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Abstract Perceptual disturbances occur across various sensory domains and con-
tribute to significant suffering in numerous psychiatric and neurological conditions. 
Despite decades of research into the neural mechanisms underlying these distressing 
experiences, progress has been relatively limited. Here we explore the potential of 
layer-specific fMRI to enhance our understanding of these phenomena. We posit that 
perceptual disturbances can stem from alterations in the neural integration of inter-
nally generated signals–such as memory, imagination, prediction, and expectations– 
with sensory evidence being used to optimize inferences about the world. Emerging 
evidence suggests that these key computations are distributed across different 
cortical layers, highlighting the utility of layer-specific imaging in identifying the 
mechanisms driving such disruptions. We review recent findings that underscore the 
promise of layer-specific fMRI in elucidating these neural processes and discuss how 
pharmacological layer-specific fMRI could further advance this understanding. 
Finally, we address the current limitations of layer-specific fMRI and the progress 
made toward overcoming these challenges. 
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1 Introduction 

Perceptual disturbances play an important role in various psychiatric and neurolog-
ical disorders, including psychosis, autism, anxiety disorders, eating disorders, 
bipolar disorder, Parkinson’s disease and dementia (Berntson and Khalsa 2021; 
Dakin and Frith 2005; Khalsa et al. 2018;  O’Brien et al. 2020; Sterzer et al. 2018). 
Yet despite the prevalence of these symptoms, their centrality to the illness, and their 
relation to poor disease outcomes, little is understood about the nature and mecha-
nistic underpinnings of these experiences. 

Perceptual disturbances occur across sensory domains, including audition, vision, 
somatosensation, olfaction, interoception, and proprioception (Eversfield and Orton 
2019; Fenelon et al. 2002; Lewandowski et al. 2009; Lim et al. 2016). Within 
modalities, the types of experiences that can be considered to fall under the term 
perceptual disturbances are varied as well. Considering just the visual domain, 
across different disorders, patients might report changes in the appearance of objects, 
where they might appear unusually bright or intense, or find that objects seem 
warped, flat, or perceived to look like cardboard cutouts. We might refer to such 
experiences, where objects are perceived altered, as “illusory.” In contrast, full 
blown hallucinations can also emerge in psychosis or Parkinson’s disease, where 
de novo percepts arise, without a corresponding external stimulus. These hallucina-
tory experiences range from geometrical patterns, all the way to the experience of 
fully formed individuals situated in space (Bunney et al. 1999; Dudley et al. 2019). 
Much theoretical work has attempted to explain these phenomena as deficits in 
various cognitive or perceptual systems. Some have argued that these disturbances 
are the result of deficits in attention, reality monitoring, corollary discharge, or the 
result of an excessive influence of expectations on perception (Ford and Mathalon 
2005; McGHIE and Chapman 1961; Powers et al. 2016; Simons et al. 2017; Sterzer 
et al. 2018). 

Changes in interoception–the nervous system’s ability to sense internal bodily 
states–are increasingly implicated in anxiety disorders, eating disorders, and distur-
bances in the sense of self (Allen et al. 2022; Khalsa et al. 2018; Seth and Tsakiris 
2018). In anxiety disorders, heightened interoceptive sensitivity or misinterpretation 
of bodily signals, such as an elevated heart rate, can amplify fear responses and 
perpetuate a cycle of hypervigilance (Paulus and Stein 2010). Similarly, in eating 
disorders, altered interoception can manifest as a disconnect between physiological 
hunger and satiety cues, contributing to disordered eating behaviors and distorted 
body image (Khalsa et al. 2015). Moreover, disturbances in interoception may 
undermine the sense of self, as the ability to integrate bodily sensations with 
emotional and cognitive processes is central to maintaining a coherent self-concept 
(Woelk and Garfinkel 2024). These experiences can be construed as perceptual



disturbances in and among themselves, where a failure to make proper inferences 
about one’s own bodily states can lead to maladaptive behaviors (Berntson and 
Khalsa 2021). 
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As will become clear, there is a good reason to assume that many of these forms 
of perceptual disturbances can arise from altered information signaling on the level 
of the cortical microcircuit. Advances in the field of high-field neuroimaging has 
made it possible to study these microcircuits in a noninvasive way, using a method 
that has become known as layer-specific fMRI. In this chapter, we introduce the 
method of layer-specific fMRI and how it can be used to study the neural mecha-
nisms that underlie perceptual disturbances. In order to achieve this, we start by 
describing a theoretical framework of how laminar mechanisms might underlie 
perceptual inference. Having such a framework to guide our thinking will be useful, 
as conceptualizing how perception might go awry requires some understanding of 
the mechanisms underlying normative perception. We will not attempt to give a 
comprehensive account of these theories, as insights in how perception is 
implemented through these mechanisms will likely change over time and are 
expected to coevolve with how we think of perceptual disturbances. However, we 
provide enough detail to allow the reader to start thinking about how different layers 
might give rise to perceptual disturbances. Once this has been covered, we move on 
to discuss how layer-specific fMRI has been applied in recent years to tackle novel 
questions in the field of perception and cognitive neuroscience more generally. We 
consider how comparative studies between clinical and pharmacological groups can 
start to highlight some of the key mechanisms that underlie these experiences. The 
field of layer-specific fMRI is new, and it should be noted that at the present moment 
of writing this review, studies using layer-specific fMRI to study psychiatric or 
neurological disorders are still sparse. Therefore, our aim is to describe what its 
potential might be in exploring the neural mechanisms of perceptual disturbance, as 
well as some of the limitations that still need to be addressed. Central to the 
discussion here will be its ability to study the diversity of nuanced mechanisms 
that possibly underlie different psychiatric disorders, in contrast to attempting to 
reconciling all forms of perceptual disturbances under a single theoretical umbrella. 

2 Frameworks to Understand Perceptual Inference 

Before comprehending how perception might go awry, we first need a model of 
normative perceptual inference. Traditionally, perception has been construed as 
directly reflecting the external world (Gibson 1950). This approach is reflected in 
neural theories of perception as predominantly a feedforward process, building 
progressively and sequentially from simple low-level representations (edges and 
colors) to higher-order cognition like object recognition (Serre et al. 2007). This 
construes perception as a data-driven, mostly passive process of accumulation of 
sensory data (see, for example, Marr’s computational theory of vision (Marr 2010). 
In contrast, the constructive approach construes perception as context dependent and



active. This view puts a particular importance on top-down influences on perception, 
most clearly exemplified by visual illusions (Fig. 1) (Gregory 1997; Gregory et al. 
1980). 
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Fig. 1 The constructionist approach suggests that perception is an active process. Examples 
highlighting the constructionist nature are illusions like the Kanizsa triangle and the convex-
concave illusion. Here contextual information leads to perceptual changes, resulting in the percep-
tion of illusory contours, or perceiving the same stimulus as concave or convex depending on how 
lighting is interpreted 

One constructionist view that has become popular is the view that the brain forms 
a generative model of the world (Clark 2013). Given this assumption, much of 
cognitive neuroscience has been dedicated to understanding how the brain might 
form such an internal model in computational terms (Spratling 2017), as well as how 
such a model might be implemented on a neural level (Bastos et al. 2012, 2020; 
Friston 2009). Although an extensive discussion of the different theories that are 
currently popular in the field of cognitive neuroscience is beyond the scope of the 
current chapter, it is worth highlighting one of these theories, as it helps us under-
stand how perception might go awry in different ways, as well as how layer-specific 
fMRI might be used to test predictions resulting from them. 

Here we use the predictive coding theory to guide the discussion around how 
layer-specific fMRI can be applied to understanding perceptual disturbances. The 
benefit of using this theory is that the hypothesized mechanisms that underly 
perception are believed to be segregated and implemented in different cortical layers 
(Bastos et al. 2012; Clark 2013; Friston 2009; Spratling 2017). While there are 
various iterations of this theory that make slightly different claims about the neural 
mechanisms through which the brain forms a model, there is a common theme 
among them (see Spratling 2017 for an overview). The general claim in predictive 
coding theories is that the brain models its environment by making iterative pre-
dictions about sensory inputs. These predictions need to somehow be updated by 
virtue of new sensory evidence to approximate an optimal estimate of the outside 
world. Most predictive coding theories suggest that this is achieved through the use 
of a precision-weighted prediction errors, signaling the difference between sensory 
input and prediction (Bastos et al. 2012). This notion of integrating prior knowledge 
with new sensory input in a weighted fashion resonates with Bayesian theories of the



brain, which suggest that optimal inference requires integrating precision weighted 
prior knowledge with precision weighted evidence (Friston 2012; Yon and Frith 
2021). 
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How might the brain implement these computational mechanisms? Again, pre-
dictive coding theories answer this question in slightly different ways, but we can 
delineate some commonalities. Many of these theories start from the assumption that 
the brain is a hierarchically organized system, with feedforward and feedback 
connections interwoven to form a dense neural network of interconnected systems. 
Indeed, anatomical work has revealed that in the primate visual cortex, there are 
many feedforward and feedback connections that seem to make up a hierarchical 
system (Angelucci et al. 2002; Felleman and Van Essen 1991). Interestingly, they 
observed a preference for feedback neurons originating from the deep layers (Layers 
V and VI) of higher-order regions to terminate in the deep and superficial (Layers I, 
II, and III) layers of the cortex. In contrast, feedforward neurons preferentially 
originate from the superficial layers and preferentially terminate in the middle layers 
(Layer IV) of higher-order regions (Fig. 2b). As such, different brain regions form a 
hierarchical network through layer-specific connections between regions. Notably, 
the posterior granular insular cortex displays similar laminar differentiation, 
although the anterior insular cortex lacks a distinguished layer IV (Flynn 1999; 
Gogolla 2017). Given these anatomical findings, predictive coding theories have 
suggested there is a functional segregation on the laminar level in the sensory cortex, 
attributing different functions to different layers (Bastos et al. 2012, 2020; Friston 
2018). That is, feedback signals from the deep layers are typically believed to convey 
predictive information, terminating in the superficial and deep layers of lower

Fig. 2 (a) The superficial, middle, and deep layers can be visualized on a functional EPI scan by 
dividing the grey matter into three layers with equal volume. Histologically, in the primary visual 
cortex, the superficial layers capture layers I-III, the middle layer capture layer IV, while the deep 
layers capture layer V&VI (de Sousa et al. 2010). (b) The layers of the early visual cortex have a 
typical connectivity pattern, where feedforward signals are sent from the superficial layers of lower 
sensory regions to the middle layers of higher-order regions. In contrast, feedback signals are sent 
from the deep layers of higher sensory regions to the agranular (deep and superficial) layers of 
sensory regions



sensory regions, explaining away sensory inputs from lower regions. Feedforward 
sensory input instead arrives in the middle layers, from where it is sent to the nearby 
superficial layers, and compared to predictive information from higher-order 
regions. This is then suggested to result in the computation of a prediction error, 
capturing as yet unexplained sensory input, which is used to update predictions 
upstream (Bastos et al. 2012; de Lange et al. 2018; Lawrence et al. 2019a; Stephan 
et al. 2019). While some elements of predictive coding theory are well supported, 
other aspects await empirical support or refutation. One aspect that has been well 
supported is that the brain generates predictive signals, about both present and future 
states (see evidence discussed below). The brain also precision-weights prediction 
errors during learning (Haarsma et al. 2021). In the sensory domain it is well known 
that unexpected stimuli can generate stronger cortical responses, but whether these 
actually represent prediction errors remains unclear (Garrido et al. 2009). Finally, the 
hierarchical nature of sensory cortices lends them well to hierarchical inference as in 
predictive coding (see sections below). However, some postulates of predictive 
coding theory remain less well supported. In particular whether the above-mentioned 
prediction and error signals are computed by different neural units, as well as the 
minimization of prediction error through reciprocal exchange between different 
hierarchical levels, remain less strongly supported (Walsh et al. 2020). However, 
although the empirical fate of predictive coding theory remains to be decided, it 
serves as a useful heuristic for the purpose of this chapter in allowing us to frame 
how layer-specific imaging can be used to further our understanding of how percep-
tion can go awry in clinical and neurological disorders.
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3 Application of Predictive Coding Theory to Perceptual 
Disturbances 

Although many questions within predictive coding still need to be resolved, this has 
not prevented clinical researchers from applying it to theorizing how perceptual 
inference might go awry in clinical disorders like psychosis, autism, anxiety, eating 
disorders, and neurological disorders like Parkinson’s disease and Charles Bonnet 
Syndrome (Corlett et al. 2019; Khalsa et al. 2018;  O’Callaghan et al. 2017; Reichert 
et al. 2013; Sterzer et al. 2018; Van Boxtel and Lu 2013; Van De Cruys et al. 2014; 
Zarkali et al. 2019). This is not necessarily a problem. Progress on understanding the 
neural mechanisms of various pathologies does not require the science on the 
relevant cognitive mechanisms to be fully settled. One might picture here two rock 
climbers securing each other’s ascent to the top of a mountain. The higher-up 
climber is in the position to scout the rockface and secure pins, allowing the climber 
lower-down to follow on more solid footing. The point of this analogy is that a safe 
ascent of the second climber does not require the top of the mountain to have been 
reached. Incremental advancement of both climbers is sufficient for successful



progress. In concordance with the rise in popularity of normative predictive coding 
theories of perception and inference, theorists and researchers have applied it to 
understanding aberrant perceptual inference too. The first of such theories focused 
on psychosis and emerged almost two decades ago, which suggested that visual and 
auditory hallucinations could be conceived to be the result of overly strong prior 
expectations, potentially due to aberrant modulatory neurotransmission, shifting 
perceptual inference toward priors (Stephan et al. 2006). Indeed, there has been 
increasing evidence, mostly behavioral, that individuals who report experiencing 
hallucinations show increased reliance on prior expectations in perception, in the 
visual and auditory domains (Cassidy et al. 2018; Haarsma et al. 2020; Powers et al. 
2017; Schmack et al. 2013; Stuke et al. 2021; Teufel et al. 2015; Zarkali et al. 2019). 
However, a second strain of studies have complicated this picture somewhat, 
demonstrating that those who experience psychosis also often display perceptual 
processing abnormalities that are more in line with a weakened influence on percep-
tual processing. Findings relating to misinterpreted inner speech (Crapse and 
Sommer 2008; Feinberg 1978), weaker susceptibility to illusions (Dima et al. 
2009, 2010; Haarsma et al. 2020; Pearl et al. 2009; White et al. 2014), and weaker 
attenuation of sensory consequences in action (Blakemore et al. 2000; Ford and 
Mathalon 2005; Shergill et al. 2005) might be better understood as instances of 
weaker priors. Theorists have attempted to resolve this potential contradiction by 
arguing that the balance between top-down predictive signals and sensory input is 
shifted in different ways for different symptoms. That is, whereas disturbances in 
agency might result from diminished predictive signals (Griffin and Fletcher 2017), 
hallucinations might be the result of overly strong predictive signals (Corlett et al. 
2019). Others have suggested that there are subtle differences depending on disease 
stage or the presence of psychosis in addition to hallucinations (Corlett et al. 2011; 
Haarsma et al. 2020; Powers et al. 2017; Schmack et al. 2013). Finally, some have 
suggested that the relative weakening of priors is not specifically correlated with the 
presence of hallucinations, whereas overly stronger priors are (Corlett et al. 2019; 
Sterzer et al. 2018). 
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These contradictions and inconsistencies point to a broader issue, which is that 
predictive coding theories and Bayesian theories of perception more generally have 
been difficult to properly constrain, as they tend to be overparameterized. That is, 
almost any finding can be accounted for by changing some parameter in the theory, 
and the same finding can often be explained in a multitude of ways, making it 
difficult to falsify (Haarsma et al. 2022). For example, evidence demonstrating 
heightened reliance on priors could also be explained by weakened reliance on 
sensory evidence. These different hypotheses matter, as they might suggest different 
disease etiologies (see below for a further discussion on this). Layer-specific fMRI 
could potentially provide some solutions by interrogating more precisely what the 
role of different feedforward and feedback signals is in perception (Haarsma et al. 
2022; Lawrence et al. 2019a; Stephan et al. 2019).
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4 Layer-Specific fMRI as a Tool to Study 
the Computational Architecture of Perception 

Much of the development of layer-specific fMRI is a direct result of the wider use of 
high-field MRI scanners with magnetic field strengths of 7 Tesla and beyond. High-
field MRI scanners offer one particular advantage over lower field strengths for 
layer-specific fMRI studies: the higher magnetic field strengths provide enhanced 
signal-to-noise ratio (SNR) and therefore allow greater spatial resolution. This 
allows researchers to distinguish finer structures within the cortex, such as cortical 
layers and columns, allowing the study of layer-specific activity patterns (Dumoulin 
et al., 2018; Lawrence et al. 2019b) (Fig. 2a). With the increase in SNR, existing 
gradient-echo and spin-echo sequences can be optimized to exploit the laminar 
signal, thereby providing more detailed information about the cortical layers (Han 
et al. 2019; Norris 2012). 

With the advent of high-resolution imaging, the layer-specific fMRI field entered 
a stage of validation-oriented studies. The primary goal was to compare layer-
specific signals to a known gold standard, to build confidence in its utility to reliably 
measure laminar signals. These studies were therefore not so much focused on 
revealing novel mechanisms within the human brain but rather on finding concor-
dance between ground truth and results obtained by layer-specific fMRI. Many of 
the earliest studies were encouraged by finding sensory input primarily modulating 
the middle layers, both in early monkey work as well as in humans, suggesting that it 
is possible in principle to differentiate activity in different layers (Chen et al. 2013; 
Goense and Logothetis 2006; Koopmans et al. 2010, 2011; Polimeni et al. 2010) 
(Fig. 3a). Subsequent experiments explored the laminar mechanisms underlying 
more complex processes, e.g., by comparing scrambled and unscrambled figures 
and stimuli differentially targeting parvo- and magnocellular pathways, revealing 
differential laminar profiles across these conditions (Olman et al. 2012). 

After establishing that layer-specific fMRI can pick up laminar specific signals in 
the visual cortex, others started to apply it to study more complex perceptual 
processes. These studies often added to the confidence in the reliability of layer-
specific fMRI, as there was considerable overlap with laminar findings from 
nonhuman animals (Self et al. 2019). Naturally, many studies using layer-specific 
fMRI are interested in the interplay between feedforward and feedback signaling, 
and thus many experimental manipulations contrast bottom-up signals and top-down 
processes such as working memory, imagery, illusory perception, and expectations. 
Most of these studies have focused on studying the primary visual cortex, as the 
laminar organization of this area is best understood, and the methods used in the 
earliest laminar studies were optimized for this region. We therefore discuss work in 
the visual cortex first. 

One of the first studies to explore more complex perceptual processes studied 
contextual feedback processing in visual scene construction. To test whether specific 
layers contribute to filling in contextual information, the researchers occluded a 
quadrant of a visual scene that was previously perceived as a whole (Muckli et al.
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Fig. 3 Layer-specific profiles of different perceptual mechanisms, with a focus on the visual 
system. Blue regions represent higher-order regions, whereas orange regions represent lower 
order regions. Connectivity patterns are based on separate studies and were typically not measured 
in the respective layer fMRI experiments themselves. The laminar profiles reflect the region in 
which the depicted neural connections terminate. (a) The orientation of expected gratings has



2015). Using multivariate techniques, they found that they could decode the scene 
context from the occluded quadrant specifically from the superficial layers of the 
visual cortex, suggesting that contextual information is fed back into these layers. A 
second study focused on the laminar profile of illusory figures induced by the 
Kanizsa triangle illusion. Using retinotopic mapping, an area of V1 was identified 
that corresponded to the area in the visual field where the illusory figure was 
perceived. They found that specifically in conditions where the illusory figure was 
present, there was heightened activity in the deep layers of V1, in line with 
nonhuman physiological work (Lee and Nguyen 2001; Pak et al. 2020) (Fig. 3b). 
Notably, feedback signals do not only exist in the context of low-level visual 
illusions but extend to higher-order cognitive domains like working memory as 
well. For example, one study demonstrated that merely maintaining a specific 
orientated grating in mind was enough to evoke orientation-specific activity in the 
deep and superficial layers of the primary visual cortex (Lawrence et al. 2018). 
Again, these findings align nicely with nonhuman animal work, demonstrating 
similar agranular activity in monkeys performing a working memory task (van 
Kerkoerle et al. 2017). A second study by the same group reported separate layer-
specific modulations of feedback, through feature-based attention, and bottom-up 
input, with attention most strongly affecting superficial layers, and bottom-up input 
particularly modulating the middle layers (Lawrence et al. 2019b) (Fig. 3a, c).
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The previously discussed studies provide strong evidence that the agranular 
layers play an important role in a range of top-down perceptual processes, such as 
contextual processing and working memory. Because much experimental work on 
the mechanisms underlying hallucinations suggest that they are the result of strongly 
overweighted expectations about future events, a key question will be whether these 
expected events are represented in the agranular layers of the early sensory cortex as 
well. If this is found to be the case, such a mechanism is ideally situated to modulate 
sensory processing, potentially driving abnormal perceptual experience. Indeed, a 
series of studies have identified considerable support for the representation of 
expected events in these layers. One study explored the layer-specific representation 
of expected sensory templates. Previous studies have shown that merely expecting to 
see an oriented grating induces a sensory template of that stimulus in the early visual 
cortex (Kok et al. 2014, 2017). In line with predictive coding theories, subsequent
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Fig. 3 (continued) repeatedly been found to be represented in the deep layers of the visual cortex 
(Aitken et al . 2020; Haarsma et al. 2023; Thomas et al. 2024). Working memory seems to rely on a 
combination of the deep and superficial layers (Lawrence et al. 2018). (b) False percepts can emerge 
from activity in the middle layers (Haarsma et al. 2023). The middle layers are also often modulated 
by bottom-up input (Chen et al. 2013; Goense and Logothetis 2006; Koopmans et al. 2010, 2011; 
Polimeni et al. 2010; Lawrence et al. 2019b; Yu et al. 2019). (c) Low-level perceptual illusions rely 
on activity in the deep layers (Kok et al. 2017). (d) Attention has been shown to modulate the 
superficial layers (De Martino et al. 2015; Gau et al. 2020; Lawrence et al. 2019b, but see also Klein 
et al. 2018). (e) Prediction errors are represented in the superficial layers (Thomas et al. 2024). (f) 
Imagined movement modulates deep and superficial layers of the motor cortex in opposite direc-
tions (Persichetti et al. 2020)



work showed that merely expecting a grating on the basis of a visual cue was enough 
to induce a sensory template specifically in the deep layers of the visual cortex 
(Aitken et al. 2020) (Fig. 3d). This finding was replicated in a second study where 
participants had to make judgments about the orientation of a grating embedded in 
noise, while an auditory cue predicted the most likely orientation. Interestingly, here 
the deep layers once more represented the expected grating, despite most participants 
not being aware that the cues predicted the most likely orientation. This suggests that 
even implicitly the brain can generate sensory templates on the basis of previously 
conditioned stimuli (Haarsma et al. 2023). In a third study, actions were predictive of 
upcoming stimuli, with different levels of validity. Once more, only in the valid 
conditions did the deep layers represent the expected orientation, in line with an 
important role for these layers in signaling expected stimuli (Thomas et al. 2024). 
Together, these studies suggest there is converging evidence, at least with regard to 
simple orientation-like stimuli, that the deep visual cortical layers indeed represent 
expected stimuli.
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Another important claim of predictive coding theories is that there should be 
different neural populations representing errors and predictions across the cortical 
hierarchy. This component of predictive coding is one of the less substantiated 
claims (Walsh et al. 2020). Some indirect evidence in line with this comes from 
histological work suggesting that feedforward and feedback connections originate 
from different cell populations (Markov et al. 2014). Electrophysiological work 
suggests that feedforward and feedback signals are transmitted at different frequen-
cies (Arnal and Giraud 2012; Bastos et al. 2020). More direct evidence comes from 
studies in mice and monkeys showing that different cell populations in V1 report 
mismatch and prediction signals (Attinger et al. 2017; Bell et al. 2016; Fiser et al. 
2016; Keller et al. 2012; Keller and Mrsic-Flogel 2018; Leinweber et al. 2017), but 
see also (Muzzu and Saleem 2021) for an alternative view. However, evidence that 
prediction errors originate from feedforward projecting neurons in the superficial 
layers has remained sparse (Walsh et al. 2020). A recent layer-specific fMRI study 
aimed to test this prediction directly (Thomas et al. 2024) (Fig. 3e). Here, the 
orientation of a grating could either be expected or unexpected following a particular 
action. When orientations were expected, all layers represented the orientation that 
was presented. However, unexpected orientations, or prediction errors, were specif-
ically represented in the superficial layers, in line with previous findings from animal 
work (Bastos et al. 2020). 

Layer-specific fMRI has also been used in other sensory modalities, such as the 
somatosensory domain. For example, one study explored how predictable and 
unpredictable sensory input preferentially activates different layers in the early 
somatosensory cortex (S1) and found that like findings in the visual cortex described 
above, thalamic sensory input preferentially activated the middle layers, whereas 
predictability mostly modulated the agranular superficial and deep layers (Yu et al. 
2019). Another study explored laminar specific signals underlying action. Here, 
participants were required to tap their fingers while layer-specific activity in the 
superficial and deep layers in the early motor cortex (M1) was measured. Finger 
tapping evoked activity in the superficial and deep layers, whereas imagined



movements only activated the superficial layers. Further, imagined movement 
repressed signals in superficial layers but enhanced signals in the deep layers 
(Persichetti et al. 2020) (Fig. 3f). This further underscores the importance of layer-
specific fMRI to distinguish between suppression and sharpening theories of per-
ception (Thomas et al. 2024). 
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The auditory domain has received considerable attention in layer-specific fMRI 
studies as well. One study explored frequency preference across layers, as well as its 
modulation by attention. They found that attention particularly modulated the 
superficial layers of the primary auditory cortex (De Martino et al. 2015). More 
recently, the same researchers studied how stimulus complexity is represented across 
the primary auditory cortex and found that the superficial layers in particular 
represented more complex features of sounds (Moerel et al. 2019). Studying cross-
modal processing and attention, one study found that visual-audio stimuli modulated 
activity in the deep layers specifically, whereas attention modulated the superficial 
layers in both primary sensory regions (Gau et al. 2020). Taken together, there is 
support that just like in the visual cortex, the agranular layers of auditory cortex are 
primarily involved in feedback processing. Speculatively, content-based feedback 
signals seem to be represented more often in the deep layers, while attention tends to 
modulate superficial layers (although note that some have found content in the 
superficial (Muckli et al. 2015) and attention in deep layers (Klein et al. 2018)). 
The exact functional roles of the superficial and deep layers remain to be resolved, 
but their shared role in conveying feedback signals is well established. 

Fewer studies have targeted regions outside of the primary sensory regions, 
creating knowledge gaps waiting to be filled. The insula, with its clear histological 
differentiation (Flynn 1999; Gogolla 2017), will be a prime future target for layer-
specific studies targeted to understand the microcircuits underpinning aberrant 
interoceptive inference. Further, laminar imaging of higher-order regions like the 
association cortex will be important in gaining a full understanding of how percep-
tual disturbances arise, due to the importance of these areas in predictive coding 
theories. Some have argued that this is now in the realm of possibilities (Finn et al. 
2021). One study explored layer-specific responses in the prefrontal cortex during a 
working memory task, showing heightened activity in the superficial layers during 
maintenance and deep layers during responses (Finn et al. 2019). Notably, this is in 
line with work in nonhuman primates (Bastos et al. 2018). A study in word reading 
demonstrated a particular involvement of the deep layers of the dorsolateral cortex in 
interpreting words versus pseudowords (Sharoh et al. 2019). Finally, the entorhinal 
cortex, a crucial interface of the hippocampal complex, has a laminar differentiation 
in connectivity where superficial and deep layers provide input to and receive output 
from the hippocampus, respectively (Lavenex and Amaral 2000). Recent laminar 
studies have demonstrated that it is possible to image the entorhinal layers in a 
meaningful way (Koster et al. 2018; Maass et al. 2014). This is crucial as the 
hippocampus is believed to play a critical role in signaling contextual information 
like perceptual expectations and can play an important role in testing predictive 
coding theories of hallucinations (Aitken and Kok 2022; Hindy et al. 2016; Kok and 
Turk-Browne 2018; Schapiro et al. 2012; Stachenfeld et al. 2017; Whittington et al. 
2020).
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5 Potential Future Avenues in the Study of Perceptual 
Disturbances 

As perception is believed to rely on the interplay of laminar signals integrating 
across different levels of the cortical hierarchy, perceptual disturbances as seen in 
various psychiatric and neurological disorders likely have a natural root in these 
processes. While there have been very few studies that have applied layer-specific 
fMRI to studying these perceptual disturbances, we can start to speculate how layer-
specific fMRI can contribute to understanding them. We will start out with 
discussing the potential laminar mechanisms that might underlie false inferences in 
psychosis for two reasons. First, theories considering hallucinations in psychosis 
have been developed extensively over recent years. Second, the primary modalities 
affected in psychosis, vision and auditory, have been studied the most using layer 
fMRI and are therefore the best understood. 

As described above, hallucinations as seen in psychosis have been theorized to 
arise due to increased influences of perceptual expectation signals (Corlett et al. 
2019; Powers et al. 2016; Sterzer et al. 2018), which recent studies have reliably 
linked to signals in the deep layers of the visual cortex (Aitken et al. 2020; Haarsma 
et al. 2023; Thomas et al. 2024). However, expectations alone are not sufficient to 
generate perceptual experiences. So how might these expectations give rise to 
perceptual experiences? 

One hypothesis is that it is simply a matter of signal magnitude. If the modulatory 
drive in the deep layers is strong enough, it might ultimately lead to a concurrent 
conscious experience. Therefore, what might differentiate these signals from ordi-
nary working memory and expectation signals is that they are simply stronger. 
Alternatively, it might not so much be the strength of the signal, but rather the 
level of sensory detail that these feedback signals contain. Indeed, it has been 
suggested that the brain’s ability to separate imagination from reality relies on an 
inference on this sensory detail. If an experience is vivid and detailed, it is more 
likely to reflect reality, whereas if an experience is fuzzy and undetailed, it likely 
reflects imagination, or a different top-down process like expectation or working 
memory (Dijkstra et al. 2022). This hypothesis could in principle be tested using 
multivariate techniques in combination with layer fMRI. If this hypothesis is correct, 
the critical factor in turning a top-down perceptual expectation signal into a hallu-
cinatory perceptual experience is an increased sharpening of the representation of the 
expected stimulus in the feedback layers of the visual cortex (Abdelhack and 
Kamitani 2018). 

Finally, a third hypothesis may be that hallucinatory experiences arise through 
modulation of feedforward activity. For example, an expectation of a stimulus might 
prime pyramidal neurons in the deep cortical layers through receptors on their apical 
dendrites (Larkum 2013; Spruston 2008). Targeting the apical dendrites would not 
be expected to drive these pyramidal neurons directly but allow them to function as 
coincidence detectors (Larkum 2013). In turn, deep layer neurons can modulate 
incoming sensory input through their projections onto the middle layers (Binzegger



2004; Kim et al. 2014), allowing sensory input concurrent with expectations to be 
processed more quickly, giving them a head start in signal processing (Antic et al. 
2010; Kim et al. 2014; Major et al. 2013). This suggests that a combination of 
expectations and noisy sensory input is critical in forming hallucinations. What 
follows from this view is that hallucinations in the absence of such noisy input 
might be rare. Indeed, this view, where feedback connections modulate sensory 
inputs rather than having the ability to directly drive activity in the input layers (Kim 
et al. 2014), may explain why many studies use concurrent noisy input to induce 
hallucinations (Haarsma et al. 2020; Kafadar et al. 2020; Powers et al. 2017; 
Schmack et al. 2013, 2021; Stuke et al. 2021; Teufel et al. 2015). That is, if there 
is no sensory noise to modulate, the feedback signals will not be in the position to 
give rise to false inferences. In practice, sensory noise could be environmental (e.g., 
in the dark at night or in the rain) or due to a loss of sensory precision in the early 
sensory cortex. Indeed, studies have consistently reported decreased sensitivity to 
sensory input in people with psychosis across various paradigms. For example, 
schizophrenia patients often show impaired detection of sensory stimuli across 
different sensory domains (Dondé et al. 2019). This could potentially reflect a 
separate compounding factor, allowing the hallucinations to manifest. Such a phe-
nomenon is clearly seen in neurological disorders such as Charles Bonnet syndrome, 
where a loss of sensory input is key in driving the abnormal perceptual experiences 
(Burke 2002; Ffytche et al. 1998). Recently, behavioral studies have started to show 
support for this hypothesis in normative nonclinical samples, demonstrating reduced 
sensitivity to sensory input secondary to heightened hallucinatory reports on stim-
ulus detection tasks (Haarsma et al. 2023; Benrimoh et al. 2024). Layer-specific 
fMRI could be used to simultaneously study the representation of sensory input and 
expectation signals and test how the two interact to give rise to hallucinatory 
experiences. 
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The hypotheses outlined thus far have pertained mostly to laminar signals in the 
early sensory cortex, as this is where most of the normative research has been 
conducted. Ultimately, in order to deepen our understanding of how expectations 
might shape perception in clinical populations, studies will need to move beyond the 
sensory cortices. Critical brain regions that are likely key in modulating these effects, 
and for some of which layer-specific fMRI has been demonstrated to contribute to 
novel insights, are the hippocampus and medial temporal lobe (Koster et al. 2018; 
Maass et al. 2014), prefrontal and association cortices (Finn et al. 2019, 2021), cross-
modal sensory regions (Gau et al. 2020), and the insula in the case of interoception 
(Haufler et al. 2022; Nord et al. 2021). All of these regions have been demonstrated 
to play an integral role in integrating top-down contextual information with sensory 
signals and might therefore contribute to perceptual disturbances in different ways 
across clinical conditions (Bar 2007). 

While enhanced sensory expectations might underlie some forms of hallucina-
tions, there is significant behavioral evidence that demonstrates a reduced influence 
of prior expectations in psychosis, typically measured with various auditory and 
visual illusions, as discussed above. Once more layer-specific fMRI can contribute to 
our understanding of what underlies these changes in perception. Studies in



normative samples that investigated visual and auditory illusions have found a role 
for agranular layers in mediating these auditory and visual illusions (Gau et al. 2020; 
Kok et al. 2016). These paradigms could be applied to study the mechanisms that 
result in the breaking of these illusions in psychosis, i.e., either a weakened influence 
of feedback signals or an increased reliance on sensory input, thereby outweighing 
sensory feedback signals. 

How Layer-Specific fMRI Can Contribute to Understanding…

Predictive coding accounts of hallucinations are not the only theories that could 
benefit from layer-specific fMRI. A different framework which has been consider-
ably influential in recent years is reality monitoring. This framework rests on the 
proposal that in order for the mind to keep track of internally and externally 
generated signals like inner speech and external voices, the brain needs to somehow 
keep track of which signals are generated internally (Barnes et al. 2003; Bentall et al. 
1991; Griffin and Fletcher 2017; Mondino et al. 2019). Central to many of these 
accounts is the idea that reality monitoring is implemented through comparing 
sensory experiences to so-called efference copies. These can be conceptualized as 
predictions of self-generated perceptual experiences, which can modulate sensory 
processing to give rise to the feeling of agency. Therefore, disturbances in the feeling 
of agency, as in delusions of control, or attributing inner speech to an external 
source, could involve aberrant signaling of efference copies or their integration with 
sensory signals (Griffin and Fletcher 2017). These models could be tested using 
layer-specific fMRI. Consider recent work that demonstrated laminar specific mod-
ulation of somatosensory responses and action signals by predictability and imag-
ined action (Persichetti et al. 2020; Yu et al. 2019). An interesting future avenue of 
research would be to test whether this extends to the auditory domain and explore 
whether self-generated speech modulates the agranular layers and whether this is 
perturbed in individuals with auditory hallucinations. Indeed, layer-specific imaging 
of speech-sensitive regions has been shown to be feasible (Sharoh et al. 2019). 
Delusions of agency are also common in psychosis and have been thought to arise 
from a failure to modulate self-generated sensory signals (Frith 2012). Therefore, 
another direction of future research could be to explore how agency modulates 
somatosensory and movement-related signals in S1 and M1, respectively, in psy-
chosis. One might expect that the top-down modulation found in the above-
mentioned studies would be diminished in psychosis, providing strong evidence 
that disturbances in agency arise through diminished top-down modulation of self-
generated sensory signals. Further, the posterior insula, a key hub for integrating 
bodily signals and therefore critical to interoception, has distinct cortical layers 
(Flynn 1999; Gogolla 2017). The exact function of the different layers remains to 
be clarified. However, it seems plausible that given the key role that the insula plays 
in interoception, disturbances in interoception could arise from alterations in how 
information is integrated on the level of the microcircuit. Indeed, recent studies in 
schizophrenia demonstrated aberrant cardiac interoception (Ardizzi et al. 2016; 
Jeganathan et al. 2024; Koreki et al. 2021; Torregrossa et al. 2022), while 
metacognitive awareness of these disturbances seems intact (Torregrossa et al. 
2022). Interestingly, these disturbances seem to correlate with positive symptoms 
(Ardizzi et al. 2016; Koreki et al. 2021, although not in Jeganathan et al. 2024).



Given the importance of the insula in interoception (Fermin et al. 2022; Hassanpour 
et al. 2018; Nord et al. 2021; Simmons et al. 2013; Vicario et al. 2020), it is likely 
that such disturbances in psychotic disorders like schizophrenia find their origin in 
dysfunctional information processing on the level of the insular microcircuit. 
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Thus, the emergence of layer-specific fMRI provides a great opportunity to 
explore how perception might go awry across multiple sensory domains and clinical 
disorders, promising to shine a new light on unanswered questions. 

6 Pharmacological Layer-Specific fMRI 

Predictive coding theories of perception attribute important roles to various neuro-
transmitter systems in mediating the balance between feedback and feedforward 
signaling (Sterzer et al. 2018). If changes occur in these neuromodulatory systems, 
this balance can become perturbed, leading to false inferences in a myriad of ways. 
Imaging the laminar mechanisms that underlie perception while participants undergo 
different drug challenges could therefore provide invaluable insights into the differ-
ent ways perception might go awry in clinical disorders. By characterizing how 
different signals can become perturbed and comparing these changes to what is 
observed in a disorder, we can start to see the similarities and differences between the 
clinical and pharmacological theories that are aimed at capturing the same phenom-
ena. For instance, such studies might show that while psychosis patients and 
individuals undergoing a dopamine challenge might both increase their rates of 
false alarms on a detection task, the laminar mechanisms through which these 
behavioral reports manifest might be different. Thus, comparative pharmacological 
and clinical layer-specific imaging studies will be key in ultimately understanding 
these disorders. Here we review several possible novel directions of research. 

One neurotransmitter system that has long been linked to the etiology of schizo-
phrenia is the NMDA-receptor. The NMDA-receptor theory of schizophrenia goes 
back a number of decades (Olney et al. 1999) but has gained increasing support 
through various lines of genetic, molecular, and immunological evidence that 
suggest an important role for the glutamate system and the NMDA-receptor specif-
ically in modulating some of the symptoms of schizophrenia (Lennox et al. 2017; 
Merritt and Egerton 2017; Schizophrenia Working Group of the Psychiatric Geno-
mics Consortium 2014). Neuroimaging studies have demonstrated that NMDA-
receptor agonists like ketamine perturb error signaling in associative learning para-
digms (Corlett et al. 2006, 2016), as well as in mismatch negativity paradigms 
(Weber et al. 2020). Given the prevalence of NMDA-receptors on pyramidal 
feedback cells (Fox et al. 1989; Rosier et al. 1993), a plausible hypothesis would 
be that these perturbations in learning and sensory processing arise due to interfer-
ence with feedback signaling. Indeed, there is some work in humans that shows that 
ketamine interferes with feedback signaling (van Loon et al. 2016). Alternatively, 
the described experimental effects could be explained by enhanced feedforward 
signaling. Here, layer-specific fMRI could be used to distinguish between these



two competing hypotheses by investigating whether NMDA-antagonists interfere 
specifically with signaling in the deep layers or whether they alternatively enhance 
feedforward signaling by modulating the middle layers. 

How Layer-Specific fMRI Can Contribute to Understanding…

While the NMDA-receptor has mostly been associated with feedback signals, the 
cholinergic system has often been associated with modulating feedforward precision 
(Moran et al. 2013; Stephan et al. 2006). The cholinergic system might play an 
important part in the etiology of schizophrenia. For example, there are studies 
suggesting a loss of sensory precision in schizophrenia due to reduced cholinergic 
tone (Higley and Picciotto 2014). Further, in neurological conditions like 
Alzheimer’s disease, Lewy-body dementia, and Parkinson’s disease, reduced cho-
linergic function has been consistently related to an increase in visual hallucinations 
(O’Brien et al. 2020). Experimental evidence using an acetylcholine agonist has 
been shown to induce hallucinations by sensory conditioning (Warburton et al. 
1985), suggesting a mechanistic role for cholinergic disturbances in hallucinations. 
Again, layer-specific imaging could be used to study whether cholinergic modula-
tion primarily affects feedforward signaling through modulations of the middle and 
perhaps superficial layers or whether it perturbs feedback signaling in the deep layers 
instead. 

The serotonin system, particularly the 5HT2a receptor that is modulated by 
classical psychedelics, is another promising neurotransmitter system that is likely 
to play a role in perceptual disturbances. Although research linking hallucinations in 
schizophrenia to the serotonin system is somewhat limited, there is increasing 
evidence that in Parkinson’s disease it is a key contributor to visual hallucinations. 
Previous research has linked 5HT2a receptors in the visual ventral system to the 
prevalence of visual hallucinations in Parkinson’s disease (Ballanger et al. 2010; 
Huot et al. 2010). Moreover, Pimavanserin, a partial 5HT2a agonist, has shown 
promising results in treating visual hallucinations in Parkinson’s disease (Cummings 
et al. 2014;  O’Brien et al. 2020). The exact mechanisms through which the 5HT2a 
serotonin system perturbs perceptual processing remain unclear. Some have argued 
that 5HT2a agonists weaken the influence of prior beliefs (Carhart-Harris and 
Friston 2019). Indeed, there is some indirect evidence for this. For example, some 
sensory processing phenomena believed to rely on feedback processing are reduced 
under psychedelics, like mismatch negativity responses (Timmermann et al. 2018), 
and the experience of illusory contours (Kometer et al. 2011, 2013), and binocular 
rivalry is altered as well (Carter et al. 2005, 2007). Neurophysiological studies have 
demonstrated that these substances alter glutamatergic signaling in layer V neurons, 
which, given their role in feedback processing, gives credence to the altered feed-
back processing hypothesis (Aghajanian and Marek 1999). However, the complex 
hallucinations that are sometimes experienced under these substances seem less 
compatible with the weaker prior account. Here, laminar imaging can help elucidate 
this apparent contradiction and test directly whether deep layer signaling of visual 
illusions (Kok et al. 2016) is perturbed by administration of psychedelics, whereas 
perhaps more cognitive expectation signals in the deep layers (Aitken et al. 2020; 
Haarsma et al. 2023) are enhanced. The origin of the top-down drive in these two 
instances could be different, with the former originating from higher regions within



the visual cortex (Pak et al. 2020), and the latter from the hippocampus (Aitken and 
Kok 2022). 
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Finally, dopamine has long been implicated in the etiology of psychosis, both in 
schizophrenia and Parkinson’s disease (Howes and Kapur 2009; Meltzer and Stahl 
1976). Given the lack of dopamine receptors in the sensory cortex, it is unlikely that 
dopamine directly affects early sensory processing. Instead, what dopamine might 
do is enhance the influence of higher-order beliefs on lower-level sensory 
processing. Indeed, recent evidence from animal studies has suggested that dopa-
mine might do exactly this (Schmack et al. 2021). In a series of experiments, it was 
demonstrated that hallucination-like behavior was preceded and causally affected by 
dopamine levels in the caudate nucleus. One hypothesis might be that activity in the 
caudate enhances feedback signals in the deep layers of the early auditory cortex, 
which could be studied using laminar imaging. Such evidence would strongly 
substantiate a role for dopamine in enhancing sensory prediction signals. 

Thus, the combination of pharmacological and clinical layer-specific fMRI stud-
ies could provide key insights into the various ways perception can go awry. 
Comparative approaches are particularly encouraged here, as the same behavioral 
phenomenon might arise through different mechanisms, which layer-specific fMRI 
could help uncover. 

7 Relevance of Layer-Specific fMRI to Precision Medicine 

In addition to layer-specific fMRI’s potential to test different hypotheses about what 
underlies perceptual aberrancies in illnesses like psychosis or Parkinson’s disease, 
one of the more exciting prospects is that it allows taking a personalized approach to 
understanding these mechanisms. There are a range of theoretical papers that have 
been rightfully influential in how we currently understand hallucinations. However, 
a potential drawback of such theoretical accounts is that there is often an underlying 
assumption that there is a single explanation that underlies the broad category of 
hallucinatory phenomena. While this may be true to some extent, perhaps in the 
sense that there is a final common pathway that underlies all conscious experience, 
there is a potential risk that this approach loses sight of the various ways that 
perception can go awry. Perhaps an alternative approach might be to start with a 
theoretical framework in which to understand perception and use this to specify the 
diversity of mechanisms through which perception can go awry. This type of 
approach, which we have taken in this chapter, can provide a roadmap toward 
understanding hallucinations that releases us from the obligation to find a single 
explanation that subsumes all hallucinatory phenomena. A major advantage is that it 
instead allows us to think about the various routes that may lead to hallucinations, 
something that may be valuable for explaining individual variations across and even 
within conditions. Taking such an approach, auditory hallucinations as seen in 
schizophrenia need not arise through the same mechanisms as hallucinations seen



in Parkinson’s disease. In psychosis, the types of experiences that are typically 
considered to be hallucinations can range from low-level perceptual disturbances, 
such as geometrical patterns, to high-level hallucinations such as seeing fully formed 
entities or hearing voices, referred to as minor and major phenomena respectively 
(Mocellin et al. 2006; Pagonabarraga et al. 2016). Given their differences in phe-
nomenology, these might well arise from different mechanisms, and methods like 
layer-specific fMRI could allow for a more nuanced understanding of these 
mechanisms. 

How Layer-Specific fMRI Can Contribute to Understanding…

Embracing this view could allow for a more personalized approach in which 
future layer-specific imaging studies could play a role. For example, in a recent 
study, participants occasionally reported perceiving oriented gratings that were not 
actually presented, with high levels of confidence. In this instance, false percepts 
were not driven by cued expectations and were reflected in the middle input layers of 
the visual cortex, potentially reflecting a form of feedforward hallucinations 
(Haarsma et al. 2023). Expectation-driven hallucinations, on the other hand, are 
more likely to result from deep layer signals (Aitken et al. 2020; Haarsma et al. 2023; 
Thomas et al. 2024). Therefore, in future, layer-specific fMRI could be used as a tool 
to identify patients’ unique mechanistic profiles, allowing us to potentially tailor 
treatment accordingly. 

As discussed in the previous section, extending layer-specific fMRI to include 
pharmacology will be key in this endeavor, and can aid our understanding of the 
different ways perception can go wrong. For example, false inferences during 
perceptual discrimination tasks might be the result of excessive feedforward signal-
ing in some patients, whereas they result from enhanced feedback signals in others. 
If neuromodulatory systems are primarily involved in feedback over feedforward 
mechanisms, and vice versa, these systems could then be future targets of interven-
tion depending on whether a given patient presents a feedforward or feedback layer 
profile during false inferences. Thus, although it is still likely a long way off, in 
theory laminar imaging has the potential to identify personalized treatment targets. 

8 Challenges 

As layer-specific fMRI is still a relatively novel method, there are still several 
challenges that limit its application in clinical groups, and overcoming these chal-
lenges will likely increase its potential impact. One well-known issue is that large 
draining veins in the cortex cause a bias towards the superficial layers, as BOLD 
signal arising from neural activity in deeper layers flows upward to the pial surface 
(Uludağ and Blinde r 2018). This phenomenon complicates interpretation of conven-
tional BOLD-based methods (Kay et al. 2019). The earliest studies attempted to 
identify voxels containing veins, which was reasonably successful in removing some 
bias (Koopmans et al. 2010). Alternatively, using non-BOLD-based fMRI sequences 
could address the root cause of the problem (Huber et al. 2019). One such method is 
CBV-weighed VASO (Lu et al. 2003), which has been demonstrated to have more



local specificity and a more equally weighted contrast across the different cortical 
depths. However, the overall sensitivity of the obtained signals is reduced compared 
to more conventional Gradient Echo (GE) EPI sequences (Huber et al. 2015). 

J. Haarsma and P. Kok

Another issue relates to restricted brain coverage, which limits layer-specific 
fMRI’s ability to study whole-brain laminar dynamics. Although SS-SI-VASO or 
MAGEC_VASO sequences seem to provide superior brain coverage over conven-
tional methods while not relying on the BOLD response for their signals (Huber 
et al. 2019). Given the importance of achieving high spatial resolution, motion 
artefacts can be another confounding factor, which might be particularly pertinent 
for older populations that struggle to lie still for the long periods of time layer-
specific imaging requires. Prospective motion correction can limit the amount of 
pre-processing required once the data has been acquired (Bause et al. 2020). Further, 
developments in hardware to make participants more comfortable help to reduce 
motion. 

Geometric distortions commonly occur in echo planar imaging (EPI) fMRI 
sequences. Worryingly these issues are exacerbated at higher magnetic field 
strengths, as the inhomogeneities in the b0 field become exacerbated, limiting the 
spatial selectivity of the fMRI signal. This is a considerable problem for layer-
specific fMRI, which naturally requires high spatial selectivity. These issues can 
be partially corrected by acquiring reversed encoding images, which allow the 
researcher to measure the degree of distortion and adjust for them. Indeed, recently 
this method has been shown to work well for 3D-epi sequences, where the distor-
tions were corrected in the areas where they typically occur the strongest, i.e., the 
frontal and temporal areas of the brain. Given the amount of distortions in these areas 
at higher field strengths, deploying distortion correction will be particularly pertinent 
when layer-specific imaging will move from the early sensory regions toward 
higher-order regions like the association and frontal cortices (Malekian et al. 2023). 

Currently, layer-specific imaging studies most commonly achieve a voxel-
resolution of 0.8 mm isotropic, which is sufficient to separate activity into three 
separate layers within the visual cortex, as the typical thickness of the grey matter is 
2.5–3 mm on average. This means that activity in various neighboring laminae, such 
as layers V and VI, will be averaged together, limiting the extent to which we can 
make inferences about the contribution of different layers to perception. Preliminary 
work has achieved higher resolution images (0.2 mm) by using a line-scanning 
method (Morgan et al. 2020). If this was to become the standard, further delineation 
of the contribution of different laminae might come within reach. 

A well-known limitation of fMRI is that it suffers from poor temporal resolution, 
which, given the importance of the timing of various neural events to theories of 
perception, limits its potential. Some potentially promising, but preliminary, work in 
anesthetized mice has been reported to be able to overcome the temporal limitation 
of fMRI by adopting a novel sequence referred to as DIANA (short for Direct 
Imaging of Neuronal Activity) (Toi et al. 2021). Using this sequence, the researchers 
were able to obtain laminar-specific neural (rather than hemodynamic) signals from 
the mouse somatosensory cortex with very high temporal resolution. However, some 
recent replication attempts have failed so far; thus its application in humans is still far 
from certain (Choi et al. 2023; Hodono et al. 2023).



How Layer-Specific fMRI Can Contribute to Understanding…

To complement layer-specific fMRI, other avenues of noninvasive imaging could 
be explored. In recent years laminar MEG has emerged as a potentially exciting tool 
to study perception and cognition. Due to its ability to measure fluctuations in the 
magnetic field that are a direct consequence of electrical neural signals, it reflects a 
more direct measure of neural activity and is thereby only constrained by the quality 
of the data and the models used to make inferences about it (Bonaiuto et al. 2018a, b; 
Liuzzi et al. 2017; Meyer et al. 2017; Troebinger et al. 2014a, b). 

Finally, in order to properly interpret layer-specific fMRI results, one needs to 
make a reliable assessment of the distribution of the histological layers across 
cortical depth. While the distribution of layers in the early sensory regions is fairly 
stable, in higher-order regions like the association cortex, the distribution of layers 
across depths is more variable (Finn et al. 2021). However, progress can be made by 
using evidence from anatomical images to gain information about the laminar 
distribution in higher-order regions like the association cortex. These include diffu-
sion MRI, T1-weighted imaging of the myeloarchitecture, and magnetic suscepti-
bility imaging, as well as using information from whole-brain laminar atlases, which 
will allow for more accurate estimations of the distribution of layers across cortical 
depth (Callaghan et al. 2014; Dinse et al. 2015; Finn et al. 2021; Trampel et al. 2019; 
Wagstyl et al. 2020). 

9 Conclusion 

Layer-specific fMRI holds great potential for drilling down on some of the leading 
theories of how perceptual disturbances emerge across various clinical and neuro-
logical disorders. By combining it with pharmacological theories of perception, we 
can start to see the similarities and divergences in how perception can go awry. 
Ultimately, these methods could aid in developing personalized treatments, helping 
to alleviate the suffering resulting from perceptual disturbances more effectively. 
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