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Abstract

Large-scale compressive plasma fluctuations in the solar wind are typically characterized by an anticorrelation
between the plasma density and the magnitude of the magnetic field, and thus share polarization properties with slow
waves. The nature of the slow modes in the solar wind with respect to the polarization properties of the plasma has
been found to be in better agreement with the magnetohydrodynamic (MHD) slow mode predictions compared to
that of the kinetic slow mode. The polytropic behavior of the plasma in compressive fluctuations may provide
further insight into the nature of the slow mode, since the MHD, Chew–Goldberger–Low (CGL), and kinetic slow
modes predict different proton polytropic indices (γ). Using Solar Orbiter observations, we identify two 1–2 hr
intervals of compressive fluctuations with a low probability of streamline crossings, determine the effective
polytropic index of protons and electrons for both events, and compare them with the theoretical expectations of
MHD, CGL, and kinetic slow modes. One interval exhibits characteristics of the MHD slow mode having a clear
isotropic closure for the protons with γp ≈ 1.7, while the other interval is more consistent with the kinetic slow
mode. The calculated electron polytropic index is γe ≈ 0.7 for both events. We decompose the signals into three
different frequency bands and repeat our analysis, finding a similar difference in the proton polytropic behavior
between the two events. A scale dependence is also observed, suggesting that kinetic effects become more
prominent at smaller scales.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Magnetohydrodynamics (1964); Space plasmas
(1544); Plasma physics (2089)

1. Introduction

Compressive fluctuations constitute a minor component
compared to the Alfvénic fluctuations in solar wind turbulence.
(C. H. K. Chen 2016; J. Šafránková et al. 2019). These fluctuations
are present in a wide range of scales in the solar wind, ranging
from large structures in the inertial range (L. F. Burlaga &
K. W. Ogilvie 1970; C. Y. Tu & E. Marsch 1995; G. G. Howes
et al. 2012; C. H. K. Chen 2016; D. Verscharen et al. 2017) to
kinetic scales (P. J. Kellogg & T. S. Horbury 2005; S. Yao et al.
2011). In addition to their role in the turbulent energy
cascade, they also perturb the pressure and internal energy of
the plasma, and thus influence the evolution of the solar wind’s
bulk properties (i.e., density, temperature) and can subject the
plasma to various large-scale temperature anisotropy and beam
instabilities (D. Verscharen et al. 2016; X. Zhu et al. 2023). Thus,
investigating the nature of compressive fluctuations provides
insight into how energy cascades in the solar wind, the stability of
the plasma, and the plasma’s internal energy as it expands in
interplanetary space.
In the magnetohydrodynamic (MHD) approximation, two

compressional linear modes characterizing compressive fluc-
tuations with modulation in the magnetic field are supported
for a collisional plasma, namely the fast and slow magneto-
sonic waves. Both waves exhibit fluctuations in the density, δn,
and the magnetic field strength, δ|B|, but differ in their

polarization properties. The density and the magnetic field are
positively correlated for the fast mode but anticorrelated for
the slow mode. In situ observations of the solar wind show that
compressive fluctuations typically exhibit anticorrelation
between δn and δ|B| (B. Bavassano & R. Bruno 1989;
P. J. Kellogg & T. S. Horbury 2005; G. G. Howes et al. 2012;
K. G. Klein et al. 2012; S. Yao et al. 2013; D. Verscharen
et al. 2017), and thus share this polarization property with slow
waves. However, the expectation for a collisionless plasma
would be that MHD does not work, and thus, since the solar
wind is mostly collisionless, a kinetic description of compres-
sive fluctuations would be required.
In kinetic theory, the counterparts to the MHD slow mode,

known as the kinetic slow modes (D. Verscharen et al. 2017),
are the ion-acoustic (IA) wave and the nonpropagating (NP)
mode, depending on the plasma’s parameters (G. G. Howes
et al. 2006). Observations of the polarization properties of
compressive fluctuations in the solar wind were found to be in
better agreement with the MHD slow-mode predictions rather
than the kinetic, suggesting that the plasma behaves more
fluid-like than expected. This is corroborated by measurements
of the effective mean free path of the solar wind protons at
1 au, which have been shown to be three orders of magnitude
smaller than the collisional mean free path (J. T. Coburn et al.
2022) and simulations of high β collisionless plasma
compressive fluctuations exhibiting fluid-like turbulent proper-
ties (R. Meyrand et al. 2019; M. W. Kunz et al. 2020).
This paper aims to discuss the polytropic behavior of

compressive fluctuations in the solar wind in reference to the
MHD slow mode, the Chew–Goldberger–Low (CGL) slow
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mode, and the IA wave, as well as investigate the differences in
the plasma’s properties between the different modes using
observations. A polytropic description provides closure to the
plasma moments where the value of the polytropic index, γ, is a
useful tool in characterizing plasma fluctuations and thermo-
dynamic properties (see Section 2.1). Numerous studies have
investigated the value of the polytropic index in the solar wind,
both in the inner and outer heliosphere (T. L. Totten et al.
1995; B. Bavassano et al. 1996; J. A. Newbury et al. 1997;
M. Kartalev et al. 2006; G. Nicolaou et al. 2014, 2020, 2023).
We identify two case studies of compressive fluctuations using

the polarization property between δn and δ|B| of the slow mode,
determine the polytropic index of electrons and protons, and
compare them with the MHD, CGL, and IA wave predictions.
Furthermore, we decompose the signal at various frequency
bands and investigate how our results depend on scale. Section 2
introduces the polytropic relationship and the meaning of the
effective polytropic index, illustrates the dispersion relationships
of the MHD slow mode, CGL slow mode, and IA wave, and
discusses the predictions of the polytropic behavior of protons
and electrons for these modes. Section 3 explains how we
identified the case studies, determined the effective polytropic
index of protons and electrons, and carried out the multiscale
analysis. Section 4 introduces the two case studies and displays
our findings. In Section 5, we discuss our results and Section 6
summarizes our conclusions.

2. Polytropic Behavior in Compressive Waves

2.1. The Polytropic Equation

A polytropic process characterizes a thermodynamic trans-
ition where the ratio of energy transferred into the system as
heat and as work remains constant (S. Chandrasekhar 1957).
For a fluid obeying the ideal gas law, with density, n, and
isotropic pressure, P, (or temperature, T), this is expressed as

( )P n T nor , 11

where γ is the polytropic index. The value of γ provides
insight into a fluid’s heat dynamics and effective kinetic
degrees of freedom, f, as it undergoes a thermodynamic
transition (G. Livadiotis & G. Nicolaou 2021). For the special
case where there is zero heat transfer during the process,
known as an adiabatic process, the polytropic index can be
expressed in terms of f by

( )/= + f1 2 . 2

Thus, for a plasma with f= 1, an adiabatic process has a
polytropic index of γ = 3; while for f = 3, the index will be
γ = 5/3. A process at a constant temperature, known as an
isothermal process, is characterized by γ = 1, a process at a
constant pressure, known as isobaric, is characterized by
γ = 0, and a process at a constant volume, known as
isochoric, is characterized by γ = ∞.
In magnetized plasmas, the distributions are often aniso-

tropic and thus require two pressures (temperatures) to
describe the plasma, one parallel and one perpendicular to B.
Under this consideration, it is useful to introduce the parallel,
γ∥, and perpendicular, γ⊥, polytropic indices which character-
ize the relationship between n and the parallel, P∥, and
perpendicular, P⊥, pressure (or parallel, T∥, and perpendicular,

T⊥, temperature) by

( )P n T nor , 31

and

( )P n T nor . 41

2.2. Fluid and Kinetic Slow Modes

In the MHD limit, the linear dispersion relation of the slow
mode is given by

( )= ±kC , 5MHD

where

( )

= + +C V
1

2
1

2

1

2
1

2
2 cos ,

6

p p pA

2
2

1
2

| |/= BV n m4 p pA is the MHD Alfvén speed, mp is the
proton mass, βp = 8πnpkBTp/B2, kB is the Boltzmann
constant, and θ is the angle between the wavevector, k, and
B. As per the typical assumptions of ideal and isotropic MHD,
the pressure (and temperature) is isotropic and is related to the
density via a polytropic closure. Thus, plasma experiencing
compressive fluctuations characterized by the MHD slow
mode exhibits a polytropic closure between the density and the
isotropic pressure. Regarding the value of the polytropic index,
while γ appears as a free parameter in the dispersion relation,
we can form predictions based on the ambient solar wind
conditions. We expect protons to exhibit adiabatic behavior
with γp = 5/3 (E. Marsch & A. K. Richter 1984; G. Nicolaou
& G. Livadiotis 2019; G. Nicolaou et al. 2023) and electrons to
behave isothermally with γe ≈ 1 due to their large heat flux
(J. B. Abraham et al. 2022).
In the case of the kinetic slow mode, assuming a bi-

Maxwellian background distribution function, the least
damped propagating mode with slow-mode poralization is an
IA wave with a linear dispersion relation in the gyrokinetic
limit of

( )= ± k c , 7r
IA

s

where (S. P. Gary 1993; Y. Narita & E. Marsch 2015)

( )=
+

c
k T k T

m

3
8s

p e

p

B , B ,

is the IA speed. Comparing this dispersion relation with that of
two-fluid theory allows us to form expectations regarding the
polytropic behavior of the protons and electrons during an IA
wave (S. P. Gary 1993). In two-fluid theory, the dispersion
relation is given by

( )= ± k c , 9r
F

F
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is the two-fluid wave speed, and p
F and e

F are the proton and
electron two-fluid polytropic indices, respectively. Assuming a
polytropic closure and directly comparing (8) and (10) shows
that γp∥ = 3 and γe∥ = 1 for the IA wave (S. P. Gary 1993).
This suggests that protons exhibit one-dimensional adiabatic
behavior due to the degree of freedom along the magnetic field
direction, while electrons behave isothermally due to their
large heat flux. For an IA wave, a polytropic closure is
expected between n and P∥ for both protons and electrons.
Another fluid model we can consider to describe plasma

dynamic fluctuations is the Chew, Goldberger, & Low model
(G. F. Chew et al. 1956). In the CGL model, the slow-mode
dispersion relation is (P. Hunana et al. 2019)

( )
( )

( )= + + A1 1 cos cos ,

11

kV
pCGL

2
2

1

2
2 2A

2

where
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+
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2
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2

2 2 2 2
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T
and β∥ is determined using T∥. A polytropic closure

for protons can also be incorporated in the CGL model by
introducing the parallel, ξ∥, and perpendicular, ξ⊥, CGL
polytropic indices defined by

| |
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Bd

dt
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These polytropic indices differ from the MHD ones (repre-
sented with the letter γ). In the classical CGL case, the fluid is
modeled by the double adiabatic equations and thus ξ∥ = 3
and ξ⊥ = 2, while for the isothermal case ξ∥ = 1 and ξ⊥ = 1
(B. Abraham-Shrauner 1973; L. N. Hau & B. U. O. Sonnerup
1993; P. Hunana et al. 2019).

3. Observational Methods

3.1. Data Processing and Case Study Criteria

We use observations from the Solar Wind Analyser (SWA)
suite of instruments (C. J. Owen et al. 2020), the MAG
magnetometer (T. S. Horbury et al. 2020) and the Radio and
Plasma Waves (RPW; M. Maksimovic et al. 2020) instrument
aboard Solar Orbiter (D. Müller et al. 2020). Specifically, we
obtain the proton density and pressure tensor from ground
moments of the velocity distribution functions (VDFs)
constructed from SWA-Proton and Alpha Sensor (PAS)
measurements, the electron densities from RPW, and the
magnetic field data from MAG. We determine the electron
density and pressure used in the polytropic analysis by
calculating moments of the 2D pitch angle–energy distribution
function measured by the SWA-Electron Analyser Sensor

(EAS). We calculate the moments over the entire energy range
of EAS after shifting the distribution by the spacecraft
potential measured by RPW. This shift significantly reduces
low-energy electron contamination from photoelectrons and
other spacecraft potential effects (G. Nicolaou et al. 2021b;
S. Štverák et al. 2025). To validate the electron moments from
EAS, we cross-check the determined densities with the RPW
densities. The VDFs in the instrument frames, magnetic field
vectors, and PAS moments are available at the Solar Orbiter
Archive.5

Assuming the Taylor frozen-in flow hypothesis, we use the
polarization property of the slow mode as an observable
marker for identifying compressive fluctuations. Intervals with
a Pearson correlation coefficient between np and |B|,
Rp(np, |B|), less than −0.6, and a maximum np and |B|
fluctuations from the average value greater than 10% were
considered. The intervals we study are one to two hours long,
long enough to sample the inertial range and allow for
multiscale analysis and short enough to avoid times when the
spacecraft samples different streams.
Streamline crossings invalidate the application of the

polytropic relation Equation (1) (T. L. Totten et al. 1995;
J. A. Newbury et al. 1997; M. Kartalev et al. 2006; G. Nicolaou
et al. 2014; G. Nicolaou & G. Livadiotis 2017). Thus, to
accurately determine γ, one should ensure that the interval
analyzed contains plasma from the same solar wind structure.
The variability of the Bernoulli integral (BI), which describes
the energy conservation in a fluid, is an indicator of potential
streamline crossings (M. Kartalev et al. 2006). At 1 au, the
dynamic term, /= VBI 2D p b,

2 , of BI dominates over the
thermal and magnetic terms, as demonstrated by G. Nicolaou
et al. (2021a). To ensure that this condition also holds for both
intervals in this study, we determine the proton thermal and
magnetic terms of BI. We find that BID is at least an order of
magnitude greater than the sum of the thermal and magnetic
terms throughout both intervals. Thus, we use BID as a proxy for
BI. We define the variability of BI, ΔBI, as

( )=BI
BI

, 14
D

BID

where BID and 〈BID〉 are the standard deviation and mean of
BID across the entire interval, respectively. Only intervals with
ΔBI < 0.025 are considered; a similar condition used by
C. Katsavrias et al. (2024). This condition increases the
probability that the analyzed interval corresponds to an
individual streamline, but does not guarantee it.

3.2. Polytropic and Multiscale Analysis

Taking the log of Equation (1) yields

( )= +P nlog log const. 15

We calculate γ by applying a least square linear regression to
Plog versus nlog data points and calculate the slope. Using

P∥, P⊥, and P allows for calculating the effective parallel, γ∥,
effective perpendicular, γ⊥, and effective isotropic, γ, indices,
respectively.

5 https://soar.esac.esa.int/soar/
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Similarly, using the conservation form of Equations (12)
and (13) and taking the logarithm, we find

( ) ( )= +
B

P

n

n
log 1 log const, 16

and

( ) ( )= +B
P

n
log 1 log const. 17

We calculate ξ∥ by applying a least squares linear regression to
a /P nlog versus | |/ Bnlog plot and calculate the slope.
Similarly, we calculate ξ⊥ by applying a least squares linear
regression to a /P nlog versus | |Blog plot.
We decompose the density, pressure, and magnetic field

signals using the Multivariate Fast Iterative Filtering
(MvFIF) algorithm (A. Cicone & E. Pellegrino 2022) to
perform our analysis across multiple scales. Unlike wavelet-
based techniques, MvFIF performs the time-frequency
analysis of multivariate signals without requiring a prese-
lected base signal or making any a priori assumptions on the
signal (A. Cicone & E. Pellegrino 2022). We then perform
polytropic analysis on the decomposed density and pressure
within frequency bands, using the same procedure as before,
to determine γ at different scales. To examine the slow-mode
polarization condition throughout the interval at different
scales, we determine the cross-wavelength coherence
between np and |B|. We calculate this using the PIWavelet

6

Python package, which is a Python interface for the Matlab
package for wavelet, cross-wavelet, and coherence-wavelet
analysis (A. Grinsted et al. 2004).

4. Results

We report two case studies of compressive fluctuations
observed by the Solar Orbiter spacecraft. The first interval,
referred to as CS1, was observed on 2021 July 28 from 07:40
to 08:40 UT and the second, referred to as CS2, was observed
on 2021 August 5 from 00:30 to 02:00 UT. The subscripts “1”
and “2” designate quantities for intervals CS1 and CS2,
respectively. Figures 1(a)–(f) and 2(a)–(f) show the time series
of plasma and field parameters for CS1 and CS2, respectively,
and Table 1 summarizes the average properties of both events.
Panel (a) shows the electron and proton density, panel (b)
shows B in the RTN frame, panel (c) shows the normalized
fluctuations from the mean, δx/x0, where /= =x x Ni

N
i0 1 , N

is the total number of data points in the interval and
δx = x − x0, for ne, np and |B|, panel (d) shows the radial
proton bulk speed, panel (e) shows the electron and proton
temperature, and panel (f) shows Tp⊥/Tp∥.

4.1. Polytropic Index

The proton and electron density time series share almost
identical profiles in both events, except that ne is marginally
larger (≈6%) than np. This difference in particle density is,
however, expected due to the presence of alpha and higher-
charged ions, requiring np < ne to achieve quasi-neutrality.
The density difference appears stronger in CS2, especially in
the first half of the event, which is possibly due to a larger α-
particle composition of the plasma when compared to CS1,
although alpha densities are not available to check this

assumption. Both events have a similar magnetic field strength
of just over 5 nT. In CS1, the field is mainly in the BN
direction, with a weak BR component. In contrast, in CS2, the
field’s direction varies throughout the event. While BR
experiences minor fluctuations around −5 nT, there are
multiple sharp variations and reversals of BN and BT. The
normalized fluctuations in the magnetic field are anticorrelated
with the density fluctuations, for both events, as is evident in
Figures 1(c) and 2(c), which is consistent with the expectations
of the slow mode. CS1 exhibits a stronger anticorrelation, with
a Pearson correlation coefficient of −0.905, compared to
−0.677 for CS2.
To further examine the correlation between density and the

magnetic field, we calculate the squared cross-wavelet
coherence (C. Torrence & G. P. Compo 1998), using the
Morlet wavelet, for both events, shown in Figures 3 and 4. The
white dashed line shows the cone of influence (COI),
indicating the regions where the cross-wavelet coherence is
potentially affected by edge-effect artefacts. The COI in CS2 is
not symmetric due to data gaps in the period before the event.
As expected, both events exhibit strong coherence between n
and |B|. Despite this, CS2 contains short intervals with little
correlation between the two parameters, in contrast to CS1,
where the coherence is clear throughout the event, in line with
the correlation coefficients calculated for both events. How-
ever, there is a clear exception at high frequencies, where the
coherence is not evident in either event.
Both events occur in slow solar wind conditions with similar

average bulk properties. The plasma is colder in CS1, and the
protons are colder than the electrons in both events. Both
events also have a comparable βp,∥, which is just above unity.
ΔBI < 0.025 for both events, which suggests a low
probability of streamline crossings.
Figures 5 and 6 show plots of electron and proton pressure

versus density, including the polytropic index fits for CS1 and
CS2, respectively. The color of the data points represents the
time instance of the corresponding measurement in the
interval. We perform linear regression between the pressure
and density data, indicated by the black line, to determine γ.
The error represents only the statistical error of the fit based on
a least squares calculation. Additionally, we calculate the
Pearson correlation coefficient, Rp, between the logarithmic
pressure and density. Panels (a)–(c) show the protons results,
while Panels (d)–(f) show the electron results. Panels (a) and
(d) show the results using P∥, panels (b) and (e) using P⊥ and
panels (c) and (f) using P. The range of the n and P axes is the
same for all plots to visualize the gradients of the linear fits
more clearly.
In CS1, we observe a large correlation coefficient between

Pp and np in all cases, with Rp > 0.9, suggesting a proton
polytropic closure. In the isotropic case, the linear fit
determines γ1,p ≈ 1.7, which is close to the adiabatic value
for a system with f = 3. The value of the indices in the
parallel and perpendicular directions diverge slightly from the
adiabatic value, where γ1,p,∥ ≈ 1.9 is larger while γ1,p,⊥ ≈ 1.6
is smaller than γ1,p. Electrons exhibit subisothermal behavior
(γ < 1) in all cases. The correlation coefficient is large for all
electron cases with Rp > 0.9, suggesting a polytropic closure is
valid for electrons.
Electrons in CS2 are described by a subisothermal

polytropic index in all cases, with similar Rp values as in
CS1, suggesting that an electron polytropic closure is also6 https://github.com/duducosmos/PIWavelet
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applicable in CS2. The protons, however, exhibit different
behavior between the two events. A large correlation
coefficient is again observed in the parallel case with
Rp = 0.783, suggesting a polytropic closure with Pp,∥, but
the closure is not clear in the perpendicular component as
Rp = 0.491. The values of the parallel and perpendicular

indices diverge significantly, since γ2,p,∥ is much larger with
2.792 ± 0.060 while γ2,p,⊥ lies in the subisothermal regime
with 0.840 ± 0.041. From Figure 6(c), two clusters separated
by time can be observed in the interval, which suggests that a
polytropic closure is present in these cases if the event is
further segregated.

Figure 1. Time series for event CS1: (a) proton, np, and electron, ne, density, (b) magnetic field, B, in RTN frame, (c) np, ne and |B| normalized fluctuations, (d)
radial proton bulk speed, VR, (e) proton, Tp, and electron, Te, temperature, and (f) proton temperature anisotropy, αp = Tp⊥/Tp∥.

5
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4.2. Multiscale Analysis

We decomposed the P, n, and |B| signals at various
frequencies using the MvFIF algorithm, allowing us to
perform the same analysis as before, only on signals within
a particular frequency band. Three distinct frequency bands are
selected for each event, separated by the black lines in

Figures 3 and 4. We refer to them as high frequency (HF),
intermediate frequency (IF), and low frequency (LF). The
frequency range of each band is shown in Table 2.
The MvFIF algorithm decomposes the signal into simple

oscillating components of varying frequency named intrinsic
mode functions (IMFs). To form the three frequency bands, we
sum together the IMFs corresponding to the frequencies within

Figure 2. Time series for event CS2: (a)–(f) same as in Figure 1.

6
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each band. The decomposition into the different IMFs is purely
data-driven, meaning that the frequency and the shape of each
IMF are not assigned a priori, but are determined empirically
by the algorithm (for details, see N. E. Huang et al. 1998;
A. Cicone & E. Pellegrino 2022). A detailed explanation of
how the algorithm works and how it can be used to separate
the different contributions to a (numerical) signal that
correspond to different (spatial) frequency bands (large,
intermediate, and small scales) can be found in E. Papini
et al. (2020). We decompose both intervals into 50 IMFs (plus
one additional component, the residual trend signal), and we
set identical IMF ranges for the HF, IF, and LF bands between
the two events. This is why the boundaries between the bands
are not identical between CS1 and CS2. We set the IMF range
for the HF band to include the noncoherent regions observed at
high frequencies in Figures 3 and 4, and for the IF and LF
bands to span approximately an order of magnitude in
frequency. The frequency space examined by the IF and LF
bands, while not identical between the two case studies, is
large enough in relation to the boundary differences to allow
for a comparison between the two events.
We perform identical correlation coefficient and polytropic

analysis procedures as before on the signals for each frequency
band. Figures 7 and 8 show the proton and electron results,
respectively, for each frequency band regarding CS1 and
Figures 9 and 10 show the results regarding CS2. The HF
results are shown in panels (a), (d), and (g), the IF results in
panels (b), (e), and (h), and the LF results in panels (c), (f), and
(i). Figure 11 summarizes the multiscale polytropic index
results for protons (a) and electrons (b). The Pearson
correlation coefficient between np and |B|, Rp(np, |B|), and
polytropic index results for both events are summarized in
Table 2.

4.2.1. High Frequency Band

The n and |B| anticorrelation is weakest in the HF band,
especially for CS2, which is consistent with Figures 3 and 4. In
this frequency band, the electrons exhibit subisothermal
behavior in both events, and the values of the polytropic
indices in all three directions are comparable. The proton
behavior also shows little deviation between the two events as

/< <1 5 3p
HF and < <p p p,

HF HF
,

HF.

4.2.2. Intermediate Frequency Band

In the IF band, protons exhibit different behavior in the two
events. The polytropic closure is applicable in all IF cases in
CS1 because Rp > 0.85. p1,

IF is near the adiabatic value of 5/
3, assuming f = 3. The parallel and perpendicular indices
diverge similarly to the results of the full signal, but to a
greater extent as p1, ,

IF increases to 2.305 ± 0.034, while p1, ,
IF

drops close to the isothermal index. The polytropic closure is
not as clear in CS2 in the perpendicular direction as Rp ≈ 0.5.
In contrast to CS1, protons behave subisothermally in the
perpendicular direction, while p2, ,

IF is much larger with a
value of 2.840 ± 0.073, which is similar to that of the full
signal. Regarding CS2, electrons again exhibit subisothermal
behavior with Rp > 0.9, suggesting a polytropic closure. A
closure is also observed in CS1, albeit with weaker correlation
coefficients, where the indices in all three cases increase, most
notably in the parallel direction where e1, ,

IF surpasses the
isothermal threshold.

4.2.3. Low Frequency Band

The proton behavior in the LF band does not vary
significantly from that in the IF band. Compared to the IF

Figure 3. Cross-wavelength coherence between np and |B| for CS1. The white
dashed line indicates the COI. The horizontal black lines indicate the
boundaries between the three different frequency bands analyzed.

Figure 4. Cross-wavelength coherence between np and |B| for CS2. Same
format as Figure 3.

Table 1
Average Bulk and Plasma Parameters of Case Study 1 (CS1) and Case Study 2 (CS2)

Date ; Time R 〈np〉 〈Tp〉 〈Te〉 〈Vb〉 〈βp∥〉 Rp(np, |B|) ΔBI
(UT) (au) (cm−3) (eV) (eV) (km s−1)

CS1 28/07/21; 07:40–08:40 0.80 21.5 4.35 7.89 314 1.20 −0.905 0.014
CS2 05/08/21; 00:30–02:00 0.75 20.8 6.99 9.82 371 1.15 −0.677 0.021

Note. R is the distance from the Sun, 〈np〉 is the average proton density, 〈Tp〉 and 〈Te〉 are the average proton and electron temperatures, 〈Vb〉 is the average proton
bulk speed, 〈βp,∥〉 is the average parallel proton beta, Rp(np, |B|) is the Pearson correlation coefficient between np and |B|, and ΔBI is the variability of the Bernoulli
integral.
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results, γp,∥ is smaller with <p p,
LF

,
IF , while γp,⊥ is larger

with >p p,
LF

,
IF in both events. The separation between the

two indices remains larger in CS2. p
LF for both events is

comparable and close to the adiabatic value for f = 3.
Electrons again exhibit subisothermal behavior in both events.

4.3. CGL Results
Figures 12 and 13 show the CGL analysis results for CS1

and CS2, respectively. A CGL polytropic closure can be seen
in both cases in CS1, where ξ1,∥ = 1.487 ± 0.012 and
ξ1,⊥ = 0.244 ± 0.014. The polytropic closure is less evident
in CS2, especially in the perpendicular case as |Rp| < 0.25.

Figure 5. Polytropic index results for protons and electrons in CS1. Rp is the Pearson correlation coefficient. Panels (a)–(c) show the proton results and panels (d)–(f)
show the electron results. Panels (a) and (d) show the parallel, panels (b) and (e) the perpendicular, and panels (c) and (f) the isotropic index results. The color of the
data points represents the time instance of the corresponding measurement in the interval.
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For both events, ξ∥ and ξ⊥ differ from the adiabatic
(ξ∥ = 3, ξ⊥ = 2) and isothermal (ξ∥ = 1, ξ⊥ = 1) values.

5. Discussion

5.1. Protons

The proton polytropic behavior in CS1 is in agreement with
the MHD predictions, suggesting that there is little net heat

exchange experienced by the protons. For the MHD slow
mode, we assume an isotropic plasma, meaning that γp,∥ and
γp,⊥ have identical behavior. In CS1, γ1,p,∥ ≠ γ1,p,⊥,
suggesting that there exists some anisotropy in the plasma,
which is also evident in the temperature profile in Figure 1(f).
Despite this, the ability of the isotropic closure to describe the
plasma, having a good Pearson correlation coefficient,
provides compelling evidence of the fluid-like behavior of

Figure 6. Polytropic index results for protons and electrons in CS2. Same format as in Figure 5.
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Figure 7. Polytropic index results of the decomposed signals for the protons in CS1. Rp is the Pearson correlation coefficient. Panels (a), (d), and (g) show the HF,
panels (b), (e), and (h) show the IF, and panels (c), (f), and (i) show the LF results. Panels (a)–(c) show the parallel, panels (d)–(f) the perpendicular, and panels (g)–
(i) the isotropic polytropic indices.

Table 2
Polytropic Index Results of Decomposed Signals for the LF, IF, and HF Bands for Protons and Electrons

Frequency Range Rp(np, |B|) Parallel (γ∥) Perpendicular (γ⊥) Isotropic (γ)
(Hz)

LF 2.89 × 10−4 − 2.24 × 10−3 −0.873 1.902 ± 0.031 1.397 ± 0.018 1.611 ± 0.013
Protons IF 2.24 × 10−3 − 1.74 × 10−2 −0.870 2.305 ± 0.035 1.192 ± 0.022 1.650 ± 0.017

Case 1 HF 1.74 × 10−2 − 2.50 × 10−1 −0.651 1.633 ± 0.050 1.022 ± 0.034 1.277 ± 0.026
LF 2.89 × 10−4 − 2.24 × 10−3 −0.986 0.772 ± 0.022 0.678 ± 0.011 0.712 ± 0.014

Electrons IF 2.24 × 10−3 − 1.74 × 10−2 −0.844 1.072 ± 0049 0.828 ± 0.025 0.915 ± 0.032
HF 1.74 × 10−2 − 1.00 × 10−1 −0.735 0.750 ± 0.040 0.760 ± 0.024 0.756 ± 0.027

LF 2.32 × 10−4 − 2.38 × 10−3 −0.813 2.600 ± 0.088 1.196 ± 0.039 1.618 ± 0.031
Protons IF 2.38 × 10−3 − 1.74 × 10−2 −0.764 2.840 ± 0.073 0.866 ± 0.041 1.449 ± 0.034

Case 2 HF 1.75 × 10−2 − 2.50 × 10−1 −0.501 1.608 ± 0.059 1.349 ± 0.067 1.426 ± 0.050
LF 2.32 × 10−4 − 2.38 × 10−3 −0.825 0.690 ± 0.017 0.934 ± 0.025 0.850 ± 0.022

Electrons IF 2.38 × 10−3 − 1.75 × 10−2 −0.730 0.774 ± 0.014 0.822 ± 0.008 0.805 ± 0.006
HF 1.75 × 10−2 − 1.00 × 10−1 −0.100 0.847 ± 0.028 0.801 ± 0.018 0.817 ± 0.017

Note. Rp(np, |B|) is the Pearson correlation coefficient between np and |B|.
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the proton plasma, furthered by the discrepancy between γ1,p,∥
and the kinetic IA mode predictions. A closure with regards to
the CGL polytropic indices is also observed in CS1, but the
ξ1,∥ and ξ1,⊥ values differ from their adiabatic values of 3 and
2, respectively. This suggests that there is an exchange of
energy between the particles and other reservoirs of heat in the
surroundings. More work is required to understand the
direction and magnitude of the energy exchange indicated by
the ξ1,∥ and ξ1,⊥ values, which is beyond the scope of this
paper. Thus, the fluid-like behavior of the protons is consistent
with both MHD and CGL polytropic results.
Protons in CS2 exhibit behavior comparable to the IA mode.

Specifically, γ2,p,∥ approaches 3, the adiabatic index with
f = 1, as predicted by the IA mode dispersion relationship
(Equations (7) and (8)). Furthermore, the weaker correlation
(Rp < 0.5) between Pp,⊥ and np, and the subisothermal value
of γ2,p,⊥ is contrary to the parallel polytropic behavior. Thus,
the proton plasma exhibits anisotropic polytropic behavior,
which is inconsistent with the MHD predictions. This is also
evident by the fluctuations in the proton temperature aniso-
tropy seen in Figure 2(f), which, considering that
γ2,p,∥ > γ2,p,⊥, means that the amplitude of the fluctuations in

Tp,∥ is greater than the amplitude of the fluctuations in Tp,⊥.
The CGL closure is poor, as evidenced in Figure 13, indicating
the nonfluid nature of the compressive fluctuations in this
event. Overall, as γ2,p,∥ is near 3, the proton closure in CS2 is
closest to that of an IA wave, in contrast to CS1.
Examining the temporal behavior of the data in Figures 6(b)

–(c), two linear regression lines exist, separated in time. This
can be evidence of a streamline crossing, despite the small
variation in BI. However, this is not as clear when looking at
the parallel case in Figure 6(a) and separating the interval into
two events yields insignificant changes to the value of γ2,p,∥,
meaning that a proton behavior akin to the IA wave is
observed whether the interval is clustered into two or kept
intact. This temporal discrepancy of the event is not observed,
however, when the signal is decomposed to shorter time
scales, as seen in Figure 9.
In the scale-decomposed polytropic index results, we observe

a shared scale dependence between the two events. The weak
np, |B| anticorrelation in the HF band, present in both events,
suggests that the slow mode is harder to measure at these scales.
Thus, no clear conclusions regarding the nature of the slow
mode at high frequencies can be made. At higher frequencies,

Figure 8. Polytropic index results of the decomposed signals for the electrons in CS1. Same format as Figure 7.
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the amplitude of the plasma fluctuations becomes small and
could be comparable to the noise amplitude, preventing us from
identifying possible correlations between the plasma para-
meters, leading to a smaller correlation coefficient.
The nature of the slow mode in the IF and LF bands is similar

to the full signal, where protons in CS1 exhibit characteristics of
the MHD slow mode, respecting the isotropic closure, while in
CS2, a strong parallel closure with a polytropic index near 3 is
evident, akin to the IA wave. The disparity between γp,∥ and
γp,⊥ is larger in the IF band compared to the LF band in both
events. This suggests that the plasma is more isotropic at larger
scales and is an indication that the nature of the slow mode is
also dependent on the length scale. At larger scales, the MHD
slow mode is more persistent, while at smaller scales the
disparity between γp,∥ and γp,⊥ increases as the kinetic
properties of the compressive fluctuations become more evident,
which is consistent with M. D. Tracy et al. (1993).

5.2. Electrons

The subisothermal behavior exhibited by the electrons in
both events is inconsistent with both the MHD and the IA

mode, which predict an isothermal electron plasma. This also
differs from the electron large-scale radial trend of marginal
superthermal (γ > 1) behavior (J. B. Abraham et al. 2022).
This deviation from the large-scale radial electron trends can
be attributed to the fact that we only investigate a localized
streamline which may exhibit significantly varied behavior
from the average solar wind conditions.
However, the mechanisms behind the subisothermal elec-

tron behavior remain unclear. We investigated the possibility
of electrons becoming trapped by the fluctuating magnetic field
by plotting the pitch angle distribution function of energetic
electrons, similarly to W. Jiang et al. (2022), but the B field
fluctuations are not strong enough to trap a considerable
fraction of the electron population. Additionally, we note that
the proton and electron temperatures are anticorrelated in both
events. A non-Maxwellian electron distribution could explain
the deviation from the MHD and IA predictions, but the
specifics behind the subisothermal electron behavior remain an
open question. A statistical study containing a larger number
of intervals and delving deeper into the thermal energy budget

Figure 9. Polytropic index results of the decomposed signals for the protons in CS2. Same format as Figure 7.
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of electrons, beyond the simple polytropic model, would be
required to better answer this question.

5.3. Comparison of Both Intervals

We have seen that the proton plasma in CS1 exhibits
properties consistent with that of a fluid characterized by the
MHD slow mode, while in CS2, protons exhibit behavior
closer to the IA mode. To gain further insight into the
mechanisms and nature behind the differences between the two
events, we investigate additional properties of the solar wind
plasma. The magnetic field and density power spectrums were
determined for both events, with no evident discrepancies
between the two.
To compare the Coulomb collisionality of the plasma

between the two events, we calculate the Spitzer–Härm
proton–proton collision frequency, νSH (L. Spitzer 1962).
The collision frequency of CS1 is found to be

= ×2.66 10 s2
SH 6 1, approximately double that of CS2,

= ×1.31 10 s2
SH 6 1. The Spitzer–Härm mean free path is
not an accurate measure of the effective collisionality of the
proton plasma because it is orders of magnitude larger than the

effective proton mean free path (J. T. Coburn et al. 2022).
However, the fact that 21

SH
2
SH suggests that the plasma

in CS1 experiences more Coulomb collisions than in CS2.
To further assess the differences in the Coulomb collision-

ality of the plasma between the two events, we determine the
velocity boundary, VD, (in the plasma frame) where the plasma
becomes collisional (collision number> 1), as defined by
E. Marsch & H. Goldstein (1983). We then determine the
ratio between VD and Vth. The ratio is greater for CS1,
VD,1/Vth,1= 1.05, compared to that of CS2, VD,2/Vth,2 =
0.74. This indicates that a larger fraction of the proton
population in CS1 is affected by Coulomb collisions compared
to CS2, which is consistent with the Spitzer–Härm collision
frequency estimates of the two events. Thus, the level of
Coulomb collisions differs in both intervals, but the difference is
not massive. Nevertheless, Coulomb collisions could be a
candidate for fluidization, which could explain the different
proton polytropic behavior between the two events.
Even collisionless processes have the ability to fluidize the

plasma behavior. For instance, antiphase-mixing due to the
stochastic counterpart of the plasma echo effect suppresses
higher-order moments of the plasma VDF, and thus creates an

Figure 10. Polytropic index results of the decomposed signals for the electrons in CS2. Same format as Figure 7.
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effective lower-moment closure (A. A. Schekochihin et al.
2016). Moreover, wave–particle interactions can act effec-
tively like collisions even under collisionless conditions and
thus also fluidize the plasma behavior (G. G. Howes et al.
2018). Quantifying the effective collisionality of these would
be worthwhile for a future study as an important aspect of
collisionless thermodynamics, since it can provide more
insight into the mechanisms behind the differing nature of
the two events.

6. Conclusions

We report two case studies of compressive fluctuations in
the solar wind observed by Solar Orbiter. We employ standard
methods to characterize the potential polytropic closure
between the pressure and density of protons and electrons in
these compressive fluctuations. We discuss our results with
reference to the predictions of the MHD and CGL slow modes
and the IA wave. Electrons show similar polytropic properties
in both cases, exhibiting subisothermal behavior with γe ≈ 0.7,
and no significant variance between γe,∥ and γe,⊥. This value is

lower than the MHD slow mode and IA wave predictions of
γe ≈ 1.
The proton polytropic behavior is significantly different

between the two events. In the first event, we report an
isotropic polytropic closure with γ1,p ≈ 1.7, matching the
MHD slow-mode predictions, with small variation in the
parallel and perpendicular directions where γ1,p,∥ ≈ 1.9 and
γ1,p,⊥ ≈ 1.6. The second case study exhibits anisotropic
polytropic behavior, where γ2,p,∥ ≈ 2.8, which is comparable
to the IA wave prediction of γp,∥ = 3, while the polytropic
closure is significantly weaker in the perpendicular direction,
as indicated by a lower Pearson correlation coefficient. A CGL
polytropic closure is evident in case 1, but ξ1,∥ and ξ1,⊥ are not
comparable to the adiabatic values of 3 and 2, and the
existence of a CGL closure is less evident in CS2.
Furthermore, we applied three frequency filters to the

density and pressure signals to investigate the frequency
dependence on the polytropic results. In the highest frequency
band, we do not clearly observe the slow mode because the
anticorrelation between n and |B| is significantly weaker. In
the intermediate and lowest frequency bands, the proton
polytropic behavior between the two events is analogous to the
full signal, where case 1 is comparable to the MHD slow mode
while case 2 is more akin to the IA mode. However, we also
observe a subtle frequency dependence on the results. The
difference between γp,∥ and γp,⊥ is higher in the IF band,

Figure 11. Multiscale γ results for (a) protons and (b) electrons. The • and ■
markers show CS1 and CS2 results, respectively. The blue points show the
parallel, the green the perpendicular, and the purple the isotropic γ results. The
2σ error is shown for the protons to enhance visibility.

Figure 12. CGL proton polytropic index results for CS1. Rp is the Pearson
correlation coefficient. Panel (a) shows the results for ξ∥ and panel (b) for ξ⊥.
The color of the data points represents the time instance of the corresponding
measurement in the interval.
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which may suggest that kinetic effects introducing anisotropic
behavior become more prominent at shorter time scales.
The mechanisms behind the differing natures of the slow

mode between the two cases remain unclear. We find that the
Spitzer–Härm proton–proton collision frequency, while not
representative of the effective collisionality experienced by the
solar wind, is approximately double in case 1 compared to case
2. Additionally, using a method identical to E. Marsch &
H. Goldstein (1983), we find that a larger fraction of the proton
population is dominated by collisions in case 1 when
compared to case 2, which may explain the different nature
of the compressive fluctuations in the two events. A statistical
study comprising a larger data set of compressive fluctuations
would provide further insight into the reasons behind the
varying emergence and behavior of the slow mode in the
solar wind.
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