
Related Differences in Listening Effort During Degraded Speech 
Recognition.” Ear and Hearing 38, no. 1: 74–84. https://​doi.​org/​10.​1097/​
AUD.​00000​00000​000355.

Weaverdyck, M. E., M. D. Lieberman, and C. Parkinson. 2020. “Tools of 
the Trade Multivoxel Pattern Analysis in fMRI: A Practical Introduction 
for Social and Affective Neuroscientists.” Social Cognitive and Affective 
Neuroscience 15, no. 4: 487–509. https://​doi.​org/​10.​1093/​scan/​nsaa057.

Wild, C. J., A. Yusuf, D. E. Wilson, J. E. Peelle, M. H. Davis, and I. S. 
Johnsrude. 2012. “Effortful Listening: The Processing of Degraded 
Speech Depends Critically on Attention.” Journal of Neuroscience 32, no. 
40: 14010–14021. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​1528-​12.​2012.

Windischberger, C., C. Lamm, H. Bauer, and E. Moser. 2003. “Human 
Motor Cortex Activity During Mental Rotation.” NeuroImage 20, no. 1: 
225–232. https://​doi.​org/​10.​1016/​S1053​-​8119(03)​00235​-​0.

Zekveld, A. A., D. J. Heslenfeld, I. S. Johnsrude, N. J. Versfeld, and S. E. 
Kramer. 2014. “The Eye as a Window to the Listening Brain: Neural 
Correlates of Pupil Size as a Measure of Cognitive Listening Load.” 
NeuroImage 101: 76–86. https://​doi.​org/​10.​1016/j.​neuro​image.​2014.​06.​069.

Zhang, Y., E. M. Meyers, N. P. Bichot, T. Serre, T. A. Poggio, and R. Desimone. 
2011. “Object Decoding With Attention in Inferior Temporal Cortex.” 
Proceedings of the National Academy of Sciences of the United States of 
America 108, no. 21: 8850–8855. https://​doi.​org/​10.​1073/​pnas.​11009​99108​.

Supporting Information

Additional supporting information can be found online in the 
Supporting Information section. Data S1: Supplemental materials. 

 10970193, 2025, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hbm

.70312 by Patti A
dank - T

est , W
iley O

nline L
ibrary on [07/08/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1016/j.parkreldis.2021.08.003
https://doi.org/10.1006/nimg.1999.0441
https://doi.org/10.1523/JNEUROSCI.1777-21.2022
https://doi.org/10.1016/j.bandl.2010.07.005
https://doi.org/10.1121/1.428215
https://doi.org/10.1109/ACCESS.2020.3025553
https://doi.org/10.1002/widm.1125
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1016/j.neuroimage.2005.08.025
https://doi.org/10.1121/1.2216725
https://doi.org/10.1080/03655230410017562
https://doi.org/10.1126/science.270.5234.303
https://doi.org/10.1515/9781400881970-018
https://doi.org/10.1073/pnas.1000175107
https://doi.org/10.1073/pnas.1000175107
https://doi.org/10.1038/415318a
https://cran.r-project.org/package=afex
https://cran.r-project.org/package=afex
https://doi.org/10.1523/JNEUROSCI.5069-11.2012
https://doi.org/10.1523/JNEUROSCI.5069-11.2012
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1007/s40708-017-0065-7
https://doi.org/10.1016/j.tics.2011.02.001
https://doi.org/10.1177/23312165231192297
https://doi.org/10.1177/23312165231192297
https://doi.org/10.31083/j.jin.2018.04.0410
https://doi.org/10.31083/j.jin.2018.04.0410
https://doi.org/10.1097/AUD.0000000000000355
https://doi.org/10.1097/AUD.0000000000000355
https://doi.org/10.1093/scan/nsaa057
https://doi.org/10.1523/JNEUROSCI.1528-12.2012
https://doi.org/10.1016/S1053-8119(03)00235-0
https://doi.org/10.1016/j.neuroimage.2014.06.069
https://doi.org/10.1073/pnas.1100999108

	Neural Processing of Noise-Vocoded Speech Under Divided Attention: An fMRI-Machine Learning Study
	ABSTRACT
	1   |   Introduction
	2   |   Materials and Methods
	2.1   |   Participants
	2.2   |   Speech Task
	2.3   |   Concurrent Visual Task

	3   |   Experimental Design and Statistical Analyses
	3.1   |   Practice and Main Runs
	3.2   |   Post-Scan Task and Questionnaire
	3.3   |   fMRI Data Acquisition
	3.4   |   Behavioral Data Analysis
	3.4.1   |   Dual Task
	3.4.2   |   Post-Scan Task

	3.5   |   fMRI Data Analysis
	3.5.1   |   General Linear Model
	3.5.2   |   Correlation Analysis
	3.5.3   |   ML
	3.5.3.1   |   Extreme Gradient Boosting (XGBoost).  
	3.5.3.2   |   Model Training and Evaluation.  
	3.5.3.3   |   Feature Selection and Model Interpretation.  



	4   |   Results
	4.1   |   Behavioral Results
	4.1.1   |   Speech Task
	4.1.2   |   Visual Task
	4.1.3   |   Effect of TD on Dual-Task Performance

	4.2   |   fMRI Results
	4.2.1   |   General Linear Model
	4.2.2   |   Correlation Analysis
	4.2.3   |   XGBoost
	4.2.3.1   |   Baseline (Whole Brain) Model.  
	4.2.3.2   |   Model With Selected Features.  
	4.2.3.3   |   Model Interpretation.  



	5   |   Discussion
	5.1   |   Behavioral Findings
	5.2   |   Neuroimaging Findings With GLM
	5.3   |   Neuroimaging Findings With XGBoost
	5.4   |   Limitations
	5.5   |   Summary

	Author Contributions
	Acknowledgments
	Conflicts of Interest
	Data Availability Statement
	References


