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Abstract

Molecular dynamics (MD) simulation has become a powerful tool for study-

ing and predicting molecular properties due to significant algorithm ad-

vances and the explosive growth of computational capabilities. Moreover,

molecular dynamics enables the direct evaluation of free energy surfaces

(FESs), offering atomistic insight that complements experimental studies

and enables the prediction of numerous thermodynamic properties.

Yet MD remains constrained by system size and accessible time scales.

Furthermore, many processes of interest, such as nucleation or protein fold-

ing, are characterised by rare events, where considerable energy barriers

impede transitions between stable states. Nevertheless, transitions must be

sampled multiple times for statistically significant predictions of free ener-

gies, rendering brute force simulations unfeasible.

To address this issue, numerous methods have been proposed to en-

hance the sampling of rare events. Two widely used methods are umbrella

sampling [1] and metadynamics [2]. The former makes use of parallel sim-

ulations that sample local predefined regions of configuration space, while

the latter continually constructs a bias potential that facilitates the sampling

of high-energy configurations. A new method called mean force integration

(MFI) [3], which works on the basis of metadynamics, computes the mean

force rather than the FES directly, thereby simplifying reweighting and accel-

erating convergence. Additionally, it can be used to combine independent

simulations, turning a serial problem into a parallel one, which increases

computational efficiency.
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This thesis advances MFI to a versatile framework: A general formu-

lation is presented, accommodating the combination of arbitrary static and

history-dependent biases. This is complemented by an on-the-fly uncer-

tainty metric that estimates the convergence of the mean force, and a boot-

strap analysis that provides a quantitative assessment of the error of the

FES. These advances are validated with complex chemical systems, includ-

ing the nucleation of supersaturated argon vapour, the two-step crystallisa-

tion of a colloidal system, and the 𝛽-scission reaction of butyl acrylate. It is

shown how the computational cost of excessively expensive simulations can

be reduced by employing several shorter simulations subject to diverse bias-

ing parameters. The resulting under-converged trajectories were analysed

and combined with MFI, resulting in converged FESs. For the 𝛽-scission

reaction, the FES was used to predict reaction rates, which agreed with

experimental rates.

Additionally, novel reinitialisation protocols are introduced, dividing sim-

ulations into diverse biasing stages and recycling interim FES estimates as

starting static biases, thereby consistently enhancing convergence of the

FES. This was further developed into a framework where simulations are

analysed in real time, terminated and reinitialised automatically, as biasing

parameters are optimised iteratively.

To encourage a wider adoption of MFI, all the Python code used in this

work is made openly accessible at github.com/mme-ucl/MFI. By unifying

data from independent biased trajectories, enabling an iterative improve-

ment of biasing parameters, and providing reliable convergence metrics,

MFI broadens the range of phenomena that researchers can tackle.

github.com/mme-ucl/MFI


Impact Statement

Free energy surfaces entail a quantitative landscape from which thermo-

dynamic properties, such as molecular stability, transition states, reaction

pathways, and rates, are derived. Accordingly, determining the FES accu-

rately is essential for the in silico design of fine chemicals. In principle, MD

simulations allow such surfaces to be extracted directly from an atomistic

model. However, their reliable computation is often hampered by large en-

ergy barriers, slow molecular diffusion, and the limited timescales accessible

in conventional MD.

Enhanced sampling methods partially alleviate these obstacles, but of-

fer limited possibilities for combining independent trajectories subject to ar-

bitrary bias potentials. Preliminary trajectories, generated with sub-optimal

biasing parameters, are routinely discarded despite containing valuable in-

formation. Moreover, biasing parameters can not be adjusted dynamically,

resulting in slower convergence. Furthermore, most approaches provide

only coarse or a posteriori error estimates, so computational efforts are

commonly overspent long after convergence has been reached. Conversely,

insufficient sampling can remain undetected, requiring researchers to spend

additional resources to prolong simulations.

This thesis advances MFI into a practical alternative that resolves those

shortcomings: Multiple under-converged trajectories that employ various bi-

asing methods can be combined in a self-consistent manner to yield a con-

verged estimate of the FES. On the one hand, this enables a parallel exe-

cution of simulations, where computational resources are utilised more opti-



8 Impact Statement

mally without the inter-process communication that constrains conventional

replica methods. On the other hand, it allows for a serial workflow, where

biasing parameters can be refined iteratively, and earlier simulations sam-

pled with inadequate biasing parameters can be merged with the other data.

Also, it permits a more flexible structuring of large simulation campaigns,

allowing researchers to run simulations when computational allocations are

available. Additionally, reliable uncertainty estimators grant more confidence

in the final results and inform researchers when results converge, preventing

the unnecessary use of further computational resources.

Collectively, these advances afford greater flexibility in designing and

executing biased MD simulations, thereby facilitating the investigation of

complex systems that were otherwise out of reach. Conversely, the compu-

tational cost of expensive systems can be reduced by employing optimised

biasing strategies, thus reducing the carbon footprint for large-scale simula-

tion campaigns.

All algorithms developed in this work are openly accessible at github.

com/mme-ucl/MFI, encouraging a wider adoption of the MFI method and

fostering broader collaboration within the enhanced sampling community.

Furthermore, several examples and tutorials regarding the use of MFI are

provided as Jupyter notebooks, lowering the barrier to entry for researchers

wishing to try out the MFI library to run simple simulation campaigns or post-

process their own data.

github.com/mme-ucl/MFI
github.com/mme-ucl/MFI
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5.1 Construction of the static bias. (a) FES (blue line) with its ref-

erence solution (black line) and the MetaD bias (red-shaded

region). The MetaD bias is employed as a static bias (green-
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(green-shaded region) with the build-up of the MetaD bias,
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lation. (b) shows the estimate of the FES (blue line) with the

reference FES (green line) . . . . . . . . . . . . . . . . . . . . 158
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5.6 Illustration of the focused stage. The initial static bias is the

light-green-shaded region, while the MetaD bias is the red-

shaded region. The dark-green-shaded region in (a) indicates

the harmonic potential and the wall potential in (b). . . . . . . 159
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(blue line), a smooth version of it (orange line), and the bias
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timate used to approximate the transition path between the

stable states (yellow dotted line). (b) The biased potential
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absolute deviation of the initial simulation, and (d) shows the
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MetaD stage (orange line) and flat stage (green line). Fig-
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(b) shows the localised absolute deviation of the FES to the
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the black line, which is defined on the left y-axis, and the av-

erage absolute deviation of the FES is given by the red line,

which is defined on the right y-axis. . . . . . . . . . . . . . . . 163
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5.11 Figure shows error profile of various simulations. The black
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defined on the left y-axis. The red line represents the local

absolute deviation of the FES, and the red-dashed line rep-
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stage, which serves as a starting point for the other simula-

tions. Figures (b) and (c) depict the error of simulations in
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and (c) employs a lower and upper wall potential. The green-
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sampling of high-error regions (see section 5.3.5). All error

maps are smoothed with a Gaussian filter for better compari-

son. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
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5.13 Representative error progression of a Serial Real Time Reini-

tialisation campaign. The black line indicates the error of the

mean force (left y-axis), the red line indicates the bootstrap

error of the FES (right y-axis), and the red-dashed line rep-

resents the average absolute deviation of the FES. Vertical
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5.14 Comparison of the error progression of a Serial Real Time
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lute deviation of the FES. . . . . . . . . . . . . . . . . . . . . 172

5.15 Illustration of error progression of long MetaD simulation

(black solid and black-dashed line), combined exploration

stage plus MetaD stage simulation (red line) and Serial Real

Time Reinitialisation (SRTR) campaign (blue line). (a) de-

picts the progression of the average error of the mean force,

(b) shows the progression of the average absolute deviation

of the FES and (c) illustrates the progression of the average

bootstrap error of the FES. . . . . . . . . . . . . . . . . . . . 173
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5.16 (a) Illustration of the progression of the average absolute de-

viation of the FES. The coloured lines represent the error pro-

gression of the individual simulations (simulation 1: blue line;

simulation 2: orange line; simulation 3: green line; and sim-

ulation 4: red line), and the coloured dashed lines show a
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was available. The dashed grey line shows the error progres-

sion of long-intuitive simulation discussed in Section 5.5 and

serves as a reference. (b) FESs of the individual simulations

and (c) combined FES (grey line) with exact FES (purple line). 177
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tion of the FES of a simple Parallel Real Time Reinitialisation
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5.19 Illustration of error progression of long MetaD simulation

(black solid and black-dashed line), combined exploration

stage plus MetaD stage simulation (red line) and Serial Real

Time Reinitialisation (SRTR) campaign (blue line). (a) de-

picts the progression of the average error of the mean force,

(b) shows the progression of the average absolute deviation

of the FES and (c) illustrates the progression of the average

bootstrap error of the FES. . . . . . . . . . . . . . . . . . . . 184

5.20 Comparison of different simulation strategies. The first row

(a-d) shows results from a single 20 ns MetaD simulation.

The second row (e-h) shows the results from an SRTR cam-

paign with a time budget of 20 ns. The third row (i - l) shows
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ns. The first column shows the final FES, the second col-

umn shows the final biased probability density, the third col-

umn shows the error of the mean force, and the fourth column

shows the absolute deviation of the FES. (m) Progression of

the on-the-fly error of the mean force and (n) progression of

the average absolute deviation of the FES, where the grey

line represents the single simulation, the red line represents

the SRTR campaign, and the blue line represents the PRTR

campaign. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
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barrier height rises. . . . . . . . . . . . . . . . . . . . . . . . . 188
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5.22 Comparison of final error for the simulation of different sur-

faces (see Figure 5.21) with different simulation strategies.

Long-intuitive (first row), long-optimised (second row), two-

step (third row), SRTR (fourth row), and PRTR (fifth row). Av-

erage error of the mean force (first column), average absolute
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5.23 Four two-dimensional analytical potential surfaces, increasing
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(b) average absolute deviation of FES, and (c) average boot-
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6.3 (a-d) Two-dimensional FES as a function of 𝑑𝐶−𝐶 and 𝜙 from

MetaD simulation at 410 K, analysed with MFI, and (e-h) the

bootstrap error of the FES. (i-l) Progression of the mean force

error (black line, left y-axis), bootstrap error of the FES (red

line, right y-axis) with the end of the individual simulations

(green-dashed vertical lines). The butyl acrylate dimer was

simulated in (a,e,i) vacuum, (b,f,j) xylene, (c,g,k) water, and

(d,h,l) BA monomer. . . . . . . . . . . . . . . . . . . . . . . . 210

6.4 One-dimensional free energy profile of the 𝛽-scission of butyl

acrylate as a function of 𝑑𝐶−𝐶 together with the bootstrap er-

ror indicated by the shaded regions. (a) FES of butyl acrylate

𝛽-scission simulated at 410 K in vacuum (blue line) and dif-

ferent solvents: water (red line), xylene (green line) and BA

monomer (orange line). (b) FES of butyl acrylate 𝛽-scission

simulated in vacuum at 310 K (blue line), 410 K (orange line)

and 510 K (green line). The vertical dashed lines indicate the

location of the energy barrier. . . . . . . . . . . . . . . . . . . 212

6.5 Histogram test to validate choice of CV and confirm location

of energy barrier. Several simulations were initialised along

the transition state. The graph shows the probability of the

simulations evolving toward the product state. . . . . . . . . . 212
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6.6 (a) FES from the simulation in vacuum at 510 K (dark green

line), decomposed into the internal energy contribution (yel-

low line) and the entropy contribution (brown line). The black

circles represent the refined internal energy contribution ob-

tained via high-level DFT and the corrected (refined) FES

(light green line). (b) Corrected (refined) values of free energy

barrier of activation (dots) with a linear fit (line), together with

the equation of the linear fit (𝑦-intercept corresponds to in-

ternal energy contribution and slope to entropy contribution).

The blue data indicates the values for the system simulated

in vacuum (gas), and the red data values for the system sim-

ulated in water. . . . . . . . . . . . . . . . . . . . . . . . . . . 214

6.7 Comparison of reaction rates: Computed by Serse et al. in

vacuum (gas) (blue dots and line), with water as solvent (or-

ange dots and line), and BA monomers as solvent (bulk)

(green dot). Computed by Cuccato et al. in vacuum (gas)

(blue dotted line). Experimentally measured by Vir et al. with

BA bulk as solvent (green crosses and dotted line) and mea-

sured by Peck et al. with xylene as solvent (orange cross). . . 216

7.1 (a) FES of nucleation of supersaturated argon vapour at dif-

ferent supersaturation levels, indicated in the legend. (b) FES
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7.2 (a) Combination of various bias potentials: InvF bias from pre-

vious FES (light green region), custom bias constructed with

error map to encourage sampling of less converged regions

(dark green region), and MetaD bias (red region). (b) Error

progression across multiple simulation stages: bootstrap er-

ror of FES (red line), absolute deviation of FES (red-dashed
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stage (green-dashed line). . . . . . . . . . . . . . . . . . . . . 224
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5.2 SRTR campaign summary: The first row presents the stages

in the order they were simulated, and their simulation steps

in the second column. In the remaining columns, the MetaD

parameters are described, including the initial height of the

Gaussian hills (third column) and their width (fourth column),

the bias factor used (fifth column) and the MetaD deposition

rate measured in simulation steps (sixth column). Each row

represents a simulation conducted in a specific stage, with
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stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
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long-intuitive (third row) and long-optimised (fourth row) rep-

resent single long simulations, where the parameters were

chosen intuitively and by trial and error, respectively. two-

step (fifth row) indicates two sequential simulations, with the

first using MetaD parameters that facilitate a fast exploration

and the second using more conservative MetaD parameters. 173
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5.4 Simple PRTR campaign summary: The first row presents

the stages in the order they were initialised, together with

their simulation steps in the second column. In the remain-

ing columns, the MetaD parameters are described, including

the initial height of the Gaussian hills (third column) and their

width (fourth column), the bias factor used (fifth column) and
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Chapter 1

Introduction

The prediction of molecular properties has long been a central challenge

in physics, chemistry, and materials science. Early theoretical frameworks

[6, 7, 8, 9] provided a foundation for understanding molecular behaviour, yet

the complexity of these equations made them computationally infeasible to

solve in practice. As a result, scientists primarily relied on experimental ob-

servations, while predictive methods were limited to simpler, approximate

models. Solid-state properties were approximated using the foundational

principles of lattice dynamics [10, 11, 12, 13] by approximating interatomic

interactions as harmonic. Fluid properties were often predicted using equa-

tions of state (EoS), which modelled the relationships between pressure,

volume, and temperature by fitting a small number of parameters to empir-

ical data. These equations, such as the Van der Waals equation [14, 15]

and its successors [16, 17, 18, 19, 20, 21], allowed for approximations of

thermodynamic properties and phase behaviour. These approaches were

particularly valuable for petrochemical companies, enabling them to model

and optimise their processes. However, their inability to accurately describe

complex chemical systems highlighted the need for more advanced meth-

ods that could capture the underlying physics in greater detail.

With the rapid development of computational resources, more rigorous

theoretical models could be applied to real-world problems. Rather than re-

lying on empirical approximations, researchers began implementing atom-
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istic descriptions of molecular systems, employing complex potential en-

ergy functions that account for the underlying electronic structure, chemi-

cal bonds, van der Waals forces, and polarisation interactions. This shift

enabled the prediction of material properties directly from first principles

or highly detailed force fields, thereby aligning theoretical models with ex-

perimental observations. Whenever discrepancies appeared between the

simulation and experiment, the model parameters were iteratively refined to

achieve better agreement. Thanks to ever-increasing computational power,

these simulations can now provide reliable predictions even under extreme

conditions [22], circumventing the need for expensive or impractical exper-

imental setups. Moreover, if the governing theory and molecular repre-

sentation are carefully chosen, computer simulations offer unique insights

into atomistic mechanisms, providing a level of detail inaccessible to exper-

iments.

Over the past few decades, such molecular simulations have impacted

the development of diverse fields. In biology, new insights emerged re-

garding the structure and conformational transitions of macromolecules [23]

and understanding ligand-receptor docking mechanisms [24]. In materi-

als science, computational methods have led to a deeper understanding

of the crystallisation mechanisms [25, 26], high-energy radiation damage

in nuclear applications [27], stability of perovskite structures [28, 29], and

many other insights [30, 31, 32]. As hardware and algorithms continue to

evolve, further breakthroughs are anticipated. Nevertheless, these meth-

ods face nontrivial challenges in capturing complex processes over relevant

timescales and length scales. The following section explores limitations of

molecular simulations and highlights strategies to overcome them.

Despite their proven utility, molecular simulations face inherent system

size and simulation timescale limitations. The timescale limitation arises

from the stringent temporal resolution required. To reliably predict the dy-

namics of a molecular system, the positions and forces of each atom must
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be evaluated on a timescale of femtoseconds (10−15 seconds), such that the

simulation of slow chemical processes that occur over milliseconds or longer

becomes prohibitively expensive. Furthermore, as system size increases,

the number of required force evaluations grows, significantly driving up the

computational cost of large chemical systems.

For example, capturing repeated folding and unfolding events for the

NTL9 protein, containing approximately 10,000 atoms, requires about 3 ms

of simulation time [33]. Using a time-step of 2.5 fs, it would require roughly

1012 force evaluation steps, which would take months to years to simulate

on state-of-the-art supercomputers [34].

Protein folding [23] exemplifies a broader problem in molecular simula-

tions often referred to as simulating rare events [35]. Rare events are low-

probability transitions between long-lived stable states. In the protein-folding

case, substantial simulation time is needed to capture either the forward

or backwards transition, making direct brute-force approaches impractical.

Other examples of rare events include nucleation processes [36, 25] and

conformational changes in bio- and macromolecules [37, 38, 28, 29, 32].

1.1 Overcoming Timescale Limitations

The practical challenge of timescales has spurred the development of meth-

ods aimed at improving both the speed and accuracy of molecular simu-

lations, rather than conducting brute-force (conventional) simulations, en-

hanced sampling techniques are utilised, which increase the probability

of sampling rare events. Although a wide range of approaches exists

[39, 40, 41, 42, 43, 44, 45, 46], this work focuses on methods that per-

turb the system’s Hamiltonian, resulting in a biased potential energy surface

that enables a more advantageous sampling.

Umbrella sampling (US) [1, 37, 47, 48] is a method that perturbs the

system’s Hamiltonian via harmonic bias potentials. They act as an attrac-

tive bias that confines the simulation to a particular region of phase space,
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Figure 1.1: Figure illustrates the evolution of the history-dependent repulsive bias.
The lines represent free energy plus the bias potential as a function of
the number of Gaussian hills deposited.

also referred to as an umbrella. The phase space sampling is broken into

multiple umbrellas, which are then sampled individually while ensuring a

significant overlap. Once each region is sufficiently sampled, its free energy

surface can be patched together to construct the overall free energy surface.

One key advantage of this window-based approach is that simulations can

be run independently of each other and completed with later simulations if

needed. However, a drawback lies in selecting where and how to place the

umbrellas effectively, which usually requires some a priori knowledge of the

free energy landscape. This method is discussed in detail in section 2.4.1.

Metadynamics (MetaD) [2, 49, 50] applies a history-dependent repul-

sive bias to the system’s Hamiltonian. Throughout the simulation, Gaussian

potentials, also referred to as hills, are periodically deposited in previously

visited regions, effectively discouraging the system from resampling those

regions and facilitating the sampling of new configurations. By progressively

filling the free energy basins, MetaD enables the simulation to overcome

considerable energy barriers and explore transition paths more readily (see

Fig. 1.1 for an illustration). This method is discussed in greater detail in

section 2.4.3 and 2.4.4.

Adaptive Biasing Force (ABF) [51, 52, 53] is an enhanced sampling

technique that aims to flatten free energy barriers along a chosen reac-
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tion coordinate. Unlike MetaD, ABF directly operates on forces to iteratively

counteract the free energy gradient. By continuously measuring the average

force acting on the system as it explores a given coordinate, ABF constructs

a compensating bias potential that counteracts this mean force. As a re-

sult, the underlying free energy landscape becomes more uniform, enabling

the simulation to traverse high-barrier regions more readily. This iterative

process proceeds without prior knowledge of the shape of the free-energy

profile, allowing for efficient and systematic exploration of complex configu-

rations. Even though this is an effective tool for sampling rare events, it lies

outside the scope of this work and will not be discussed in more detail.

Parallelisation in MD simulations is not limited to distributing compu-

tational workload [54, 55] but can also involve parallel sampling methods.

A practical approach is Replica Exchange, where multiple replicas of the

same system are simulated in parallel under different conditions. Period-

ically, exchanges between replicas are attempted based on a Metropolis

criterion, allowing configurations to swap conditions and facilitating the ex-

ploration of phase space. A widely used variant is Parallel Tempering [56], in

which replicas differ only in temperature. Higher-temperature replicas sam-

ple a broader range of configurations, while lower-temperature replicas cap-

ture more detail. This method is particularly effective for overcoming large

energy barriers and can be combined with enhanced sampling techniques

such as Metadynamics, Umbrella Sampling, ABF, or variationally enhanced

sampling (VES).

Another parallel approach is the Multiple Walkers method, where sev-

eral independent simulations, also referred to as “walkers”, run in parallel.

Each walker explores a different portion of phase space and periodically

communicates its progress to the other walkers. When used alongside

Metadynamics, for instance, all walkers contribute simultaneously to con-

structing the bias potential, ensuring rapid exploration of relevant configura-

tions.
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While parallelisable simulation methods are widely used for their ef-

fectiveness, they require communication or synchronisation among parallel

processes, confining them to a single computing environment. This con-

straint can become problematic for researchers dealing with large-scale or

ab initio molecular dynamics (AIMD) simulations who may lack access to

suitable high-performance computing (HPC) resources.

In such scenarios, a straightforward alternative: Rather than exchang-

ing information in real time, each simulation runs independently, and the

results are combined only during post-processing. Methods like Umbrella

Sampling (US) are well suited to this approach, as each “window” can be

simulated in isolation without additional communication overhead. Once all

windows have been sampled sufficiently, their free energy surfaces can be

merged to obtain a global free energy surface, allowing large-scale prob-

lems to be tackled with minimal infrastructure requirements.

A known challenge in umbrella sampling arises during the post-

processing step, where individual windows are patched together to recon-

struct a global free-energy surface (FES). When the overlap between neigh-

bouring windows is weak, standard techniques often perform poorly. To ad-

dress this issue, numerical optimisation approaches such as the weighted

histogram analysis method (WHAM) [57, 58] or the (multi-scale) Bennett ac-

ceptance ratio [59, 60, 46]. Kästner introduced an alternative method: Um-

brella Integration (UI) [47, 61, 62], which computes the mean force of each

umbrella window rather than the free energy directly. After all simulations

are completed and analysed, their local mean forces are combined through

a weighted-average scheme and then integrated to recover the global FES.

This approach enhances robustness in cases of sparse overlap between

neighbouring windows and yields more reliable results [63, 64]. A detailed

examination of UI is provided in Section 2.4.2.
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1.2 Aim of this Project
Building on Kästner’s ideas, Marinova and Salvalaglio developed Mean

Force Integration (MFI) [3], a post-processing technique that similarly com-

putes mean forces rather than free energies. Their work showed that MFI

can combine mean forces from independent MetaD simulations through a

weighted-average approach. Unlike other parallel MetaD methods, MFI of-

fers a self-consistent way to merge results from independent simulations,

thus facilitating the parallelisation of MetaD simulations.

The primary goal of this project is to develop further and optimise the

mean force integration (MFI) method, ultimately creating a versatile post-

processing framework for a wide range of biased MD simulations. To this

end, the work focuses on the following objectives:

• Generalised Framework: Leverage the commonalities among Meta-

dynamics (MetaD), Umbrella Sampling (US), and other biased tech-

niques to build a generalised framework capable of analysing data

from each method, and any arbitrary bias potential, separately or com-

bined.

• Convergence Estimation: Develop a robust methodology for assess-

ing local and global convergence by examining the statistical variance

in the mean force and the free-energy surface. When exact solutions

are available, compare the estimated convergence to the actual devi-

ation to validate the approach.

• Flexible Simulation Campaigns: Explore and compare different

strategies for running simulations. Simulations either run concurrently

to exploit parallel efficiencies, serially to reuse information from prior

runs and iteratively improve biasing parameters, or in a hybrid parallel-

serial approach.

• Real-Time Adaptation: Integrate the above components into an

adaptive framework where simulations are monitored in real time.



52 Chapter 1. Introduction

Convergence metrics are continually evaluated, allowing simulations

to be automatically terminated and new ones initiated in their place.

• Validation against Complex Chemical Systems: Test the methods

introduced in this work on three advanced systems, which would be

exceedingly expensive to simulate with conventional enhanced sam-

pling methods.

To promote broader adoption, all MFI methods employed in this

work are publicly accessible via the pyMFI Python library at github.com/

mme-ucl/MFI, together with a stable version that contains the core function-

alities at github.com/mme-ucl/pyMFI. The library enables researchers to

post-process and combine biased simulation data. In addition, various use

cases, simple examples, and many of the applications presented in this work

are accessible as Jupiter notebooks within the repository and are further de-

scribed in Appendix B.

1.3 Outline of Report
In the subsequent Chapter 2, the theoretical background of this work is pre-

sented, starting with core concepts of statistical mechanics and molecular

dynamics simulations, followed by methods to calculate the free energy and

biased sampling techniques.

Thereafter, Chapter 3 outlines the new developments of MFI, which are tests

on analytical models using Langevin dynamics and on alanine dipeptide.

In Chapter 4, the new developments of MFI are applied to analyse two nu-

cleating systems: The condensation of supersaturated argon vapour, and

the two-step crystallisation of a colloidal system.

In Chapter 5, the MFI methods are further extended by presenting tech-

niques to analyse simulations in real-time and re-initialise simulations in an

effective manner. These techniques are used to conduct simulation cam-

paigns that employ multiple short simulations, and are tested on analytical

models and alanine dipeptide.

github.com/mme-ucl/MFI
github.com/mme-ucl/MFI
github.com/mme-ucl/pyMFI
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Next, Chapter 6 shows how MFI is used to analyse and combine multiple

simulations of the 𝛽-scission of butyl acrylate. The combined FESs are used

to predict reaction rates, which are compared to experimentally measured

rates.

Lastly, concluding remarks are given and an outlook on future developments

is provided.





Chapter 2

Theoretical Background

This chapter starts by presenting the fundamental principles of statistical

mechanics, bridging microscopic atomic behaviour with macroscopic ther-

modynamic properties. Next, the core concepts of molecular dynamics

simulations are discussed, covering initialisation, evaluation of forces cal-

culation, and control mechanisms. Following this, two pioneering theories

for calculating free energy differences are introduced. The discussion then

transitions to the challenges posed by large energy barriers that hamper

accurate sampling, setting the stage for enhanced sampling techniques, in-

cluding umbrella sampling and metadynamics. Finally, the mean force in-

tegration method is presented as a flexible approach to reconstructing free

energy landscapes.

2.1 Statistical Mechanics

When investigating molecular systems in computer simulations, it is possi-

ble to visualise the evolution of all atoms. However, researchers are usu-

ally more interested in macroscopic properties, such as temperature or free

energy, which cannot be directly extracted from raw simulation data. In

an experimental setup, for instance, the temperature of a system is mea-

sured by averaging the interactions of many molecules with a thermometer.

Analogously, in molecular simulations, one obtains the temperature from

the average kinetic energy of the atoms. This section introduces how such
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macroscopic properties can be derived through the framework of statistical

mechanics.

2.1.1 Equations of Motion

A molecular system is defined by the position and velocity of all atoms. The

position, defined in a three-dimensional Cartesian space, can be expressed

as:

r𝑖 (𝑡) =
(
𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡), 𝑧𝑖 (𝑡)

)
(2.1)

where r𝑖 (𝑡) is the position of the atom 𝑖 as a function of time, 𝑡 and 𝑥𝑖,

𝑦𝑖, 𝑧𝑖 are the respective coordinates in Cartesian space. The velocity, v𝑖 (𝑡),

is defined as the time derivative of the position:

v𝑖 (𝑡) =
𝑑r𝑖 (𝑡)
𝑑𝑡

=

(
𝑑𝑥𝑖 (𝑡)
𝑑𝑡

,
𝑑𝑦𝑖 (𝑡)
𝑑𝑡

,
𝑑𝑧𝑖 (𝑡)
𝑑𝑡

)
, (2.2)

and the acceleration, a𝑖 (𝑡), as the second time derivative of the position:

a𝑖 (𝑡) =
𝑑v𝑖 (𝑡)
𝑑𝑡

=
𝑑2r𝑖 (𝑡)
𝑑𝑡2

=

(
𝑑2𝑥𝑖 (𝑡)
𝑑𝑡2

,
𝑑2𝑦𝑖 (𝑡)
𝑑𝑡2

,
𝑑2𝑧𝑖 (𝑡)
𝑑𝑡2

)
. (2.3)

With this information, the evolution of the system is determined using

classical Mechanics, particularly Newton’s Second Law of Motion: The force

acting on an object is equal to the object’s mass times the acceleration it

undergoes [65]:

F𝑖 (𝑡) = 𝑚𝑖a𝑖 (𝑡), (2.4)

where F𝑖 (𝑡) is the force acting on the atom 𝑖, and 𝑚𝑖 is the mass of

the atom 𝑖. Equations 2.3 and 2.4 are the Equations of Motion and can be

used to calculate the evolution of the system. However, in the context of

molecular systems, the equations of motion are usually expressed with the

Hamiltonian, H(r, p) [48]:
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H(r, p) =
𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖
+𝑈 (r), (2.5)

where 𝑁 is the total number of atoms and r and p are short notations

indicating the position of all atoms {r1(𝑡), r2(𝑡), . . . , r𝑁 (𝑡)} and their conju-

gate momenta {p1(𝑡), p2(𝑡), . . . , p𝑁 (𝑡)}, respectively. The second term,𝑈 (r),

represents the potential energy of the system. In contrast, the first term de-

scribes the kinetic energy, which is expressed as a function of the conjugate

momenta to ensure compatibility with generalised coordinate systems. In a

Cartesian coordinate system, for example, it would be defined as p𝑖 = 𝑚𝑖v𝑖.

Expressing the equation of motion in this manner is practical because it

conserves the total energy of a closed system and naturally accommodates

coordinate transformations. Moreover, taking the partial derivatives of equa-

tion 2.5 leads to Hamiltonian’s Equations of Motion:

𝜕H
𝜕p𝑖

=
p𝑖
𝑚𝑖

=
𝑑r𝑖
𝑑𝑡
, (2.6)

−𝜕H
𝜕r𝑖

= −𝜕𝑈 (r)
𝜕r𝑖

= F𝑖 (r) =
𝑑p𝑖
𝑑𝑡

= 𝑚𝑖a𝑖 . (2.7)

Using the Hamiltonian equations, the time evolution of the system can

be determined by finding its state at time 𝑡, characterised by a specific set of

position and momenta {r1(𝑡), r2(𝑡), ..., r𝑁 (𝑡), p1(𝑡), p2(𝑡), ..., p𝑁 (𝑡)} for a sys-

tem with 𝑁 atoms. This gives rise to the notion of phase space, which

encompasses all possible states of the system. In this space, each state is

fully characterised by the positions and momenta (each contributing 𝐷 co-

ordinates) of the 𝑁 atoms, yielding a total of 2× 𝐷 × 𝑁 dimensions. Even for

relatively small systems, the high dimensionality of phase space is challeng-

ing to conceptualise, underscoring the necessity for a statistical treatment

of molecular systems.
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2.1.2 Ensembles

In statistical mechanics, a statistical ensemble is defined as the collection of

all possible microstates of a system that share specified macroscopic con-

straints, such as a fixed number of atoms 𝑁, temperature 𝑇 , pressure 𝑃 or

volume 𝑉 . Each microstate in the ensemble corresponds to a unique assign-

ment of coordinates and momenta and may exhibit distinct values of various

properties. To capture the overall behaviour of the system, ensemble aver-

ages are introduced, which express a given property 𝑏 as an average over

all microstates. If 𝑝𝑖 is the probability of occupying microstate 𝑖, and 𝑏𝑖 is the

value of 𝑏 in that microstate, the ensemble average ⟨𝑏⟩ is given by

⟨𝑏⟩ =

𝑁∑︁
𝑖=1

𝑝𝑖 𝑏𝑖, (2.8)

where 𝑁 represents the number of microstates. The ensemble average

is related to quantities measured in simulations through the ergodic princi-

ple. According to the ergodic hypothesis, if a system is observed sufficiently

long, each microstate will be visited in proportion to its probability 𝑝𝑖. Con-

sequently, the time average of a property 𝑏 over a long enough simulation

converges to the ensemble average:

𝑏 = lim
𝑀→∞

1

𝑀

𝑀∑︁
𝑖=1

𝑏𝑖 ≈ ⟨𝑏⟩, (2.9)

where 𝑀 denotes the number of time steps or samples in the simulation

trajectory.

Although the ergodic principle provides a way to estimate ensemble

averages, explicitly knowing the probabilities 𝑝𝑖 remains essential for de-

termining other macroscopic properties that cannot be measured directly.

One route to deriving an expression for 𝑝𝑖 is to consider how entropy (or

information) depends on the probability distribution P = {𝑃1, . . . , 𝑃𝑁 }. Such

a function must satisfy four axioms:
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1. It should be a continuous function depending only on P.

2. It should be maximised by a uniform distribution.

3. It should be additive when combining independent ensembles.

4. It should remain unchanged by adding inaccessible states (𝑃𝑖 = 0).

The unique function that meets these requirements is the Gibbs en-

tropy :

𝑆(P) = − 𝑘𝐵
𝑁∑︁
𝑖=1

𝑃𝑖 ln
(
𝑃𝑖

)
, (2.10)

where the factor 𝑘𝐵 is a constant, which will be defined later. This formula is

fundamental in statistical mechanics as it describes the entropy of a gener-

alised ensemble. However, it is also widely adopted in other fields, such as

communication and information theory, where Shannon reached an equiv-

alent expression. Another essential requirement is the normalisation of the

probabilities:
𝑁∑︁
𝑖=1

𝑃𝑖 = 1. (2.11)

With equations 2.8, 2.10 and 2.11 in place, one can derive the general par-

tition function.

2.1.3 General Partition Function and Change in Entropy

The partition function is one of the central quantities in statistical mechan-

ics. It encapsulates the statistical properties of a system in equilibrium and

enables the calculation of thermodynamic quantities such as free energy,

entropy, and average energy. The precise form of the partition function de-

pends on the ensemble of interest. In pursuit of a general description, two

guiding rules are adopted for constructing a “general” ensemble. The first

rule states that some extensive quantities, denoted by 𝛼(𝑘)
𝑖

, are fixed. Only

microstates with the specified value 𝛼(𝑘) are allowed, where 𝑘 indexes the

constrained quantity. In discrete form, this restriction can be written using

the discrete delta function, which is analogous to the Dirac delta for discrete
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functions:

𝛿(𝛼(𝑘)
𝑖

− 𝛼(𝑘)) > 0 (2.12)

The second rule states that the average values of extensive variables, de-

noted by 𝑏 (𝑙), where 𝑙 indexes the variable, remain finite. This can be ex-

pressed with the ensemble average relation given in equation 2.8.

To determine 𝑝𝑖, the principle of maximum entropy is applied, which

states that the most likely probability distribution is the one maximising the

Gibbs entropy (equation 2.10), subject to the normalisation of probabilities

(equation 2.11) and finite ensemble averages (equation 2.8). This leads to

the following constrained optimisation problem:

max
P

𝑆(p) = − 𝑘𝐵
∑︁
𝑖

𝑃𝑖 ln(𝑃𝑖)

s.t. − 𝑘𝐵

(∑︁
𝑖

𝑃𝑖 − 1

)
= 0

− 𝑘𝐵

(∑︁
𝑖

𝑃𝑖𝑏
(𝑙)
𝑖

− ⟨𝑏 (𝑙)⟩
)
= 0

(2.13)

where the factor −𝑘𝐵 has been added in the second and third lines for conve-

nience, and the summation over 𝑖 is simplified for better readability. To solve

this maximisation, the method of Lagrange multipliers is applied, giving rise

to the Lagrange function:

L
(
P, 𝜆0, {𝜆(𝑙)}

)
= − 𝑘𝐵

∑︁
𝑖

𝑃𝑖 ln(𝑃𝑖) − 𝑘𝐵𝜆0

(∑︁
𝑖

𝑃𝑖 − 1

)
− 𝑘𝐵

∑︁
𝑙

𝜆(𝑙)
(∑︁

𝑖

𝑃𝑖𝑏
(𝑙)
𝑖

− ⟨𝑏 (𝑙)⟩
)
,

(2.14)

where 𝜆0 and 𝜆(𝑙) are Lagrange multipliers, and 𝑙 indexes the multiplier and

the quantity 𝑏 (𝑙). Taking the partial derivative of L with respect to 𝑃𝑖 and

setting it to zero yields:
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𝜕L
𝜕𝑃𝑖

= −𝑘𝐵 ln 𝑃𝑖 − 𝑘𝐵 − 𝑘𝐵𝜆0 − 𝑘𝐵
∑︁
𝑙

𝜆(𝑙)𝑏 (𝑙)
𝑖

= 0 , (2.15)

which can be simplified by defining Ψ = 𝜆0 + 1, and rearranged to isolate 𝑝𝑖:

𝑃𝑖 =
𝑒−

∑
𝑙 𝜆

(𝑙)𝑏 (𝑙)
𝑖

𝑒Ψ
, (2.16)

Summing both sides over all microstates 𝑖 and recalling that
∑
𝑖 𝑃𝑖 = 1

leads to:

𝑍 = 𝑒Ψ =

𝑁∑︁
𝑖

𝑒−
∑

𝑙 𝜆
(𝑙)𝑏 (𝑙)

𝑖 , (2.17)

where Z is the generalised partition function, which provides a summation

of all possible microstates in a given ensemble.

Combining equations 2.16 and 2.17 results in the general probability

distribution, which holds for a wide range of ensembles:

𝑃𝑖 =
𝑒−

∑
𝑙 𝜆

(𝑙)𝑏 (𝑙)
𝑖

𝑍
=

𝑒−
∑

𝑙 𝜆
(𝑙)𝑏 (𝑙)

𝑖∑𝑁
𝑖=1 𝑒

−∑
𝑙 𝜆

(𝑙)𝑏 (𝑙)
𝑖

(2.18)

Having determined the probability distribution 𝑃𝑖, the Gibbs entropy can

be expressed in terms of 𝑍 and the ensemble averages. Inserting equation

2.18 into equation 2.10, and making use of the normalisation of probabilities

(equation 2.11) and ensemble averages (equation 2.8), following relation is

found:

𝑆

𝑘𝐵
=

𝑁∑︁
𝑖

𝑃𝑖

(
ln(𝑍) +

∑︁
𝑙

𝜆(𝑙)𝑏 (𝑙)
𝑖

)
= ln(𝑍) +

∑︁
𝑙

𝜆(𝑙) ⟨𝑏 (𝑙)⟩ . (2.19)

Taking the total differential of 𝑆 yields:

𝑑𝑆

𝑘𝐵
= 𝑑 ln(𝑍) +

∑︁
𝑙

𝜆(𝑙)𝑑⟨𝑏 (𝑙)⟩ +
∑︁
𝑙

⟨𝑏 (𝑙)⟩𝑑𝜆(𝑙) . (2.20)

In the pursuit of an expression for 𝑑 ln(𝑍), ln(𝑍) is differentiated w.r.t.
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𝛼(𝑘):

𝜕 ln(𝑍)
𝜕𝛼(𝑘) =

𝜕

(
ln

∑
𝑖 𝑒

−∑
𝑙 𝜆

(𝑙)𝑏 (𝑙)
𝑖

)
𝜕𝛼(𝑘) (2.21)

Using the chain rule and the product rule as well as equation 2.18, this

expression can be rewritten as:

𝑑 ln(𝑍) = −
∑︁
𝑙

⟨𝑏 (𝑙)⟩𝑑𝜆(𝑙) −
∑︁
𝑙

𝜆(𝑙)
〈
𝜕𝑏 (𝑙)

𝜕𝛼(𝑘)

〉
𝑑𝛼(𝑘) (2.22)

and when combining equations 2.20 and 2.22 one finds:

𝑑𝑆

𝑘𝐵
= −

∑︁
𝑙

𝜆(𝑙)
〈
𝜕𝑏 (𝑙)

𝜕𝛼(𝑘)

〉
𝑑𝛼(𝑘) +

∑︁
𝑙

𝜆(𝑙)𝑑⟨𝑏 (𝑙)
𝑖
⟩ . (2.23)

This result shows explicitly how variations in the “fixed” extensive variables

𝛼(𝑘) and in “finite” extensive variables 𝑏 (𝑙) affect the entropy. With the con-

cepts introduced so far, it is possible to describe specific ensembles by

choosing the appropriate set of variables and constraints.

2.1.4 Microcanonical Ensemble (NVE)

Arguably, the simplest ensemble in statistical mechanics is the microcanon-

ical ensemble, which describes an isolated system. Such a system has a

fixed number of atoms, 𝑁′, confined to a fixed volume, 𝑉 ′, and a fixed total

energy, 𝐸′, commonly abbreviated as the NVE ensemble. Since the total

energy is fixed, all microstates in this ensemble must have the same energy

𝑒𝑖, which is calculated by the system’s Hamiltonian (equation 2.5):

𝑒𝑖 = H(r𝑖, p𝑖) (2.24)

The fixed variables 𝑁′, 𝑉 ′ and 𝐸′ relate to the fixed variable 𝛼(𝑘) and are

enforced by equation 2.12:

𝛿(𝑒𝑖 (r𝑖, p𝑖) − 𝐸′) > 0 ⇔ 𝛿(H (r𝑖, p𝑖) − 𝐸′) > 0 , (2.25)
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𝛿(𝑛𝑖 − 𝑁′) > 0 , (2.26)

𝛿(𝑣𝑖 (r𝑖, p𝑖) −𝑉 ′) > 0 , (2.27)

where 𝑛𝑖 is the number of atoms in microstate 𝑖 and 𝑣𝑖 is the volume of

the microstate. The partition function for the microcanonical ensemble, Ω,

is defined as the sum over all microstates that satisfy the constraints from

equations 2.25, 2.26 and 2.27:

Ω =
∑︁
𝑖

𝛿
(
𝑛𝑖 − 𝑁′)𝛿 (𝑣𝑖 (r𝑖, p𝑖) −𝑉 ′)𝛿 (H(r𝑖, p𝑖) − 𝐸′) . (2.28)

Using equation 2.18, the probability of being in some microstate 𝑖 can be

found:

𝑃𝑖 =
1

Ω
(2.29)

This result reflects the principle of equal a priori probabilities, which

states that every microstate in an isolated system is equally likely to occur.

Moreover, when equation 2.29 is combined with the Gibbs entropy (equation

2.10), Boltzmann’s famous equation, 𝑆 = 𝑘𝐵 lnΩ, is found.

2.1.5 Canonical Ensemble (NVT)

The microcanonical ensemble is an idealised system that is isolated from its

surroundings. However, most physical systems exchange energy with their

surroundings, such that other ensembles are required to describe them. A

commonly used ensemble to imitate experimental conditions is the canoni-

cal ensemble. It represents a closed system with a fixed number of atoms,

𝑁′, a fixed volume, 𝑉 ′, submerged in a heat bath at a constant temperature,

𝑇 , so that the temperature of the system is maintained at 𝑇 . The fixed exten-

sive variables 𝑁′ and 𝑉 ′ relate to the fixed variable 𝛼(𝑘) and are described

using equation 2.12:

𝛿(𝑛𝑖 − 𝑁′) > 0 (2.30)

𝛿(𝑣𝑖 −𝑉 ′) > 0 (2.31)
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Additionally, the ensemble average of the energy, 𝐸 , is required to be finite,

thus relating to the property 𝑏 introduced in subsection 2.1.3. This condition

can be described as:

𝐸 = ⟨𝑒𝑖⟩ =
∑︁
𝑖

H(r𝑖, p𝑖)𝑃𝑖 . (2.32)

In section 2.1.3, a general expression for the change in entropy was

derived (equation 2.23). This expression can be altered by enforcing the

constraints of the canonical ensemble (equations 2.30, 2.31 and 2.32), re-

sulting in a more tangible formulation for the change in entropy:

𝑑𝑆

𝑘𝐵
= −𝜆

〈
𝜕H(r𝑖, p𝑖)

𝜕𝑁

〉
𝑑𝑁 − 𝜆

〈
𝜕H(r𝑖, p𝑖)

𝜕𝑉

〉
𝑑𝑉 + 𝜆𝑑⟨𝑒𝑖⟩ . (2.33)

Comparing this equation with the change in entropy as defined in clas-

sical thermodynamics (which is derived from the first and second law of

thermodynamics) [48], a direct correspondence of terms is exposed:

𝑑𝑆 = −𝜇
𝑇
𝑑𝑁 + 𝑃

𝑇
𝑑𝑉 + 1

𝑇
𝑑𝐸 , (2.34)

Here, 𝜇 is the chemical potential and 𝑃 the pressure (different from the

probability distribution P, that is written bold). One can equate the three

terms of each of the equations 2.33 and 2.34 as follows:

𝜇 =

〈
𝜕H(r𝑖, p𝑖)

𝜕𝑁

〉
; 𝑝 = −

〈
𝜕H(r𝑖, p𝑖)

𝜕𝑉

〉
; ⟨𝑒𝑖⟩ = 𝐸 (2.35)

Furthermore, an expression for 𝜆 is found:

𝜆 =
1

𝑘𝐵𝑇
(2.36)

It is conventional in statistical mechanics to replace the 𝜆 with a 𝛽, such

that:
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𝛽 =
1

𝑘𝐵𝑇
(2.37)

The probability of finding state 𝑖, given in equation 2.18, will then have

the following form in the canonical ensemble:

𝑝𝑖 =
𝑒−𝛽H(r𝑖 ,p𝑖)

𝑍𝑁𝑉𝑇
(2.38)

and 𝑍𝑁𝑉𝑇 is the canonical partition function. Since it will be used re-

peatedly in the following sections, 𝑍𝑁𝑉𝑇 will, from now on, be written as 𝑄 to

distinguish it from other ensembles. By applying the property
∑
𝑖 𝑃𝑖 = 1 on

both sides of equation 2.38, 𝑄 can be expressed as:

𝑄 =
∑︁
𝑖

𝑒−𝛽H(r𝑖 ,p𝑖) (2.39)

Finally, using the expression of the entropy in equation 2.19, as well as

the expression for 𝜆 and ⟨𝑏 (𝑙)⟩ shown above, the relation emerges:

𝑘𝐵𝑇 ln(𝑄) = −(𝐸 − 𝑇𝑆) , (2.40)

where the expression provides a link to the thermodynamic definition of the

Helmholtz free energy 𝐹:

𝐹 = 𝐸 − 𝑇𝑆 (2.41)

When combining equations 2.40 and 2.41, one finds a relation between

the Helmholtz free energy 𝐹 and the canonical partition function 𝑄:

𝐹 = −𝑘𝐵𝑇 ln(𝑄) (2.42)

This equation is of central importance: it shows how to compute the free

energy of a system directly from its canonical partition function 𝑄. The

Helmholtz free energy 𝐹 measures the portion of a system’s energy that

is available to do work at constant 𝑇 and 𝑉 . Consequently, a system with
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high 𝐹 can spontaneously evolve to a state of lower 𝐹, whereas the reverse

transition is not thermodynamically favoured.

Note to the reader: As the Helmholtz free energy is predominantly used

in this work, it will be referred to as the free energy.

2.1.6 Continuous Phase Space

Up to this point, it was assumed that ensembles are discrete collections of

microstates. In reality, however, positions and momenta of atoms span a

continuous phase space, which should be reflected in the equations. The

underlying principles introduced so far are still valid, but the discrete sums

must be transformed into integrals. As such, the partition function of the

canonical ensemble for a system with 𝑁 atoms in 𝐷-dimensional space can

be written as:

𝑄 =
1

ℎ𝐷𝑁𝑁!

∫
𝑒−𝛽H(r𝑁 ,p𝑁 )𝑑p𝑁𝑑r𝑁 (2.43)

where the bold r𝑁 and p𝑁 denote vectors of position and momenta.

Since the partition function should be a dimensionless quantity, it is divided

by Planck’s constant ℎ to the power of 𝐷 × 𝑁 (the number of dimensions

times the number of atoms). Furthermore, the expression is also divided

by 𝑁! to avoid over-counting microstates that differ only by permutations of

identical atoms.

Equation 2.43 can be further simplified by splitting the Hamiltonian (de-

scribed in equation 2.5) into two terms representing the potential energy

𝑈 (r𝑁 ) and the kinetic energy 𝐾 (p𝑁 ). Since 𝐾 (p𝑁 ) only depends on mo-

menta and 𝑈 (r𝑁 ) only on positions, the kinetic term can be integrated out:

𝑄 =
1

Λ𝐷𝑁𝑁!

∫
𝑒−𝛽𝑈 (r𝑁 )𝑑r𝑁 (2.44)

where Λ is the Thermal de Broglie wavelength, defined as:

Λ =

√︂
𝛽ℎ2

2𝜋𝑚
(2.45)
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The remaining integral of the equation 2.44 is commonly referred to as

the configurational integral 𝑍𝑁 :

𝑍𝑁 =

∫
𝑒−𝛽𝑈 (r𝑁 )𝑑r𝑁 (2.46)

Consequently, the probability of finding the system in configuration r𝑁 is:

𝑃(r𝑁 ) = 𝑒−𝛽𝑈 (r𝑁 )

𝑍𝑁
(2.47)

Hence, the ensemble average of a property 𝐴 that depends only on positions

becomes:

𝐴 =

〈
𝑎(r𝑁 )

〉
=

∫
𝑃(r𝑁 )𝑎(r𝑁 )𝑑r𝑁 =

∫
𝑎(r𝑁 )𝑒−𝛽𝑈 (r𝑁 )𝑑r𝑁

𝑍𝑁
(2.48)

Using the concepts introduced in this section, the average properties of

the data produced by molecular dynamics simulations can be found. The

following section presents the core principles of molecular dynamics simu-

lations.

2.2 Classical Molecular Dynamics

Molecular Dynamics (MD) simulations have become increasingly effective

and user-friendly due to the availability of efficient methods, robust soft-

ware, and accurate parameters. Nonetheless, careful setup and thoughtful

parameter selection are essential to ensure reliable and physically mean-

ingful simulation results. For this reason, it is necessary to have an insight

into the fundamental principles of molecular dynamics.

2.2.1 Initialisation

To start any simulation, one must provide initial conditions for the system,

namely the positions and momenta of all 𝑁 atoms:
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{r1(0), r2(0), . . . , r𝑁 (0), p1(0), p2(0), . . . , p𝑁 (0)}.

Because equilibrium properties are independent of the initial positions,

these can be chosen arbitrarily, provided they do not lead to non-physical

configurations, such as overlapping nuclei. Common approaches include

positioning atoms on a regular lattice or generating random positions subject

to some physical constraints. The initial velocities are typically assigned by

sampling from a Boltzmann distribution at the desired initial temperature

[48], ensuring that the system’s kinetic energy is consistent with thermal

equilibrium.

2.2.2 Simulation Box

In addition to the initial conditions, a finite simulation box must be defined,

which confines the system and prevents atoms from escaping. To mimic an

infinite system and eliminate surface effects, periodic boundary conditions

(PBC) are implemented. Under PBC, when an atom exits one side of the

simulation box, it re-enters from the opposite side with unchanged momen-

tum, ensuring continuity of motion and preserving the bulk properties of the

system. Figure 2.1 schematically illustrates periodic boundary conditions

in two dimensions, where identical replicas surround the central simulation

box.

Figure 2.1 shows that the central simulation box is surrounded by pe-

riodic images, which collectively represent an infinite lattice. This arrange-

ment ensures that atoms do not experience artificial boundaries or wall ef-

fects, thereby allowing the simulation to capture the bulk properties of the

system.

2.2.3 Calculation of Forces

Once the system is initialised, the system’s dynamics can be simulated by

determining the forces that drive the atoms. The total force acting on each

atom is the sum of contributions from intramolecular interactions (forces
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Figure 2.1: Visualisation of periodic boundary conditions in 2 dimensions: The sim-
ulated box is in the centre, surrounded by copies of it. The dark-blue
dots represent the initial atoms’ positions, the light-blue dots represent
the evolved atoms’ positions, and the red line represents the path of
the atoms.

among atoms within the same molecule), intermolecular interactions (forces

between atoms in different molecules), and any external forces applied to

the system:

F𝑖 (r, 𝑡) = Fintra
𝑖 (r, 𝑡) + Finter

𝑖 (r, 𝑡) + Fext
𝑖 (r, 𝑡). (2.49)

Intramolecular forces arise from interactions between atoms that are

covalently bonded within the same molecule. These forces account for the

molecule’s internal degrees of freedom, which include bond stretching, an-

gle bending, and torsional (dihedral) rotations. As molecules undergo vibra-

tions and conformational changes, the corresponding intramolecular forces

also vary.

Intermolecular forces result primarily from Van der Waals and electro-

static interactions between atoms of different molecules. These interac-

tions are typically modelled using distance-dependent functions. A Lennard-

Jones or Buckingham potential often represents the Van der Waals forces,

while Coulomb’s law describes the electrostatic interactions. In many cases,

additional effects, such as hydrogen bonding or induced polarisation, may
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also be included depending on the complexity of the force field.

The complete set of potential energy functions that describe all the

intramolecular and intermolecular interactions in a system is collectively

known as a force field. In molecular dynamics simulations, an appropriate

force field is selected from available databases, each optimised for different

types of systems and interactions. In Chapters 3 and 5, the AMBER (As-

sisted Model Building with Energy Refinement) force field [66, 67, 68, 69]

is employed to simulate alanine dipeptide, because it has been extensively

validated for accurately reproducing the behaviour of proteins [68]. In con-

trast, Chapter 6 focuses on free radical polymerisation, particularly the 𝛽-

scission reaction in butyl acrylate dimer, and investigates the effects of vari-

ous solvents. For this purpose, the Generalised AMBER Force Field (GAFF)

[68, 69] is used because it is designed to handle a broader range of organic

molecules and solvents. Choosing an appropriate force field is essential for

any simulation, and once this is done, the simulation environment can be

set up.

2.2.4 Cutoff Schemes and Neighbour Lists

In molecular dynamics simulations, evaluating intramolecular interactions

can be computationally demanding if every pair of atoms is considered. To

make these calculations tractable, a cutoff distance is introduced so that

interactions are only computed for atom pairs separated by a distance less

than the cutoff. This approximation significantly reduces the number of force

evaluations while maintaining accuracy.

A crucial aspect of employing cutoffs efficiently is the use of neighbour

lists, which keep track of all atoms within the cutoff distance for each atom.

Instead of recalculating the distances for every atom pair at each time step,

the simulation periodically updates these lists, thereby accelerating the com-

putation of intramolecular interactions.

In this work, the simulation utilises the Verlet scheme, which offers an

efficient balance between accuracy and performance. By maintaining a
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buffer zone around the cutoff distance, the Verlet scheme minimises the

frequency of neighbour list updates while ensuring no interacting pairs are

missed as the system evolves. This approach has proven effective in many

MD simulations by providing a robust method to handle the computational

demands of non-bonded force calculations.

2.2.5 Integration of Equations of Motion

Except for highly simplified cases, it is not possible to solve the Equations

of Motion analytically, which is why an iterative numerical approach is used.

Time is discretised into small increments, Δ𝑡, and the evolution of the sys-

tem is determined iteratively using an integration scheme that accurately

captures the dynamics of the system. A widely adopted method is the Ve-

locity Verlet algorithm [70], which updates both positions and velocities in a

coupled manner:

r(𝑡 + Δ𝑡) = r(𝑡) + v(𝑡)Δ𝑡 + 1
2a(𝑡)Δ𝑡

2, (2.50)

v(𝑡 + Δ𝑡) = v(𝑡) + 1
2 [a(𝑡) + a(𝑡 + Δ𝑡)] Δ𝑡, (2.51)

where the acceleration at time 𝑡 is computed as a(𝑡) = F(𝑡)/𝑚, and a(𝑡 + Δ𝑡)

is evaluated after updating the positions.

Another widespread algorithm is the Leap Frog Verlet scheme [70],

which is the default integrator in popular MD software such as GROMACS

[71]. In contrast to the Velocity Verlet algorithm, the velocities are evaluated

with a half-step offset from the positions:

r(𝑡 + Δ𝑡) = r(𝑡) + v

(
𝑡 + Δ𝑡

2

)
Δ𝑡, (2.52)

v

(
𝑡 + Δ𝑡

2

)
= v

(
𝑡 − Δ𝑡

2

)
+ a(𝑡)Δ𝑡, (2.53)

While the advantage of the Leap Frog Verlet is a lower memory overhead,

Velocity Verlet provides synchronised positions and velocities, simplifying
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the calculation of kinetic energies and temperature control. Nevertheless,

both algorithms are time reversible and symplectic in nature (preservation

of energy and phase space volume over long simulation times). These

properties are essential for accurately reproducing the dynamical behaviour

of molecular systems, rendering both approaches reliable integration algo-

rithms.

An essential aspect of the integration process is selecting an appropri-

ate time step. A time step that is too large can result in unreliable trajecto-

ries, while a time step that is too small increases computational cost without

substantial gains in accuracy. Therefore, careful calibration is critical to bal-

ancing computational efficiency with the desired level of precision.

The trajectory of the molecular system is constructed over time by it-

eratively updating positions and velocities using an appropriate integration

scheme. However, additional mechanisms are required to maintain the de-

sired simulation conditions.

2.2.6 Thermostats and Barostats

Controlling simulation conditions, such as temperature and pressure, is es-

sential to ensure the system behaves as intended during an MD simulation.

Temperature control is achieved through thermostats, which periodically

rescale or modify the velocities of atoms to maintain a desired temperature.

This mimics the behaviour of a system in thermal contact with an infinite

heat bath at a constant temperature.

Similarly, pressure control involves barostats that regulate the pressure

by altering the volume or shape of the simulation box in response to devi-

ations from the target pressure. This mimics the effect of coupling the sys-

tem to a pressure reservoir, comparable to being connected to a constant-

pressure piston.

The choice of thermostats and barostats depends on the specific sim-

ulation conditions and objectives, and the choice is stated in the simulation

details.
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By incorporating effective thermostats and barostats, the simulation

maintains stable temperature and pressure, thereby ensuring that the com-

puted properties reflect realistic conditions throughout the simulation. How-

ever, when the system is first initialised, it is typically not in equilibrium,

requiring an equilibration process to ensure that the outputs represent the

steady-state behaviour.

2.2.7 Equilibration Run

After the system is initialised, it is typically still far from equilibrium. The initial

configuration may contain non-physical artefacts, necessitating an equilibra-

tion process to allow the system to adjust to the imposed conditions.

In this process, the system often first undergoes an energy minimisation

step, in which high-energy contacts are resolved, and the potential energy is

reduced. Next, a thermal equilibration gradually adjusts the velocities of the

atoms to bring the system to the target temperature, followed by pressure

equilibration if maintaining a specific pressure is required. Note that the

protocol can vary depending on the simulation conditions. Throughout this

process, key properties such as total energy, temperature, and pressure are

monitored, indicating when the system has reached an equilibrated state.

After equilibration, the simulation enters the production phase. In this

phase, the system’s configuration and other properties are recorded at reg-

ular intervals for subsequent analysis.

2.2.8 Output

The primary output of a molecular dynamics simulation is the trajectory, i.e.,

the time evolution of the system’s coordinates. Although these raw data can

be visualised to observe the system’s evolution, an individual snapshot is

highly sensitive to initial conditions. Instead, the trajectory is used to com-

pute averages of properties such as pressure, free energy or distance be-

tween atoms. By sampling the system repeatedly over time, these averages

converge to values that accurately represent the system’s behaviour under
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the imposed conditions.

The following section describes two pioneering methods for evaluating

the free energy difference between two states from simulation data. It is

followed by a section that presents modern techniques for enhancing the

sampling of rare events.

2.3 Free Energy Calculations
Even though equation 2.42 that is used to calculate the free energy seems

straightforward, it requires evaluating the partition function, which is only

feasible for elementary systems (e.g., a single atom in a box). Neverthe-

less, in most applications, researchers are more interested in the free en-

ergy difference between two states, since this quantity reveals which state

is thermodynamically more favourable.

2.3.1 Free Energy Perturbation Theory

Free energy perturbation theory (FEP) [8, 48] was one of the earliest meth-

ods for determining the free energy difference between two states, 𝐴 and

𝐵. For example, in a molecular adsorption process, state 𝐴 might describe

a freely moving molecule in solution, whereas state 𝐵 corresponds to the

same molecule adsorbed on a surface. The potential energy of state 𝐴 is

𝑈𝐴 (r𝑁 ) (no surface interactions), while in state 𝐵 it is 𝑈𝐵 (r𝑁 ) (including the

adsorption interactions).

Using equations 2.42 and 2.44, the free energy difference between the

two states is:

Δ𝐹𝐴𝐵 = 𝐹𝐵 − 𝐹𝐴 = −𝑘𝐵𝑇 ln
(𝑄𝐵

𝑄𝐴

)
= −𝑘𝐵𝑇 ln

(∫ 𝑒−𝛽𝑈𝐵 (r𝑁 )𝑑r𝑁∫
𝑒−𝛽𝑈𝐴(r𝑁 )𝑑r𝑁

)
(2.54)

To recast the ratio of partition functions as a canonical ensemble av-

erage over state 𝐴, the integrand of the numerator is multiplied by 1 =

exp[𝛽𝑈𝐴 (r𝑁 ) − 𝛽𝑈𝐴 (r𝑁 )], yielding:
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Δ𝐹𝐴𝐵 = −𝑘𝐵𝑇 ln

(∫ 𝑒−𝛽
(
𝑈𝐵 (r𝑁 )−𝑈𝐴(r𝑁 )

)
𝑒−𝛽𝑈𝐴(r𝑁 )𝑑r𝑁∫

𝑒−𝛽𝑈𝐴(r𝑁 )𝑑r𝑁

)
. (2.55)

Recognising the canonical ensemble average from equation 2.48, it can

be simplified to:

Δ𝐹𝐴𝐵 = −𝑘𝐵𝑇 ln

〈
𝑒−𝛽

(
𝑈𝐵 (r𝑁 )−𝑈𝐴(r𝑁 )

) 〉
𝐴

, (2.56)

which is commonly referred to as the FEP equation [8]. In practice, one

samples a set of configurations {r𝑁 } from the canonical distribution of state

𝐴, and re-evaluates their energies employing the potential 𝑈𝐵. By averaging

𝑒−𝛽
(
𝑈𝐵 (r𝑁 )−𝑈𝐴(r𝑁 )

)
over these sampled configurations, the free energy differ-

ence Δ𝐹𝐴𝐵 can be estimated.

However, if the overlap between the configurational spaces of 𝐴 and 𝐵

is not significant, the free energy difference may have large uncertainties. A

possible solution to this problem is to introduce a set of 𝑀 − 2 intermediate

states with potentials 𝑈𝛼 (r𝑁 ), where 𝛼 = {1, ..., 𝑀}, 𝛼 = 1 corresponds to

state 𝐴 and 𝛼 = 𝑀 to state 𝐵. The free energy perturbation equation (2.56)

can be expanded for this approach:

Δ𝐹𝐴𝐵 = −𝑘𝐵𝑇
𝑀−1∑︁
𝛼=1

ln

〈
𝑒−𝛽

(
𝑈𝛼+1−𝑈𝛼

) 〉
𝛼

. (2.57)

By ensuring that consecutive intermediate states 𝛼 and 𝛼+1 have sufficiently

overlapping configurations, the free energy change is evaluated in smaller,

more tractable steps, thereby improving reliability.

2.3.2 Thermodynamic Integration

Thermodynamic Integration (TI) [7, 48] is similar to FEP, in that it also in-

volves two potential energy functions, 𝑈𝐴 (r𝑁 ) and 𝑈𝐵 (r𝑁 ), corresponding to
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the initial state 𝐴 and the final state 𝐵. However, TI introduces an external

switching parameter, 𝜆 ∈ [0, 1], which defines a metapotential :

𝑈 (r𝑁 , 𝜆) = 𝑓 (𝜆)𝑈𝐴 (r𝑁 ) + 𝑔(𝜆)𝑈𝐵 (r𝑁 ) , (2.58)

where 𝑓 (𝜆) and 𝑔(𝜆) are chosen so that𝑈 (r𝑁 , 𝜆 = 0) = 𝑈𝐴 (r𝑁 ) and𝑈 (r𝑁 , 𝜆 =

1) = 𝑈𝐵 (r𝑁 ). Ideally, 𝑓 and 𝑔 are defined so the system transitions smoothly

from 𝑈𝐴 to 𝑈𝐵 as 𝜆 goes from 0 to 1.

Once the metapotential is defined, simulations are performed at several

fixed values of 𝜆 and the derivative of the free energy with respect to 𝜆 is

evaluated. This is accomplished by combining equations 2.42 and 2.46, and

substituting 𝑈 (r𝑁 , 𝜆) as the potential energy, one obtains:

𝜕𝐹

𝜕𝜆
= −𝑘𝐵𝑇

𝑑

𝑑𝜆
ln(𝑄) = − 𝑘𝐵𝑇

𝑄

𝜕𝑄

𝜕𝜆
= − 𝑘𝐵𝑇

𝑍

𝜕𝑍

𝜕𝜆

= − 𝑘𝐵𝑇
𝑍

∫ (
− 𝛽𝜕𝑈 (r𝑁 , 𝜆)

𝜕𝜆

)
𝑒−𝛽𝑈 (r𝑁 ,𝜆)𝑑r𝑁

=

∫
𝜕𝑈 (r𝑁 , 𝜆)

𝜕𝜆
𝑒−𝛽𝑈 (r𝑁 ,𝜆)𝑑r𝑁

𝑍

=

〈
𝜕𝑈 (r𝑁 , 𝜆)

𝜕𝜆

〉
𝜆

(2.59)

Lastly, with the result from equation 2.59, Δ𝐹𝐴𝐵 can be found by numer-

ical integration:

Δ𝐹𝐴𝐵 =

∫ 1

0

𝜕𝐹

𝜕𝜆
𝑑𝜆 =

∫ 1

0

〈
𝜕𝑈

𝜕𝜆

〉
𝜆

𝑑𝜆 (2.60)

Thus, by incrementally transforming state 𝐴 into state 𝐵, evaluating the free

energy derivative at every step and integrating the derivatives along the

path, Δ𝐹𝐴𝐵 can be computed accurately.

2.3.3 Collective Variables

Another way to calculate the change in the free energy is by expressing it as

a function of some collective variable (CV). For instance, if two molecules 𝑋
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and 𝑌 react to form a product 𝑋𝑌 , it would be helpful to understand how the

free energy changes as a function of the distance between the molecules,

𝑑 = |r𝑋 − r𝑌 |, where r𝑋 and r𝑌 denote the respective molecular positions.

In this example, 𝑑 serves as the CV and the free energy is computed as a

function of 𝑑. More generally, CVs are denoted by 𝜉, which is a function of

the configuration r𝑁 , i.e., 𝜉 = 𝜉 (r𝑁 ).

To accommodate a CV in the partition function, the notation 𝑞(𝜉ref) is

introduced, which denotes the partition function evaluated at a specific value

𝜉ref. The equation for 𝑞(𝜉ref) is similar to 𝑄 (equation 2.44), however, the

integrand is multiplied by a Dirac delta function 𝛿
(
𝜉ref − 𝜉 (r𝑁 )

)
, ensuring that

only configurations for which 𝜉 (r𝑁 ) = 𝜉ref contribute:

𝑞(𝜉𝑟𝑒 𝑓 ) = 1

ℎ𝐷𝑁𝑁!

∫
𝑒−𝛽H(r𝑁 ,p𝑁 )𝛿

(
𝜉𝑟𝑒 𝑓 − 𝜉 (r𝑁 )

)
𝑑p𝑁𝑑r𝑁 (2.61)

The free energy associated with configurations that satisfy 𝜉 (r𝑁 ) = 𝜉ref

is then defined analogously to equation 2.42:

𝐹 (𝜉𝑟𝑒 𝑓 ) = −𝑘𝐵𝑇 ln 𝑞(𝜉𝑟𝑒 𝑓 ) (2.62)

To determine the probability of observing configurations with a particu-

lar CV value, the ratio of those configurations to all possible configurations

is employed:

𝑃(𝜉) = 𝑞(𝜉𝑟𝑒 𝑓 )
𝑄

=

∫
𝑒𝑥𝑝

(
− 𝛽𝑈 (r𝑁 )

)
𝛿
(
𝜉𝑟𝑒 𝑓 − 𝜉 (r𝑁 )

)
𝑑r𝑁

𝑍
(2.63)

Combining equation 2.62 and 2.63 leads to an expression for 𝐹 (𝜉ref) in
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terms of 𝑃(𝜉ref):

𝐹 (𝜉𝑟𝑒 𝑓 ) = −𝑘𝐵𝑇 ln 𝑞(𝜉𝑟𝑒 𝑓 )

= −𝑘𝐵𝑇 ln
(
𝑃(𝜉𝑟𝑒 𝑓 )𝑄

)
= −𝑘𝐵𝑇 ln(𝑃(𝜉𝑟𝑒 𝑓 )) − 𝑘𝐵𝑇 ln𝑄 ,

(2.64)

where the term 𝑘𝐵𝑇 ln𝑄 is independent of 𝜉 and hence acts like a constant

offset. It is common practice to ignore this constant offset and use 𝐹 (𝜉) only

as a relative free energy:

𝐹 (𝜉) = −𝑘𝐵𝑇 ln(𝑃(𝜉)) (2.65)

Equation 2.65 applies to systems with a single CV. If multiple CVs 𝜉1, . . . , 𝜉𝑀

are introduced, one replaces the delta function in equation 2.63 with the

product
∏𝑀
𝑘=1 𝛿

(
𝜉ref
𝑘

− 𝜉𝑘 (r𝑁 )
)
. This yields a corresponding expression for the

free energy as a function of several CVs:

𝐹 (𝜉1, ..., 𝜉𝑀) = −𝑘𝐵𝑇 ln(𝑃(𝜉1, ..., 𝜉𝑀)) (2.66)

Although there is no strict upper limit on the number of CVs, increasing their

count dramatically enlarges the CV space and leads to sampling inefficien-

cies, more expensive computations, and cumbersome visualisation. In this

work, however, most systems are restricted to at most two CVs.

2.3.4 Ergodic Principle

Finally, to connect the molecular simulation trajectory with macroscopic

properties, one employs the ergodic principle. The ergodic principle as-

serts that over sufficiently long simulation times, the fraction of time spent

in a particular region of phase space is proportional to the probability of the

system being in that region. In other words, the time average of any property

converges to its ensemble average.

For instance, consider a collective variable 𝜉 (r𝑁 ) that is recorded at
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discrete time intervals throughout a simulation. If a histogram 𝐻
[
𝜉 (𝑡)

]
is

constructed to count how often 𝜉 takes certain values, then the probability

𝑃(𝜉) of observing a particular value 𝜉 is approximated by the long-time limit

of the histogram:

𝑃(𝜉) � lim
𝑡→∞

1

𝑡

∫ 𝑡

0
𝐻

[
𝜉 (𝑡′)

]
𝑑𝑡′. (2.67)

Although this is an approximation, it improves as the total simulation time

increases, provided the simulation is ergodic in nature.

With the concepts introduced so far, a molecular simulation can be per-

formed to sample the system’s phase space and thus estimate its free en-

ergy as a function of a chosen CV.

2.3.5 Langevin Dynamics Simulations

Langevin dynamics simulations (LDS) are a computationally efficient

method for modelling the behaviour of systems described by a potential

energy surface [72]. Unlike conventional MD, which follows deterministic

Newtonian equations, LDS incorporates frictional (dissipative) forces and

stochastic thermal noise to mimic the effect of a heat bath. Although LDS

can be applied to complex chemical systems, in this work it is used to sim-

ulate simplified systems, characterised by a predefined analytical potential

energy surface, 𝑈 (𝜉), which depends on a CV, 𝜉. This approach is par-

ticularly beneficial for developing and testing various simulation methods,

since simulating an analytic potential is considerably faster than simulating

a chemical system. The evolution of the Langevin system is governed by

the Langevin equation:

ma(𝑡) = −∇𝑈 (𝜉) −m𝛾v(𝑡) +
√︁
2m𝛾𝑘𝐵𝑇𝜂(𝑡) , (2.68)

where m is a mass matrix, 𝛾 is the friction (or damping) coefficient, and the

last term presents random thermal fluctuations.

To demonstrate how 𝐹 (𝜉) can be computed from simulation data, a one-

dimensional analytic potential is employed to run an LDS. The potential is
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(a) (b)

Figure 2.2: Results of a Langevin dynamics simulation of the analytical potential
energy surface 𝑈 (𝜉) = 7𝜉4 − 23𝜉2. (a) Histogram of sampled 𝜉 values
(blue bars), with a continuous fit (red line). (b) Underlying potential
(grey line) compared with the free energy surface calculated from sim-
ulation data (blue line)

defined as 𝑈 (𝜉) = 7𝜉4 − 23𝜉2, which mimics a system with two stable states

separated by a large energy barrier (see figure 2.2). During the simulation,

values of 𝜉 are periodically recorded to construct a probability distribution,

and from that, 𝐹 (𝜉) is determined using equation 2.65. The results are

depicted in Figure 2.2.

Note: The LDS are carried out with the pesmd tool of the PLUMED

software. With this tool, input parameters such as temperature, time-step,

the potential energy surface and its CVs are given in reduced units. In this

work, it is presumed that the potential energy has units of [𝑘𝐽/𝑚𝑜𝑙], the CV

has units of [𝑛𝑚], and for consistency, the time unit is [𝑝𝑠].

Throughout the simulation, 𝜉 values between roughly −1.8 and −0.6 are

sampled. Consequently, the free energy is well-defined and consistent with

the analytic potential in that interval, but effectively infinite for values of 𝜉 that

have not been sampled. The reason is that the simulation was initialised in

the left basin and was never able to jump to the other basin, because the

energy barrier separating those two states is too high. In the next section,

methods that enhance the sampling and facilitate the crossing of the energy

barrier will be discussed.
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2.4 Biased Sampling
With the methods introduced so far, it is possible to define a system, run an

MD simulation, determine the probability density as a function of some CV,

and ultimately find the free energy surface (FES). Although these steps are

straightforward in principle, in practice, the simulation often revisits the same

configurations, neglecting others, because they are energetically difficult to

access.

In Section 2.3.5, a simplified model with two basins, separated by a

large energy barrier, was considered. When the simulation was initialised in

one basin, it remained trapped there, unable to cross the barrier, even after

a long simulation time. This example illustrates the fundamental challenge

of effectively exploring phase space in classical (brute-force) simulations.

2.4.1 Umbrella Sampling

Umbrella sampling is a method developed by Torrie and Valleau [1] and

introduces a perturbation into the potential energy profile. This perturbation

usually takes the form of a harmonic restraint:

𝜔(𝜉) = 𝜅

2
(𝜉 − 𝜉𝑟𝑒 𝑓 )2 , (2.69)

where 𝜅 is the force constant, 𝜉 is a collective variable, and 𝜉𝑟𝑒 𝑓 is the re-

straint centre. This harmonic term is often called an (attractive) bias poten-

tial, since it confines the simulation to the vicinity of 𝜉𝑟𝑒 𝑓 , thus biasing the

sampling in phase space. Due to the altered energy landscape, the equa-

tions presented previously must be modified. The biased system has the

potential energy:

𝑈𝑏 = 𝑈𝑢 + 𝜔(𝜉) , (2.70)

where the superscripts 𝑏 and 𝑢 denote biased and unbiased quantities, re-

spectively. Although 𝑈 depends on the configuration r𝑁 , that dependence

has been omitted for better clarity. The probability of observing a configu-

ration with CV value 𝜉𝑟𝑒 𝑓 is determined using equation 2.63, however, using
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the bias potential energy 𝑈𝑏 instead of 𝑈𝑢 results in the bias probability

𝑃𝑏 (𝜉):

𝑃𝑏 (𝜉) =

∫
𝑒−𝛽

(
𝑈𝑢+𝜔(𝜉)

)
𝛿
(
𝜉𝑟𝑒 𝑓 − 𝜉

)
𝑑r𝑁∫

𝑒−𝛽
(
𝑈𝑢+𝜔(𝜉)

)
𝑑r𝑁

. (2.71)

The bias term 𝜔(𝜉) in equation 2.71 can be factored out of the integral,

since it is independent of the configuration. Combining equation 2.71 with

the unbiased probability from equation 2.63 yields:

𝑃𝑢 (𝜉)
𝑃𝑏 (𝜉)

= 𝑒𝛽𝜔(𝜉)
∫
𝑒−𝛽𝑈

𝑢

𝑒−𝛽𝜔(𝜉)𝑑r𝑁∫
𝑒−𝛽𝑈𝑢

𝑑r𝑁
. (2.72)

Using the definition of the ensemble average from equation 2.8, it can

be shown that:

𝑃𝑢 (𝜉) = 𝑃𝑏 (𝜉)𝑒𝛽𝜔(𝜉)
〈
𝑒−𝛽𝜔(𝜉)

〉
(2.73)

Substituting equation 2.73 into the free energy expression from equa-

tion2.42 yields:

𝐹 (𝜉) = −𝑘𝐵𝑇 ln
(
𝑃𝑏 (𝜉)

)
− 𝜔(𝜉) − 𝑘𝐵𝑇 ln

〈
𝑒−𝛽𝜔(𝜉)

〉
, (2.74)

where the first term, −𝑘𝐵𝑇 ln
(
𝑃𝑏 (𝜉)

)
, quantifies the contribution arising from

the biased probability distribution, the second term, −𝜔(𝜉), provides the un-

biasing correction to remove the influence of the bias potential, and the third

term, −𝑘𝐵𝑇 ln
〈
𝑒−𝛽𝜔(𝜉)

〉
, corresponds to the work arising due to the use of a

bias potential in an unperturbed ensemble. The expression in equation 2.74

is valid if the simulation explores all relevant regions of 𝜉. In practice, um-

brella sampling is usually performed through multiple simulations, each with

a different bias centre, to achieve thorough sampling across the CV range.

This technique gives rise to a more general equation:

𝐹𝑖 (𝜉) = −𝑘𝐵𝑇 ln
(
𝑃𝑏𝑖 (𝜉)

)
− 𝜔𝑖 (𝜉) + 𝑐𝑖 , (2.75)
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where the subscript 𝑖 denotes the properties of simulation 𝑖 and 𝑐𝑖 is a con-

stant that replaces the ensemble average term in the equation 2.74. This

constant shifts the free energy surface vertically, so its correct value must be

determined to reconstruct the entire free energy landscape. Furthermore,

there must be sufficient overlap between neighbouring simulation windows

to align their respective free energy segments consistently.

Several methods exist to calculate 𝑐𝑖, and they are all iterative in nature.

A popular approach is the weighted histogram analysis method (WHAM)

[57, 58], which minimises the statistical error in the total unbiased probabil-

ity:

𝑃𝑢 =

𝑁𝑤𝑖𝑛𝑑𝑜𝑤𝑠∑︁
𝑖

𝑤𝑖𝑃
𝑢
𝑖 (𝜉) (2.76)

where 𝑤𝑖 is the weight of each window. These weights are optimised to

minimise the variance 𝜎2
(
𝑃𝑢 (𝜉)

)
.

When this method is used to enhance sampling for the problem dis-

cussed in section 2.3.5, a bias would be imposed to confine the simulation

around a specific value of 𝜉. After a short simulation under this bias, a sec-

ond simulation is conducted using a bias shifted to a different 𝜉 value. This

protocol is repeated until all regions have been adequately sampled. The

essential requirement of this approach is that the sampling of neighbour-

ing regions overlap significantly, so that the data can be merged reliably to

produce a continuous FES. This concept is illustrated in section 2.4.2 on

umbrella integration in Figure 2.3.

2.4.2 Umbrella Integration

Umbrella integration (UI) [47, 61, 62] was introduced by Kästner and is

based on the principles of umbrella sampling and thermodynamic integra-

tion. As in umbrella sampling, multiple simulations are conducted in sepa-

rate windows, each constrained by a harmonic potential. The key distinction

is that, rather than calculating the free energy in each window, the mean

force, 𝜕𝐹/𝜕𝜉, is computed. Equation 2.75, previously used to obtain the
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free energy of window 𝑖, is rewritten to define the mean force:

𝜕𝐹𝑖 (𝜉)
𝜕𝜉

= −𝑘𝐵𝑇
ln

(
𝑃𝑏
𝑖
(𝜉)

)
𝜕𝜉

− 𝜔𝑖 (𝜉)
𝜕𝜉

− 𝑘𝐵𝑇
ln

〈
𝑒−𝛽𝜔(𝜉)

〉
𝜕𝜉

, (2.77)

where 𝜔𝑖 (𝜉) = 𝜅
2 (𝜉 − 𝜉

𝑟𝑒 𝑓 )2. The last term is an ensemble average that does

not depend on 𝜉, so its partial derivative vanishes. Thus, the expression

simplifies to:
𝜕𝐹𝑖 (𝜉)
𝜕𝜉

= −𝑘𝐵𝑇
ln

(
𝑃𝑏
𝑖
(𝜉)

)
𝜕𝜉

− 𝜅(𝜉 − 𝜉𝑟𝑒 𝑓 ) . (2.78)

Furthermore, the biased probability distribution of window 𝑖 is approxi-

mated using a Gaussian function:

𝑃𝑏𝑖 =
1

𝜎𝑖
√
2𝜋
𝑒

− (𝜉 − 𝜉𝑖)2

2𝜎2
𝑖 (2.79)

where 𝜉𝑖 is the mean of 𝜉 sampled in window 𝑖, and 𝜎2
𝑖

denotes the statistical

variance of 𝜉𝑖. The mean forces for all windows are then combined using a

weighted average:
𝜕𝐹 (𝜉)
𝜕𝜉

=
∑︁
𝑖

𝑝𝑖 (𝜉)
𝜕𝐹𝑖 (𝜉)
𝜕𝜉

, (2.80)

where 𝑝𝑖 (𝜉) is the weighted probability distribution of window 𝑖, which is

defined by:

𝑝𝑖 (𝜉) =
𝑁𝑖𝑃

𝑏
𝑖
(𝜉)∑︁

𝑖

𝑁𝑖𝑃
𝑏
𝑖 (𝜉)

, (2.81)

where 𝑁𝑖 is the total number of steps in window 𝑖. Equations 2.81 and 2.80

ensure that windows sampled for longer durations, or regions of CV space

that have been sampled more thoroughly, have a larger weight (𝑝𝑖 (𝜉)) and

exert a greater influence on the overall FES.

Once the total mean force is obtained via 2.80, the free energy is re-

covered by integrating this mean force. Such an integration is non-trivial in

higher-dimensional CV spaces, and will be described in Section 3.3.

To illustrate this approach, the potential surface 𝑈 (𝜉) = 7𝜉4 − 23𝜉2 (em-
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(a) (b)

Figure 2.3: (a) Harmonic constraints (red lines) are distributed along the potential
energy surface (black line). (b) Simulation trajectories of the individual
simulations with different colours.

(a) (b)

Figure 2.4: (a) Combined biased probability density of all simulations. (b) FES
(blue line) after all simulations have been patched together with the
potential energy surface (grey line).

ployed in the previous sections) can be simulated using UI. Twenty-one win-

dows, each lasting 0.5 ns, were simulated using a harmonic restraint whose

centre values were evenly spaced from 𝜉 = −2.5 to 𝜉 = 2.5, as illustrated in

figure 2.3 (a). The resulting trajectories are plotted as a function of time and

their CV in Figure 2.3 (b).

The individual mean forces are then patched together using equation

2.80, and finally integrated to obtain the FES, which is shown in figure 2.4.

The biased probability density depicted in Figure 2.4 (a) contains fluctu-
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ations, which are more pronounced around 𝜉 = 0, where the energy barrier

is located. These fluctuations result from non-uniform sampling that arises

because of the harmonic constraints. Yet, these fluctuations can not be de-

tected in the FES in figure 2.4 (b), since they are removed by the unbiasing

correction given in equation 2.78

2.4.3 Metadynamics

Metadynamics (MetaD) [2, 50] was developed by Parrinello and co-workers

as an enhanced sampling method that operates in a manner analogous to

umbrella sampling, except that a repulsive bias is employed rather than an

attractive one. The repulsive bias is deposited at a constant rate in the

region of the CV-space visited by the simulation. The individual repulsive

potentials typically take the form of a Gaussian function (also referred to as

hills), and the sum of these hills makes up the bias potential. This setup

is referred to as a history-dependent bias because the bias experienced by

the system evolves over time. Consequently, regions of CV space that are

sampled frequently accumulate more repulsive bias, thereby encouraging

exploration of less-visited regions. Mathematically, the MetaD bias potential,

𝑉𝑡 (𝜉), at time 𝑡, for an arbitrary number of CVs (𝜉 = 𝜉1, ..., 𝜉𝑁𝐶𝑉
), is expressed

as:

𝑉𝑡 (𝜉) =
𝑡∑︁

𝑡′=1

𝜔 𝑒

−
𝑁𝐶𝑉∑︁
𝑖=1

(
𝜉𝑖 − 𝜉𝑖 (𝑡′)

)2
2𝜎2

𝐻,𝑖 , (2.82)

where 𝑖 indexes the CV, 𝜉𝑖 is the 𝑖-th CV and 𝜉𝑖 (𝑡) it the value that 𝜉𝑖 takes

at time 𝑡. 𝑁𝐶𝑉 is the total number of CVs, 𝜔 is the height of the Gaussian

hills and 𝜎𝐻,𝑖 is the width of the Gaussian for the 𝑖-th CV. Because repeat-

edly sampled regions acquire large repulsive contributions, the simulation

is directed away from those regions and eventually attains more uniform

coverage of phase space. After sufficient sampling, the FES plus the bias
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(a) (b)

Figure 2.5: (a) depicts the evolution of the trajectory as CV coordinate, as a func-
tion of the number of MetaD hills deposited. (b) depicts the evolution of
MetaD bias potential. The lines represent potential 𝑈 (𝜉) plus the bias
potential 𝑉𝑡 (𝜉), where the number of Gaussian hills deposited at time 𝑡
is labelled on the line.

potential becomes nearly flat:

𝑉𝑡→∞(𝜉) ≈ −𝐹𝑡→∞(𝜉) + 𝐶 , (2.83)

where C is a constant representing a vertical offset. Equation 2.83 is an ap-

proximation valid only at large simulation times. A more precise derivation is

obtained by introducing a perturbation into the potential energy surface, sim-

ilarly to the approach in section 2.4.1 on umbrella sampling. Taking equation

2.74, but using the history-dependent bias from metadynamics, one obtains:

𝐹𝑡 (𝜉) = −𝑘𝐵𝑇 ln
(
𝑃𝑏𝑡 (𝜉)

)
−𝑉𝑡 (𝜉) − 𝐹𝑐 , (2.84)

where 𝐹𝑐 is the ensemble average term 𝑘𝐵𝑇 ln
〈
𝑒−𝛽𝑉𝑡 (𝜉)

〉
that accounts for the

work performed in the system due to the introduction of the MetaD potential,

and needs to be calculated numerically [73].

Figure2.5 illustrates the evolution of the history-dependent bias using

the simplified potential surface𝑈 (𝜉) = 7𝜉4−23𝜉2 (introduced in section2.3.5).

Figure 2.5 shows how the simulation starts in the left basin, where the

bias potential accumulates. After about 600 hills, it escapes the left basin
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and starts sampling the other basin, until about 1200 hills, when it samples

most of CV space almost uniformly. Compared to the example in Section

2.3.5, the exploration of phase space was enhanced considerably.

The underlying principle of MetaD is that, even if no a priori information

is available about the free-energy landscape, the adaptive bias increases

the accessibility of higher-energy states. Consequently, new regions of CV

space are explored rapidly, and the sampling of rare events improves greatly.

A limitation of this method is that the bias continues to accumulate if the

simulation is not terminated, which can lead to unbounded growth of the

bias potential.

2.4.4 Well-Tempered Metadynamics

Even though conventional (non-well-tempered) MetaD is an effective tool

for enhancing the sampling of CV space, after sufficient time, all states of

interest might be accessible. Yet, the growing potential is impeding the con-

vergence of the FES. Well-tempered metadynamics (WT-MetaD) [49, 74]

addresses this issue by scaling the height of the Gaussian hill by a factor 𝜔𝑡

( as opposed to 𝜔 in metadynamics), which is defined as follows:

𝜔𝑡 = 𝜔0 𝜏𝐺 𝑒
−𝑉𝑡 (𝜉)△𝑇 , (2.85)

where 𝜔0 is the initial Gaussian height, 𝜏𝐺 is the rate at which the Gaus-

sians are deposited, and △𝑇 is a constant that controls the rate at which

the Gaussian height decreases. Because −𝑉𝑡 (𝜉) appears in the numerator

of the exponential, each new Gaussian added around 𝜉 becomes progres-

sively smaller as more hills accumulate in that region. In the long-time limit,

the bias potential converges to:

𝑉𝑡→∞(𝜉) ≈ − △𝑇
△𝑇 + 𝑇 𝐹𝑡 (𝜉) + 𝐶 (2.86)
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Figure 2.6: Accumulation of the bias potential. The lines represent potential 𝑈 (𝜉)
plus the bias potential 𝑉𝑡 (𝜉), where the number of Gaussian hills de-
posited at time 𝑡 is labelled on the line.

where T is the temperature of the system, and 𝐶 is a constant offset. To

understand the role of △𝑇 , the extreme cases are presented:

• △𝑇 → 0: The Gaussian height immediately approaches zero, so the

bias effectively vanishes and the simulation behaves as if no bias po-

tential were present.

• △𝑇 → ∞: The Gaussian height remains constant, and the simula-

tion behaves like the conventional MetaD scheme discussed in section

2.4.3.

A simulation equivalent to that in Section 2.4.3 can be performed to

visualise the evolution of the bias potential. Figure 2.6 shows how the total

potential (𝑈 (𝜉) + 𝑉𝑡 (𝜉)) develops over time, with the number of deposited

Gaussian hills indicated on each line.

Initially, the accumulation of the potential resembles the conventional

MetaD example, but growth is curtailed in regions where the bias potential is

already large. This feature is advantageous because smaller perturbations

to the potential energy surface promote faster convergence of the FES.

2.4.5 Further Metadynamics Approaches

Variational Enhanced Sampling (VES) [75] is an advanced extension of the

metadynamics concept, which aims to create an optimal bias potential. The
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bias potential is constructed by minimising a loss function, quantifying how

far the biased probability distribution deviates from a chosen target distribu-

tion, which is often uniform or well-tempered. The bias 𝑉VES is expressed as

a series expansion (e.g. Fourier Series) with basis functions, 𝜙𝑘 (𝜉), indexed

by 𝑘:

𝑉VES(𝜉) =
∑︁
𝑘

𝛼𝑘 , 𝜙𝑘 (𝜉) , (2.87)

where 𝛼𝑘 are expansion coefficients that are iteratively refined during the

simulation, thereby optimising 𝑉VES. This approach allows the system to ex-

plore the free energy landscape efficiently while aiming to reduce the mis-

match between the biased and target distributions.

On-the-Fly Probability Enhanced Sampling (OPES) [76] is another re-

cent method that builds on metadynamics but adopts a different strategy

for bias construction. With this approach, the bias potential, 𝑉OPES(𝜉), is

adaptively adjusted so that the biased probability density, 𝑃𝑏 (𝜉), converges

towards a specified target distribution, 𝑃∗(𝜉). The OPES bias potential can

be expressed as:

𝑉OPES(𝜉) = − 1

𝛽
ln

(
𝑃∗(𝜉)
𝑃𝑏 (𝜉)

)
. (2.88)

As with VES, the target distribution is typically chosen to resemble a

well-tempered MetaD distribution or, if information about the free energy

landscape is available, a custom distribution.

The advantage of VES and OPES is that these approaches offer better

control of the sampling distribution compared to conventional metadynamics

and it has been reported by Invernizzi et al. that OPES converges faster than

WT-MetaD [76]. Even though these methods are effective, they lie outside

the scope of this work and will not be discussed in more detail.

2.5 Mean Force Integration

Vaselina Marinova et al. first published the Mean Force Integration (MFI)

method [3] in 2019. This chapter shows their initial contributions, which
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serve as the foundation for the development of MFI, presented in Chapters

3 and 5.

The MFI method was inspired by Kästner’s Umbrella Integration (UI)

method (described in section 2.4.2), which is closely related to Umbrella

Sampling (US) (described in section 2.4.1). However, rather than evaluating

the free energy of each window directly, with UI, the mean force of each win-

dow is determined first. Later, the individual mean forces are patched, using

a weighted average approach, and then integrated to find the free energy.

This procedure removes the need to estimate the alignment constant, 𝑐𝑖, in

equation 2.75. When Salvalaglio developed MFI, the goal was to adapt the

UI approach to a history-dependent enhanced sampling scheme, such as

MetaD.

2.5.1 One-Dimensional Formulation

To derive the MFI equations that allow for the calculation of the FES, equa-

tion 2.84 is differentiated with respect to 𝜉:

𝜕𝐹𝑡 (𝜉)
𝜕𝜉

= − 1

𝛽

𝜕 ln
(
𝑃𝑏𝑡 (𝜉)

)
𝜕𝜉

− 𝜕𝑉𝑡 (𝜉)
𝜕𝜉

− 1

𝛽

𝜕 ln
〈
𝑒−𝑉𝑡 (𝜉)

〉
𝑢

𝜕𝜉
, (2.89)

where term ln
〈
𝑒−𝑉𝑡 (𝜉)

〉
𝑢

accounts for the reversible work arising from the

use of the bias potential in the unperturbed ensemble. Since this quantity is

constant with respect to 𝜉, its derivative vanishes. Otherwise, it would need

to be evaluated numerically through an implicit expression [73]:

〈
𝑒−𝑉𝑡 (𝜉)

〉
𝑢
=

∫
𝑒−𝛽𝐹 (𝜉)−𝛽𝑉𝑡 (𝜉)∫
𝑒−𝛽𝐹 (𝜉)

, (2.90)

The MetaD bias potential 𝑉𝑡 (𝜉) is a sum of Gaussians (defined in sec-

tions 2.4.4 and 2.4.4), and its derivative with respect to 𝜉 is:

𝜕𝑉𝑡 (𝜉)
𝜕𝜉

= −
𝑡∑︁

𝑡′=1

𝑤𝑡′ (𝜉 − 𝜉𝑡′)
𝜎2
𝐻

exp

(
− (𝜉 − 𝜉𝑡′)2

2𝜎2
𝐻

)
(2.91)
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Because 𝑉𝑡 (𝜉) evolves continuously during MetaD simulations, the bi-

ased probability density, 𝑃𝑏𝑡 (𝜉), is evaluated over time windows of duration

𝜏, during which the bias is constant. Instead of constructing 𝑃𝑏𝑡 (𝜉) as a his-

togram with discrete bins, a summation of continuous Gaussian kernels is

used:

𝑃𝑏𝑡 (𝜉) =
𝑛𝑐𝑣

ℎ
√
2𝜋

𝑡+𝜏∑︁
𝑡′=𝑡

exp

(
− (𝜉 − 𝜉𝑡′)2

2ℎ2

)
, (2.92)

where ℎ denotes the width of the Gaussian and 𝑛𝑐𝑣 is the sampling stride of

the CV, corresponding to the Gaussian height. The placement of ℎ and 𝑛𝑐𝑣

ensures that simulations with different values of ℎ and 𝑛𝑐𝑣 can be combined

in a consistent manner. Given that 𝑛𝐻 is the stride at which the MetaD

potential is updated, the ratio 𝑛𝑐𝑣/𝑛𝐻 should be between ten and twenty for

a good trade-off between computational resources and accuracy.

By differentiating equation 2.92 with respect to 𝜉, the first term of equa-

tion 2.89 is obtained:

1

𝛽

𝜕 ln
(
𝑃𝑏𝑡 (𝜉)

)
𝜕𝜉

=

𝑡+𝜏∑︁
𝑡′=𝑡

− (𝜉 − 𝜉𝑡′)
𝛽ℎ2

exp

(
− (𝜉 − 𝜉𝑡′)2

2ℎ2

)
𝑡+𝜏∑︁
𝑡′=𝑡

exp

(
− (𝜉 − 𝜉𝑡′)2

2ℎ2

) . (2.93)

Combining equations 2.89, 2.91, and 2.93 enables the calculation of

the mean force for the time window [𝑡, 𝑡 + 𝜏]:

𝜕𝐹𝑡 (𝜉)
𝜕𝜉

=

𝑡+𝜏∑︁
𝑡′=𝑡

(𝜉 − 𝜉𝑡′)
𝛽ℎ2

exp

(
− (𝜉 − 𝜉𝑡′)2

2ℎ2

)
𝑡+𝜏∑︁
𝑡′=𝑡

exp

(
− (𝜉 − 𝜉𝑡′)2

2ℎ2

) +
𝑡∑︁

𝑡′=1

𝑤𝑡′ (𝜉 − 𝜉𝑡′)
𝜎2
𝐻

exp

(
− (𝜉 − 𝜉𝑡′)2

2𝜎2
𝐻

)
(2.94)

Each window’s mean force is then combined (or “patched”) via a

weighted average, where the weight is the window’s biased probability dis-

tribution: 〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑡

=

∑𝑡
𝑡′=0

(
𝑃𝑏𝑡 (𝜉)

𝑑𝐹𝑡 (𝜉)
𝑑𝜉

)
∑𝑡
𝑡′=0 𝑃

𝑏
𝑡 (𝜉)

, (2.95)
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Figure 2.7: FES (blue line) constructed from a metadynamics simulation and anal-
ysed with MFI, and the analytical potential surface (grey line).

where
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑡

is the average mean force. Lastly, the average mean force is

integrated over 𝜉 to find the free energy:

𝐹𝑡 (𝜉) =
∫ 〈

𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑡

𝑑𝜉 (2.96)

The efficacy of MFI can be validated by applying the above equations

to the simulation data from the example in section 2.4.4, which yields the

FES shown in figure 2.7.

2.5.2 N-Dimensional Extension

Although the derivation above is for a one-dimensional CV, the procedure

extends to 𝑁 dimensions. In that case, the mean force is calculated with:

∇𝐹𝑡 (𝝃) = −𝛽−1∇ ln
(
𝑃𝑏𝑡 (𝝃)

)
− ∇𝑉𝑡 (𝝃) , (2.97)

where ∇ denotes the gradient with respect to all 𝑁 collective variables, and

𝝃 is a vector of CVs (i.e., 𝝃 = {𝜉1, ..., 𝜉𝑁 }). The MetaD potential for an N-

dimensional space is given in equation 2.82, and its gradient is defined as:

∇𝑉𝑡 (𝝃) = −
𝑡∑︁

𝑡′=1

𝑤𝑡′𝜎
−1
𝐻,𝑁 (𝝃 − 𝝃 𝑡′) exp

(
− 1

2
(𝝃 − 𝝃 𝑡′)T𝜎−1

𝐻,𝑁 (𝝃 − 𝝃 𝑡′)
)
, (2.98)
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(a) (b)

Figure 2.8: (a) The analytical potential energy surface visualised in 3 dimensions
and (b) the analytical potential energy surface visualised in 2 dimen-
sions using contour lines

where 𝜎𝐻,𝑁 denotes a 𝑁 × 𝑁 covariance matrix of the Gaussian hills. The

biased probability density of an N-dimensional space is:

𝑃𝑏𝑡 (𝝃) =
𝑛𝑐𝑣√︁

|ℎ𝑁 | (2𝜋)𝑁/2

𝑡+𝜏∑︁
𝑡′=𝑡

exp

(
− 1

2
(𝝃 − 𝝃 𝑡′)Tℎ−1𝑁 (𝝃 − 𝝃 𝑡′)

)
, (2.99)

where ℎ𝑁 denotes the covariance matrix and |ℎ𝑁 | its determinant. The gra-

dient of the logarithm of the probability density is defined as:

1

𝛽
∇ ln

(
𝑃𝑏𝑡 (𝝃)

)
= −

𝑡+𝜏∑︁
𝑡′=𝑡

ℎ−1
𝑁

𝛽
(𝝃 − 𝝃 𝑡′) exp

(
− 1

2
(𝝃 − 𝝃 𝑡′)Tℎ−1𝑁 (𝝃 − 𝝃 𝑡′)

)
𝑡+𝜏∑︁
𝑡′=𝑡

exp

(
− 1

2
(𝝃 − 𝝃 𝑡′)Tℎ−1𝑁 (𝝃 − 𝝃 𝑡′)

) . (2.100)

Equations 2.98 and 2.100 can be substituted into equation 2.97 to find

the mean force in an N-dimensional CV space.

Although the computational cost grows exponentially with increasing

dimensionality, the simulation of a two-dimensional demonstration is feasi-

ble. This is demonstrated through the analytical potential surface 𝑈 (𝝃) =

7𝜉41 − 23𝜉21 + 7𝜉42 − 23𝜉22 , illustrated in figure 2.8.

Figure 2.9 shows the calculated FES and its absolute deviation from the
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(a) (b)

Figure 2.9: (a) The computed FES and (b) the average deviation of the FES from
the analytical surface.

analytical surface. The basin regions are reproduced accurately, whereas

the transition regions show larger deviations, consistent with a more limited

sampling in those areas.

2.5.3 Patching Independent Simulations

A significant strength of MFI is the ability to combine independent simula-

tions by patching their average mean forces. To accomplish this, equation

2.95 can be generalised to account for mean forces from 𝑁 simulations in-
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dexed by 𝑗 :

〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑝𝑎𝑡𝑐ℎ

=

𝑡1∑︁
𝑡′=0

(
𝑃𝑏1,𝑡 (𝜉)

𝜕𝐹1,𝑡 (𝜉)
𝜕𝜉

)
+ ... +

𝑡𝑁∑︁
𝑡′=0

(
𝑃𝑏𝑁,𝑡 (𝜉)

𝜕𝐹𝑁,𝑡 (𝜉)
𝜕𝜉

)
𝑡1∑︁
𝑡′=0

(
𝑃𝑏1,𝑡 (𝜉)

)
+ ... +

𝑡𝑁∑︁
𝑡′=0

(
𝑃𝑏𝑁,𝑡 (𝜉)

)

=

𝑁∑︁
𝑗=1

𝑡1∑︁
𝑡′=0

(
𝑃𝑏𝑗,𝑡 (𝜉)

𝜕𝐹𝑗 ,𝑡 (𝜉)
𝜕𝜉

)
𝑁∑︁
𝑗=1

𝑡1∑︁
𝑡′=0

(
𝑃𝑏𝑗,𝑡 (𝜉)

)

=

𝑁∑︁
𝑗=1

(
𝑃𝑏𝑗 (𝜉)

〈𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑗

)
𝑁∑︁
𝑗=1

𝑃𝑏𝑗 (𝜉)

(2.101)

where 𝑃𝑏
𝑗,𝑡
(𝜉) and 𝜕𝐹𝑗 ,𝑡 (𝜉)

𝜕𝜉
are, respectively, the biased probability density

and the mean force of simulation 𝑗 in window 𝑡. In the last line, 𝑃𝑏
𝑗
(𝜉) and〈

𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑗

represent the total biased probability density and average mean

force of simulation 𝑗 , while
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑝𝑎𝑡𝑐ℎ

is the patched average mean force.

This result is significant because no other established methodology can

combine independent MetaD simulations in a fully self-consistent way.

When a second simulation with settings similar to the first is performed,

and both are patched together, the resulting FES and its absolute deviation

(AD) from the analytical reference are presented in Figure 2.10:

The overall appearance of the patched FES and its AD closely resem-

bles the single-simulation result in figure2.9, which is expected because

the simulation setup and the resulting sampling were similar in both cases.

Chapter 3 will discuss how these methods can be further refined to yield

more accurate surfaces.
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(a) (b)

Figure 2.10: (a) FES of the patched simulations. (b) Average deviation of the FES
from the analytical surface.





Chapter 3

Extending Mean Force

Integration

The MFI method introduced in Section 2.5 provides a novel strategy for

analysing MetaD simulations and offers a self-consistent procedure for

merging results from independent MetaD simulations. There is, how-

ever, considerable scope for further extending MFI methods. This chapter

presents the advancements realised by the author:

• The use of multiple bias potentials across several independent simu-

lations, within a single simulation, or both (Section 3.1).

• The real-time evaluation of the convergence of the mean force, which

is compared to the error of the FES (Section 3.2).

• The implementation of a fast and accurate integration scheme based

on Fourier Transforms (Section 3.3).

The effectiveness of these approaches is then demonstrated through the

simulation of analytical potentials and the conformational changes of alanine

dipeptide.

The contents of this chapter were published in the Journal of Chemical The-

ory and Computation [77].
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3.1 Enhanced Sampling Subject to Various Bias

Potentials

MetaD, Umbrella Sampling (US) and Umbrella Integration (UI) share the

same fundamental principle: the introduction of a perturbation to the po-

tential energy. Considering equations 2.77 and 2.89, the distinction among

these methods is the form of the bias potential and the constant term ap-

pearing at the end of the equations. The constant term cancels out when

evaluating the mean force rather than the free energy, thereby simplifying

the unbiasing process. The bias potential, on the other hand, is a history-

dependent repulsive potential in MetaD, whereas in US it is a static attractive

potential. The two types of potentials are typically not combined. A notable

exception is the “well-sliced” approach of Awasthi et al., which applies a

fixed harmonic umbrella to one CV while biasing an orthogonal CV with WT-

MetaD, demonstrably speeding up convergence on flat, high-dimensional

free-energy landscapes [78].

3.1.1 Combining Simulations that use Different Biases

The MFI equations introduced in Section 2.5 assume that the mean force is

evaluated using a MetaD bias potential. However, the bias potential, 𝑉𝑡 (𝜉),

in equation 2.89 is not restricted to MetaD and can be replaced with a har-

monic restraint. The resulting expression then resembles the equation for

calculating the mean force in UI 2.78. Because both approaches evaluate

the mean force, they can be combined using the weighted average method

given in equation 2.101, which effectively allows the combination of MetaD

and US simulations. This could be advantageous in situations where most

of the FES is converged with an initial MetaD simulation, which is comple-

mented by a US simulation that focuses sampling in the less converged

region.

To demonstrate this ability, the protocol from Section 2.5.3 (two similar

MetaD were patched) was repeated, but the second simulation was replaced
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(a) (b)

Figure 3.1: Figure (a) shows the free energy surface, and Figure (b) shows the
average deviation of the FES to the analytical surface.

with a US simulation. Since the first simulation exhibited a large error around

𝜉 = (0, 0) (see Figure 2.9), a harmonic restraint was applied at that location.

The resulting patched FES and its average deviation from the analytical

surface (AD) are shown in Figure 3.1. Comparison with Figure 2.10 from

Section 2.5.3 shows that the patched simulation with the combined bias

displays a lower error, particularly around the centre of the restraint.

3.1.2 Unbiasing Simulations Subject to Multiple Biases

As outlined in Section 3.1.1, the bias potential, 𝑉𝑡 (𝜉), in equation 2.89 is not

limited to MetaD. In fact, it can include multiple bias terms, for example, a

MetaD bias combined with a harmonic restraint of the form 𝜅
2 (𝜉 − 𝜉

𝑟𝑒 𝑓 )2. The

unbiased mean force of such a composite bias is expressed as:

𝜕𝐹𝑡 (𝜉)
𝜕𝜉

= −𝑘𝐵𝑇
𝜕 ln

(
𝑃𝑏𝑡 (𝜉)

)
𝜕𝜉

−
[
𝜕𝑉𝑡 (𝜉)
𝜕𝜉

+ 𝜅(𝜉 − 𝜉𝑟𝑒 𝑓 )
]
. (3.1)

Including this additional harmonic term restricts the system to remain near

𝜉𝑟𝑒 𝑓 while still enabling sampling of higher-energy regions. This approach

can be particularly advantageous when exploring a region characterised by

steep potential gradients. Conventional umbrella sampling typically requires

careful selection of 𝜅 and 𝜉𝑟𝑒 𝑓 , whereas the history-dependent component

in MetaD offers more flexibility in parameter choices.
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To showcase this approach, the simulation protocol from Section 3.1

(MetaD simulation patched with US simulation) was repeated, but the US

simulation was replaced with a simulation that employs a MetaD bias com-

bined with a harmonic constraint centred at (0, 0). The resulting FES and

its AD are shown in Figure 3.2. Comparison with Figure 3.1 from Section

3.1.1 indicates that the patched simulation using the combined bias exhibits

reduced error.

(a) (b)

Figure 3.2: Figure (a) shows the free energy surface, and Figure (b) shows the
average deviation of the FES to the analytical surface.

Equation 3.1 can be generalised to include an arbitrary number 𝑁𝐵𝑖𝑎𝑠 of

bias potentials:

𝜕𝐹𝑡 (𝜉)
𝜕𝜉

= −𝑘𝐵𝑇
𝜕 ln

(
𝑃𝑏𝑡 (𝜉)

)
𝜕𝜉

−
𝑁𝐵𝑖𝑎𝑠∑︁
𝑖

𝜕𝑉𝑖,𝑡 (𝜉)
𝜕𝜉

, (3.2)

where𝑉𝑖,𝑡 (𝜉) is the bias potential that can take any form, whether it is history-

dependent or static.

In summary, it is possible to combine any number of simulations, each

employing different biasing strategies. Nonetheless, every simulation must

be set up carefully because even a single erroneous simulation can compro-

mise the combined results. For this reason, it would be beneficial to track the

convergence of the simulations to detect this issue if it arises. The results

for this section were obtained with the Python code in Appendix B.1.3.
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3.2 Convergence Evaluation

When quantifying the accuracy of the evaluated FES, the exact solution is

typically not known, and it is, therefore, not possible to confirm that the cor-

rect FES was obtained. In some situations, a relatively short simulation may

suffice to find the correct FES, whereas other situations require longer simu-

lations. Even if the accuracy cannot be definitively established, it is possible

to measure the convergence, which in turn provides credibility to the result-

ing FES.

The convergence is commonly assessed using the statistical variance,

which quantifies the spread between a set of samples 𝑠𝑖 and their average

⟨𝑠⟩ = 1
𝑛

∑𝑛
𝑖 𝑠𝑖. The variance is given by:

𝜎2 =

∑𝑛
𝑖=1(𝑠𝑖 − ⟨𝑠⟩)2

𝑛 − 1
(3.3)

where 𝜎2 is the variance, and the ”−1” is the Bessel correction that compen-

sates for the bias introduced by using a subset of samples from the entire

distribution. As 𝑛 increases, the influence of the Bessel correction dimin-

ishes.

This section presents several methods for evaluating the variance of the

FES and the mean force. The first method is block averaging, a common

technique for assessing the convergence of MD simulations. This is followed

by an on-the-fly method for estimating the convergence of the average mean

force, and a volume-normalised error that accounts for the error increase

when exploring new regions. Next, a bootstrapping approach is introduced

to determine the error of the FES.

All methods are applied to evaluate the error of a Langevin dynamic

simulation on the analytical potential 𝑈 (𝜉) = 𝜉8 − 50𝑒−
( 𝜉−1)2
0.1 + 50𝑒−

( 𝜉−0.5)2
0.03 −

70𝑒−
𝜉2

0.03−93𝑒
− ( 𝜉+0.5)2

0.05 −103𝑒−
( 𝜉+1.5)2

0.07 , which is depicted in Figure 3.3. Only values

below an energy cutoff of 180 kJ/mol, indicated by the red-dashed line in

Figure 3.3, will contribute to the overall convergence.
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3.2.1 Block Averaging

When the variance of some quantity 𝑠 is calculated using equation 3.3, it

is essential to ensure that the samples 𝑠𝑖 are random. In statistics, this im-

plies that the samples are independent and identically distributed (i.i.d.).

However, in MD simulations, consecutive samples are typically correlated

because they are drawn from a time-dependent trajectory. Consequently,

the samples are not random, and their variance is underestimated if calcu-

lated directly.

Block averaging mitigates this problem by grouping 𝑛𝑏 consecutive sam-

ples into 𝑁𝑏 blocks. Each block 𝑖 is assigned a block value 𝑠′
𝑖
, which is the av-

erage of all samples within that block. For example, using 𝑛𝑏 = 3, each block

average is obtained by combining three consecutive samples, as shown in

Table 3.1).

In the general case, each block value 𝑠′
𝑖
is determined with the following

expression:

𝑠′𝑖 =
𝑖·𝑛𝑏∑︁

𝑗=(𝑖−1)·𝑛𝑏+1

𝑠 𝑗

𝑛𝑏
, (3.4)

where 𝑗 runs over the samples within block 𝑖. The total average ⟨𝑠⟩ remains

constant irrespective of 𝑛𝑏. The block variance, 𝜎2
𝑏
, is then determined us-

Figure 3.3: Potential energy surface (blue line) used for demonstrating conver-
gence estimation methods. Only values below the energy cutoff
(dashed line) are used for the convergence estimation.
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Data Avr.

Correlated: 𝑠1, 𝑠2, 𝑠3 𝑠4, 𝑠5, 𝑠6 ... 𝑠𝑛−2, 𝑠𝑛−1, 𝑠𝑛 ⟨𝑠⟩

Uncorrelated: 𝑠′1 𝑠′2 ... 𝑠𝑁𝑏
⟨𝑠⟩

Calculation:
𝑠1 + 𝑠2 + 𝑠3

3

𝑠4 + 𝑠5 + 𝑠6
3

...
𝑠𝑛−2 + 𝑠𝑛−1 + 𝑠𝑛

3
⟨𝑠⟩

Table 3.1: Table illustrates the calculation of the block averages using 3 samples
per block. The first row shows the raw samples, the second row shows
the collective samples, and the third row shows the calculation of the
collective samples.

ing:

𝜎2
𝑏 =

1

𝑁𝑏 − 1

𝑁𝑏∑︁
𝑖=1

(
𝑠′𝑖 − ⟨𝑠⟩

)
(3.5)

and the corresponding standard error is 𝜎𝑏 =
√︃
𝜎2
𝑏
/𝑁𝑏.

To determine a suitable block size 𝑛𝑏, the variance is calculated for in-

creasing 𝑛𝑏. Once the variance stabilises, the block size is deemed sufficient

to decorrelate the data, reflecting the uncorrelated variance. In this work, the

primary interest lies in evaluating 𝐹 (𝜉) and the mean force, 𝜕𝐹 (𝜉)/𝜕𝜉, both

defined on a discrete grid in the collective variable (CV) space. Accordingly,

their standard errors 𝜎(𝜉) are also computed for each grid point separately.

As an example, the standard error of the mean force was computed

with two different block sizes, using the simulation described at the start of

Section 3.2, and the results are shown in Figure 3.4.

In Figure 3.4, it can be observed that the overall error computed with a

block size of 1,000 simulation steps is slightly smaller than that obtained with

a block size of 300,000 simulation steps, although they are very similar. Both

results show qualitatively similar trends, namely an increased error around

the largest energy barrier (around 𝜉 = 0.5) and at the edges.

To facilitate direct comparison, it is helpful to average the error over the

CV range (global average), producing the average standard error 𝜎𝑏. The

calculation is then repeated for multiple block sizes and 𝜎𝑏 is plotted against
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𝑛𝑏, as shown in Figure 3.5.

As the variance plateaus at around 1 kJ/mol, it indicates that this value

corresponds to the uncorrelated standard error. Nevertheless, the block

size cannot be increased indefinitely because the number of samples is

finite and 𝑁𝑏 must remain large enough to yield a reliable variance estimate.

Consequently, block averaging is generally feasible only for sufficiently large

datasets and is typically performed after the simulation has concluded.

Figure 3.4: Standard deviation of the mean force as a function of 𝜉, calculated us-
ing block sizes of 100 simulation steps (blue line) and 10,000 simulation
steps (orange line).

(a) (b)

Figure 3.5: (a) Standard error obtained via block averaging as a function of block
size (blue line) and the convergence of the error (green dashed line).
(b) Progression of standard deviation calculated using blocks of 103

simulation steps (blue line) and 3 · 105 simulation steps (orange line).
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3.2.2 On-the-fly Variance

Although block averaging is a reliable way to determine the variance once

a simulation is completed, it would be advantageous to estimate the con-

vergence as the data becomes available (i.e. while the simulation is still

running).

In the MFI method, the average of the mean force is updated every time

a new time window is sampled. It would, therefore, be possible to evaluate

the variance of that average at the same frequency because a weighted

average is used to estimate the mean force, a corresponding weighted vari-

ance must be employed [79, 80, 81]. The weighted variance of variable 𝑥

is:

𝜎2 =

∑𝑁
𝑖=1

(
𝑤𝑖 (𝑥𝑖 − ⟨𝑥⟩)2

)
∑𝑁
𝑖=1 𝑤𝑖

·
𝑛𝑒 𝑓 𝑓

𝑛𝑒 𝑓 𝑓 − 1
=

(∑𝑁
𝑖=1 𝑤𝑖𝑥

2
𝑖∑𝑁

𝑖=1 𝑤𝑖
− ⟨𝑥⟩2

)
·

𝑛𝑒 𝑓 𝑓

𝑛𝑒 𝑓 𝑓 − 1
, (3.6)

where 𝑁 is the total number of samples, 𝑤𝑖 is the weight of sample 𝑥𝑖, the

subscript 𝑖 denotes the sample index and ⟨𝑥⟩ is the weighted average of

all samples. The factor 𝑛𝑒 𝑓 𝑓
𝑛𝑒 𝑓 𝑓−1 is analogous to the Bessel correction and

accounts for the bias introduced by using unequal weights. The effective

number of samples, 𝑛eff , is given by:

𝑛𝑒 𝑓 𝑓 =

(∑𝑁
𝑖=1 𝑤𝑖

)2∑𝑁
𝑖=1(𝑤2

𝑖
)
. (3.7)

The standard error is calculated as 𝜎 =

√︃
𝜎2

𝑛𝑒 𝑓 𝑓
, yielding the expression:

𝜎 =

√√√√√(∑𝑁
𝑖=1 𝑤𝑖𝑥

2
𝑖∑𝑁

𝑖=1 𝑤𝑖
− ⟨𝑥⟩2

)
·

∑𝑁
𝑖=1

(
𝑤2
𝑖

)(∑𝑁
𝑖=1 𝑤𝑖

)2
− ∑𝑁

𝑖=1

(
𝑤2
𝑖

) , (3.8)

Equation 3.8 can be used to compute the weighted variance of the av-
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erage mean force up to time 𝑡:

𝜎𝑡 (𝜉) =

√√√√√√√©­­«
∑𝑡
𝑡′=0 𝑃

𝑏
𝑡′ (𝜉)

(
𝜕𝐹𝑡′ (𝜉)
𝜕𝜉

)2∑𝑡
𝑡′=0 𝑃

𝑏
𝑡′ (𝜉)

−
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉2
𝑡

ª®®¬ ·
∑𝑡
𝑡′=0

(
𝑃𝑏
𝑡′ (𝜉)2

)(∑𝑡
𝑡′=0 𝑃

𝑏
𝑡′ (𝜉)

)2 − ∑𝑡
𝑡′=0

(
𝑃𝑏
𝑡′ (𝜉)2

)
(3.9)

where
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑡

is the average mean force up to time 𝑡, 𝜕𝐹𝑡′ (𝜉)
𝜕𝜉

is the mean

force of time window 𝑡′, and 𝑃𝑏
𝑡′ (𝜉) the corresponding biased probability den-

sity. Equation 3.9 enables estimation of the convergence of the average

mean force while the simulation is running. Most terms appearing in equa-

tion 3.9 must be computed to calculate the mean force anyway, so the addi-

tional overhead is negligible.

Because equation 3.9 calculates the error from consecutive, and thus

correlated, time windows, it underestimates the uncertainty of the mean

force (see discussion in Section 3.2.1). Nonetheless, this on-the-fly error

provides a qualitative assessment of the error of the mean force, enabling

an estimation of the position-dependent and global convergence. Once a

simulation has ended or run sufficiently long, the uncorrelated error of the

mean force can be found via block averaging (see Section 3.2.1).

The calculation of the on-the-fly error is demonstrated on the simulation

described at the start of Section 3.2. Figure 3.6 displays the final error map

and the evolution of the global average, along with the absolute deviation of

the FES from its analytical reference. These two error maps exhibit similar

qualitative behaviour: both show larger errors around the energy barriers

and near the edges. Their global error progressions likewise follow parallel

trends, although the absolute average deviation (AAD) displays more pro-

nounced fluctuations towards the end of the simulation. This mismatch is a

result of the error propagation through the integration of the mean force. A

local change in the mean force does not affect other regions directly. How-

ever, when integrated, this local change can result in shifting large parts

of the FES. Furthermore, both error progressions exhibit a notable peak
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after approximately 300,000 simulation steps, which corresponds to the ex-

ploration of a newly accessed basin. Before sampling this basin, the error

in that region was undefined and did not contribute to the global average.

When it was first sampled, the error of that region was immediately very

large but rapidly decreased as it was sampled further.

(a) (b)

Figure 3.6: (a) Final on-the-fly error of the mean force as a function of 𝜉 (blue line,
left y-axis) and the final absolute deviation of the FES as a function
of 𝜉 (red line, right y-axis). (b) Progression of the averaged on-the-fly
error of the mean force (blue line, left y-axis) and the averaged absolute
deviation of the FES (red line, right y-axis).

3.2.3 Volume Normalised Error

In the example of Section 3.2.2, Figure 3.6 shows an increase in the error

when a previously unsampled basin is explored. However, this increase

in error is a misleading representation, as the exploration of a new basin

should have a favourable contribution to the overall convergence.

To address this limitation, a volume normalised error is introduced, in

which the global error, 𝜎, is divided by the explored volume denoted by 𝑣.

The explored volume is defined as the ratio of the sampled CV space to the

total CV space under consideration.

Figure 3.7 illustrates this approach by comparing the error presented in

Section 3.2.2 with its volume-normalised counterpart. Figure 3.7 (a) shows

that the volume-normalised progression of the mean force error and the

absolute deviation of the FES have similar profiles, consistent with the ob-
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servations made in Figure 3.6. This is expected as both are scaled by 1/𝑣.

In Figure 3.7 (b), once the new basin is sampled (and 𝑣 increases signif-

icantly), the volume normalised error exhibits a smaller increase and de-

creases more rapidly below its pre-exploration level. By contrast, the non-

normalised error remains elevated for a longer period.

(a) (b)

Figure 3.7: (a) Progression of the volume normalised averaged on-the-fly error of
the mean force (blue line, left y-axis), and the averaged volume nor-
malised absolute deviation of the FES (red line, right y-axis). (b) Initial
progression (first 1,000,000 simulation steps) of the averaged on-the-
fly error of the mean force (blue line, left y-axis) and the volume nor-
malised version (blue dashed line, left y-axis), and the explored volume
(green line, right y-axis).

3.2.4 Variance of Independent Simulations

Up to this point, the error calculations for a single simulation have been

discussed. One of the advantages of MFI is the ability to patch multiple

simulations together, making it valuable to determine the error of the com-

bined mean force. To achieve this, the average mean forces,
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑗
, from

each simulation 𝑗 , with their respective probability density, 𝑃𝑏
𝑗
(𝜉), are com-

bined using equation 2.101, which yields the patched average mean force〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉
𝑝𝑎𝑡𝑐ℎ

. The weighted variance can then be computed with an expres-

sion analogous to equation 3.8:
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𝜎𝑝𝑎𝑡𝑐ℎ =

√√√√√√√√√©­­­«
∑𝑁
𝑗=1 𝑃

𝑏
𝑗
(𝜉)

〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉2
𝑗∑𝑁

𝑗=1 𝑃
𝑏
𝑗
(𝜉)

−
〈
𝜕𝐹 (𝜉)
𝜕𝜉

〉2
𝑝𝑎𝑡𝑐ℎ

ª®®®¬ ·
∑𝑁
𝑗=1

(
𝑃𝑏
𝑗
(𝜉)2

)
(∑𝑁

𝑗=1 𝑃
𝑏
𝑗
(𝜉)

)2
− ∑𝑁

𝑗=1

(
𝑃𝑏
𝑗
(𝜉)2

)
(3.10)

If each simulation is initiated with distinct starting configurations and

momenta, the resulting trajectories are independent, and no additional block

averaging is required to remove correlations. Furthermore, the on-the-fly er-

ror can be computed for multiple simulations (either run in series or parallel)

by patching their mean forces and probability densities and applying an ex-

pression analogous to equation 3.10. This procedure is demonstrated in

Section 3.4, where the on-the-fly error is calculated for 20 simulations per-

formed in series.

3.2.5 Bootstrapping Error of the FES

While the statistical error of the mean force is useful for estimating the con-

vergence, the free energy is usually of greater interest. Propagating the er-

ror of the mean force throughout the integration to estimate the uncertainty

in the FES is a feasible approach. However, because the error accumulates

along the integration path, the uncertainty of the FES is relatively small near

the reference point (e.g. 𝑚𝑖𝑛
(
𝐹 (𝜉)

)
= 0) and grows along the integration

path.

Bootstrapping the mean force offers an alternative approach and results

in a better estimation of the error of the FES. Given a set of 𝑁 uncorrelated

mean force samples and their associated probability densities, 𝑁 samples

are randomly drawn with replacement, allowing for repetitions or omissions.

These selected samples are then combined using a weighted average ap-

proach (see equation 2.95) and integrated to obtain an estimate of the FES.

Repeating this protocol multiple times generates an ensemble of FES esti-

mates. The uncertainty in the FES is evaluated by calculating the standard

error across this ensemble.
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This method is applied to the simulation described at the beginning of

Section 3.2, and the resulting bootstrap error is compared with the absolute

deviation of the FES, which is depicted in Figure 3.8. These two error met-

rics answer different questions: the bootstrap error measures the precision

(statistical uncertainty) of the result, but can not detect systematic bias (e.g.

inappropriate choice of CVs). Conversely, the absolute deviation evaluates

the accuracy relative to the reference solution.

The two error maps, depicted in Figure 3.8 (a), indicate a similar magni-

tude of the error and have a significant overlap. However, the bootstrapping

method slightly overestimates the error of the right basin (around 𝜉 = 1),

while underestimating the error of the energy barrier (around 𝜉 = 0.5) sepa-

rating the right basin from the rest of the surface. These discrepancies are a

result of infrequent sampling of the energy barrier. The error progressions,

depicted in Figure 3.8 (b), converge similarly once a sufficient amount of

data is collected. Like block averaging, this procedure is not well suited to

very small datasets, although the required data threshold for bootstrapping

appears lower. Although this bootstrap error provides a useful evaluation

of the statistical uncertainty of the FES, it should interpreted with caution,

because systematic biases remain invisible.

While bootstrapping generally provides a robust FES error estimate, it

demands more computational effort than on-the-fly mean-force error calcu-

lations, especially in higher-dimensional or finely resolved CV spaces. For

large systems, however, the computational overhead of bootstrapping is still

negligible compared to the MD simulation itself, allowing it to be performed

on-the-fly.
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(a) (b)

Figure 3.8: (a) Final bootstrap error of the FES as a function of 𝜉 (blue line) com-
pared with the final absolute deviation of the FES as a function of 𝜉 (red
line). (b) Progression of the global bootstrap error of the FES (blue line)
and the global absolute deviation of the FES (red line).
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3.3 Integration Methods
The integration of the mean force is an essential operation in MFI. Accuracy

is paramount: even a well-converged mean force, if integrated with a poor

algorithm, leads to an unreliable FES. The secondary consideration is com-

putational efficiency, which becomes important when repeated evaluations

of the FES are required (e.g. bootstrapping).

Although one-dimensional gradients are straightforward to integrate,

higher-dimensional cases are more complex because each dimension has

its own gradient. Managing these multiple gradients accurately can be chal-

lenging.

3.3.1 Finite Difference Method

Figure 3.9: Visualisation of a finite difference integration method: the trapezoidal
rule. The area under the curve is divided into 𝑁 trapezoids indexed
by 𝑖 = {1, 2, ..., 𝑁}. The vertical edges lie along 𝑥𝑖−1 and 𝑥𝑖; the lower
edge is on the 𝑥-axis between 𝑥𝑖−1 and 𝑥𝑖; and the upper edge is a line
connecting 𝑦𝑖−1 and 𝑦𝑖.

Finite difference methods are algebraic approximations that estimate

derivatives or integrals using nearby values. When these values become

infinitesimally close, the approximation converges to the exact solution. An

example of finding the integral is the trapezoidal rule, which approximates

a function with linear segments. Given a function, 𝑓 (𝑥), defined on grid,

𝑥 = {𝑥0, 𝑥1, ..., 𝑥𝑁 }, (e.g. the mean force as a function of a CV), the integral

is approximated by 𝑁 trapezoids, as illustrated in Figure 3.9. The integral is

calculated with the following equation:
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∫ 𝑥𝑁

𝑥0

𝑓 (𝑥) 𝑑𝑥 ≈
𝑁∑︁
𝑖=1

𝑓 (𝑥𝑖−1) + 𝑓 (𝑥𝑖)
2

(𝑥𝑖 − 𝑥𝑖−1) (3.11)

From Figure 3.9, it can be seen that in concave sections of the curve,

the area is underestimated, and in the convex sections, the area is overes-

timated. The accuracy can be improved by using more data points or by

employing more sophisticated methods. In this work, the Simpson’s rule

[82] is primarily used for integrating one-dimensional gradients. For a func-

tion defined on an equally spaced grid (i.e., the grid spacing, Δ𝑥 = 𝑥𝑖 − 𝑥𝑖−1,

is constant) with an even number of grid points, the integral is approximated

as:∫ 𝑥𝑁

𝑥0

𝑓 (𝑥) 𝑑𝑥 ≈ Δ𝑥

3

[
𝑓 (𝑥0) + 4

𝑁/2∑︁
𝑖=1

𝑓 (𝑥2𝑖−1) + 2

𝑁/2−1∑︁
𝑖=1

𝑓 (𝑥2𝑖) + 𝑓 (𝑥𝑁 )
]
. (3.12)

If the total number of grid points is odd, all grid points except the last are

integrated with equation 3.12, and the last grid point is accounted for by a

correction term [83]:∫ 𝑥𝑁

𝑥0

𝑓 (𝑥) 𝑑𝑥 ≈
∫ 𝑥𝑁−1

𝑥0

𝑓 (𝑥) 𝑑𝑥 + Δ𝑥

12
[5 𝑓 (𝑥𝑁 ) + 8 𝑓 (𝑥𝑁−1) − 𝑓 (𝑥𝑁−2)] . (3.13)

As opposed to the trapezoid rule, which approximates a function with

linear segments, Simpson’s rule approximates a function with segments of

parabolas, which are better suited for capturing the function’s curvature.

The finite difference method extends to functions defined on multiple

dimensions. In the case of integrating two-dimensional gradients, one of the

corners is selected as a starting point. From there, the 𝑥-gradient is inte-

grated along the 𝑥-dimension, using a finite difference method (e.g. trape-

zoid rule. This yields a preliminary set of integrated values along 𝑥 for a

fixed 𝑦. Next, each of these integrated points is used as a starting point for

integrating the 𝑦-gradient along the 𝑦-dimension. This concept is illustrated

in Figure 3.10, which can likewise be performed in reverse order by first
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integrating along 𝑦 and then along 𝑥.

Figure 3.10: Integration in two dimensions using a finite difference integration
method: Starting from a corner, the 𝑥-gradient is integrated along the
𝑥-dimension (green arrows). Next, each integrated point is a starting
point for the integration of the 𝑦-gradient along the 𝑦-dimension (yel-
low arrows).

This method provides reasonable accuracy for smooth surfaces but be-

comes less reliable as the gradients become noisier. The inherent problem

is that, in the presence of noise, nearby grid points can follow integration

paths that yield inconsistent results. For example, the values obtained at

(𝑥1, 𝑦8) and (𝑥2, 𝑦8) in Figure 3.10 may differ substantially if the noise along

their integration paths differs. These discrepancies can lead to systematic

errors (an example is depicted in Figure 3.12 (a)), making this method un-

suitable for multi-dimensional data from simulations. Increasing the number

of data points might reduce the mismatch, but it also increases computa-

tional cost. Consequently, a more sophisticated approach is preferable for

higher-dimensional integration.

3.3.2 Least-Squares Finite Difference Method

As discussed in Section 3.3.1, conventional finite-difference methods can be

unreliable for integrating multi-dimensional gradients when noise is present.

A more robust solution is the least-squares finite-difference approach, in

which neighbouring grid points are connected via finite-difference approxi-
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mations:

𝑓𝑥 (𝑥𝑖, 𝑦 𝑗 ) =
𝜕𝐹 (𝑥𝑖, 𝑦 𝑗 )

𝜕𝑥
≈
𝐹 (𝑥𝑖, 𝑦 𝑗 ) − 𝐹 (𝑥𝑖−1, 𝑦 𝑗 )

Δ𝑥
, (3.14)

𝑓𝑦 (𝑥𝑖, 𝑦 𝑗 ) =
𝜕𝐹 (𝑥𝑖, 𝑦 𝑗 )

𝜕𝑦
≈
𝐹 (𝑥𝑖, 𝑦 𝑗 ) − 𝐹 (𝑥𝑖, 𝑦 𝑗−1)

Δ𝑦
, (3.15)

where 𝐹 (𝑥𝑖, 𝑦 𝑗 ) is a function defined on a two-dimensional grid, with 𝑓𝑥 (𝑥𝑖, 𝑦 𝑗 )

and 𝑓𝑦 (𝑥𝑖, 𝑦 𝑗 ) denoting gradients in 𝑥 and 𝑦, respectively. There are a total of

𝑁𝑥 grid points in the 𝑥-dimension, indexed by 𝑖, and a total of 𝑁𝑦 grid points

in the 𝑦-dimension, indexed by 𝑗 .

This setup produces 2 · 𝑁𝑥 · 𝑁𝑦 equations, connecting the 2 · 𝑁𝑥 · 𝑁𝑦
known gradient values to 𝑁𝑥 ·𝑁𝑦 unknown values of 𝐹. This over-determined

system of equations is solved using a least-squares optimisation, where 𝐹

is iteratively refined to minimise the error in each equation. The resulting

integral is much smoother in the presence of noise (see Figure 3.12). While

this method is more reliable than the finite difference method presented in

Section 3.3.1, this comes at the expense of increased computational cost.

For this work, a MATLAB implementation by John D’Errico [84] was

translated to Python and employs the LSMR (Least Squares Minimal Resid-

ual) solver [85] from the SCIPY library [86].

3.3.3 Fast Fourier Transform

While the finite difference methods presented in sections 3.3.2 and 3.3.2

provide an intuitive integration algorithm, integrating the gradients into

Fourier space can yield an even more robust method.

The Fourier Transform (FT) transforms a function from the spatial do-

main (Cartesian coordinates) to the frequency domain by decomposing it

into a sum of sine and cosine terms [87]. While the Fast Fourier Trans-

form (FFT) is applied to continuous functions, the Discrete Fourier Transform

(DFT) is used for data defined on a discrete domain. Fast Fourier Transform

(FFT) [88] is a highly efficient implementation of the DFT, taking advantage
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of periodicity and symmetry to reduce computational costs. Due to the wide

use of FFT in digital signal processing, it is a well-optimised tool available in

numerous libraries. For this project, NumPy’s [89] FFT module is employed

in an integration algorithm, where the discrete gradients are transformed to

the frequency domain, integrated, and then transformed back to the spa-

tial domain [90, 91]. The computational complexity of the FFT scales as

O(𝑁 log 𝑁) for 𝑁 data points, rendering this approach efficient for surfaces

defined on large grids.

3.3.3.1 Fourier Transform in One Dimension.

Given a function defined on a one-dimensional grid with 𝑁 points, 𝑥𝑛 =

{𝑥0, 𝑥1, . . . , 𝑥𝑁−1}, the DFT finds the Fourier coefficients, 𝑋𝑘 = {𝑋0, 𝑋1, . . . , 𝑋𝑁−1},

of that data [87]:

𝑋𝑘 = F (𝑥𝑛)

=

𝑁−1∑︁
𝑛=0

𝑥𝑛

[
cos

(
− 2𝜋𝑘

𝑁
𝑛

)
+ 𝑖 sin

(
− 2𝜋𝑘

𝑁
𝑛

)]
=

𝑁−1∑︁
𝑛=0

𝑥𝑛 exp
(
− 𝑖2𝜋𝑘

𝑁
𝑛

)
=

𝑁−1∑︁
𝑛=0

𝑥𝑛 exp
(
− 𝑖𝜔𝑘𝑛

)
,

(3.16)

where there are a total of 𝑁 Fourier coefficients that are indexed by 𝑘,

𝜔𝑘 = 2𝜋𝑘
𝑁

is their angular frequency, F denotes the DFT operator, and 𝑖

is the imaginary unit. The second and third lines are connected through

Euler’s equation: 𝑒𝑖𝑥 = cos 𝑥 + 𝑖 sin 𝑥. The data in the spatial domain can

be obtained by applying the inverse Fourier transform operator, F −1, on the

Fourier coefficients [87]:

𝑥𝑛 = F −1(𝑋𝑘 )

=
1

𝑁

𝑁−1∑︁
𝑘=0

𝑋𝑘 exp
(
𝑖𝜔𝑘𝑛

)
.

(3.17)
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The derivative of 𝑥𝑛 is obtained by differentiating equation 3.17 with

respect to 𝑛. Since 𝑋𝑘 and 𝜔𝑘 only depends on 𝑘, the derivative is expressed

as:

𝑑𝑥𝑛

𝑑𝑛
=

1

𝑁

𝑁−1∑︁
𝑘=0

𝑋𝑘
𝑑
(
exp (𝑖𝜔𝑘𝑛)

)
𝑑𝑛

=
1

𝑁

𝑁−1∑︁
𝑘=0

𝑖𝜔𝑘𝑋𝑘 exp
(
𝑖𝜔𝑘𝑛

)
𝑑𝑥𝑛

𝑑𝑛
= F −1 (𝑖𝜔𝑘𝑋𝑘 ) .

(3.18)

Similarly, the integral of 𝑥𝑛 is obtained by integrating equation 3.17 with

respect to 𝑛:

∫
𝑥𝑛 𝑑𝑛 =

1

𝑁

𝑁−1∑︁
𝑘=0

𝑋𝑘

∫
exp

(
𝑖𝜔𝑘𝑛

)
𝑑𝑛

=
1

𝑁

𝑁−1∑︁
𝑘=0

𝑋𝑘

𝑖𝜔𝑘
exp

(
𝑖𝜔𝑘𝑛

)
+ 𝐶∫

𝑥𝑛 𝑑𝑛 = F −1
(
𝑋𝑘

𝑖𝜔𝑘

)
+ 𝐶 .

(3.19)

Here, C is an integration constant, which is usually set to zero in free

energy calculations since only relative values are required. In practice, the

integration is accomplished by a Fourier transform on the gradient data,

dividing the Fourier coefficients by 𝑖𝜔𝑘 , and lastly using the inverse Fourier

transform to obtain the integrated data [90, 91].

3.3.3.2 Extension to Multiple Dimensions.

This method can also be expanded to higher dimensions. Given a function,

𝑥𝑚,𝑛, defined on a two-dimensional domain, with 𝑀 data points along the

first dimension indexed by 𝑚, and 𝑁 data points along the second dimension

indexed by 𝑛, the Fourier transform is calculated as follows:
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𝑋𝑘,𝑙 = F (𝑥𝑚,𝑛)

=

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑥𝑚,𝑛 exp

(
− 𝑖2𝜋

(𝑚𝑘
𝑀

+ 𝑛𝑙
𝑁

))
=

𝑀−1∑︁
𝑚=0

𝑁−1∑︁
𝑛=0

𝑥𝑚,𝑛 exp
(
− 𝑖(𝜔𝑘𝑚 + 𝜔𝑙𝑛)

) (3.20)

where there are a total of 𝑁 Fourier coefficients along the first frequency

dimension that are indexed by 𝑙, and 𝑀 Fourier coefficients in the second

frequency dimension that are indexed by 𝑘. The angular frequencies of the

first and second dimensions are 𝜔𝑘 = 2𝜋𝑘
𝑀

and 𝜔𝑙 = 2𝜋𝑙
𝑁

, respectively. The

inverse Fourier transform is defined as:

𝑥𝑚,𝑛 = F −1(𝑋𝑘,𝑙)

=
1

𝑀𝑁

𝑀−1∑︁
𝑘=0

𝑁−1∑︁
𝑙=0

𝑋𝑘,𝑙 exp
(
𝑖(𝜔𝑘𝑚 + 𝜔𝑙𝑛)

) (3.21)

In MFI, the objective is to integrate a vector field x𝑚,𝑛 =
[
𝑥
(𝑚)
𝑚,𝑛 , 𝑥

(𝑛)
𝑚,𝑛

]T,

where 𝑥 (𝑚)𝑚,𝑛 represents the gradient in the 𝑚-dimension, and 𝑥 (𝑛)𝑚,𝑛 represents

the gradient in the 𝑛-dimension, to obtain some scalar function 𝑧𝑚,𝑛, which

corresponds to the FES. Equation 3.22 relates 𝑧𝑚,𝑛 to its known gradients

via Poisson’s equation:

Δ𝑧𝑚,𝑛 = ∇ · x𝑚,𝑛 , (3.22)

where Δ denotes the Laplacian operator (Δ 𝑓 = ∇ · ∇ 𝑓 ), and ∇ · x𝑚,𝑛 is the

divergence of the vector field, which can be expressed as:

∇ · x𝑚,𝑛 =
𝜕𝑥

(𝑚)
𝑚,𝑛

𝜕𝑚
+
𝜕𝑥

(𝑛)
𝑚,𝑛

𝜕𝑛

=

𝜕F −1
(
𝑋
(𝑘)
𝑘,𝑙

)
𝜕𝑚

+
𝜕F −1

(
𝑋
(𝑙)
𝑘,𝑙

)
𝜕𝑛

= F −1
(
𝑖𝜔𝑘𝑋

(𝑘)
𝑘,𝑙

)
+ F −1

(
𝑖𝜔𝑙𝑋

(𝑙)
𝑘,𝑙

)
,

(3.23)

where X𝑘,𝑙 = [𝑋 (𝑘)
𝑘,𝑙
, 𝑋

(𝑙)
𝑘,𝑙
]T contains the Fourier coefficients of x𝑚,𝑛. Similarly,
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the Laplacian of 𝑧𝑚,𝑛 is expressed as:

Δ𝑧𝑚,𝑛 =
𝜕2𝑧𝑚,𝑛

𝜕𝑚2
+ 𝜕

2𝑧𝑚,𝑛

𝜕𝑛2

=
𝜕2F −1(𝑍𝑘,𝑙)

𝜕𝑚2
+ 𝜕

2F −1(𝑍𝑘,𝑙)
𝜕𝑛2

= F −1
(
(𝑖𝜔𝑘 )2𝑍𝑘,𝑙

)
+ F −1

(
(𝑖𝜔𝑙)2𝑍𝑘,𝑙

)
,

(3.24)

where 𝑍𝑘,𝑙 are the Fourier coefficients of 𝑧𝑚,𝑛. By applying the Fourier oper-

ator on either side of equation 3.22, and using equations 3.23 and 3.23, the

following expression is found:

F (Δ𝑧𝑚,𝑛) = F (∇ · x𝑚,𝑛)

(𝑖𝜔𝑘 )2𝑍𝑘,𝑙 + (𝑖𝜔 𝑗 )2𝑍𝑘,𝑙 = 𝑖𝜔𝑘𝑋 (𝑘)
𝑘,𝑙

+ 𝑖𝜔 𝑗𝑋
(𝑙)
𝑘,𝑙

𝑍𝑘,𝑙 =
𝑖𝜔𝑘𝑋

(𝑘)
𝑘,𝑙

+ 𝑖𝜔 𝑗𝑋
(𝑙)
𝑘,𝑙

−𝜔2
𝑘
− 𝜔2

𝑙

,

(3.25)

When applying the inverse Fourier transform to equation 3.25, the inte-

gral of some gradient x𝑚,𝑛 is found with the following equation:

𝑧𝑚,𝑛 =

∫ ∫
x𝑚,𝑛 𝑑𝑚 𝑑𝑛 = F −1

(
−
𝑖𝜔𝑘𝑋

(𝑘)
𝑘,𝑙

+ 𝑖𝜔 𝑗𝑋
(𝑙)
𝑘,𝑙

𝜔2
𝑘
+ 𝜔2

𝑙

)
(3.26)

In the context of MFI, where the mean forces, which are defined on a two-

dimensional CV-space, 𝜕𝐹 (𝜉1,𝜉2)
𝜕𝜉1

and 𝜕𝐹 (𝜉1,𝜉2)
𝜕𝜉2

, are integrated to find the FES,

𝐹 (𝜉1, 𝜉2), equation 3.26 can be rewritten:

𝐹 (𝜉1, 𝜉2) = F −1
(
−
𝑖𝜔𝑘F

(
𝜕𝐹 (𝜉1,𝜉2)

𝜕𝜉1

)
+ 𝑖𝜔𝑙F

(
𝜕𝐹 (𝜉1,𝜉2)

𝜕𝜉1

)
𝜔2
𝑘
+ 𝜔2

𝑙

)
(3.27)

In 𝐷 dimensions, a generalised version of equation 3.26 is used:

𝐹 (𝝃) = F −1
(∑𝐷

𝑑=1 𝜔𝑑F
(
𝜕𝐹 (𝝃)
𝜕𝜉𝑑

)
𝑖
∑𝐷
𝑑=1 𝜔

2
𝑑

)
(3.28)
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3.3.3.3 Antisymmetric Periodic Extension.

Because the Fourier transform assumes periodic boundary conditions, dis-

continuities can appear at the edges of the domain if the data is not inher-

ently periodic. In gradient-based integration, these discontinuities manifest

as artificial jumps in the integrated function. To mitigate this, each gradient

component is extended with an antisymmetric (odd) copy in the dimension

under consideration.

For a one-dimensional gradient, this is simply done by extending the

gradient with a copy of it that is flipped around the force-axis and the CV-axis,

as illustrated in Figure 3.11 (a). If the gradient ∇𝐹 (𝜉) is originally defined

over the domain 𝜉 ∈ [𝜉𝐿 , 𝜉𝑈], the extended gradient, defined on the extended

domain 𝜉∗ ∈ [𝜉𝐿 , 2𝜉𝑈 − 𝜉𝐿], can be described by:

∇𝐹ext(𝜉∗) =


∇𝐹 (𝜉) if 𝜉∗ ≤ 𝜉𝑈 ,

−∇𝐹 (−𝜉) if 𝜉∗ > 𝜉𝑈 .
(3.29)

After the extended gradient has been integrated, resulting in the extended

integral, the final integral can be recovered from the original domain as

shown in Figure 3.11 (b).

In multiple dimensions, this procedure is repeated for each dimension.

The gradients are sequentially extended with a copy of themselves that is

flipped around each dimension successively. If the flipped dimension cor-

responds to the dimension of the gradient, the extension is flipped around

the force axis. Given a CV space with 𝐷 dimensions, 2𝐷 copies of each

gradient are required. An illustration of this procedure is shown in Figure

3.11, where two-dimensional 𝑥- and 𝑦-gradients, shown in Figures 3.11 (c)

and (d), are extended and integrated. The resulting extended integral is

depicted in Figure 3.11 (e), and the final integral can be obtained from the

original domain.

Even though the extended gradients have discontinuities in their abso-
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lute values, their slopes remain continuous. This continuity is crucial for

the FFT integration algorithm because it relies on smooth changes in the

derivative to reconstruct the integral accurately.

3.3.4 Comparing Integration Methods

The accuracy of each integration method was assessed by integrating an

exact (analytical) force and multiple forces that contain random noise mim-

icking simulation data. The noisy forces are produced by adding random

fluctuations to the analytical force and applying a Gaussian filter to correlate

the fluctuations in a controlled manner, thereby creating fewer but broader

fluctuations. A range of fluctuations and correlation lengths were used to

generate 3,200 noisy gradients, which were integrated with each method,

(a) (b)

(c) (d) (e)

Figure 3.11: Illustration of the periodic extension that makes gradients appear con-
tinuous at the domain edges for Fourier-based integration. (a) Exten-
sion of a one-dimensional gradient (blue line) with the original gradient
(green-dashed line), and (b) the resulting extended integral (blue line)
with the final integral (green-dashed line). (c) Extension of the two-
dimensional x-gradient with the original gradient indicated by the black
box. (d) Extension of the two-dimensional y-gradient with the original
gradient indicated by the black box. (e) Extended two-dimensional in-
tegral with the final integral indicated by the black box.
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and their respective integration errors were averaged (More details in ap-

pendix A.1).

The first comparison involves integrating a one-dimensional potential

energy surface:

𝑈 (𝜉) =4
3

(
− 14𝑒−0.25(𝜉+3.5)

4 − 25𝑒−0.25(𝜉−3.5)
4 − 10𝑒−(𝜉+0.5)

2

− 2 sin(−8𝜉) + 𝑒−2𝜉−9 + 𝑒2𝜉−9
)
,

where 𝜉 is defined on a grid with 500 bins. The accuracy and the com-

putational time for each method are summarised in Table 3.2. All ap-

proaches yield a very low error when integrating the analytical force. For the

noisy force, each method also performs well, with Simpson’s rule showing

a slight edge. Simpson’s rule is further distinguished by its speed, requiring

only 4 𝜇s, whereas the fast FFT integration takes over 20 times longer and

the least-squares finite difference method requires more than 5,000 times

longer. Consequently, Simpson’s rule is used predominantly to integrate

one-dimensional gradients in this work.

Comparison of Integration Methods in One-Dimensional Space

Method
AAD of FES

(Analytical Force)
AAD of FES

(Noisy Force)
Computation

time
Units [kJ/mol] [%] [kJ/mol] [%] [𝜇s]

Simpson’s Rule 0.00016 0.00283 1.59671 12.575 4
Least-Squares

Finite Difference 0.04336 0.93223 1.60280 13.093 21000

FFT integration 0.00376 0.04233 1.59649 12.570 90

Table 3.2: AAD, %AAD and computation time for various one-dimensional integra-
tion methods.

Next, the integration methods are compared for two-dimensional gradi-

ents of the potential surface [76]:

𝑈 (𝜉1, 𝜉2) =1.35𝜉41 + 1.90𝜉31𝜉2 + 3.93𝜉21𝜉
2
2 − 6.44𝜉21 − 1.90𝜉1𝜉

3
2

+ 5.59𝜉1𝜉2 + 1.33𝜉1 + 1.35𝜉42 − 5.56𝜉22 + 0.90𝜉2 + 18.59 ,
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Comparison of Integration Methods in Two-Dimensional Space

Method
AAD of FES

(Analytical Force)
AAD of FES

(Noisy Force)
Computation

time
Units [kJ/mol] [%] [kJ/mol] [%] [ms]

Finite Difference 0.378 6.161 2.974 118.035 490
Least-Squares

Finite Difference 0.515 5.240 0.879 9.593 2200

FFT integration 0.004 0.137 0.328 7.231 21

Table 3.3: AAD, %AAD and computation time for various two-dimensional integra-
tion methods.

which is defined on a grid with 250 × 250 bins and is depicted in Figure 3.12

(a).

Table 3.3 summarises the accuracy and computational time for each

method. The FFT approach clearly achieves the lowest error when inte-

grating both analytical and noisy gradients. While the finite difference and

least-squares finite difference methods show comparable accuracy for the

analytical gradient, the finite difference approach performs poorly on noisy

data due to its vulnerability to inconsistent noise along integration paths (see

Section 3.3.1 and Figure 3.12 b). The FFT method is also the fastest, re-

quiring only 21 ms, whereas the finite difference method is more than 20

times slower, and the least-squares method is over 100 times slower. Con-

sequently, FFT integration is chosen for two-dimensional gradients in this

work.

The reduced error for integrating the noisy gradients with the FFT

method partly results from small fluctuations not being propagated through

the Fourier transform. Hence, it is important to use sufficiently fine grids

in scenarios where sharp features are expected in the FES. Moreover, the

least-squares integration relies on scipy optimisation tools [86, 85], which

could be replaced with custom implementations to achieve better perfor-

mance. However, this was not prioritised in this work, because the FFT

method performs this well.
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To give an impression of the advantage of the FFT integration, a noisy

mean force from a non-converged MD simulation was integrated with each

method, and the resulting FESs are shown in Figure 3.12. The FES inte-

grated with the finite difference method (Figure 3.12 b) shows significant dis-

tortions caused by inconsistent noise along different paths in the x-gradient.

The least-squares approach (Figure 3.12 c) yields a smooth surface but un-

derestimates the free energy of the right basin. In contrast, the FFT method

(Figure 3.12 d) results in an FES that most closely resembles the analytical

reference (Figure 3.12 a).

Figure 3.12: Comparing the integration of noisy two-dimensional gradients using
various methods. (a) Reference solution, (b) finite difference integra-
tion, (c) least-squares finite difference integration, and (d) fast Fourier
transform integration.
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3.4 Testing the Methods on Alanine Dipeptide
Alanine dipeptide was chosen as a test system to evaluate the methods

introduced in this chapter. This small organic molecule is often used to

benchmark enhanced sampling techniques [37, 92, 73, 77]. Its conforma-

tional free energy depends on the Ramachandran dihedral angles Φ and

Ψ, depicted in Figure 3.13. The two configurations illustrated in Figure 3.13

are Alanine Dipeptide’s two stable states, which are separated by a large

energy barrier (see Figure 3.14). The energy barrier is so large that it is

highly unlikely to cross it in an unbiased MD simulation, making enhanced

sampling methods necessary. Alanine dipeptide was simulated in vacuo at

Figure 3.13: Visualisation of alanine dipeptide. Each molecule represents one of
its two stable conformations. The two dihedral angles Φ and Ψ are
indicated by the arrows. Figure adapted from plumed.org [4]

300 K, using GROMACS [71] with the AMBER99SB force field [68]. New-

ton’s equations of motion were integrated using the leap-frog algorithm [70]

with a time step of 1 fs. A cutoff of 1.2 nm was applied for non-bonded in-

teractions, and electrostatic interactions were calculated using the Particle

Mesh Ewald (PME) method [70]. The temperature was maintained at 300 K

through a velocity-rescaling thermostat [70]. The simulation was carried out

in a triclinic simulation box, with side lengths of 2.856 nm and cell angles of

60°, 60°, and 90°. The MD simulation was biased with PLUMED [93, 94].

Initially, alanine dipeptide was simulated under a metadynamics bias

for 100 ns. This is a very long simulation time for such a small system,

providing a high certainty that the resulting FES is converged. The data was

analysed with MFI and the FES illustrated in Figure 3.14. Since there is a
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high confidence that the FES is accurate, it will serve as a reference FES

for subsequent examples where the absolute deviation (AD) is calculated.

(a) (b)

Figure 3.14: Reference FES as a function of dihedral angles Φ and Ψ.

To demonstrate the capabilities of MFIs, three different simulation pro-

tocols were conducted:

1. Long: A single 20 ns simulation.

2. Short: Twenty independent 1 ns MetaD simulations. Their starting

configurations were alternated between the two stable configurations.

3. Hybrid: The first ten MetaD simulations from protocol (2) were com-

bined with ten additional 1 ns simulations using MetaD and a harmonic

constraint across the energy barrier.

All simulations employed WT-MetaD bias that was updated every 0.5 ps

with Gaussian hills characterised by an initial height of 3 kJ/mol, a width of

0.1 rad for each CV, and a bias factor of 20. The harmonic restraint had a

force constant of 40 kJ/mol/rad2, with their centres indicated by the yellow

circles in Figure 3.15 (j). The CVs were recorded every 0.05 ps, and the

probability density was constructed using Gaussian kernels with a width of

0.1 rad for both dimensions.

The final results of all protocols are illustrated in Figure 3.15, where the

results of the long simulation are shown in the first row. The results of the
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combined twenty short simulations are shown in the second row, and the

last row shows the results of the combined hybrid simulations. Visually, the

FES of each protocol appears similar, but the AD reveals that the long sim-

ulation has the lowest overall error, while the short simulations exhibit larger

deviations, particularly around the transition region (Φ ≈ 0). This difference

can be explained by examining their probability densities: The long simula-

tion had sufficient time to build a MetaD potential that facilitates nearly uni-

form sampling. On the other side, the short simulations develop the MetaD

potential only briefly, leading to thorough sampling in low-energy regions but

a sparse coverage of the transition region. Nevertheless, the energy differ-

ence between the two basins is estimated with an error of about 1 kJ/mol for

the long simulation, while that error is 2.5 kJ/mol for the short simulations.

By contrast, in the hybrid approach, the sampling of the transition region is

increased considerably due to the harmonic constraints, resulting in an AD

along the transition path that is comparable to that of the long simulations.

Additionally, the absolute deviation of the FES of each protocol (de-

picted in the fourth column of Figure 3.15) is normalised by the statistical

error map of the 100 ns reference simulation. The statistical error is calcu-

lated via block averaging and is depicted in Figure 3.16 (a), and the result-

ing normalised absolute deviations are depicted in Figure 3.16 (b-d). Blue

regions where the normalised absolute deviations lie within the 1𝜎 uncer-

tainty of the reference and are therefore statistically indistinguishable from

it, whereas the red zones highlight significant discrepancies.

The block-averaged error of the reference simulation (Figure 3.16 a)

is typically below 0.5 kJ/mol in the low-energy basins, and rising to about

1 − 1.5 kJ/mol along the high-energy regions. Figure 3.16 (b) shows that

the long simulation reproduces the reference FES within two standard devi-

ations over most of the landscape, with a significant exception in the transi-

tion region around Φ ≈ −0 rad and Ψ ≈ 0 rad), indicating a persistent bias

where transitions remain under-sampled even after 20 ns. The set of short,
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independent simulations (Figure 3.16 c) exhibits significant systematic devi-

ations in high energy regions, white the metastable basins are reproduced

within three standard deviations. The hybrid protocol (Figure 3.16 d) per-

forms similarly well compared to the long simulation protocol, but better in

the transition region around Φ ≈ −0 rad and Ψ ≈ 0 rad).

These results demonstrate that multiple short simulations can be con-

ducted instead of a long simulation, yielding converged, self-consistent free-

energy estimates.

Although a single long simulation may converge faster than multiple

Figure 3.15: Comparison of different simulation strategies. The first row (a - d)
shows results from a single 20 ns MetaD simulation. The second row
(e-h) shows the combined results from twenty 1 ns MetaD simulations.
The third row (i - l) shows the combined results from the first ten short
simulations of the second row, plus ten more 1 ns simulations em-
ploying a MetaD bias and a harmonic constraint in one of the yellow
circles of panel (j). The first column shows the final FES, the second
column shows the final biased probability density, the third column
shows the error of the mean force, and the fourth column shows the
absolute deviation of the FES.
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short ones, alanine dipeptide represents a relatively simple system com-

pared to many of the systems typically investigated. More complex systems

require substantially greater computational resources, such that a single

simulation run long enough to achieve convergence might be beyond the

computational resources of the researchers. Dividing the simulation into

several shorter runs offers increased flexibility in resource management.

This approach allows for parallel execution, which improves overall through-

put, or sequential runs, which enables the optimisation of the biasing pa-

rameters.

Figure 3.16: (a) Uncertainty in FES of the 100 ns reference simulation calculated
with block averaging. (b-d) Normalised absolute deviations of three
MFI protocols: (b) single long simulation, (c) 20 short simulations,
(d) hybrid protocol. Deep blue regions denote agreement within the
statistical uncertainty of the reference; red regions highlight notable
discrepancies.
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3.5 Conclusions

This chapter presented new developments in the MFI post-processing

method. It was shown that multiple independent simulations subject to var-

ious static and history-dependent bias potentials can be merged in post-

processing to produce a single coherent estimate of the FES. This capability

allows combining suboptimal or incomplete simulations with new runs em-

ploying improved biasing parameters, thereby conserving simulation data

that would otherwise be discarded and resampled.

An on-the-fly estimation of the local convergence was introduced, which

evaluates the weighted variance of the average mean force in real time. This

convergence estimator was shown to correlate well with the absolute devia-

tion of the FES, as demonstrated by various analytical models and a study

of alanine dipeptide. It can be further validated by a bootstrapping proce-

dure that quantifies the statistical uncertainty in the FES through repeated

sampling, patching and integration of uncorrelated blocks of mean forces.

Moreover, a volume-normalised global error is proposed, ensuring that sam-

pling a new region of CV space won’t significantly increase the convergence

estimation.

In combination with the fast FFT-based integration method for multi-

dimensional gradients, these convergence diagnostics enable the identifi-

cation of undersampled regions. If required, additional sampling can be

focused on those regions via harmonic restraints or other biasing strate-

gies, and all the simulation data can then be combined through MFI. This

approach enables a more effective allocation of computational resources.

Moreover, the ability to patch multiple simulations greatly benefits com-

putational workflows involving large chemical systems or expensive cal-

culations (e.g. quantum-mechanical). Instead of running a single, very

long simulation, the total sampling can be decomposed into smaller runs.

These shorter simulations may be run in parallel, thereby increasing overall

throughput. Alternatively, they can be conducted in a sequential fashion,
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allowing biasing parameters to be refined systematically. Such splitting also

offers the flexibility to distribute calculations across different machines or al-

location periods, mitigating hardware constraints and monthly usage limits.

The applicability of these methods was demonstrated through analyti-

cal models of increasing complexity and the conformational changes of ala-

nine dipeptide. All examples are implemented via the pyMFI Python library,

which is publicly accessible at https://github.com/mme-ucl/pyMFI, making

these techniques readily accessible for post-processing biased simulations

for all researchers. Use cases and simple examples of the use of pyMFI to

post-process biased simulations are provided within the repository and in

the Appendix B.





Chapter 4

Applications to Nucleation

Problems

In this chapter, the methods introduced in Chapter 3 are applied to analyse

and combine multiple short simulations of nucleating systems. In section

4.2, the nucleation of supersaturated argon vapour to form a liquid droplet

is investigated, and in section 4.3, the two-step crystallisation of a colloidal

system is analysed.

The contents of this chapter were published by the author of this thesis in

the Journal of Chemical Theory and Computation [77].

4.1 Relevance of Nucleation

Nucleation marks the emergence of a new stable phase (nucleus) from

a metastable parent phase. This event frequently determines the rate

at which first-order phase transitions occur, including the crystallisation of

solids from solution or the formation of liquid droplets in vapour [95, 96].

In the chemical industry, nucleation is the initiating step in a wide range of

crystallisation-based separation operations, in which a solute is selectively

precipitated from the bulk solution and simultaneously converted into its fi-

nal form. Therefore, precise control over this step is critical for tailoring key

product qualities such as purity, particle size, and morphology [28, 36, 32].

Moreover, in natural phenomena, nucleation governs vital processes rang-
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ing from ice crystal formation in clouds [97, 98] and biomineralisation in liv-

ing organisms [99, 100] to the growth of minerals in geothermal reservoirs

[99, 101, 102]. Therefore, a comprehensive understanding of nucleation

mechanisms is essential for optimising industrial processes and elucidating

the principles driving natural phenomena.

The initial formation of the nucleus is unstable, as the free energy

cost associated with creating a new interface (surface) between the two

phases exceeds the free energy reduction from converting a portion of the

metastable phase into the stable phase (new volume) [95]. However, as

the nucleus grows, the surface-to-volume ratio decreases, gradually reduc-

ing the relative contribution of the interfacial free energy penalty. Once the

nucleus surpasses the critical nucleation size, further growth becomes ther-

modynamically favoured.

The driving force of the nucleation process is commonly expressed as

the supersaturation, 𝑆, which is the ratio of the parent phase concentration

to the saturation concentration (or parent phase vapour pressure to satu-

ration vapour pressure for gaseous systems) [95, 103]. For realistic super-

saturation conditions, the energy barrier and kinetic factors such as limited

diffusion associated with nucleation are significant, rendering the process a

typical rare event. Even when employing enhanced sampling techniques,

observing multiple crossings of this energy barrier requires extensive com-

putational resources. Such challenges motivate the development of more

cost-effective strategies, including the approaches presented in the follow-

ing sections.

4.2 Condensation of Supersaturated Argon

The first system being analysed is the nucleation of supersaturated argon

vapour (depicted in Figure 4.1 a) to form a liquid droplet (depicted in Fig-

ure 4.1 b), which is a benchmark problem in investigating nucleation phe-

nomena [104, 105]. Earlier work by Salvalaglio et al. conducted numerous
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(a) (b)

Figure 4.1: Illustration of the phase transition from (a) supersaturated argon vapour
to (b) liquid argon droplet.

small-scale MetaD simulations to calculate nucleation rates and published

their results in The Journal of Chemical Physics [103]. In this section, the

simulation data obtained is analysed and merged with MFI to determine the

combined FES, which was not done in the original work [103], but has been

published in an article published by the author of this thesis [77].

4.2.1 Introduction

Nucleation is inherently stochastic, involving random fluctuations that form

an incipient cluster. Once the cluster exceeds the critical size, further growth

becomes energetically favourable. In molecular simulations, using an in-

creased number of particles heightens the probability of observing such a

rare event over a shorter simulation time. However, increasing system size

also leads to higher computational costs, so there is a balance between

the likelihood of capturing nucleation within a single trajectory and the total

computational resources required.

A notable demonstration of large-scale brute-force nucleation simula-

tion is a study of argon condensation employing one billion particles, sim-

ulated for 1.2 𝜇𝑠 [105]. While their results were in good agreement with

experimental studies, the computational resources required were so sub-

stantial that they were prohibitively expensive for most researchers.
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Enhanced sampling strategies such as MetaD can help to accelerate

transitions, but applying them effectively to nucleating systems can be chal-

lenging due to the asymmetry of the free energy barrier. For the forward

transition (condensation), a steep energy barrier must be overcome, neces-

sitating narrow bias Gaussian hills. In contrast, the backwards transition

(evaporation) starts from a deeper basin with a gentler gradient, requiring

larger hills (see Figure 4.2). A compromise in the shape of the hills can be

counterproductive, whereas using solely short and narrow hills will require

long simulation times to accumulate a sufficiently high bias. Nevertheless,

by utilising the flexibility that MFI offers, it is possible to develop biasing pro-

tocols that adapt the bias to each transition pathway, as described in the

following sections.

4.2.2 Methods

Salvalaglio et al. [103] simulated a system consisting of 512 argon atoms

at 72 K under NVT conditions using GROMACS 4.6.3 [71]. The Lennard-

Jones potential [106, 15] described interatomic interactions, with 𝜖 =

0.99797 kJ/mol and 𝜎 = 0.3405 nm, truncated at 5𝜎. The temperature was

maintained via the Bussi-Donadio-Parinello thermostat [107], and the equa-

tions of motion were integrated with a velocity-Verlet scheme with a 5 fs time

step. The system was simulated at four supersaturation conditions, which

are reported in Table 4.1 together with the length of the simulation box edge,

𝑙, and the initial pressure, 𝑝.

Each supersaturation condition was examined via 50 simulations ini-

tialised in the vapour phase, which were terminated upon reaching the con-

densed state, and another 50 simulations starting in the condensed state,

which were terminated once they reverted to the vapour phase. All simu-

lations were biased with WT-MetaD using PLUMED 2.0 [93, 94]. For the

forward transition, the bias was updated every 25 ps, using an initial height

of 0.005 kJ/mol and a width of 0.25, tempered with a bias factor of 2.5. For

the backwards transition, the bias was updated every 2.5 ps, with an initial
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𝑆
𝑙

[nm]
p

[bar]
𝛿

𝜔0,cond
[kJ/mol]

𝛾cond
𝜔0,evap

[kJ/mol]
𝛾evap

11.95 15.93 1.27 0.25 0.005 2.5 5 50
14.03 14.60 1.49 0.25 0.005 2.5 5 50
15.57 14.04 1.66 0.25 0.005 2.5 5 50
16.86 13.62 1.79 0.25 0.005 2.5 5 50

Table 4.1: Simulation and WT-MetaD biasing parameters used to simulate the nu-
cleation of supersaturated Argon. The parameter 𝛿 is the Gaussian
width, 𝜔0,cond and 𝛾cond denote the initial height and bias factor for con-
densation, while 𝜔0,evap and 𝛾evap denote the corresponding parameters
for evaporation.

height of 5 kJ/mol and a width of 0.25, tempered with a bias factor of 50. For

the lowest supersaturation (𝑆 = 11.95), the energy barrier was anticipated

to be particularly large, prompting the use of an additional static bias in the

forward transition to help overcome the energy barrier.

The CV to describe the nucleation estimates the total number of parti-

cles in the liquid phase, 𝑁𝐿, which is determined with the ten Wolde-Frenkel

criterion [108]. It is calculated with a continuous and differentiable switching

function that acts on 𝑐𝑖, the coordination number of particle 𝑖 :

𝑁𝐿 =
∑︁
𝑖

1 −
(
𝑐𝑙
𝑐𝑖

)6
1 −

(
𝑐𝑙
𝑐𝑖

)12 , (4.1)

where 𝑐𝑙 is the coordination number threshold set to 5. The switching func-

tion has a value of 0 for low coordination numbers, increasing smoothly to

1 as the threshold is surpassed. The coordination number is defined as

𝑐𝑖 =
∑
𝑗≠𝑖 𝑓 (𝑟𝑖 𝑗 ), where 𝑟𝑖 𝑗 denotes the distance between particles 𝑖 and 𝑗 ,

determined via a switching function that decays smoothly to 0 as the cutoff

distance, 𝑟𝑐, is exceeded:

𝑓 (𝑟𝑖 𝑗 ) =
1 −

(
𝑟𝑖 𝑗
𝑟𝑐

)6
1 −

(
𝑟𝑖 𝑗
𝑟𝑐

)12 . (4.2)
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Figure 4.2: Illustration of the free energy surface of the nucleation of supersatu-
rated argon vapour (solid line) with the bootstrapping error (shaded
region). Colours represent the supersaturation levels, indicated in the
legend.

4.2.3 Results and Discussion

The mean forces from all simulations were evaluated and combined with

MFI to reconstruct the FESs depicted in Figure 4.2. The global convergence

of the mean force was monitored with the on-the-fly error, as illustrated in

Figure 4.3 (a). In addition, a bootstrap analysis of the independent forces

provides an estimate of the uncorrelated error of the FES, which is shown

as shaded regions in Figure 4.2. Furthermore, the bootstrap analysis was

performed with increasing numbers of simulations, revealing the progression

of the global uncertainty of the FES, presented in Figure 4.3 (b).

The shape of the FESs of the nucleation is consistent with the typical

FESs of nucleation, exhibiting an initial steep energy barrier followed by a

flat basin corresponding to the liquid state. The largest energy barrier of

nucleation is observed at the lowest supersaturation, whereas higher su-

persaturations exhibit a lower barrier. In contrast, the free energy value of

the basin characterising the liquid state decreases as the supersaturation

increases. This behaviour aligns with physical expectations, as a higher

supersaturation provides a strong thermodynamic driving force, thereby re-

ducing the energy barrier and stabilising the nucleated phase.
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(a) (b)

Figure 4.3: (a) On-the-fly error of the mean force as a function of the total simula-
tion number and (b) bootstrapping error of the free energy surface as
a function of the total simulation number. Colours represent the super-
saturation conditions, indicated in the legends.

(a) (b)

Figure 4.4: (a) Biased probability densities, where the dotted lines mark the lo-
cation of FES minima (see Figure 4.2). (b) Average transition times of
the forward simulations (first four bars) and backwards simulations (last
four bars), together with their error bars. Colours represent supersatu-
ration levels, indicated in the legends.

The bootstrap analysis indicates a low uncertainty in the transition re-

gions. Higher uncertainties are observed for larger values of 𝑁𝐿, because

the FES of the fully vaporised system is fixed at zero (𝐹 (𝑁𝐿 = 0) = 0),

causing noise to accumulate along the integration path. Moreover, the bi-

ased probability densities in Figure 4.4 (a) show that the liquid states of the

system with the lowest supersaturation (𝑆 = 11.95) were sampled the least.

This results in a more significant uncertainty in that region of the FES for the

system with the lowest supersaturation.
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The results presented in this section highlight the versatility of MFI to

overcome the practical limitations of conventional MetaD to effectively bias

systems that are characterised by asymmetric free energy landscapes: the

initial free energy minima, corresponding to the homogenous vapour state,

is characterised by a steep gradient, whereas the second minima, corre-

sponding to the nucleated state, has a more moderate slope but is consid-

erably deeper. Employing exclusively small Gaussian hills in the MetaD bias

would result in an accurate sampling of the minima, but would require ex-

cessively long simulation times to accumulate enough bias to escape the

deeper basin. On the other hand, utilising solely large Gaussian hills would

accelerate the escape from the beeper basin, at the cost of inadequate sam-

pling of the initial basin. This renders a single MetaD simulation ineffective,

as it would require either overly long simulation times or result in deficient

sampling of the initial free energy minima. However, the asymmetric free

energy landscape can be sampled more effectively by splitting the sampling

into numerous shorter runs, each employing biasing parameters tailored for

sampling one of the free energy minima. The independent biased trajecto-

ries, subject to different bias potentials, are analysed and combined with MFI

and the FES is calculated. Calculating the FES from 100 independent MetaD

simulations in a self-consistent manner would not have been possible with

conventional methods. This illustrates that MFI, in combination with appro-

priately chosen biasing strategies, offers a computationally efficient route to

estimate FESs in systems characterised by asymmetric energy landscapes.
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4.3 Crystallisation of Colloidal System
The second system investigates a two-step crystallisation process [109, 25,

26, 29] in a colloidal system. Four separate simulations with varying bias

parameters were carried out by Dietrich et al. [109]. The simulation data was

combined with the MFI Python library developed by the author of this thesis,

as well as his assistance, and published in the Journal of Chemical Theory

and Computation [109]. This section discusses these results and presents

an uncertainty analysis not included in the original publication [109], but

published in an article by the author of this thesis [77].

4.3.1 Introduction

According to classical nucleation theory, crystallisation is conceptualised as

the emergence of an ordered nucleus out of solution (one-step nucleation).

Recent studies, however, have demonstrated that some nucleating systems

undergo a two-step mechanism. In the first step, the initial homogenous

solution (see Figure 4.5 a) forms an intermediate dense cluster that lacks

crystalline order (see Figure 4.5 b). Thereafter, a second transformation

occurs where the cluster reorganises into an ordered crystalline structure

(see Figure 4.5 c).

Two CVs are required to describe such a two-step crystallisation pro-

cess. The first CV, 𝑛, measures the number of particles in the dense

phase, and is calculated analogously to 𝑁𝐿 in section 4.2.2 (see equa-

tions 4.1 and 4.2). The second CV, 𝑛(𝑄6), measures the number of par-

ticles that exhibit a crystalline order via the sixth-order Steinhardt parameter

[110, 111, 26, 109], which quantifies the sixfold symmetry around particle 𝑖.

Initially, the sixth-order Steinhardt vectors are computed:

𝑞6𝑚 (𝑖) =

∑︁
𝑗

𝑓 (𝑟𝑖 𝑗 )𝑌6𝑚 (𝑟𝑖 𝑗 )∑︁
𝑗

𝑓 (𝑟𝑖 𝑗 )
, (4.3)

where 𝑓 (𝑟𝑖 𝑗 ) is given in equation 4.2, 𝑟𝑖 𝑗 is the distance between particles 𝑖
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and 𝑗 and 𝑌6𝑚 (𝑟𝑖 𝑗 ) calculates the spherical harmonics. Subsequently, each

local Steinhardt parameter 𝑄6,𝑖 is computed as:

𝑄6,𝑖 =

∑︁
𝑗

𝑓 (𝑟𝑖 𝑗 )
6∑︁

𝑚=−6
𝑞∗6𝑚 (𝑖) 𝑞6𝑚 (𝑖)∑︁

𝑗

𝑓 (𝑟𝑖 𝑗 )
, (4.4)

where 𝑞∗6𝑚 (𝑖) is the complex conjugate of 𝑞6𝑚 (𝑖). A switching function anal-

ogous to equation (4.1) is then used to count how many particles in the

simulation have 𝑄6,𝑖 values above a threshold, yielding 𝑛(𝑄6) [99, 109].

While calculating 𝑛 poses a manageable computational cost, comput-

ing 𝑛(𝑄6) is significantly more demanding and can become a computational

bottleneck. This issue led to the development of novel methods to approxi-

mate the CVs using Machine Learning (ML) techniques. In Dietrich’s work,

both CVs were approximated with ML-CVs, resulting in a significant compu-

tational speed-up. Additional details about the simulation and the ML-CVs

are presented in the next section.

(a) (b) (c)

Figure 4.5: Illustration of the two-step nucleation of a colloidal system. (a) Initial
homogenous phase. (b) Intermediate emergence of a dense cluster
lacking crystalline order. (c) Ordered crystalline structure. The red
lines indicate pairs of particles lying within the cutoff distance 𝑟𝑐 (see
equation 4.2.
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4.3.2 Methods

Dietrich et al. [109] simulated a colloid system of 421 particles with LAMMPS

[112] in an NVT ensemble with a temperature of 2T∗ in a cubic box of length

92.83𝜎, where T∗ is the reduced temperature and 𝜎 the characteristic length

scale. The colloidal interactions were described via a Derjaguin-Landau-

Verwey-Overbeek (DLVO) potential [113, 114, 115, 99] truncated at 12.5𝜎.

Four simulations were conducted, employing a MetaD bias charac-

terised by Gaussian hills with an initial height of 0.1 kJ/mol, and a width

of 0.18 and 0.05 for the 𝑛 and 𝑛(𝑄6) CV, respectively. The first simulation

was non-tempered, while the other three simulations employed WT-MetaD

with a bias factor of 40, 50 and 60.

Both CVs were approximated via an ML model from the NNucleate

package, which was developed by Dietrich [109, 116]. In this approach,

atomic configurations are represented as graphs, where nodes correspond

to individual particles and edges capture nearest-neighbour relationships. A

multi-layer neural network aggregates local neighbourhood information in a

permutation-invariant manner. Ultimately, a global pooling operation is ap-

plied to reduce the node features into a single vector, which is mapped by a

final decoder to approximate 𝑛 and 𝑛(𝑄6).

Calculating the CV with such a model requires pre-training, where

model parameters are trained and validated on existing trajectory and CV

data. Once trained, these models can be applied to systems of different

sizes, as they generalise effectively across varying numbers of particles.

The computational gain is considerable: for this system with 421 particles,

the ML-CVs were computed roughly 3.5 faster than the direct calculation of

𝑛(𝑄6), and around 200 times faster for a system with 10, 000 particles [109].

The NNucleate package uses modules from the PyTorch [117], MD-

Analysis [118, 119] and MDTraj [120] packages. The ML-CVs are converted

with Alphabet’s Jax and Flax packages [121, 122] and communicated to

PLUMED using the PyCV fork [123]. Additional details are available in Diet-
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rich’s original publication [109] and on PLUMED NEST (https://www.plumed-

nest.org/, plumID:23.026).

4.3.3 Results and Discussion

Each of the four simulations has been analysed individually using MFI, and

the resulting FESs are shown in Figure 4.6, panels a) - d). In all four cases,

the two-step crystallisation pathway is captured. Starting in the bottom left

region, corresponding to homogenous configurations (see Figure 4.5 a), a

path leads toward the first metastable basin. Along this path, 𝑛 increases

but 𝑛(𝑄6) remains low, indicating an aggregation of colloidal particles into

a dense, amorphous cluster (see Figure 4.5 b). A subsequent transition

leads to a deeper basin at higher 𝑛(𝑄6) values, representing configurations

that contain dense clusters with crystalline order, as depicted in Figure 4.5

(c). This transition is characterised by an increase in 𝑛(𝑄6), while 𝑛 remains

largely unchanged, indicating that the emergence of the ordered structure

requires a rearrangement of the amorphous colloidal cluster. Once the crys-

talline structure is formed, further growth proceeds along a diagonal path in

(𝑛, 𝑛(𝑄6)) space, reflecting continued aggregation of colloidal particles and

the ongoing development of crystalline structure.

Although the overall two-step mechanism is qualitatively consistent

across all four simulations, there are notable differences in the location and

magnitude of the metastable states and energy barriers. These discrepan-

cies suggest insufficient sampling and inherent uncertainties in each indi-

vidual simulation, which is confirmed by the mean force errors in Figure 4.6,

panels e) - h), and the bootstrap errors of the FES in Figure 4.6, panels i) -

l).

To address these uncertainties, the datasets from the four simulations

were merged with MFI. The resulting combined FES is presented in Figure

4.7 (a), where the energy barrier separating the amorphous from crystalline

configurations appears clearly around 𝑛(𝑄6) ≈ 1. In addition, the corre-

sponding mean force error, depicted in Figure 4.7, and bootstrap error of
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Figure 4.6: Results of the four separate simulations, obtained with MFI. The first
row (panels a-d) shows the free energy surfaces, the second row (pan-
els e-h) shows the on-the-fly errors of the mean force, and the third row
(panels i - l) shows the bootstrap errors of the FES. In each row, the
first simulation (non-tempered) is shown in the first column, the second
simulation (bias factor=50) is shown in the second column, the third
simulation (bias factor=60) is shown in the third column, and the fourth
simulation (bias factor=40) is shown in the fourth column.
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(a) (b) (c)

Figure 4.7: Results of the combined simulation data: (a) the FES, (b) the on-the-fly
error of the mean force, and (c) the bootstrap error of the FES.

the FES, depicted in Figure 4.7, show a significant reduction in the uncer-

tainty. In particular, the error in estimating the free energy barrier is lowered

to about 1.5 kJ/mol.

The evolution of the uncertainties is illustrated in Figure 4.8. The er-

ror of the mean force, depicted as the blue line in Figure 4.8 (a), generally

decreases but undergoes sudden increases. These occur when previously

unsampled regions of the CV space are visited, as indicated by the green

line in Figure 4.8 (a), capturing the progression of sampled volume. Figure

4.8 (b) shows the volume-normalised error of the mean force (see Section

3.2.3), where these fluctuations are almost removed. Overall, both error

estimates indicate a convergence of the combined simulations. Further-

more, the progression of the bootstrap error of the FES, shown in Figure

4.8 (c), compares the convergence of the individual simulations (coloured

lines) with that of the combined simulation. While the individual simulations

don’t appear to be converged and have a final global uncertainty estimation

of 8 − 10 kJ/mol, the bootstrap error of the combined simulations displays a

converged behaviour with a final global uncertainty estimation of 4 kJ/mol.

These results demonstrate the ability of MFI to combine independent

datasets collected under different biasing regimes. Although the individual

simulations exhibit significant uncertainties, merging them into a single FES

substantially reduces both on-the-fly and bootstrap errors. The four datasets

are representative of multiple attempts to find optimal biasing parameters.
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(a) (b)

(c)

Figure 4.8: Uncertainty progression of the combined simulations, where the red-
dashed lines indicate the end of each simulation. (a) Error of the mean
force (blue line, left y-axis) with the ratio of the sampled volume (green
line, right y-axis). (b) Volume normalised Error of the mean force. (c)
Bootstrap error of the FES of the combined simulations (grey line) and
individual simulations (coloured lines).

Commonly, the best dataset would be expanded, while the other datasets

would be discarded. However, using MFI, all simulations can be combined

to give a single FES, and additional simulation data can be added if needed,

providing a robust and efficient approach for estimating the FES of complex

systems.
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4.4 Conclusions
This chapter has shown that MFI enables an efficient and dynamic sampling

of complex nucleating systems, by partitioning the simulations into several

shorter, independent runs. In Section 4.2, the asymmetric free energy land-

scape of the nucleation of supersaturated Argon was biased efficiently with

two complementary schemes: one optimised for the forward transition and

another for the reverse transition. In Section 4.3 a two-step nucleation pro-

cess in a colloidal model was explored through four simulations, each con-

ducted with different biasing parameters.

It would not be possible to merge the simulation data in a self-consistent

manner using conventional post-processing tools. By contrast, with MFI, the

independent trajectories are united in a straightforward fashion, yielding the

combined FES. The accompanying error analysis demonstrated that incor-

porating additional simulations systematically reduces both the uncertainty

of the mean-force error and the FES.

These results, on the one hand, underscore the advantage of employing

diverse biasing strategies to optimally bias a highly irregular free energy

landscape. On the other hand, they demonstrate that trajectories subject

to suboptimal or exploratory biasing conditions can be integrated with other

trajectories instead of discarding them altogether.



Chapter 5

Reinitialisation of Simulations

and Real-Time Analysis

The preceding chapters demonstrated that independent MetaD simulations

can be combined, enabling a simulation protocol employing multiple shorter

simulations instead of a single long one. However, although the total num-

ber of simulation steps was identical, the convergence of the combined short

simulations was worse than that of a single long simulation. This discrep-

ancy arises because new short MetaD simulations are uninformed about

the previously explored free energy landscape, and the MetaD bias is built

independently before exploring higher energy states and potentially cross-

ing energy barriers.

This chapter presents and evaluates biasing protocols where informa-

tion is passed along subsequent simulations. Thereafter, it is demonstrated

how a series of short simulations, referred to as simulation campaigns, can

be designed by employing suitable biasing strategies to enhance the overall

convergence. Subsequently, the performance of these methods is tested

and evaluated against each other and conventional single-trajectory simula-

tions.
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5.1 Reinitialisation of Simulations
Carrying forward information from preceding simulations can circumvent the

problem of uninformed new simulations through two approaches (illustrated

in Figure 5.1):

1. Reuse of the MetaD bias. The MetaD bias constructed in the pre-

vious simulations is used as a static bias in the following simulation,

which is supplemented by a new MetaD bias (see Figure 5.1 a and b).

2. Inverse free-energy (InvF) bias. The latest estimate of the FES is

used to create a static bias for the subsequent simulations, called the

inverse FES bias (InvF). This is accomplished by taking the FES below

a specific energy limit 𝐹lim and inverting it around the energy axis (see

Figure 5.1 a, c, d, and e).

𝑉InvF(𝜉) =

−𝐹 (𝜉) + 𝐹lim, 𝐹 (𝜉) ≤ 𝐹lim,

0 , 𝐹 (𝜉) > 𝐹lim.

(5.1)

The 𝐹lim must be high enough to include all relevant configurations,

yet sufficiently low to exclude unimportant high-energy states. In prac-

tice, overestimating 𝐹lim is safer to avoid missing relevant high-energy

regions.

The first approach is practical because it does not explicitly require iden-

tifying the 𝐹lim parameter. However, it can introduce undesirable artefacts

when the bias is combined from multiple independent MetaD simulations.

By contrast, the second approach aims to create a flat bias potential en-

ergy landscape, which becomes increasingly smooth as the estimation of

the FES improves. If the estimated FES is noisy, filtering (e.g., Gaussian

filtering) can be applied to produce a smoother InvF. Since the underlying

potential energy in most chemical systems is generally smooth, a filtered

InvF yields a flatter biased potential surface (Figure 5.1 e).
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Figure 5.1: Construction of the static bias. (a) FES (blue line) with its reference so-
lution (black line) and the MetaD bias (red-shaded region). The MetaD
bias is employed as a static bias (green-shaded region) in (b), depict-
ing the first approach. (c) FES below 𝐹lim (blue line), the inverted FES
(light-blue line) corresponding to the inverse FES bias (InvF), and the
smooth (filtered) InvF (orange-dashed line). (d) static bias (light-blue-
shaded region) constructed from the InvF, and (e) static bias (orange-
shaded region) constructed from the smooth InvF. (d) and (e) depict
the second approach.

A scaling factor of one would leave the InvF bias unchanged, while a

scaling factor lower than one would compress the InvF bias. The resulting

static bias would be more compressed in low-energy regions and resemble

the bias obtained in WT-MetaD

The static bias may be further modified by multiplying it with a scal-

ing factor , 𝑠 𝑓 : 𝑉 (scaled)
InvF

(𝜉) = 𝑠 𝑓 · 𝑉InvF(𝜉), as illustrated in Figure 5.2. A

scaling factor of one would leave the InvF bias unchanged, while a scaling

factor lower than one would compress the InvF bias. The resulting static

bias would be more compressed in low-energy regions and resemble the

bias obtained in WT-MetaD, as is exemplified in Figure 5.2 (a) with a scaling

factor of 0.9. Vice versa, Figure 5.2 (b) displays the InvF multiplied by a scal-
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(a) (b)

Figure 5.2: Impact of the scaling factor on the InvF static bias (green-shaded re-
gion). (a) InvF with a scaling factor of 0.9 and (b) InvF with a scaling
factor of 1.1

ing factor of 1.1, thereby increasing the InvF bias for lower-energy regions.

As a result, with a scaling factor below one, lower-energy regions are sam-

pled preferentially, whereas with a scaling factor above one, the sampling of

higher-energy regions is promoted.

5.2 New Initial Configurations
Although inheriting information on the free energy landscape is advanta-

geous, each simulation must remain independent to recover statistically

meaningful trajectories. If two simulations begin with identical starting condi-

tions and evolve under a similar bias, their trajectories can correlate strongly.

This correlation undermines the independence required for reliable statisti-

cal analysis and reduces the overall convergence. To avoid such issues,

previously unused initial configurations should be employed for new simula-

tions, which can be obtained by randomly selecting a configuration from an

earlier simulation.
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5.3 Simulation Stages

MFI has been introduced as a method that combines data from independent

simulations, subject to arbitrary bias potentials, conducted in series, parallel,

or both. This flexibility provides numerous options for designing simulation

campaigns, but some strategies are more effective than others. To facilitate

a more structured development of simulation strategies, it is helpful to divide

the simulation campaign into several stages, each with a distinct objective.

The python code used for this section is presented in Appendix B.2 and the

full library is available in a GitHub repository.

5.3.1 Exploration Stage

The initial objective of any simulation is to explore all thermodynamically rel-

evant regions of the CV space and avoid getting trapped in metastable wells.

During the exploration stage, the aim is to rapidly explore the CV space up

to 𝐹lim, as depicted in Figure 5.3. To accomplish this, an aggressive MetaD

bias is used, where the Gaussian hills are deposited at a high frequency and

the bias factor is set to at least 𝐹lim, ensuring that the height of the MetaD

Gaussians is not damped significantly (Python code in Appendix B.2.1).

The initial MetaD Gaussian height, 𝜔0, can be estimated by assuming

that the area (or volume in higher dimensions) of the energy landscape to be

filled with the MetaD potential resembles an inverted pyramid with a height

of 𝐹lim. Given the CV range, (CVmax, CVmax), the time between two consec-

utive Gaussians, 𝜏𝐺 , their width, 𝜎𝐻, and some time budget allocated to the

exploration stage, 𝑡exploration, the Gaussian height in one dimension can be

approximated by:

𝜔 =

1

2
· 𝐹lim · (CVmax − CVmin)
√
2𝜋 · 𝜎𝐻 ·

𝑡exploration

𝜏𝐺

. (5.2)

The exploration stage simulation is terminated when the FES estimate

plus the MetaD bias reaches 𝐹lim across all sampled CV space. It is crucial

to choose a value of 𝐹lim high enough to avoid missing important regions.

https://github.com/mme-ucl/MFI/tree/master/MFI_class1D
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(a) (b)

Figure 5.3: Illustration of the Exploration stage. (a) shows the rapid build-up of
the MetaD bias, where blue-shaded regions represent early hills, and
red-shaded regions represent hills deposited later in the simulation. (b)
compares the estimated FES (blue line) with the reference FES (green
line)

The resulting FES obtained in this initial exploration stage is likely inaccu-

rate, but sufficient for constructing the InvF bias for the next stage, enabling

faster access to high-energy regions.

A further derivation for the estimation of the Gaussian height during the

exploration stage for two-dimensional systems is provided in Appendix A.2.

5.3.2 MetaD Stage

Once the CV space has been explored, the FES estimate is used to con-

struct an InvF bias for the next stage. Because this FES estimate is prone

to inaccuracies and noise, the resulting biased potential surface can con-

tain significant fluctuations, as depicted in Figure 5.4 (a) (green-shaded re-

gion), where the largest energy barrier is approximately 15 kJ/mol. A mod-

erate Gaussian height and bias factor should be used for the MetaD bias to

guarantee that such energy barriers are overcome with a single simulation

(Python code in Appendix B.2.2). Moreover, the width of the MetaD Gaus-

sians can be estimated by identifying the basins, fitting a Gaussian curve to

each basin, and taking the median of the resulting widths (more details and

example are provided in Appendix A.3).

The MetaD stage converges at a rate comparable to a conventional
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(a) (b)

Figure 5.4: Illustration of the MetaD stage. (a) shows the initial static bias (green-
shaded region) with the build-up of the MetaD bias, where blue-shaded
regions represent early hills, and red-shaded regions represent hills
deposited later in the simulation. (b) shows the estimate of the FES
(blue line) with the reference FES (green line)

MetaD simulation and can be run without reinitialisation until the desired

convergence is reached. However, if further stages are intended, a real-time

convergence assessment can be utilised to terminate the MetaD stage once

estimated error decreases below a chosen threshold. Ideally, the estimated

error of the FES should be around 𝑘𝐵𝑇 , ensuring that the biased potential

surface of the subsequent simulation contains energy barriers that can be

overcome without substantial biasing.

5.3.3 Flat Stage

When the FES has reached a reasonable level of accuracy but requires

additional refinement, the flat stage is employed (Python code in Appendix

B.2.3). The InvF bias is now relatively accurate and generates a nearly flat

biased energy surface. Consequently, there may be no need for an ad-

ditional MetaD bias. However, it has been observed that a conservative

MetaD bias (low bias factor, reduced Gaussian height and deposition rate)

improves the convergence more reliably. Additionally, energy barriers might

increase if the static bias is adjusted with the scaling factor, providing fur-

ther reason to employ a conservative MetaD bias. Moreover, the improved

estimate of the FES can be used to re-estimate the MetaD width through
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(a) (b)

Figure 5.5: Illustration of the Flat stage. (a) shows the initial static bias (green-
shaded region) with the build-up of the MetaD bias, where blue-shaded
regions represent early hills, and red-shaded regions represent hills
deposited later in the simulation. (b) shows the estimate of the FES
(blue line) with the reference FES (green line)

Gaussian fitting of the basins.

Depending on the system being simulated, the desired accuracy and

the computational resources available, the flat stage can be continued until

the convergence goal is reached. Alternatively, other biasing approaches

may be employed.

5.3.4 Focused Stage

In situations where the uncertainty within a specific region of CV space is

particularly large, the sampling can be concentrated on that region. This

can be arranged by combining the InvF bias with a harmonic restraint, as

depicted in Figure 5.6 (a). The force constant of the restraint can be adjusted

to reflect the width of the target region. If that region is too large to be

effectively sampled with a harmonic restraint, a wall potential can be used

instead. This wall potential is defined as half of the harmonic restraint and

can be set up as either a lower wall or an upper wall, corresponding to the

lower (left) or upper (right) portion of a full harmonic restraint. The CV region

to be sampled extensively can be set up by combining the InvF bias with a

lower and an upper wall (Python code in Appendix B.2.4), as illustrated in

Figure 5.6 (b).
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(a) (b)

Figure 5.6: Illustration of the focused stage. The initial static bias is the light-green-
shaded region, while the MetaD bias is the red-shaded region. The
dark-green-shaded region in (a) indicates the harmonic potential and
the wall potential in (b).

Throughout this stage, the uncertainty within the focused region should

be monitored, and the simulation should be terminated once that uncertainty

falls below the global uncertainty. Afterwards, sampling can either continue

the focused stage in another poorly converged region, return to flat sam-

pling, or transition to a different biasing stage.

5.3.5 Additional Stages

The stages introduced in the previous sections mirror standard enhanced-

sampling practices. However, countless other biasing strategies could be

implemented. For instance, the error map can be utilised to promote the

sampling of less converged regions of CV space. This is achieved by

smoothing the error map (e.g. with a Gaussian filter), inverting it around

the energy axis, and then superimposing it on the InvF bias (Python code in

Appendix B.2.5), as illustrated in Figure 5.7.

A conceptually similar approach is to construct the static bias from

the probability density map instead, creating a biased energy surface that

favours the sampling of regions that have been sparsely visited. In principle,

the number of possible refinements is unlimited and can be tailored to the

kinetics and potential energy landscape of the system under investigation.



160 Chapter 5. Reinitialisation of Simulations and Real-Time Analysis

(a) (b)

Figure 5.7: Construction of a bias potential that promotes sampling less converged
regions. Figure (a) shows the error estimation (blue line), a smooth ver-
sion of it (orange line), and the bias contribution from the error estima-
tion (green line). Figure (b) shows the initial static bias (light-green-
shaded region) with the static bias from the error estimation (dark-
green-shaded region), and the MetaD bias (red-shaded region).

5.3.6 Transition Path Bias

A further possibility is constructing a static bias that constrains the sampling

near the transition path between two stable states. In many applications, it

is more relevant to sample the transition path than to explore the whole CV

space uniformly, especially when dealing with multidimensional CV spaces,

which grow exponentially with the number of dimensions.

The transition path can be crudely approximated by connecting the sta-

ble states with a straight line. However, connecting the stable states through

the minimum free energy pathway, like the String Method [124], is much

more reliable and meaningful. This not only avoids the sampling of unlikely

high-energy states but also provides a representative free energy profile

along the true transition path.

Once the transition path is obtained, the bias surface is created by as-

signing lower values to grid points near the transition path and higher values

to all other points, creating a “canal” along the transition path. The resulting

surface is added to the InvF, thus creating the transition path bias, which can

be used as a static bias (Python code in Appendix B.4).

This method is demonstrated by sampling the transition path between
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the stable conformations of alanine dipeptide (see Figure 3.13). An estimate

of the FES from an initial simulation of alanine dipeptide, shown in Figure

5.8 (a), is used to predict the transition path, which is represented by the

yellow dots in Figure 5.8 (a). That path was then used to create a transition

path bias, and the biased potential surface is depicted in Figure 5.8 (b).

This bias was employed in a second simulation of alanine dipeptide, and

the data from the two simulations were combined with MFI. By comparing

the absolute deviation of the FES from the initial simulation to that of the

combined simulations (shown in Figure 5.8 c and d), it can be observed

that the error reduced along the transition path, while it remained mostly

unchanged elsewhere.

5.3.7 Results

A practical example of the simulation stages introduced above is given

through the simulation of the analytical potential depicted in Figure 5.9,

which is defined as:

𝑈 (𝜉) =4
3

(
− 14𝑒−0.25(𝜉+3.5)

4 − 25𝑒−0.25(𝜉−3.5)
4 − 10𝑒−(𝜉+0.5)

2

− 2 sin(−8𝜉) + 𝑒−2𝜉−9 + 𝑒2𝜉−9
)
.

(5.3)

Several Langevin dynamics simulations are conducted, each at a constant

reduced temperature of 1 (corresponding to 120 K), with a time step of 5 fs,

and initialised with a random CV value.

An initial simulation in the exploration stage was conducted to explore

the CV space rapidly and consisted of 1.5 · 105 simulation steps. It was

biased with MetaD using Gaussian hills with an initial height of 20 kJ/mol, a

width of 0.1, and a bias factor of 80, updated every 500 simulation steps.

Next, a simulation with 5 · 105 simulation steps was conducted in the MetaD

stage to refine the estimate of the FES, employing an InvF bias combined

with a MetaD bias using Gaussian hills with an initial height of 10 kJ/mol, a

width of 0.1, and a bias factor of 10, updated every 500 simulation steps.
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(a) (b)

(c) (d)

Figure 5.8: Demonstration of transition path bias. (a) The initial FES estimate used
to approximate the transition path between the stable states (yellow
dotted line). (b) The biased potential surface (reference FES plus tran-
sition path bias) with the reference FES indicated by the grey contour
lines. (c) shows the absolute deviation of the initial simulation, and (d)
shows the absolute deviation of the simulation employing the transition
path bias combined with the initial simulation.

Figure 5.9: Analytical potential surface used to assess the reinitialisation methods.
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After that, a simulation in the flat stage followed with 5 · 105 simulation steps,

subject to an InvF bias combined with a MetaD bias characterised by Gaus-

sian hills with an initial height of 1 kJ/mol, a width of 0.05 and a bias factor of

5, updated every 1000 simulation steps.

The resulting errors are illustrated in Figure 5.10, where Figure 5.10 (c)

displays the progression of the global errors. It can be observed that the

progression of the AAD in the exploration phase contains significant fluc-

tuations, which are a consequence of the rapid exploration of the surface.

In the MetaD stage, both convergence metrics decrease consistently, and

the AAD reduces to an error of around 1 kJ/mol. At that point, the next

simulation in the flat stage begins, where the errors are still decreasing, but

at a slower rate. The local uncertainty of the mean force in Figure 5.10

(a) and the absolute deviation of the FES in Figure 5.10 (b) both confirm a

general reduction of the error. However, the latter simulations (MetaD and

Flat stage) exhibit a notably larger error around 𝜉 = 1, corresponding to the

location of the highest energy barrier.

(a) (b) (c)

Figure 5.10: Illustration of the error of the exploration stage (blue line), MetaD
stage (orange line) and flat stage (green line). Figure (a) shows the
localised error of the mean force. Figure (b) shows the localised ab-
solute deviation of the FES to the exact solution. Figure (c) shows the
progression of the global average error, where the error of the mean
force is given by the black line, which is defined on the left y-axis, and
the average absolute deviation of the FES is given by the red line,
which is defined on the right y-axis.

Following the flat stage simulation, three additional simulations with 5 ·

105 simulation steps were performed, with the end of the flat stage as a
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starting point. In each simulation, the FES from the flat stage was used to

construct an InvF bias, supplemented with a conservative MetaD bias that

was updated every 1000 simulation step. It used Gaussian hills with an initial

height of 1 kJ/mol, a width of 0.05. and a bias factor of 5.

The first two simulations were conducted in the focused stage, aiming to

reduce the uncertainty of the region around the largest energy barrier (𝜉 ≈

1, see Figures 5.10 a and b). The first simulation employed a harmonic

restraint centred at 𝜉 = 1 with a force constant of 𝜅 = 5 (see figure 5.6 a),

and the second simulation utilises a lower and upper wall potential centred

at 𝜉 = −1 and 𝜉 = 3 respectively, each with a force constant of 𝜅 = 10 (see

figure 5.6 b). The third simulation used a bias potential constructed with the

error map, which promotes the sampling of high-error regions (explained in

Section 5.3.5 and depicted in Figure 5.7).

The final error maps of each simulation are illustrated in Figure 5.11

(b-d) together with the starting error map, illustrated in Figure 5.11 (a). The

error profile of the first simulation (see Figure 5.11 b) reveals a substantial

improvement around 𝜉 = 1, which is less pronounced in the second simula-

tion (see Figure 5.11 c). Nonetheless, in the second simulation, the errors

decreased across a larger range of the CV space because the wall potential

restricted the sampling to a larger area than the harmonic potential, as in-

dicated by the green-shaded areas. In the third simulation, the sampling is

not confined to a specific area, resulting in a decrease in uncertainty across

the whole CV space (see figure 5.11 d). The global error of the mean force

and the global AAD of the FES, indicated by the horizontal dashed lines,

show that all three simulations improved approximately equally well, albeit

the third simulation has a slight advantage.
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Figure 5.11: Figure shows error profile of various simulations. The black line rep-
resents the local error of the mean force, and the dashed-black line
represents its global average, which are defined on the left y-axis.
The red line represents the local absolute deviation of the FES, and
the red-dashed line represents its global average, which are defined
on the right y-axis. Figure (a) depicts the error of a simulation in the
flat stage, which serves as a starting point for the other simulations.
Figures (b) and (c) depict the error of simulations in the focused stage,
where (b) employs a harmonic potential and (c) employs a lower and
upper wall potential. The green-shaded areas indicate the focus re-
gions. Figure (d) depicts the error of a simulation that uses a bias that
promotes the sampling of high-error regions (see section 5.3.5). All
error maps are smoothed with a Gaussian filter for better comparison.
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5.4 Real-Time Reinitialisation

The results presented so far were obtained from simulations that were run

for a pre-simulation time and analysed after they concluded. However, in-

efficiencies might arise when active simulations converge suboptimally, for

example by over-sampling already converged regions, while other relevant

regions remain weakly sampled. On the other hand, a simulation that sig-

nificantly benefits the convergence might stop because the preset simula-

tion time was reached. These inefficiencies could be avoided by analysing

active simulations in real-time. Based on the progression of the real-time

results, simulations are terminated autonomously when some termination

criteria are met (summarised in Table 5.1). Subsequently, the combined

results of the previous simulations are used to create a new bias for the

succeeding simulation using some initialisation rules (summarised in Table

5.1). This is repeated until some convergence goal is met or the simula-

tion time budget is reached. If implemented effectively, this approach may

enable improved sampling distributions and offer faster convergence than a

single MetaD simulation. Additionally, the results can be monitored in real

time, and researchers can change the biasing strategies if they choose to.

Central to the real-time reinitialisation approach is the continuous anal-

ysis of the trajectory while it is being produced. This is done by initialis-

ing simulations with the subprocess package in Python [125], so that the

simulations can run in the background and be manipulated when needed.

Concurrently, a Python algorithm reads the CV and HILLS output files from

PLUMED. When a given number of new CV values become available (e.g.

200 new CV values are printed), these new values are analysed and merged

with the running estimate of the mean force, as well as other computations

such as evaluation of convergence and FES.

The campaign always starts with a simulation in the exploration stage,

such that the CV space is explored quickly. For this purpose, the MetaD

Gaussian width is set to a relatively large value and the height is estimated
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Stage Initialisation rules Termination criteria

Exploration
• MetaD bias factor >> 𝐹lim
• Large MetaD Gaus. width
• Estimate MetaD Gaus. height

MetaD bias plus FES
exceeds 𝐹lim globally

MetaD • Moderate MetaD bias factor and height
• Estimate MetaD width from FES

Error of FES ≈ 𝑘𝐵𝑇

Flat
• Small MetaD bias factor and height
• Reduced MetaD deposition rate
• Estimate MetaD width from FES

Convergence plateaus,
or move to other stage,
or desired convergence
reached

Focused

• Harmonic or wall bias restraint
• Moderate restraint force constant
• Small MetaD bias factor and height
• Reduced MetaD deposition rate
• Small MetaD width

Error in focused region
larger than global error

Additional Stages
(Error Based)

Depends on biasing strategy
Generally (and error based bias):
• Small MetaD bias factor and height
• Reduced MetaD deposition rate
• Moderate MetaD width

Convergence plateaus,
or move to other stage,
or desired convergence
reached

Transition Path
Sampling

• Transition path bias
• Small MetaD bias factor and height

Convergence plateaus,
or desired convergence
reached

Table 5.1: Initialisation rules and termination criteria for various stages. The first
column indicates the stage type, the second row indicates how the bias-
ing parameters should be initialised, and the third row states the criteria
for terminating a simulation.

so that the exploration finishes within 10% of the time budget of the campaign

(see Section 5.3.1). The bias factor is set to a large value, for example 5·𝐹lim,

and the simulation is terminated as soon as the MetaD bias plus the FES

estimate exceed 𝐹lim globally.

Next, the estimate of the FES is used to construct an InvF bias for the sec-

ond simulation in the MetaD stage, where the estimate of the FES is refined.

Here, the width of the MetaD Gaussian can be estimated from the FES with

Gaussian fitting, while the height and bias factor should be reduced, for ex-

ample to 𝜔0 = 𝐹lim/20 and 𝛾 = 1 + 𝐹lim/10, respectively. The MetaD stage

should be continued until the uncertainty of the FES is below approximately

𝑘𝐵𝑇 , such that in the subsequent simulation, an InvF static bias (and a con-

servative MetaD bias) is enough to sample the relevant CV space.
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This is followed by a simulation in the flat stage or one of the other stages

(see Sections 5.3.3 - 5.3.6), again using an InvF static bias. The width of

the MetaD Gaussian is estimated again, while the height and bias factor

should be reduced further, for example, to 𝜔0 = 𝐹lim/100 and 𝛾 = 1 + 𝐹lim/40,

respectively. Also, the deposition rate of the MetaD bias is also reduced,

resulting in a less fluctuating bias potential. At this point, the convergence,

preferably the bootstrap error of the FES, 𝜎(𝑡), as well as its time derivative

Δ𝜎(𝑡)/Δ𝑡 , are closely monitored. A simulation is terminated if the 𝜎(𝑡) does

not decrease during the simulation, or Δ𝜎(𝑡)/Δ𝑡 is non-negative over five

consecutive checks (new data is analysed).

Additionally, two safeguards are imposed for simulations after the MetaD

stage is completed: a guaranteed or minimum simulation time ensures that

transient statistical fluctuations cannot trigger a premature stop, whereas a

maximum simulation time provides an incentive to try new simulation pa-

rameters.

The methods presented in this chapter were performed with the MFI

Python library, which is openly accessible on GitHub. Whereas the meth-

ods described in Chapter 3 followed a function-oriented paradigm, the reini-

tialisation methods presented in this chapter use an object-oriented de-

sign. The class that handles one-dimensional CV surfaces is provided

at https://github.com/mme-ucl/MFI/tree/master/MFI_class1D, and the

corresponding two-dimensional implementation at https://github.com/

mme-ucl/MFI/tree/master/MFI_class2D. Both repositories include illustra-

tive Jupyter notebooks that demonstrate how the classes can be used to

reinitialise simulations manually or to conduct complete reinitialisation cam-

paigns.

In the next two sections, the real-time reinitialisation approach is sub-

divided into Serial Real-Time Reinitialisation (SRTR) campaigns and Par-

allel Real-Time Reinitialisation (PRTR) campaigns. In the former, only one

simulation runs at any time, which is initialised and terminated repeatedly,

https://github.com/mme-ucl/MFI/tree/master/MFI_class1D
https://github.com/mme-ucl/MFI/tree/master/MFI_class2D
https://github.com/mme-ucl/MFI/tree/master/MFI_class2D
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Figure 5.12: Illustration of a Parallel Simulation Campaign. Each row represents
a series of simulations that are being reinitialised in new simulation
stages. The red boxes indicate a simulation in the exploration stage,
the yellow boxes are a simulation in the MetaD stage, the green boxes
are a simulation in the flat sampling stage, and the blue boxes indi-
cate some special sampling stage (1st row: probability density based
sampling described in Section 5.3.5; 2nd row: error based sampling
described in Section 5.3.5; 3rd row: umbrella sampling described in
Section 5.3.4; 4th row: transition path sampling described in Section
5.3.6).

following the criteria presented in Table 5.1. In the latter, a fixed number

of simulations are run synchronously and are analysed and patched in real

time. The individual simulations in the PRTR campaigns are initialised sim-

ilarly to those in the SRTR campaign, and are terminated by considering

both the individual and the collective progress, which is explained further

in Section 5.6. A simplified schematic of a PRTR campaign employing four

concurrent simulations is shown in Figure 5.12, and only a single row of that

figure would be a simplified representation of an SRTR campaign. In Ap-

pendix B.3, the Python code is provided, demonstrating how to run SRTR

and PRTR campaigns.

In the following two sections, the real-time reinitialisation strategies are

tested on the analytical potential defined in equation 5.3 and depicted in

Figure 5.9 using Langevin dynamics simulations. Later, these strategies are

tested on a wide range of one- and two-dimensional analytical potentials

and Alanine Dipeptide.
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5.5 Serial Real-Time Reinitialisation
Following the procedure introduced in Section 5.4, an SRTR campaign was

simulated with a time budget of 2 000 000 simulation steps and an 𝐹lim of

80 kJ/mol. The individual simulations (excluding exploration stage) were

limited to a minimum of 105 steps and a maximum of 6 · 105 simulation steps

(Python code in Appendix B.3.1). The simulation stages and their biasing

parameters were determined based on the results analysed in real time and

are summarised in Table 5.2.

Stage
Simulation

steps
Height
[kJ/mol]

Width Bias factor
MetaD

deposition rate

Exploration 70 000 3.33 0.3 50 200

MetaD 335 000 0.67 0.123 6 200

Flat 630 100 0.17 0.122 2 500

Error based
sampling

608 000 0.17 0.122 2 500

PD based
sampling

367 200 0.17 0.122 2 500

Table 5.2: SRTR campaign summary: The first row presents the stages in the or-
der they were simulated, and their simulation steps in the second col-
umn. In the remaining columns, the MetaD parameters are described,
including the initial height of the Gaussian hills (third column) and their
width (fourth column), the bias factor used (fifth column) and the MetaD
deposition rate measured in simulation steps (sixth column). Each row
represents a simulation conducted in a specific stage, with the last row
indicating the probability density-based sampling stage.

The error progression of the SRTR campaign is depicted in Figure 5.13.

The error rapidly decreases in the exploration and MetaD stage, but starts

to plateau in the flat stage. After the flat stage, a simulation is conducted

that uses an error-based InvF bias, followed by a simulation that uses a

probability-density-based InvF. The last two simulations show only minor

improvements in the overall error, as the simulation is almost converged.

Although the error of the mean force (black line) differs from the error of the

FES (red lines) in magnitude, it closely resembles the trend of the errors of

the FES. Moreover, the bootstrapping error of the FES matches the average
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Figure 5.13: Representative error progression of a Serial Real Time Reinitialisa-
tion campaign. The black line indicates the error of the mean force
(left y-axis), the red line indicates the bootstrap error of the FES (right
y-axis), and the red-dashed line represents the average absolute de-
viation of the FES. Vertical green lines indicate the end of the simula-
tion stages.

absolute deviation of the FES qualitatively and quantitatively.

Even though the objective of the initial stage is to rapidly explore the

whole CV space, in some cases, it is completed so fast that the sampled

data negatively impacts the accuracy of the combined result. For this rea-

son, it is worth comparing the uncertainty of the combined data, including

the exploration stage, to the uncertainty of the combined data, excluding

the exploration stage. This comparison is illustrated by comparing the boot-

strapped error of the FES in Figure 5.14 (a) and the absolute deviation of

the FES in Figure 5.14 (a) for both scenarios. It can be observed in either

error progression that removing the exploration stage data results in a lower

uncertainty. While conducting a simulation campaign, it would be beneficial

to make this comparison at the end of the MetaD stage, as excluding the

exploration stage data might result in faster convergence.

To further demonstrate the effectiveness of the SRTR approach, 100

campaigns were conducted, and the average of the error progressions was

calculated. This is compared with 100 single long simulations with 106 simu-

lation steps that employ a MetaD bias, where the parameters were chosen

intuitively (referred to as ”long-intuitive”). Moreover, they are compared with
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(a) (b)

Figure 5.14: Comparison of the error progression of a Serial Real Time Reinitiali-
sation campaign where the exploration stage is included in the com-
bination of the data (blue line) and excluded in the combination of the
data (orange line). (a) shows the bootstrap error of the FES and (b)
depicts the average absolute deviation of the FES.

100 additional long simulations with the same number of simulation steps,

which employ a MetaD bias that was optimised by trial and error (referred

to as ”long-optimised”). Additionally, 100 sets of sequential simulations were

conducted, consisting of an initial exploration stage simulation with 105 sim-

ulation steps, and a second simulation in the MetaD stage with 9 · 105 simu-

lation steps (referred to as ”two-step”). With this approach, it was also found

that removing the data collected in the exploration stage resulted in a lower

final error. All simulations were started in a random configuration, and the

MetaD bias parameters are displayed in Table 5.3.

The error progressions of each approach are reported in Figure 5.15.

When comparing the average absolute deviation of the FES, shown in Fig-

ure 5.15 (b), it can be observed that the SRTR campaigns have the best

convergence from the beginning. For the SRTR and two-step approach, the

error suddenly increases around 105 simulation steps, corresponding to the

end of the exploration stage. At this point, the errors are calculated with-

out considering the data collected in the exploration stage. For the SRTR

campaigns, this jump is lower because the exploration stage is terminated

dynamically at different times across the 100 campaigns. Consequently, the
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MetaD Bias Parameters
Height
[kJ/mol]

Width Bias factor
MetaD

deposition rate

SRTR dynamic (see example in Table 5.2)

long-intuitive 5 0.1 50 200

long-optimised 1.67 0.1 16 200

two-step
3.33

and 1.67
0.1

166
and 4.33

200

Table 5.3: MetaD bias parameters for various biasing approaches (first column):
Initial height of the Gaussian hills (second column), width of the hills
(third column), the bias factor (fourth column), and the MetaD deposition
rate measured in simulation steps (sixth column). Each row represents
a specific biasing approach: SRTR (second row) denotes Serial Real-
Time Reinitialisation campaigns, where the biasing parameters are eval-
uated dynamically, with an example provided in Table 5.2. long-intuitive
(third row) and long-optimised (fourth row) represent single long simu-
lations, where the parameters were chosen intuitively and by trial and
error, respectively. two-step (fifth row) indicates two sequential simula-
tions, with the first using MetaD parameters that facilitate a fast explo-
ration and the second using more conservative MetaD parameters.

Figure 5.15: Illustration of error progression of long MetaD simulation (black solid
and black-dashed line), combined exploration stage plus MetaD stage
simulation (red line) and Serial Real Time Reinitialisation (SRTR)
campaign (blue line). (a) depicts the progression of the average error
of the mean force, (b) shows the progression of the average absolute
deviation of the FES and (c) illustrates the progression of the average
bootstrap error of the FES.

error jump is spread across a larger time range.

The long-intuitive approach also converges relatively fast initially, but

performs poorly towards the end of the simulation compared to the other
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approaches, resulting in the largest final error of 0.407 kJ/mol. Adversely,

the error progression of the long-optimised simulations initially has a slower

convergence, but eventually overtakes the former and finishes with a final

error of 0.341 kJ/mol. The reason for this trend is that in the long-intuitive

approach, the large MetaD height and bias factor enable a rapid initial ex-

ploration, which takes longer in the long-optimised approach, due to the

reduced height and bias factor. Nevertheless, in the long run, the MetaD

bias in the former approach continues to grow and change, while the MetaD

bias in the latter approach stabilises faster, enabling a better convergence.

The intention in the SRTR and two-step approach is to take the best

of both worlds, aiming for a fast convergence in the exploration stage, fol-

lowed by a mostly stable bias potential in the long run. As a result, these

two methods have the lowest final error, with 0.233 kJ/mol for the SRTR ap-

proach 0.277 kJ/mol for the two-step approach. This shows that multiple

short sequential simulations are not necessarily required and that two sim-

ulations alone can result in better convergence than only one. However, in

this example, a relatively simple one-dimensional potential surface is simu-

lated that was known a priori, allowing for an informed choice of the biasing

parameters. When dealing with more complex unknown systems, employ-

ing several short simulations would enable an iterative tuning of the biasing

parameters as more information about the FES is available.

When comparing the error progression of the average absolute devia-

tion of the FES, shown in Figure 5.15 (b), to the bootstrap error of the FES,

illustrated in Figure 5.15 (c), a significant match can be observed, both qual-

itatively and quantitatively. The final uncertainty in the FES is 0.402 kJ/mol

for the long-intuitive approach, 0.318 for the long-optimised approach, 0.285

kJ/mol for the two-step approach and only 0.192 for the SRTR approach.

However, the bootstrap error at the start of the simulation is less reliable, as

there is not sufficient data to compute it reliably. Further comparison shows

that the error of the mean force, depicted in Figure 5.15 (a), measures the
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convergence satisfactorily, where the SRTR method has the lowest error

and the two-step approach has the second lowest error. However, the un-

certainty of the long-intuitive approach is slightly underestimated, so that the

long-intuitive approach has the biggest final error of the mean force.
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5.6 Parallel Real-Time Reinitialisation
The sequential improvement of biasing parameters, as it is done in SRTR

campaigns, can be an effective way to enhance the convergence of biased

MD simulations. Moreover, in PRTR campaigns, the SRTR approach is con-

ducted multiple times in parallel, as conveyed in Figure 5.12, where further

computational efficiency can be achieved. While such an approach opens

the possibility for even more complex biasing strategies, it is essential to

share information between simulations in the PRTR approach effectively to

avoid poor convergence performance.

5.6.1 Parallel Simulations

Prior to introducing methods to analyse and reinitialise parallel simulations

in real-time, parallel simulations that run fully independently from each other

are considered. This approach will be referred to as parallel, and serves as

an illustration of the inefficiencies and for benchmarking later on.

This approach is demonstrated with four parallel simulations, initialised

in random positions. To enable a fast initial convergence, the biasing param-

eters of the long-intuitive simulation are summarised in Table 5.5. The error

progression of each individual simulation is shown in Figure 5.16 (a) along

with the error progression produced by combining the data as soon as it was

available (i.e. the combined error at time 𝑡combo was calculated from the data

from each simulation 𝑗 up to time 𝑡 𝑗 = 𝑡combo/4 ). Because the individual sim-

ulations started in random positions, they converge differently. The first sim-

ulation has the highest final error, 1.495 kJ/mol, the second simulation has

the lowest final error, 0.776 kJ/mol, and the average final error of the individ-

ual simulations is 1.185 kJ/mol. Moreover, the final combined error is 0.7488

kJ/mol, which is notably smaller than the average, but only slightly smaller

than that of the second simulation. This is because each simulation spends

considerable time exploring the surface, resulting in noisy estimates of the

FESs, as can be seen in Figure 5.16 (b). Merging these noisy FESs yields a

smoother combined FES, as illustrated in Figure 5.16 (c), but it still contains
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(a) (b) (c)

Figure 5.16: (a) Illustration of the progression of the average absolute deviation of
the FES. The coloured lines represent the error progression of the
individual simulations (simulation 1: blue line; simulation 2: orange
line; simulation 3: green line; and simulation 4: red line), and the
coloured dashed lines show a horizontal extension of the final errors
of the respective simulations. The grey line depicts the combined
error progression, which was evaluated by merging the data as soon
as it was available. The dashed grey line shows the error progression
of long-intuitive simulation discussed in Section 5.5 and serves as a
reference. (b) FESs of the individual simulations and (c) combined
FES (grey line) with exact FES (purple line).

inaccuracies. In contrast, the average error progression of the long-intuitive

simulations (grey-dashed line in Figure 5.16 (a), same biasing parameters

as the parallel simulations), converges at a similar rate compared to the

parallel simulations, but notably faster than the combined convergence. A

similar trend was also observed in section 3.4, where alanine dipeptide was

simulated with twenty short simulations. Here, the question arises whether

an alternative approach can be employed, where combining the data from

parallel simulations can result in better convergence.

5.6.2 Simple Parallel Simulation Campaign

To improve the combined convergence of several parallel simulations, a

PRTR approach is implemented, where the simulation data is analysed as

soon as it is available and patched with earlier results. Then, some crite-

ria are used to terminate active simulations and initialise new simulations in

their place, using the combined results of all simulations. This approach is

initially implemented using the same initialisation and termination criteria as

for the SRTR case and will be referred to as simple PRTR. To demonstrate
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this approach, a campaign using four active simulations at any time was

simulated with a time budget of 1 000 000 simulation steps (corresponding to

5 ns) and an 𝐹lim of 80 kJ/mol. The minimum simulation steps were set to

105 and the maximum to 6 · 105. The simulation stages and their biasing

parameters are summarised in Table 5.4.

Stage
Simulation

steps
Height
[kJ/mol]

Width Bias factor
MetaD

deposition rate

Exploration 50 200 10.0 0.264 200 200

Exploration 67 200 10.0 0.248 200 200

Exploration 88 100 10.0 0.232 200 200

Exploration 110 000 10.0 0.216 200 200

MetaD 119 600 2.0 0.121 6 200

MetaD 131 400 2.0 0.106 6 200

MetaD 147 200 2.0 0.121 6 200

MetaD 110 700 2.0 0.118 6 200

Flat 118 500 0.17 0.122 2 500

Error based
sampling

92 100 0.17 0.122 2 500

PD based
sampling

68 200 0.17 0.122 2 500

Flat 60 900 0.17 0.122 2 500

Table 5.4: Simple PRTR campaign summary: The first row presents the stages
in the order they were initialised, together with their simulation steps
in the second column. In the remaining columns, the MetaD parame-
ters are described, including the initial height of the Gaussian hills (third
column) and their width (fourth column), the bias factor used (fifth col-
umn) and the MetaD deposition rate measured in simulation steps (sixth
column). Each row represents a simulation conducted in a specific sam-
pling stage.

Figure 5.17 shows the progressions of the average absolute deviation

of the exemplar simple PRTR campaign. The errors of the individual sim-

ulations are shown with coloured lines, which are defined on the lower x-

axis, while the combined error of the campaign is depicted with the grey

line, which is described by the upper x-axis. The campaign started with

four simulations in the exploration phase, which lasted for a total of 316 500
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Figure 5.17: Illustration of the progression of the average absolute deviation of the
FES of a simple Parallel Real Time Reinitialisation campaign (PRTR)
employing four parallel simulations at any time. The combined error
is represented by the grey line and defined on the top x-axis. The
coloured lines depict the error of the individual simulations, which are
defined on the bottom x-axis.

simulation steps. As the termination criteria were met in the exploration sim-

ulations, they were interrupted one by one, and a simulation in the MetaD

stage was initialised in their place. The four simulations in the MetaD stage

lasted for a total of 508 900 simulation steps, which were replaced by two

simulations in the flat stage, one using an error-based InvF bias and one

using a probability-density-based InvF bias. The last four simulations only

ran for a total of 339 700 simulation steps, and finished with a final error of

0.684 kJ/mol using 1 165 100 steps. However, the error after 1 000 000 steps

was 0.812 kJ/mol, which is notably worse than that of the single and SRTR

simulations (see Section 5.5), and comparable to the parallel approach.

The main drawback of this simple approach is that when a simulation is

terminated and a new one is initialised in its place, it is done without the

latest sampling from the other simulations. This is particularly detrimen-

tal when shifting from the exploration stage to the MetaD stage. With the

current implementation, simulations in the exploration stage are terminated
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and reinitialised in the MetaD stage without fully analysing all other active

simulations. At this point in the campaign, only little sampling is available,

and including the data from the other exploratory simulations would improve

the InvF bias of the subsequent simulation considerably, and consequently

also its convergence. Furthermore, after the first simulation in the explo-

ration phase is terminated and reinitialised with an improved bias, the other

simulations are still sampling with the aggressive MetaD bias. However, at

this time, the system has already been fully explored, and these simulations

could employ a new bias that better contributes to the convergence.

5.6.3 Parallel Real Time Reinitialisation

To improve on the drawbacks of the simple PRTR approach, the termination

of the exploration stage is synchronised, such that all simulations stop when

any of them fulfil the termination criteria (FES + MetaD bias > 𝐹lim). More-

over, it was found that a synchronised termination of the MetaD stage is also

beneficial. However, when the flat stage is reached (or subsequent stages),

the biasing parameters would not change significantly, and a synchronised

termination is not necessary. Similar to the SRTR method, it was found that

ignoring the data sampled during the exploration stage improves the final

convergence. Furthermore, since the exploration stage is removed, a vari-

able number of simulations in the exploration stage is adopted. When a rela-

tively simple potential is simulated, a single simulation is enough. However,

more simulations could be advantageous when investigating more complex

systems defined on a higher-dimensional CV space, such as the examples

in Chapter 4 and 6. It would increase the likelihood of rapidly exploring the

CV-space and provide a better InvF bias for the MetaD stage. The final im-

provement of the PRTR approach concerns the termination criteria after the

MetaD stage. Rather than only evaluating the change in error of a single

simulation, it is also compared to the overall error. In addition to the existing

criteria, the change in error of an individual simulation must be smaller (i.e.

more negative) than the change in error of the combined simulations divided
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by two:
Δ𝜎𝑖 (𝑡)
Δ𝑡

≤ 1

2

Δ𝜎(𝑡)
Δ𝑡

(5.4)

If this criterion is not met for five consecutive checks, simulation 𝑖 is termi-

nated.

To demonstrate this approach, a campaign using four active simulations

at any time was simulated with a time budget of 1 000 000 simulation steps

(corresponding to 5 ns) and an 𝐹lim of 80 kJ/mol. The minimum simulation

steps were set to 105 and the maximum to 6 · 105 (Python code in Appendix

B.3.2). The simulation stages and their biasing parameters are summarised

in Table 5.5.

Stage
Simulation

steps
Height
[kJ/mol]

Width Bias factor
MetaD

deposition rate

Exploration 40 000 5.0 0.24 200 200

MetaD 70 200 2.0 0.139 6 200

MetaD 60 200 2.0 0.139 6 200

MetaD 53 800 2.0 0.139 6 200

MetaD 50 000 2.0 0.139 6 200

Flat 120 200 0.5 0.120 2 500

Error based
sampling

230 200 0.5 0.120 2 500

PD based
sampling

210 000 0.5 0.120 2 500

Flat 120 200 0.5 0.120 2 500

Error based
sampling

110 000 0.5 0.119 2.25 500

PD based
sampling

80 000 0.5 0.118 2.25 500

Table 5.5: PRTR campaign summary: The first row presents the stages in the
order they were initialised, together with their simulation steps in the
second column. In the remaining columns, the MetaD parameters are
described, including the initial height of the Gaussian hills (third col-
umn) and their width (fourth column), the bias factor used (fifth column)
and the MetaD deposition rate measured in simulation steps (sixth col-
umn). Each row represents a simulation conducted in a specific sam-
pling stage.
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Figure 5.18 shows the progressions of the average absolute deviation

of an exemplar PRTR campaign, with four active simulations at any time.

The errors of the individual simulations are shown with coloured lines, which

are defined on the lower x-axis, while the combined error of the campaign

is depicted with the grey line, which is described by the upper x-axis. The

campaign started with a single simulation in the exploration phase, which

lasted for only 40 000 simulation steps. Even though the error at the end

of the exploration stage is higher than that of the simple PRTR approach,

the exploration stage finished much faster, as it only involved analysing and

reinitialising one simulation. This allowed the campaign to shift to the MetaD

stage faster, where more optimal biasing conditions are employed. In the

MetaD stage, the estimate of the FES improved rapidly, resulting in a prompt

shift to the flat stage after a combined 234 200 steps. At this point, the error

is already smaller than the final error of the simple PRTR example, using

about a quarter of its time budget. In the flat stage (including error-based

and probability-density-based InvF biases), the error decreases further and

converges to around 0.3 kJ/mol. While two of the simulations initialised at the

start of the flat stage run to the end, the other two exhibit an increase in error

and are reinitialised with new simulations. The average absolute deviation of

the FES at 1 000 000 simulation steps is 0.310 kJ/mol, and the final error after

1 144 000 steps is 0.245 kJ/mol. This is a substantial improvement compared

to the simple PRTR approach, and is comparable to the single simulation

and SRTR approach (see Section 5.5).

Next, the two PRTR approaches are compared with each other, as well

as the parallel approach discussed in Section 5.6.1 and the long-optimised

approach discussed in Section 5.5. Each approach was simulated 100 times

with a total of 106 simulation steps, and the error progressions are shown in

Figure 5.19. Inspecting the progressions of the average absolute deviation

of the FES, shown in Figure 5.19 (b), it can be seen that the parallel ap-

proach has the biggest final error, while the simple PRTR approach has a
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Figure 5.18: Illustration of the progression of the average absolute deviation of the
FES of a Parallel Real Time Reinitialisation campaign (PRTR) em-
ploying one simulation in the exploration stage (black line defined on
the top x-axis) and in the remaining stages, four parallel simulations
at any time. The combined error is represented by the grey line and
defined on the top x-axis. The coloured lines depict the error of the
individual simulations, which are defined on the bottom x-axis (exclud-
ing the exploration stage).

better initial convergence, but finishes with only a marginally better final er-

ror. In contrast, the long-optimised approach has a poorer start, but finishes

with a significantly lower final error than the previous two approaches. The

PRTR approach has the lowest error throughout the entire simulation time.

The progression of the bootstrap error of the FES, depicted in Figure

5.19 (c), matches the trend of the average absolute deviation of the FES

qualitatively, however, the error of the parallel and the simple PRTR ap-

proach is underestimated. On the other side, the mean force error progres-

sion, illustrated in Figure 5.19 (a), measures the convergence less reliably.

The errors of each approach are much closer to each other compared to

the average absolute deviation of the FES. Also, the error of the mean force

of the simple PRTR approach is lower than that of the long-optimised ap-

proach, even though the opposite is the case.



184 Chapter 5. Reinitialisation of Simulations and Real-Time Analysis

Figure 5.19: Illustration of error progression of long MetaD simulation (black solid
and black-dashed line), combined exploration stage plus MetaD stage
simulation (red line) and Serial Real Time Reinitialisation (SRTR)
campaign (blue line). (a) depicts the progression of the average error
of the mean force, (b) shows the progression of the average absolute
deviation of the FES and (c) illustrates the progression of the average
bootstrap error of the FES.
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5.7 Testing on Alanine Dipeptide

The effectiveness of the real-time reinitialisation methods introduced in this

chapter is further tested on alanine dipeptide by running an SRTR and a

PRTR campaign on this system. For information about alanine dipeptide

and the simulation software and parameters used, the reader is referred to

Section 3.4, where these have been introduced in detail. Moreover, the error

progression and the final results of the single long simulation from Section

3.4 will be compared with those from the SRTR and a PRTR campaign. Both

campaigns will have a time budget of 20 ns and a guaranteed and maximum

simulation time of 1 ns and 5 ns, respectively.

All results are shown in Figure 5.20, where the first row (panels: a -

d) shows the final results from the long simulation, the second row (panels:

e - f) shows the final results from the SRTR campaign and the third row

(panels: i - l) shows the final results of the PRTR campaign. In these first

three rows, the final FES is shown in the first column, the biased probability

density is depicted in the second column, the on-the-fly error of the mean

force is illustrated in the third column, and the absolute deviation of the

FES is presented in the fourth column. In the last row, the progression of

the on-the-fly error of the mean force is illustrated in Figure 5.20 (m) and

the progression of the average absolute deviation of the FES is depicted in

Figure 5.20 (n).

The most notable difference is in the final biased probability density.

While the long simulation was sampled longer in lower energy regions, the

other two approaches have more uniform sampling. The former is typical

of WT-MetaD simulations, whereas in the other two cases, the flat sampling

distribution results from repeatedly initialising simulations with an almost flat

biased potential surface. In all three cases, the final FESs appear smooth,

and the final absolute deviations of the FESs are very similar, with an error of

about 2 kJ/mol between the two free energy basins. Moreover, the absolute

deviation of the long simulation (Figure 5.20 d) and that of the SRTR cam-
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paign (Figure 5.20 h) are almost identical, while that of the PRTR campaign

(Figure 5.20 j) is larger in the right basin. By inspecting the progression of

the average absolute deviation, depicted in Figure 5.20, it can be confirmed

that the long simulation and the SRTR campaign have a very similar accu-

racy, with a final average error of 0.972 k/mol and 0.967 kJ/mol, respectively.

The PRTR campaign has a larger final average error of 1.156 k/mol. Fur-

thermore, the SRTR exhibits the fastest initial convergence, while the PRTR

campaign almost matches the long simulation. Conversely, the final error of

the mean force (Figure 5.20 m) is the highest for the long simulation, while

that of the other two is underestimated. By comparing the error map of the

mean force of the long simulation (Figure 5.20 c) with its biased probability

density (Figure 5.20 b), it can be observed that regions with a higher un-

certainty overlap with higher energy regions that were sampled less. Due

to the uniform sampling in the other two cases, the uncertainty in the higher

energy regions is smaller, resulting in a lower global uncertainty of the mean

force.

The results obtained with the real-time reinitialisation campaigns pose

a substantial improvement compared to the previous results presented in

Section 3.4. It shows how passing on the information gathered in early

simulations to subsequent ones using an InvF bias can improve the conver-

gence, even when multiple simulations are employed in parallel.
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Figure 5.20: Comparison of different simulation strategies. The first row (a-d)
shows results from a single 20 ns MetaD simulation. The second row
(e-h) shows the results from an SRTR campaign with a time budget
of 20 ns. The third row (i - l) shows the results from a PRTR cam-
paign with a time budget of 20 ns. The first column shows the final
FES, the second column shows the final biased probability density,
the third column shows the error of the mean force, and the fourth
column shows the absolute deviation of the FES. (m) Progression of
the on-the-fly error of the mean force and (n) progression of the aver-
age absolute deviation of the FES, where the grey line represents the
single simulation, the red line represents the SRTR campaign, and
the blue line represents the PRTR campaign.
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5.8 Testing on Multiple Surfaces
For a more comprehensive evaluation of the effectiveness of the real-time

reinitialisation approaches, they are tested on a range of analytical poten-

tials.

The analytical forms of all one–dimensional test potentials are collected

in Appendix A.4, whereas the two–dimensional surfaces are defined in Ap-

pendix A.6. The corresponding averaged error progressions are presented

in Appendix A.5 for the one–dimensional benchmarks and in Appendix A.7

for the two–dimensional cases.

5.8.1 One-Dimensional Surfaces

First, 20 one-dimensional surfaces are employed, which are depicted in Fig-

ure 5.21. These are characterised by varying surface roughness and energy

barrier height.

Figure 5.21: The figure shows a range of one-dimensional analytical potential sur-
faces. Moving from left to right, the surface roughness increases,
while moving from top to bottom, the energy barrier height rises.

Each surface was simulated with 100 SRTR campaigns and 100 PRTR
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campaigns, each with a time budget of 106 simulation steps, a minimum of

105 and a maximum of 6 · 105 steps per simulation. For comparison, 100

long WT-MetaD simulations were carried out for each surface, with an ini-

tial Gaussian height of 5 kJ/mol, and a bias factor of 50 (identical to the

long-intuitive approach discussed in Section 5.5). Additionally, 100 long WT-

MetaD simulations were carried out with an adjusted height and bias factor.

It was found that an initial Gaussian height of 𝐹lim/30 kJ/mol, and a bias fac-

tor of 𝐹lim/3, where 𝐹lim is the largest energy barrier, generally resulted in a

good convergence (similar to the long-optimal approach discussed in Sec-

tion 5.5). All long simulations were simulated with 106 simulation steps. Also,

each surface was simulated 100 times with a two-step approach (discussed

in Section 5.5), which employed an exploration stage with 105 simulation

steps, using an initial Gaussian height of 𝐹lim/15 kJ/mol and a bias factor of

3.33 · 𝐹lim. This was followed by a MetaD stage with 9 · 105 simulation steps

employing Gaussian hills characterised by an initial height of 𝐹lim/30 kJ/mol

and a bias factor of 1 + 𝐹lim/15 . All simulations used a width for the MetaD

bias of 0.1, except the SRTR and PRTR campaigns, which evaluated the

width based on the FES estimate.

The final errors of each method are summarised in Figure 5.22, where

the on-the-fly error of the mean force is given in the left table, the average

absolute deviation of the FES is provided in the centre table and the aver-

age bootstrap error is tabulated on the right side. The tables use the same

4 × 5 format as Figure 5.21, so that the cell location of each error value cor-

responds to the cell location of the surfaces depicted in Figure 5.21. For an

easier comparison, the cells are coloured based on their respective values.

For the error of the mean force, a dark green colour is used for values below

1.3 kJ/mol, a dark red colour for values above 2.5 kJ/mol, and values be-

tween 1.3 and 2.5 kJ/mol shift progressively from green to yellow and red as

they increase. Similarly, for the error of the FES (centre and right table), a

dark green colour is used for values below 0.15 kJ/mol, a dark red colour for
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values above 1.3 kJ/mol, while values in between shift linearly from green to

red. The first row in Figure 5.21 shows the final error from the long simula-

tion with the constant MetaD parameters, the second row shows the results

from the long simulation with the adjusted MetaD parameters, and the third

row shows the results from the two-step approach. The fourth row shows

the results from the SRTR method, and the last row shows the results from

the PRTR method. The general trend for all error types is that the surfaces

with a lower energy barrier and surface roughness are predicted with better

accuracy. For all methods, either the first or the second surface (smooth sur-

face with small energy barrier) is evaluated with the highest precision, and

the last surface (very rough surface with large energy barrier) is predicted

with the most significant error.

Moreover, by taking the mean of all final average absolute deviations

of the FES, it is found that the long-intuitive approach performs the worst,

with an average final error of 0.622 kJ/mol, and the long-optimised approach

is marginally better with 0.615 kJ/mol. The PRTR approach has a slightly

lower average final error of 0.592 kJ/mol, while the SRTR approach is no-

tably more accurate with 0.430 kJ/mol. Nevertheless, considering the par-

allel efficiency in the PRTR approach, it could be an effective alternative

when simulating computationally demanding systems. Overall, the two-step

approach estimated the FESs most precisely with an average final error of

0.403 kJ/mol. Furthermore, the final error difference between the two long

approaches and the reinitialisation approaches is more pronounced for sur-

faces with higher energy barriers, highlighting the benefit of starting with an

exploratory stage and moving faster to a conservative MetaD bias. The fact

that the two-step approach performed the best suggests that it is not neces-

sary to employ several consecutive simulations, and that a fast exploratory

simulation followed by a conservative MetaD simulation is an effective strat-

egy.

When comparing the average absolute deviation of the FES with the
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Figure 5.22: Comparison of final error for the simulation of different surfaces (see
Figure 5.21) with different simulation strategies. Long-intuitive (first
row), long-optimised (second row), two-step (third row), SRTR (fourth
row), and PRTR (fifth row). Average error of the mean force (first
column), average absolute deviation of FES (second column), and
average bootstrap error of FES (third column).



192 Chapter 5. Reinitialisation of Simulations and Real-Time Analysis

bootstrap error of the FES, the values align qualitatively. However, the boot-

strap error is systematically underestimated by around 15%. The only excep-

tion is the bootstrap error of the PRTR approach, which is underestimated

by around 50%. Likewise, the error of the mean force of the PRTR approach

is notably underestimated. Overall, the PRTR has the lowest final error of

the mean force compared to the other methods, even though the actual er-

ror is larger. In contrast, the error of the mean force of the other approaches

qualitatively reflects the trend observed in the error of the FES.



5.8. Testing on Multiple Surfaces 193

5.8.2 Two-Dimensional Surfaces

Lastly, the SRTR and PRTR approaches are tested on four analytical two-

dimensional surfaces of increasing complexity, depicted in Figure 5.23. The

potential displayed in Figure 5.23 (a) was first proposed by Invernizzi et

al. [76] and is, therefore, referred to as the Invernizzi potential. The other

surfaces, illustrated in Figure 5.23 (a), (b) and (c), were created for this

work, and are referred to as Potential 1, 2 and 3, respectively. The Invernizzi

potential is comparatively the smoothest surface with an 𝐹lim = 20, and it

was simulated with a time budget of 106 simulation steps. Potential 1 is also

smooth, but with an 𝐹lim = 40, so it was simulated with a time budget of

1.5 · 106 simulation steps. Potentials 2 and 3 also have an 𝐹lim = 40, but

are more challenging to estimate correctly, which is why the time budget for

these surfaces was set to 3 · 106 simulation steps.

Figure 5.23: Four two-dimensional analytical potential surfaces, increasing in com-
plexity from left to right.

The real-time reinitialisation approaches are each simulated 100 times

for each surface. Additionally, each surface was simulated 100 times with

single, long simulations, employing a WT-MetaD bias with an initial Gaussian

height of 𝐹lim/20 and a bias factor of 𝐹lim/2. For the Invernizzi potential, these

MetaD parameters, together with a Gaussian width of 0.186 for both CVs,

correspond to the MetaD parameters reported by Invernizzi et al. in their

publication [76]. For the other surfaces, a Gaussian width of 0.1 was used

for both CVs. Furthermore, each surface was simulated 100 times using
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a two-step approach (see Section 5.5). With this approach, the exploration

simulation used an initial Gaussian height of 𝐹lim/4 and a bias factor of 5·𝐹lim,

and the second simulation was characterised by an initial Gaussian height of

𝐹lim/20 (same as long simulation) and a biasfactor of 𝐹lim/2. The Gaussian

width was also set to 0.186 for both CVs for the Invernizzi potential, and 0.1

for both CVs for the other potentials. For both the long simulation and the

two-step approach, the total simulation steps are identical to the time budget

of the real-time reinitialisation approaches, with the exploration simulation in

the two-step approach having 10% of the total simulation steps.

The final errors of each method are summarised in Figure 5.24, where

the on-the-fly error of the mean force is given in the left table, the average

absolute deviation of the FES is provided in the centre table and the average

bootstrap error is tabulated on the right side. Similar to Figure 5.22, the cells

are coloured based on their respective values for an easier comparison.

Contrary to Figure 5.22, the colour scale for the average absolute deviation

of the FES (Figure 5.24 b) is different from that of the average bootstrap

error of the FES (Figure 5.24 c), as it is systematically underestimated by

50% to 75%.

When inspecting the average absolute deviation of the FES closer, it

is apparent that the Invernizzi potential was predicted most accurately with

an average error of 0.444 kJ/mol, while potential 2 was hardest to predict

with an average error of 2.292 kJ/mol. Furthermore, the two-step approach

was the most effective method, with an average error of 0.698 kJ/mol. The

long simulations and the SRTR method performed similarly well, with an

average error of 1.082 kJ/mol and 1.099 kJ/mol, respectively, whereas the

PRTR method was the least accurate with an average final error of 1.646

kJ/mol.

As stated above, the average bootstrap error of the FES is underes-

timated systematically, however, it correctly establishes the two-step ap-

proach as the most precise simulation strategy. Even so, the long simu-
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Figure 5.24: Comparison of final error for the simulation of different two-
dimensional surfaces. a) Average error of the mean force, (b) av-
erage absolute deviation of FES, and (c) average bootstrap error of
FES. Each error is given in a table where the columns indicate the
surface (see Figure 5.23) and the rows provide the simulation strat-
egy used to simulate the surface. The simulation strategies are: Long
(first row), two-step (second row), SRTR (third row), and PRTR (fourth
row). The cells of the tables are coloured, where the smallest value
of each table is dark red, the largest value of each cell is dark green,
and values in between gradually shift from green to yellow and red.

lations are wrongly determined to be the least accurate, and the SRTR and

PRTR approaches have roughly the same bootstrap error, which also does

not reflect the real precision of the methods. The error of the mean force is

also not an adequate representation of the real error. Even though it cor-

rectly determines the two-step approach to be more accurate and the PRTR

approach the least accurate, the error of the Invernizzi potential is the high-

est, and that of potential 2 is the lowest, which is the opposite of the true

error.

Overall, results resonate with the results obtained from the compari-

son with the one-dimensional potentials, where the two-step approach was

identified as the most effective method. It emerges as a straightforward

technique to enhance the convergence of MetaD simulations by effectively

shortening the exploration of the system and moving faster to a less fluctu-

ating MetaD bias.
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5.9 Conclusions

The results presented in this chapter demonstrate the practicality and versa-

tility of the inverse-FES (InvF) bias as a means for transferring information

from existing simulations to new ones. Inverting the most recent FES esti-

mate and employing it as a static bias allows the new simulation to access

higher-energy states directly and circumvents the need to construct a MetaD

bias from scratch. The InvF bias can be supplemented with an additional

MetaD bias and arbitrary surfaces tailored to user needs. This enables bias

potentials that facilitate the sampling of less converged regions or some

other target distribution. It was demonstrated how this strategy could be

used to create a canal along an approximate transition pathway, and proved

effective for restricting the trajectory of an alanine dipeptide simulation to the

vicinity of that transition path.

A novel simulation strategy was introduced, where one long simulation

is replaced by a campaign of several shorter simulations. The campaign is

divided into various stages, beginning with an exploration stage that uses an

aggressive MetaD bias to explore the whole CV space rapidly. Subsequent

stages use progressively smoother MetaD biases in combination with in-

creasingly accurate InvF potentials derived from the evolving FES estimate.

This concept was formalised in the Serial Real-Time Reinitialisation

(SRTR) approach, in which each short simulation is terminated and replaced

as the campaign moves through its predefined stages. Automated criteria

were devised for the initialisation and termination of every simulation, allow-

ing the bias parameters to improve incrementally as convergence advances.

An alternative Parallel Real-Time Reinitialisation (PRTR) approach was de-

vised for parallel computing environments. In this approach, termination

and reinitialisation decisions were made similarly to the SRTR approach;

however, the combined information from all simulations was used, and syn-

chronised actions were taken.

Benchmark calculations against conventional single WT-MetaD con-
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firmed the advantages of reinitialisation. For one-dimensional surfaces,

SRTR campaigns consistently converged faster than single simulations,

while PRTR campaigns delivered similar accuracy with superior parallel

scalability. However, the advantage of SRTR and PRTR campaigns was

less pronounced for two-dimensional surfaces. Nevertheless, across all ex-

amples, a two-step strategy emerged as particularly effective and reliable.

This approach employed an initial brief exploratory simulation, followed by a

longer simulation with a gentler MetaD bias. This highlighted the effective-

ness of starting with a short and rough exploration stage, and moving faster

to a stage with a less fluctuating MetaD bias where the system converges

faster. Furthermore, it suggested that using an overly complex biasing strat-

egy, as was used in SRTR, might not always be advantageous, rendering

the optimal balance between straightforward protocols (two-step) and more

elaborate adaptive schemes (SRTR) an endeavour for future work.

The bootstrap error of the FES served as a reliable convergence met-

ric across all one-dimensional test cases. However, in two dimensions, its

robustness decreased, underscoring the need for improved error quantifica-

tion. Moreover, the mean-force error tended to overestimate the accuracy

of reinitialised simulations, in particular that of PRTR campaigns. Finally,

applications to complex chemical systems will be essential to validate the

reinitialisation approaches presented in this section.

The calculations reported in this chapter were performed with the

MFI Python library, which is openly available on GitHub. The class

that handles one-dimensional surfaces is provided at https://github.

com/mme-ucl/MFI/tree/master/MFI_class1D, and the corresponding two-

dimensional implementation at https://github.com/mme-ucl/MFI/tree/

master/MFI_class2D. Both repositories include illustrative Jupyter note-

books that demonstrate how the classes can be used to reinitialise simu-

lations manually or to conduct complete SRTR and PRTR campaigns.

https://github.com/mme-ucl/MFI/tree/master/MFI_class1D
https://github.com/mme-ucl/MFI/tree/master/MFI_class1D
https://github.com/mme-ucl/MFI/tree/master/MFI_class2D
https://github.com/mme-ucl/MFI/tree/master/MFI_class2D




Chapter 6

Solvent Effects on Beta-Scission

via Mean Force Integration

In this chapter, MFI is employed to analyse and combine multiple short MD

simulations of radical polymerisation reactions. The study was conducted

in collaboration with Francesco Serse (from the Department of Chemistry,

Materials, and Chemical Engineering of the Politecnico di Milano), who

spent several months at University College London as a visiting PhD stu-

dent. Serse designed and executed the simulations, including preparing the

force fields and the simulation environment. The contributions of the writer

consist of assisting in the post-processing of the data with Mean Force Inte-

gration (MFI) and optimising biasing parameters. The contents of this chap-

ter were published in the article ”Unveiling solvent effects on 𝛽-scissions

through metadynamics and mean force integration” in the Journal of Chem-

ical Theory and Computation (https://doi.org/10.1021/acs.jctc.4c00383) [5],

with Serse being the first author of the article and the writer of this thesis the

second author.

6.1 Introduction

Free radical polymerisation (FRP) and pyrolysis are central to numerous

industrial applications for synthesising and recycling polymeric materials,

which are widely utilised in plastics, coatings, and adhesives. Central to un-
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Figure 6.1: Beta-scission of butyl acrylate: a) Radical butyl acrylate dimer, b) butyl
acrylate monomer, and c) radical product.

derstanding and optimising these processes is the accurate determination

of kinetic parameters for elementary reactions that significantly influence

structural properties such as molecular weight distributions.

In FRP, monomers such as butyl acrylate (BA) undergo chain reactions

mediated by free-radical intermediates, yielding large polymers, such as

poly-butyl acrylate (PBA). This process is started by radical initiators, typ-

ically peroxides, which couple with monomers, generating end-chain radi-

cals (ECR). These ECRs propagate the FRP through successive reactions

with other monomers or terminate when two radicals combine. At tem-

peratures above 400 K, intramolecular hydrogen abstraction in radical poly-

mers (backbiting) becomes increasingly favourable, creating mid-chain rad-

icals (MCR). Subsequently, the MCR may combine with another monomer

to form a branched chain, or fragment via 𝛽-scission into a shorter ECR

and a monomer, as illustrated in Figure 6.1. In contrast, pyrolysis is a

thermal degradation process, where large polymer chains are decomposed

into oligomers and monomers. Due to the higher operating temperatures

(𝑇 > 600 K), backbiting and 𝛽-scission play an essential role in pyrolysis.

Experimental measurement of kinetic rate constants of FRP and py-

rolysis processes often bears substantial challenges. Techniques such as

pulsed laser polymerisation combined with size exclusion chromatography

(PLP-SEC) [126, 127, 128] or semi-batch reactor studies with nuclear mag-
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netic resonance analysis (NMR) [129], are restricted to temperatures below

410 K due to limited operating capabilities. Thus, experimental kinetic rate

constants associated with backbiting and 𝛽-scission at elevated tempera-

tures are scarce [129, 128, 130], and are commonly estimated empirically

[131, 132, 133].

In this study, PBA was selected as a model system because numer-

ous experimental studies [126, 127, 128, 129, 130, 134] provided a reliable

benchmark for validation. In particular, the 𝛽-scission of PBA is investigated

through molecular simulations at temperatures where experimental reaction

rates are available (𝑇 = 310 K−410 K), and at an elevated temperature lack-

ing experimental data (𝑇 = 510 K). Furthermore, the reaction is examined

in various solvent environments, including water, xylene, BA monomer and

vacuum.

Accurately describing the reactive intermediates requires computation-

ally demanding quantum-mechanical calculations. To reduce the computa-

tional cost, BA dimers (depicted in Figure 6.1) were employed to investigate

the 𝛽-scission, instead of much longer BA polymer chains. This decision

was based on the assumption that the reactivity is primarily influenced by

local structure rather than by chain length [135, 136, 137].

Even so, the computational demand was so great that it was not possi-

ble to sample sufficient crossings of the energy barrier within a single run to

calculate a converged FES. For this reason, it was decided to adopt an alter-

native strategy where the simulations are divided into multiple independent,

shorter runs. This allowed, on the one hand, for the parallel execution of

independent simulations, thereby gaining computational efficiency. On the

other hand, it enabled a more flexible scheduling of simulations, such that

these could be run when computational resource allocations were available.

The independent trajectories were post-processed and merged with

MFI to determine the combined FES. Lastly, generalised transition state the-

ory was used to estimate reaction rates [138], which are validated against
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available experimental data. While this chapter exclusively investigates 𝛽-

scission, Serse et al. published a complementary analysis of the reaction ki-

netics of backbiting [139], employing analogous analysis tools as presented

here.
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6.2 Methodology

6.2.1 Computational Approach

Accurate computational predictions of reaction kinetics in condensed

phases demand advanced methodologies capable of describing electronic

structures explicitly. To this end, both quantum mechanics (QM) and molec-

ular mechanics (MM) have been employed in a hybrid computational frame-

work (QM/MM).

The QM/MM approach partitions the system into two distinct regions,

significantly reducing computational effort while preserving accuracy where

required. The radical BA dimer undergoing 𝛽-scission is treated using QM

methods, while solvent molecules (water, xylene, or BA monomer) are de-

scribed using classical molecular mechanics force fields. Explicit solvent

molecules are included, capturing specific solvent-solute interactions cru-

cial for accurately predicting kinetic parameters.

6.2.2 Simulation Details

All simulations were conducted by Serse [5] using CP2K version 9.1 [140] in

a periodic box with dimensions of 23 Å × 23 Å × 23 Å and a time step of 0.5

fs for the MD simulations. The equilibration stage comprised an initial 100

ps simulation in the isothermal-isobaric ensemble to reach equilibrium bulk

density, followed by an additional 50 ps equilibration in the canonical ensem-

ble. The Nosé-Hoover thermostat was used in the equilibration simulations

[141], with a time constant of 50 fs, while the Bussi-Parrinello thermostat

[107] was used for the other simulations. The generalised Amber force field

(GAFF) [68, 142] was utilised in the equilibration runs and in the produc-

tion runs to describe the behaviour of the solvent molecules. Long-range

electrostatic interactions were determined using the smooth particle mesh

Ewald method [143, 48] with a 10 Å cutoff.

For MetaD simulations, the reactive dimer constituted the QM region. It

was described by the GFN1-xTB (Geometry, Frequency, and Noncovalent
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interaction force field — extended tight binding Hamiltonian) method [144],

chosen due to its balance of computational efficiency and reasonable accu-

racy. Electrostatic interactions between QM and MM regions were described

using a Coulomb potential [145] and a 1 ps equilibration was conducted to

allow the QM/MM partition to stabilise.

The 𝛽-scission reaction was described with two CVs, depicted in Fig-

ure 6.2. The primary CV measures the carbon-carbon bond distance, 𝑑𝐶−𝐶 ,

undergoing scission (the distance between the carbon atoms labelled with 2

and 3 in Figure 6.2). The second CV provides the torsional dihedral angle, 𝜙,

between the molecular fragments involved (the dihedral angle involving the

carbon atoms labelled with 1, 2, 3 and 4 in Figure 6.2). The bias potential

was constructed using Gaussian hills with a constant height of 1 kcal/mol

and widths of 0.2 Bohr and 0.2 rad, deposited every 30 fs. A non-tempered

MetaD bias was chosen so that the height of the Gaussians would not be

damped and the configuration space would be explored faster. Using non-

tempered MetaD comes with the disadvantage that the bias grows without

bounds, resulting in poorer convergence over long simulation times. How-

ever, the relatively short simulation times that were accessible rendered this

drawback negligible. Post-processing non-tempered MetaD simulations and

evaluating the FES with MFI poses no additional complications compared to

post-processing WT-MetaD simulations. The system was simulated multiple

times for 25 ps at different temperatures, using butyl acrylate, water and xy-

lene as solvents, and vacuum (imitating gas phase conditions). The number

of simulations for each temperature and solvent environment is summarised

in Table 6.1.

6.2.3 Evaluation of Free Energy Barriers

The individual simulation data were analysed and combined with MFI to

construct the FES. To simplify the evaluation of the free energy barrier, the

two-dimensional FES was projected onto a one-dimensional representation

[146] along the primary reaction coordinate 𝑑𝐶−𝐶 through:
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Figure 6.2: Image adapted from Serse et al. [5]. Collective variables used to de-
scribe the 𝛽-scission. The distance between the carbon atoms labelled
with 2 and 3 is denoted by 𝑑, and the torsional dihedral angle between
the molecular fragments is denoted by 𝜙

Solvent
Temperature

[K]
Number of
Simulations

Gas
(Vacuum)

310 10

410 9

510 10
Butyl Acrylate

Monomer 410 11

Water
310 8

410 8

510 8

Xylene 410 10

Table 6.1: Summary of solvents used, temperature conditions and number of sim-
ulations.
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𝐹 (𝑑𝐶−𝐶) = − 1

𝛽
ln

(∫
𝑃𝑢 (𝑑𝐶−𝐶 , 𝜙) d𝜙

)
, (6.1)

where 𝑃𝑢 (𝑑𝐶−𝐶 , 𝜙) is the unbiased probability density, which is obtained from

the two-dimensional FES as:

𝑃𝑢 (𝑑𝐶−𝐶 , 𝜙) =
𝑒−𝛽𝐹 (𝑑𝐶−𝐶 ,𝜙)∫ ∫
𝑒−𝛽𝐹 (𝑑𝐶−𝐶 ,𝜙)d𝜙 d𝑑𝐶−𝐶

(6.2)

The energy barrier can be categorised as the activation energy barrier, in-

dicated with a ∗ superscript (e.g. Δ𝐹∗), which is the energy difference be-

tween the reactant and the transition state, and the reaction energy barrier,

indicated with a 𝑅 superscript (e.g. Δ𝐹𝑅), which is the energy difference

between the reactant and the product state. Once the one-dimensional FES

were available at various temperatures, the internal energy contribution,

𝑈 (𝑑𝐶−𝐶), and the entropic contribution, 𝑆(𝑑𝐶−𝐶), were separated through

equation 2.41, by fitting the FESs at different temperatures as follows:

𝐹 (𝑑𝐶−𝐶 , 𝑇𝑖) = 𝑈 (𝑑𝐶−𝐶) − 𝑇𝑖𝑆(𝑑𝐶−𝐶) , 𝑇𝑖 ∈ {310K, 410K, 510K} (6.3)

The fitting was done using the Scikit-learn linear regression module [147].

Once the internal energy contribution was isolated, it was refined via

higher-level density functional theory (DFT) optimisations followed by zero-

point-energy (ZPE) corrections in vacuum at 0 K for five configurations, in-

cluding one representing the reactant state and one the transition state. For

each configuration, higher-level 𝜔B97XD/def2-TZVPP DFT [148] calcula-

tions were conducted to optimise their geometries, followed by a harmonic

frequency analysis to compute the ZPE corrections. The energy corrections

were then applied uniformly across solvent conditions to correct the internal

energy activation barrier as follows:

Δ𝑈∗
𝜔B97XD = (E∗ + ZPE∗) − (E𝑅 + ZPE𝑅) (6.4)
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where the ∗ superscript denotes values calculated in the transition state, the

𝑅 superscript denotes values computed in the reactant state, and E rep-

resents internal energies calculated with the QM scheme used during the

simulations. Finally, the energy difference was used to replace the previ-

ous internal energy barrier, Δ𝑈xTB, to compute the corrected free energy

difference of activation:

Δ𝐹∗
corrected = Δ𝐹∗

xTB + (Δ𝑈∗
𝜔B97XD − Δ𝑈∗

xTB) (6.5)

6.2.4 Histogram Test

A histogram test can be conducted to validate the dividing surface identified

on the one-dimensional FES and the choice of CV (𝑑𝐶−𝐶) [48, 149]. This is

accomplished by initialising unbiased MD simulations at the identified tran-

sition state, using various torsional angles (𝜙), and monitoring whether they

evolve toward reactant or product states. The committor probability distribu-

tion obtained from these trajectories serves as a diagnostic. If it contains a

sharp peak around 0.5, it can be confirmed that the chosen CV is suitable

for describing the transition state accurately. If the committor probability dis-

tribution significantly deviates from a monomodal distribution centred at 0.5,

the one-dimensional CV is not enough to accurately represent the energy

barrier of activation.

6.2.5 Evaluation of Reaction Rates

Kinetic rate constants were calculated within the framework of generalised

transition state theory (TST) [138, 150], where the transition state divides

the phase space into a region for reactants (R) and one for products (P).

The rate constant, 𝑘𝛽, is determined as the net flux between these regions

using the expression:

𝑘𝛽 =
⟨| ¤𝑑𝐶−𝐶 |⟩∗

2𝑙
𝑒−𝛽Δ𝐹

∗
, (6.6)
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where Δ𝐹∗ denotes the height of the energy barrier separating the region

R from P (or free energy barrier of activation), and ⟨| ¤𝑑𝐶−𝐶 |⟩∗ denotes the

ensemble average velocity of crossing the energy barrier. The expression in

equation 6.6 is normalised by 𝑙, representing the reaction coordinate length

that connects the reactant state to the transition state. For a more detailed

explanation of the TST theory, readers are referred to [138, 150].
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6.3 Results and Validation

6.3.1 Free Energy Surface Exploration

The independent trajectories, simulated at 410 K in different solvent envi-

ronments (summarised in Table 6.1), were post-processed with MFI and

the resulting (two-dimensional) FESs are illustrated in Figures 6.3 (a-d). All

FESs share a basin elongated along 𝑑𝐶−𝐶 ≈ 3, an energy barrier at approx-

imately 𝑑𝐶−𝐶 ≈ 5, followed by a roughly flat free energy landscape beyond

𝑑𝐶−𝐶 > 6. On the other hand, the FES only contains minor fluctuations for

varying values of 𝜙 along constant values of 𝑑𝐶−𝐶 . While the energy barrier

along 𝑑𝐶−𝐶 is around 30 kcal/mol, the energy fluctuations along 𝜙 are below

3 kcal/mol. This implies a rapid equilibration of transitions in the torsional an-

gle, whereas breaking the carbon-carbon bond emerges as the rate-limiting

mechanism. Because the FESs were reconstructed with MFI, local uncer-

tainties and convergence behaviour can be evaluated quantitatively. The

local bootstrap error of the combined FESs, depicted in Figures 6.3 (e-h),

is below 1 kcal/mol within the basins for every solvent condition. Along the

energy barrier and for higher values of the 𝐶−𝐶 distance, the error is larger,

but remains below 2 kcal/mol. Part of this increase stems from the conven-

tion of setting the lowest free energy of the basin to 0 kcal/mol, resulting in

a lower error in that region. Conversely, the height of the energy barrier is

determined from the slope of the FES, where errors can be introduced. Be-

sides, the basin was sampled more extensively than other regions, resulting

in a lower error in the basin region.

The temporal evolution of the error of the mean force (black line) and

that of the bootstrap error of the FES (red line) are displayed in Figures

6.3 (i-l) with the green vertical lines indicating the end of the individual sim-

ulations. The bootstrap error stabilises at around 0.5 kcal/mol for all sol-

vent cases, suggesting that the existing simulation data is sufficient to es-

timate the FES accurately. Moreover, the final error of the mean force is

1.2 kcal/(mol·Bohr·rad) for all cases. When comparing the mean force er-
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Figure 6.3: (a-d) Two-dimensional FES as a function of 𝑑𝐶−𝐶 and 𝜙 from MetaD
simulation at 410 K, analysed with MFI, and (e-h) the bootstrap error
of the FES. (i-l) Progression of the mean force error (black line, left
y-axis), bootstrap error of the FES (red line, right y-axis) with the end
of the individual simulations (green-dashed vertical lines). The butyl
acrylate dimer was simulated in (a,e,i) vacuum, (b,f,j) xylene, (c,g,k)
water, and (d,h,l) BA monomer.

ror with the bootstrap error of the FES, it can be observed that the latter

appears to have converged, whereas the former has not reached conver-

gence yet. However, this is expected since residual fluctuations of the mean

force are smoothed through integration, and their impact on the FES is at-

tenuated even while the mean force is still refining. These insights into the

convergence of the FES highlight the key advantages of MFI. Not only can

independent biased trajectories be merged, but the method also provides

position-dependent uncertainties and convergence metrics, thereby provid-

ing quantitative confidence in the reliability of the final results.

This insight motivates the projection of the two-dimensional FES onto

only the 𝑑𝐶−𝐶 dimension by integrating out 𝜙 (see discussion in Section
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6.2.3). The marginal free energy profiles derived from these landscapes

are depicted in Figure 6.4 (a), enabling a more precise assessment of the

energy barrier. It is the largest when the 𝛽-scission was simulated in vac-

uum, with an energy barrier around 29.5 kcal/mol. The energy barrier from

the simulations that used xylene and water as solvents is 2 kcal/mol lower,

while that of the simulations that employed BA monomers is 2.5 kcal/mol

lower. These results demonstrate a notable reduction in activation barriers

due to solvent interactions. Figure 6.4 (b) shows the one-dimensional FES

from the simulations of the 𝛽-scission in vacuum at 310 K, 410 K and 510 K.

It can be observed that as the temperature increases, the height of the en-

ergy barrier decreases and shifts toward the reactant state. This suggests

that 𝛽-scission becomes more thermodynamically favoured with increasing

temperature, as reported in previous studies [131, 132, 133]. Moreover, the

uncertainty in the one-dimensional FESs is also displayed in Figure 6.4 with

the coloured shaded regions. These provide confidence in the accuracy of

the resulting surfaces and can also be used to determine the uncertainty of

the reaction rates.

6.3.2 Histogram Test

A histogram test was conducted and the committor probability is shown

in Figure 6.5. It confirms the suitability of the chosen reaction coordinate

(𝑑𝐶−𝐶) for capturing the transition state. Unbiased MD trajectories initiated at

the dividing surface consistently produce a sharply peaked committor prob-

ability distribution around 0.5, verifying that no additional collective variables

are required to describe the transition state accurately.

6.3.3 Determining the Energy Barrier

The FESs were decoupled to extract the internal energy and the entropy

contribution through linear regression to gain a deeper thermodynamic un-

derstanding. Figure 6.6 (a) shows the contributions of the FES simulated at

510 K in vacuum. The internal energy profile starts at zero kcal/mol in the



212 Chapter 6. Solvent Effects on Beta-Scission via Mean Force Integration

(a) (b)

Figure 6.4: One-dimensional free energy profile of the 𝛽-scission of butyl acrylate
as a function of 𝑑𝐶−𝐶 together with the bootstrap error indicated by the
shaded regions. (a) FES of butyl acrylate 𝛽-scission simulated at 410
K in vacuum (blue line) and different solvents: water (red line), xylene
(green line) and BA monomer (orange line). (b) FES of butyl acrylate
𝛽-scission simulated in vacuum at 310 K (blue line), 410 K (orange line)
and 510 K (green line). The vertical dashed lines indicate the location
of the energy barrier.

Figure 6.5: Histogram test to validate choice of CV and confirm location of energy
barrier. Several simulations were initialised along the transition state.
The graph shows the probability of the simulations evolving toward the
product state.
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stable bonded state (𝑑𝐶−𝐶 ≈ 3), rises to 30 kcal/mol at the transition state

(𝑑𝐶−𝐶 ≈ 4.75), and plateaus at 31.5 kcal/mol shortly thereafter (𝑑𝐶−𝐶 ≈ 5),

corresponding to the energy required to break the 𝐶 − 𝐶 bond in the 𝛽-

scission fully. Moreover, the entropy profile exhibits a continuous increase

(illustrated as −𝑇𝑆 decrease) up to 𝑑𝐶−𝐶 ≈ 6, which can be attributed to a rise

in the number of degenerate configurations as the 𝛽-scission progresses.

In vacuum, the barrier of activation of the internal energy is 31.52 ± 0.61

kcal/mol, while that of the entropy is 0.005 ± 0.002 kcal/mol/K. In water,

these values decrease to 28.69 ± 0.54 kcal/mol for the internal energy and

0.005 ± 0.002 kcal/mol/K for the entropy.

In further analysis, the internal energy contribution was refined using

higher-level DFT calculations, described in Section 6.2.3. This resulted in a

correction of the free energy activation barrier, decreasing it by 7.92 kcal/mol

and shifting it 0.45 Bohr closer to the reactant state. The corrected internal

energies are represented by the black circles in Figure 6.6 (a), which also

shows the shift of the previous FES (dark green line) to the corrected FES

(light green line). This correction was applied correspondingly to all free

energy profiles, and the resulting free energy barrier of activation and bar-

rier of reaction are summarised in Table 6.2. Furthermore, the temperature

dependence of the free energy barrier of activation in vacuum and water is

shown in Figure 6.6. A linear fit of these values reveals the corrected barrier

of activation of the internal energy and the entropy, where the former is the

𝑦-intercept and the latter is the slope. While the corrected activation internal

energy is 23.4 kcal/mol for vacuum and 20.6 kcal/mol for water, the activation

entropy is roughly the same and within the error bars of the previous values.

6.3.4 Evaluation of Reaction Rates

The reaction rate constants are computed using the generalised transition

state theory (TST), described in Section 6.2.5. The velocity of crossing the

transition state, ⟨| ¤𝑑𝐶−𝐶 |⟩∗, was estimated from the simulations conducted
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(a) (b)

Figure 6.6: (a) FES from the simulation in vacuum at 510 K (dark green line), de-
composed into the internal energy contribution (yellow line) and the
entropy contribution (brown line). The black circles represent the re-
fined internal energy contribution obtained via high-level DFT and the
corrected (refined) FES (light green line). (b) Corrected (refined) values
of free energy barrier of activation (dots) with a linear fit (line), together
with the equation of the linear fit (𝑦-intercept corresponds to internal
energy contribution and slope to entropy contribution). The blue data
indicates the values for the system simulated in vacuum (gas), and the
red data values for the system simulated in water.

Solvent
𝑇

[K]
𝑙

[Bohr]
Δ𝐹∗

[kcal/mol]
Δ𝐹𝑅

[kcal/mol]
𝑘𝛽

[s−1]

Gas
(Vacuum)

310 2.0 21.8 ± 0.5 20.1 ± 0.5 0.0016 ± 0.0013

410 1.9 21.6 ± 0.5 19.1 ± 0.5 12 ± 7

510 1.8 20.8 ± 0.5 17.9 ± 0.5 5 000 ± 2 000

BA Monomer
(Bulk) 410 1.9 19.1 ± 0.3 16.6 ± 0.4 300 ± 200

Water
310 1.8 20.1 ± 0.7 15.9 ± 0.7 0.03 ± 0.02

410 1.7 19.6 ± 0.4 16.6 ± 0.4 200 ± 90

510 1.6 19.5 ± 0.4 16.1 ± 0.5 25 000 ± 10 000

Xylene 410 1.9 19.6 ± 0.4 18.1 ± 0.4 180 ± 120

Table 6.2: Summary of results in different solvent and temperature conditions (col-
umn 1 and 2): distances between reactant state and the transition state
𝑙 (column 3), free energy activation barriers Δ𝐹∗ (column 4), free energy
reaction barriers Δ𝐹𝑅 (column 5) and reaction rates 𝑘𝛽 (column 6).
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for the histogram test and was assumed to be 1.42 · 1013 Bohr/s across all

environments. The distances between the reactant and transition states, 𝑙,

were measured from the corrected one-dimensional FESs and are reported

in Table 6.2. Together with the corrected free energy barrier of activation,

the reaction rate constants were computed, which are listed in Table 6.2.

At 410 K, rate constants in the BA monomer solvent (bulk) are the high-

est, while those in xylene and water match closely, and those in vacuum are

the lowest. These findings indicate substantial solvent-dependent kinetic

variations. For water and vacuum, rate constants are available across mul-

tiple temperatures, allowing for the estimation of the Arrhenius relationship:

𝑘𝛽,water = 2.82 · 1013 𝑒−21.24·103
𝑅𝑇

𝑘𝛽,vacuum = 4.55 · 1013 𝑒−23.41·103
𝑅𝑇

(6.7)

where 𝑅 = 1.987 kcal/mol/K is the gas constant. From the Arrhenius rela-

tionship, effective activation energies are determined to be 𝐸𝑎,water = 21.24

kcal/mol for water and 𝐸𝑎,vacuum = 23.41 kcal/mol for vacuum.

The Arrhenius relationship together with all computed reaction rate con-

stants are plotted in Figure 6.7 (except the rate for xylene, as it fully overlaps

with the rate of water at 410 K) and compared to reaction rate values from

previous studies [130, 129, 134]. The results from this study closely match

the experimental results obtained by Vir et al. [130] via high-temperature

PLP-SEC using BA bulk as the solvent (green crosses and dotted line). The

predicted reaction rate for the bulk solvent falls right on the Arrhenius re-

lationship of Vir et al.. However, the computed reaction rate for the xylene

solvent is 30 times larger than that measured by Peck et al. [129] with NMR.

The most notable discrepancy exists between the reaction rates in vacuum

predicted by this study and those predicted by Cuccato et al. [134], with

a difference of three orders of magnitude. This arises because Cuccato

et al. predicted the rates using harmonic TST with a B3LYP/6-31+G(d,p)

QM scheme, where they did not account for anharmonic contributions, both
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Figure 6.7: Comparison of reaction rates: Computed by Serse et al. in vacuum
(gas) (blue dots and line), with water as solvent (orange dots and line),
and BA monomers as solvent (bulk) (green dot). Computed by Cuccato
et al. in vacuum (gas) (blue dotted line). Experimentally measured by
Vir et al. with BA bulk as solvent (green crosses and dotted line) and
measured by Peck et al. with xylene as solvent (orange cross).

from the solute and the solvent, that lower the barrier. Additionally, this study

used high-level DFT corrections to refine the internal energy contributions,

which resulted in a notable reduction in the energy barrier and consequently

a larger reaction rate.

6.4 Conclusions

In this chapter, a collaborative research project was presented, where the

FES and reaction rates of the 𝛽-scission of a BA dimer were determined

under different temperature and solvent conditions. For the accurate pre-

diction of the reaction kinetics, a QM/MM approach was employed, where

the BA dimer undergoing 𝛽-scission was described with QM methods while

the solvent was described with classical force fields. Additionally, higher-

level DFT optimisation followed by ZPE corrections was utilised to refine the

potential energy calculation of five configurations, resulting in a free energy

correction of 7.92 kcal/mol across all solvent environments.

Non-tempered MetaD was employed to accelerate the sampling of the

system. However, due to the extensive computational demand of the QM

calculations and the limited computational resources, it was not possible to
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obtain converging FESs from single trajectories. This issue was resolved

by dividing the simulation into several independent runs, enabling the sam-

pling of multiple crossings of the free energy barrier, as well as more flexible

resource management. While it is not possible to merge independent trajec-

tory data to determine the combined FES in a self-consistent manner, MFI

proved invaluable for the post-processing. It enabled the estimation of the

combined FES, and the bootstrap error of the FES, which served as a quan-

titative measure of the global convergence and the local uncertainty. On the

one hand, this confirmed that the existing simulation data was sufficient to

calculate the FESs accurately. On the other hand, it provided quantitative

uncertainties for the free energy barriers of activation, which in turn enabled

the calculation of the error bars for the reaction rates.

Rare events generalised TST was then used to determine the reaction

rates of 𝛽-scission, which revealed that these increase with rising tempera-

ture. Furthermore, it was shown that the energy barrier is lowered and re-

action rates increase when a solvent is present. The largest reaction rates

were found when BA was used as the solvent. Crucially, the reaction rates

were in good agreement with previous experimental studies, demonstrating

the effectiveness and reliability of MFI in combining several short simulations

to determine the FES of highly complex systems.





Chapter 7

General Conclusions and

Outlook

Accurate estimation of FESs is one of the central challenges in MD simu-

lations, particularly for systems in which metastable states are separated

by substantial energy barriers [35]. Enhanced sampling methods, such as

MetaD [2, 50, 49, 74] or US [1, 37, 58], have been widely adopted as a

means to bias the potential energy of the system, thereby achieving er-

godic sampling within accessible time scales. However, suboptimal biasing

parameters often result in incomplete sampling of relevant high-energy con-

figurations or poor convergence. Furthermore, independent MetaD simula-

tions can not be combined in a self-consistent manner with standard MetaD

estimators, thus restricting this method to single long trajectories. As a re-

sult, poorly converged MetaD simulations with inadequate biasing parame-

ters are routinely discarded, even though their trajectory data contains valu-

able information. Consequently, a robust post-processing framework that

permits the estimation of the FES from several independent MetaD simula-

tions is of considerable practical significance, particularly for systems where

long, continuous simulations are prohibitively expensive.

MFI [3, 77] addresses this need by initially determining the average

mean force from trajectory data, which can be integrated to determine the

FES. This approach has the advantage that independent mean force esti-
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mates can be merged via a weighted average approach, enabling the esti-

mation of the combined FES from independent simulations. MFI was first

published by Marinova et al. [3] as a proof of concept. However, key ques-

tions regarding quantifying the uncertainty and convergence, interoperability

with biasing methods other than MetaD and effectiveness in complex chem-

ical systems remained unresolved.

The principal objectives investigated in this work were therefore:

1. Generalisation of the MFI formalism so that it can operate subject to

arbitrary static or time-dependent biases, or a combination of those.

2. Development of numerical schemes suitable for efficient FES recon-

struction, uncertainty estimation and convergence evaluation.

3. Demonstrate that multiple short and under-converged trajectories can

be patched together to determine the combined FES accurately.

4. Validate the reliability and transferability of MFI by simulating complex

chemical systems and reconstructing their FESs.

5. Provide an open-source implementation of the MFI algorithms, en-

courage collaborative projects and facilitate a wider adoption of MFI.

7.1 Contributions
This work’s contribution started with a generalised framework of MFI [77] in

Section 3.1. This allowed for the simultaneous application of multiple static

and time-dependent biases within one simulation, which was subsequently

post-processed with MFI, and the FES was determined. The effectiveness

of this framework was demonstrated in Chapter 3 through the simulation

of analytical potentials and alanine dipeptide, where a MetaD bias supple-

mented with a US bias resulted in accurate estimations of FESs. Chapter 5

further showed that, given an a priori FES estimate, a static InvF bias can be

utilised to ”flatten” the underlying potential energy surface. Such a bias ef-

fectively transfers information from earlier simulations to subsequent ones,
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facilitating prompt access to the previously sampled configuration space.

This can be further augmented with a MetaD bias and customised surfaces,

for example, to prioritise sampling of energy barriers, less converged regions

(see Figure 7.2 a) or transition paths. Overall, this MFI framework affords

additional flexibility in combining biasing strategies unavailable in existing

enhanced-sampling techniques.

Next, two complementary convergence metrics have been developed in

Section 3.2. The first quantifies the statistical uncertainty of the mean force.

Since the mean force is obtained from a weighted average, its variance pro-

vides a reliable on-the-fly convergence estimation at negligible additional

cost. However, in most applications, the uncertainty of the FES is of greater

significance. For this reason, a bootstrap error analysis was implemented,

where independent estimates of the mean force are randomly combined

and integrated. This procedure produces an ensemble of FESs, which in

turn provide an estimate of the uncertainty in the FES. Multiple examples

confirmed that the average bootstrap error of the FES reproduces both the

qualitative and quantitative behaviour of the average absolute deviation of

the FES, while the error of the mean force provided an additional quali-

tative on-the-fly estimation of the convergence. Moreover, a reliable and

fast integration algorithm was essential for accurately estimating the FES

and computing the bootstrap error efficiently. To this end, a fast-Fourier-

transform-based integration method was developed in Section 3.3.3, which

is 100 times faster and more accurate than the Least-Squares Finite Differ-

ence integration method used in the original MFI implementation [3].

The main contribution of this thesis was validating that independent

trajectories generated under diverse static and history-dependent biasing

conditions can be merged, and that the combined FES can be estimated

accurately and self-consistently. This enables researchers to restructure

exceedingly expensive simulations into multiple shorter, independent runs.

On the one side, this allows for increased computational efficiencies through
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parallel execution and more flexibility to run simulations when computational

allocations are available. On the other hand, it permits researchers to de-

vise diverse biasing procedures for different regions of configurational space

or simulation stages, and to iteratively improve biasing parameters without

discarding under-converged trajectories. Even though other enhanced sam-

pling methods enable parallel execution, adaptive sampling, or the combina-

tion of independent runs, MFI combines all these features. These capabili-

ties were initially tested for analytical model potentials and alanine dipeptide

in Section 3.4, then extended to three complex chemical systems.

In Section 4.2, the nucleation of argon vapour into a liquid droplet was

investigated at various supersaturation conditions. The energy barrier sep-

arating the vapour state from the liquid state is markedly asymmetric (see

Figure 7.1 a): the forward transition involves a steep barrier, whereas the

reverse process requires escaping a deep basin with a gentler slope. A

single MetaD simulation able to sample both directions with sufficient re-

crossings would have incurred a prohibitive cost. Instead, 50 forward and 50

backwards simulations were conducted, employing narrow Gaussian hills

for the condensation and wider hills for evaporation. The condensation with

the highest supersaturation level contained the largest and steepest energy

barrier, motivating the use of an additional wall-like static bias potential. The

simulation data was then post-processed with MFI, resulting in converged

FESs. This study exemplified how heterogeneous biases can be tailored to

different regions of configuration space, thereby enabling swift transitions of

challenging energy barriers.

In Section 4.3, the two-step nucleation of a colloidal system from a

homogeneous solution was simulated. Two CVs were used to describe

this process: the number of colloidal particles in the dense phase, 𝑛, and

the number of particles exhibiting crystalline order, 𝑛(𝑄6). Because calcu-

lating the latter CV imposed a computational bottleneck, an ML surrogate

model was employed to accelerate its estimation. The system was first sim-
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(a) (b)

Figure 7.1: (a) FES of nucleation of supersaturated argon vapour at different su-
persaturation levels, indicated in the legend. (b) FES of two-step nu-
cleation of the colloidal system.

ulated with a non-tempered MetaD bias, followed by three WT-MetaD sim-

ulations, yielding markedly different sampling distributions. Post-processing

with MFI produced the combined FES, illustrated in Figure 7.1 (b), which

was well converged and clearly displayed a two-step nucleation pathway.

This study demonstrated how data from iteratively optimised simulations can

be merged and integrated rather than discarded.

In Chapter 6, the 𝛽-scission reaction in a butyl-acrylate dimer was anal-

ysed to predict reaction rates across different solvent and temperature con-

ditions. This required expensive QM calculations to describe the electronic

structure accurately, rendering simulations long enough to sample the re-

action repeatedly inaccessible. Therefore, the simulation was divided into

multiple shorter runs, which imposed a more accessible computational de-

mand. Furthermore, computational efficiencies were realised through par-

allel execution, and aggregated results could be complemented with addi-

tional runs when required. Subsequent MFI analysis produced converged

FESs, from which the reaction rates were computed via TST. Comparison

with experimental reaction rates further validated the effectiveness and relia-

bility of MFI for computing accurate FESs of complex and high-cost systems

through multiple independent under-converged trajectories.
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Although partitioning an expensive, long simulation into several shorter

segments proved advantageous for high-cost systems, tests on simpler

models revealed that the short simulations converged comparatively more

slowly. Because a considerable fraction of each short run was spent re-

visiting low-energy basins, high-energy configurations were only sampled

once the MetaD bias had accumulated sufficiently. This redundancy was

mitigated by transferring information between runs via the static InvF bias,

facilitating prompt access to the previously sampled high-energy configu-

rations. In Chapter 5, this approach was further developed by introducing

successive biasing stages: the system was first rapidly explored with an

aggressive MetaD bias, followed by further biasing stages, employing an

increasingly accurate InvF potential combined with a progressively gentler

MetaD bias (see Figure 7.2). This protocol accelerated exploration of con-

figuration space and enabled a faster transition to a less fluctuating MetaD

bias, consistently improving the convergence.

(a) (b)

Figure 7.2: (a) Combination of various bias potentials: InvF bias from previous
FES (light green region), custom bias constructed with error map to
encourage sampling of less converged regions (dark green region),
and MetaD bias (red region). (b) Error progression across multiple
simulation stages: bootstrap error of FES (red line), absolute deviation
of FES (red-dashed line), error of mean force (black line), and the end
of each stage (green-dashed line).

This approach was further developed in Section 5.5, introducing Se-

rial Real-Time Reinitialisation (SRTR) campaigns: automated criteria were
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devised to initialise, terminate, and re-initialise simulations repeatedly. In

Section 5.6, this concept was extended to multiple concurrent replicas

through Parallel Real-Time Reinitialisation (PRTR) campaigns. The SRTR

and PRTR campaigns were tested extensively on various analytical mod-

els, and compared to single simulations, parallel simulations and a two-step

approach, consisting of an exploration stage followed by a simulation with

a gentle MetaD. It was found that SRTR campaigns consistently converged

faster than an equivalently long continuous simulation, whereas PRTR cam-

paigns exhibited comparable convergence within reduced wall-clock time.

On average, the two-step approach had the best accuracy, highlighting the

effectiveness of starting with a fast exploration and suggesting a balance

between straightforward protocols (two-step) and more elaborate schemes

(SRTR) needs to be found. SRTR and PRTR represent a novel approach to

automate the repeated reinitialisation of short simulations with iteratively im-

proving biasing parameters. While it proved effective for cheap simulations

on analytical potentials and alanine dipeptide, it still needs to be tested on

complex chemical systems.

Lastly, making all algorithms developed for this work openly acces-

sible at github.com/mme-ucl/MFI facilitated widespread adoption of MFI

within the enhanced sampling community. The stable pyMFI package

(github.com/mme-ucl/pyMFI) provides the core functionality used through-

out Chapter 3, whereas the reinitialisation algorithms reside in separate

modules: MFIclass 1D and MFIclass 2D. Public availability has already fa-

cilitated multiple collaborations, including the colloidal nucleation study of

Section 4.3 and the 𝛽-scission investigation of Chapter 6. Additionally, nu-

merous external researchers started using MFI in their work and utilised the

pyMFI library to post-process their simulations.

github.com/mme-ucl/MFI
https://github.com/mme-ucl/MFI/tree/master/pyMFI
github.com/mme-ucl/pyMFI
https://github.com/mme-ucl/MFI/tree/master/MFI_class1D
https://github.com/mme-ucl/MFI/tree/master/MFI_class2D
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7.2 Limitations and Future Work

Despite the progress achieved, several limitations remain. For instance,

combining MetaD with US proved robust only when moderate force con-

stants were employed, whereas very stiff restraints distorted the resulting

mean forces. A possible remedy would be to analyse the data biased with

the US on a separate, high–resolution grid. Then, the mean force would be

interpolated onto the working grid and combined with the other data. Em-

ploying a smaller bandwidth would also be advantageous when sampling

is concentrated in a small region of CV-space. Moreover, the quality of the

reconstructed FES is sensitive to the kernel bandwidth chosen for the prob-

ability density calculation (see equation 2.92). The bandwidth was chosen

heuristically throughout this thesis, whereas adaptive bandwidth selection

[76, 151, 152] would reduce user bias and improve the final result and re-

producibility.

Other limitations involve the SRTR and PRTR frameworks, which op-

erate with relatively simple rules and criteria. Simulations are terminated

solely based on the global uncertainty estimations without considering how

effectively high-uncertainty regions are explored. Incorporating informa-

tion, such as the residence time within basins, could expedite reinitialisa-

tion when the simulation remains trapped in a metastable state. Conversely,

considering the accessibility to poorly converged regions could prevent pre-

mature termination when corrections to the mean force result in transient

inflations of the uncertainty. Additionally, the initialisation of new simulations

could be improved by estimating how much the biased potential energy sur-

face (𝑈+ InvF ) deviates from a flat distribution. This would enable a better

choice of the MetaD height and bias factor, such that the remaining energy

barrier can be overcome with a minimally fluctuating MetaD bias. Also, a

periodic reevaluation of 𝐹lim would reduce reliance on initial parameter se-

lection.

Furthermore, a terminal stage could be activated at the end of the cam-
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paign, where the sampling is prioritised in important and less converged re-

gions, such as the energy barrier. On the other hand, further investigations

are required to determine the balance between straightforward (two-step

approach) and complex (SRTR) sequential simulations. This vast space of

parameter selection, rules and criteria, and the accompanying safeguards

and exceptions, is incredibly challenging to implement effectively. Instead,

an ML model could be trained to make these decisions. Given enough train-

ing data, such a model could, in principle, identify intricate relations between

sampling, results and convergence. During his doctoral studies, the writer

explored this idea and implemented, trained, and tested a deep-Q-learning

reinforcement ML model [117, 153, 154]. While ML-steered decisions pro-

duced better results than random decision-making, the simple rules pre-

sented in this work performed far better. However, larger training datasets,

longer optimisation windows and improved neural architectures could im-

prove the performance. Whether an ML model could execute enhanced

sampling methods better than some simple rules, a junior researcher, or

come close to an expert in the field remains a question for future work.

Nevertheless, further work is not limited to the MFI methodology, but

also to the publicly accessible MFI implementations. Crucially, embedding

core routines of MFI directly into PLUMED [94, 93] would further facilitate

access to the method. Besides, the MFI library could deliver a more user-

friendly experience by providing more tutorials with additional use cases.

Also, MFI currently enables the launch of MD simulations with GROMACS

[71], which could be extended to LAMMPS [112], CP2K [140], OpenMM

[155] and other popular MD software. More aspirational, coupling ML-

derived force fields [156, 157], automatic CV discovery [158, 159, 160], and

real-time MFI bias optimisation would create an end-to-end framework that

would prepare the way for automated studies.
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7.3 Concluding Remark
MFI has been advanced from a proof-of-concept to a versatile framework

that unifies heterogeneous biased trajectories, delivers quantitative uncer-

tainties, enables serial or parallel simulation campaigns and accommodates

dynamic reinitialisation strategies. It provides a flexible blueprint for tackling

free-energy problems that would otherwise be beyond reach. Continued

refinements in automation, scalability and software integration will further

broaden its impact across chemistry, biophysics and materials science.
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Camilloni, Pavel Banáš, Alessandro Barducci, Mattia Bernetti, Pe-

ter G. Bolhuis, Sandro Bottaro, Davide Branduardi, Riccardo Capelli,

Paolo Carloni, Michele Ceriotti, Andrea Cesari, Haochuan Chen,

Wei Chen, Francesco Colizzi, Sandip De, Marco De La Pierre,

Davide Donadio, Viktor Drobot, Bernd Ensing, Andrew L. Fergu-

son, Marta Filizola, James S. Fraser, Haohao Fu, Piero Gas-

parotto, Francesco Luigi Gervasio, Federico Giberti, Alejandro Gil-

Ley, Toni Giorgino, Gabriella T. Heller, Glen M. Hocky, Marcella

Iannuzzi, Michele Invernizzi, Kim E. Jelfs, Alexander Jussupow,

Evgeny Kirilin, Alessandro Laio, Vittorio Limongelli, Kresten Lindorff-
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Appendix A

Additional Results

A.1 Synthetic-Noise Benchmark for the Integra-

tion of the Force
To quantify how robust the three integration schemes of Section 3.3

(FFT–based, Simpson, and intgrad1) are to statistical scatter, an ensem-

ble of artificial “simulation” gradients was generated and integrated. The

procedure is summarised below.

A smooth analytical force 𝑓ref (𝜉) was obtained by differentiating an an-

alytical potential 𝐹ref (𝜉) on an equidistant grid {𝜉𝑖}𝑁𝑖=1 with spacing Δ𝜉.

Each replica adds a zero–mean Gaussian perturbation 𝜂𝑖 to the refer-

ence force,

𝑓
noisy
𝑖

= 𝑓ref (𝜉𝑖) + 𝜂𝑖,

where the random field 𝜼 is produced by the helper generate noise:

def generate_noise(shape, noise_level=1.0, correlation_length=None):

if noise_level == 0:

return np.zeros(shape)

# uncorrelated noise

noise = np.random.normal(0, noise_level, shape)

# impose spatial correlations if requested
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if correlation_length is not None:

noise = gaussian_filter(noise, sigma=correlation_length)

# rescale so that the average absolute amplitude equals `noise_level`

return noise * noise_level / (np.sum(np.abs(noise)) / len(noise))

Two control parameters are varied systematically:

• Noise amplitude 𝑛rms ∈ {0.5, 1, 1.5, 2, 2.5, 3, 4, 5};

• Correlation length 𝑙𝑐 ∈ {None, 1, 2, 3, 4} grid points, implemented

through a Gaussian filter of width 𝑙𝑐.

The full factorial combination yields 8 × 5 = 40 sets of noise statistics.

For each pair (𝑛rms, 𝑙𝑐) 100 statistically independent noisy gradients are pro-

duced, giving 40 × 100 = 4 000 test cases

After numerical integration the result 𝐹num(𝜉) is compared with the an-

alytical reference via the average absolute deviation

AAD =
1

𝑁

𝑁∑︁
𝑖=1

��𝐹num
𝑖 − 𝐹ref

𝑖

��
and the corresponding percentage AAD, AAD% = 100AAD/Δ𝐹range, where

Δ𝐹range is the range of the reference surface.

The core of the benchmark is sketched below (simplified variable

names; see the repository for the full script):

for noise_level in noise_levels:

for corr_len in corr_lengths:

for _ in range(100):

dy_noisy = dy_ref + generate_noise(dy_ref.shape, noise_level=noise_level, correlation_length=corr_len)

error_fft.append( AAD(FFT_intg_1D(dy_noisy, dx), F_ref) )

error_simps.append(AAD(intg_1D(dy_noisy, dx), F_ref) )

error_grad.append( AAD(intgrad1(dy_noisy, dx), F_ref) )
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Finally, the mean and standard error of each metric are reported over

the entire ensemble:

⟨AAD⟩ = 1

𝑀

𝑀∑︁
𝑘=1

AAD𝑘 , 𝜎⟨AAD⟩ =

√︃
1

𝑀−1
∑
𝑘 (AAD𝑘 − ⟨AAD⟩)2

√
𝑀

,

with 𝑀 equal to the number of replicas. These values constitute the data

discussed in Section 3.3.4.

A.2 Estimating the Height in the Exploration

Stage

For a two–dimensional collective-variable space, the goal of the exploration

stage is identical to that described in Section 5.3.1: rapidly cover every ther-

modynamically relevant basin up to a predefined free-energy ceiling, 𝐹lim,

while preventing the walkers from being trapped in local minima. The proce-

dure again relies on an aggressive well-tempered MetaD bias (short Gaus-

sian deposition stride and a bias factor much bigger than 𝐹lim), but the esti-

mate of the initial Gaussian height, 𝜔0, must now account for the area that

has to be filled.

Assuming that the portion of the FES that needs to be compensated

resembles an inverted pyramid of height 𝐹lim over the rectangular domain

[CV1min, CV1max] × [CV2min, CV2max],

the bias “volume” to inject is approximated by

𝐴 =
1

3
𝐹lim

(
CV1max − CV1min

) (
CV2max − CV2min

)
.

A two-dimensional Gaussian kernel of widths 𝜎𝐻,𝑥 and 𝜎𝐻,𝑦 contributes

a volume 2𝜋𝜎𝐻,𝑥𝜎𝐻,𝑦 𝜔 to the bias. If 𝑁hills Gaussians are to be deposited
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during the exploration time slice, 𝑡exploration, the required height is therefore

𝜔0 =

1

3
𝐹lim

(
CV1max − CV1min

) (
CV2max − CV2min

)
2𝜋 𝜎𝐻,𝑥𝜎𝐻,𝑦

𝑡exploration

𝜏𝐺

, (A.1)

where 𝜏𝐺 is the time between two consecutive Gaussian depositions. As in

one dimension, a lower bound 𝜔 ≥ 𝐹lim/5 is imposed to prevent unrealisti-

cally small hills.

The exploration trajectory is terminated once the sum of the instanta-

neous MetaD bias and the current FES estimate exceeds 𝐹lim everywhere

on the sampled grid. Although the resulting FES will still contain sizeable

statistical errors, its qualitative shape suffices for constructing the inverse-

force (InvF) bias used in the subsequent refinement stage.

A.3 Gaussian Fitting for MetaD Bandwidth esti-

mation in SRTR and PRTR
In the two–dimensional variants of SRTR and PRTR the local bandwidths

𝝈 = (𝜎𝑥 , 𝜎𝑦) that control the adaptive reinitialisation kernels are obtained by

fitting an Gaussian kernel to each basin of the FES detected on the current

surface estimate. The procedure is implemented in Gaus fitting to fes 2D

and proceeds as follows.

1. Periodic extension (optional).

If either collective variable is periodic, the surface is replicated and con-

catenated so that basins straddling a boundary are treated as single con-

nected objects. After the fit the indices are mapped back onto the original

grid.

2. Pre-processing.

A Gaussian smoothing filter (𝜎 = 3 grid points by default) removes high-

frequency fluctuations to avoid false basin detection. A maximum-filter of

size max filter size = 𝑛/10 (𝑛 = min(𝑁𝑥 , 𝑁𝑦)) is then applied to the inverted
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surface, turning minima into peaks. Pixels fulfilling 𝐹 = max(𝐹) after this

operation mark potential basin centres; candidates at the boundary or above

0.95 𝐹max are discarded.

3. Basin segmentation.

Starting from each remaining centre, a flood-fill algorithm follows the

surface gradient “uphill” (four–way connectivity) until no neighbouring grid

point has a larger value. The visited points define the footprint of that basin.

Basins covering fewer than 1% of the total grid area are ignored.

4. Local surface reorientation.

For every accepted basin the local surface is mirrored around its min-

imum so that the basin floor becomes the peak of an upright hill; values

outside the footprint are set to zero. The resulting positive function 𝐵𝑖 (𝑥, 𝑦)

is the target for the Gaussian fit.

5. Gaussian regression.

Along the grid lines crossing the basin centre (𝑥𝑐, 𝑦𝑐) the function

𝑔(𝑥, 𝑦) = ℎ exp
[
− (𝑥 − 𝑥𝑐)2

2𝜎2
𝑥

]
+ ℎ exp

[
− (𝑦 − 𝑦𝑐)2

2𝜎2
𝑦

]
is fitted to 𝐵𝑖 with scipy.optimize.curve fit. Bounds are:

• ℎ ∈ [0, 𝐵max
𝑖

],

• 𝜎𝑥 ∈ [Δ𝑥, 𝐿𝑥/4],

• 𝜎𝑦 ∈ [Δ𝑦, 𝐿𝑦/4],

where Δ𝑥,Δ𝑦 are the grid spacings and 𝐿𝑥 , 𝐿𝑦 the box lengths. The

parameter triple (ℎ, 𝜎𝑥 , 𝜎𝑦) is stored for later use by the SRTR and PRTR

schedulers; in particular 𝜎𝑥 and 𝜎𝑦 serve as kernel bandwidths, whereas ℎ

controls the initial height of the local bias.

6. Output.

The routine returns

• the indices of the basin centres on the original grid;
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• a list of the basin masks 𝐵𝑖 (𝑥, 𝑦);

• the fitted parameter sets (ℎ, 𝜎𝑥 , 𝜎𝑦)𝑖.

A one–dimensional analogue, used when a single CV is biased, follows

exactly the same logic but operates on line profiles and fits a one–parameter

Gaussian 𝑔(𝑥) = ℎ exp[−(𝑥 − 𝑥𝑐)2/(2𝜎2)].

Illustrative example

Figure A.1 shows two basins extracted from a quartic double-well po-

tential (blue and orange) together with the corresponding Gaussian fits (pur-

ple and red). The fitted widths 𝜎𝑥 , 𝜎𝑦 capture the local curvature of each well

and are subsequently used to tailor the SRTR/PRTR kernels to the intrinsic

length scale of the landscape.

Figure A.1: Gaussian regression on two basins of a synthetic two-dimensional
free-energy surface. (a) slices along the 𝑥 axis (𝑦 = 𝑦𝑐) and (b) slices
along the 𝑦 axis (𝑥 = 𝑥𝑐). The blue and orange line represent the iden-
tified basins, and the purple and red line the Gaussian fits. Legends
report the basin centres and the fitted standard deviations.

A.4 Definition of One-Dimensional Surfaces
In Section 5.8 , the reinitialisation protocols introduced in Sections 5.4–5.6.3

were benchmarked against twenty analytical model potentials. They were

selected to span a broad spectrum of topographies, ranging from nearly

smooth double wells to highly corrugated landscapes with multiple compet-

ing minima. This appendix gathers the explicit functional forms of those test
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surfaces and the associated error progressions, thereby keeping the main

text uncluttered.

Figure A.2 visualises the 20 one-dimensional potentials employed. Mov-

ing from left to right, the surfaces become progressively rougher, whereas

moving from top to bottom, the central barrier height increases. All po-

tentials are dimensionless and are expressed as functions of the collective

coordinate 𝜉.

Figure A.2: The figure shows a range of one-dimensional analytical potential sur-
faces. Moving from left to right, the surface roughness increases, while
moving from top to bottom, the energy barrier height rises.

For completeness, the mathematical expressions of the twenty poten-

tials are reported below. They are labelled Surface 0 – Surface 19 in the

same order as Figure A.2.

Surface 0:

𝑈0(𝜉) =
2

3

(
3(0.5𝜉)4 − 19(0.5𝜉)2

)
. (A.2)
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Surface 1:

𝑈1(𝜉) =
5

6

(
−30𝑒−0.33(1.5𝜉+6.0)2 − 10𝑒−(1.5𝜉+1.9)

2 − 32.5𝑒−0.4(1.5𝜉−1.9)
2

− 30𝑒−0.2(1.5𝜉−5.8)
2 + 𝑒−3𝜉−15 + 𝑒3𝜉−15

)
.

(A.3)

Surface 2:

𝑈2(𝜉) =
7

6

(
−20𝑒−0.25(𝜉+3.5)4 − 20𝑒−0.25(𝜉−3.5)

4 + 5 sin(4𝜉)

+ 10𝑒−5(𝜉+4.5)
2 + 𝑒−2𝜉−9 + 𝑒2𝜉−8.8

)
.

(A.4)

Surface 3:

𝑈3(𝜉) =
4

3

(
−14𝑒−0.25(𝜉+3.5)4 − 25𝑒−0.25(𝜉−3.5)

4 − 10𝑒−(𝜉+0.5)
2

− 2 sin(−8𝜉) + 𝑒−2𝜉−9 + 𝑒2𝜉−9
)
.

(A.5)

Surface 4:

𝑈4(𝜉) =1.5
(
−22𝑒−1.6(𝜉−1)2 − 10𝑒−4.0(𝜉+0.5)

2 − 30𝑒−0.332(𝜉−3.2)
2

− 30𝑒−0.344(𝜉+3.2)
2 + 2 sin

(
−8(𝜉 − 1.1)

)3) + 𝑒−2𝜉−9 + 𝑒2𝜉−9 . (A.6)

Surface 5:

𝑈5(𝜉) =0.89
(
22𝑒−4.7(𝜉−3.6)

2 + 11𝑒−2.0(𝜉−0.09)
2 + 29𝑒−3.8(𝜉+3.0)

2

− 11𝑒−5.0(𝜉−3.2)
4 − 28𝑒−2.2(𝜉+0.13)

2 − 6𝑒−4.4(𝜉+3.1)
2

− 12.4𝑒−1.6(𝜉−0.14)
6 − 51𝑒−0.21(𝜉−3.2)

4 − 52𝑒−0.361(𝜉+3.7)
6
)

+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.7)

Surface 6:

𝑈6(𝜉) =1.8
(
−28𝑒−0.1(𝜉+3.5)4 + 15𝑒−1.5(𝜉+3.3)

2 − 15𝑒−3.5𝜉
2 − 28𝑒−0.1(𝜉−3.5)

6
)

+ 𝑒−2𝜉−9 + 𝑒2𝜉−8.8 .
(A.8)



A.4. Definition of One-Dimensional Surfaces 261

Surface 7:

𝑈7(𝜉) =0.88
(
12𝑒−2.2(𝜉−3.0)

2 + 𝑒−4.8(𝜉+0.02)4 + 18𝑒−3.0(𝜉+3.5)
2

− 17𝑒−2.5(𝜉−3.3)
4 − 19𝑒−3.9(𝜉+0.29)

4 − 11𝑒−3.0(𝜉+3.4)
2

− 37𝑒−0.208(𝜉−3.6)
2 − 53𝑒−0.386(𝜉+3.7)

6 + 3 sin
(
−4(𝜉 − 1.3)

)6)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.9)

Surface 8:

𝑈8(𝜉) =0.65
(
9𝑒−2.9(𝜉−3.3)

2 + 21𝑒−3.3(𝜉+0.21)
4 + 28𝑒−3.5(𝜉+2.8)

4

− 58𝑒−0.278(𝜉−3.3)
4 − 29𝑒−0.188(𝜉+3.7)

6 + 3 sin
(
−8(𝜉 − 1.0)

)2)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.10)

Surface 9:

𝑈9(𝜉) =0.83
(
5𝑒−4.6(𝜉−2.7)

2 + 3𝑒−3.3(𝜉−0.22)
2 + 21𝑒−3.6(𝜉+2.9)

4

− 15𝑒−4.9(𝜉−3.4)
4 − 16𝑒−4.3(𝜉−0.0)

2 − 21𝑒−4.0(𝜉+2.9)
4

− 59𝑒−0.197(𝜉−3.0)
2 − 53𝑒−0.274(𝜉+2.8)

4 + 3 sin
(
−8(𝜉 − 1.9)

)6)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.11)

Surface 10:

𝑈10(𝜉) =1.3
(
11𝑒−3.3(𝜉−2.8)

4 + 21𝑒−4.1(𝜉−0.13)
2 + 16𝑒−4.3(𝜉+2.7)

2

− 20𝑒−4.4(𝜉−3.4)
2 − 28𝑒−3.4(𝜉+0.13)

4 − 8𝑒−3.8(𝜉+3.5)
4

− 10𝑒−1.2(𝜉+0.26)
6 − 32𝑒−0.3(𝜉−3.2)

6 − 38𝑒−0.304(𝜉+3.3)
6

+ 2 sin
(
−2(𝜉 − 1.1)

) )
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.12)
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Surface 11:

𝑈11(𝜉) =1.53
(
21𝑒−4.3(𝜉−2.7)

2 + 𝑒−3.6(𝜉−0.04)4 + 29𝑒−3.5(𝜉+3.7)
4

− 15𝑒−2.3(𝜉−2.8)
2 − 21𝑒−4.8(𝜉−0.23)

4 − 17𝑒−4.9(𝜉+3.0)
2

− 30𝑒−0.366(𝜉−3.3)
6 − 38𝑒−0.187(𝜉+3.4)

4
)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.13)

Surface 12:

𝑈12(𝜉) =2.3
(
−20𝑒−0.25(2.8𝜉+11)2 − 28𝑒−0.15(2.8𝜉+7.5)

4 − 28𝑒−0.15(2.8𝜉+4.5)
4

− 10𝑒−0.8(2.8𝜉)
2 − 7𝑒−0.8(2.8𝜉−3.0)

2 − 23𝑒−0.3(2.8𝜉−8.0)
2

− 15𝑒−0.3(2.8𝜉−12)
2
)
+ 𝑒−5.6𝜉−30 + 𝑒5.6𝜉−30 .

(A.14)

Surface 13:

𝑈13(𝜉) =1.81
(
29𝑒−1.4(𝜉−3.4)

4 + 5𝑒−3.8(𝜉−0.07)
4 + 0𝑒−3.8(𝜉+2.9)

4

− 22𝑒−2.5(𝜉−2.9)
4 − 5𝑒−3.7(𝜉−0.05)

4 − 12𝑒−3.2(𝜉+3.1)
4

− 8.6𝑒−2.3(𝜉−0.22)
6 − 40𝑒−0.35(𝜉−3.4)

4 − 30𝑒−0.212(𝜉+3.0)
4

+ 2 sin
(
−8(𝜉 − 0.2)

)2) + 𝑒−2𝜉−9 + 𝑒2𝜉−9 .
(A.15)

Surface 14:

𝑈14(𝜉) =1.54
(
22𝑒−1.6(𝜉−2.8)

2 + 10𝑒−4.0(𝜉−0.19)
2 + 23𝑒−3.2(𝜉+3.2)

4

− 41𝑒−0.332(𝜉−3.2)
2 − 47𝑒−0.344(𝜉+3.2)

4 + 2 sin
(
−8(𝜉 − 1.1)

)3)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.16)

Surface 15:

𝑈15(𝜉) =1.39
(
−25𝑒−1.9(𝜉−3.4)2 − 12𝑒−3.2(𝜉−0.17)

2 − 16𝑒−3.7(𝜉+3.5)
4

− 7.6𝑒−2.2(𝜉−0.11)
2 − 40𝑒−0.24(𝜉−3.4)

4 − 44𝑒−0.227(𝜉+3.5)
4
)

+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.17)
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Surface 16:

𝑈16(𝜉) =1.2
(
10𝑒−4.1(𝜉−3.6)

2 + 28𝑒−3.3(𝜉−0.13)
2 + 6𝑒−4.6(𝜉+2.7)

2

− 12𝑒−4.2(𝜉−3.1)
2 − 3𝑒−4.4(𝜉−0.07)

2 − 13𝑒−4.7(𝜉+3.7)
4

− 23𝑒−0.227(𝜉−3.3)
2 − 57𝑒−0.155(𝜉+2.6)

2 + 2 sin
(
−4(𝜉 − 1.6)

)2)
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.18)

Surface 17:

𝑈17(𝜉) =3.5
(
−15𝑒−0.45(2.8𝜉−14.0)2 − 28𝑒−0.35(2.8𝜉−10.0)

2 − 23𝑒−0.15(2.8𝜉−6.0)
2

− 28𝑒−0.3(2.8𝜉)
2 − 15𝑒−0.6(2.8𝜉+4.0)

2 − 23𝑒−0.4(2.8𝜉+8.0)
2

− 32𝑒−0.2(2.8𝜉+12.0)
2
)
+ 𝑒−5.6𝜉−30 + 𝑒5.6𝜉−30 .

(A.19)

Surface 18:

𝑈18(𝜉) =1.69
(
5𝑒−1.6(𝜉−3.6)

2 + 26𝑒−4.4(𝜉+0.01)
4 + 21𝑒−4.6(𝜉+3.2)

4

− 42𝑒−0.249(𝜉−2.5)
2 − 44𝑒−0.281(𝜉+2.5)

2 + 3 sin
(
−8(𝜉 − 2.0)

) )
+ 𝑒−2𝜉−9 + 𝑒2𝜉−9 .

(A.20)

Surface 19:

𝑈19(𝜉) =1.46
(
21𝑒−4.3(𝜉−3.4)

2 + 15𝑒−4.5(𝜉+0.14)
4 + 28𝑒−3.7(𝜉+3.7)

4

− 20𝑒−2.4(𝜉−3.6)
2 − 15𝑒−3.6(𝜉−0.3)

2 − 24𝑒−3.4(𝜉+2.7)
2

− 8.9𝑒−0.5(𝜉−0.06)
2 − 23𝑒−0.3(𝜉−3.7)

4 − 22𝑒−0.337(𝜉+2.8)
6

+ 3 sin
(
−8(𝜉 − 0.4)

)7) + 𝑒−2𝜉−9 + 𝑒2𝜉−9 .
(A.21)

A.5 Reinitialisation Results for One-Dimensional

Surfaces

Section 5.8 compares five reinitialisation protocols on the 20 analytical po-

tentials defined in Section A.4. The protocols are:
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• Long-intuitive simulation: A single simulation is run with a MetaD bias

using an initial Gaussian height of 5 k/mol and a bias factor of 50 for

every surface.

• Long-adjusted simulation: A single simulation is run with a MetaD bias

that is adjusted to the height of the largest energy barrier (parameters

are provided in each figure).

• SRTR (Serial Real-Time Reinitialisation) campaigns: A simulation

starts with a big initial Gaussian height and a bias factor. Automated

rules are used to terminate and reinitialise the simulation repeatedly

with a more conservative MetaD bias.

• PRTR (Parallel Real-Time Reinitialisation) campaigns: Similar to

SRTR, but with four simulations running in parallel, and their results

are combined, producing the results of the campaign.

• Two-step approach: A simpler version of SRTR. A short exploration

simulation with a agressive MetaD bias is followed by a longer, more

conservative MetaD simulation.

Each figure reports the ensemble-averaged error as a function of the

accumulated simulation steps (log–linear axes).

• Panel a displays the average magnitude of the instantaneous mean-

force error.

• Panel b shows the average absolute deviation of the reconstructed

FES.

• Panel c gives the bootstrap estimate of the FES error.

Curves are coloured as in the legend: blue dotted ( long-intuitive ), blue solid

(long-adjusted), red (PRTR), orange (SRTR), and green (two-step protocol;

stage 1 and stage 2). Parameter values for the Gaussian hill height 𝐻 and

bias factor 𝐵𝐹 are listed in the legend of each plot, except the dynamically

reinitialised SRTR and PRTR protocols..
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Figure A.3: Convergence behaviour on Surface 0. (a) average mean-force error,
(b) average absolute deviation of the FES, and (c) bootstrap estimate
of the FES error. All curves represent averages over 100 independent
trajectories. Legends report the Gaussian hill height 𝐻 and bias factor
𝐵𝐹 used by each protocol, except the dynamically reinitialised SRTR
and PRTR protocols.

Figure A.4: Convergence behaviour on Surface 1. See the caption of Figure A.3
for a description of the panels and colour coding.
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Figure A.5: Convergence behaviour on Surface 2. See the caption of Figure A.3
for a description of the panels and colour coding.

Figure A.6: Convergence behaviour on Surface 3. Panels and colour code as in
Figure A.3.

Figure A.7: Convergence behaviour on Surface 4. See Figure A.3 for details.
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Figure A.8: Convergence behaviour on Surface 5. Panels and colour code as in
Figure A.3.

Figure A.9: Convergence behaviour on Surface 6. See Figure A.3 for details.

Figure A.10: Convergence behaviour on Surface 7. Panels and colour code as in
Figure A.3.
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Figure A.11: Convergence behaviour on Surface 8. See Figure A.3 for details.

Figure A.12: Convergence behaviour on Surface 9. Panels and colour code as in
Figure A.3.

Figure A.13: Convergence behaviour on Surface 10. See Figure A.3 for details.
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Figure A.14: Convergence behaviour on Surface 11. Panels and colour code as in
Figure A.3.

Figure A.15: Convergence behaviour on Surface 12. See Figure A.3 for details.

Figure A.16: Convergence behaviour on Surface 13. Panels and colour code as in
Figure A.3.
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Figure A.17: Convergence behaviour on Surface 14. See Figure A.3 for details.

Figure A.18: Convergence behaviour on Surface 15. Panels and colour code as in
Figure A.3.

Figure A.19: Convergence behaviour on Surface 16. See Figure A.3 for details.
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Figure A.20: Convergence behaviour on Surface 17. Panels and colour code as in
Figure A.3.

Figure A.21: Convergence behaviour on Surface 18. See Figure A.3 for details.

Figure A.22: Convergence behaviour on Surface 19. Panels and colour code as in
Figure A.3.
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A.6 Definition of Two-Dimensional Surfaces
Four analytical two-dimensional potentials are considered: the Invernizzi

benchmark surface [76] and three custom double-well landscapes of in-

creasing ruggedness (labelled Potential 1–3). Figure A.23 provides a qual-

itative overview; explicit functional forms are listed below for reproducibility.

Figure A.23: Four two-dimensional analytical potential surfaces, increasing in com-
plexity from left to right.

Invernizzi Potential:

𝑈Inve(𝜉1, 𝜉2) = 1.34549 𝜉41 + 1.90211 𝜉31𝜉2 + 3.92705 𝜉21𝜉
2
2 − 6.44246 𝜉21

− 1.90211 𝜉1𝜉
3
2 + 5.58721 𝜉1𝜉2 + 1.33481 𝜉1 + 1.34549 𝜉42

− 5.55754 𝜉22 + 0.904586 𝜉2 + 18.5598 .

(A.22)

Potential 1:

𝑈Pot1(𝜉1, 𝜉2) = 3.9 𝜉41 + 3.9 𝜉42 − 19.2 𝜉21 − 19.2 𝜉22 + 5.7 𝜉31𝜉2

− 5.7 𝜉1𝜉
3
2 + 12 𝜉21𝜉

2
2 − 6 𝜉1𝜉2 + 2.7 𝜉2 + 3.6 𝜉1 .

(A.23)

Potential 2:

𝑈Pot2(𝜉1, 𝜉2) = 1.84 𝜉61 + 1.84 𝜉62 − 11.5 𝜉41 − 11.5 𝜉42 + 17.94 𝜉21 + 17.94 𝜉22

− 2.3 𝜉51𝜉2 + 2.3 𝜉1𝜉
5
2 − 3.7 𝜉31𝜉2 + 3.7 𝜉1𝜉

3
2 + 20 𝜉21𝜉

2
2

+ 2.1 𝜉21 + 2.1 𝜉22 + 𝜉21𝜉2 + 𝜉1𝜉22 + 24.70075155 .

(A.24)
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Potential 3:

𝑈Pot3(𝜉1, 𝜉2) =
(
𝑒𝜉1−2

)5 + (
𝑒−𝜉1−2

)5 + (
𝑒𝜉2−2

)5 + (
𝑒−𝜉2−2

)5
+ 13 sin

(
2 𝜉1𝜉2

)
+ 17 sin

(
2 𝜉2

)
+ 0.137 𝜉41𝜉

4
2 .

(A.25)

A.7 Reinitialisation Results for Two-Dimensional

Surfaces
Section 5.8 benchmarked four simulation protocols—the long reference run,

PRTR, SRTR, and the two-step approach—on each two-dimensional sur-

face. Every protocol was repeated 100 times, and three error metrics were

monitored during the trajectory:

(a) average mean-force error,

(b) average absolute deviation of the FES,

(c) bootstrap estimate of the FES error.

The ensemble-averaged progressions are plotted below. Curves are

coloured consistently with the one-dimensional study: blue (long), red

(PRTR), orange (SRTR), and green (two-step).
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Invernizzi Potential:

Figure A.24: Error progression on the Invernizzi surface: (a) average mean-force
error, (b) average absolute deviation of the FES, and (c) bootstrap
estimate of the FES error. Each curve is averaged over 100 trajecto-
ries; colours denote the long (blue), PRTR (red), SRTR (orange), and
two-step (green) protocols.

Potential 1

Figure A.25: Error progression on Potential 1. Panels and colour code as in Fig-
ure A.24.
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Potential 2

Figure A.26: Error progression on Potential 2. Panels and colour code as in Fig-
ure A.24.

Potential 3

Figure A.27: Error progression on Potential 3. Panels and colour code as in Fig-
ure A.24.

Bootstrap error diagnostics: The bootstrap estimate in panel (c) oc-

casionally displays pronounced oscillations for the dynamically reinitialised

PRTR and SRTR simulations. Nevertheless, it provides a reliable indica-

tion of the absolute FES error, especially for the long reference trajectories.

The discrepancy for the reinitialised schemes is most likely attributed to the

current bootstrap implementation rather than an inherent metric limitation.

Therefore, it does not compromise the error analysis presented in the appli-

cations of Chapter 4 and Chapter 6.
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Python Code

The algorithms developed for this thesis are distributed under an open-

source licence and are actively maintained at https://github.com/

mme-ucl. Two repositories are relevant:

• pyMFI — a lightweight, function-oriented library that provides the core

MFI routines for one- and two-dimensional collective variables (https:

//github.com/mme-ucl/pyMFI);

• MFI — a research repository that contains the most recent code,

object-oriented wrappers for automated reinitialisation, and Jupyter tu-

torials (https://github.com/mme-ucl/MFI).

The repository at github.com/mme-ucl/MFI/tree/master/pyMFI tracks

the current development branch of the core library. The higher-level classes

for one- and two-dimensional workflows for the reinitialisation methods re-

side in github.com/mme-ucl/MFI/tree/master/MFI_class1D and github.

com/mme-ucl/MFI/tree/master/MFI_class1D, respectively. All scripts inter-

face with the community-developed PLUMED package [94]; running new

MD simulations further requires a patched build of PLUMED and GRO-

MACS [71]. Comprehensive installation instructions are provided in the

PLUMED user manual. The analysis routines alone can be executed with-

out any external MD engine. Langevin dynamics simulations of analytical

potentials can be executed with PLUMED.

https://github.com/mme-ucl
https://github.com/mme-ucl
https://github.com/mme-ucl/pyMFI
https://github.com/mme-ucl/pyMFI
https://github.com/mme-ucl/MFI
github.com/mme-ucl/MFI/tree/master/pyMFI
github.com/mme-ucl/MFI/tree/master/MFI_class1D
github.com/mme-ucl/MFI/tree/master/MFI_class1D
github.com/mme-ucl/MFI/tree/master/MFI_class1D
https://www.plumed.org/doc-v2.6/user-doc/html/_installation.html
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B.1 pyMFI: Main Functionalities

B.1.1 One-dimensional workflow

The code below illustrates a complete one-dimensional workflow: gener-

ation of a Langevin trajectory on an analytical surface, calculation of the

time-independent mean force with MFI1D, numerical integration to obtain the

FES, and visualisation of the results.

1 # Import libraries

2 from pyMFI import MFI1D

3 from pyMFI import run_plumed

4

5 # Define surface

6 X = np.linspace(-2, 2, 401)

7 y_string = "1*x^8-50*exp(-(x-1)^2/0.1)-93*exp(-(x+0.5)^2/0.05)

-103*exp(-(x+1.5)^2/0.07)-70*exp(-(x)^2/0.03)

+50*exp(-(x-0.5)^2/0.03)"

↩→

↩→

8 y_ref = y=1*X**8-50*np.exp(-(X-1)**2/0.1)-93*np.exp(-(X+0.5)**2/0.0 ⌋

5)-103*np.exp(-(X+1.5)**2/0.07)-70*np.exp(-(X)**2/0.03)+50*np.e ⌋

xp(-(X-0.5)**2/0.03)

↩→

↩→

9 y_ref = y_ref - min(y_ref)

10

11 #Simulation parameters

12 simulation_parameters = {"analytical_function":y_string,

"simulation_steps":2_000_000, "temperature":1, "gaus_width":0.1,

"gaus_height":5, biasfactor":30, "gaus_pace":100}

↩→

↩→

13

14 #Run Metadynamics simulation

15 run_plumed.run_langevin1D(**simulation_parameters)

16

17 #Read the HILLS and COLVAR file

18 HILLS = MFI1D.load_HILLS(hills_name="HILLS")

19 position = MFI1D.load_position(position_name="position")



B.1. pyMFI: Main Functionalities 279

20

21 # MFI parameters

22 MFI_parameters = {"HILLS":HILLS, "position":position, "bw":0.03,

"min_grid":-2, "max_grid":2, "nbins":401,

"use_weighted_st_dev":False}

↩→

↩→

23

24 #Compute the time-independent mean force

25 results = MFI1D.MFI_1D(**MFI_parameters)

26 X, Ftot_den, Ftot_den2, Ftot, ofv_num, FES, ofv, ofe, cutoff,

error_evol, fes_error_cutoff_evol = results↩→

27

28 #integration on a non-periodic domain

29 FES = MFI1D.intg_1D(Ftot, X[1]-X[0])

30

31 #Plot the results

32 MFI1D.plot_recap(X, FES, Ftot_den, ofe, error_evol[1],

error_evol[3], y_ref, FES_lim=200)↩→

B.1.2 Two-Dimensional Workflow

The next code box demonstrates how to extend the procedure to two collec-

tive variables. The script generates a metadynamics trajectory on a quartic

double well, reconstructs the mean force and FES on a rectangular grid, and

produces a multi-panel summary plot.

1 # Import libraries

2 from pyMFI import MFI

3 from pyMFI import run_plumed

4

5 # Define surface

6 grid = np.linspace(-2, 2, 201)

7 X, Y = np.meshgrid(grid, grid)

8 Z_string = "7*x^4-23*x^2+7*y^4-23*y^2"
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9 Z = 7*X**4 - 23*X**2 + 7*Y**4 - 23*Y**2

10 Z = Z - np.min(Z)

11

12 #Simulation parameters

13 simulation_parameters = {"analytical_function":Z_string,

"simulation_steps":1_000_000, "temperature":1,

"gaus_width_x":0.1, "gaus_width_y":0.1, "gaus_height":0.5,

"biasfactor":10, "gaus_pace":100, "file_extension":"_2D"}

↩→

↩→

↩→

14

15 #Run Metadynamics simulation on custom potential

16 run_plumed.run_langevin2D(**simulation_parameters)

17

18 #Read the HILLS and COLVAR file

19 HILLS = MFI.load_HILLS_2D(hills_name="HILLS_2D")

Figure B.1: Representative output of the one-dimensional metadynamics run anal-
ysed with MFI. (a) FES reconstructed with MFI (blue) compared with
the reference analytical profile (red); (b) Local error of the mean force.
(c) Biased probability density accumulated during the simulation. (d)
Progression of the error of the mean force.
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20 [position_x, position_y] =

MFI.load_position_2D(position_name="position_2D")↩→

21

22 # MFI parameters

23 MFI_parameters = {"HILLS":HILLS, "position_x":position_x,

"position_y":position_y, "bw":[0.1,0.1], "min_grid":[-2,-2],

"max_grid":[2,2], "nbins":[201,201],

"use_weighted_st_dev":False}

↩→

↩→

↩→

24

25 #Compute the time-independent mean force

26 results = MFI.MFI_2D(**MFI_parameters)

27 [X, Y, PD, FX, FY, st_dev, st_err, cutoff, vol, st_err_prog,

aad_prog, t_prog, PD2, ofv_num_x, ofv_num_y] = results↩→

28 force_terms_2D = PD, PD2, FX, FY, ofv_num_x, ofv_num_y

29

30 #integration on a non-periodic domain

31 [X, Y, FES] = MFI.FFT_intg_2D(FX, FY, min_grid=[-2,-2],

max_grid=[2,2])↩→

32

33 #Plot the results

34 MFI.plot_recap_2D(X, Y, FES, PD, st_err, st_err_prog, t_prog,

FES_lim=40, ofe_map_lim=10)↩→

B.1.3 Combining Simulations with Different Biases

Finally, the code below shows how two independent simulations, a global ex-

ploration run and a harmonically restrained refinement, can be merged by

patching their mean-force fields before integration. The resulting FES ben-

efits from the broader sampling of the exploratory trajectory while retaining

the precision of the local refinement.
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1 #Simulation parameters with harmonic potential and MetaD

2 simulation_parameters = {"analytical_function":Z_string,

"simulation_steps":1_000_000, "temperature":1,

"gaus_width_x":0.1, "gaus_width_y":0.1, "gaus_height":0.2,

"biasfactor":4, "hp_centre_x":0.0, "hp_centre_y":0.0,

"hp_kappa_x":40, "hp_kappa_y":40, "gaus_pace":100,

"file_extension":"_HP"}

↩→

↩→

↩→

↩→

↩→

3

4 #Run Metadynamics simulation on custom potential

5 run_plumed.run_langevin2D(**simulation_parameters)

Figure B.2: Representative output of the one-dimensional metadynamics run anal-
ysed with MFI. (a) Reconstructed FES. (b) map of the mean force er-
ror. (c) Total biased probability density. (d) Global convergence of the
mean force error.
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6

7 #Read the HILLS and COLVAR file

8 HILLS = MFI.load_HILLS_2D(hills_name="HILLS_HP")

9 [position_x, position_y] =

MFI.load_position_2D(position_name="position_HP")↩→

10

11 # MFI parameters

12 MFI_parameters = {"HILLS":HILLS, "position_x":position_x,

"position_y":position_y, "bw":[0.05,0.05], "min_grid":[-2,-2],

"max_grid":[2,2], "nbins":[201,201],

"base_terms":force_terms_2D, "hp_centre_x":0.0,

"hp_centre_y":0.0, "hp_kappa_x":40, "hp_kappa_y":40,

base_terms":force_terms_2D, "use_weighted_st_dev":False}

↩→

↩→

↩→

↩→

↩→

13

14 #Compute the time-independent mean force

15 results = MFI.MFI_2D(**MFI_parameters)

16 [X, Y, PD, FX, FY, st_dev, st_err, cutoff, vol, st_err_prog,

aad_prog, t_prog, PD2, ofv_num_x, ofv_num_y] = results↩→

17 force_terms_HP = PD, PD2, FX, FY, ofv_num_x, ofv_num_y

18

19 # patch force terms of the two simulations

20 PD_patch, _, FX_patch, FY_patch, _, _ =

MFI.patch_2D([force_terms_2D, force_terms_HP])↩→

21

22 #integration on a non-periodic domain

23 [X, Y, FES_patch] = MFI.FFT_intg_2D(FX_patch, FY_patch,

min_grid=[-2,-2], max_grid=[2,2])↩→

24

25 #Plot the results

26 MFI.plot_recap_2D(X, Y, FES_patch, PD_patch, st_err, st_err_prog,

t_prog, FES_lim=40, ofe_map_lim=10)↩→
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B.2 MFIclass 1D: Manual Reinitialisation
This example demonstrates how the individual exploration, MetaD, flat and

umbrella-sampling (US) stages introduced in Section 5.3 can be reproduced

step-by-step with the object-oriented implementation MFI class1D. All sim-

ulations are run on the analytical potential defined in the code below. The

same grid and default parameters are reused throughout and modified only

where explicitly stated.

1 # Import libraries

2 from MFI_class1D import MFI_class1D

3 from MFI_class1D import MFI_lib1D as lib1

Figure B.3: Representative output of the result obtained after patching the MetaD
and MetaD + harmonically restrained simulations. (a) Combined FES.
(b) Map of the combined mean force error. (c) Combined biased prob-
ability density. (d) Global convergence of the mean force error for the
second simulation.
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4

5 # Define surface

6 grid = np.linspace(-6,6, 501)

7 y_string = "4/3*(-14*exp(-0.25*(x+3.5)^4)-25*exp(-0.25*(x-3.5)^4)-1 ⌋

0*exp(-(x+0.5)^2)-2*sin(-8*x)+exp(-x-4.5)^2+exp(x-4.5)^2)"↩→

8 y = 4/3*(-14*np.exp(-0.25*(grid+3.5)**4)-25*np.exp(-0.25*(grid-3.5) ⌋

**4)-10*np.exp(-(grid+0.5)**2)-2*np.sin(-8*grid)+np.exp(-grid-4 ⌋

.5)**2+np.exp(grid-4.5)**2)

↩→

↩→

9 y = y - min(y)

10 FES_cutoff = 50

11

12 # Define plumed input

13 plumed_dat_text = f"p: DISTANCE ATOMS=1,2 COMPONENTS\nff: MATHEVAL

ARG=p.x FUNC=({y_string}) PERIODIC=NO\nbb: BIASVALUE ARG=ff\n"↩→

14 [pl_x, pl_min, pl_max, pl_n, pl_ext] = lib1.get_plumed_grid_1D(grid,

-7, 7, print_info=True)↩→

15

16 # Define default parameters for the simulation and MFI

17 default_params = {"grid":grid, "y":y, "bw":0.036, "periodic":False,

"System":"Langevin", "plumed_dat_text":plumed_dat_text,

"pl_grid":pl_x, "simulation_steps": 500_000, "position_pace":50,

"metad_pace":500, "n_pos_per_window":10, "metad_width":0.1,

"metad_height":20, "biasfactor":80 , "Bias_sf":1.05,

"gaus_filter_sigma":1, "FES_cutoff":80, "bootstrap_iter":100,

"simulation_folder_path": path_data}

↩→

↩→

↩→

↩→

↩→

↩→

B.2.1 Exploration Stage

During exploration an aggressive MetaD bias (metad height = 20 kJ mol−1, biasfactor =

80) is deposited for 1.5 × 105 MD steps. The script below launches the sim-

ulation, reconstructs the mean force on the fly, and produces a multi-panel

diagnostic plot. Figure B.4 summarises the resulting sampling quality and

error metrics.
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1 ### MFI for exploration stage

2 new_params = {**default_params}

3 new_params.update({"simulation_steps":"150_000", "ID":"_expl"})

4

5 ## Load MFI object

6 MFI = MFI_class1D.MFI1D(**new_params)

7

8 # Run the simulation

9 MFI.run_simulation()

10

11 # Analyse the data

12 MFI.analyse_data()

13 t1, aofe1, aad1 = MFI.Avr_Error_list[:,[0, 2, MFI.aad_index]].T

14

15 # Plot results

16 MFI.plot_results()

B.2.2 MetaD Stage

The second phase replaces the exploration bias by a gentler well-tempered

MetaD (metad height = 5 kJ mol−1, biasfactor = 10) constructed on top of

the exploration FES. The additional bias accelerates transitions while pro-

gressively refining the force estimate. The results are displayed in Figure

B.5.

1 ### MFI for MetaD stage

2 new_params = {**default_params}

3 new_params.update({"ID":"_MetaD", "metad_height":5, "biasfactor":10,

"base_forces":MFI.force_terms, "base_time":MFI.sim_time})↩→

4

5 ## Load MFI object

6 MFI2 = MFI_class1D.MFI1D(**new_params)

7
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8 ## Make the external bias

9 MFI2.make_external_bias(MFI.FES)

10

11 # Run the simulation

12 MFI2.run_simulation()

13

14 # Analyse the data

15 MFI2.analyse_data(print_analysis=False)

16 t2, aofe2, aad2 = MFI2.Avr_Error_list[:,[0, 2, MFI.aad_index]].T

17

18 # Plot results

19 MFI2.plot_results(more_aofe=[t1, aofe1] , more_aad = [t1, aad1])

Figure B.4: Results of the exploration stage. (a) Relative biased probability den-
sity; (b) reconstructed FES (blue) compared with the analytical refer-
ence (orange); (c) local mean-force error (black, left axis) and abso-
lute deviation of the FES (red, right axis); (d) global convergence of
the average mean-force error (black, left axis) and average absolute
deviation of the FES (red, right axis) as a function of simulation steps.
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B.2.3 Flat Stage

A third simulation further smooths the bias landscape by using flatter Gaus-

sians and a reduced bias factor; the external bias is regenerated from the

latest FES estimate and rescaled by a factor Bias sf = 0.9 to avoid over-

shoot. The results are displayed in Figure B.6.

1 ### MFI for flat stage

2 # prepare the base forces and time

3 base_forces_3 = lib1.patch_forces(MFI.force_terms, MFI2.force_terms)

4 base_time_3 = MFI.sim_time + MFI2.sim_time

5

6 new_params = {**default_params}

Figure B.5: Results of the MetaD stage. (a) Relative biased probability density; (b)
reconstructed FES (blue) compared with the analytical reference (or-
ange); (c) local mean-force error (black, left axis) and absolute devia-
tion of the FES (red, right axis); (d) global convergence of the average
mean-force error (black, left axis) and average absolute deviation of
the FES (red, right axis) as a function of simulation steps. The trans-
parent lines represent earlier convergence results.
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7 new_params.update({"ID":"_flat", "metad_height":1, "biasfactor":5,

"metad_width":0.05, "metad_pace":1000, "position_pace":50,

"n_pos_per_window":20, "base_forces":base_forces_3,

"base_time":base_time_3})

↩→

↩→

↩→

8

9 ## Load MFI object

10 MFI3 = MFI_class1D.MFI1D(**new_params)

11

12 ## Make the external bias

13 MFI3.make_external_bias(MFI2.FES, Bias_sf=0.9, gaus_filter_sigma=3,

FES_cutoff=max(MFI2.FES))↩→

14

15 # Run the simulation

16 MFI3.run_simulation()

17

18 # Analyse the data

19 MFI3.analyse_data()

20 t3, aofe3, aad3 = MFI3.Avr_Error_list[:,[0, 2, MFI.aad_index]].T

21

22 # Plot results

23 MFI3.plot_results(more_aofe=[[t1, aofe1], [t2, aofe2]] , more_aad =

[[t1, aad1], [t2, aad2]])↩→

B.2.4 US Stage

An umbrella potential centred at 𝜉 = 1 with force constant 𝜅 =

5 kJ mol−1 rad−2 is combined with the current MetaD bias. This hybrid

set-up allows targeted refinement of selected regions without discarding

information gathered in previous stages. The results are displayed in Figure

B.7.

1 ### MFI with harmonic restraint (Umbrella sampling)

2 # prepare the base forces and time
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3 base_forces_4 = lib1.patch_forces(base_forces_3, MFI3.force_terms)

4 base_time_4 = base_time_3 + MFI3.sim_time

5

6 new_params = {**default_params}

7 new_params.update({"ID":"_4", "bw":MFI.bw/2, "metad_height":1,

"biasfactor":5, "metad_width":0.05, "metad_pace":500,

"position_pace":50, "n_pos_per_window":10, "initial_position":1,

"hp_centre":1, "hp_kappa":5, "base_forces":base_forces_4,

"base_time":base_time_4})

↩→

↩→

↩→

↩→

8

9 ## Load MFI object

10 MFI4 = MFI_class1D.MFI1D(**new_params)

11

Figure B.6: Results of the flat stage. (a) Relative biased probability density; (b)
reconstructed FES (blue) compared with the analytical reference (or-
ange); (c) local mean-force error (black, left axis) and absolute devia-
tion of the FES (red, right axis); (d) global convergence of the average
mean-force error (black, left axis) and average absolute deviation of
the FES (red, right axis) as a function of simulation steps. The trans-
parent lines represent earlier convergence results.
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12 ## Make the external bias

13 MFI4.make_external_bias(MFI3.FES, gaus_filter_sigma=None,

FES_cutoff=max(MFI3.FES))↩→

14

15 # Run the simulation

16 MFI4.run_simulation()

17

18 # Analyse the data

19 MFI4.analyse_data(print_analysis=False)

20

21 # Plot results

22 more_aofe = [[t1, aofe1], [t2, aofe2], [t3, aofe3]]

23 more_aad = [[t1, aad1], [t2, aad2], [t3, aad3]]

24 MFI4.plot_results(more_aofe=more_aofe , more_aad = more_aad)

B.2.5 Error Based Sampling Stage

In a final demonstration the static bias is derived from the local uncertainty of

the mean force rather than from the FES itself. High-error regions are thus

preferentially revisited and refined. The code below loads the force-error

map obtained after the flat stage, converts it into a bias potential (option

bias type="error") and launches an additional simulation. Figure B.8 doc-

uments the outcome.

1 ### MFI for special stage - error bias

2 new_params = {**default_params}

3 new_params.update({"ID":"_5", "metad_height":0.5, "biasfactor":5,

"metad_width":0.1, "metad_pace":1000, "position_pace":50,

"n_pos_per_window":20, "base_forces":base_forces_4,

"base_time":base_time_4})

↩→

↩→

↩→

4

5 ## Load MFI object

6 MFI5 = MFI_class1D.MFI1D(**new_params)
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7

8 ## Make the external bias

9 MFI5.make_external_bias(MFI3.FES, gaus_filter_sigma=None,

FES_cutoff=FES_cutoff, bias_type="error", error=MFI3.ofe)↩→

10 ## Alternative for probability density based bias:

MFI5.make_external_bias(MFI3.FES, bias_type="PD",

error=MFI3.PD)

↩→

↩→

11

12

13 # Run the simulation

14 MFI5.run_simulation()

15

16 # Analyse the data

Figure B.7: Results of the US stage. (a) Relative biased probability density; (b)
reconstructed FES (blue) compared with the analytical reference (or-
ange); (c) local mean-force error (black, left axis) and absolute devia-
tion of the FES (red, right axis); (d) global convergence of the average
mean-force error (black, left axis) and average absolute deviation of
the FES (red, right axis) as a function of simulation steps. The trans-
parent lines represent earlier convergence results.
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17 MFI5.analyse_data(print_analysis=False)

18

19 # Plot results

20 MFI5.plot_results(more_aofe=more_aofe , more_aad = more_aad)

Figure B.8: Results of the error-based sampling stage. (a) Relative biased proba-
bility density; (b) reconstructed FES (blue) compared with the analyti-
cal reference (orange); (c) local mean-force error (black, left axis) and
absolute deviation of the FES (red, right axis); (d) global convergence
of the average mean-force error (black, left axis) and average absolute
deviation of the FES (red, right axis) as a function of simulation steps.
The transparent lines represent earlier convergence results.

B.3 MFIclass 1D: Automatic Reinitialisation
The manual workflow of Section B.2 can be fully automated.

B.3.1 Serial Real-Time Reinitialisation

In a serial real-time reinitialisation (SRTR) campaign each simulation is anal-

ysed on the fly and, once the target error is reached or the time budget

exhausted, a new simulation is spawned with optimised parameters. The
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code below launches such a campaign; the final diagnostics are plotted in

Figure B.9.

1 default_params = {"grid":grid, "y":y, "bw":0.036, "periodic":False,

"System":"Langevin", "plumed_dat_text":plumed_dat_text,

"pl_grid":pl_x, "position_pace":20, "metad_pace":200,

"n_pos_per_window":10, "Bias_sf":1.05, "gaus_filter_sigma":1,

"FES_cutoff":50,"bootstrap_iter":50, "simulation_folder_path":

path_data}

↩→

↩→

↩→

↩→

↩→

2

3 # Prepare the MFI object

4 MFI = MFI_class1D.MFI1D(**default_params)

5

6 # Run simulation with real time analysis and re-initialisation

7 MFI.MFI_real_time_ReInit(ID="_SRTR", goal=0.01,

main_error_type="ST_ERR", n_pos_before_analysis=200,

guaranteed_sim_time=1, max_sim_time=2, time_budget=5) #

optional: reset_forces_after="Exploration"

↩→

↩→

↩→

8

9 # Plot the final results

10 MFI.plot_results()

In Section 5.4, it was shown that ignoring the data gathered in the

exploration stage results in a lower final error. This can be arranged re-

setting the force terms after the exploration stage to zero by using an

additional argument in the MFI real time ReInit function, specifying: re-

set forces after=”Exploration”. Additionally, an existing simulation campaign

can be reanalysed and restarted. Also here the force terms can be reset

after an arbitrary simulation.

In the fist example, a previous SRTR campaign is restarted with an ex-

tended time budget. The restart SRTR argument specifies a ”fast” restart,

where existing force terms are loaded, and the ”ignore 1” argument speci-

fies that the force terms should be reset after analysing the first simulation.
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In the second example, a previous SRTR campaign is only reloaded. The

restart SRTR argument specifies a ”full” analysis, where the CV and hills

data is analysed from scratch and the force terms are reevaluated. The

”ignore 3” argument specifies that the force terms should be reset after

analysing the first three simulations.

1 # Fast Restart of previous SRTR campaign, ignoring the first (1)

simulation↩→

2 MFI.MFI_real_time_ReInit(ID="_SRTR", goal=0.01,

main_error_type="ST_ERR", n_pos_before_analysis=500,

guaranteed_sim_time=1, max_sim_time=2, time_budget=10,

restart_SRTR="fast_ignore_1")

↩→

↩→

↩→

3

4

Figure B.9: Results of the SRTR campaing. (a) Relative biased probability density;
(b) reconstructed FES (blue) compared with the analytical reference
(orange); (c) local mean-force error (black, left axis) and absolute de-
viation of the FES (red, right axis); (d) global convergence of the aver-
age mean-force error (black, left axis) and average absolute deviation
of the FES (red, right axis) as a function of simulation steps.
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5 # Reanalyse previous SRTR campaing, ignoring the first 3

simulations↩→

6 MFI.MFI_real_time_ReInit(ID="_SRTR",

restart_SRTR="full_reload_ignore_3")↩→

B.3.2 Parallel Real-Time Reinitialisation

A parallel real-time reinitialisation (PRTR) campaign distributes the work-

load over multiple workers that exchange force information after every anal-

ysis step. The launcher syntax, resetting of the force terms, reanalysis and

restarting are analogous to SRTR and is illustrated in the code below. Fig-

ure B.10 summarises the performance of a four-worker PRTR run.

1 # Initialise the MFI object

2 MFI_PRTR = MFI_class1D.MFI1D(**default_params)

3

4 # Initialise the PRTR object

5 mfi_PRTR = MFI_PRTR.MFI_parallel_RTR(parent=MFI_PRTR, ID="_PRTR",

workers=4, workers_exploration=1, goal=0.01,

main_error_type="ST_ERR", n_pos_before_analysis=200,

guaranteed_sim_time=1, max_sim_time=2, time_budget=10)

↩→

↩→

↩→

6

7 # Run the PRTR campaign

8 mfi_PRTR.run()

9

10 # Plot= the final results

11 mfi_PRTR.sim[0].plot_results()

B.4 MFIclass 2D: MFI with Reinitialisation
The two-dimensional implementation mirrors the one-dimensional workflow.

For this reason, a different feature is presented: The simulation of alanine

dipeptide with GROMACS. This is done by providing a starting structure, the
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mdp file, and a topology file. MFI automatically creates an input.tpr file that

is used to start the MD simulation.

First, the libraries are imported, the grid and the system is defined, and

the other variables are set.

1 # Import libraries

2 from MFI_class2D import MFI_class2D

3 from MFI_class2D import MFI_lib2D as lib2

4

5 # Define gird

6 grid = np.linspace(-np.pi, np.pi, 101);

7 X, Y = np.meshgrid(grid, grid)

8 [plX, plY, pl_min, pl_max, pl_n, pl_extra] =

lib2.get_plumed_grid_2D(X, Y, periodic=[True, True])↩→

Figure B.10: Results of the PRTR campaing. (a) Relative biased probability den-
sity; (b) reconstructed FES (blue) compared with the analytical refer-
ence (orange); (c) local mean-force error (black, left axis) and abso-
lute deviation of the FES (red, right axis); (d) global convergence of
the average mean-force error (black, left axis) and average absolute
deviation of the FES (red, right axis) as a function of simulation steps.
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9

10 # Define Alanine Dipeptide system

11 path_AP = path_data + "Alanine_Dipeptide/"

12 path_input = path_AP + "input_files/"

13 plumed_dat_text = f"MOLINFO

STRUCTURE={path_input}reference.pdb\nphi: TORSION

ATOMS=@phi-2\npsi: TORSION ATOMS=@psi-2\n"

↩→

↩→

14 _, _, AP_ref = lib2.load_pkl(path_input + "AP_ref_101x101.pkl")

15

16 # default parameters for the MFI class

17 default_params = {"X":X, "Y":Y, "Z":AP_ref, "plX":plX, "plY":plY,

"periodic":[True, True], "System":"gromacs",

"cv_name":["phi","psi"], "plumed_dat_text":plumed_dat_text,

"kT":2.49, "time_step":0.001, "simulation_steps":500_000,

"position_pace":20, "n_pos_per_window":10, "metad_pace":200,

"metad_width":[0.1, 0.1], "metad_height":3, "biasfactor":10,

"Bias_sf":1, "gaus_filter_sigma":5, "bw":[0.1, 0.1],

"FES_cutoff":50.0, "bootstrap_iter":100,

"simulation_folder_path": path_AP, "ID":"_1",

"make_tpr_input_file":True,

"structure_gro_file_path":path_input+"structure.gro",

"mdp_file_path":path_input+"gromppvac.mdp",

"top_file_path":path_input+"topology.top",

"pdb_file_path":path_input+"reference.pdb"}

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

↩→

Next, the MFI object is initialised, after which the simulation is started

and analysed. The results are shown in Figure B.11

1 # Initialise the MFI object

2 MFI = MFI_class2D.MFI2D(**default_params)

3

4 # Run Alanine Dipeptide simulation

5 MFI.run_simulation()



B.4. MFIclass 2D: MFI with Reinitialisation 299

6

7 # Analyse the data

8 MFI.analyse_data()

9 t1, v1, aofe1, aad1 = MFI.Avr_Error_list[:,0],

MFI.Avr_Error_list[:,1], MFI.Avr_Error_list[:,2],

MFI.Avr_Error_list[:, MFI.Avr_Error_info.index("AAD")]

↩→

↩→

10

11 # Plot the results

12 MFI.plot_results()

Figure B.11: First simulation on alanine dipeptide. (a) Biased probability density.
(b) Map of the mean force error. (c) Global error progression of the
average mean-force error (black, left axis) and average absolute de-
viation of the FES (red, right axis) (d) estimated FES. (e) Absolute
deviation of FES. (f) Fraction of the CV space explored over time.

Next, it is shown how a new simulation can be reinitialised using the

transition path bias that was introduced in Section 5.3.6. For this purpose,

the previous FES is recycled to find the InvF bias and estimate the transition

path, from which the transition path bias is calculated, shown in Figure 5.8

(a-b). Additionally, the previous trajectory file is used to find a new initial

structure that corresponds to 𝜙 = 1 and 𝜓 = 0, which is the approximate

location secondary basin. The results of the second simulation are provided

in Figure B.12, whereas the final results are displayed in Figure 5.8 (c-d).
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1 # Run the Alanine Dipeptide simulation with transition path bias

2 new_params = {**default_params}

3 new_params.update({"simulation_steps":500_000, "metad_height":0.5,

"biasfactor":5, "metad_width":[0.05, 0.05], "bw":[0.02, 0.02],

"initial_position":[1, 0], "ID":"_trans_path_bias_2",

"find_sim_init_structure":True,

"trajectory_xtc_file_path_list":[path_input+"traj_0.xtc"],

"base_forces":MFI.force_terms, "base_time": MFI.sim_time})

↩→

↩→

↩→

↩→

↩→

4

5 # Initialise the MFI object

6 MFI_TPB = MFI_class2D.MFI2D(**new_params)

7

8 # Make the external bias

9 MFI_TPB.make_external_bias(FES=MFI.FES, bias_type="transition_path")

10

11 # Run Alanine Dipeptide simulation

12 MFI_TPB.run_simulation()

13

14 # Analyse the data

15 MFI_TPB.analyse_data()

16

17 # Plot the results

18 MFI_TPB.plot_results(more_aofe=[t1, aofe1] , more_aad = [t1, aad1],

more_vol=[t1, v1])↩→
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Figure B.12: Second alanine dipeptide run using the transition-path bias. (a) Bi-
ased probability density. (b) Map of the mean force error. (c) Global
error progression of the average mean-force error (black, left axis)
and average absolute deviation of the FES (red, right axis) (d) es-
timated FES. (e) Absolute deviation of FES. (f) Fraction of the CV
space explored over time.
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