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ABSTRACT 

Purpose: To compare the performance and cost-effectiveness of DeepSeek-R1 with OpenAI o1 

in diagnosing and managing ophthalmology clinical cases. 

Study Design: Cross-sectional evaluation. 

Methods: A total of 300 clinical cases spanning 10 different ophthalmology subspecialties were 

collected from StatPearls. Each case presented a multiple-choice question regarding the 

diagnosis or management of the case. DeepSeek-R1 was accessed through its public chat-based 

interface, while OpenAI o1 was queried via an API with a standardized temperature setting of 

0.3. Both models were prompted using the Plan-and-Solve+ (PS+) prompt engineering method, 

instructing them to systematically solve each case. Performance was calculated as the proportion 

correctly answered multiple choice questions. McNemar’s test was employed to compare the two 

models’ performance on paired data. Inter-model agreement for correct diagnoses was evaluated 

via Cohen’s kappa. A token-based cost analysis was performed to estimate the comparative 

expenditures of running each model at scale, accounting for both input prompts and model-

generated output. 

Results: DeepSeek-R1 and OpenAI o1 achieved identical overall performance of 82.0% 

(246/300; 95% CI: 77.3-85.9). Subspeciality-specific analysis revealed numerical variation in 

performance, though did not reach statistical significance (p>0.05). Agreement between the 

models was moderate overall (κ=0.503, p<0.001), with substantial agreement in Refractive 

Management/Intervention (κ=0.698, p<0.001) and moderate agreement in Retina/Vitreous 

(κ=0.561,p<0.001) and Ocular Pathology/Oncology (κ=0.495, p<0.01) cases. Cost analysis 

indicated an approximately 15-fold reduction in per-query, token-related expenses when using 

DeepSeek-R1 compared with OpenAI o1 for the same workload. 

Conclusions: DeepSeek-R1 demonstrates robust diagnostic reasoning and management decision-

making capabilities, performing comparably to OpenAI o1 across a range of ophthalmic 

subspecialty cases, while also offering a substantial reduction in usage costs. These findings 

highlight the feasibility of utilizing open-weight, reinforcement learning-augmented LLMs as an 

accessible, cost-effective alternative to proprietary models. Further investigations should re-

evaluate safety guardrails and assess the performance of self-hosted versions of DeepSeek-R1 

with domain-specific ophthalmic expertise to optimize clinical utility. 

 



 

INTRODUCTION 

Artificial intelligence (AI) is increasingly being explored in ophthalmology, particularly for its 

potential to augment diagnostic precision and support clinical decision-making. Large language 

models (LLMs), a subset of foundation models trained on extensive textual datasets, boast 

advanced natural language processing (NLP) capabilities and the ability to engage in complex 

reasoning tasks.1–3  

 

In ophthalmology, LLMs have been tested on their ability to answer board-style multiple-choice 

questions, analyze clinical cases, and interpret ophthalmic images.4–9 Studies evaluating 

Generative Pretrained Transformer (GPT) 4 and other advanced models have demonstrated 

competitive performance with human clinicians in responding to ophthalmic questions, 

positioning them as valuable tools for clinical reasoning and knowledge retrieval.10,11 However, 

while these models excel in structured question-answer formats, studies have highlighted 

limitations in their ability to manage complex, case-based diagnostic reasoning, particularly in 

multi-step clinical decision-making and ophthalmic image interpretation.12,13 

 

DeepSeek-R1, developed by DeepSeek-AI, has gained global attention for its reasoning-centric 

design, leveraging reinforcement learning (RL) to improve problem-solving capabilities.14 

Unlike traditional LLMs, which rely heavily on supervised fine-tuning (SFT), DeepSeek-R1 

integrates multi-stage training, cold-start data, and self-evolution through RL to refine its logical 

reasoning and decision-making skills. It was designed with a focus on logical inference, real-

time problem-solving, and structured reasoning, making it distinct from generative models that 

primarily excel in content synthesis. A defining characteristic of DeepSeek-R1 is that it is free to 

use and reuse, democratizing AI development.15 DeepSeek-AI reports that it was trained at a 

fraction of the cost of other leading LLMs, with an estimated $5.6 million compute budget, 

compared to the $60 million for Meta’s Llama 3.1 405B, $78 million for OpenAI's GPT-4, and 

$191 million for Google’s Gemini Ultra.16,17 

 

Despite its promising capabilities, DeepSeek-R1's performance in ophthalmology has not been 

evaluated. This study represents the first systematic assessment of DeepSeek-R1’s diagnostic 

accuracy and decision-making effectiveness in ophthalmology, using clinical cases from 

StatPearls. By benchmarking DeepSeek-R1 against OpenAI’s state-of-the-art model (o1), we aim 

to evaluate its performance on diagnosis and management of ocular pathologies, and economic 

feasibility for potential clinical integration. Given the growing interest in AI-driven diagnostic 

tools, this study provides critical insights into the viability of open-access, reasoning-based 

LLMs in ophthalmology and their potential role as an alternative path to proprietary AI models 

for cost-effective, AI-assisted clinical decision-making. 

 

 

METHODS 



 

Data Source 

This was a cross-sectional study conducted in accordance with the Strengthening the Reporting 

of Observational Studies in Epidemiology (STROBE) and guidelines.18 We also conducted this 

study in accordance with the transparent reporting of a multivariable model for individual 

prognosis or diagnosis (TRIPOD)-LLM, which is an extension of the TRIPOD + artificial 

intelligence statement that considers the unique challenges of LLM usage in healthcare.19 We 

used 300 cases from an online database of questions from StatPearls.20 These cases covered a 

broad range of ophthalmology subspecialities and topics. Each case was classified into one of 13 

ophthalmology subspecialties, as defined by the American Academy of Ophthalmology’s Basic 

and Clinical Science Course.21 These included Cataract/Anterior Segment (n=10), Neuro-

ophthalmology (n=31), Oculoplastics (n=33), Pediatric Ophthalmology/Strabismus (n=13), 

Retina and Vitreous (n=69), Cornea/External Disease (n=27), Glaucoma (n=23), Ocular 

Pathology/Oncology (n=46), Refractive Management/Intervention (n=34), Uveitis (n=14). There 

were no cases collected on Clinical Optics and Fundamentals. 

 

LLM Access and Parameters 

We accessed DeepSeek-R1 through its official chat user interface (UI), which provided direct 

interaction with the model without requiring the Application Program Interface (API).22 Unlike 

API-based implementations, the web platform does not allow for automated batch processing, 

necessitating manual input for each query. DeepSeek-R1, like other LLMs, uses a “temperature” 

parameter to control response variability when given identical prompts. The temperature scale 

ranges from 0 (producing the most deterministic responses) to 1 (yielding highly creative 

outputs). However, the platform does not provide direct control over this setting on the website 

platform, meaning responses were generated using the default configuration. 

 

We accessed OpenAI o1, using the API.23 This enabled us to implement customized automated 

mass prompting techniques via Google Sheets. Additionally, OpenAI o1’s temperature was set to 

0.3. While the optimal temperature for our particular application of the model has not been 

definitively established, our previous research found that a setting of 0.3 resulted in the highest 

accuracy.24 

 

Prompt Engineering 

Our previous analysis identified the Zero-Shot Plan-and-Solve + (PS+) prompt as the most 

effective approach, leading us to select it for this study. Originally developed by Wang et al., the 

PS+ prompt instructs the model to break down its task into structured steps, executing them 

sequentially with detailed guidance.25 Each clinical case was presented with a single prompt, 

which included the complete case description, a multiple-choice question, and the available 

answer choices. The questions followed a standardized format, consisting of one correct answer 

and three distractor options. 

 



 

Statistical Analysis 

Performance was calculated as the proportion of correct responses out of the total number of 

cases assessed. To compare the performance of DeepSeek-R1 and OpenAI o1, McNemar’s test 

was employed to assess the statistical significance of differences in accuracy between the two 

models when applied to the same dataset.26 This test, designed for paired categorical data, 

evaluates whether one model consistently outperformed the other. To quantify the level of 

agreement between the models, Cohen’s kappa (κ) was calculated, providing insight into the 

extent to which the two models arrived at similar conclusions beyond what would be expected by 

chance.27 Agreement was categorized as the following: 0-0.20 (none to slight agreement), 0.21-

0.40 (fair agreement), 0.41-0.60 (moderate agreement), 0.61-0.80 (substantial agreement), and 

0.81-1.00 (near perfect agreement). Confidence intervals for accuracy estimates were calculated 

using the Wilson Score Interval.28 All statistical tests were two-tailed, with a 5% significance 

threshold. Statistical analyses were performed with R version 4.4.2 (R Foundation for Statistical 

Computing). 

 

 

RESULTS 

DeepSeek‐R1 achieved an overall accuracy of 82.0% (246/300; 95% CI: 77.3-85.9), which was 

identical to OpenAI o1’s accuracy of 82.0% (246/300; 95% CI: 77.3-85.9) (p=1.000) (Table 1). 

Compared to OpenAI o1, DeepSeek‐R1 exhibited numerically higher diagnostic accuracy than 

OpenAI o1 in 4 of the 10 subspecialties analyzed, including Cornea/External Disease (88.9% vs. 

85.2%), Glaucoma (95.7% vs. 87.0%), Retina/Vitreous (82.6% vs. 81.2%), and Uveitis (85.7% 

vs. 71.4%). However, none of these differences reached statistical significance (p>0.05). 

Likewise, OpenAI o1 showed higher numerical accuracy values for Cataract/Anterior Segment 

(70.0% vs. 60.0%), Neuro-ophthalmology (93.5% vs. 87.1%), Ocular Pathology/Oncology 

(76.9% vs. 69.2%), Oculoplastics (84.8% vs. 81.8%), and Pediatric Ophthalmology (82.6% vs. 

80.4%) (all p>0.05). Both models scored the same on Refractive Management/Intervention 

(73.5%). Figure 1 compares the performance of both models by subspeciality.  

 

Inter-Model Agreement 

Cohen's kappa was calculated to assess agreement between DeepSeek-R1 and OpenAI o1 for 

correct diagnoses across subspecialties (Table 2). Overall agreement across all cases was 

moderate (κ=0.503, p<0.001). Agreement levels varied by subspecialty, with substantial 

agreement in Refractive Management/Intervention (κ=0.698, p<0.001) and moderate agreement 

in Retina/Vitreous (κ=0.561, p<0.001) and Ocular Pathology/Oncology (κ=0.495, p<0.01) cases.  

 

Cost-Effectiveness 

Across all 300 cases, there were a total of 386,778 characters used to prompt both models. 

According to OpenAI’s Tokenizer tool, one token is equivalent to approximately 4 characters of 

text for English text.29 Thus, the total number of input tokens used to prompt DeepSeek-R1 and 



 

OpenAI o1 was approximately 96,695 tokens. In total, OpenAI o1’s responses were 422,046 

characters (105,512 tokens), while DeepSeek-R1’s responses were 855,961 characters (213,990 

tokens) altogether. Under the default pay-per-token rates for OpenAI’s “o1-2024-12-17” model 

($15.00 USD per 1 million uncached input tokens and $60.00 USD per 1 million uncached 

output tokens), these 300 prompts would have cost approximately $7.78 USD in total.30 The cost 

breaks down to roughly $1.45 for input and $6.33 for output. Alternatively, OpenAI offers two 

monthly subscription packages for its chat UI, which costs $20/month for up to 50 o1 prompts 

per week or $200/month for unlimited o1prompts. 

 

By contrast, DeepSeek-R1 is free to use through its public chat UI and mobile app. Thus, we 

incurred no direct per-query fees during our analysis. DeepSeek also offers an API option for its 

R1 model, “deepseek-reasoner,” which has a token-based billing model—$0.55 USD per 

1 million input tokens and $2.19 USD per 1 million output tokens, including both its chain-of-

thought (CoT) and final answer.31 Had the API been used, it would have cost $0.52 USD overall. 

Thus, comparing the estimated API charges, DeepSeek-R1’s cost amounts to 6.71% of OpenAI 

o1’s total, or a 14.91-fold cost reduction per-query expenditures at the prompting volume 

examined in this study. 

 

 

DISCUSSION 

DeepSeek-R1 demonstrated comparable reasoning capabilities in ophthalmology cases, exactly 

matching the performance of OpenAI o1 of 82.0% (95% CI: 77.3-85.9). Subspecialty-level 

analysis revealed similar accuracy levels across each subspeciality, with no significant 

differences in performance. Despite minor variations, the performance consistency across the 

subspecialties underscores the capability of both models to handle a broad spectrum of 

ophthalmic cases. Refractive Management/Intervention, Ocular Pathology/Oncology, and 

Retina/Vitreous cases revealed moderate to substantial agreement (p<0.01). With an overall 

moderate agreement between the models (κ=0.503, p<0.001), DeepSeek-R1 performed as well as 

OpenAI o1 while maintaining an approximately 15-fold cost reduction, making it a highly cost-

effective alternative. Our results align with those of Mondillo et al., who evaluated DeepSeek-R1 

in pediatric decision support and noted that while OpenAI o1 achieved slightly higher accuracy 

(92.8% vs. 87.0%), DeepSeek-R1 demonstrated superior adaptability and accessibility.32 

 

In our study, DeepSeek-R1’s comparable performance to OpenAI’s highest performing model 

can be attributed to its innovative training methodology. Initially, DeepSeek-R1 undergoes a 

“cold start” phase, where it is trained on a diverse set of carefully selected reasoning datasets 

before RL to establish a foundational understanding.14 DeepSeek-R1 employs a Mixture of 

Experts (MoE) strategy, which activates specialized reasoning pathways tailored to specific 

tasks. This approach improves its handling of domain-specific challenges, enabling it to 

specialize in complex problem-solving across multiple disciplines.33 Additionally, DeepSeek-R1 



 

employs rejection sampling and supervised fine-tuning, generating multiple responses to a given 

problem and selecting only the most accurate and logically coherent outputs for further 

refinement. This iterative process allows the model to continuously correct mistakes, reinforce 

high-quality reasoning patterns, and optimize its performance. Prior to its final output, 

DeepSeek-R1 produces CoT outputs, explicitly discussing its intermediate reasoning steps. 

Within these responses, the model autonomously revises its reasoning, recognizing errors and 

correcting them in real-time. This remarkable self-reflection process, referred to as the “aha 

moment,” closely resembles human-like cognitive adjustments, allowing the model to iteratively 

improve its problem-solving skills.33,34 

 

Economically, DeepSeek-R1 presents a compelling advantage. Our analysis revealed that, even 

when utilizing the official API with token-based billing, DeepSeek-R1’s marginal per-query 

costs are far below those of OpenAI’s o1. It is important to note that DeepSeek-R1 is not fully 

open-sourced. Instead, it is released under an MIT license as an “open-weight” model, meaning 

users have access to its pre-trained weights and can build upon its architecture, but the 

underlying training data remains undisclosed.17 Nonetheless, DeepSeek-R1 remains an attractive 

option for institutions seeking the flexibility of self-hosting a model to reduce costs. While self-

hosting may involve infrastructure expenses, the ability to customize and optimize the 

deployment can lead to long-term savings, particularly for large-scale clinical operations or 

resource-limited settings. For example, one study evaluated the replacement of OpenAI’s GPT-4 

with open-source small language models (SLMs) in a production environment. The research 

demonstrated that SLMs provided competitive performance while achieving a cost reduction 

ranging from 5 to 29 times compared to GPT-4.35 

 

One of the key advantages of DeepSeek-R1 is its reasoning-centric design, which could make its 

decision-making process more interpretable and transparent. Traditional LLMs are often “black 

boxes,” where users receive an output without insight into how the model arrived at its 

conclusion. For clinicians, DeepSeek-R1’s can enable verification of whether the model’s 

conclusions align with their own clinical knowledge. Nonetheless, this feature does not eliminate 

the fundamental issue of AI-generated “hallucinations”—instances where the model produces 

plausible but incorrect medical information. According to Wang et al., these errors pose a 

significant risk in patient care, particularly when AI outputs influence diagnoses, treatment 

recommendations, or research conclusions.36 Furthermore, the fact that DeepSeek-R1 does not 

reveal its training corpus means that even when reasoning is made explicit, its responses may 

still biased by incorrect or misrepresentations of medical knowledge. 

 

DeepSeek-R1’s self-reflective capability can even be the means by which it bypasses its own 

safety constraints, which raises security concerns over the model generating outputs that deviate 

from established medical guidelines or rationalize incorrect treatments that could endanger 

patient care. External guardrails such as rule-based reinforcement filters, human-in-the-loop 



 

verification, and continuous real-world validation, will be essential for safe deployment.37 

Additionally, retrieval-augmented generation (RAG) techniques and external fact-checking tools 

could be used to ground the model’s responses in up-to-date, peer-reviewed medical literature.38 

 

This study has several limitations that warrant discussion. Firstly, our cost analysis was based 

solely on the final answers generated by the models, excluding CoT outputs. Since CoT 

reasoning involves additional tokens to articulate intermediate steps, our approach likely 

underestimated the actual token usage and associated costs. However, this limitation applied 

uniformly to both DeepSeek-R1 and OpenAI o1, ensuring a fair comparison. Secondly, we did 

not include the associated images within the cases to test multimodal performance. While both 

models can handle images, DeepSeek-R1 notes that its image analysis solely extracts text from 

images. Additionally, we employed the PS+ prompt, which was originally designed to enhance 

reasoning in models lacking structured problem-solving capabilities, raising the question of 

whether alternative prompting strategies might yield different results in inherently reasoning-

centric models. Furthermore, the publicly available dataset from StatPearls may have been 

included in the training data of one or both models, leading to potential data leakage. This could 

artificially inflate model performance by allowing it to recognize or recall previously 

encountered cases rather than applying genuine clinical reasoning.39 However, without direct 

access to the training corpora, we cannot verify whether the identical high performance of both 

models resulted from prior exposure to the dataset or from the cases being relatively 

straightforward and well-aligned with the models’ capabilities. Thus, future research should aim 

to evaluate these models using larger, more diverse datasets, including those that incorporate 

ophthalmic imaging, to better assess their applicability in clinical practice. Emerging multimodal 

AI models, such as Kimi K1.5, have begun integrating vision-language capabilities, offering new 

possibilities for ophthalmic imaging analysis.33,40,41  

 

 

CONCLUSION 

DeepSeek-R1 demonstrated comparable performance to OpenAI o1 across 300 ophthalmology 

cases, while also offering a substantial cost advantage. Its enhanced reasoning-centric design 

appears well suited to a range of clinical scenarios in ophthalmology, supporting its potential as a 

more accessible AI-driven decision support tool. However, continued research on multimodal 

prompts and robust external guardrails are necessary to confirm its safety and efficacy in clinical 

practice. 
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Figure 1. Performance of DeepSeek-R1 and OpenAI by Subspeciality 
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Table 1. Performance of DeepSeek-R1 and OpenAI o1 by Subspeciality 

Model Subspeciality Accuracy (%) 95% CI (%) p-value 

DeepSeek-R1 
Cataract/Anterior Segment 

60.0 [31.3, 83.2] 
1.000 

OpenAI o1 70.0 [39.7, 89.2] 

DeepSeek-R1 
Cornea/External Disease 

88.9 [71.9, 96.1] 
1.000 

OpenAI o1 85.2 [67.5, 94.1] 

DeepSeek-R1 
Glaucoma 

95.7 [79.0, 99.2] 
0.625 

OpenAI o1 87.0 [67.9, 95.5] 

DeepSeek-R1 
Neuro-ophthalmology 

87.1 [71.1, 94.9] 
0.625 

OpenAI o1 93.5 [79.3, 98.2] 

DeepSeek-R1 
Ocular Pathology/Oncology 

69.2 [42.4, 87.3] 
1.000 

OpenAI o1 76.9 [49.7, 91.8] 

DeepSeek-R1 
Oculoplastics 

81.8 [65.6, 91.4] 
1.000 

OpenAI o1 84.8 [69.1, 93.3] 

DeepSeek-R1 
Pediatric Ophthalmology 

80.4 [66.8, 89.3] 
1.000 

OpenAI o1 82.6 [69.3, 90.9] 

DeepSeek-R1 
Refractive Management/Intervention 

73.5 [56.9, 85.4] 
1.000 

OpenAI o1 73.5 [56.9, 85.4] 

DeepSeek-R1 
Retina/Vitreous 

82.6 [72.0, 89.8] 
1.000 

OpenAI o1 81.2 [70.4, 88.6] 

DeepSeek-R1 
Uveitis 

85.7 [60.1, 96.0] 
0.500 

OpenAI o1 71.4 [45.4, 88.3] 

DeepSeek-R1 
Overall 

82.0 [77.3, 85.9] 
1.000 

OpenAI o1 82.0 [77.3, 85.9] 

 

 



 

 

Table 2. Agreement between DeepSeek-R1 and OpenAI o1  

Subspecialty Cohen's Kappa p-value 

Cataract/Anterior Segment 0.783 0.067 

Cornea/External Disease 0.509 0.069 

Glaucoma -0.070 1.000 

Neuro-ophthalmology 0.271 0.598 

Ocular Pathology/Oncology 0.495 0.004 

Oculoplastics 0.238 0.457 

Pediatric Ophthalmology 0.418 0.411 

Refractive Management/Intervention 0.698 0.000 

Retina/Vitreous 0.561 0.000 

Uveitis 0.588 0.116 

Overall 0.503 0.000 

 

 

 

 

 


