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Abstract

Molecular dynamics (MD) simulation has become a powerful tool for study-
ing and predicting molecular properties due to significant algorithm ad-
vances and the explosive growth of computational capabilities. Moreover,
molecular dynamics enables the direct evaluation of free energy surfaces
(FESSs), offering atomistic insight that complements experimental studies

and enables the prediction of numerous thermodynamic properties.

Yet MD remains constrained by system size and accessible time scales.
Furthermore, many processes of interest, such as nucleation or protein fold-
ing, are characterised by rare events, where considerable energy barriers
impede transitions between stable states. Nevertheless, transitions must be
sampled multiple times for statistically significant predictions of free ener-

gies, rendering brute force simulations unfeasible.

To address this issue, numerous methods have been proposed to en-
hance the sampling of rare events. Two widely used methods are umbrella
sampling [1] and metadynamics [2]. The former makes use of parallel sim-
ulations that sample local predefined regions of configuration space, while
the latter continually constructs a bias potential that facilitates the sampling
of high-energy configurations. A new method called mean force integration
(MFI) [3], which works on the basis of metadynamics, computes the mean
force rather than the FES directly, thereby simplifying reweighting and accel-
erating convergence. Additionally, it can be used to combine independent
simulations, turning a serial problem into a parallel one, which increases

computational efficiency.
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This thesis advances MFI to a versatile framework: A general formu-
lation is presented, accommodating the combination of arbitrary static and
history-dependent biases. This is complemented by an on-the-fly uncer-
tainty metric that estimates the convergence of the mean force, and a boot-
strap analysis that provides a quantitative assessment of the error of the
FES. These advances are validated with complex chemical systems, includ-
ing the nucleation of supersaturated argon vapour, the two-step crystallisa-
tion of a colloidal system, and the B-scission reaction of butyl acrylate. It is
shown how the computational cost of excessively expensive simulations can
be reduced by employing several shorter simulations subject to diverse bias-
ing parameters. The resulting under-converged trajectories were analysed
and combined with MFI, resulting in converged FESs. For the g-scission
reaction, the FES was used to predict reaction rates, which agreed with
experimental rates.

Additionally, novel reinitialisation protocols are introduced, dividing sim-
ulations into diverse biasing stages and recycling interim FES estimates as
starting static biases, thereby consistently enhancing convergence of the
FES. This was further developed into a framework where simulations are
analysed in real time, terminated and reinitialised automatically, as biasing
parameters are optimised iteratively.

To encourage a wider adoption of MFI, all the Python code used in this
work is made openly accessible at github.com/mme-ucl/MFI. By unifying
data from independent biased trajectories, enabling an iterative improve-
ment of biasing parameters, and providing reliable convergence metrics,

MFI broadens the range of phenomena that researchers can tackle.


github.com/mme-ucl/MFI

Impact Statement

Free energy surfaces entail a quantitative landscape from which thermo-
dynamic properties, such as molecular stability, transition states, reaction
pathways, and rates, are derived. Accordingly, determining the FES accu-
rately is essential for the in silico design of fine chemicals. In principle, MD
simulations allow such surfaces to be extracted directly from an atomistic
model. However, their reliable computation is often hampered by large en-
ergy barriers, slow molecular diffusion, and the limited timescales accessible

in conventional MD.

Enhanced sampling methods partially alleviate these obstacles, but of-
fer limited possibilities for combining independent trajectories subject to ar-
bitrary bias potentials. Preliminary trajectories, generated with sub-optimal
biasing parameters, are routinely discarded despite containing valuable in-
formation. Moreover, biasing parameters can not be adjusted dynamically,
resulting in slower convergence. Furthermore, most approaches provide
only coarse or a posteriori error estimates, so computational efforts are
commonly overspent long after convergence has been reached. Conversely,
insufficient sampling can remain undetected, requiring researchers to spend

additional resources to prolong simulations.

This thesis advances MFI into a practical alternative that resolves those
shortcomings: Multiple under-converged trajectories that employ various bi-
asing methods can be combined in a self-consistent manner to yield a con-
verged estimate of the FES. On the one hand, this enables a parallel exe-

cution of simulations, where computational resources are utilised more opti-
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mally without the inter-process communication that constrains conventional
replica methods. On the other hand, it allows for a serial workflow, where
biasing parameters can be refined iteratively, and earlier simulations sam-
pled with inadequate biasing parameters can be merged with the other data.
Also, it permits a more flexible structuring of large simulation campaigns,
allowing researchers to run simulations when computational allocations are
available. Additionally, reliable uncertainty estimators grant more confidence
in the final results and inform researchers when results converge, preventing
the unnecessary use of further computational resources.

Collectively, these advances afford greater flexibility in designing and
executing biased MD simulations, thereby facilitating the investigation of
complex systems that were otherwise out of reach. Conversely, the compu-
tational cost of expensive systems can be reduced by employing optimised
biasing strategies, thus reducing the carbon footprint for large-scale simula-
tion campaigns.

All algorithms developed in this work are openly accessible at github.
com/mme-ucl/MFI, encouraging a wider adoption of the MFI method and
fostering broader collaboration within the enhanced sampling community.
Furthermore, several examples and tutorials regarding the use of MFI are
provided as Jupyter notebooks, lowering the barrier to entry for researchers
wishing to try out the MFI library to run simple simulation campaigns or post-

process their own data.


github.com/mme-ucl/MFI
github.com/mme-ucl/MFI
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Chapter 1

Introduction

The prediction of molecular properties has long been a central challenge
in physics, chemistry, and materials science. Early theoretical frameworks
[6, 7, 8, 9] provided a foundation for understanding molecular behaviour, yet
the complexity of these equations made them computationally infeasible to
solve in practice. As a result, scientists primarily relied on experimental ob-
servations, while predictive methods were limited to simpler, approximate
models. Solid-state properties were approximated using the foundational
principles of lattice dynamics [10, 11, 12, 13] by approximating interatomic
interactions as harmonic. Fluid properties were often predicted using equa-
tions of state (EoS), which modelled the relationships between pressure,
volume, and temperature by fitting a small number of parameters to empir-
ical data. These equations, such as the Van der Waals equation [14, 15]
and its successors [16, 17, 18, 19, 20, 21], allowed for approximations of
thermodynamic properties and phase behaviour. These approaches were
particularly valuable for petrochemical companies, enabling them to model
and optimise their processes. However, their inability to accurately describe
complex chemical systems highlighted the need for more advanced meth-

ods that could capture the underlying physics in greater detail.

With the rapid development of computational resources, more rigorous
theoretical models could be applied to real-world problems. Rather than re-

lying on empirical approximations, researchers began implementing atom-
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istic descriptions of molecular systems, employing complex potential en-
ergy functions that account for the underlying electronic structure, chemi-
cal bonds, van der Waals forces, and polarisation interactions. This shift
enabled the prediction of material properties directly from first principles
or highly detailed force fields, thereby aligning theoretical models with ex-
perimental observations. Whenever discrepancies appeared between the
simulation and experiment, the model parameters were iteratively refined to
achieve better agreement. Thanks to ever-increasing computational power,
these simulations can now provide reliable predictions even under extreme
conditions [22], circumventing the need for expensive or impractical exper-
imental setups. Moreover, if the governing theory and molecular repre-
sentation are carefully chosen, computer simulations offer unique insights
into atomistic mechanisms, providing a level of detail inaccessible to exper-

iments.

Over the past few decades, such molecular simulations have impacted
the development of diverse fields. In biology, new insights emerged re-
garding the structure and conformational transitions of macromolecules [23]
and understanding ligand-receptor docking mechanisms [24]. In materi-
als science, computational methods have led to a deeper understanding
of the crystallisation mechanisms [25, 26], high-energy radiation damage
in nuclear applications [27], stability of perovskite structures [28, 29], and
many other insights [30, 31, 32]. As hardware and algorithms continue to
evolve, further breakthroughs are anticipated. Nevertheless, these meth-
ods face nontrivial challenges in capturing complex processes over relevant
timescales and length scales. The following section explores limitations of

molecular simulations and highlights strategies to overcome them.

Despite their proven utility, molecular simulations face inherent system
size and simulation timescale limitations. The timescale limitation arises
from the stringent temporal resolution required. To reliably predict the dy-

namics of a molecular system, the positions and forces of each atom must
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be evaluated on a timescale of femtoseconds (1071 seconds), such that the
simulation of slow chemical processes that occur over milliseconds or longer
becomes prohibitively expensive. Furthermore, as system size increases,
the number of required force evaluations grows, significantly driving up the

computational cost of large chemical systems.

For example, capturing repeated folding and unfolding events for the
NTL9 protein, containing approximately 10,000 atoms, requires about 3 ms
of simulation time [33]. Using a time-step of 2.5 fs, it would require roughly
10'2 force evaluation steps, which would take months to years to simulate

on state-of-the-art supercomputers [34].

Protein folding [23] exemplifies a broader problem in molecular simula-
tions often referred to as simulating rare events [35]. Rare events are low-
probability transitions between long-lived stable states. In the protein-folding
case, substantial simulation time is needed to capture either the forward
or backwards transition, making direct brute-force approaches impractical.
Other examples of rare events include nucleation processes [36, 25] and

conformational changes in bio- and macromolecules [37, 38, 28, 29, 32].

1.1 Overcoming Timescale Limitations

The practical challenge of timescales has spurred the development of meth-
ods aimed at improving both the speed and accuracy of molecular simu-
lations, rather than conducting brute-force (conventional) simulations, en-
hanced sampling techniques are utilised, which increase the probability
of sampling rare events. Although a wide range of approaches exists
[39, 40, 41, 42, 43, 44, 45, 46], this work focuses on methods that per-
turb the system’s Hamiltonian, resulting in a biased potential energy surface
that enables a more advantageous sampling.

Umbrella sampling (US) [1, 37, 47, 48] is a method that perturbs the
system’s Hamiltonian via harmonic bias potentials. They act as an attrac-

tive bias that confines the simulation to a particular region of phase space,
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Figure 1.1: Figure illustrates the evolution of the history-dependent repulsive bias.
The lines represent free energy plus the bias potential as a function of
the number of Gaussian hills deposited.

also referred to as an umbrella. The phase space sampling is broken into
multiple umbrellas, which are then sampled individually while ensuring a
significant overlap. Once each region is sufficiently sampled, its free energy
surface can be patched together to construct the overall free energy surface.
One key advantage of this window-based approach is that simulations can
be run independently of each other and completed with later simulations if
needed. However, a drawback lies in selecting where and how to place the
umbrellas effectively, which usually requires some a priori knowledge of the

free energy landscape. This method is discussed in detail in section 2.4.1.

Metadynamics (MetaD) [2, 49, 50] applies a history-dependent repul-
sive bias to the system’s Hamiltonian. Throughout the simulation, Gaussian
potentials, also referred to as hills, are periodically deposited in previously
visited regions, effectively discouraging the system from resampling those
regions and facilitating the sampling of new configurations. By progressively
filling the free energy basins, MetaD enables the simulation to overcome
considerable energy barriers and explore transition paths more readily (see
Fig. 1.1 for an illustration). This method is discussed in greater detail in
section 2.4.3 and 2.4.4.

Adaptive Biasing Force (ABF) [51, 52, 53] is an enhanced sampling

technique that aims to flatten free energy barriers along a chosen reac-
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tion coordinate. Unlike MetaD, ABF directly operates on forces to iteratively
counteract the free energy gradient. By continuously measuring the average
force acting on the system as it explores a given coordinate, ABF constructs
a compensating bias potential that counteracts this mean force. As a re-
sult, the underlying free energy landscape becomes more uniform, enabling
the simulation to traverse high-barrier regions more readily. This iterative
process proceeds without prior knowledge of the shape of the free-energy
profile, allowing for efficient and systematic exploration of complex configu-
rations. Even though this is an effective tool for sampling rare events, it lies

outside the scope of this work and will not be discussed in more detail.

Parallelisation in MD simulations is not limited to distributing compu-
tational workload [54, 55] but can also involve parallel sampling methods.
A practical approach is Replica Exchange, where multiple replicas of the
same system are simulated in parallel under different conditions. Period-
ically, exchanges between replicas are attempted based on a Metropolis
criterion, allowing configurations to swap conditions and facilitating the ex-
ploration of phase space. A widely used variant is Parallel Tempering [56], in
which replicas differ only in temperature. Higher-temperature replicas sam-
ple a broader range of configurations, while lower-temperature replicas cap-
ture more detail. This method is particularly effective for overcoming large
energy barriers and can be combined with enhanced sampling techniques
such as Metadynamics, Umbrella Sampling, ABF, or variationally enhanced

sampling (VES).

Another parallel approach is the Multiple Walkers method, where sev-
eral independent simulations, also referred to as “walkers”, run in parallel.
Each walker explores a different portion of phase space and periodically
communicates its progress to the other walkers. When used alongside
Metadynamics, for instance, all walkers contribute simultaneously to con-
structing the bias potential, ensuring rapid exploration of relevant configura-

tions.
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While parallelisable simulation methods are widely used for their ef-
fectiveness, they require communication or synchronisation among parallel
processes, confining them to a single computing environment. This con-
straint can become problematic for researchers dealing with large-scale or
ab initio molecular dynamics (AIMD) simulations who may lack access to

suitable high-performance computing (HPC) resources.

In such scenarios, a straightforward alternative: Rather than exchang-
ing information in real time, each simulation runs independently, and the
results are combined only during post-processing. Methods like Umbrella
Sampling (US) are well suited to this approach, as each “window” can be
simulated in isolation without additional communication overhead. Once all
windows have been sampled sufficiently, their free energy surfaces can be
merged to obtain a global free energy surface, allowing large-scale prob-

lems to be tackled with minimal infrastructure requirements.

A known challenge in umbrella sampling arises during the post-
processing step, where individual windows are patched together to recon-
struct a global free-energy surface (FES). When the overlap between neigh-
bouring windows is weak, standard techniques often perform poorly. To ad-
dress this issue, numerical optimisation approaches such as the weighted
histogram analysis method (WHAM) [57, 58] or the (multi-scale) Bennett ac-
ceptance ratio [59, 60, 46]. Kastner introduced an alternative method: Um-
brella Integration (Ul) [47, 61, 62], which computes the mean force of each
umbrella window rather than the free energy directly. After all simulations
are completed and analysed, their local mean forces are combined through
a weighted-average scheme and then integrated to recover the global FES.
This approach enhances robustness in cases of sparse overlap between
neighbouring windows and yields more reliable results [63, 64]. A detailed

examination of Ul is provided in Section 2.4.2.
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1.2 Aim of this Project

Building on Kastner’s ideas, Marinova and Salvalaglio developed Mean
Force Integration (MFI) [3], a post-processing technique that similarly com-
putes mean forces rather than free energies. Their work showed that MFI
can combine mean forces from independent MetaD simulations through a
weighted-average approach. Unlike other parallel MetaD methods, MFI of-
fers a self-consistent way to merge results from independent simulations,
thus facilitating the parallelisation of MetaD simulations.

The primary goal of this project is to develop further and optimise the
mean force integration (MFI) method, ultimately creating a versatile post-
processing framework for a wide range of biased MD simulations. To this

end, the work focuses on the following objectives:

» Generalised Framework: Leverage the commonalities among Meta-
dynamics (MetaD), Umbrella Sampling (US), and other biased tech-
niques to build a generalised framework capable of analysing data
from each method, and any arbitrary bias potential, separately or com-
bined.

» Convergence Estimation: Develop a robust methodology for assess-
ing local and global convergence by examining the statistical variance
in the mean force and the free-energy surface. When exact solutions
are available, compare the estimated convergence to the actual devi-

ation to validate the approach.

* Flexible Simulation Campaigns: Explore and compare different
strategies for running simulations. Simulations either run concurrently
to exploit parallel efficiencies, serially to reuse information from prior
runs and iteratively improve biasing parameters, or in a hybrid parallel-

serial approach.

* Real-Time Adaptation: Integrate the above components into an

adaptive framework where simulations are monitored in real time.
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Convergence metrics are continually evaluated, allowing simulations

to be automatically terminated and new ones initiated in their place.

+ Validation against Complex Chemical Systems: Test the methods
introduced in this work on three advanced systems, which would be
exceedingly expensive to simulate with conventional enhanced sam-

pling methods.

To promote broader adoption, all MFI methods employed in this
work are publicly accessible via the pyMFI Python library at github.com/
mme-ucl/MFI, together with a stable version that contains the core function-
alities at github.com/mme-ucl/pyMFI. The library enables researchers to
post-process and combine biased simulation data. In addition, various use
cases, simple examples, and many of the applications presented in this work
are accessible as Jupiter notebooks within the repository and are further de-

scribed in Appendix B.

1.3 Outline of Report

In the subsequent Chapter 2, the theoretical background of this work is pre-
sented, starting with core concepts of statistical mechanics and molecular
dynamics simulations, followed by methods to calculate the free energy and
biased sampling techniques.

Thereafter, Chapter 3 outlines the new developments of MFI, which are tests
on analytical models using Langevin dynamics and on alanine dipeptide.

In Chapter 4, the new developments of MFI are applied to analyse two nu-
cleating systems: The condensation of supersaturated argon vapour, and
the two-step crystallisation of a colloidal system.

In Chapter 5, the MFI methods are further extended by presenting tech-
nigues to analyse simulations in real-time and re-initialise simulations in an
effective manner. These techniques are used to conduct simulation cam-
paigns that employ multiple short simulations, and are tested on analytical

models and alanine dipeptide.


github.com/mme-ucl/MFI
github.com/mme-ucl/MFI
github.com/mme-ucl/pyMFI
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Next, Chapter 6 shows how MFI is used to analyse and combine multiple
simulations of the g-scission of butyl acrylate. The combined FESs are used
to predict reaction rates, which are compared to experimentally measured
rates.

Lastly, concluding remarks are given and an outlook on future developments

is provided.






Chapter 2

Theoretical Background

This chapter starts by presenting the fundamental principles of statistical
mechanics, bridging microscopic atomic behaviour with macroscopic ther-
modynamic properties. Next, the core concepts of molecular dynamics
simulations are discussed, covering initialisation, evaluation of forces cal-
culation, and control mechanisms. Following this, two pioneering theories
for calculating free energy differences are introduced. The discussion then
transitions to the challenges posed by large energy barriers that hamper
accurate sampling, setting the stage for enhanced sampling techniques, in-
cluding umbrella sampling and metadynamics. Finally, the mean force in-
tegration method is presented as a flexible approach to reconstructing free

energy landscapes.

2.1 Statistical Mechanics

When investigating molecular systems in computer simulations, it is possi-
ble to visualise the evolution of all atoms. However, researchers are usu-
ally more interested in macroscopic properties, such as temperature or free
energy, which cannot be directly extracted from raw simulation data. In
an experimental setup, for instance, the temperature of a system is mea-
sured by averaging the interactions of many molecules with a thermometer.
Analogously, in molecular simulations, one obtains the temperature from

the average kinetic energy of the atoms. This section introduces how such
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macroscopic properties can be derived through the framework of statistical

mechanics.

2.1.1 Equations of Motion

A molecular system is defined by the position and velocity of all atoms. The
position, defined in a three-dimensional Cartesian space, can be expressed

as:

ri(1) = (x; (1), yi(1), zi(1)) (2.1)

where r;(z) is the position of the atom i as a function of time, ¢ and x;,
vi, z; are the respective coordinates in Cartesian space. The velocity, v;(¢),

is defined as the time derivative of the position:

vi(t) = (2.2)

dri(t) _ (dxi(r) dy:(t) dzi(1)
dt _(dt’dt’dt)’

and the acceleration, a;(¢), as the second time derivative of the position:

dvi(r) _ d*ri(r) _ (dPxi(r) d*yi(t) d*z(t)
(1) = = = , , : 2.3
(1) dt dr? dr? dr? dr? 23)

With this information, the evolution of the system is determined using
classical Mechanics, particularly Newton’s Second Law of Motion: The force
acting on an object is equal to the object’s mass times the acceleration it

undergoes [65]:

Fi(1) = ma;(t), (2.4)

where F;(1) is the force acting on the atom i, and m; is the mass of
the atom i. Equations 2.3 and 2.4 are the Equations of Motion and can be
used to calculate the evolution of the system. However, in the context of
molecular systems, the equations of motion are usually expressed with the
Hamiltonian, H (r, p) [48]:
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+U(r), (2.5)

N p2

H(r,p) = Zl T
where N is the total number of atoms and r and p are short notations
indicating the position of all atoms {ri(¢),r2(?),...,ry(¢)} and their conju-
gate momenta {p1(¢), p2(?), ..., pn(2)}, respectively. The second term, U(r),
represents the potential energy of the system. In contrast, the first term de-
scribes the kinetic energy, which is expressed as a function of the conjugate
momenta to ensure compatibility with generalised coordinate systems. In a
Cartesian coordinate system, for example, it would be defined as p; = m;v;.
Expressing the equation of motion in this manner is practical because it
conserves the total energy of a closed system and naturally accommodates
coordinate transformations. Moreover, taking the partial derivatives of equa-

tion 2.5 leads to Hamiltonian’s Equations of Motion:

87‘( Pi dI‘l'
- P4l 2.
api m; dt’ ( 6)
OH  0U(r) _dp;
- arl- = - 6ri = Fl(r) = E = m;a;. (27)

Using the Hamiltonian equations, the time evolution of the system can
be determined by finding its state at time ¢, characterised by a specific set of
position and momenta {ry(z),r2(¢),...,rn(t), p1(?), p2(?), ....,pn(¢)} for a sys-
tem with N atoms. This gives rise to the notion of phase space, which
encompasses all possible states of the system. In this space, each state is
fully characterised by the positions and momenta (each contributing D co-
ordinates) of the N atoms, yielding a total of 2 x D x N dimensions. Even for
relatively small systems, the high dimensionality of phase space is challeng-
ing to conceptualise, underscoring the necessity for a statistical treatment

of molecular systems.
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2.1.2 Ensembles

In statistical mechanics, a statistical ensemble is defined as the collection of
all possible microstates of a system that share specified macroscopic con-
straints, such as a fixed number of atoms N, temperature T, pressure P or
volume V. Each microstate in the ensemble corresponds to a unique assign-
ment of coordinates and momenta and may exhibit distinct values of various
properties. To capture the overall behaviour of the system, ensemble aver-
ages are introduced, which express a given property » as an average over
all microstates. If p; is the probability of occupying microstate i, and b; is the

value of b in that microstate, the ensemble average (b) is given by

N
(b) = pibs, (2.8)
i=1

where N represents the number of microstates. The ensemble average
is related to quantities measured in simulations through the ergodic princi-
ple. According to the ergodic hypothesis, if a system is observed sufficiently
long, each microstate will be visited in proportion to its probability p;. Con-
sequently, the time average of a property b over a long enough simulation
converges to the ensemble average:

M
— . 1
b= lim M;bi ~ (b), (2.9)

where M denotes the number of time steps or samples in the simulation

trajectory.

Although the ergodic principle provides a way to estimate ensemble
averages, explicitly knowing the probabilities p; remains essential for de-
termining other macroscopic properties that cannot be measured directly.
One route to deriving an expression for p; is to consider how entropy (or
information) depends on the probability distribution P = {Py, ..., Py}. Such

a function must satisfy four axioms:



2.1. Statistical Mechanics 59

1. It should be a continuous function depending only on P.
2. It should be maximised by a uniform distribution.
3. It should be additive when combining independent ensembles.

4. It should remain unchanged by adding inaccessible states (P; = 0).

The unique function that meets these requirements is the Gibbs en-
tropy:
N
S(P) = —kBZP,- In(P;), (2.10)
i=1

where the factor kg is a constant, which will be defined later. This formula is
fundamental in statistical mechanics as it describes the entropy of a gener-
alised ensemble. However, it is also widely adopted in other fields, such as
communication and information theory, where Shannon reached an equiv-
alent expression. Another essential requirement is the normalisation of the

probabilities:

N
ZPi = 1. (2.11)

i=1
With equations 2.8, 2.10 and 2.11 in place, one can derive the general par-

tition function.

2.1.3 General Partition Function and Change in Entropy

The partition function is one of the central quantities in statistical mechan-
ics. It encapsulates the statistical properties of a system in equilibrium and
enables the calculation of thermodynamic quantities such as free energy,
entropy, and average energy. The precise form of the partition function de-
pends on the ensemble of interest. In pursuit of a general description, two
guiding rules are adopted for constructing a “general” ensemble. The first
rule states that some extensive quantities, denoted by al.(k), are fixed. Only
microstates with the specified value «® are allowed, where k indexes the
constrained quantity. In discrete form, this restriction can be written using

the discrete delta function, which is analogous to the Dirac delta for discrete
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functions:
s —a®y >0 (2.12)

The second rule states that the average values of extensive variables, de-
noted by 5, where [ indexes the variable, remain finite. This can be ex-

pressed with the ensemble average relation given in equation 2.8.

To determine p;, the principle of maximum entropy is applied, which
states that the most likely probability distribution is the one maximising the
Gibbs entropy (equation 2.10), subject to the normalisation of probabilities
(equation 2.11) and finite ensemble averages (equation 2.8). This leads to

the following constrained optimisation problem:

st —kp (ZPi - 1) =0 (2.13)

where the factor —k g has been added in the second and third lines for conve-
nience, and the summation over i is simplified for better readability. To solve
this maximisation, the method of Lagrange multipliers is applied, giving rise

to the Lagrange function:
L(P, 20, {1"}) =— kg Z P;In(P;) - kB/lo( Z P - 1)

— kg Z M(Z Pib" - <b<’)>)

(2.14)

where 1, and 1) are Lagrange multipliers, and [ indexes the multiplier and
the quantity »("). Taking the partial derivative of £ with respect to P; and

setting it to zero yields:
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oL i
= = —kglnP; — kg —kplg—k A0 — ¢ 2.1
55, = ~kpInPi— ky = kpdo BZ] : (2.15)

which can be simplified by defining ¥ = 1y + 1, and rearranged to isolate p;:

e Zl/l(l)bfl)
Pi=— (2.16)

e?
Summing both sides over all microstates i and recalling that }; P; = 1

leads to:
N

7=o¥ = Z R (2.17)

where Z is the generalised partition function, which provides a summation

of all possible microstates in a given ensemble.

Combining equations 2.16 and 2.17 results in the general probability

distribution, which holds for a wide range of ensembles:

1 1
o-2iA0bY o-2iA0bY

P = - (2.18)
z N e zap”

Having determined the probability distribution P;, the Gibbs entropy can
be expressed in terms of Z and the ensemble averages. Inserting equation
2.18 into equation 2.10, and making use of the normalisation of probabilities
(equation 2.11) and ensemble averages (equation 2.8), following relation is

found:

ki = i Pi(ln(Z) + Z N)b;’)) =1n(Z) + Z A0 (pMy (2.19)
B i / 1

Taking the total differential of S yields:

ds
— =dIn(Z ADa " byda® 2.20
. M)+Z <>+Z<> (2:20)

In the pursuit of an expression for dIn(Z), In(Z) is differentiated w.r.t.
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k)

Il s, e~ Zian"
dn(Z) ( n2.e

6a(k) - 6a,(k)

(2.21)

Using the chain rule and the product rule as well as equation 2.18, this

expression can be rewritten as:

ab")
- _ ) ) _ () (k)
dIn(Z) = Z(b ydA Zl:a <aa(k)>da (2.22)

and when combining equations 2.20 and 2.22 one finds:

ds ob®
— = = (k) OPFNRY;
. Zl:/l <aa(k)>doz +Zl“a d(b"y . (2.23)
This result shows explicitly how variations in the “fixed” extensive variables
a'® and in “finite” extensive variables b affect the entropy. With the con-
cepts introduced so far, it is possible to describe specific ensembles by

choosing the appropriate set of variables and constraints.

2.1.4 Microcanonical Ensemble (NVE)

Arguably, the simplest ensemble in statistical mechanics is the microcanon-
ical ensemble, which describes an isolated system. Such a system has a
fixed number of atoms, N’, confined to a fixed volume, V’, and a fixed total
energy, E’, commonly abbreviated as the NVE ensemble. Since the total
energy is fixed, all microstates in this ensemble must have the same energy

e;, Which is calculated by the system’s Hamiltonian (equation 2.5):

e; = H(ri,p;) (2.24)

The fixed variables N’, V’ and E’ relate to the fixed variable «®¥) and are

enforced by equation 2.12:

6(ei(ri,pi) —E) >0 & 6(H(ri,p) —E) >0, (2.25)
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5(nj—N') >0, (2.26)
6(vi(ri,pi) = V') >0, (2.27)

where n; is the number of atoms in microstate i and v; is the volume of
the microstate. The partition function for the microcanonical ensemble, Q,
is defined as the sum over all microstates that satisfy the constraints from
equations 2.25, 2.26 and 2.27:

Q= 6(n = N')o(vi(rs, pi) = V')§(H (vi p;) — E') . (2.28)

Using equation 2.18, the probability of being in some microstate i can be
found:
P =— (2.29)

This result reflects the principle of equal a priori probabilities, which
states that every microstate in an isolated system is equally likely to occur.
Moreover, when equation 2.29 is combined with the Gibbs entropy (equation

2.10), Boltzmann’s famous equation, S = kz In Q, is found.

2.1.5 Canonical Ensemble (NVT)

The microcanonical ensemble is an idealised system that is isolated from its
surroundings. However, most physical systems exchange energy with their
surroundings, such that other ensembles are required to describe them. A
commonly used ensemble to imitate experimental conditions is the canoni-
cal ensemble. It represents a closed system with a fixed number of atoms,
N’, afixed volume, V’, submerged in a heat bath at a constant temperature,
T, so that the temperature of the system is maintained at 7. The fixed exten-
sive variables N’ and V' relate to the fixed variable «¥) and are described
using equation 2.12:

6(n;—N')>0 (2.30)

S(vi = V') >0 (2.31)
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Additionally, the ensemble average of the energy, E, is required to be finite,
thus relating to the property b introduced in subsection 2.1.3. This condition

can be described as:
E={(e;) = Zw(ri,pi)Pi . (2.32)

In section 2.1.3, a general expression for the change in entropy was
derived (equation 2.23). This expression can be altered by enforcing the
constraints of the canonical ensemble (equations 2.30, 2.31 and 2.32), re-
sulting in a more tangible formulation for the change in entropy:

ds _/1<<97‘((I‘i,Pi)>dN _ /1<67'[(ri,Pi)

o e o >dV +Ad(e;) . (2.33)

Comparing this equation with the change in entropy as defined in clas-
sical thermodynamics (which is derived from the first and second law of

thermodynamics) [48], a direct correspondence of terms is exposed:
P 1
ds=-Ean+Zav+ ZaE (2.34)
T T T

Here, u is the chemical potential and P the pressure (different from the
probability distribution P, that is written bold). One can equate the three

terms of each of the equations 2.33 and 2.34 as follows:

M:<M> : :_<57‘{(1‘i,Pi)

o L > . (e)=E (2.35)

Furthermore, an expression for A is found:
A=— (2.36)

It is conventional in statistical mechanics to replace the A with a 3, such
that:
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f=— (2.37)

The probability of finding state i, given in equation 2.18, will then have
the following form in the canonical ensemble:
o~BH(xi.pi)
pi = ~Zwvr (2.38)
and Zyyr is the canonical partition function. Since it will be used re-
peatedly in the following sections, Zyyr will, from now on, be written as Q to
distinguish it from other ensembles. By applying the property }; P; = 1 on

both sides of equation 2.38, Q can be expressed as:
0= Z o~ BH (ri.pi) (2.39)

Finally, using the expression of the entropy in equation 2.19, as well as

the expression for A and (b”) shown above, the relation emerges:
kgTIn(Q) =—(E-TS), (2.40)

where the expression provides a link to the thermodynamic definition of the
Helmholtz free energy F:
F=E-TS (2.41)

When combining equations 2.40 and 2.41, one finds a relation between

the Helmholtz free energy F and the canonical partition function Q:
F = —kgT In(Q) (2.42)

This equation is of central importance: it shows how to compute the free
energy of a system directly from its canonical partition function Q. The
Helmholtz free energy F measures the portion of a system’s energy that

is available to do work at constant T and V. Consequently, a system with
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high F can spontaneously evolve to a state of lower F, whereas the reverse
transition is not thermodynamically favoured.
Note to the reader: As the Helmholtz free energy is predominantly used

in this work, it will be referred to as the free energy.

2.1.6 Continuous Phase Space

Up to this point, it was assumed that ensembles are discrete collections of
microstates. In reality, however, positions and momenta of atoms span a
continuous phase space, which should be reflected in the equations. The
underlying principles introduced so far are still valid, but the discrete sums
must be transformed into integrals. As such, the partition function of the
canonical ensemble for a system with N atoms in D-dimensional space can

be written as:

1
Q= NN / e‘ﬁ(H(rN’pN)dedrN (2.43)

where the bold rV and p" denote vectors of position and momenta.
Since the partition function should be a dimensionless quantity, it is divided
by Planck’s constant 4 to the power of D x N (the number of dimensions
times the number of atoms). Furthermore, the expression is also divided
by N! to avoid over-counting microstates that differ only by permutations of
identical atoms.

Equation 2.43 can be further simplified by splitting the Hamiltonian (de-
scribed in equation 2.5) into two terms representing the potential energy
U(r™) and the kinetic energy K(p"). Since K(p") only depends on mo-
menta and U(r") only on positions, the kinetic term can be integrated out:

1 _
0 = v / e AU gpN (2.44)

where A is the Thermal de Broglie wavelength, defined as:

h2
A= ‘/;;_m (2.45)



2.2. Classical Molecular Dynamics 67

The remaining integral of the equation 2.44 is commonly referred to as

the configurational integral Zy:

Zy = / ¢ BUEN) gpN (2.46)
Consequently, the probability of finding the system in configuration r" is:

eBUGY)

Zn

PNy = (2.47)

Hence, the ensemble average of a property A that depends only on positions

becomes:

/ a(rN)e_ﬁU(rN)drN

Zy

A= <a(rN)> - / PM)a(Vydr" = (2.48)

Using the concepts introduced in this section, the average properties of
the data produced by molecular dynamics simulations can be found. The
following section presents 