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Abstract

This thesis focuses on optimising exotic option pricing using integral and dis-

crete transforms, with a primary emphasis on discrete monitoring of the option.

It also explores the broader application of discrete transforms to general problems

encountered in physics and signal processing.

Numerous methods for computing the inverse z-transform are compared to find

an alternative to the more popular methods seen in financial applications. Popular

modern techniques have an inherent error floor that cannot be improved; thus, a new

approach is required and developed in this work. Furthermore, series acceleration is

explored to improve CPU times, where the concern is not just raw processing time,

but also CPU versus error performance.

Pricing algorithms for double barrier and α-quantile are presented, utilising a

new methodology that focuses on the inverse z-transform to achieve a machine-

accurate solution. This error level was previously unachievable due to the aforemen-

tioned error floor. Series acceleration techniques are further extended to enhance

method performance. It can also be demonstrated that the pricing methodology

is exponentially convergent in the case of α-quantile options, a result previously

unverified.

Finally, a new approach is presented that utilises deep learning techniques to

learn from synthetic data generated by numerical models and predict option prices,

as well as the Greeks. An optimised method for parameter searching is also presen-

ted. The process offers high performance and is a viable alternative, particularly in

scenarios with multiple monitoring dates or multiple repricing events.
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3.7.2 Padé Approximants . . . . . . . . . . . . . . . . . . . . . . . 59

3.7.3 Wynn’s Rho and Epsilon Algorithms . . . . . . . . . . . . . . 61

3.7.4 The Shanks Transform . . . . . . . . . . . . . . . . . . . . . . 64

3.7.5 Richardson Extrapolation . . . . . . . . . . . . . . . . . . . . 66

3.7.6 Levin-Type Sequence Transforms . . . . . . . . . . . . . . . . 67

3.7.7 Sidi Accelerations . . . . . . . . . . . . . . . . . . . . . . . . 69

3.7.8 Salzer Summation . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Option Pricing 79

4.1 Analysis of inverse z-transform . . . . . . . . . . . . . . . . . . . . . 80

4.2 Alternative inverse z-transform . . . . . . . . . . . . . . . . . . . . . 83

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



5 Machine learning approach 101

5.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1.1 Brief introduction to Artificial Neural Networks (ANNs) . . . 105

5.2 Data Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Methodological Framework . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Further work 123

6.1 Inverse z-transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Pricing exotic options . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Machine learning approach to option pricing . . . . . . . . . . . . . . 125

7 Conclusion 127

Appendix A - Illustrative figures 147

Appendix B - Example contract parameters 149

Appendix C - Process parameters 151

Appendix D - Hyper-parameter optimisation algorithm 153

Appendix E - Deep learning model structures 155

ix



x



List of Figures

4.1 Mean absolute error of the inverse z-transform as a function of γ =

J log10 r. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Absolute error of the price of a single barrier option with differing

stochastic models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Option pricing error explosion where Shannon-Nyquist relation is

broken. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Integration envelope for IDFT method over 52 and 252 monitoring

dates respectively using NIG distribution. . . . . . . . . . . . . . . . 85

4.5 Surface for the real part of the characteristic function for IDFTmethod

over 52 and 252 monitoring dates respectively using NIG distribution. 85

4.6 Surface for the imaginary part of the characteristic function for IDFT

method over 52 and 252 monitoring dates respectively using NIG

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 The input to the summation for a numerically performed contour

integration of zj f̃(0, z). . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 The input to the summation for a numerically performed contour

integration of zj f̃(0, z). . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the Kou process. . . . . . . . . . . 91

4.10 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the Kou process. . . . . . . . . . . 92

4.11 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the Kou process. . . . . . . . . . . 93

xi



4.12 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the NIG process. . . . . . . . . . . 94

4.13 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the NIG process. . . . . . . . . . . 94

4.14 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the NIG process. . . . . . . . . . . 95

4.15 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the VG process. . . . . . . . . . . 95

4.16 Error convergence against grid sizeM for a double barrier option with

increasing monitoring dates using the VG process. . . . . . . . . . . 96

4.17 Error convergence against CPU time for a double barrier option with

increasing monitoring dates using the Kou process. . . . . . . . . . . 96

4.18 Error convergence against CPU time for a double barrier option with

increasing monitoring dates using the NIG process. . . . . . . . . . . 97

4.19 Error convergence against CPU time for a double barrier option with

increasing monitoring dates using the VG process. . . . . . . . . . . 97

4.20 Error convergence against grid size M for an α-quantile option with

various levels for α using the Kou process. . . . . . . . . . . . . . . . 98

4.21 Error convergence against CPU time for an α-quantile option with

various levels for α using the Kou process. . . . . . . . . . . . . . . . 98

4.22 Error convergence against grid size M for an α-quantile option with

various levels for α using the NIG process. . . . . . . . . . . . . . . . 99

4.23 Error convergence against CPU time for an α-quantile option with

various levels for α using the NIG process. . . . . . . . . . . . . . . . 99

7.1 Example ANN construction using one output layer in red, two hidden

layers in blue and an output layer in red. . . . . . . . . . . . . . . . 147

7.2 Example neuron learning process with bias factor. . . . . . . . . . . 147

xii



List of Tables

3.1 List of transform pairs used in the numerical tests. . . . . . . . . . . 72

3.2 Error values for numerical tests on single variable z-pairs with number

of discretisation points n = 20. . . . . . . . . . . . . . . . . . . . . . 75

3.3 Error values for numerical tests of single variable z-pairs with number

of discretisation points n = 100. . . . . . . . . . . . . . . . . . . . . . 76

3.4 Error values for numerical tests of probability generating functions

with number of discretisation points n = 120. . . . . . . . . . . . . . 77

3.5 Error values for numerical tests of series acceleration with slowly con-

verging or multi-dimensional z-pairs. . . . . . . . . . . . . . . . . . . 77

5.1 Market and parameter ranges for the generation of artificial data using

the Fourier-z method. . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 The hyper-parameters set for the deep learning model based on the

current standards within the literature. . . . . . . . . . . . . . . . . 113

5.3 The range of parameter selections chosen at the start of the iterative

search for the optimal model hyper-parameters for the deep learning

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 K-fold cross-validation results for the multi-head model indicate strong

predictive accuracy, as evidenced by low mean-squared errors (MSE)

and high R2 values on both training and test sets. . . . . . . . . . . 113

5.5 The mean-squared error and corresponding standard deviation for

neuron structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.6 Numerical valuations of options contracts 1-4. . . . . . . . . . . . . . 116

xiii



5.7 Predicted valuations of option contracts 1-4 using the neural network

trained on synthetic data produced by the normal inverse Gaussian

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 Numerical valuations of option contracts 5-8 using the normal inverse

Gaussian distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.9 Predicted valuations of option contracts 5-8 using the neural network

trained on synthetic data produced by the normal inverse Gaussian

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.10 Numerical valuations of option contracts 1-4 using the variance gamma

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.11 Predicted valuations of option contracts 1-4 using the neural network

trained on synthetic data produced by the variance gamma distribution.119

5.12 Numerical valuations of option contracts 5–8 using the variance gamma

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.13 Predicted valuations of option contracts 5-8 using the neural network

trained on synthetic data produced by the normal inverse Gaussian

distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.1 Parameters for contracts under evaluation during deep learning testing.149

7.2 Example of parameters used in numerical tests where Φ(ξ, t) is the

characteristic function. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.3 Example of parameters used in numerical tests where Φ(ξ, t) is the

characteristic function. . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4 Optimal model for the normal inverse Gaussian distribution obtained

after hyper-parameter K-folds search. . . . . . . . . . . . . . . . . . 155

7.5 Optimal model for the variance gamma distribution obtained after

hyper-parameter K-folds search. . . . . . . . . . . . . . . . . . . . . 156

xiv



Chapter 1

Introduction

This work is motivated by the requirement to value exotic options within financial

markets. Specifically, the pricing of path-dependent options based upon a probabil-

istic distribution reflecting the underlying asset dynamics upon which the option is

written is under examination. The seminal works by Black and Scholes [1973] and

Merton [1973] created an initial closed-form framework that was mathematically

tractable for evaluating vanilla European options. In this framework, mathemat-

ical tractability is favoured over accurate asset modelling with the restriction of the

underlying model to geometric Brownian motion. As more complex options have

entered the market since the early 1970s, and the desire to capture asset dynamics

more accurately has grown, the industry has sought viable alternatives. One such

alternative is Lévy processes. These models capture well-known asset behaviour

features, such as fat tails and price jumps, while maintaining constant parameters.

As the range of options contracts has increased and the industry seeks to model

more realistic asset dynamics, so has the need to explore alternatives to closed-

form solutions. External regulations requiring specific exotic options to be handled

discretely have been the standard for some time. This results in path-dependent

options, such as barriers and Asian options, being monitored discretely rather than

the more mathematically tractable continuous approach. Typical closed-form frame-

works assume the ability to monitor continuously, rendering them obsolete. Invari-

ably, these factors enforce the need for numerical approaches to pricing options. As

such, recent literature primarily concerns accurate and efficient numerical methods

1



for pricing.

Standard numerical pricing techniques, such as Monte Carlo and finite difference,

are the most widely used within the industry. However, there are noted issues

with both methods, which can make them suboptimal choices. Error convergence

with respect to computational time is the most significant issue, where convergence

is polynomial for finite difference methods and sub-polynomial for Monte Carlo

methods, respectively. While this can be improved using various techniques, it is a

particular issue for path-dependent options where computational time also increases

linearly with the number of monitoring dates.

The alternative is the Fourier-z framework, but it has flaws. Two methods stand

out as the most attractive: the technique developed by Feng and Linetsky [2008]

and the one by Fusai et al. [2016]. The former produces excellent error results using

sinc-based fast Hilbert transforms, applying the barrier at each monitoring step.

The flaw is in the continued linear relationship between the number of monitoring

dates and the speed of error convergence. The latter removes this dependency by

utilising the z-transform to collapse the time domain, meaning the computational

time is now independent of the monitoring dates but dependent on the numerical

inversion of the inverse z-transform. Additionally, while Feng and Lintesky’s method

achieves machine accuracy, E-16, Fusai’s method has a distinct error floor caused

by the numerical inversion of the z-transform.

Therefore, this work focuses on the continued development of the Fourier-z

framework for path-dependent option pricing. Within this focus, there are three

overarching goals. The first is to remove the error floor present in Fusai’s method.

The second is a detailed error analysis and performance review of the numerical in-

verse z-transform, as well as the applied series acceleration techniques. This task has

yet to be satisfactorily addressed within the literature. The final one is to provide

access to these methods; typically, even well-written works can be impenetrable to

practitioners. The aim is to address this with detailed, open-source codebases.

While the primary venue of exploration is the field of financial derivative pricing,

the works in this thesis are sufficiently general to extend far beyond it. The Fourier-z

and Spitzer frameworks Spitzer [1957] have applications in probability, stochastics,
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and queuing theory. The numerical z-transforms have a broad field of applicability,

ranging from signal processing to fluid dynamics and statistical mechanics. Improve-

ments herein benefit multiple disciplines. Likewise, at a later stage, we explore deep

learning methods as universal approximators. While the application is derivative

pricing, this extends naturally to any field requiring numerical approximation where

synthetic data is available.

Chapter 2 provides a technical introduction to the topics explored in this thesis.

It is written to be self-contained with sufficient information to understand the core

concepts. Due to the breadth of the topics within the relevant literature, only details

directly related to the work within this thesis have been provided. Where omissions

occur, an extensive list of references has been included for the interested reader to

explore further.

Chapter 3 presents detailed error and performance benchmarking for various

numerical inverse z-transforms in the literature. Extensions that aim to expose

selected inversion methods to series acceleration techniques are also provided, along

with a comprehensive discussion and numerical results.

Chapter 4 presents a performance enhancement for the Fourier-z pricing frame-

work presented by Feng and Linetsky [2008] and Fusai et al. [2016] for double barrier

and α-quantile options. The inherent error floor is overcome, and monitoring date

independence is retained. Additionally, the error convergence for the α-quantile

option is demonstrated to be of exponential order. The work presented by Phelan

et al. [2020] could only guarantee polynomial convergence prior to this point.

Finally, Chapter 5 presents a deep learning approach to pricing exotic options.

Deep learning has grown over the past few years due to increased accessibility to

open-source libraries and the democratisation of fairly powerful computer hardware.

This approach is examined for its performance and benchmarked against the Fourier-

z framework to quantify its computational performance, a rare occurrence in the

literature. More typical is the comparison to unoptimised numerical methods, which

is often unrevealing in examining the method’s viability.

The chapters within this thesis constitute three working papers, one of which

has been submitted for publication. Several presentations have also been made at
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conferences, including the Workshop on Stochastic and Partial Differential Equation

Methods in Finance and Economics in Rome and the Workshop on Quantitative

Finance in Zurich.
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Chapter 2

Technical Background

This chapter provides the technical background to the work presented in this thesis

and reviews current and relevant literature. Due to the expansive nature of the topics

in this thesis, a curated selection of information is provided to make this thesis as

self-contained as possible. Extensive references are provided to direct the interested

reader to explore areas in further depth, where required. An initial presentation of

the financial contracts of interest is followed by the relevant analytical background

to the work contained in this thesis. A review of the existing literature on pricing

methods is presented, including numerical methods, some of which are extended in

later chapters.

2.1 Exotic options

Financial option contracts, also known as contingent claims, are those whose value is

derived from an underlying asset, such as a stock, index, or commodity. A basic, or

vanilla, option usually features standard payoff structures with maturities and strikes

that follow well-defined patterns. A typical example is the vanilla call option, where

the holder has the right but not the obligation to exercise the option to purchase

the underlying at expiry. By contrast, exotic options add more intricate terms or

payoff dependencies. They may incorporate multiple underlying assets, barriers that

activate or nullify payoffs, or even path dependence, where the final value depends

on a portion of the (or entire) history of the underlying asset rather than merely

5



its final price at expiration. These structural differences make pricing, hedging,

and risk management notably more complex than for vanilla options. Their usage

and value derive from the need for complex positions, which can be created using

exotic options, often in conjunction with other financial contracts. These positions

typically arise from non-linear financial contracts, complex portfolios, or a general

focus on market alpha or beta.

A significant subset of exotic options are path-dependent, meaning the option’s

payoff is influenced by the path the underlying asset takes over time. Historical

averages or hitting certain price thresholds become relevant in these cases. For in-

stance, an Asian option pays off based on the average price of the underlying over

a specified period, while lookback and barrier options require the minimum, max-

imum, or boundary-tracking of prices throughout the option’s life. Such complexity

requires more advanced mathematical or computational techniques to value these

products accurately. The following subsections will delve into the contracts of in-

terest within this thesis and a detailed analysis of how the modelling of financial

assets is approached.

In practice, path-dependent options are monitored discretely rather than con-

tinuously. This shift from continuous monitoring to realistic, periodic observations

arises partly from regulatory requirements demanding regular, discrete-time assess-

ments of positions for risk management and reporting. Under frameworks like Basel,

institutions are required to demonstrate robust mark-to-market practices at specific

intervals, rendering continuous monitoring impossible. As a result, pricing models

that assume continuous observation can misstate the risk or value of these contracts

if they do not adjust for discrete sampling. Accounting for discrete monitoring not

only changes the mathematical treatment (since events can occur only at certain

times rather than at any instant) but also affects numerical methods. For instance,

Monte Carlo schemes must reflect the observation schedule under consideration.

This reality makes the handling of discrete monitoring critical.
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2.1.1 Contracts of interest

Two flavours of exotic options are frequently of interest within this thesis. First is

the barrier option, the second is the α-quantile option.

Barrier options are a class of exotic derivatives whose payoff depends not only

on the terminal price of the underlying asset but also on whether the price touches

a specified barrier level during the contract’s life. For example, “knock-out” barrier

options immediately become worthless once the underlying hits the barrier, whereas

“knock-in” options only become active if the barrier is breached. Variants such as

up-and-out and down-and-in are distinguished by whether the barrier is set above

or below the current price and the style of barrier applied. The introduction of

such triggers allows for more customised payoff structures, typically resulting in

lower premiums compared to standard (vanilla) options, given the added conditional

element. Additionally, multiple barriers can be applied in a single contract.

A related variant, the α-quantile option, is designed to pay off depending on

whether the underlying price distribution falls above or below a certain quantile

threshold. These contracts can be seen as a specialised form of binary or digital

option, but with a payoff keyed to specific quantile-based events, such as exceeding

the 95th percentile of possible outcomes. Because α-quantile options isolate specific

sections of the underlying asset’s return distribution, they can be precise tools for

capturing tail risk or exploiting asymmetric views on volatility. Their payoff struc-

ture can be implemented so that it is contingent not only on absolute price levels

but also on the price ranking relative to other potential outcomes, allowing for more

nuanced risk and return profiles.

Both barrier and α-quantile options for portfolio managers provide targeted ways

to manage risk and enhance yields. Barrier options allow investors to reduce costs

compared to vanilla options by pricing in the chance that the option will be rendered

inactive if a barrier is breached. This feature is particularly appealing when an

investor has strong views about the likelihood of the underlying remaining within

a specific price range. Similarly, α-quantile options enable managers to position for

extreme market scenarios or hedge particular portions of the return distribution. In
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doing so, they address the shortcomings of standard contracts, which often do not

capture distributional nuances or tail risk.

2.1.2 Stochastic processes and modelling assets

The application of stochastic processes to model financial assets dates back to the

pioneering work of Louis Bachelier, who, in his 1900 doctoral thesis, Bachelier [1900],

introduced Brownian motion as a tool for describing fluctuations in stock prices.

Later developments in the 1970s, particularly the Black-Scholes-Merton framework,

Black and Scholes [1973], Merton [1973], solidified the relevance of randomness and

probability in describing market dynamics.

Many advancements and improvements in asset modelling have been introduced

since then. The original log-normal stochastic model governing the underlying asset

evolution is given by the geometric Brownian motion (GBM)

dS(t) = µS(t)dt+ σS(t)dW (t), (2.1)

where S is the underlying price, µ is the drift, σ is the asset volatility and W (t) is

the driving Wiener process or Brownian motion. To ensure a self-contained thesis,

some of the fundamental characteristics of the Brownian motion are given here for

completeness:

1. X(0) = 0.

2. The process is almost surely continuous.

3. Increments are independent, for any 0 < t1 < t2 < . . . < tn < ∞, X(tn) −

X(tn−1), X(tn−1)− x(tn−2), . . . are independent.

4. Increments are stationary, for any s < t, X(t)−X(s) has the same probability

distribution as X(t− s).

To model financial assets, we typically use exponential processes of the form

S(t) = S0e
X(t), (2.2)
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where S0 is the initial value of S(t). This exponential form is beneficial as it guaran-

tees non-negative asset prices while modelling returns as (approximately) normally

distributed in the log domain, aligning well with observable market behaviour.

A key limitation of the GBM is that it assumes constant volatility and log-normal

returns, failing to capture empirically observed features such as heavy tails, volatility

clustering, and sudden market price jumps. An alternative approach is to combine

the diffusion process of a model, such as GBM, with a jump process. Adding a jump

process allows the modelling of extreme price movements. An additional benefit

is the production of excess kurtosis of the underlying process distribution, which

better reflects market return distributions. The category of diffusion process and

those combined with an additional jump process are referred to as Lévy processes;

a comprehensive review of this topic is presented in Cont and Tankov [2004].

The most well-known of the Lévy process is the aforementioned geometric Brownian

motion, which has increments governed by a normal distribution with mean 0 and

variance t − s. Of similar renown is the Poisson process, whose increments are

governed by the Poisson distribution and have mean and variance equal to λ(t− s).

Thus, the most recognisable jump-diffusion process is a combination of the two. The

Merton jump-diffusion process combines a Brownian motion diffusion process with

a compound Poisson process, resulting in jumps occurring at random intervals.

A different approach, with subsequent advancements in model accuracy at the

expense of numerical simplicity, involves adding an additional stochastic process.

Typical choices of which variable to model using this additional process are the risk-

free rate r or the instantaneous volatility, often denoted σ. The Heston model Heston

[1993] and SABR Hagan et al. [2002] are examples of stochastic volatility models.

These models are well-known for their increased accuracy and the ability to capture

volatility smiles, albeit at the cost of calibration complexity. These advantages are

weighted by an additional random process to manage. To highlight the difference

between a single-process model and a multi-process model, Heston’s SDE is given
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below for brevity

dS(t) = µS(t)dt+
√
vS(t)dW1(t), (2.3)

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dW2(t), (2.4)

where θ is the long-run average variance of the price, κ is the mean reversion rate

of v(t) and σ is the volatility of the volatility. An additional ρ parameter governs

the correlation between the two Wiener processes.

Due to the added complexity of a secondary process, stochastic volatility pro-

cesses are generally considered an extension of most single-process models. Ex-

tensions and new avenues of research are applied to Lévy processes first and then

extended to stochastic volatility processes second.

The true benefit of using Lévy processes is the accessibility of the underlying

distribution’s characteristic function. The characteristic function Ψ(ξ) of a given

random variable X with probability density function θ(x) is the Fourier transform

Ψ(ξ) =

∫ +∞

−∞
θ(x)eiξxdx. (2.5)

.

One advantage of working with characteristic functions is that for two independ-

ent random variables, the characteristic function of their sum is simply the product

of their characteristic functions, reflecting that the probability distribution of X+Y

is the convolution of their distributions, for independent random variables X and

Y . Thus, the probability density function θ2(y) of the sum of two independent

and identically distributed random variables with corresponding densities θ1(x) and

θ1(y) is the convolution

θ2(y) =

∫ +∞

−∞
θ1(x) θ1(y − x) dx. (2.6)

Furthermore, the characteristic function Ψ2(x) for the sum is given by

Ψ2(ξ) = [Ψ1(ξ)]
2. (2.7)
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This leads to a recursive argument for the sum of N i.i.d. random variables

ΨN (ξ) = [Ψ1(ξ)]
N . (2.8)

This property enables the straightforward derivation of the distribution of a sum of

independent random variables by simply taking the product of their characteristic

functions (or convolving their probability densities), thereby greatly simplifying both

theoretical analysis and practical computation of aggregate behaviour.

2.1.3 Lévy-Khinchine

In general, the Lévy processes considered here have a simplistic characteristic func-

tion of the form Ψ(ξ, t) = eΨ(ξ)t where the characteristic exponent is given by the

Lévy-Khinchine formula

Ψ(ξ) = iaξ − 1

2
σ2ξ2 +

∫
R

(
eiξη − 1− iξη1[−1,1](η)

)
ν(dη). (2.9)

The Lévy-Khincine triplet (a, σ, ν) uniquely defines the Lévy process, where a is

the linear drift of the process, σ is the volatility of the diffusion and ν(η) signifies

the intensity of an embedded Poisson jump process with jump size η. Under the

risk-neutral measure, the parameters contained in the triplet can be related using

the equation

a = r − q − 1

2
σ2 −

∫
R

(
eη − 1− iη1[−1,1](η)

)
ν(dη), (2.10)

where r is the risk-free interest rate and, depending on asset class, q represents

the dividend rate or cost of carry (where the sign of q is negative). Obvious ex-

amples of Lévy processes are the Wiener process itself or the Poisson process. A

further category division of Lévy processes is finite and infinite activity processes.

Finite activity processes include those whose jumps occur according to a Poisson

distribution

X(t) =

N∑
n=1

n(t)J(n). (2.11)
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Jump processes considered in this thesis assume that the jump sizes are double-

exponentially distributed. When a jump occurs, it is negative with probability

p and exponentially distributed with parameter η1. Likewise, it is positive with

probability q = 1− p and has an exponential distribution with parameter η2. Thus,

the probability density of jump sizes is given by

f(x) = p
(
η1e

η1xχ(−∞,0](x)
)
+ q

(
η2e

−η2xχ(0,∞)(x)
)
. (2.12)

For considerations relating to modelling, finite activity processes are often combined

with an independent Brownian motion. An example used within this thesis was

introduced by Kou [2002], the Kou double exponential (KDE) process. The KDE

process was an upgrade to the Merton [1976] model, which featured normally dis-

tributed jumps. The improvement of the KDE process follows the financial intuition

that market adjustments are caused by isolated events, such as a media article.

Infinite activity processes are built upon the foundations presented by Geman

et al. [2001], describing the idea of a stochastic clock as a representative model of

time. This, in turn, can be viewed as the rate of economic activity building jump

processes of infinite activity gives added weight behind the Lévy market model.

This approach is consistent with no-arbitrage principles since every price process

can be represented as a time-changed Brownian motion. The method for building

this stochastic clock is by adding a subordinator. A Lévy process is a subordinator if

it is non-negative (almost surely) and non-decreasing. Subsequently, a Lévy process

subordinated by an independent Lévy process is itself a Lévy process. For a more

in-depth look into infinite activity processes, see Madan and Yor [2008], where the

CGMY process is introduced. Processes such as CGMY or Meximer do not have

simple subordinator processes. Processes such as Variance Gamma (VG) and the

Normal Inverse Gaussian (NIG), however, have comparatively simple formulations.

The VG process, Madan et al. [1998], can be constructed by adding a gamma-

distributed variable Gt ∼ Γt(1/ν, 1/ν) to a Brownian motion Wt with a drift term

Xt = θGt + σWGt . (2.13)
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Similarly the NIG process, Barndorff-Nielsen [1998], can be constructed by adding

an inverse-Gaussian distributed variable It(t, δ
√
α2 − β2) to a Brownian motion Wt

with a drift term

Xt = βδ2It + δWIt . (2.14)

2.2 Option Pricing

Underpinning this entire thesis is the application of pricing models for financial op-

tions or contingent claims. This area has been a focus of intensive research within the

economic literature for the last few decades. Fundamental and transformative works

in the early 1970s, notably Black and Scholes [1973] and Merton [1973], introduced

the concepts of pricing options under a risk-neutral measure, delta hedging, and

portfolio replication. All of which remain fundamental topics today. The works by

Black and Scholes [1973] presented a closed-form solution for the price of European

options, which gained fame beyond financial circles. Similarly, Merton presented

closed-form solutions for perpetual American and continuously monitored barrier

options. The limitations of the papers in those early days were the use of log-

normal price processes for relevant underlying assets and continuous monitoring of

barriers. These limitations have since been removed with the increased sophistica-

tion of modelling techniques, resulting in more accurate approximations for pricing

and hedging that capture market dynamics.

2.2.1 Vanilla options

Despite the triteness of including the Black-Scholes model for pricing vanilla options

in academic works, no discussion on pricing options is complete without it. The

model Black and Scholes [1973], Merton [1973] is a cornerstone of modern quant-

itative finance, providing a closed-form solution for pricing European-style vanilla

calls. Underpinning this model is the assumption that the underlying asset follows a

geometric Brownian motion with constant volatility and drift under the risk-neutral

measure. The seminal insight by Black, Scholes, and Merton was that, through a

continuously updated hedging strategy, one can replicate the payoff of a call option
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and thus price it by eliminating arbitrage opportunities. Their derivation leads to

a partial differential equation, often referred to as the Black–Scholes PDE, whose

solution yields the well-known closed-form formula.

In practice, the model expresses the fair value of a call option as

C(S, t) = S Φ
(
d1
)
−Ke−r(T−t)Φ

(
d2
)
, (2.15)

where S is the current asset price, K is the strike price, r is the risk-free interest rate,

T is the maturity date, t is the current time, and Φ is the cumulative distribution

function of the standard normal distribution. The terms d1 and d2 are defined as

d1 =
ln
(
S
K

)
+
(
r + σ2

2

)
(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

where σ is the volatility. These expressions shed light on how sensitivity to volatility,

interest rates, and time to maturity is embedded in the pricing formula Hull [2017].

Alternative methods for numerical pricing methods involve binomial or trinomial

trees Cox et al. [1979], where a discrete model of the underlying price over several

time steps converges to the Black–Scholes result. Simulation based techniques, such

as Monte Carlo simulations Boyle [1977] are also widely employed. Their advant-

age lies in their ability to quickly adapt to various stochastic processes or option

structures. However, these numerical approaches can be computationally demand-

ing. For vanilla European options, the Black-Scholes model remains the industry

standard.

2.2.2 Barrier options

A barrier option is a financial contract whose payoff is a function of the value of the

underlying asset at expiry, but with an added condition that determines whether the

contract is paid out or not, depending on whether the asset touches a predetermined

barrier at some point in the option’s life cycle. While there are other barrier forms,

such as a target redemption barrier, the vanilla barrier of “knock-in” or “knock-out”
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is the most common form.

Barrier options are particularly popular in FX markets and high-frequency trad-

ing strategies. These contracts come in various formats with potentially mixed

barriers layered into the option; some may be active for a specific time window or

the entire option’s lifetime. The most widely quoted barriers on the open market

are single knock-in and knock-out barrier options; more exotic flavours tend to be

handled OTC. A knock-in barrier requires the barrier to be touched to be active

at expiry. A knock-out barrier starts as an active contract but is deactivated if the

barrier is touched. An additional feature in determining the type of barrier option

is the starting position of the barrier relative to the underlying asset value at the

beginning of the option, S0. For instance, if the barrier is located at a value higher

than S0 and is of the knock-out style, we refer to this as an up-and-out barrier op-

tion. For the most part, we consider the case of the down-and-out barrier option for

simplicity; however, the techniques discussed are equally applicable to other types

of barrier options.

Closed-form solutions for single barrier options were first presented by Merton

[1973] and Goldman et al. [1979] in the case of a single barrier option. In both cases,

the underlying process was driven by a GBM. Kunitomo and Ikeda [1992] introduced

the natural extension to double barrier options using acceleration techniques to con-

verge an infinite series. These early solutions are applicable only to continuously

monitored barriers and are limited to a GBM process, which does not accurately

reflect the realities of financial contracts. From a practical point of view, the con-

tinuous monitoring of a barrier is impossible. As such, barrier options have strict

regulations built into the agreement for the monitoring process, from the number

of dates to precisely what is monitored. The interested reader should consult Kou

[2007] for more on this topic. The more interesting and practical problem is pricing

discretely monitored barrier options with an extension to the general class of Lévy

processes. To reflect this increased complexity, we must use numerical techniques to

price such options.

A natural avenue of enquiry is adapting closed-form solutions from continuous

monitoring to approximate the discrete monitoring case. This would have the ad-
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vantage of utilising an existing literature base and result in monitoring dates being

independent of the computational cost. While attractive in principle, Broadie et al.

[1997] showed that the convergence rate of approximated discretely monitored solu-

tions to the continuous case relative to the number of dates was O(1/
√
N), which is

too slow. We also lack the extension to the general case of Lévy processes.

A helpful checklist of traits we wish our numerical methods to have includes five

primary things. First, the method must be fast. Within a financial setting, speed is

paramount; reasons for this range from regulatory requirements to the frequency of

a trading strategy. Speed is also crucial, as a portfolio of options often needs to be

priced or repriced for portfolio rebalancing and risk management. An extension to

this first requirement is that the numerical pricing method should have exponential

convergence; as the grid size or number of simulations increases, the error converges

to machine zero, i.e. E−16 exponentially. A second desirable trait is that the method

can be adapted simply to single and double barriers. An extension of this trait is

the ability to extend to other forms of path-dependent options easily, but this is not

a requirement. Third, we would prefer a method whose computational complexity

is not dependent on the number of barrier monitoring dates. Fourth, a simple

method is preferable to a complex one. While not always possible, given the prior

three requirements, any simplicity that can be achieved is desirable, as complexity

can build with ease. Lastly, we want a process-independent method. This is not

possible. Thus, we settle to be able to choose from within a family of processes such

as Lévy processes. This allows the method to fit a process to an asset rather than

the other way around.

The bulk of numerical schemes for discretely monitored double barrier options

seen in the literature are variations of quadrature methods, where the price process

can be expressed as a recursive integral of the form

v(x, n) =

∫ u

d
k(x− x′ | ∆t)v(x′, n− 1)dx′, (2.16)

where d and u are the values of the down and upper barrier, v(x, n) is the value

of the option at the nth monitoring date, k(x − x′ | ∆t) is the transition density
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of the underlying process. The quadrature approach can be implemented in either

a path-integration approach Chiarella et al. [2008] or by utilising interpolations

Andricopoulos et al. [2003] and Fusai and Recchioni [2007]. The technique has

the advantage of being usable for the general Lévy processes, and that discretising

time does not add an error factor. The major drawback is the need for at least

one integration step for each monitoring date; thus, the computational cost scales

linearly with the number of monitoring dates. Combining this with the polynomial

convergence inherent to the scheme renders the process suboptimal.

An obvious numerical candidate would be to utilise Monte Carlo techniques,

which are industry standard when handling exotic options. The intrinsic problem

with this approach is the speed of convergence and the overall time required to

retrieve accurate results, which is exacerbated in this case by the linear scaling with

the number of monitoring dates. While many multiple variance reduction techniques

have been presented that allow for faster convergence, see Beaglehole et al. [1997]

or more recently Dingeç and Hörmann [2012], this problem remains.

Another traditional approach employed in option pricing is finite difference meth-

ods. This has been explored by Boyle and Titan [1998] and more recently by Gol-

babai et al. [2014], who presented improved models with 4th-order accuracy but only

in the case of a GBM process. The extension to the general class of Lévy models

has not been done. Unfortunately, finite difference schemes have inherent drawbacks

that make them less appealing when applied to pricing barrier options. In addition

to the intrinsic stability associated with the more straightforward explicit methods,

barrier discontinuities can introduce errors into implicit schemes, such as the Crank-

Nicolson method, resulting in slow error decay or error divergence. Consequently, a

much finer grid than otherwise preferable must be utilised, increasing the computa-

tional cost and eliminating the ideal of independence from the number of monitoring

dates.

The last of three popular methods is tree approximations. The binomial tree

can be applied to the barrier case, see Steiner and Wallmeir [1999]. As with other

path-dependent options, the binomial tree approach suffers from requiring a high

number of time steps due to the slow convergence. Trinomial trees achieve a superior
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convergence rate, but at the cost of increased computational complexity. An adapted

version was presented by Figlewski and Gao [1999], which utilises a variable time

mesh to add more time points near a barrier and fewer periods with no monitoring

dates, thereby achieving superior convergence and accuracy.

All of these methods have advantages and disadvantages. Most importantly,

when applied to discrete barrier options, they fail to meet all five desirable points

discussed earlier for a reasonable pricing model.

The class of methods that this thesis focuses on is the use of integral transforms.

A brief history of the technique is useful at this juncture to set the current landscape.

The initial investigation into option pricing using integral transforms is credited

to the famous work by Heston [1993], who was the first to use the characteristic

functions of the probability of an option being in the money. This work builds upon

the work by Chen and Scott (1992), who attempted the same outcome but used

the Laplace transform instead. A major step forward in presenting a comprehensive

pricing method was the work by Carr and Madan [1999], who published a Fourier

transform approach to pricing European options, utilising both the characteristic

function and the payoff in the Fourier domain. In the case of European options, this

approach has been improved in recent years. Notably, Fang and Oosterlee [2008]

devised a pricing technique using the Fourier-cosine expansion for the GBM process.

This was extended to the general class of Lévy models by Lord et al. [2008] and more

exotic options, including discretely monitored barrier options, by Fang and Oosterlee

[2011]. The Fourier-cosine approach achieves satisfactory accuracy with exponential

error convergence relative to the number of grid points in the log-price domain,

provided that the transition density of the underlying asset is smooth for all orders

of differentiation, i.e.

k(x− x′ | ∆t) ∈ C∞. (2.17)

As discussed in Phelan et al. [2020], a drawback of the method is the linear relation-

ship between computational cost and the number of monitoring dates. Additionally,

the error converges with a polynomial degree rather than an exponential one for spe-

cific processes, such as the variance gamma process. This problem can be overcome
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with clever spectral filters, as demonstrated by Ruijter et al. [2015].

Simultaneously with the later works employing the Fourier transform, the Hil-

bert transform was explored and applied to price barrier options using a backwards

induction scheme within Fourier space, see Feng and Linetsky [2008, 2009]. This

method demonstrated exponential error convergence with the grid for log price and

achieved machine accuracy of E-16. Similar to the Fourier-cosine method, a signi-

ficant disadvantage of applying it to discrete monitoring cases is that performance

increases linearly with the number of dates. This method was also improved for

the variance gamma model using spectral filters by Phelan et al. [2019] to enhance

the convergence from polynomial to exponential for transition densities of the form

given by Eq. (2.17).

A common theme thus far is the linear relationship between the computational

time and the number of monitoring dates applied to the discrete case. To circumvent

this problem, Fusai et al. [2006] utilised the z-transform to collapse the time domain,

transforming the option price into the Wiener-Hopf equation, which can be solved

analytically for a log-normal price process. This results in both the need for a forward

and inverse z-transform. The forward transform is reasonably straightforward, but

the inverse z-transform is more complex and requires numerical approximation. This

topic is explored in detail in Chapter 3. The first numerical approximation used for

the inverse z-transform in this context was the version presented by Abate and

Whitt [1992a,b]. The simplest version has a computational time dependent on the

grid size, representing the number of monitoring dates. An acceleration technique

can make the inverse transform date independent of monitoring dates. The natural

candidate and the first used in the literature is the Euler acceleration, as seen in

O’Cinneide [1997]. This technique was subsequently adapted by Green et al. [2007,

2010] to give the Fourier-z transform of the probability distribution at the extrema

and points around the barriers. By now, utilising the Plancherel theorem given

by Eq. (2.30), these transformed distributions can be used to price options. This

process was codified and presented by Fusai et al. [2016], employing the Hilbert

transform from Stenger [2011] in a manner similar to the process described by Feng

and Linetsky [2008]. The resulting implementation results in a pricing process that is
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extendible to the general class of Lévy processes, is date-independent with respect to

computational cost, and achieves exponential error convergence for single barriers

where the transition densities satisfy Eq. (2.17). Unfortunately, this was not the

case for double barrier options that could only achieve polynomial convergence.

This slow convergence was eventually overcome using spectral filters by Phelan et al.

[2019] to improve the Fourier-cosine method embedded in the process, thus achieving

exponential convergence even in the double barrier case. The only downside to this

method is an apparent error floor of E-10 resulting from the numerical inverse z-

transform applied within the pricing process. Further discussion on this is given in

Chapter 4.

Lian et al. [2017] proposed a slightly different approach, which circumvents the

inverse z-transform by calculating the price at the N th date through computing the

(N −1)th power of a matrix. This methodology is usable for the general exponential

Lévy process but requires the calculation for the N th power of a matrix. While

acceleration techniques are available for matrix power calculations, the authors do

not employ such techniques. Consequently, the computational cost for calculating a

matrix’s N th power depends on N and cannot be claimed as date independent.

An interesting avenue of investigation into Legendre polynomials, see Sobhani

and Milev [2018]. While the method achieves date independence regarding compu-

tational cost, it has yet to be extended beyond GBM to the broader class of Lévy

processes. CAS wavelets have recently been used to price discrete barrier options,

Sobhani [2021]. While an interesting area of research, the results struggle with

accuracy and speed and are only applied to the GBM process.

2.2.3 α-quantile options

Options with some referable hindsight are an increasingly popular class of OTC

options traded. These options have a fixed point of expiry where the payoff depends

on some historical feature of the underlying asset’s path. The typical example is

lookback options, whose payoff is determined by the underlying asset’s maximum or

minimum price over the option’s lifetime, Fusai et al. [2016]. Typically, fixed strike
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lookback options result in a payoff of the form

VC(S, t) = max(SM −K, 0), (2.18)

VP (S, t) = max(K − Sm, 0), (2.19)

for a call and a put, respectively, where SM = maxt∈[0,T ] S(t) and Sm = mint∈[0,T ] S(t)

are the maximum and minimum price of the underlying, respectively. This can

be discretised similarly to barrier options where the maximum and minimum are

viewed over a selection of predetermined dates, i.e. SM = maxtn∈[t0,tN ] S(tn) and

Sm = mintn∈[t0,tN ] S(tn).

It is often convenient to begin with lookback options since quantile options are

often regarded as an adaptation of the former. The payoff of quantile options de-

pends on a single maximum or minimum and the percentage of time above a certain

threshold. This percentage is often called the α percentile, hence the name of α-

quantile options. These options were originally introduced by Miura [1992] to mit-

igate sensitivity to extreme price spikes, particularly in volatile markets. Early ana-

lytical solutions were published in the mid-1990s by Akahori [1995] and Yor [1995],

exclusively using the GBM process. Later that year, Dassios [1995] would adapt

the works by Port [1963] and Wendel [1960] that created an identity that states the

α-quantile of a Brownian motion over T has the same distribution as the sum of the

infimum αT . The Dassios-Port-Wendel identity says that if XM = maxt∈[0,αT ]X1(t)

and Xm = mint∈[0,(1−αT )]X2(t) where X1(t) and X2(t) are independent Brownian

motions then

Xα
d
= XM +Xm, (2.20)

where Xα is the α-quantile of the Brownian motion. Dassios also showed in the

paper that this could be extended to a general class of Lévy processes, although the

result may not be unique. Using this work as a base, several pricing methods using

general Lévy processes have been presented, such as the works by Cai et al. [2010]

using the Kou double exponential process. A variant using Monte Carlo methods

was presented by Ballotta [2002] utilising jump-diffusion methods.
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The first closed-form solutions for discretely monitored quantile options were

presented by Atkinson and Fusai [2007], utilising the z-transform to engineer the

problem using a Wiener-Hopf equation. As with many previously discussed closed-

form solutions, the price was solved for the GBM process. Later, this was extended

to the general class of Lévy processes by Green [2009]. This problem was further

extended by Phelan et al. [2020] using the Spitzer identities developed by Green

[2009] to develop a pricing method which is extendible to general Lévy processes

and is exponentially convergent. This method, too, suffers from an unsatisfactory

error floor caused by the inverse z-transform.

2.2.4 Fourier transform

Before detailing the integral transform approach to pricing, we must introduce the

integral transforms for completeness.

The Fourier transform has numerous applications in mathematics and phys-

ics, spanning multiple distinct yet interconnected knowledge domains. The most

common setting in which the Fourier transform is applied is transforming a one-

dimensional function of time into a function of frequency. The field of signal pro-

cessing utilises this application of the Fourier transform extensively. Much of the

foundation literature surrounding financial applications originated within operations

research and signal processing. Various modelling considerations can be chosen,

which largely depend upon the setting. For instance, it is typical for financial liter-

ature surrounding integral transforms to define the Fourier domain as its spectrum,

predominantly due to historical reasons. This choice ensures general consistency

with other areas of operations research; however, it can be confused with the more

abstract understanding of transforming the price distribution or the asset’s log-price.

There is little physical sentiment, as one would find with other applications of the

Fourier transform.

Therefore, although multiple definitions of the Fourier transform exist, we adopt

the definition preferred in scientific computing and finance in general. Thus, the
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Fourier transform and inverse Fourier transform are defined as follows

f̂(ξ) = Ft→ξ[f(t)] =

∫ +∞

−∞
f(t)eiξtdt, (2.21)

f(t) = F−1
ξ→t[f̂(ξ)] =

1

2π

∫ +∞

−∞
f̂(ξ)e−iξtdξ. (2.22)

This choice of definition is exceptionally comfortable to work with since the forward

transform Eq. (2.21) is the equivalent of the characteristic function of a random

variable with probability distribution f(x).

While this definition is most natural, in a financial setting, there is typically a

time origin where we are unconcerned with the behaviour of the option before t = 0.

Thus, we also include the unilateral definition

f̂(ξ) = Ft→ξ[f(t)] =

∫ +∞

0
f(t)eiξtdt, (2.23)

f(t) = F−1
ξ→t[f̂(ξ)] =

1

2π

∫ +∞

0
f̂(ξ)e−iξtdξ. (2.24)

There is a vast choice of literature concerning the Fourier transform and its long

history. For a modern reference, see Kreyszig [2011], who gives a detailed technical

description from first principles. For a thorough history of the development of the

Fourier transform and its applications, see Dominguez [2016]. Despite the Fourier

transform’s rich detail, we restrict the information presented here to the specific

application and approach to option pricing. Below is a brief introduction to some

of the techniques relevant to pricing.

To begin this more specific discussion, the Fourier convolution of two functions

f(t) and g(t) is given by

h(t) = (f ∗ g)(t) =
∫ ∞

0
f(z)g(t− z)dz =

∫ ∞

−∞
f(t− z)g(z)dz. (2.25)

This can often be reduced to a simpler problem where the application of a forward

23



transform to both f(t) and g(t) gives

ĥ(ξ) = f̂(ξ)ĝ(ξ) =

∫ ∞

0
f(x)eiξtdt

∫ ∞

0
g(t)eiξtdt, (2.26)

in the Fourier domain. To obtain h(t), an inverse Fourier transform is performed on

ĥ(ξ). Convolutions can reduce many problems to a forward multiplication resulting

from Eq. (2.25).

The Fourier shift theorem, which can be applied to either the state or the Fourier

domain, describes a shift applied to the function by a fixed amount a. From the

definitions given above, this shift can be formulated as

Ft→ξ[f(t)] = f̂(ξ) → Ft→ξ[e
−iatf(t)] = f̂(ξ − a), (2.27)

F−1
ξ→t[f̂(t)] = f(ξ) → F−1

ξ→t[e
iatf̂(ξ)] = f(t− a). (2.28)

An important tool that follows is Parseval’s theorem, which is an isometry that

can evaluate an inner product. For example, the expected value of a function of a

random variable. Parseval’s theorem preserves the inner product when computing

the expected value and is given as

∫ ∞

−∞
f∗(t)g(t)dt =

1

2π
f̂∗(ξ)ĝ(ξ)dξ, (2.29)

where f∗ is the complex convolution of f .

The last theorem required to apply the Fourier transform to the field of option

pricing is Plancherel’s. This theorem states that if we have two functions f(t) and

g(t) with Fourier transforms f̂(ξ) and ĝ(ξ) respectively, then

∫ ∞

−infty
f(t)g∗(t)dt =

1

2π

∫ ∞

−∞
f̂(ξ)ĝ∗(ξ)dξ, (2.30)

where g∗ represents the complex conjugate of g(t). While this was originally presen-

ted for real values of ξ only, it was extended by Paley and Wiener [1933] to the

entirety of the complex plane. Consequently, this extension demonstrated that a

function’s upper and lower half-range Fourier transforms are holomorphic in the
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upper and lower planes of ξ, respectively. Thus

f̂+(ξ) = Ft→ξ[f(t)1R+(t)](ξ) =

∫ ∞

0
f(t)eiξtdt, (2.31)

f̂−(ξ) = Ft→ξ[f(t)1R−(t)](ξ) =

∫ 0

−∞
f(t)eiξtdt, (2.32)

where 1A(t) is the indicator function on a given set A. Furthermore, the function

f̂+(ξ) is analytical in the upper half plane of ξ, which includes the real line. Symmet-

rically, the function f̂−(ξ) is analytical in the lower half plane of ξ, which includes

the real line. Therefore, the analytic regions of f̂+(ξ) and f̂−(ξ) overlap in a strip

which includes the real line.

A key concept of the Fourier transform approach to option pricing is the use of

the characteristic function. The Fourier transform of the probability density function

(PDF) p(x, t), referred to as the characteristic function, is defined as

Ψ(ξ, t) = E[eiξX(t)] =

∫ ∞

0
eiξtp(x, t)dx = Fx→ξ[p(x, t)] = p̂(ξ, t). (2.33)

A unique advantage in obtaining the characteristic function of a process is that

Ψ(x, ξ) uniquely describe the process in full. Moments of the process can also be

obtained, resulting in a general preference for characteristic functions over moment-

generating functions (MGFs). This is because MGFs do not exist for all random

variables, for example, the log-normal process. An additional advantage is that the

Fourier transform’s dimensionality reduction attributes are exploited, resulting in

PDFs with complicated forms simplifying to simple expressions in Fourier space.

This is generally true for most Lévy processes where the characteristic function can

be expressed as

Ψ(x, ξ) = E[eiξX(t)] = exp

(
t

(
aiξ − 1

2
σ2ξ2 +

∫ ∞

−∞
(eiξx − 1− iξxI|x|<1)Π(dx)

))
,

(2.34)

where a ∈ R, σ ≥ 0 and Π is the so-called Lévy measure.

Critical to calculating an option’s value is the use of the expectation for a func-

tion of a random variable, making the properties above particularly useful. Given
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a function ψ(X) of a random variable X with a corresponding PDF pX(t), the

expectation can be expressed in the Fourier domain using the Plancherel relation

Eq. (2.30)

E[ψ(X)] =

∫ ∞

0
ψ(x)pX(x)dx =

1

2π

∫ ∞

−∞
ψ̂∗(ξ)Ψ(ξ)dξ. (2.35)

2.2.5 z-transform

The z-transform is intrinsic to the first few sections of this thesis, and a more in-

depth view of the transform and its inverse is given in Chapter 3. In keeping with

the brief technical introductions of this chapter, a brief explanation is provided to

help readers understand the pricing methodology discussed in this thesis and to

allow them to skip directly to any chapter without needing to read it linearly. The

z-transform is a discrete-time transform where the unilateral version is given by

f̃(z) = Zn→z[f(n)] =
∞∑
n=0

f(n)z−n, (2.36)

where z is a complex number and f(n) is a discretely sampled function over n ∈

{0, 1, 2, . . .}. As with the Fourier transform, a bilateral z-transform exists where the

range of the summation extends to ±∞, but as we typically reformulate to consider

the options time to expiry τ = T − t where we are unconcerned with the behaviour

at τ < 0. The definition given in Eq. (2.36) is most commonly seen within discrete

signal processing, where z-signals occupy an entire literature section. A potentially

more convenient and interchangeable definition of the transform exists where z,

where we set q = z−1, so that z = 1/q

f̃(q) = Zn→q[f(n)] =

∞∑
n=0

f(n)qn, (2.37)

This definition is more suitable for a probability setting, such as finance, because

its form is the same as that of probability-generating functions. A common choice

within the literature is to present the discrete function under consideration as a

function of n. This choice is interchangeable.

Typically, within signal processing literature, the inverse of the z-transform is
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often handled by examining well-known z-transform pairs. Extensive tables of pairs

with common functions and their analytic z-transform provide a convenient way

of finding the forward or inverse transform by comparing functions to their closest

pair. Many of these functions are simple trigonometric or exponential functions with

various scalars. For more general functions, where a similar pair may not exist, the

inverse z-transform is given by a Cauchy integral of the form

f(n) = Z−1
z→n[f̃(z)] =

1

2πi

∮
C
f̃ (z) zn−1dz, (2.38)

where C is a counter-clockwise closed contour within the region of convergence for

the function f(n). Equivalently, we can reformulate in terms of q

f(n) = Z−1
q→n[f̃(q)] =

1

2πi

∮
C
f̃(q)qndq. (2.39)

Unfortunately, this integral is often intractable for relatively simple and smooth

functions. If a direct approach is possible, it may still be a poor approach to tackle

the integral directly, considering complexity and speed. In most cases, employing

approximation methods to solve the inversion problem is more natural. The option

pricing methodology employs a Fourier-z transform and thus requires an inversion

in both the Fourier and z domains. A pleasant feature is that the time and space

domains are orthogonal for the Fourier-z transform; as such, the individual inversion

procedures can be performed and implemented independently and in any order.

Despite much of the foundation literature regarding discrete-time transforms

being housed within signal processing, a renewed interest has been taken in the sub-

ject by disciplines less associated with it. Many fields, such as probability, finance

and chemical engineering, have modelling considerations where continuous trans-

forms are incoherent or not viable beyond an academic or theoretical setting. A

direct consequence of this is apparent when examining the difference in the number

of papers concerned with continuous transforms compared with those interested in

their discrete-time counterparts. For instance, since signals are continuous, the z-

transform’s continuous counterpart, the Laplace transform, is far more prevalent in
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the literature.

In an option pricing setting, it is more accurate to assume discrete monitoring

as continuous monitoring is an academic exercise rather than a reality in markets,

with the notable exception of American markets, where this is a practical consider-

ation. This was investigated extensively by Kou [2007]. Thus, there is a desire to

discretise the monitoring period to model and price a path-dependent option accur-

ately. This requires a discrete transform instead of a continuous one. While forward

z-transforms are often well-defined, the inverse can be non-trivial, as shown when

the ability to compare to analytical pairs is removed. In such cases, a numerical

approximation is required due to the intractability of the Cauchy integral govern-

ing the inverse z-transform seen in Eq. 2.38. A complete discussion on the inverse

z-transform is given in Chapter 3.

2.2.6 Hilbert transform

Unique among the integral transforms presented in this thesis, the Hilbert transform

does not alter the domain of the function it operates on. The Hilbert transform is

a crucial component of the pricing methodology, making it worthwhile to provide

a brief introduction. The Hilbert transform of a function of the Fourier domain is

given by

H[f̂(ξ)] = P.V.
1

π

∫ ∞

−∞

f̂(ξ′)

ξ − ξ′
dξ′

= lim
ϵ→0+

1

π

(∫ ξ−ϵ

−∞

f̂(ξ′)

ξ − ξ′
dξ′ +

∫ ∞

ξ+ϵ

f̂(ξ′)

ξ − ξ′
dξ′

)
,

(2.40)

where P.V. denotes the Cauchy principal value. There is no need for an explicit in-

verse transform, as an inverse can be recovered using the Hilbert transform property

H[H[f̂(ξ)]] = −f̂(ξ). (2.41)

The topic of the Hilbert transform is significant, with many diverse applications.

As it is used in pricing an exotic option without modification, this thesis does not

provide a detailed examination of it. The interested reader is directed to King [2009],
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where the author has written extensively about the topic.

2.2.7 Fourier methods for pricing

We now turn to a discussion on the methodology behind the Fourier pricing ap-

proach. The cornerstone of the method is calculating the PDF in the Fourier-z

domain as a separate step, rather than embedding it in the process as a whole.

The Plancherel relation is then applied along with a Fourier transform of the pay-

off function to calculate the price. Given the extensive discussion of this method,

a technical introduction is provided in this section to establish the context. It is

assumed that the payoff and the PDF are functions available in the Fourier domain.

The underlying process follows an exponential random process, which is the default

unless stated otherwise.

Let S(t) be the price of the underlying asset and x(t) = log(S(t)/S0) be the

log-price. To calculate the option value at t = 0, we assume that the initial price

of the underlying is S(0) = S0 and consequently x(0) = 0. Furthermore, to find

the price v0(x) at time t = 0 we need to discount the expected value of the damped

payoff function ϕ(x(T ))e−αdx(T ) at maturity t = T with respect to an appropriate

risk-neutral probability distribution function p(x, T ) with initial conditions p(x, 0) =

δ(x). The direct approach assumes that the PDF of the underlying process at time

T can be represented as a transition density given its value at some time t < T

p(x(T ) | x(t)) = k(x(T )− x(t)), (2.42)

where k is the transition density. The process distribution depends only on the

difference between current and future values and not on absolute values. This allows
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the calculation of the price using the convolution theorem

v0(x) = e−rTE
[
ϕ(x(T ))e−αdx(T ) | x(0) = x

]
= e−rT

∫ ∞

−∞
ϕ(x′)e−αdx

′
p(x′ | x)dx′

= e−rT
∫ ∞

−∞
ϕ(x′)e−αdx

′
k(x− x′)dx′ (2.43)

= e−rTF−1
ξ→x

[
ϕ̂(ξ)Ψ∗

k(ξ − iαd, T )
]
, (2.44)

where ∗ denotes complex conjugation. We utilise that Eq. (2.43) is a convolution

and thus a multiplication inside the Fourier domain. In this context, Ψ(ξ, T ) is

the characteristic function of the transition density. As a result Ψ∗
k(ξ − iαd, T ) is

the complex conjugate of the Fourier transform of e−αdxk(x, T ). The next stage in

the pricing process involves taking the Fourier transform of the damped payoff to

perform computations using the underlying process’s characteristic function. For

illustration purposes, we use the damped payoff of a double barrier option, although

other payoff options could be interchanged. The damped payoff for a double barrier

option is

ϕ(x) = e−αdxS0
(
ex − θekS

)+
1[l,u](x), (2.45)

where eαdx is the damping factor, θ = 1 for a call, θ = −1 for a put and 1[l,u](x) is

the indicator function of the set [l, u], where l = log(L/S0) is the lower log-barrier

and u = log(U/S0) is the upper log-barrier. The values of U and L are the upper

and lower barriers, respectively. For the log-strike, we use kS = log(K/S0), where

the subscript distinguishes it from the transition density k(·,∆T ), where K is the

strike price. The Fourier transform of the damped payoff is available analytically

ϕ̂(ξ) = S0

(
e(1+iξ−αd)a − e(1+iξ−αd)b

1 + iξ − αd
− ekS+(iξ−αd)a − ekS+(iξ−αd)b

iξ − αd

)
, (2.46)

where for a call option a = u and b = max(kS , l) and for a put a = l and b =

min(kS , u).

A breakthrough in the popularity of Fourier methods was the demonstration by

Carr and Madan [1999] that the Black-Scholes formula and put-call parity can be
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recovered with transforms in Fourier space for European vanilla options. While not

strictly necessary for this thesis, it is an important demonstration of understanding

the literature. The initial step is to take the payoff functions of vanilla options with

European exercise, in terms of log-prices, to be ψc(x) = S0(e
x − ek)+ for a call and

ψp(x) = S0(e
k − ex)+ for a put. In this context, k = ln(K/S0) is the strike price

expressed in log form. Following risk-neutral valuation, the value of a call option is

its expected payoff under Q is

vc(x,K) =

∫ ∞

k
ψc(x)p(x, T )dx. (2.47)

Employing Parseval’s identity, the value of the call option expressed in Fourier space

is

vc(x,K) =
e−rT

2π

∫ ∞+iw

0
ψ̃c(ξ)Ψ(ξ, T )dξ, (2.48)

where ψ̃c(ξ) is the Fourier transform of the payoff. The Fourier-transformed payoff

can be calculated as

ψ̃c(ξ) =

∫ ∞

k
S0 (e

x − ek) eiξx dx

=

∫ ∞

k
S0e

i(ξ−i)xdx− S0e
k

∫ ∞

k
eiξxdx

= S0

[
ei(ξ−i)x

i(ξ − i)
− eiξx+k

iξ

]∞
k

= −S0
e(1+iξ)k

ξ(ξ − i)
. (2.49)

Substituting Eq. (2.49) into Eq. (2.48) we find

vc(x,K) =
−Ke−rT

2π

∫ ∞+iw

0

e−iξKψ̃c(ξ)

ξ(i+ ξ)
dξ. (2.50)

The integration path w > 0 is required for a call option and w < 0 for a put option.

The formulation of w highly depends on the underlying model, where w > 1 suffices

for the Gaussian distribution. The extra parametrisation is required to extend to

more complicated distributions such as normal inverse Gaussian or variance gamma.

The residues of the integrand at the poles ξ = 0 and ξ = −i are −KerT /2πi
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and S0/2πi, respectively. To recover the put-call parity, we ensure that w > 0 to

encapsulate these residues, which produces

vc(x,K) = vp(x,K) + S0 −Ke−rτ , (2.51)

where τ = T − t and vp(x,K) is the value of vanilla put with the same expiry and

strike price as the call. Partial fractions can then be employed to reformulate the

call price into a format compatible with the Black-Scholes world, assuming the usage

of the Gaussian distribution

vc(x,K) =
Ke−rT

2πi

∫ ∞+iw

0
eiξkΨ(ξ, T )

(
1

i+ ξ
− 1

ξ

)
dξ, (2.52)

where k = ln(K/S0). This is equivalent to the original Black-Scholes formulation

for a vanilla call.

2.3 Numerical Fourier pricing procedures

In Chapter 4, we improve upon the pricing procedure first presented by Fusai et al.

[2016] and use Feng and Linetsky [2008] as a benchmark to judge error performance

and computational speed. While the interested reader is directed to these papers

and those by Phelan et al. [2019] to gain a deeper understanding of the method,

the procedure is outlined here to make this thesis self-contained and for reference

purposes. This includes brief discussions on the relevant techniques involved.

2.3.1 Plemelj-Sokhotsky relations, Wiener-Hopf technique

and Spitzer identities

While not directly referenced again, an introduction to these topics is required to dis-

cuss the pricing methodology presented later. A fundamental concept to the pricing

methodology is the concept of the plus and minus parts of a function, typically de-

noted f+(x) = f(x)1R+(x) and f−(x) = f(x)1R−(x). For the most part, the Fourier

transform of these function components is required, i.e. f̂+(ξ) = Fx→ξ[f(x)1R+(x)]

and f̂−(ξ) = Fx→ξ[f(x)1R−(x)]. One can obtain these transforms directly by apply-
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ing the Hilbert transform and calculating the Plemelj-Sokhotsky relations. For a full

discussion, see Germano et al. [2018]. These relations utilise the fact that applying

the Hilbert transform in the Fourier domain is equivalent to multiplying the function

by −isgn(x) in the state domain. Therefore, since f(x)sgn(x) = f+(x) + f−(x) and

the Hilbert transform is a linear function we obtain

−iH[f̂(ξ)] = f̂+(ξ)− f̂−(ξ). (2.53)

Since the Fourier transform is likewise a linear function we can combine Eq. (2.53)

with the fact that f̂(ξ) = f̂+(ξ)− f̂−(ξ) to recover the Plemelj-Sokhotsky relations,

which split a given function into its positive and negative parts through decompos-

ition

f̂+(ξ) =
1

2

(
f̂(ξ)− iHf̂(ξ)

)
, (2.54)

f̂−(ξ) =
1

2

(
f̂(ξ) + iHf̂(ξ)

)
. (2.55)

In the case of applying the decomposition to a barrier option, it would be useful to

have a generalised version of the decomposition applied to a function, which results

in positive and negative parts of the function relating to its position above or below

an arbitrary barrier of value b. To do this, we apply the Fourier shift theorem

discussed in Section 2.2.4, resulting in the generalised form

f̂b+(ξ) =
1

2

(
f̂(ξ)− eibξiH[eibξ f̂(ξ)]

)
, (2.56)

f̂b−(ξ) =
1

2

(
f̂(ξ) + eibξiH[eibξ f̂(ξ)]

)
. (2.57)

These equations can be combined to produce the Fourier transform for the section

of the function between two arbitrary barriers l and u in the case of a double barrier

option,

f̂lu(ξ) =
1

2

(
eilξiH[eilξ f̂(ξ)]− eiuξiH[eiuξ f̂(ξ)]

)
. (2.58)

The numerical methods that follow in later parts of the thesis require the addi-

tional feature of factorisation, i.e. the elements required for the calculation f̂(ξ) =
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f̂⊕(ξ)f̂⊖(ξ). The exclusive use of ⊕ and ⊖ is used for factorisation and distinguishes

it from decomposition. The process is performed by arithmetically decomposing the

logarithm of a function ĥ(ξ) = log f̂(ξ), i.e.

ĥ+(ξ) =
1

2

(
ĥ(ξ)− iH[ĥ(ξ)]

)
=

1

2

(
log f̂(ξ)− iH[log f̂(ξ)]

)
, (2.59)

ĥ−(ξ) =
1

2

(
ĥ(ξ) + iH[ĥ(ξ)]

)
=

1

2

(
log f̂(ξ) + iH[log f̂(ξ)]

)
. (2.60)

Due to its extensive use in option pricing, another topic to introduce is the

Wiener-Hopf technique. Due to the breadth and depth of this topic and its limited

use within this thesis, only a brief discussion is dedicated herein. An interested

reader is encouraged to examine Wiener and Hopf [1931] and Polyanin and Man-

zhirov [1998] for a comprehensive look at the area. For a more modern reference,

consult Lawrie and Abrahams [2007], who cover historical applications. A Wiener-

Hopf equation is of the form

λf(x)−
∫ b

a
k(x− x′)f(x′)dx′ = g(x) x ∈ (a, b), (2.61)

where we intend to solve for f(x). The functions k(x) and g(x) are known and are

often referred to as the kernel and forcing functions, respectively. If either a = −∞

or b = +∞, the expression Eq. (2.61) is a Wiener-Hopf equation. Alternatively, if

a and b are both finite, it is referred to as a Fredholm equation. When λ = 0, it

is an equation of the first kind. When λ ̸= 0, it is an equation of the second kind.

While many applications for the technique exist, we are primarily interested in its

application to price discretely monitored path-dependent options. This is seen in

two distinct approaches. A direct calculation to price the option directly, as seen

in Fusai et al. [2006], or by finding the probability distributions of the underlying

processes subject to discrete monitoring, as presented by Green et al. [2010] and

Fusai et al. [2016].

Related to the Wiener-Hopf technique in probability problems are the Spitzer

identities. Spitzer [1957] presented fluctuation identities, developed using combin-

atorial arguments, for the Fourier-z transform of the probability distributions for
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the maximum and minimum of a process under discrete monitoring and the final

value of a process conditional on the crossing of a discretely monitored barrier. The

identities were extended to the continuous and double barrier cases by Baxter and

Donsker [1957] and by Kemperman [1963], respectively. The link to the Wiener-

Hopf factorisation was initially discussed by Baxter [1961] and further investigated

by Green et al. [2010], with a focus on pricing options. This work focused on using

a variation on the method, referred to as Jones’ method or lemma, Jones [1952],

to apply the method using Fourier integrals rather than directly. This enables a

transformation of the Spitzer identities into a numerically tractable form.

Similarly to the Wiener-Hopf technique, the field and applications of Spitzer’s

identities are well-established and widely known. An entire work could be dedicated

to the breadth and scope of the applications. For brevity, we note the applications

to queuing systems, see Cohen [1975] and more recently Bayer and Boxma [1996],

fields in applied probability such as Markov chains, see Rogers [1994] and areas

within mathematical finance outside of the scope of this thesis such as insurance,

see Chi and Lin [2011]. Due to the complex nature of the Spitzer identities, a

comprehensive discussion has been omitted. The interested reader looking for a

comprehensive guide should consult Green [2009].

2.3.2 Feng and Linestky’s method

As shown in section 2.2.4, we can use the Hilbert transform to obtain the Fourier

transform of the part of a function above or below a barrier or between two barriers.

Since this feature is fundamental to the method presented by Feng and Linetsky

[2008], we refer to the method as the inverse Hilbert method (IH). This feature

of the Hilbert transform allows the price to be calculated between two successive

monitoring dates

v(x, tn−1) =

∫ u

l
v(x′, tn)k(x− x′,∆t)dx′, (2.62)

where v(x, tN ) = ϕ(x)e−αdx is the damped payoff of the option, k(·,∆t) is the trans-

ition density of the underlying process with step size ∆t and Ψ(ξ,∆t) is its char-
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acteristic function. By applying first the Hilbert transform and then a convolution,

the price at two successive dates can be expressed as

v̂(ξ, tn−1) =
1

2

(
Ψ(ξ−iαd,∆t)v̂(ξ, tn)−ieilξH

[
e−ilξΨ(ξ − iαd,∆t)v̂(ξ, tn)

] )
, (2.63)

for a single down-and-out barrier option. For the double barrier knock-out case, this

is rearranged to

v̂(ξ, tn−1) =
1

2

(
− ieilξH

[
e−ilξΨ(ξ − iαd,∆t)v̂(ξ, tn)

]
+ ieiuξH

[
e−iuξΨ(ξ − iαd,∆t)v̂(ξ, tn)

] )
.

(2.64)

2.3.3 Spitzer based method for barrier options (ZS)

For brevity and without loss of generality, we describe the pricing procedure for a

single-barrier down-and-out option. The Spitzer identities can be used to price any

barrier option type and applied to lookback options. The methodologies modified

in this paper were devised and explained in depth by Fusai et al. [2016], and the

modification applies to the range of options contracts the methodology covers.

1. Set the number of monitoring dates to N−2 so that the characteristic function

can be applied as a smoothing function for the first and last monitored dates.

2. Compute the characteristic function Ψ(ξ − iα,∆t), where α is the damping

factor.

3. Use the Plemelj-Sokhotsky relations

f̂+(ξ) =
1

2
{f̂(ξ)− iH[f̂(ξ)]}, (2.65)

f̂−(ξ) =
1

2
{f̂(ξ) + iH[f̂(ξ)]}, (2.66)

with the sinc-based Hilbert transform to factorise

Φ(ξ, q) = 1− qΦ(ξ − iα,∆t) = Φ⊕(ξ, q)Φ⊖(ξ, q), (2.67)

with q selected according to the chosen inverse z-transform.
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4. Decompose

P (ξ, q) =
e−ilξΨ(ξ − iα,∆t)

Φ−(ξ, q)
= P+(ξ, q) + P−(ξ, q), (2.68)

and calculate

F (ξ, q) = ϕ̂∗(ξ)Ψ(ξ − iα,∆t)eilξ
P+(ξ, q)

Φ+(ξ, q)
. (2.69)

5. Calculate the price

V (0, N) = e−rTF−1
ξ→x=0

[
Z−1
q→n=N−2 [F (ξ, q)]

]
. (2.70)

The Spitzer identities provide the z-transform of the characteristic function. Thus,

the inverse z and the Fourier transform must be applied to recover the price.

Many methods for using Spitzer identities to price options are direct. A notable

extension is the case of the double-barrier option. It is similar to the single-barrier

case in that it, too, requires Wiener-Hopf factorisation and decomposition to com-

pute the corresponding Spitzer identities. However, these equations cannot be solved

directly and need a fixed-point algorithm to numerically approximate the identities

iteratively. The pricing procedure is identical to the single-barrier case, except that

step 3 is replaced by the fixed-point algorithm.

3. Set J(ξ, q) = 0 and decompose

P (ξ, q) = σ

(
ξ

ξmax

)[
e−ilξ

ΦX−(ξ, q)
− ei(u−l)ξJX+(ξ, q)

ΦX−(ξ, q)

]

= PXM
(ξ) + PXm(ξ), (2.71)

and calculate J−(ξ, q) = P−(ξ, q)Φ−(ξ, q).

b) Decompose

Q(ξ, q) = σ

(
ξ

ξmax

)[
e−iuξ

Φ+(ξ, q)
− ei(l−u)ξJ−(ξ, q)

Φ+(ξ, q)

]

= Q+(ξ, q) +Q−(ξ, q), (2.72)
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and calculate J+(ξ) = Q+(ξ, q)Φ+(ξ, q).

c) Calculate

p̂(ξ, q) = σ

(
ξ

ξmax

)[
1

Φ(ξ, q)
− eilξJ−(ξ, q)

Φ(ξ, q)
− eiuξJ+(ξ, q)

Φ(ξ, q)

]
. (2.73)

d) If the difference between the current and previous version of p̂(ξ, q) is higher

than the predefined tolerance and the number of iterations is less than an

agreeable threshold, return to step b). Otherwise, proceed to step 5 and

Eq. (2.70), calculating the price of the double barrier option. Numerical tests

indicate that an iteration threshold of five to six should be sufficient, as further

iterations yield minimal improvements.

2.3.4 Spitzer based method for α-quantile options (ZS)

We present the general methodology for pricing α-quantile options following Phelan

et al. [2020]. We price a discretely monitored α-quantile option with a uniform mon-

itoring interval. Given the number of monitoring dates N , we express the predefined

time beyond the barrier j = αN to the nearest integer. The pricing procedure is

then given as follows.

1. Compute the characteristic function Φ(ξ−iαd,∆t) of the underlying transition

density, where αd is the damping parameter applied on the option payoff.

2. Using the Plemelj-Sokhotsky relations and the sinc-based Hilbert transform to

factorise

Φ(ξ, q) = 1− qσ

(
ξ

ξmax
Ψ(ξ − iαd,∆t)

)
= Φ+(ξ, q)Φ−(ξ, q), (2.74)

where σ(x) is an exponential filter and q is selected according to the chosen

inverse z-transform.

3. Calculate the Fourier-z transform of the probability density function of the
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maximum XM and minimum Xm,

PXM
(ξ, q) =

1

Φ+(ξ, q)Φ−(0, q)
, (2.75)

PXm(ξ, q) =
1

Φ+(0, q)Φ−(ξ, q)
. (2.76)

4. Apply the inverse z-transform for j and N − j dates respectively,

PXM
(ξ, j) = Z−1

q→j [PXM
(ξ, q)] , (2.77)

PXm(ξ,N − j) = Z−1
q→N−j [PXm(ξ, q)] . (2.78)

5. Eliminate the numerical error in the characteristic functions XM and Xm that

corresponds to the spurious imaginary part of the probability density function

to avoid its propagation later in the method

P̂Re
XM

(ξ, j) = Fx→ξ [RePXM
(ξ, j)] =

1

2

[
P̂XM

(ξ, j) + P̂ ∗
XM

(−ξ, j)
]
, (2.79)

P̂Re
Xm

(ξ,N−j) = Fx→ξ [RePXm(ξ, j)] =
1

2

[
P̂Xm(ξ,N − j) + P̂ ∗

Xm
(−ξ,N − j)

]
.

(2.80)

6. Calculate the characteristic function of Xα at the required monitoring date N ,

P̂Xα(ξ,N) = P̂Re
XM

(ξ, j)P̂Re
Xm

(ξ,N − j). (2.81)

7. Calculate the price of the discretely monitored α-quantile option at time origin,

V (0, 0) = F−1
ξ→x

[
σ

(
ξ

ξmax

)
P̂Xα(ξ,N)ϕ̂∗(ξ)

]
. (2.82)

2.4 Extensions outside of options pricing

Although this thesis primarily focuses on financial applications, the Fourier-z frame-

work and the numerical methods it contains can be applied in various other discip-

lines. The core advantage stems from the ability to recover discrete-time or discrete-
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state solutions from a function expressed in terms of its z-transform, often leading

to more transparent or computationally efficient procedures than direct inversion

by contour integration or naive summation. This technique extends to any problem

where time evolution or discrete convolution plays a pivotal role.

A prime example is the field of stochastics, where models evolve in discrete steps

through Markov chains, random walks, or branching processes. In such settings,

the Fourier-z framework aligns well with established results, such as the Spitzer

identities, which connect random walk functionals to generating functions. When

traditional techniques struggle because closed-form solutions do not exist or standard

summations become numerically unstable, Fourier-z methods can deliver reliable

computations for hitting times, overshoot probabilities, or state distributions. This

benefit extends naturally into areas such as queueing theory or risk processes, where

summing series for distributions is common but can be computationally intensive.

One of the key advantages of the Fourier-z approach in stochastic processes is its

ability to handle discrete-time random walks and related sums of random variables.

Suppose {Xk} is a sequence of i.i.d. random variables with common probability

mass function pX(x), and let

S(n) =
n∑
k=1

X(k), (2.83)

where n ≥ 1. In many applications, such as gambler’s ruin, overshoot probabilities,

or boundary-crossing times, the S(n) distribution is critical. The z-transform of

S(n), often purely known as a generating function in probability, takes the product

form

GS(n)(z) = [GX(z)]
n , (2.84)

where

GX(z) =
∑
x

pX(x)z
x, (2.85)

where pX(x) is the probability mass function. Inverting this transform analytically

or numerically reveals the full probability distribution of S(n).

One of the central identities in this context is the Spitzer identities, which ex-
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press certain random-walk functionals (e.g., the maximum of a partial sum) in terms

of generating functions of the increment distribution. By combining such identities

with robust z-transform inversion methods, problems that were once too cumber-

some to tackle can be approached via naive summation or direct combinatorial

arguments.

Furthermore, if one is interested in the probability of hitting a boundary, say

S(n) < 0 for some n, the Spitzer identities and related theorems allow us to express

the necessary quantities in a closed or semi-closed form involving z-transforms of

X(k). For instance, overshoot distributions, how far a random walk surpasses a

boundary, can be easily recovered by tracking the series expansion within the z-

domain and applying an inverse transform. More straightforward inversion schemes

sometimes struggle with convergence or numerical instability. This is particularly

evident when distributions have heavy tails or exhibit oscillatory behaviour. Though

illustrated with option pricing, the methods developed in this thesis can likewise

stabilise or accelerate the partial sums in these contexts. Thus, the Fourier-z frame-

work, combined with other tools such as the Spitzer identities, provides a systematic

method for deriving and approximating probability laws in discrete stochastic mod-

els.

Beyond probability and queueing systems, these methods have applications in

signal processing and physics. The z-transform is a fundamental tool for analysing

discrete-time filters and signals in signal processing. However, the usual practice of-

ten relies on transforms that fit neatly into standard tables. When faced with more

unusual or intricate systems, an accurate numerical inversion of the z-transform is

required for reconstructing time-domain signals. In physics, discrete lattice models

similarly lend themselves to transform-based representations. This enables one to

characterise complex state transitions or particle dynamics. Here, too, specialised

inversion algorithms that stabilise or accelerate partial sums can enhance the preci-

sion and speed of solutions, making them valuable in scenarios where the standard

toolbox proves inadequate.

While the methods introduced in this thesis are devised primarily to improve

the inverse z-transform calculation for option pricing, the advancements have the
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potential to advance discrete modelling in multiple disciplines.
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Chapter 3

Inverse z-transform

This chapter reviews the numerical approach to the inverse z-transform and explores

series acceleration techniques to reduce the computational cost of an intensive pro-

cedure. The literature surrounding the inverse z-transform is sporadic at best. Since

it is the cause of the error floor observed in the Fourier-z approach to option pricing,

it is worthwhile to explore finding a more optimal solution. Here, we present a com-

prehensive review of the numerical methods for inverting the z-transform, as found

in the literature, within a unified framework. Discussing the technical and historical

relationships between the z-transform and its continuous counterparts, the Laplace

and Fourier transforms, and the basic convergence of the z-transform is beneficial.

3.1 Convergence

The z-transform does not converge for all functions or all values of z in a convergent

function. For any given function, the set of values of z for which the z-transform

converges is known as the region of convergence (ROC). The ROC of the z-transform

is expressed as a circular region or a disc within the complex z-plane and takes the

form {z : |z| > a}, where it excludes all poles the function may have. Thus, Eq. 2.36

is convergent within the function’s ROC and divergent outside. For finite duration

causal systems, most commonly a right-sided sequence, the ROC is the entire z-

plane with the exclusion of any poles and at z = 0. Conversely, for infinite duration

causal systems, the ROC is the exterior of the circle with radius a, i.e. |z| > a. Other
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standard formulations exist; for example, if f(n) is an anti-causal finite system, the

ROC will be the circle’s interior in the complex z-plane with radius a, i.e. |z| < a.

In most numerical cases, the ROC may include some points on the circle with radius

a acting as the boundary. Depending on the target function, it may be convergent

or divergent at this boundary.

Most numerical validation cases presented in this paper are finite or infinite

causal systems, resulting in right-sided sequences. With these boundaries in place,

causality and stability are two natural conditions to formulate. A discrete-time

system is causal when the ROC is outside the outermost pole, which one can attempt

to satisfy in a computational sense by setting certain parameters. There are two

general conditions for stability. Firstly, the function f̃(z) includes the unit circle

|z| = 1. Secondly, all poles of the function lie inside the unit circle |z| = 1. For a

more in-depth discussion on the ROC and related issues, consult Oppenheim [2010].

The case of discrete option pricing results in stable causal systems, but this is highly

dependent on modelling considerations such as the chosen probability distributions

governing asset price movements and contractual considerations such as the number

of monitoring dates. A full discussion is presented in Chapter 4.

3.2 The Laplace transform

The z-transform can be understood as the discrete analogue of the Laplace trans-

form, which extends to unilateral and bilateral cases. Historically, the Laplace trans-

form pre-dates the z-transform and, along with the Fourier transform, was adopted

into many fields in engineering and applied mathematics by the early 20th cen-

tury. The utility of the Laplace transform in solving differential equations, analysing

continuous-time systems and formulating solutions to initial value problems ensured

its widespread adoption. By the mid-20th century, the Laplace transform had be-

come a central tool in engineering mathematics, analysis of linear time-invariant sys-

tems and control theory, see Doetsch [1974], Titchmarsh [1948], Brown and Churchill

[2014] and Erdélyi [1954].

Conversely, the z-transform emerged later as digital computation and sampled-
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data systems began to be used post-World War II. An early reference to discrete

transforms concerning difference equations appears, Hurewicz [1958], but without

formal mathematical foundations. The z-transform itself finally gained prominence

in discrete-time control theory and digital signal processing during the 1960’s where

Jury [1964] presented it in the context of digital systems. Standard textbooks on

the subject would finally appear in the 1970s, see Oppenheim and Schafer [1975],

making the z-transform integral synonymous with the growing field of discrete-time

signals.

One may be surprised at the abundance of literature surrounding the Laplace

transform with respect to the comparatively minimal amount on the z-transform.

This fact can be due to several factors, the first being the academic approach to the

z-transform, which, in practical terms, was inferior until the emergence of digital

technologies. Before the advent of digitised machines, fields such as engineering,

mathematics, and physics were predominantly concerned with continuous systems,

such as signals, fluids and particle dynamics. The Laplace transform is integral to

the modelling and solution of differential equations that can occur in these fields.

Typically, as these continuous systems require complex equations, it has become a

widely researched topic to improve the Laplace transform’s numerical inversion to

remain within the realms of mathematical tractability. Furthermore, within stabil-

ity analysis and PDES, methods such as the Routh-Hurwitz criterion, root locus

and frequency response techniques use the Laplace transform and often rely on a

numerical inversion for more complex problems.

Moreover, the popularity of Laplace-based approaches is reflected in the breadth

of specialized inversion algorithms: Talbot’s method and the Gaver Wynn Rho

(GWR) algorithm, for instance, are widely known for their reliability and efficiency,

while multi-precision Laplace transform inversion techniques, as discussed by Abate

and Valkó [2004], underscore the continued refinement and sophistication of Laplace

inversion methods. These well-established frameworks and the historical preval-

ence of continuous-time modelling help explain why the Laplace transform and its

numerical inversion boast a more extensive literature base than the z-transform.

Until the use of the z-transform became clear and discrete systems became in-
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creasingly relevant, it was simply not as needed as its continuous counterpart. Ad-

ditionally, the need for the transform’s numerical inversion has only recently become

worthy of increased attention. This rise in applicability can be partly due to many

solutions being available semi-analytically by analysing known z-pairs, especially in

signal processing, since many of the systems under study are trigonometric. As a

consequence, only scattered research existed until the late 1970s on numerical in-

version, see Cavers [1978] and Papoulis [1973], and only became prominent in the

late 1990s where Abate and Whitt [1992a] and Abate and Whitt [1992b] began to

produce coherent frameworks for the z-transform.

The z-transform can be mathematically converted to the Laplace transform by

taking f(tn) as the discretely sampled adaptation of its continuous counterpart f(t)

at the sampling points tn = n∆t, and setting

z = es∆t, (3.1)

the Laplace transform of f(t) can be expressed as the z-transform of f(tn) in the

continuous limit as ∆t→ 0,

Lt→s[f(t)] =

∫ ∞

0
f(t)e−stdt

= lim
∆t→0

∆t

∞∑
n=0

f(n∆t)(es∆t)−n

= lim
∆t→0

∆tZtn→es∆t

[
f(n)

]
. (3.2)

By definition, there is a conformal mapping between the z and s-space where the

angles between contours on each plane are preserved for all functions within the

space. An example of such a conformal mapping can be shown in Phelan et al.

[2020].

3.3 The Fourier transform

Another crucial aspect of this thesis is the relation between the Fourier transform

and the z-transform. This relation follows that the Fourier transform is a special
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case of the bilateral Laplace transform where Re(s) = 0, i.e. s = iω = 2πiξ. Without

loss of generality, we give an alternative form to the Fourier transform seen within

computational formats to enable a clearer comparison with the z-transform,

f̂(ξ) = Ft→ξ[f(t)] =

∫ +∞

−∞
f(t)e−2πiξtdt, (3.3)

and inverse

f(t) = Fξ→t[f̂(ξ)] =

∫ +∞

−∞
f̂(ξ)e2πiξtdξ. (3.4)

Discretising this equation leads to the discrete Fourier transform with an additional

discretisation error given by ∆t and a truncation error given by N . The frequency

grid in Fourier space ξn = n∆ξ, n = −N/2, . . . , N/2 − 1 is linked to the time grid

tn = n∆t, n = −N/2, . . . , N/2− 1 by the Nyquist relation,

∆ξ∆t =
1

N
. (3.5)

The N grid point index can be chosen to run from 0 to N − 1 or from 1 to N .

Therefore, the discrete Fourier transform is defined as

f̂(ξn) = ∆t
N−1∑
k=0

f(tk)e
−2πiξntk . (3.6)

whose inverse is obtained by inverting the sign of the Fourier factor

f(tn) = ∆ξ
N−1∑
k=0

f̂(ξk)e
2πiξktn , (3.7)

Where ∆ξ∆t = 1/N . This choice of definition results from the Fourier transform

being commonly defined as a function of the pulsation ω, which introduces a factor

1/(2π) into the equation and is most consistent with scientific computing. In addi-

tion, a negative sign appears in the exponent of the Fourier factor in the forward

transform, which makes the characteristic function E[eiξX ] of a random variable X

equal to the Fourier transform Ft→ξ[fX(t)] of its PDF fX(t).

Given the definition of the z-transform expressed by Eq. (2.36), if we express the
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variable z in polar form, i.e. z = eiω = e2πiξ, the z-transform equates to the discrete

Fourier transform, Eq. (3.6), on a positive infinite grid tn = 0, 1, . . . . Therefore,

under the assumption of existence, the discrete Fourier transform f̂(ξn) is equivalent

to the z-transform f̃(z) with the substitution z = e2πiξn . A restriction of unit

magnitude for z, i.e. |z| = 1, ensures correspondence between the two. This is

equivalent to restricting z to the unit circle in the complex z-plane. Thus, Eq. (2.36)

can be expressed as

f̃(re2πiξ) =
∞∑
tn=0

f(tn)(re
2πiξ)−n, (3.8)

which is equivalent to the discrete Fourier transform of the product of the exponential

sequence r−n with the original function f(tn). For the case r = 1, Eq. (3.8) reduces

to the discrete Fourier transform applied to f(tn).

3.4 Probability Generating Functions

In probability theory, the z-transform of a non-negative random variable X is closely

related to its probability-generating function (PGF). The PGF is defined as

GX(z) = E
[
zX
]
=

∞∑
n=0

pX(n)z
n. (3.9)

From a control theory perspective, the z-transform of the sequence pX(n) is often

given by

F (z) =

∞∑
n=0

pX(n)z
−n, (3.10)

adopting the conventions momentarily of Oppenheim [2010]. Despite the reversed

exponent, both representations store the same coefficient information about the

probability mass function (PMF) of X. This fact makes the PGF and the z-

transform interchangeable in many cases in probability and engineering contexts.

To recover the PMF pX(n) from the generating function Gx(z), one can extract

the coefficient zn. Thus, if

GX(z) =

∞∑
n=0

pX(n) z
n,
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then

pX(n) = [zn]GX(z), (3.11)

where [zn] denotes the coefficient-extraction operator (i.e., the coefficient of zn). In

the case of the z-transform F (z), the inversion can proceed via contour integration

pX(n) =
1

2πi

∮
Γ
F (z) zn−1 dz, (3.12)

where Γ is the contour encircling the origin, Davenport [1970].

This connection between the PGF and the z-transform allows many practical

applications in probability and related fields, such as stochastic modelling, queuing

theory, and option pricing.

3.5 Numerical inversion approaches

This section reviews the current methodology for numerically inverting the inverse z-

transform. These methods are benchmarked and results are discussed in Section 3.8.

These methods follow the general trend of a matrix decomposition and have been

grouped accordingly.

3.5.1 Linear system of equations

Presented by Merrikh-Bayat [2014], in the case where f(n) is a suitable function

where f̃(z) is known or analytical, it is possible to form a linear system of equations

approximating f(n). This method takes the explicit assumption that f̃(z) has no

poles at infinity, i.e. lim|z|→∞ f̃(z) = 0. The expression given in Eq. (2.36) holds for

any value of z that lies within the region of convergence, defined in Section. (2.38).

Taking a single point z1 inside the region of convergence the inverse transform for

z1 can be given by

f̃(z1) ≈
N∑
n=0

f(n)z−n1 . (3.13)

Taking a series of such random points z1, z2, . . . , zm within the region of conver-

gence, it is possible to formulate the problem as a system of algebraic equations
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approximating f̃(z1), f̃(z2), . . . , f̃(zm) given by



f̃(z1)

f̃(z2)

...

f̃(zm)


=



1 z−1
1 z−2

1 . . . z−N1

1 z−1
2 z−2

2 . . . z−N2

...
. . .

...

1 z−1
m z−2

m . . . z−Nm





f(0)

f(1)

...

f(m)


, (3.14)

wherem is the number of points chosen from within the region of convergence. Thus,

Eq. (3.14) can be written as a linear system of the form f̃(z) = Af(n) containing N

variables and m equations where

A =



1 z−1
1 z−2

1 . . . z−N1

1 z−1
2 z−2

2 . . . z−N2

...
. . .

...

1 z−1
m z−2

m . . . z−Nm


. (3.15)

The downside of such an approach consists mainly of ensuring that a unique solution

is available when one performs matrix inversions. A unique solution is theoretically

found where m = n and the random points z1, z2, . . . , zm are chosen to ensure that

A is of full rank. Under these assumptions, the solution of Eq. (3.14) is found by

minimising ∥Af(n)− f̃(z)∥2. This can be done within environments such as Matlab

using the backslash command, i.e. f(n) = A \ f̃(z).

This method is awkward to implement. Furthermore, if any point zi is chosen

within the unit circle, the system becomes ill-conditioned, which gets worse as N

increases. This method is more heuristic and unreliable, as simple functions like the

Heaviside step and decaying exponentials do not work under this framework. While

the author presents no specific error bounds, our experiments can not achieve an

accuracy greater than E-03. This general low performance and the computational

cost associated with inverting the matrix are omitted from our accompanying code.
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3.5.2 Orthogonal decomposition

A less-widely known method proposed by Rajković et al. [2004] and originating from

an earlier paper, Papoulis [1973], relies on finding orthogonal functions that can be

decomposed to find the inverse transform. The method approximates f(n) by

fN,q(n) =

N∑
k=0

ckϕ
k
r (n), (3.16)

where

ϕkr (n) =

n∑
m=1

br,n,mr
m, (3.17)

where r is an input parameter selected to be smaller than 1. The authors recommend

setting r = 5/6 or r = 3/4. The coefficients br,n,m are calculated using binomial

calculations given as

br,n,m = (−1)n−mrp
(
n

m

)(
n+ k − 1

k − 1

)
, (3.18)

where p = −
(
n
2

)
+
(
m+1
2

)
−mn and the cn coefficients are calculated as

ck =
rk(1−k)

1− r2k

k∑
l=1

br,k,lf̃(1/q
l). (3.19)

The values br,n,m are chosen such that ϕ
(0)
r (n), ϕ

(1)
r (n), . . . , ϕ

(N)
r (n) form a set of

orthogonal series. The author presents some error analysis and presents a minimum

relative error of E-06 with double precision.

3.5.3 Matrix exponential

A method presented in Horváth et al. [2020] and a similar methodology to that

presented by Lian et al. [2017] revolves around matrix exponentials. This relies upon

a similar technique for inverting Laplace transforms, namely the concentrated matrix

exponential (CME) method. Using the unified framework for the Laplace transform
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given by [Abate and Whitt, 2006], the inverse transform can be approximated by

f(T ) =

∫ ∞

0
δ(T − t)f(t)dt, (3.20)

where δ(t) is a Dirac delta function. Under the framework, the function δ(T − t) is

approximated by a weighted sum of exponentials consisting of n terms

δ(T − t) ≈ 1

T

n∑
k=1

νke
−βk t

T . (3.21)

Therefore, the function f(T ) can be expressed as the linear combination of its

Laplace transform at particular points

f(T ) =

∫ ∞

0
δ(T − t)f(t)dt ≈ 1

T

n∑
k=1

νke
−βk

T
tf(t) =

1

T

n∑
k=1

νkf̃

(
βk
T

)
. (3.22)

A matrix exponential distribution’s probability density function (pdf) is chosen as

the function f(t). The resultant class of matrix exponential distributions of order

N contains positive random variables with a pdf of the form

fX(t) = −αAAAeAAAt111, t ≥ 0, (3.23)

where α is a row vector and AAA is a matrix of size N×N . Since fX(t) is non-negative

and under the assumption that AAA is diagonalisable with spectral decomposition

AAA =

N∑
k=1

λkukνk, (3.24)

where λk are the eigenvalues, uk are the right eigenvectors and νk are the left eigen-

vectors of AAA then fX(t) can be rewritten as

fX(t) =
N∑
k=1

(
−αAAAuk νk

)
eλkt =

N∑
k=1

νk e
−βkt, (3.25)

where βk = −λk and the weight ck = −αAAAukνk is absorbed into νk in the final

sum. This method is a discretised version of the above process where the Dirac

delta function is approximated via a series of impulses. This method is satisfactory
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but suffers from high CPU times due to handling and inverting large matrices. It

can be presented, however, as a very stable method due to the restriction on the

range of parameters that require selection. The authors’ numerical tests show the

best absolute error of E-09, but for a wide range of inversion cases. Matrix power

acceleration techniques could handle the computational inefficiencies, but this has

yet to be explored.

3.6 Contour integration methods

At this stage, a reasonable question can be asked about why we cannot calculate

Eq. (2.38) directly using numerical techniques to approximate an integral performed

on a contour. This numerical integration can be performed on the contour c = re2πiν

where 0 ≤ ν ≤ 1, under the assumptions that the region of convergence is equivalent

to |z| > a where r and a are arbitrarily chosen constants such that r > a. While

feasible, the main barrier to this approach is the lack of accuracy and computational

efficiency. Specifically for smaller values of n, the contour integration of Eq. (2.38)

becomes less accurate, while conversely, higher values create high computational

costs. This results from repeatedly recalculating the integral for each value of n.

This restriction results in a general array of methods based upon the discussion

in Sec (2.3) where Fourier series and analysis can be applied to a discrete system

and hence approximate the contour integral Eq. (2.38). Using this approach, one

can delve into the extensive literature surrounding Fourier transforms and series. A

more computationally convenient form for Eq. (2.38) is

f(n) = Z−1
z→n[f̃(z)] =

rn

2π

∫ 2π

0
f̃(reiu)e−inudu, (3.26)

which corresponds to the case where C is a circle of radius r in the complex plane.

The variable r often acts as a scaling parameter and can be considered the radius of

the region of convergence. Computationally, this parameter can significantly impact

this class of methods.

All contour-based methods rely on the use of Eq. (3.8) to relate the inverse

z-transform to that of a discrete inverse Fourier transform, which in turn can be
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calculated with ease by either using the FFTW Frigo and Johnson [1997] or some

other approximation technique. As seen previously in Section 3.3 the variable z

can be expressed in polar form, z = reiθ where θ = 2πk/N . Thus, the inverse z-

transform can be reduced to a discrete Fourier transform given by Eq. (3.6). If one

takes N samples of f̃(reiθ) and denotes this as the periodic series F̃ [k] with period

N , it is possible to prove that if F̃ [k] is considered as the coefficients of a periodic

function such as f̃(z), then f(n) and f̃(z) are related through the following equation

f̃(z) =

∞∑
k=0

f(n− rkN). (3.27)

Furthermore, the inverse discrete Fourier transform of the series F̃ [k] = f̃(reiθ)

is equal to the inverse z-transform applied to the function f(n) under the Fourier

convention chosen. The assumption is that all poles are contained strictly within the

unit circle, with discontinuities only at zero. To proceed with calculating the inverse

z-transform we calculate f̃(z) on the contour C = e2πin/N , where n = 1, . . . , N . The

contour chosen is not the only choice, as any partition can be taken in theory. This

particular partition is chosen for its simplicity and symmetry. Thus, the inverse

z-transform becomes

f(n) ≈ 1

N

N−1∑
k=0

rnf̃(re2πik/N )e2πikn/N , (3.28)

which is equivalent to an inverse discrete Fourier transform of the function f̃(re2πin/N )

multiplied by the scaling factor rn. The summation can be computed using an in-

verse Fourier transform multiplied by rn. Several methods have been presented

using this approach, and the two most notable ones are discussed below. These

methods tend to result in the most accurate approximations and can be extended

easily beyond the case of analytic z-transform pairs.

3.6.1 Abate and Whitt (1992)

In various papers, Abate and Whitt [1992a,b,c], developed an approximate inver-

sion formula based upon a Fourier series approach, following from the discussion in
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Section 3.3. The Cauchy integral form of the inverse z-transform, Eq. (2.38), can

be approximated numerically by applying a trapezoidal rule

f(n) ≈ 1

Nρn

(
f̃(ρ) + 2

N∑
k=1

(−1)kf̃
(
ρeikπ/N

)
+ (−1)N f̃(−ρ)

)
, (3.29)

where the error is controlled only by the parameter ρ. The authors state that an

accuracy of order 10−λ requires ρ = 10−λ/2k. For practical purposes one can consider

an error bound ρ2k since ρ2k/(1 − ρ2k) is approximately equal to ρ2k when ρ2k is

small. This error bound on the error often results in an error floor of around E-

11. The resulting method is remarkably simple to program and can be done with

minimal code.

3.6.2 Cavers (1978)

The following method is derived from Section 3.3 discussion. It exploits the relation

to the discrete Fourier transform, which can be conveniently calculated using a fast

Fourier transform (FFT) and is similar to the method by Abate and Whitt. The

key difference is that a new free parameter N defines a secondary grid. Cavers

[1978] produces the earliest known presentation of this method; it has, however,

been presented in several other papers with varying degrees of completeness, for

example, Merrikh-Bayat [2014], Brancik [2003] and Mills [1987].

Cavers’ method employs the discrete Fourier transform approach to approximate

the inverse z-transform Eq. (3.28) and applies the FFT directly

f(n) = rnF−1
k→n

[
f̃(re2πik/N )

]
, (3.30)

which can be rewritten as

f(n) =
rn

N
Fn→k

[
f̃(re2πik/N )

]
. (3.31)

The F−1 and F can be computed with library calls such as Matlab’s ifft or fft, re-

spectively, both of which utilise the FFTW. This method has the added advantage

of increasing N as required; as such, it can achieve an error E-16, i.e. machine accur-
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acy, with double precision. The computational cost of a one-dimensional problem

is O(N logN) due to the FFT. Extensive work has gone into developing a pruned

FFT approach, where only a subset of the resulting output is required, to account

for this, the interested should consult Sorensen and Burrus [1993].

Further development can be done by using shifted points, where the points of

the contour integral are shifted by a half period. The discrete Fourier transform can

then be reformulated

f(n) =
rn

N
Fn→k

[
f̃(re2(k−1)πi/N )

]
k = 1, 2, . . . , N. (3.32)
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3.7 Series acceleration techniques

To address the potential computational cost of using fast Fourier libraries, many of

the methods discussed thus far can benefit from applying series acceleration tech-

niques because an infinite series is present. Under the assumption that the series

converges, achieving the desired level of accuracy may require a large number of

terms, resulting in a high computational cost. This issue is particularly noticeable

in practical environments when the method must be called repeatedly. This is true

within the lens of option pricing, where multiple calls must be made to the inver-

sion procedure for different parameter sets, ultimately resulting in a CPU bottleneck.

With such an application, series acceleration methods can make an inversion method

practically usable. A broad class of methods exist aiming to improve the acceleration

that attempts to transform the partial sums of the given series into a new sequence

with a faster rate of convergence. For the interested reader, consult Smith and Ford

[1979] and Weniger [1989] for comprehensive reviews.

3.7.1 Euler Transform

One of the oldest acceleration techniques is that of Euler, which has been applied

directly to Abate and Whitt’s method by the authors and discussed in depth in

O’Cinneide [1997]. A brief discussion is given here for completeness. Following the

same framework seen previously, let cn(f) denote the Fourier series of f defined as

cn(f) =
1

2π

∫ 2π

0
eintf(t)dt. (3.33)

We can then define f(t) as the sum of a Fourier series at t

f(t) =
∞∑
−∞

cn(f)e
−int. (3.34)

Since the Fourier series has a natural symmetry, we can frame this discussion around

the symmetric partial sums of the series

SNf(t) =

N∑
n=−N

cn(f)e
−int. (3.35)

57



The Euler summation can be applied to convergent alternating complex series and

has been used in several publications, e.g. Fusai et al. [2006, 2012, 2016] and Chen

et al. [2014]. To proceed, for integers l ≥ 1 and mE ≥ 0 we define the Euler(l,mE)

transform of this sequence to be the resulting sequence

bn = 2−mE

mE∑
k=0

(
mE

k

)
an+kl, (3.36)

where an is the sequence to be accelerated. This sequence is equivalent to the

binomial(mE , 1/2) average of every l-th term of the original sequence, beginning

with the n-th. If the terms an are partial sums of a sequence, moving from an to bn

is referred to as Euler(l,mE) summation. The most ubiquitous case of l = 1 is the

same as the Euler transform, known as Euler summation. The Euler acceleration

technique works under the following two conditions. Firstly, an integer k ≥ n exists

such that the signs of SN are alternating. Secondly,

1

2
<

∣∣∣∣Sn+1

Sn

∣∣∣∣ ≤ 1 for n ≥ k. (3.37)

The original use case for this acceleration is due to a function or its derivatives

having discontinuities at zero. However, it is also applicable to a function with

discontinuities in general. Thus, for the set of 2π periodic functions with bounded

derivatives, the lack of smoothness is associated with the slow convergence of a Four-

ier series and, consequently, the z-transform. More generally, from the “integration

by parts coefficient bound” described by Boyd [2001], if the function is smooth up

to its (k − 2)th and its kth derivative is integrable, then the speed of convergence

is O(1/ξk). Similarly, Boyd [2001] shows that functions where all derivatives are

integrable have exponential convergence. The Euler (l,mE) summation improves

the rate of convergence of the Fourier series of functions at certain values t = ti,l of

the series,

ti,l = t(i, l) =
(2i− 1)π

l
, i = 1, 2, . . . , l. (3.38)

This is extendible to derivatives and functions with up to k-bounded derivatives.

When Euler(l,mE) summation is applied to Eq. (3.35) for the points seen in Eq. (3.38)
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the resulting sequence can be denoted as

Snf(l,mE ; til) = 2−mE

mE∑
k=0

Sn+klf(til). (3.39)

When using Euler summation applied to Abate and Whitt’s method, we have to

manually control two more parameters, mE and nE = k. Extensive analysis has

been done here; see Zong [2020] to find the optimal values of these parameters. The

usual choice is to select nE = 12 and mE = 20.

The discussion on the Euler summation thus far has been from a computational

and practical aspect. The more traditional and generalised formulation of the Euler

summation can be given as

SNf(t) = Sn−1 +
λn

1− λ

mE∑
k=0

(
λ

1− λ

)k
∆k
(an
λn

)
, (3.40)

where the difference operator ∆ is applied to the superscripts. For λ = −1, i.e. in the

case of an alternating series, this reduces to the classical Euler transform. The Euler

transform is applied to alternating series, and the generalised form can be applied

to any convergent series that can be written as a power series where λ ∈ [−1, 1).

There are two general conditions to ensure the Euler transform works as expec-

ted. Firstly, an integer k ≥ 1 exists such that the signs of SNf(t) are alternating

for n ≥ t. The second condition is that for t ≥ k, 0.5 < |SNf(t + 1)/SNf(t)| ≤ 1.

Applying a scalar variable k to ensure that the partial sums of Cavers’ method os-

cillate to meet the first condition is possible. This can be adjusted so that the Euler

acceleration works. More information on how this is done can be seen in Chapter 4.

3.7.2 Padé Approximants

It is worth noting here a brief introduction to Padé approximants, which feature

heavily in acceleration techniques. Padé approximants are rational functions con-

structed from a power series, i.e. Taylor or Maclaurin series, expansion of a function

and introduced by Padé [1892]. This technique has been developed into a valuable

tool for approximation theory, analytic continuation and the summation of divergent
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or slowly convergent series. Unlike truncating a series to a polynomial, Padé approx-

imants use ratios of polynomials to approximate a given function. This approach

often yields far superior approximations, primarily when singularities exist.

To begin the definition of a Padé approximant, first, consider a function f(z)

analytic about z = 0 with a known Maclaurin series expansion

f(z) =

∞∑
n=0

cnz
n, (3.41)

where

cn =
f (n)(0)

n!
. (3.42)

A Padé approximant P[m/n] of order [m/n] is a rational function

P[m/n](f, z) =
Pm(z)

Qn(z)
, (3.43)

where Pm(z) and Qn(z) are polynomials of degree at most m and n respectively.

The coefficients of this polynomial are determined by matching the Taylor series of

f(z) up to order m+ n

f(z)− Pm(z)

Qn(z)
= O(zm+n+1). (3.44)

This ensures that the first m + n + 1 coefficients in the series expansion of f(z)

and Pm(z)/Qn(z) coincide. In practice, one solves a linear system derived from the

conditions

Qn(z)

(
m+n∑
k=0

ckz
k

)
− Pm(z) = O(zm+n+1). (3.45)

The uniqueness of the Padé approximant, assuming c0 ̸= 0 and a non-degenerate

system, is specified by the theory of linear algebra applied to the corresponding

matrices from the series coefficients {cn}, see Baker and Graves-Morris [1996].

Under generic conditions, the Padé approximant [m/n] exists and is unique.

However, degeneracy can occur if the linear systems fail to have a unique solution.

Such degeneracies often signal additional structure in the function f(z), such as

hidden algebraic relations among the coefficients. A known result here is that if the
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function f(z) is rational of the form

f(z) =
U(z)

V (z)
, (3.46)

for polynomials U and V and with deg(U) = α and deg(V ) = β, then [m/n] for

sufficiently large m,n where m > α and n > β, will reproduce f(z) exactly. This

perfect approximation underscores the power of Padé approximants. The interested

reader should consult C. Brezinski and Redivo-Zaglia [1991] or Baker and Graves-

Morris [1996] for more information.

A remarkable feature of Padé approximants is the ability to achieve analytic con-

tinuation. Even if the original power series has a finite radius of convergence due to

some singularity present at some |z| = R, the Padé approximant may provide mean-

ingful values beyond values |z| > R. Thus, the approximant can avoid singularities

in the complex plane if they are not poles.

Furthermore, this approach enjoys pleasant convergence properties in many clas-

sical scenarios. For instance, if f(z) is meromorphic, i.e. it is analytic except for

isolated poles, within a specific region of the complex plane, a sequence of Padé

approximants can reconstruct the location and size of these poles from the given

coefficients {cn}. Indeed, for analytic and meromorphic functions, the theory of

Padé approximants can yield exponential convergence rates; see Baker and Graves-

Morris [1996] and Stahl [1997].

3.7.3 Wynn’s Rho and Epsilon Algorithms

Two popular methods were presented by Wynn [1956] in his seminal paper, known

as the epsilon and rho algorithms. The epsilon algorithm is a nonlinear sequence

transformation designed to accelerate the convergence of a given sequence {Sn},

which generally represents the partial sums of an infinite sequence. The key concept

behind the epsilon algorithm is to construct a triangular array of transformed values

that lead to the approximation converging much faster than the original sequence,

provided the original sequence satisfies certain analyticity conditions.

The algorithm gained popularity because it is straightforward and numerically
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stable for many problems. Crucially, it does not matter whether the sequence is

alternating or non-alternating, and it is often applied in numerical quadratures and

solutions to integral equations. The foundation of the method is simple to elucidate;

consider a sequence {Sn}, with partial sums Sn where

Sn =
n∑
k=0

ak. (3.47)

The algorithm produces a two-dimensional array {ϵ(n)k } defined by the recurrence

relation for k ≥ 1,

ϵ
(n)
k = ϵ

(n+1)
k−2 +

1

ϵ
(n+1)
k−1 − ϵ

(n)
k−1

, (3.48)

where

ϵ
(n)
−1 = 0, ϵ

(n)
0 = Sn, for all n ≥ 0.

Provided that the denominator is non-zero. This recursion is typically written and

computed in a tabular form. This table is often called the epsilon table, which

is constructed as follows. The first column, where k = 0 is just the original se-

quence S0, S1, S2, . . .. In the second column, k = 1, these values produce improved

approximations. Subsequent columns can produce further accelerations.

The key observation is that only the entries with even k often yield the best

approximations to the {Sn} limit. The even-indexed elements, i.e. ϵ
(0)
2r for r =

0, 1, 2, . . ., frequently converge to the limit of the now accelerated sequence faster

than the original.

The epsilon algorithm can be interpreted in several ways. A common interpret-

ation mentioned by Wynn is that the method relates to continued fractions and

Padé approximants of power series C. Brezinski and Redivo-Zaglia [1991], Weniger

[1989]. Thus, the algorithm rapidly converges to the limit when the partial sums Sn

correspond to an analytic function within a specific domain. The epsilon algorithm

is beneficial when dealing with sequences that stem from expanded series involving

factorial terms, binomial coefficients or generalised hyper-geometric series Smith and

Ford [1979].

In practice, the user must be cautious about numerical stability. As the denom-
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inator in Eq. 3.48 indicates, division by small numbers can cause numerical issues.

Further, the algorithm’s efficiency can be improved by implementation where one

would store only a few columns of the epsilon table at a time and overwrite the

previous values to avoid extensive memory usage.

Within the same work, Wynn also produced a different acceleration based on a

modification of the algorithm. The so-called rho algorithm is explicitly designed to

address convergence by including an additional factor, k, in the recurrence relation.

This minor adjustment often produces faster convergence than the epsilon algorithm

and can be considered an accelerated version.

The rho algorithm constructs a similar two-dimensional array ρ
(n)
k , starting from

the same sequence as previously {Sn} with partial sums Sn, for k ≥ 1

ρ
(n)
k = ρ

(n+1)
k−2 +

k

ρ
(n+1)
k−1 − ρ

(n)
k−1

, (3.49)

where

ρ
(n)
−1 = 0 ρ

(n)
0 = Sn for all n ≥ 0.

The factor k in the numerator generally improves the convergence rate. As with the

epsilon algorithm, the best approximations are typically found at even indices of k.

This upgrade algorithm is a refinement that leverages information about how

the transforms evolve with each step k. When applied to challenging sequences,

the convergence behaviour is often superior to that of the epsilon algorithm. As

before, the rho algorithm is connected intrinsically to Padé approximants. Typical

usage for the algorithm is as an improvement upon the epsilon algorithm, where the

secondary algorithm converges but not as fast as desired.

A distinct advantage of the epsilon and rho algorithms over Euler’s acceleration

approach is the lack of explicit parameters that require tuning. The criteria for ap-

plying this method are based solely on the convergence of successive approximations,

which are typically used to slowly convergent or asymptotic expansions of special

functions such as Bessel or hypergeometric functions encountered in physics.
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3.7.4 The Shanks Transform

The Shanks transform, Shanks [1955], is derived from an earlier work presented

by Schmidt [1941] based on nonlinear series acceleration methods. The Shanks

transform is designed to improve the convergence rate of a sequence by targeting

the partial sums typically of an infinite series. Unlike linear acceleration methods,

such as the Euler acceleration, the Shanks transform uses rational approximations

inferred from successive iterations, thus often achieving dramatic improvements in

convergence and stability of the series.

Fundamentally, the Shanks transform approximates the underlying function or

generating mechanism by constructing a ratio of two polynomials that is rational

and whose values at specific points match the known partial sums. Similarly to

Wynn’s algorithms, this approach can be related to Padé approximants and contin-

ued fractions C. Brezinski and Redivo-Zaglia [1991], Sidi [2003].

As before, let {Sn} be a sequence of partial sums defined as before in Eq. (3.47).

Furthermore, suppose {Sn} converges slowly to the limit L. The Shanks transform

aims to produce a new sequence {Ŝn} that converges to L more rapidly. This

approach is commonly expressed as a discrete analogue of moment or determinant

forms. A popular representation of the Shanks transform is

S(Sn) =
Sn+1Sn−1 − (Sn)

2

Sn+1 − 2Sn + Sn−1
, (3.50)

for n ≥ 1 and under the assumption that the denominator is non-zero. This par-

ticular formulation represents a second-order nonlinear transform that attempts to

remove the dominant part of the asymptotic error term. In practice, repeated applic-

ation of the Shanks transform and nested Shanks transforms can be used analogously

to iterative Euler summation or repeated Wynn’s transforms.

The Shanks transform can be applied to three consecutive terms of any sequence

{xn}. Suppose {xn} is the sequence of partial sums or any other slowly converging

sequence. In that case, the transform can produce a new sequence that converges

faster under suitable conditions on the generating function and the nature of the

asymptotic expansions, Weniger [1989].
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The connection to Padé approximants allows the Shanks transform to use the

input sequence’s behaviour to infer a rational approximation to its generating func-

tion, giving rise to powerful error-reduction capabilities.

Suppose now that the original sequence {Sn} can be associated with a function

F (z), which is analytic in some domain. In that case, the Shanks transform can

be interpreted as a step in constructing a Padé approximant to F (z). Furthermore,

if F (z) is analytic and has no singularities in the complex plane, the transformed

sequence {Ŝn} may display geometric convergence to the actual limit, C. Brezinski

and Redivo-Zaglia [1991].

The general convergence properties, however, can depend heavily on the analytic

properties of the underlying function. For instance, if the original sequence {Sn}

behaves asymptotically

Sn = cλn +O(λ2n), with |λ| < 1, (3.51)

the Shanks transform can often remove the dominant λn term resulting in a new

sequence converging with O(λ2n).

Additionally, if F (z) is the generating function for {Sn} or {ak} and F (z) can

be continued analytically beyond the unit circle and has isolated singularities in the

complex plane, the Shanks transform can detect singularities and adjusts accord-

ingly with successive iterations. This self-correcting process makes the convergence

substantially better.

As with many transforms, if the sequence {Sn} is irregular, highly oscillatory or

dominated by multiple competing error terms, the Shanks transform may require

multiple applications of combined use with another transform to achieve stable res-

ults. Wynn’s epsilon or rho algorithm is the standard choice in this case. Alternat-

ively, preconditioning the sequence using Euler’s summation to induce alternating

signs or scaling transforms can result in more stable results, see Sidi [2003], Smith

and Ford [1979].

Unlike linear transforms, the Shanks transform can suffer from numerical in-

stability if the denominator of Eq. (3.50) is very small or if the sequence is highly
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noisy. Small denominators can be mitigated by scaling, smoothing or applying other

transforms at carefully chosen indices, which can minimise these issues. Further, ad-

aptive strategies that monitor the magnitude of denominators and the stability of

successive approximations are recommended. With this in mind, more modern ap-

proaches combine the Shanks transform with other acceleration methods, such as

Euler and Wynn’s accelerations.

3.7.5 Richardson Extrapolation

It is worth a small introduction to Richardson extrapolation, which, while not dir-

ectly an acceleration technique, is fundamental to acceleration approaches to follow.

Initially presented by Richardson [1910], this technique is designed to improve the

accuracy of numerical approximations by exploiting known asymptotic error expan-

sions originally conceived for numerical calculus. The power of this approach lies in

its simplicity and generality; if one knows or can guess how the error term depends

on a discretisation parameter, for instance, a step size h or iteration count, then

the extrapolation can systematically eliminate leading-order error terms and thus

accelerate the convergence.

Mathematically, consider a sequence of approximations {A(h)} to a limit L,

where h is a discretisation parameter that tends to 0. Typically, A(h) might represent

an approximation of a derivative or a solution to a differential equation using a

step size h. Further, suppose that the approximation A(h) admits an asymptotic

expansion

A(h) = L+ αhp + α2h
p2 + . . . , (3.52)

where p > 0 is the leading order of the error, α is the leading error coefficient, and

higher order terms are of a smaller magnitude as h→ 0. Richardson’s extrapolation

constructs a new approximation that cancels the leading-order error term.

Consider two approximations, A(h) and A(qh), for a chosen scaling factor q > 1.
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Then

A(h) = L+ αhp +O(hp2), (3.53)

A(qh) = L+ α(qh)p +O((qh)p2). (3.54)

The idea is that by forming a suitable linear combination, one can eliminate αhp.

Thus,

ARe =
qpA(h)−A(qh)

qp − 1
, (3.55)

yields a new approximation ARe closer to L, typically with the leading error term

removed, resulting in a higher order of accuracy of terms of h.

The essence of this approach is the assumption of an asymptotic error expansion.

If the behaviour of the error term is known or can be well approximated by a power

law hp, the extrapolation reduces the error order from O(hp) to O(hp2). For many

standard problems in calculus, the leading error terms are often polynomial in h. By

changing the underlying approximation scheme, Richardson extrapolation provides

a straightforward and powerful method to enhance a low-order method into a higher-

order one.

Two methods under discussion, the Levin and Sidi transforms, rely on knowledge

or assumptions about the error structure. While Richardson extrapolation focuses

on eliminating a single dominant error term, the following transforms can target

more complicated error models.

3.7.6 Levin-Type Sequence Transforms

Levin-type sequence transformations are a class of nonlinear series acceleration meth-

ods inspired mainly by problems in integral convergence found in physics. First

presented in Levin [1973], Levin acceleration methods are particularly effective for

sequences asymptotically similar to a known reference function or for series with

factorial, binomial or geometric-like terms. Unlike simpler approaches, this trans-

form incorporates additional information about the asymptotic behaviour of the

sequence terms, allowing for the handling of a broader class of problems and often
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yielding faster convergence. Despite relative obscurity at publication, this class of

accelerations has gained attention due to its inherent robustness and flexibility.

As before, consider a sequence {Sn}, where Sn represents the partial sums of the

sequence, i.e.

Sn =

n∑
k=0

ak.

The Levin transform relies on an associated sequence {ωn} that encapsulates known

or assumed asymptotic behaviour of the sequence {an} of their partial sums.

The most common form in which this transform is cited is the so-called Levin

u-transform. Suppose again there is a sequence {an} and a corresponding sequence

{λn} which approximates the behaviour of an as n→ ∞. Typically, λn is chosen such

that anλn approaches a constant or has a simple limiting form. For the sequence of

partial sums Sn, the Levin u-transform is defined as follows. Begin with the simple

sequence

un =
an
λn
. (3.56)

This sequence forms the partial sums

Un =
n∑
k=0

uk, (3.57)

the Levin transform of order m can be expressed as

Sn =

∑m
k=0(−1)k

(
m
k

)
Un+k∑m

k=0(−1)k
(
m
k

)
λ−1
n+k

, (3.58)

for appropriate sequence λn.

The power of Levin’s transform stems from their explicit usage of the sequences

of asymptotic information. If the asymptotic form of an is known or can be reas-

onably approximated, Levin-type transforms can drastically reduce dominant error

terms which may be present. Under suitable analyticity conditions and correct ap-

proximation of asymptotic behaviour, Levin transforms achieve at least geometric

convergence, Levin [1973], Sidi [1979]. The convergence can become exponential

when combined with appropriate reference sequences λn.
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As one may have diagnosed, the fundamental practical problem of implement-

ation is correctly identifying asymptotic behaviour. This may not be trivial to

determine. Inaccurate estimates of asymptomatic parameters can lead to numer-

ical instability or slow convergence. Modern applications of this approach often try

multiple transforms with variations of λn to determine which yields the most rapid

convergence.

3.7.7 Sidi Accelerations

First presented in 1979 and extensively detailed in the seminal work Sidi [2003],

this family of transforms encompass a family of acceleration techniques designed

to handle various convergence issues. Unlike the previous accelerations that rely

on specific patterns, for instance, an alternating series or asymptotic forms, Sidi’s

approach incorporates more flexible modelling of the error terms. The foundational

idea is similar to that of Richardson Extrapolation. Still, here, the key idea is to

approximate the underlying limit or function by exploiting the known or assumed

behaviour of the error term.

Begin with the sequence {S(h)} parametrised by a step size h → 0. A classic

example is S(h) = Sn where h = 1/n. This is analogous to numerical integration,

where h is the grid size. Thus, considering a sequence as before {Sn} that converges

to some limit L. If one can express the error Sn − L in a form involving a known

function, for instance

Sn − L ≈
N∑
k=1

ckϕk(n), (3.59)

where the sequence {ϕk(n)} is known or a reasonable estimation of functions of

n that characterise the asymptotic behaviour of the error, then it is possible to

construct transforms that eliminate these error terms successively. By choosing a

suitable ϕk, this framework can simplify the problem of slow convergence. By doing

so, it is possible to achieve geometric and exponential convergence.

A variant of this generalised transform is the so-called D-transforms, Sidi [2003], a

class of extrapolation methods that generalise and unify existing techniques. Again,

let {Sn} be the sequence to be accelerated and {wn} a sequence of weights capturing
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the main asymptotic behaviour. Then one constructs a table of approximants Dm,n

by linear or nonlinear recurrences that combine the original sequence values and

their finite differences, weighted by {wn}. Under careful selection of the weights,

the D-transform can eliminate the leading terms of the error expansion.

Furthermore, numerous variants tailored to different classes of problems have

been developed. For instance, transforms designed for oscillatory integrals often

model the error terms using trigonometric or oscillatory components. Similarly,

some target factorial-type growth or geometric patterns.

This approach is firmly rooted in approximation theory and asymptotic analysis.

If it is assumed that the error in the original sequence Sn has a known asymptotic

expansion in terms of functions ϕk(n). The form of functions ϕ could take multiple

forms depending on the application. To construct the transformed sequence, a new

sequence {S̃n} is produced via a linear or nonlinear transform that eliminates the

leading-order terms in the error expansion. Mathematically, this is often resolved by

solving a linear equation system derived from conditions where the transformed se-

quence dampens specific error terms up to a given order. When the chosen modelled

functions ωk(n) match the actual asymptotic behaviour, the transforms can produce

significant improvements in convergence. The author notes that if done correctly,

a sequence that converges like n−p into one that converges like n−q where q > p,

or even exponential convergence in some cases. For more detailed analysis, consult

Sidi [2003].

The power of this approach is that the transforms can be seen as a framework

that incorporates accelerations already discussed and utilises modern transforma-

tions as special or limiting cases. Primarily, Levin-type accelerations rely on known

asymptotic information. Sidi’s approach generalises this idea, allowing for a broader

range of error models and making them applicable to a wider set of problems. Thus,

Levin transforms are often regarded as a subset of Sidi’s framework, where the error

modelling is done via a single function.

Similarly to Levin’s transformation approach, the implementation requires some

insight into the error’s asymptotic form. If this knowledge is unavailable, an iterative

procedure will need to be followed, testing various models until the correct form is
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found, yielding an accelerated convergence.

3.7.8 Salzer Summation

The Salzer summation is a classical series acceleration technique introduced initially

to improve the convergence of infinite series, particularly those arising in numerical

Laplace transform inversion, see Wimp [1981]. The method re-weights partial sums

of an underlying series to mitigate the higher-order terms. These tend to be the

terms contributing the bulk of the oscillations and slow convergence. By applying

weights, the approach can reduce the number of terms needed to achieve a desired

accuracy, particularly if the series has an alternating or slowly convergent struc-

ture. This method has been used extensively in the case of the numerical Laplace

inversion, see Valkó and Abate [2004], where accelerations have been made to the

traditional Gaver-Stehfest method by reorganising the sums involved in extracting

inverse transforms.

Although Salzer’s summation has been most commonly applied to the Laplace

transform domain, its principle of re-weighting partial sums can also be adapted to

the z-transform framework. In discrete-time or discrete-state settings, the numer-

ical inversion of a z-transform typically involves summing a series expansion of the

inverse transform, which, like its Laplace counterpart, can suffer from slow or oscil-

latory convergence. By implementing a Salzer-style summation, one can introduce

selective weighting schemes to stabilise the partial sums and possibly reduce the

number of terms needed.
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3.8 Results

For benchmarking purposes, it is convenient to use analytical z-pairs, i.e. pairs of

functions with well-defined f̃(z) and f(n). Such pairs are simple to compute and

provide an excellent benchmark to measure accuracy and computational perform-

ance. The number of sampling or option monitoring points is set to 20 for readability,

but is arbitrary. Table 1 shows the numerical error and CPU time results for each

method over a series of analytical pairs.

Function f(n) F (z)

Heaviside step 1
z

z − 1

Polynomial n
z

(z − 1)2

Decaying exp e−an
1

1− ea∆nz−1

Sinusoidal sin(ωn)
z−1 sin(ω∆n)

1− 2z−1 cos(ω∆n) + z−2

Geometric Distribution p (1− p)n
∞∑
n=0

p (1− p)nzn

Poisson Distribution
e−λ λn

n!

∞∑
n=0

e−λ λn

n!
zn

Negative Binomial Distribution

(
n+ r − 1

n

)
(1− p) r pn

∞∑
n=0

(
n+ r − 1

n

)
(1− p) r pn zn

Catalan
1

n+ 1

(
2n

n

) ∞∑
n=0

Cn z
n

Table 3.1: List of transform pairs used in the numerical tests to follow. A wide
range has been chosen to benchmark the methods against different features.

Table 3.8 details the evaluated methods’ average, maximum errors and CPU

time. The CPU time was assessed using an Intel(R) Core i7-9750H 8 core 2.60GHz

processor and 32 GB of RAM averaged over four successive runs to avoid interfer-

ence from background processes. The tests were performed with MATLAB using

Windows 10. As we are primarily interested in an application such as option pricing,

any error value greater than 10−2 is omitted as unusable. The analytical pairs used

are evaluated over a time grid t = 0, . . . , 1 = T , where the number of discretisation

points n = 20 for Table 2 and n = 100 for Table 3. An additional column is provided

for any constants in the method. As a benchmarking choice, no accelerated methods
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were tested for n = 20 since series acceleration is largely redundant at this number

of intervals.

AW denotes the accelerated version of Abate and Whitt’s approach for reference.

C refers to the Cavers method. Cavers’ method with Euler, Shanks, and epsilon

accelerations is given by CEuler, CShanks, and CEpsilon, respectively. Orthogonal

decomposition using r = 5/6 is denoted with OD. Finally, the matrix exponential

approach is denoted by ME. Of note is the generally poorer performance when

significantly increasing the number of discretisation points.

As the results show, the Cavers’ method can achieve a machine-accurate solution

of E-16, but at the cost of computational time. This CPU deficiency can be improved

with an acceleration that performs well, but at the expense of some numerical ac-

curacy. Another issue with Cavers’ approach is the selection of the parameter r. We

have set r in the 1.01 ≤ r ≤ 1.6 range for all experiments. Horváth et al. [2020] also

notes the difficulty in handling this parameter and witnesses the loss in precision if

this parameter is set incorrectly. With an acceleration applied, the method is com-

parable to Abate and Whitt’s methods. The orthogonal decomposition and matrix

exponential approaches are the least attractive methods due to the high error floor

and inconsistent nature.

As expected, all methods achieved their lowest errors for the polynomial, probability-

generating function, or the decaying exponential. Many methods had a dramatic

and often volatile increase in maximum error when handling the Heaviside step

function, because of the jump discontinuity in the step function. This is particularly

interesting as a function that could perform in a superior fashion for functions with

discontinuities has its advantages.

To broaden the study of series acceleration beyond simple one-dimensional z-

pairs, we benchmark the techniques to a two-dimensional binomial distribution and

the generating function for Catalan numbers. The former case is interesting with

our subconscious task of option pricing since the functions required for inversion

are two-dimensional, i.e. F (t, z), where t is the time domain. An extensive array

for t was incorporated into the function to mirror this requirement, resulting in a

large two-dimensional array. The Catalan generator is known for its rapidly grow-
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ing coefficients, making series convergence more difficult. These two examples test

whether the numerical inversion and acceleration methods can handle more intricate

combinatorial forms and maintain reliable accuracy in higher complexity.

We apply series acceleration exclusively to the Abate and Whitt and Cavers’

methods because, in unaccelerated form, these two approaches already demonstrated

substantial flexibility and precision on simpler pairs and are under scrutiny within

option pricing. In addition to the numerical acceleration techniques used previously,

Cavers’ method with Levin and Sidi transforms are also tested, marked CLevin and

CSidi, respectively.

The general trend of Table 3.8 exhibits the same accuracy-versus-cost trade-off

observed earlier. A clear trade-off between numerical accuracy and computational

efficiency is present across the methods tested. The two-dimensional binomial case,

in particular, slowed down the Cavers’ method despite its continued excellent accur-

acy. The Levin- and Sidi-based accelerations perform on par with Euler acceleration.

Interestingly, the epsilon and Shanks transform experienced a dip in performance,

which can be attributed to incomplete control over the number of iterations the

accelerations perform. In particular, Shanks’ transform requires specifying a fixed

number of iterations, and each iteration directly processes the partial sums. This

results in a direct trade-off between numerical performance and the number of ac-

celeration iterations the user wishes to provide.

In contrast, the Sidi and Levin transform circumvents this iteration-based over-

head by applying a single-pass reorganisation of the partial sums using difference

operators. Specifically, the user specifies a transform order W (m), which determ-

ines how many successive differences (and corresponding weights) are applied. This

systematic approach removes leading error terms from the partial sums more flex-

ibly, often resulting in more stable and efficient convergence than strictly iterative

methods.
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Function Method Average error CPU time

Heaviside step AW 3E-10 0.00044
C 3E-16 0.00218
CEuler 5E-15 0.00033
OD 0 0.00842
ME 2E-04 0.01913

Polynomial AW 2E-11 0.00034
C 2E-16 0.00351
CEuler 2E-16 0.00064
OD 3E-06 0.00330
ME 1E-05 0.01354

Decaying exp AW 3E-10 0.00064
C 4E-16 0.00648
CEuler 3E-15 0.00196
OD 1E-06 0.00658
ME 2E-05 0.03749

Sinusoidal AW 6E-10 0.00110
C 8E-16 0.00891
CEuler 5E-16 0.00076
OD 2E-06 0.00545
ME 4E-05 0.06541

Table 3.2: Error values for numerical tests on single variable z-pairs with number of
discretisation points n = 20. Note the expected excellent performance of AW and
C.
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Function Method Average error CPU time (sec)

Heaviside step AW 2E-09 0.00125
C 3E-15 0.02156
CEuler 6E-15 0.00248
CShanks 4E-11 0.00141
CEpsilon 2E-10 0.00111
CSidi 5E-10 0.0057
CLevin 4E-09 0.0043
OD 3E-09 0.00842
ME 2E-06 0.01913

Polynomial AW 1E-08 0.00188
C 3E-15 0.005681
CEuler 3E-15 0.00112
CShanks 4E-12 0.00255
CEpsilon 8E-12 0.00174
CSidi 2E-11 0.0276
CLevin 4E-12 0.0571
OD 3E-06 0.00551
ME 2E-02 0.01354

Decaying exp AW 3E-12 0.00190
C 8E-16 0.00871
CEuler 3E-15 0.00301
CShanks 3E-10 0.00141
CEpsilon 3E-10 0.00159
CSidi 2E-10 0.0357
CLevin 4E-10 0.0600
OD 1E-06 0.00663
ME 6E-02 0.02235

Sinusoidal AW 3E-10 0.00203
C 3E-16 0.00993
CEuler 6E-15 0.00105
CShanks 3E-10 0.00154
CEpsilon 2E-13 0.00215
CSidi 3E-11 0.0424
CLevin 1E-11 0.0488
OD 1E-05 0.00481
ME 3E-04 0.04513

Table 3.3: Error values for numerical tests of single variable z-pairs with number
of discretisation points n = 100. This increase of discrete points is designed to test
the method’s stability. Again, AW and C perform well with reasonable performance
from the accelerated versions of C.
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Function Method Average error CPU time (sec)

Geometric AW 4E-11 0.0048
C 6E-16 0.0200
CEuler 1E-13 0.0045
CShanks 3E-10 0.0036
CEpsilon 2E-10 0.0051
CSidi 6E-14 0.0424
CLevin 8E-14 0.0488

Poisson AW 1E-10 0.0013
C 8E-15 0.0026
CEuler 3E-14 0.0013
CShanks 4E-10 0.0064
CEpsilon 8E-11 0.0072
CSidi 1E-14 0.0024
CLevin 1E-14 0.0068

Neg Binomial AW 7E-11 0.0005
C 8E-16 0.0097
CEuler 8E-15 0.0010
CShanks 3E-10 0.0046
CEpsilon 3E-10 0.0033
CSidi 3E-15 0.0034
CLevin 4E-15 0.0047

Table 3.4: Error values for numerical tests of probability generating functions with
number of discretisation points n = 120. The methods, M and OD, have been
omitted from this part of the analysis since their performance was not comparable
to the contour integration approaches.

Function Method Average error CPU time (sec)

Catalan AW 3E-10 0.0231
AWEuler 1E-07 0.0038
C 1E-15 0.2322
CEuler 1E-13 0.0097
CShanks 2E-07 0.0612
CEpsilon 3E-06 0.0455
CSidi 2E-12 0.0776
CLevin 4E-11 0.0264

Multi-Dim Binomial AW 1E-10 0.0567
AWEuler 5E-09 0.0064
C 7E-16 0.4320
CEuler 2E-13 0.0105
CShanks 2E-08 0.0789
CEpsilon 4E-09 0.0648
CSidi 8E-12 0.0940
CLevin 6E-11 0.0567

Table 3.5: Error values for numerical tests of series acceleration with slowly conver-
ging or multi-dimensional z-pairs. With the number of discretisation points n = 100.
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3.9 Conclusion

In this chapter, we reviewed and implemented a selection of numerical inverse z-

transform techniques to survey and benchmark proposed techniques from various

applications within the more general literature. Additionally, we reviewed and im-

plemented series acceleration techniques for the computationally intensive Cavers

method to achieve machine accuracy and have a computational cost independent of

the number of monitoring points. This was achieved with success using the modified

Euler technique and, to a lesser extent, employing the Shanks, Epsilon, Levin and

Ford-Sidi accelerations, all of which drastically improve the CPU times with varying

costs to the accuracy.
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Chapter 4

Option Pricing

In this chapter, we present an improvement to the Fourier-z Sptizer approach to

option pricing presented by Fusai et al. [2016] and improved by Phelan et al. [2019]

with a specific focus on the double barrier and α-quantile options. Since the method

uses the Spitzer identities and z-transform, this method will be abbreviated by

ZS. For benchmarking and analysis reasons, the technique presented by Feng and

Linetsky [2008] is employed to gauge the performance of the ZS method. This

secondary approach uses the inverse Hilbert transform as a fundamental building

block. Thus, this method will be abbreviated by IH. The procedure for both of these

methods is given in Section 2.3. This method iterates on the N monitoring dates,

and thus, its time grows linearly with N ; we refer to it as iterative Hilbert (IH). The

convergence of the error with respect to the grid size is exponential until machine

accuracy, i.e. 2−52 ≈E−16 with IEEE 754 double precision representation of floating

point numbers, thanks to a sinc function expansion of the Hilbert transform.
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4.1 Analysis of inverse z-transform

A noted shortcoming of the ZS method is its inability to achieve machine accuracy,

restricted to an error floor of E-10. Contrastingly, the IH method produces machine-

accurate solutions in all scenarios except for the variance gamma process. Whilst

machine-accurate solutions are not of concern to practitioners, they are still an

unsatisfactory limitation of the ZS method. The reason for this limitation is in the

computation of the inverse z-transform, which is required to recover the transformed

probabilities produced by the Spitzer identities. Candidates for the z-transform are

not as plentiful as for its continuous cousin, the Laplace transform. The inverse

z-transform was first presented by Abate and Whitt (AW) (1992) and has proved to

be a popular choice in financial applications. The AW method has the limitation of

not fully controlling the parameter governing the error, so its accuracy can only be

varied by a limited amount before losing numerical control. This chapter presents

a modified version of the ZS method, which eliminates the increased error floor and

achieves machine-accurate solutions for barrier and alpha quantile options at the

expense of computational cost in the case of barrier options.

The numerical inverse z-transform employed in the ZS method was devised by

Abate and Whitt (1992) and approximates the inverse z-transform by

f(n) ≈ 1

2nρn

f̃(ρ) + 2
n−1∑
j=1

(−1)jRef̃
(
ρeiπj/n

)
+ (−1)nf̃(−ρ)

 . (4.1)

Following the definition of the inverse z-transform given in Sec.(3),

f̃(ξ) = Ft→ξ[f(t)] =

∫ ∞

−∞
f(t) e−2πiξt dt (4.2)

f(t) = F−1
ξ→t[f(ξ)] =

∫ +∞

−∞
f̃(ξ)e2πiξtdξ. (4.3)

This definition coincides with that of the FFTW library, see Frigo and Johnson

[1998], which is included in Matlab and is Python-wrapped in pyFFTW.

Dividing the integration range [0, 1] of ξ into J equal intervals ∆ξ = 1/J and

introducing the grid ξj = j∆ξ = j/J, j = 0, . . . , J − 1, the Fourier transform in
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Eq. (4.3) is approximated by a discrete Fourier transform,

f(n) = Z−1
z→n

[
f̃(z)

]
≈ rn

J

J−1∑
j=0

f̃
(
rei2πj/J

)
ei2πnj/J , n = 0, . . . , N, J ≥ 2N. (4.4)

In the case n = N , Eq. (4.4) becomes

f(N) = Z−1
z→N

[
f̃(z)

]
≈ rN

2N

2N−1∑
j=0

f̃
(
reiπj/N

)
eiπj (4.5)

=
rN

N

[
1

2
f̃(r) +

N−1∑
j=1

(−1)jRe f̃
( 1

reiπj/N

)
+

(−1)N

2
f̃(−r)

]
.

(4.6)

There is a natural constraint, J ≥ 2N , arising from the Nyquist-Shannon sampling

theorem, which dictates the setting of J as stated in Press et al. [2007], for instance,

Abate and Whitt [1992a,b] set J = 2N since it is “convenient”. This is evid-

ent in Figure 4.3, where the error jumps when the sampling theorem is broken at

n = J/2 + 1. Two natural symmetries are present in this particular setting: sym-

metry in the integrand of the DFT and symmetry in the conjugation of the complex

circle upon which z is defined. For each point (−1)jRe[f̂(reiπj/J)] on the upper

half-circle, there exists a conjugate point on the lower half circle.

Abate and Whitt [1992a,b] proved that the absolute error |ε| of the inverse z-

transform given by Eq. (4.4) has the bound

|ε| < 1

rJ − 1
≈ 1

rJ
(4.7)

(the approximation holds when rJ is large), so setting r = 10γ/J should yield an

accuracy of 10−γ . However, Abate and Whitt [1992a, Remark 5.8] pointed out that

if the machine accuracy is εm = 10−γm , rounding errors cause this bound to break

down for about γ > 2
3γm; see also Abate and Whitt [1992b, Remark 6]. With IEEE

754 double precision representation of floating point numbers, εm = 2−52 ≈ 10−15.65,

and thus it makes little sense to set γ > 10.5, which yields the IZT up to about 10

or 11 significant digits. Abate and Whitt spent only a few lines of text about the

rounding error and concluded that one should use at least 3γ/2 digits of precision
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to compute the IZT with γ significant digits.

On the contrary, we aim to exploit as much as possible the available digits of

precision, which can be single, double, quadruple, or half, to compute the IZT with

an error as close as possible to machine accuracy. Using the function pair

f(n) = e−ψn∆t, (4.8)

f̃(z) =
z

z − eψ∆t
(4.9)

where ψ ∈ C, a numerical study of the error of the IZT confirms that the error bound

of r−J given by Eq. (4.7) holds as a function of γ = J log10 r until it is swamped

by the rounding error that grows proportionally to γ; see Figure 4.1. This can also

be seen when applying the full pricing method to a single or double barrier option;

see Figure 4.2. The turning point depends on the function parameter ψ, on the

monitoring interval ∆T and the value of N , but for J = 2N indeed lies around or

slightly above 2
3γm ≈ 10.5 as we use double precision, confirming Abate and Whitt’s

“3/2 rule for the ratio of decimal places to final accuracy”. This rule originates

from a programming nuance in many scientific computing languages where there is

a fixed number of decimal places for each number.

To further this analysis, several plots examine how the core integrand, resulting

from the IDFT procedure, behaves under different discretisation settings when valu-

ing barrier options. Figure 4.4 is a two-dimensional slice of the real and imaginary

parts, overall magnitude and phase-shifted real part of f̃(z), revealing how the integ-

rand oscillates and how its magnitude evolves. This gives some sense of the stability

and resolution of the IDFT contour integration. The comparison between 52 and

252 monitoring dates demonstrates how increasing the number of points refines the

sampling, potentially improving numerical accuracy and stability.

The three-dimensional figures, Figures 4.5 and 4.6, offer a more detailed per-

spective by plotting the real and imaginary parts of f̃(z) across both j and the

magnitude r. These plots demonstrate that the IDFT approach, combined with a

well-chosen discretisation, yields an integrand f̃ whose behaviour can be controlled.
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Figure 4.1: Mean absolute error of the inverse z-transform as a function of γ =
J log10 r, computed with Eq. (4.4) for the analytic pair given in Eqs. (4.8) and (4.9);
n = 0, . . . , N , J = 2(N +1). Top: ∆t = 1/N ; bottom: ∆t = 1/252; ; left-hand plots
vary the number of monitoring dates N with ψ = −1 fixed; right-hand plots vary ψ
(here ψ = −1 and ψ = −2) with N = 52 fixed.

4.2 Alternative inverse z-transform and modified Euler

acceleration

The proposed alternative presented in Chapter 3 is the contour integration method

presented by Cavers (1979). Under this approach the inverse z-transform can be

approximated by

f(n) ≈ 1

N

N∑
k=1

rnf̃(re2πik/N )e2πikn/N . (4.10)

This representation is equivalent to an inverse discrete Fourier transform of the

function f̃(re2πin/N ) multiplied by the scaling factor rn. We can thus apply an FFT

algorithm directly

f(n) = rnIFFT
(
f̃(re2πik/N )

)
, (4.11)
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Figure 4.2: Absolute error of the price of a single barrier option with N mon-
itoring dates and various stochastic models for the underlying. Left panel:
normal–inverse-Gaussian (NIG) model; right panel: variance-gamma (VG) model,
each evaluated at N = 52.

Figure 4.3: Error explosion where Shannon-Nyquist relation is broken. In this case
the function is the same as Figure 4.1 i.e. f̃ = 1/(1 − q exp(ψ∆t)) where ψ = −1
and N = 300, where n = 0 : N .

where IFFT is a computational IFFT operator and is the inverse of the forward

Fourier transform. Due to having access to a secondary grid, the method can achieve

machine accuracy with double precision.

The cost of improving the accuracy is a noticeable speed reduction since a large

time domain requires enough Fourier points to ensure machine accuracy. FFT lib-

raries are highly optimised, and while there is some speed reduction due to this

array, the computation of the FFT is not the leading cause of computational costs.

This is due to other parts of the ZS method, such as the Hilbert transform and

fixed point algorithm in the case of the double barrier option. Furthermore, series
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Figure 4.4: Integration envelope for IDFT method over 52 and 252 monitoring dates
respectively using NIG distribution.

Figure 4.5: Surface for the real part of the characteristic function for IDFT method
over 52 and 252 monitoring dates respectively using NIG distribution.

acceleration techniques can be applied to make the method date-independent in the

same fashion as the original inverse z-transform. Due to the success of the Euler

acceleration, as used in the Abate and Whitt inverse z-transform, we also introduced

a modified version for use with other inversion methods where the number of points

on the integral contour is not confined to a value of 2N .

The Euler acceleration is designed to be used with convergent series that have

alternating or nearly alternating terms. The design of the Abate and Whitt method

with 2N terms means that there is a (−1)j term in Eq. (4.6), which gives us this

property.

However, when we increase the number of points to a higher multiple of N , for

example, 8, we lose this alternating property. This effect is illustrated in Figure 4.7,

and the result of this is that the Euler acceleration cannot be directly used with

the methods with several terms greater than 2N . Each subplot shows the real and

imaginary parts of f̃ , its magnitude, and the real part after introducing a phase

factor exp(i2πj/J). As J increases beyond 2N , the basic (−1)j pattern that drives

the alternating-series convergence no longer holds. In particular, the case J = 8N

demonstrates a repeating sequence of four positive and four negative terms. While

convergence holds, it does not strictly alternate each successive term.
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Figure 4.6: Surface for the imaginary part of the characteristic function for IDFT
method over 52 and 252 monitoring dates respectively using NIG distribution.

Figure 4.8 focuses specifically on the 2N and 8N cases, overlaying the sampling

points to highlight the convergence behaviour and the emerging pattern in the

higher-resolution case. The figure underscores that the series remains well-behaved,

but the “four-on–four-off” sign pattern diverges from the classic (−1)j alternation.

Notably, in the 8N case, the sequence oscillates between ||f̃ || and Im(f̃), whereas

in the 2N case it primarily alternates between Re(f̃) and Im(f̃). While the series is

still convergent and ultimately suitable for numerical evaluation, it illustrates why

applying Euler acceleration techniques becomes more nuanced or infeasible once the

number of summation terms exceeds 2N without the use of additional steps.

Figure 4.7: The input to the summation for a numerically performed contour in-
tegration of zj f̃(0, z) with 2N , 4N , 6N and 8N integration points on the contour.
Notice that the series is convergent and follows the pattern of 4 positive terms fol-
lowed by four negative terms in the case of 8N , with downsampling applied.
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Figure 4.8: The input to the summation for a numerically performed contour integ-
ration of zj f̃(0, z) with the number of points on the contour integral is 2N and 8N
with the sampling points overlayed. Notice that the series is convergent and follows
the pattern of 4 positive terms followed by four negative terms in the case of 8N .

Notwithstanding this limitation, it is nonetheless true that the Euler accelera-

tion is a widely used and effective method. Therefore, we looked at preprocessing

methods to make the series more suitable for use with this method. The simplest

method is to sum the terms in groups of β, where the number of terms on the con-

tour integral is 2βN . This then produces an alternating series with the number of

terms reduced by a factor of β. This reduced series can then be used with the Euler

acceleration.

The preprocessing and acceleration procedure for accelerating the summation of

such a series an is then as follows,

1. For the first β terms in the series, calculate

aβ1 = 0.5a1 + a2 + · · ·+ aβ, (4.12)
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where the 0.5 coefficient on the first term is because we are using the half

circle’s integral to calculate the full circle’s integral.

2. For k = 1, 2, . . . , nE +mE, calculate

aβk = akβ+1 + akβ+2 + · · ·+ a(k+1)β. (4.13)

3. For k = 1, 2, . . . , nE +mE, compute the partial sums

bβk = 2
k∑
j=1

aβj . (4.14)

4. Take the binomial average of bβk between the k = nE and k = nE +mE ,

fn ≈ 1

2mEnρn

mE∑
j=0

(
mE

j

)
bβnE+j

. (4.15)
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4.3 Results

We present the results from numerical tests using the pricing schemes described in

Chapter 2, with the different numerical inverse z-transforms presented in Chapter

3. Results for both double barrier options and α-quantile options are presented.

Details of the contract and the model parameters are included in 7. The numerical

results were produced using MATLAB R2020a running Windows 10, an Intel(R)

Core i7-9750H 8 core 2.60GHz processor and 32 GB of RAM.

We present the results for the ZS method for discretely monitored double barrier

options for the normal inverse Gaussian (NIG), Kou and Variance Gamma (VG)

process. We show that applying the new inverse z-transform reaches machine ac-

curacy for both options at the expense of computational cost. This is particularly

evident in the double barrier case, as the non-accelerated version is required for

machine accuracy. The method presented by Feng and Linetsky [2008] is labelled

’IH’ and used as a numerical benchmarking for the methods. All ZS methods and

one implementation of IH, labelled ’IHF’, have the exponential filter applied. For

further discussion on this point, consult Phelan et al. [2019]. The exponential fil-

ter improves the error convergence from polynomial to exponential. The ’ZSAW’

method has the inverse z-transform performed using Abate and Whitt. The method

labelled ’ZSC’ has the inverse z-transform performed using the approximate con-

tour integration method using MATLAB’s IFFT algorithm. This has been replaced

with a numerical summation over the grid points performed on a unit half-circle in

z-space. Accordignly, we evaluate Eq. (4.11) as

f(n) = rn
N∑
k=1

f̃
(
re−πik/N

)
e iπkn/N , (4.16)

which is labelled by ‘ZSCH’. The Cavers’ method with Euler’s acceleration, discussed

in Chapter 4.2, is labelled ‘ZSCE’. The latter computation is performed on the half

circle using Eq. (4.16). The number of monitoring dates chosen is 52, 252 and 504.

This represents weekly, daily and bi-daily monitoring.

Figures 4.9 through 4.16 plot the error convergence of the price against different
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grid sizes M for a double barrier option with increasing monitoring dates, typically

N = 52, N = 252 andN = 504. Each plot utilises a different underlying distribution,

namely Kou, normal inverse Gaussian or Variance Gamma, or changes the option’s

expiry from three months to two years.

Conversely, Figures 4.17, 4.18, and 4.19 plot the error convergence of the price

against the CPU time. In this case, the dependence on the expiry of the contract is

not interesting; rather, the number of monitoring dates is. Thus, only the underlying

distribution is changed.

Comparing the results for error across the different processes, we see a general

improvement in the model using Cavers’ method, especially utilising Euler’s ac-

celeration. As the number of monitoring dates increases, performance is slightly

improved, as seen from the process using FFT libraries. This is expected as these

libraries tend to be highly optimised. Both methods successfully achieve accuracies

of E−16, with some slight variations resulting in error values of E−15. A noted

downside of using the ZSC and ZSCH methods is a considerable decrease in CPU

time. Since the accelerated version achieves (ZSCE) machine accuracy with the

same number of grid points, it is advised to use that method instead if one requires

a machine-accurate solution.

This advantage is seen only in the error plots, as examining the CPU plots shows

a marked disadvantage of the raw contour integration. The method is not slow in

general, but with the contextual performance of comparative methods, there is a

trade-off between method accuracy and method performance. Once Euler accelera-

tion is switched on (ZSCE), the contour method’s speed aligns with the Abate–Whitt

baseline. For weekly monitoring it remains marginally slower than the IH family, but

from daily (252) points onward the Euler-accelerated contour scheme overtakes IH,

becoming the quickest route to machine accuracy—though it is still a shade slower

than the unaccelerated Abate–Whitt (ZSAW) when only 6–7 significant digits are

required.

Next, we present the results for a discretely monitored α-quantile option with a

uniform monitoring interval ∆t = T/N between N dates, which is required to apply

the inverse z-transform. This ensures that the ZS method remains independent of
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Figure 4.9: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the Kou process. The expiry for the contract is
3 months. The general performance of the ZSC methods is on par with that of the
IHF method, and machine accuracy is achieved. The ZSAW method bottoms out
at around E−11, which is coherent with the previous papers noting the error floor.

the number of monitoring dates. This restriction can be dropped to use the contour

integration approach. For more information regarding this, consult Phelan et al.

[2020].

Figures 4.20 and 4.21 plot the absolute price error against the grid sizeM and the

CPU time, respectively. Instead of using different distributions or option features,

such as the number of monitoring dates, a direct comparison of different pricing

methods is used to check model error convergence. In this case, the Kou distribution

is used. Whereas, for Figures 4.22 and 4.23, the normal inverse Gaussian model is

used.

Results are provided with α = 0.667, 0.75, 0.833 for N = 252 monitoring dates

using the NIG process. The error convergence is notably fast, with full convergence

achieved with a CPU time of 10−2 or less. Most notably, the accelerated version

of the approximate contour integration achieves machine accuracy along with its

non-accelerated sibling. This is due to a looser relationship between the Spitzer

identities and the monitoring dates than in a barrier setting. This factor, combined

with the lack of a fixed-point algorithm, results in a much smaller cost for making

the method date-independent. As such, the unaccelerated version is omitted from
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Figure 4.10: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the Kou process. The contract expires in 1 year.
The ZSAW method converges to the error floor at a smaller grid size. The general
performance of the ZSC methods matches the IHF method.

this section as its lack of speed makes it redundant when the accelerated version

achieves machine accuracy.

An additional conclusion that can be drawn from our analysis is that exponential

error convergence is suggested by plotting the error on a more extensive range of grid

sizes M . An exponential error convergence conclusion can be drawn by increasing

the range and noting the slower rate of decrease at the lower values of M . In the

analysis performed by Phelan et al. [2020], the error floor caused by Abate and

Whitt’s method was too high to conclude this claim substantially. As such, it was

only suspected in the original paper that the error convergence was exponential; a

nice consequence of using Cavers’ numerical integration approach can confirm this

statement.

92



Figure 4.11: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the Kou process. The contract expires in 2 years.
The performance of the ZSC methods under the Kou process depends more on the
parameters used. For further discussion on these parameters, consult Schoutens
[2003].

4.4 Conclusion

In this chapter, we showed that the z-Spitzer methodology described originally by

Fusai et al. [2016] and extended by Phelan et al. [2019] can be improved with re-

spect to the error floor by replacing the numerical inverse z-transform. The original

numerical inversion was performed using the method proposed by Abate and Whitt

(1992), which has insufficient freedom to select its error parameter, resulting in an

error floor of approximately E−10. We replaced the inverse z-transform with an ap-

proximate contour integration technique, which removes this artificially high error

floor and can result in an options pricing methodology with machine accuracy, i.e.

E−16 with double precision. Results were presented for path-dependent options,

namely double barrier and α-quantile options, which achieve error values of E−16.

This is of particular value to the literature on α-quantile options as the error con-

vergence rate could not be accurately determined from the paper by Phelan et al.

[2020]. The results of Cavers’ numerical integration method suggest that the error

is exponentially convergent. The CPU performance is comparable to that of the

original method and excels as the number of monitoring dates increases.
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Figure 4.12: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the NIG process. The expiry for the contract
is 3 months. The convergence of the price is notably slower due to the time step
∆t = T/N .

Figure 4.13: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the NIG process. The contract expires in 1 year.
The convergence is faster at a lower number of monitoring dates. The performance of
the methods follows the general scene of the ZSC methods matching the performance
of IHF.
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Figure 4.14: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the NIG process. The contract expires in 2 years.

Figure 4.15: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the VG process. The expiry for the contract
is 3 months. The variance gamma process is the most variable in terms of error
convergence due to the time-changed nature of the embedded Brownian motion.
The performance of the IH method without an exponential filter is notably poor
under the VG process, due to the lack of an exponential filter.
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Figure 4.16: Error convergence against grid size M for a double barrier option with
increasing monitoring dates using the VG process. The contract expires in 1 year.

Figure 4.17: Error convergence against CPU time for a double barrier option with
increasing monitoring dates using the Kou process. This shows the clear downside of
the non-accelerated ZSC method. Due to the slowness of the method, it is removed
from the higher monitoring dates as the method becomes practically unusable. The
ZSCE method begins to perform best at the highest monitoring dates when the IH
methods begin to slow down as monitoring dates increase.
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Figure 4.18: Error convergence against CPU time for a double barrier option with
increasing monitoring dates using the NIG process.

Figure 4.19: Error convergence against CPU time for a double barrier option with
increasing monitoring dates using the VG process.
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Figure 4.20: Error convergence against grid size M for an α-quantile option with
various levels for α using the Kou process. The IH method eventually reaches
machine accuracy at higher grid points. The ZSCE method performs very well in
this context with exponential convergence.

Figure 4.21: Error convergence against CPU time for an α-quantile option with
various levels for α using the Kou process. The method with the best speed is the
IH method, but the ZSCE method outperforms the original ZSAW.
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Figure 4.22: Error convergence against grid size M for an α-quantile option with
various levels for α using the NIG process.

Figure 4.23: Error convergence against CPU time for an α-quantile option with
various levels for α using the NIG process.
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Chapter 5

Machine learning for the pricing

of path-dependent options

In this chapter, we discuss and present results for fitting a deep neural network to the

ZS method discussed in previous chapters. The motivation is to explore the usage of

neural networks in pricing an exotic derivative and to compare the methodology to

that of a sophisticated pricing method. We fit a 4-layered MLP process to synthetic

pricing data generated via repeated pricing calculations using a range of randomised

parameters for the options contract.
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5.1 Machine learning

Despite its notable advantages, the Fourier pricing framework has been adopted by

practitioners minimally compared to other methodologies. A potential solution is

to use Artificial Neural Networks (ANN) to train a model to predict option prices

using the Fourier methodology as an underlying engine. Since performance is a key

metric, the computational expense of using machine learning must be compared to

state-of-the-art pricing methods.

Deep learning was introduced as a numerical method in a financial setting by

White [1988] for stock price prediction, following the same author’s work regard-

ing single-layer neural networks, White [1989]. This work was extended to option

pricing by Malliaris and Salchenberger [1993], where the authors applied neural net-

works to vanilla options for price estimation using equity price data. The authors

demonstrate that for some instances, notably those with short time horizons, the

mean-squared error is lower when compared to the Black Scholes calculated price

used for validation. A common theme of these papers is symptomatic of the early

days of personal computing: the lack of computational power available to train and

store models. This lack of computational performance had the notable effect of

rendering machine learning methods broadly unusable. While an issue, it did not

stop research into the area. With time and computing power, researchers have re-

turned to machine learning as a viable model to use in practice. This can be easily

witnessed in the numerous advancements in computer vision, medicine, image, text

and speech recognition techniques.

Many works have been published with varying degrees of completeness on ma-

chine learning applied in some financial context, as detailed by Ruf and Wang [2020].

As noted by Hahn [2013], most of this work is focused on vanilla options, where daily

stock data is typically the format of choice. Exotic derivatives have not been ex-

plored to the same degree. Early notable works in exotics include Lu and Ohta

[2003a] for complex power options and Lu and Ohta [2003b] for rainbow options.

One of the key papers by Hutchinson and Poggio [1994] used Black Scholes sim-

ulated option prices to provide an alternative pricing methodology when the under-
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lying price dynamics are unknown. The authors tested multiple models, including

MLP networks and Ordinary Least Squares models, with varying success; notably

more successful was the accuracy when predicting price data rather than ∆-hedging

predictions. Subsequently, this is one of the key ideas for using simulated pricing

data rather than the more unreliable market data.

An interesting approach was presented by Lajbcygier and Connor [1997] that

proposed to learn the difference in prices between the Black Scholes calculated price

and the market observed price. Similarly, Anders et al. [1998] compared ANN-

predicted option prices with the Black Scholes model when using different volatility

estimates. This approach demonstrated some promise regarding explanatory stat-

istics for variables within the network but was not extended beyond European call

options.

Up until this point, canonically, ANNs had been built with naivety. Notably,

Garcia and Gençay [1998] applied a homogeneity hint to the ANN to embed financial

knowledge into the network construction. This homogeneity hint reduces out-of-

sample mean squared prediction error compared with the naive version. This method

is not widely copied since reducing market data to genuinely homogeneous requires

many transforms.

While the focus of most research is limited to prices, it is to be noted that other

key factors of derivatives markets can be the subject of prediction. For instance,

Carverhill and Cheuk [2003] takes a different approach and expands upon option

prices to examine hedging parameters in depth to predict a more efficient hedging

strategy. Dugas et al. [2009] presents a model that enforces no-arbitrage conditions,

such as the convexity of option prices, at the cost of model simplicity. A noted

difficulty in both approaches is the degree of hyperparameter tuning required to

establish a working model.

A common problem with many of the mentioned papers is the availability, re-

liability and reproducibility of the market data used to train and test the models.

As such, the investigation into the performance of ANNs trained on synthetic data

has continued with the complexity of the training model progressing beyond vanilla

options and the Black Scholes model. This avenue of research has begun to combine
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with utilising ANNs to approximate partial differential equations in a wide range of

areas, most notably fluid dynamics, Kochkov et al. [2021].

Liu et al. [2019b] produced an optimised ANN, which was trained and tested

on synthetic data sets generated by the Black-Scholes model to value options and

calculate implied volatilities. The same paper then extended this work to a dataset

based on the Heston model and calculated using the COS method, see Heston [1993]

and Fang and Oosterlee [2009]. Furthermore, ANNs were beginning to be applied

to more complex models and contracts by McGhee [2021] and Horváth et al. [2020],

where the synthetic data sets were based on the SABR stochastic volatility model,

the rough Bergomi model and exotic options were considered. Neural networks

estimate a model by learning from input data while minimising a cost function, typ-

ically based on the MSE or MAE between the predicted value and the training data.

This follows from Cybenko [1989] and K.Hornik et al. [1989], who show that ANNs

are universal approximators; given complete control over the number of neurons and

their configuration, neural networks can approximate any function to a given level

of accuracy.

However, a continuing challenge of ANN design and configuration is that we

are limited to a given number of neurons by the size of our data set and available

computing power, and finding their optimum configuration is not straightforward.

Indeed, we can optimise our ANN configuration heuristically by selecting the best-

performing candidate out of several candidates. However, it cannot be guaranteed

that this is the optimal configuration for all options. An additional concern is

when real-world data overfits the model due to the noise in the data. However,

one significant advantage of using ANNs trained on synthetic data generated by a

deterministic numerical method is that we are no longer concerned about overfitting,

as the data is noise-free.

Other approaches have also been explored more recently. Andreou et al. [2010]

proposed an ANN that returns implied model parameters. This approach com-

prises an informal mapping of options to a parametric model used to determine

option prices. This significantly improves the computational cost of calibration as

the process can be moved away from a live data environment. More recent efforts by
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Hernandez [2016] result in an ANN calibrated to a single-factor Hull-White model.

Dimitroff et al. [2018] and Liu et al. [2019b] calibrate stochastic volatility models and

Stone [2019] and Bayer et al. [2019] calibrate rough volatility models. Additional

avenues of investigation are using ANNs to solve partial differential equations such

as the Black Scholes model; see Han et al. [2018] and Beck et al. [2021]. Their ap-

proaches reformulate a PDE using backward stochastic differential equations, where

ANNs approximate the gradient of the unknown solution. The results suggest that

the method is effective for various problems with multiple dimensions.

5.1.1 Brief introduction to Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs) were a primitive attempt to capture the human

brain’s learning process to solve complex, multi-layered algorithmic problems. ANNs

learn to perform tasks through experience in data form and are generally not ex-

plicitly programmed with instructions during the learning process. A series of sim-

ulated nodes, more commonly referred to as neurons, are constructed in layers to

form the structure of a neural network. Typically, these layers come in three distinct

types. An initial input layer handles the initial data for the network and generally

processes data taken as input. An output layer handles the results of the trained

network and has an equivalent number of neurons to the number of outputs required.

For example, if one seeks a single option price as a prediction, the output layer re-

quires only a single neuron. In between the input and output layers are known as

hidden layers. These intermediate layers consist of neurons that cannot be accessed

during the training phase in a vanilla neural network. The number of hidden layers

depends primarily on how much we wish to train the network. There is a linear

relation between the number of layers (and neurons) and the computational cost

of training the network. However, the more layers included, the more accurate the

results. This last statement is generally correct, but it is not a guarantee. Each

hidden layer can be programmed to perform different transformations depending on

the use case and thus learn slightly differently from the other networks. An example

construction is given in the appendix Fig. (7.1).

Neurons within each layer connect to other neurons in adjacent layers, with each
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link having a set weight. A neuron receives input, performs some transformation,

which can be minimal, applies the weight and passes the value to the activation

function. Letting the input of a neuron be the n-value vector Xn = (x1, x2, . . . , xn)

and the output be an m-value vector Ym = (y1, y2, . . . , ym), we set a bias node

x0 = 1 which is analogous to the intercept in a regression model and let the weights

between neurons be the matrix Wm×n. Then the output of the jth neuron can be

written as

yj = ϕ

(
n∑
i=0

wjixi

)
, (5.1)

where wj0 = bk is the offset for the input and ϕ(·) is the activation function. Fig. (7.2)

shows a visual example of the neuron learning process. This learning process is of-

ten called a perceptron, where an artificial neuron is a generalisation. The term

perceptron was coined by Rumelhart et al. [1986] to mirror the terminology present

in psychology due to the comparison between the human brain. This is naturally

extended to multi-layer perceptrons (MLP), which consist of multiple layers of per-

ceptrons composed into a network.

The learning process for MLP networks is an initial forward propagation con-

sisting of several steps. Initially, inputs are multiplied by starting weights, and their

sum is calculated, including the bias node. These weights are fine-tuned with every

pass of the learning process to produce a more accurate solution. This weighted

sum is applied to the activation function to map inputs to outputs. The choice of

activation function is an important issue in MLP training, and many choices are

available. These choices range in complexity to allow the fitting of MLP networks

to more complicated data. The two most commonly used historically are the tanh

and sigmoid activation functions, given by

y(vi) = tanh(vi), (5.2)

and

y(vi) = (1 + e−vi)−1, (5.3)

respectively. The output from the activation function forms the output data, which is
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subsequently refined through multiple training iterations. Optimising the required

weights is known as backward propagation, where a reverse pass from output to

input fine-tunes the required weights to improve the output. This is achieved by

calculating the derivative of the activation function for each successive neuron and

solving for the minimisation problem that results. Other practical issues, such as

epoch and batch size, determine the training size supplied to the network at any one

time by partitioning the data into more manageable sizes.

Numerous problems exist when handling MLP networks. An initial barrier to

entry is the amount of data required. Deep learning is notorious for requiring large

amounts of data for a network to be trained correctly. Compounding this is the

need for quality data as well as quantity. As such, this approach is highly sensitive

to data. An additional consideration is the problem of over- and under-fitting. An

over-fitted model is one in which the model is trained to a high degree on a specific

set of data but subsequently struggles with accuracy on unseen data presented to

the model.

In contrast, under-fitting occurs when the network cannot accurately predict the

data on which it was trained. Cross-validation is a tool to minimise the over-fitting

effect, validating the prediction accuracy for the dataset on which the network is

trained. The most common form of cross-validation is K-Fold validation, which

splits the data into K partitions used as a test set and K − 1 as a training set. The

error estimation performed by the validation is averaged over K trials to get the

total effectiveness of the model.

The field of MLP networks is vast, and the literature is dense. The discussion

given in this thesis up until this point is enough to keep it self-contained, but does

not scratch the surface of the topic. For a detailed look into MLP networks, the

interested reader should consult Dreiseitl and Ohno-Machado [2002].
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5.2 Data Generation

A known disadvantage of deep learning solutions is that they require vast amounts

of data for consumption in the training and testing process. This has led to the use

of synthetic data, which can be generated quickly and efficiently. Further, synthetic

data has the noted advantage of being reproducible and verifiable. While this ulti-

mately means any model trained on synthetic data loses the randomness associated

with messier data, synthetic data is hugely advantageous for focused tasks such as

option pricing.

We thus begin by generating a sufficiently large data set using the Fourier-z

model with parameters set at randomised values as input to build a database of prices

and Greeks. In this case, 50,000 prices for each distribution is a good benchmark.

The two chosen distributions to use are the normal inverse Gaussian (NIG) and

variance gamma (VG) models. The distributions chosen provide a difference in

stability, where the VG model has well-documented stability issues, and the NIG

model is widely more stable than the available models.

The data generation process requires using previously discussed Fourier pricing

approaches applied to double barrier options, utilising the Abate and Whitt ap-

proach to inverting the z-transform. This gives confidence that even though what is

being proposed is a black box technique, it ultimately attempts to predict based on

a well-known and established methodology. To generate the pricing data required

to train the ANN, we repeatedly run the pricing process while selecting randomised

market and contract data, which is extended to distribution model parameters. This

process results in multiple data sets with varying price accuracies, which the Fourier

grid size can control.

The two data sets generated use the NIG and VG processes, respectively, with the

highest number of grid points, 232, required to produce stable lowest errors, namely

E-12 and E-08 for each process, respectively. Several parameters were chosen to

generate the pricing data in Table 5.1. These parameters typically reflect the options

listed in a limit order book, e.g. those with different strikes, barriers and the number

of monitoring dates. For completeness, we also vary the spot price and the risk-free
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rate. Some parameters for the underlying distributions are also varied to emulate

different calibrations one may see for the underlying processes once fitted to market

data. For an introduction to the distribution processes and their parameters, consult

[Schoutens, 2003]. All parameters are normalised to optimal training results.

Additionally, the option Greeks are calculated to provide a complete view of the

option in the data. The Greeks are calculated by applying a small bump to the

relevant underlying contract parameter.

The advantage of artificial data in this context is the ability to generate more

data if required, a useful feature considering deep learning’s requirement for excessive

amounts of data. This approach also allows us to be far more liberal with the

test/train split one must choose when training models. Typical choices for this split

are 80/20, with the justification being that 20% of the data can reflect the underlying

features and patterns. With synthetic and reproducible data, one has the luxury to

push this split far higher due to the observation that small portions of the data will

have the same macro features as more significant subsets of the whole. Furthermore,

the data is wholly deterministic. This means that when using it, noise is eliminated

from the dataset. Noise and error can significantly diminish the performance of

ANNs and their training, a problem not typically present with artificial data.

Parameter Range

spot 40− 160
monitoring dates 5− 550
lower barrier 40− 100
upper barrier 100− 160
risk free rate 0.0− 0.1
strike 40− 160
α - (NIG) 3− 18
δ - (NIG) 0.01− 3
ν - (VG) 1− 5
θ - (VG) 3− 14
stddev - (VG) 12− 18

Table 5.1: Market and parameter ranges for the generation of artificial data using
the Fourier-z method. A noted potential quirk in the truly randomised approach
is that many contracts can be widely meaningless, thus resulting in many prices of
essentially 0. This is still useful, however, as worthless contracts are present in the
market and can help with model pattern recognition.
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5.3 Methodological Framework

Once data is generated, the standard procedure is followed, which is to split the

data into a training and validation set. We employ a general grid search for various

hyperparameters to find the optimal ANN model via K-fold cross-validation for our

particular problem. We then use this data to train the resulting optimised ANN

model with the training set and test the resulting model with the validation set.

There are two types of parameters involved in training a neural network. The

first set is model parameters, which are adjusted during the training process, and

the second is hyperparameters, which are set before the process begins and dictate

the neural network structure and training process. While setting model parameters

is a relatively straightforward problem, finding optimised hyperparameters is not

trivial.

Typically considered a multi-dimensional optimisation problem, one aims to find

the optimal combination of parameters that achieves the smallest error. This op-

timisation type is often considered more of an art than a science Claesen and Moor

[2015]. As the application of deep learning continues to become more constrained on

focused problems rather than a more significant generic problem, the focus is shifting

to better methods of optimising hyperparameter tuning, for example, Kumar et al.

[2021] and Zhang et al. [2021]. Avoiding a computationally expensive grid search

is preferred in such a problem. However, modern methods still struggle to compete

with the accuracy of the hyperparameters from an exhaustive and iterative process.

Parallel programming makes this more palatable, as the grid search is not subject to

data races. The evaluation of parameters can be done independently and is limited

by CPU power only.

Since our approach also involves predicting the options’ Greeks, we require some-

thing more advanced than the typical single DL model. Two choices are apparent:

a single model with multi-head architecture or separate models for each desired

output. Since the data is generally causal, i.e., the data will reproduce the same

valuations each time, and those output parameters are linked mathematically, a

multi-head model seems a plausible solution.
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In this design, the early layers form a shared representation, a series of transform-

ations that extract general features of the input data, while separate heads branch

out from this shared backbone to produce distinct outputs. The network leverages

the commonality among the various outputs by training all heads simultaneously,

given that option price and its sensitivities often share underlying dependencies.

However, each head can learn task-specific parameters that fine-tune the predic-

tions for its particular target. This setup also helps manage differing loss functions,

enabling each head to optimise its performance without interfering with others. In

practice, multi-head models have proven especially beneficial when several closely

related tasks can be learned jointly, enhancing overall data efficiency and capturing

complex interrelationships between the variables of interest.

Since the data sets are synthetic, we perform an extensive grid search evaluating

almost all possible combinations of hyperparameters. The selections that are ignored

are considered unreasonable due to excessively high prediction errors. A notable

downside of using such an extensive search is the problem of overfitting. However,

we apply cross-validation, where samples are divided into K-folds, to mitigate this

issue.

The hyperparameters selected for the grid search procedure follow the currently

accepted norms in the literature, see [McGhee, 2021, Liu et al., 2019b, Horváth

et al., 2020], and are detailed as follows. A natural starting point is the number of

hidden layers composing the network, where there is a theoretical tradeoff between

model accuracy and computational cost. Typically, the more layers in the network,

the more accurate the prediction results are, at the expense of a longer training

time. From experimentation, there is a distinct zenith where the accuracy of the

network is barely affected by increasing the number of layers, and the computational

cost for this increase becomes unrewarding. A result that has been demonstrated

[Bayer et al., 2019] is that adding additional layers beyond the initial four does not

consistently reduce errors in the validation set.

Furthermore, the scenario where adding additional layers increases the model

accuracy is unclear. Due to this inconsistency, we tested three, four, five, and six

hidden layers using the grid search process. The typical choice within the literature
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is four hidden layers where the final layer represents the output, [Liu et al., 2019b,

Horváth et al., 2020]. Since the model presented here is multi-output, three distinct

output nodes are required.

Other parameters under consideration for the grid search are the number of

neurons for each hidden layer. The batch size dictates the number of samples the

network will pass through at each process. The number of epochs refers to the num-

ber of times the algorithm processes the dataset. Furthermore, ensuring that the

training data size is divided by the batch size to eliminate the possibility of a final

batch with fewer samples is good practice. The type of optimiser will be restric-

ted to well-known examples and popular within the literature to avoid unnecessary

complications; those chosen are Adam, SGD and RMSprop, [Hoffer et al., 2017].

The other parameters required are set using the current literature and the widely

agreed-upon best practice. Because we are handling an option pricing problem, we

choose the activation function to be the Rectified Linear Unit (ReLU) function,

i.e. f(x) = max(0, x). This function is advantageous over other typical choices, such

as sigmoid and tanh, because ReLU is a non-negative function that is similar to

an option payoff function. The extremes for x in a ReLU function have a higher

learning rate. Other non-negative and smooth alternatives, namely Elu and Soft-

plus, were tested, as suggested in McGhee [2021] and Horváth et al. [2020]. ReLU

generally outperforms these other methods, aligning with our testing and is shown

in Ramachandran et al. [2017].

The final two parameters are the weight initialisation method and the dropout

rate. The initialisation of weights is a deep topic of discussion in the deep learning

literature, as the consequences of poorly initialised weights can render a deep learn-

ing model redundant. For more information consult Glorot and Bengio [2010] and

He et al. [2015]. The dropout rate is designed to prevent overfitting. Overfitting is

difficult to diagnose in certain settings where the underlying problem is additional

parameters, such as an option pricing environment, [Liu et al., 2019b]. This hypo-

thesis is supported by our experimentation with a range of dropout values, which

did not improve the model’s accuracy to any notable degree. The general algorithm

for the hyperparameter search is displayed in Algorithm 1.
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To evaluate the model following each successive run of the parameter grid search,

we examine the mean squared error and R2 score for both the training and validation

samples. Using the parameters displayed in Tables 5.2 and 5.3, which constituted

the optimal parameter settings following the grid search, we achieve the error values

displayed in Table 5.4.

Parameters Settings

No. of hidden layers 4
No. of epochs 500
Activation function ReLU
Weights initialization he uniform
Dropout rate 0.2
Batch normalization Standard

Table 5.2: The hyper-parameters set based on the current standards within the
literature. While brief testing was done after the systematic hyperparameter search
to assess other options, no meaningful progress was made. Thus justifying the choice
to stick to the accepted norms.

Parameters Test ranges Optimal value

No. of neurons in 1st hidden layer 20, 100, 400, 800 800
No. of neurons in 2nd hidden layer 20, 100, 400, 800 20
No. of neurons in 3rd hidden layer 10, 100, 200, 400 100
No. of neurons in 4th multi layer 10, 20, 50, 100 50
Batch size 200, 500 500
Optimizer SGD, Adam Adam

Table 5.3: The range of parameter selections chosen at the start of the iterative
search for the optimal model hyper-parameters. The 4th layer consists of three
separate output layers, one for prices, one for predicting the options’ δ and Γ and a
final one for ρ, ν and Theta.

Mean-squared error R2

Training set 0.2112 0.9976
Test set 1.5959 0.9822

Table 5.4: K-fold cross-validation results for the multi-head model indicate strong
predictive accuracy, as evidenced by low mean-squared errors (MSE) and high R2

values on both training and test sets. Although the MSE is higher for the test set
than the training set, the test R2 remains near 0.98, suggesting the model generalises
well.

A key consideration of the machine learning approach is that the learning process

acts as a black box. Optimisation typically relies on gradient-based methods (e.g.,
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stochastic gradient descent and its variants), but high-dimensional parameter spaces

can contain numerous local minima or other pathological features. As a result,

the iterative search for an optimal network configuration may sometimes settle on

seemingly arbitrary or unstable parameter settings, a phenomenon known to produce

inconsistent or unexpected model behaviours. Early stopping, careful regularisation,

and multiple random weight initialisations can mitigate these apparent issues, but

none can fully guarantee a globally optimal solution. Furthermore, the interplay

between hyperparameter choices (learning rates, batch sizes, network depth) and

data availability complicates the training pipeline, emphasising robust validation

methods like K-fold cross-validation. The mean-squared error table for the neuron

structures with the optimal neuron sizes is given in Table 5.5.

n2/n1 20 100 400 800

20 2.83 (0.51) 2.08 (0.33) 2.13 (0.22) 1.75 (0.17)
100 2.84 (0.31) 2.26 (0.21) 1.97 (0.23) 1.93 (0.09)
400 2.98 (0.26) 2.32 (0.11) 2.07 (0.12) 2.14 (0.26)
800 3.13 (0.56) 2.25 (0.22) 2.11 (0.15) 1.96 (0.20)

Table 5.5: The mean-squared error and corresponding standard deviation in brackets
for different combinations of the number of neurons in the first (n1) and second
hidden layer (n2) and fixed hyperparameters.

The complete model setup, post K-folds search, can be seen in the Appendix

Table 7.4 for the normal inverse Gaussian model and Appendix Table 7.5 for the

variance gamma model.
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5.4 Results

Due to the differences in underlying statistical distribution, a new ANN was trained

to determine the performance of the model’s predictive power for option pricing data

and the options Greeks. The tables below display the results for each distribution

with a range of contract parameters, each evaluating a new scenario. As we intend to

compare the process of predicting a price against a notable state-of-the-art method,

the CPU and error performance will be benchmarked against the fastest baseline

method. For monitoring frequencies up to daily monitoring, N = 252, the inverse

Hilbert (IH) method [Feng and Linetsky, 2008] performs best. For contracts with

a higher number of monitoring dates, it has been shown that the z-Spitzer method

has a lower computation time, as demonstrated in Chapter 4.1.

After the extensive hyperparameter search, the optimal model, within the search

ranges, was found. The details of which are presented in the Appendix of this thesis,

namely Table 7.4 for the normal inverse Gaussian model and Table 7.5 for the

variance gamma model. Both models’ seemingly odd node structure is noteworthy

to the untrained eye. This is a consequence of the exhaustive search and is one of

the hindrances to mass adoption, as it is unclear why such a node structure should

result in optimal predictive power. Traditional heuristics might suggest a monotonic

funnel, strictly decreasing or increasing layer sizes.

This phenomenon arises from how neural networks reconcile high representa-

tional capacity with regularisation. The network can explore a vast space of po-

tential feature interactions by initially expanding the dimensionality from layer 1

(140 neurons) to layer 2 (400 neurons). This effectively teaches a richer set of

basis functions for the data. Similarly, compressing this from layer 2 to layer 3 (60

neurons) enforces a bottleneck that forces the network to discard redundant or less

important features. This process of expand–compress–expand pattern allows the

model to both learn a complex structure of the data and avoid overfitting, aligning

with the principles underlying auto-encoders, which use a bottleneck to enhance the

generalisation power of a model.

Moreover, automated search strategies like the K-folds search or other evolu-
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tionary algorithms are driven purely by performance objectives rather than human

intuition about monotonic layer sizing. These methods can discover architectures

that maximise performance for a given dataset and task, even if such architectures

deviate from common heuristics. Ultimately, this structure reflects a nuanced bal-

ance between capturing rich interactions in high dimensions, enforcing meaningful

compression, and re-expanding to accommodate the final prediction space.

Several dummy contracts have been created to test these models and various

parameters and market conditions. The whole table can be seen in Table 7.1. We

first present the results from the ANN trained on the normal inverse Gaussian dis-

tribution.

contract(method) 1(IH) 2(IH) 3(IH) 4(AW)

price 7.2207 3.4637 0.8765 0.1970
δ 0.4514 0.4335 0.3586 0.0468
Γ -0.0004 0.0327 -0.0140 -0.0439
ν 48.2822 563.7460 -44.3214 -115.3606
Θ 0.8049 6.1557 -0.3983 -0.0957
ρ 36.1498 18.8073 5.7372 -0.0393
CPU(s) 0.2775 0.2592 0.2597 1.0609

Table 5.6: Numerical valuations of option contracts 1-4 using the normal inverse
Gaussian distribution. The fastest method is taken as benchmark, denoted by IH
or AW for Feng & Lintesky or Abate & Whitt based on the Fourier-z framework.

contract 1 2 3 4

price 7.2340 3.7520 0.7915 0.1934
δ 0.4800 0.5741 0.3654 0.1146
Γ -0.0325 0.1458 -0.0088 -0.0013
ν 48.2654 520.0154 -42.1324 -113.5240
Θ 0.9651 6.6654 -0.3481 -0.0423
ρ 38.0154 17.1623 5.8315 -0.0467
CPU(s) 0.0094 0.0106 0.0114 0.0132

Table 5.7: Predicted valuations of option contracts 1-4 using the neural network
trained on synthetic data produced by the normal inverse Gaussian distribution.
The predictions based on less volatile sensitivities are accurate enough for usage.
However, more volatile Greeks such as ν seem to suffer accuracy loss.
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contract(method) 5(AW) 6(AW) 7(AW) 8(IH)

price 3.3204 3.2832 1.1745 2.5197
δ 0.1232 0.2824 -0.0737 -0.3158
Γ -0.0222 0.0021 -0.0111 -0.0040
ν -2240.6138 1.0524 10.0147 -136.7948
Θ -4.1431 0.9037 -2.3914 -1.4053
ρ -0.7134 21.5991 -3.6851 -18.4062
CPU(s) 1.2276 2.4992 2.5003 1.2436

Table 5.8: Numerical valuations of option contracts 5-8 using the normal inverse
Gaussian distribution.

contract 1 2 3 4

price 3.3647 3.6501 1.1658 2.5475
δ 0.1102 0.3014 -0.0445 -0.3144
Γ -0.0015 0.0146 -0.0047 -0.0222
ν -1650.01 2.0147 10.0014 -65.15
Θ -3.0457 1.1125 -3.2470 -1.8870
ρ -0.4135 23.0014 -3.0014 -16.1470
CPU(s) 0.0047 0.2270 0.3042 0.3101

Table 5.9: Predicted valuations of option contracts 5-8 using the neural network
trained on synthetic data produced by the normal inverse Gaussian distribution.

The numerical results provided in Tables 5.6 and 5.8 serve as our benchmark for

pricing and Greeks computation under the normal inverse Gaussian (NIG) model.

The neural network (ANN) results, shown in Tables 5.7 and 5.9, are mathematically

close for the option price and most of the Greeks, underscoring the ANN’s ability to

capture salient features of the option payoff and dynamics. Despite minor deviations

in a few specific Greeks, such as vega, the ANN predictions exhibit competitive

performance in terms of accuracy. While not good enough to rely on as a definitive

pricer, it is certainly close enough to be considered practically correct.

A closer look at Contracts 1 through 4 shows the ANN achieves price estimates

within a small margin of the numerical benchmark. For instance, Contract 1 has a

numerical price of 7.2207 (IH) compared to an ANN estimate of 7.2340, a discrep-

ancy of less than 0.2%. Similar tight convergence is observed for Contract 4, where

both methods yield prices around 0.19–0.20. Contract 2 demonstrates a slightly

more significant difference, but it remains within an acceptable error band given

the complexity of barrier features and the underlying NIG dynamics. The ANN
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reliably reproduces the price for these short to medium-term maturities and relat-

ively frequent barrier monitoring. Furthermore, δ is closely matched, while Γ and

ν show some natural variability. This is a known challenge, given that higher-order

sensitivities tend to be more sensitive to local curvature effects.

Moreover, we see the same pattern for contracts 5 through 8. We often put this

down to ANN data limitations and a lack of complete coverage for more significant

discrepancies. Notably, contract 6 is the worst-performing prediction. The mild

error discrepancy propagates to the contract sensitivities, where Γ and ν demonstrate

divergences. Despite these differences, the ANN still captures the correct sign and

order of magnitude, indicating partial success in learning higher dimensionality with

respect to option sensitivity patterns.

The key takeaway is the stark difference in CPU times. The numerical bench-

mark is taken from the beginning of the pricing process to the total Greek calculation,

removing standard parameter set-up time. The numerical approach requires an or-

der of 0.26 to 2.50 seconds (or slightly more for high-frequency barrier monitoring),

reflecting the cost of discretising the path-dependent payoff. In contrast, the ANN

inference stage takes mere milliseconds (0.01 to 0.30 seconds in most reported scen-

arios), showcasing an order-of-magnitude acceleration. This computational advant-

age is crucial for real-time risk management and trading desk applications where

rapid scenario analyses are paramount. Moreover, once the network is trained, a

one-time offline cost, the marginal cost of pricing additional contracts with different

parameters is minimal. Of note is that the loading time of the model has been

removed. This accurately reflects real-world scenarios, as the model would be in a

perpetual loaded state inside CPU memory for pricing.

Contracts 2 and 6, however, highlight the difficulty of ANNs. Even after the

process of hyperparameter exhaustive tuning, further calibrations and refinements

can be made. This makes the process perpetually one of trial and error, something

practitioners may find intolerable.
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contract(method) 1(IH) 2(IH) 3(IH) 4(AW)

price 6.9091 3.1716 1.1668 0.2335
δ 0.4655 0.4122 0.5354 1.1988
Γ 0.0057 0.0373 -0.5580 -21.8491
ν 32.9088 223.4726 -41.3224 -68.8552
Θ 1.4085 5.9037 -0.4539 -0.8128
ρ 38.4869 17.9447 10.4559 0.2391
CPU(s) 1.2419 0.2634 0.2576 1.2417

Table 5.10: Numerical valuations of option contracts 1-4 using the variance gamma
distribution. This has been produced using the numerical methods discussed in
Chapter 4. The fastest calculation was taken as a benchmark, denoted by IH or AW
for Feng & Lintesky or Abate & Whitt based Fourier-z.

contract(method) 1 2 3 4

price 6.9101 3.3150 1.1040 0.1945
δ 0.4610 0.4080 0.5641 1.0018
Γ 0.0150 0.0347 -0.5101 -20.2151
ν 33.0154 225.02 -42.0250 -66.0114
Θ 1.6201 5.9820 -2.0215 -1.0250
ρ 45.2515 17.0240 11.0214 0.3548
CPU(s) 0.0055 0.0017 0.3088 0.3122

Table 5.11: Predicted valuations of option contracts 1-4 using the neural network
trained on synthetic data produced by the variance gamma distribution. In general,
the price and δ are acceptably accurate. The prediction seems to lose accuracy with
higher variability. For instance, vega, ν, can vary wildly compared to δ.

contract(method) 5(AW) 6(IH) 7(IH) 8(AW)

price 4.6637 3.0731 1.9408 3.3319
δ 0.1665 0.2770 -0.0965 -0.3868
Γ -0.0258 0.0082 -0.0189 -0.0141
ν -670.1712 188.3655 -459.7268 -108.9641
Θ -4.5947 1.4601 -3.2366 -1.8904
ρ 3.7989 22.5386 -5.8261 -28.6401
CPU(s) 1.2469 2.4701 2.4899 1.2464

Table 5.12: Numerical valuations of option contracts 5–8 using the variance gamma
distribution.
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contract(method) 5 6 7 8

price 4.6411 3.1007 1.9414 3.3110
δ 0.1324 0.2889 -0.0925 -0.3564
Γ -0.0247 0.0101 -0.0152 -0.0125
ν -672.0114 186.1201 -454.0131 -110.244
Θ -4.2141 1.4215 -3.2658 -0.9910
ρ 3.6244 22.3210 -5.0245 -27.0244
CPU(s) 0.0020 0.1886 0.2985 0.3001

Table 5.13: Predicted valuations of option contracts 5-8 using the neural network
trained on synthetic data produced by the normal inverse Gaussian distribution.

The results presented in Tables 5.10 through 5.13 provide a comparative analysis

of numerical valuations versus neural network predictions for a set of eight barrier

option contracts under the variance gamma (VG) model. The network demonstrates

a generally tight alignment with the numerical solutions for the option price and the

Greeks for these initial contracts. An example is Contract 1, which exhibits price

estimates of 6.9091 (numerical) and 6.9101 (ANN), reflecting an error on the order

of 0.01%. Sensitivities such as delta are also closely tracked. However, higher-order

Greeks (e.g. Γ, ν) can sometimes show a more pronounced deviation in absolute

terms, likely due to the complexity of learning curvature effects in path-dependent

VG processes.

The CPU times reinforce the computational advantages of the ANN approach.

Numerical valuation under VG typically requires anywhere from 0.26 to 1.24 seconds

to accurately capture path dependencies and barrier conditions. In contrast, the

neural network’s inference time is a few milliseconds (0.0017 to 0.0122 seconds),

indicating a remarkable speed-up of two to three orders of magnitude.

As with the normal inverse Gaussian process, disparities are present in higher-

order sensitivities. Again, Γ and ν suffer, reflecting the challenge of extrapolating

model-specific dynamics. Nevertheless, the ANN has a valuable contribution to

practical applications where the order of magnitude of error and the computational

performance are key.
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5.5 Conclusion

These findings underscore the remarkable potential of neural networks to price com-

plex, exotic derivatives rapidly and with high fidelity to benchmark methods. As

seen in our numerical experiments across a variety of barrier option contracts, once a

network is properly trained on synthetic data, even under advanced Lévy processes

like the variance gamma (VG) or normal inverse Gaussian (NIG) distributions, it

can generate accurate prices and Greeks in a fraction of a second.

Nevertheless, while speed and computational efficiency gains are palpable, the

benefits are partly contingent on the exact problem setting. In particular, the neural

network’s advantage becomes more pronounced as the complexity of the contract

escalates, for instance, when the number of monitoring dates or the dimensionality

of the parameter space grows. Our tables illustrate how CPU times can plummet

from over one second per contract to milliseconds once the network has been trained.

However, the upfront cost of constructing and training the model, which might in-

volve generating large volumes of synthetic data and tuning hyperparameters, can be

substantial and needs to be factored into the overall feasibility of this approach. For

instance, a true K-fold or hyperband set-up evaluating combinations of parameters

can take days to complete, even for relatively simple cases such as this.

An additional consideration is that networks, although powerful black-box ap-

proximators, still rely on representative training data that mirrors the target pricing

model. Reliance on synthetic data can also seriously prevent adoption due to the

long wait times required to produce thousands of data points.

It is also important to note that while deep learning undoubtedly shines in scen-

arios where numerical methods incur a considerable runtime penalty, the gap nar-

rows when these conventional methods are highly optimised. In other words, the

neural network approach is not a panacea. It is most advantageous in settings where

frequent re-pricing under multiple scenarios is required or where the complexity of

direct simulation methods becomes prohibitive. When these conditions are met,

the small but non-negligible gains in CPU time, on the order of 0.1 seconds to sev-

eral seconds saved per contract, can accumulate into a substantial advantage for
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latency-critical applications where numerical accuracy is secondary.

Additionally, the ability to hide model complexity behind a trained black-box ap-

proximator remains a powerful proposition for practitioners seeking near-instantaneous

valuations. The caveat comes with a trade-off between training overhead, real-time

deployment benefits, and the potential for minor errors.
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Chapter 6

Further work

This thesis has been primarily interested in pricing exotic options and the integral

transforms intrinsic to the process. Many avenues of further research exist within

these fields.

6.1 Inverse z-transform

The inverse z-transform is remarkably under-researched compared with continuous

transforms such as the Fourier or Laplace transform. As a result, the number of

usable numerical approaches to transforms is surprisingly low. At present, research

adapts more general methods, such as the inverse discrete Fourier transform or mat-

rix exponentials. Most intriguingly, there is no discrete adaptation for a numerical

inverse Laplace method, despite the z-transform being the discrete analogue of the

Laplace transform. An avenue of further work would be an attempt to find an accur-

ate and computationally efficient inverse Laplace transform from the vast literature

on the topic, which can be adapted as required for the inverse z-transform.

The Cavers’ inverse z-transform is remarkably accurate in specific cases where

the number of monitoring points is reasonably sized. However, it has a high com-

putational cost, linearly dependent on the number of monitoring points. Chapter 3

employed several series acceleration techniques to remove this linear dependence.

In most cases, the acceleration techniques worked as intended, but some accuracy

may be lost. Most of the methods within the literature have no concern with a
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slight accuracy loss, as the more important feature should be the minimisation of

computational cost. A series acceleration technique that mathematically ensures

minimal accuracy loss would be advantageous in many disciplines as the focus on

machine-accurate solutions increases. Additionally, one could apply matrix accel-

eration techniques to the matrix exponential scheme to improve the computational

cost required.

Furthermore, the Cavers’ method has the disadvantage of needing careful hand-

ling with the parameter r embedded in the process. An extension of the method

would be to remove this dependence in some manner to make the technique more

stable.

An additional avenue of research would be to explore sinc-based approximations

for integral transforms, leveraging the same strengths that sinc functions offer in the

Fourier setting.

6.2 Pricing exotic options

The pricing procedure using the z-Spitzer (ZS) approach has improved accuracy

and computational cost satisfactorily. The natural extension is to look beyond Lévy

models and explore stochastic volatility processes such as Heston and SABR. This

approach would give rise to a matrix problem, an additional complication.

Many more exotic options can be considered under the Wiener-Hopf ZS ap-

proach. An interesting avenue would be to consider touch options, where a payment

is made if a barrier has been touched. Conversely, a no-touch barrier makes a pay-

ment if the barrier is not touched within a time window. Additionally, Asian options

would be of interest where the path dependency takes the form of an average over

the underlying asset’s life rather than maximums or minimums. Many exotic op-

tions like these are traded regularly within markets, and extensions to handle each

contract type should be considered. This would lead to a framework capable of

handling many forms of options. This has always been the advantage of Monte

Carlo techniques because it is a framework for handling many options.

The formulation of the barrier option pricing problem assumes that the barrier
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is always active and that the monitoring dates upon which the asset and barrier are

checked are discrete. This is not the norm for market conditions, where barriers

often operate in time windows. This feature should be built into the method to

make it more appealing from a modelling point of view.

6.3 Machine learning approach to option pricing

Generally, within the industry, there is little appetite to integrate neural networks

into the methodology for pricing options as a primary method. While many reasons

exist, one of the main ones is the black box problem. Many networks have no

way of explaining how or why it concluded that it did. In the use case of option

pricing, when modelling the prices of a single method as is done in Chapter 5, this

is not so much of a problem since we are fitting to a known model. Traditional

approaches model market data, which is far more unpredictable regarding structure

and cleanliness. As such, many practitioners are unwilling to use a method they

cannot explain. This problem has been felt in several industries and explains the

drive for explainable AI research in recent years. This would be a welcome addition

to the literature in finance and other applications.

Furthermore, the concern exists that the methodology may not outperform

straightforward multi-dimensional interpolation. This may be hard to test with

the number of parameters chosen in Chapter 5, but it could be investigated using

two or three select parameters. One could then fit a three-dimensional spline to find

the price and compare this to an optimal neural network, with comparisons to speed

and accuracy.

An additional aspect of growing interest in the literature is performing an inverse

classification procedure. In this procedure, we take a trained neural network and

ask it to identify the stochastic model or pricing process from which a given set of

pricing data comes. This is of interest since we would generally be interested in

whether the parameters from one pricing model can be translated accurately to the

parameters of another.

A further avenue of work involves a systematic approach to calculating optimal
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hyperparameters. The current crop of methods, K-fold cross-validation, hyperband-

ing, or Bayesian optimisation, all demand long computing times. Any methodology

that reduces this search process to hours rather than days would be a welcome step

towards widespread adoption.

One can also begin to look into more informative neural networks, such as

physics-informed neural networks (PINNs). These networks decrease the amount

of data needed by learning higher-order derivatives of the underlying technique. If

applied correctly over the standard ANN model, this can drastically improve training

and accuracy.
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Chapter 7

Conclusion

This thesis concerns the problem of pricing path-dependent options under the as-

sumption of employing general Lévy processes within a Fourier framework and the

associated techniques therein. The methods discussed have a far broader scope than

option pricing, which is used as the setting in this thesis. Indeed, the Spitzer iden-

tities and resulting requirement for an inverse z-transform have wider applications

beyond financial mathematics.

The primary objective of this thesis was to address various problems associated

with the Fourier-z pricing methodology, where error floors in the method presen-

ted by Fusai et al. [2016] prevented a true machine-accurate solution. Addition-

ally, new frameworks have been presented as an alternative approach to option pri-

cing via machine learning, requiring further exploration and benchmarking against

state-of-the-art methods.

A significant body of existing literature regarding the numerical pricing of path-

dependent and, more broadly, exotic options now exists. The most relevant and

quoted in this thesis are the works by Feng and Linetsky [2008], Fusai et al. [2016],

Phelan et al. [2019] and Phelan et al. [2020].

In Chapter 3, we present a full benchmarking of the numerical inverse z-transform

using analytical pairs and employing numerous methods found in an extensive lit-

erature search. Only one other paper, Horváth et al. [2020], has performed such a

benchmarking. This is surprising, considering the numerous works on the inverse

Laplace transform.

127



In Chapter 4, a detailed error analysis of the inverse z-transform presented by

Abate and Whitt [1992a] and used in an option pricing framework by Fusai et al.

[2016] and extended by Phelan et al. [2020] is presented. An alternative inverse z-

transform proposed by Cavers [1978] is then implemented in the pricing framework,

achieving a consistent, machine-accurate solution at the cost of increased processing

time. This is overcome by implementing a modified Euler series acceleration to fit a

non-alternating series resulting from the new inverse z-transform. This analysis was

performed upon α-quantile and double barrier options. In the case of the α-quantile

option, we also show exponential error convergence for the option’s price.

In Chapter 5, attention is turned to implementing a machine learning solution for

pricing a double barrier option. Most of the literature surrounding machine learning

solutions for option pricing focuses primarily on vanilla options and comparisons with

notoriously slow methods, such as Monte Carlo and finite difference methods. We

present a machine learning solution that outperforms optimised modern methods

when the number of monitoring dates is suitably large, albeit at the expense of

extended training time. There are notable problems, however, particularly a lack of

explainability, which could continue to be a significant obstacle to using the method

in practice.
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C. Albanese, S. Crépey, R. Hoskinson, and B. Saadeddine. XVA analysis from the

balance sheet. Quantitative Finance, 21(1):99–123, 2021. doi: 10.1080/14697688.

2020.1817533.

U. Anders, O. Korn, and C. Schmitt. Improving the pricing of options: a neural

network approach. Journal of Forecasting, 17(5-6):369–388, 1998. doi: 10.1002/

(SICI)1099-131X(1998090)17:5/6⟨369::AID-FOR702⟩3.0.CO;2-S.

P. C. Andreou, C. Charalambous, and S. H. Martzoukos. Generalized parameter

functions for option pricing. Journal of Banking and Finance, 34(3):633–646,

2010. doi: 10.1016/j.jbankfin.2009.08.027.

A. D. Andricopoulos, M. Widdicks, P. W. Duck, and D. P. Newton. Universal

option valuation using quadrature methods. Journal of Financial Economics, 67

(3):447–471, 2003. doi: 10.1016/S0304-405X(02)00257-X.

C. Atkinson and G. Fusai. Discrete extrema of Brownian motion and pricing of

exotic options. Journal of Computational Finance, 10(3):1–43, 2007. doi: 10.

21314/JCF.2007.174.
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Appendix A - Illustrative figures

Figure 7.1: Example ANN construction using one output layer in red, two hidden
layers in blue and an output layer in red.
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Figure 7.2: Example neuron learning process with bias factor.
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Appendix B - Example contract

parameters

Contract Number 1 2 3 4 5 6 7 8

Maturity (years) 1 0.5 2 1 1.5 1 0.5 2
Monitoring dates 52 52 52 256 256 514 512 52
Risk free rate 0.01 0.02 0.01 0.01 0.02 0.05 0.05 0.01
Volatility 0.02 0.02 0.03 0.01 0.02 0.015 0.02 0.02
Spot 100.0 95.0 90.0 105.0 110.0 100.0 100.0 150.0
Strike 100.0 100.0 100.0 100.0 100.0 110.0 90.0 100.0
Lower barrier 85.0 80.0 90.0 105.0 100.0 90.0 85.0 90.0
Upper barrier 150.0 160.0 140.0 120.0 140.0 150.0 110.0 155.0

Table 7.1: Parameters for contracts under evaluation during deep learning testing.
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Appendix C - Process

parameters

Process Characteristic function Φ(ξ, t) = e−tψ(ξ)

Normal inverse Gaussian e−t
√
α2−iβξ2−

√
α2−β2

Variance gamma (1− iνθξ + 1
2νσ

2ξ2)−t/ν

Kou double exponential e−t(−
1
2
σ2ξ2+λ((1−p)η2/(η2+iξ)+pη1/(η1−iξ)−1))

Table 7.2: Example of parameters used in numerical tests where Φ(ξ, t) is the char-
acteristic function.

Process Values

Normal inverse Gaussian α = 15, β = −5, δ = 0.5
Variance gamma θ = 1

9
Kou double exponential s = 0.1, λ = 3, p = 0.3, η1 = 40, η2 = 12

Table 7.3: Example of parameters used in numerical tests where Φ(ξ, t) is the char-
acteristic function.
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Appendix D - Hyper-parameter

optimisation algorithm

Algorithm 1 Hyper-parameters optimizations with K-fold cross-validation

1: procedure Hyper-parameters optimizations(training samples: Xt, yt)
2: Split the training samples into K different subsets
3: for each combination of hyperparameters do
4: for each different K − 1 subsets do
5: for each epoch do
6: for each batch do
7: Update internal parameters with samples in the batch
8: end for
9: end for

10: Calculate the metric by evaluating on the remaining (validation) sub-
set

11: end for
12: Averaging over K cases to obtain the final metric
13: end for
14: Compare and rank the final metrics for all combinations of the hyperpara-

meters
15: return the best combination of hyper-parameters
16: end procedure
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Appendix E - Deep learning

model structures

Parameter Result

Model - Hidden layers 4
Model - Batch size 512
Model - Activation ReLu
Model - Early Stopping Patience 6
Layer 1 - node count 140
Layer 1 - dropout rate 0.1
Layer 1 - regularisation L1L2
Layer 1 - regularisation value 0.001
Layer 2 - node count 400
Layer 2 - dropout rate 0.1
Layer 2 - regularisation L1
Layer 2 - regularisation value 0.00001
Layer 3 - node count 60
Layer 3 - dropout rate 0.1
Layer 3 - regularisation L1
Layer 3 - regularisation value 0
Layer 4 - node count 140
Layer 4 - dropout rate 0.2
Layer 4 - regularisation L2
Layer 4 - regularisation value 0.0001
Layer Price - node count 32
Layer δ/Γ - node count 64
Layer ν/Θ/ρ - node count 64

Table 7.4: Optimal model for the normal inverse Gaussian distribution obtained
after hyper-parameter K-folds search.
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Parameter Result

Model - Hidden layers 4
Model - Batch size 512
Model - Activation Glorot Uniform
Model - Early Stopping Patience 7
Layer 1 - node count 420
Layer 1 - dropout rate 0.4
Layer 1 - regularisation None
Layer 1 - regularisation value
Layer 2 - node count 160
Layer 2 - dropout rate 0.1
Layer 2 - regularisation L1L2
Layer 2 - regularisation value 0.00001
Layer 3 - node count 700
Layer 3 - dropout rate 0.2
Layer 3 - regularisation L1
Layer 3 - regularisation value 0.01
Layer 4 - node count 760
Layer 4 - dropout rate 0.2
Layer 4 - regularisation None
Layer 4 - regularisation value
Layer Price - node count 32
Layer δ/Γ - node count 64
Layer ν/Θ/ρ - node count 128

Table 7.5: Optimal model for the variance gamma distribution obtained after hyper-
parameter K-folds search.

156


	Impact Statement
	Acknowledgements
	Introduction
	Background
	Exotic options
	Contracts of interest
	Stochastic processes and modelling assets
	Lévy-Khinchine

	Option Pricing
	Vanilla options
	Barrier options
	-quantile options
	Fourier transform
	z-transform
	Hilbert transform
	Fourier methods for pricing

	Numerical Fourier pricing procedures
	Plemelj-Sokhotsky relations, Wiener-Hopf technique  and Spitzer identities
	Feng and Linestky's method
	Spitzer based method for barrier options (ZS)
	Spitzer based method for -quantile options (ZS)

	Extensions outside of options pricing

	Inverse z-transform
	Convergence
	The Laplace transform
	The Fourier transform
	Probability Generating Functions
	Numerical inversion approaches
	Linear system of equations
	Orthogonal decomposition
	Matrix exponential

	Contour integration methods
	Abate and Whitt (1992)
	Cavers (1978)

	Series acceleration techniques
	Euler Transform
	Padé Approximants
	Wynn's Rho and Epsilon Algorithms
	The Shanks Transform
	Richardson Extrapolation
	Levin-Type Sequence Transforms
	Sidi Accelerations
	Salzer Summation

	Results
	Conclusion

	Option Pricing
	Analysis of inverse z-transform
	Alternative inverse z-transform
	Results
	Conclusion

	Machine learning approach
	Machine learning
	Brief introduction to Artificial Neural Networks (ANNs)

	Data Generation
	Methodological Framework
	Results
	Conclusion

	Further work
	Inverse z-transform
	Pricing exotic options
	Machine learning approach to option pricing

	Conclusion
	Appendix A - Illustrative figures
	Appendix B - Example contract parameters
	Appendix C - Process parameters
	Appendix D - Hyper-parameter optimisation algorithm
	Appendix E - Deep learning model structures

