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Data-Driven Discovery of Biophysical T Cell Receptor Cospecificity Rules
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The biophysical interactions between the T cell receptor (TCR) and its ligands determine the specificity of the
cellular immune response. However, the immense diversity of receptors and ligands has made it challenging
to discover generalizable rules across the distinct binding affinity landscapes created by different ligands.
Here, we present an optimization framework for discovering biophysical rules that predict whether TCRs share
specificity to a ligand. Applying this framework to TCRs associated with a collection of SARS-CoV-2 peptides,
we systematically characterize how cospecificity depends on the type and position of amino-acid differences
between receptors. We also demonstrate that the inferred rules generalize to ligands highly dissimilar to any
seen during training. Our analysis reveals that the matching of steric properties between substituted amino
acids is more important for receptor cospecificity than the hydrophobic properties that prominently determine
evolutionary substitutability. Our analysis also quantifies the substantial importance of positions not in direct
contact with the peptide for specificity. These findings highlight the potential for data-driven approaches to
uncover the molecular mechanisms underpinning the specificity of adaptive immune responses.

DOI: 10.1103/14j1-wrh5

I. INTRODUCTION

Cellular immunity relies on the specific recognition of
target molecules by T cells, mediated by the binding of the
T cell receptor (TCR) to specific peptide-major histocompat-
ibility complexes (pMHCs) [1,2]. Given the pivotal role of
T cells in the adaptive immune system, an ability to predict
the specificity of a TCR in silico from its sequence would
have many applications in disease diagnosis, surveillance,
and treatment. Recent experimental advances [3–7] and the
creation of databases cataloging known TCR-pMHC pairings
[8–11] have thus propelled significant research efforts aimed
at predicting TCR specificity using machine learning [12–20].

The premise behind using machine learning to predict pair-
ings between the hypervariable receptors and their ligands
is that there are learnable, generalizable biophysical rules
that govern these interactions [3,4]. While machine learning
models are able to accurately identify alternative binders to
pMHCs for which good quality high-volume TCR data exist,
an ability to generalize to pMHCs unseen during training has
yet to be demonstrated in independent benchmarks [21].

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

In high-dimensional multiclass classification problems, a
potentially easier path towards generalizable learning begins
with learning similarity relationships between class members
[22,23]. Once a suitable metric or representation tailored to
the general nature of the classification problem is learned, it
can then be adapted with little training data to new classes.
However, to date the most popular sequence similarity metrics
for TCRs are heuristic, and their parameters have not been
learned from TCR sequence data. For instance, TCRdist [3]
scores amino-acid similarity based on the BLOcks SUbstitu-
tion Matrix (BLOSUM). This matrix is based on substitution
frequencies observed in general protein evolution [24], and it
is unclear how well these describe the impact of amino-acid
changes on TCR-pMHC binding. Additionally, existing struc-
tures suggest that factors beyond the identity of substituted
amino acids, such as the position of the substitution, likely
influence the impact of sequence changes [25].

To address these challenges, we propose a pseudolikeli-
hood maximization approach to learn the biophysical rules
that govern TCR cospecificity directly from data. Concretely,
our aim is to learn a distance metric d (σ, σ ′) that quanti-
fies the probability that two TCRs, σ and σ ′, bind to the
same ligand (pMHC). To accomplish this, we expand on our
ongoing efforts to quantify the statistics of TCR sequence
similarity from available TCR-pMHC specificity data [26–28]
by replacing predefined notions of sequence similarity with
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learnable metrics. To learn this metric, we apply contrastive
learning—a framework that we and others have previously
used to train deep learning models for predicting TCR speci-
ficity [19,20,29,30]—to optimize sequence alignment weights
to predict TCR cospecificity. We reason that the simplicity
of these metrics might favor the inference of generalizable
rules from limited data, which has remained a challenge in
more flexible deep learning models using this supervised con-
trastive approach [20].

Our results show that cospecificity rules inferred from a
large-scale dataset on SARS-CoV-2–specific TCRs [11] gen-
eralize with striking breadth. These rules accurately predict
TCR cospecificity even for pMHCs that are highly dissimilar
(differing by � 6 amino acids) from the nearest peptide in the
training set, demonstrating an extrapolation ability that has so
far remained out of reach for sequence-based machine learn-
ing approaches [18,21]. Beyond the empirical findings, we
provide a theoretical perspective on how contrastive learning
is related to pseudolikelihood methods and intuition for why it
might identify reproducible order within disordered receptor-
ligand landscapes, where traditional inference methods often
falter. Altogether, our findings position contrastive learning as
a powerful and broadly applicable strategy for developing sta-
tistical theories of complex receptor-ligand maps from limited
data.

II. TWO-POINT STATISTICS IDENTIFY ORDER
IN RECEPTOR-LIGAND MAPS

To motivate our framework, it is useful to review the sta-
tistical inference problem posed by the TCR-pMHC binding
prediction. The ultimate objective is to infer the probability
distribution Pπ (σ ) of observing the TCR sequence σ when
sampling from the pool of T cells specific to pMHC π . This
distribution can be fitted from known experimentally sampled
TCR binders to the pMHC. However, there are only a few
pMHCs with substantial data, making the inference of such
pMHC-specific models challenging. To address this, it would
be appealing to use generalizable rules as priors when infer-
ring the selection landscape for a given pMHC.

One approach involves using the pMHC-specific selection
factors Qπ (σ ), such that Pπ (σ ) = Qπ (σ )P(σ ), where P(σ )
represents the highly nonuniform [31] but largely universal
[32] baseline distribution resulting from VDJ recombination
[26,33,34]. A naive strategy might average selection fac-
tors across pMHCs, 〈Qπ (σ )〉P(π ) as an initial guess, where
〈 f (x)〉P(x) denotes the average of f (x) over the distribution
P(x). Yet, such a “mean-field” approach would obscure much
of the information about TCR-pMHC specificity.

The binding energy landscapes associated with specific
ligands peak in different regions of receptor sequence space
[Fig. 1(a)], and averaging over these disordered landscapes
is expected to result in a flat and noninformative marginal
distribution [Fig. 1(a), inset]. Indeed, embeddings from
masked language models trained to reproduce overall reper-
toire statistics demonstrate limited transfer learning capability
for predicting TCR-pMHC specificity [20]. Furthermore,
selection factors on observed naive or memory TCR reper-
toires relative to null expectations are largely driven by

FIG. 1. Contrastive learning of rules that generalize across com-
plex receptor-ligand maps. (a) Cartoon disordered “landscape” of
selection factors Qπ (σ ), which describe the varying binding affinities
of TCRs σ to ligands π . Averaging selection factors over ligands,
〈Qπ (σ )〉P(π ), will lead to a largely flat marginal distribution (inset),
unless we are able to restrict the average to ligands with highly
similar TCR landscapes. (b) Cartoon “landscape” of coselection
factors Qπ (σ )Qπ (σ ′), which relate to the probability with which
two TCRs are specific to the same ligand, as a function of TCR
similarity d (σ, σ ′). In contrast to the previous scenario, coselection
factors have a nontrivial marginal distribution when averaged across
unrelated ligands, 〈Qπ (σ )Qπ (σ ′)〉P(π ) (inset). (c) Sketch of the su-
pervised contrastive learning paradigm. Experimentally determined
pairs of TCR sequences binding the same ligand make up the set
of cospecific pairs P , and all pairs of TCR sequences irrespective
of specificity make up the set of unlabeled pairs U . We optimize
parameters θ of a family of distance metrics dθ that minimize a
contrastive loss [Eq. (7)]. The loss function minimizes the average
distance between pairs in P while pushing apart unlabeled pairs in
U . Optimized parameters θ� relate the sequence similarity between
a pair of TCRs to the probability with which they share ligand
specificity and provide biophysical insights into feature importance.

pMHC-independent constraints on receptor function, such as
those required for proper folding [33].

To overcome this problem, we have followed a different
approach towards identifying reproducible statistical order
across receptor-ligand maps, which rests on analyzing two-
point statistics of selection Qπ (σ )Qπ (σ ′) [20,26–28]. The
two-point statistics describe the likelihood that receptors σ

and σ ′ are both specific to the same peptide π [Fig. 1(b)].
These coselection factors can have nontrivial averages across
unrelated ligands [Fig. 1(b), inset], even where one-point
statistics do not. Intuitively, peak positions vary across the
selection landscapes, but the size and shape of the peaks might
not. Two-point statistics have also been successfully applied
in the statistical physics of spin glasses to reveal otherwise
hidden statistical order [35].

Using this approach, we previously demonstrated that
coselection factors decay predictably with the Levenshtein
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distance between TCR sequences, independent of the specific
ligand [26]. These findings suggest that generalizable statisti-
cal order exists across receptor-ligand maps, which can inform
metrics for TCR sequence analysis.

III. SUPERVISED CONTRASTIVE LEARNING
AS PSEUDOLIKELIHOOD MAXIMIZATION

A. Derivation of a loss function

We propose fitting available cospecificity data by optimiz-
ing parameters θ of a family of TCR sequence similarity
metrics dθ (σ, σ ′). The fitting is based on a supervised con-
trastive loss function, similar to others used in the machine
learning literature [36]. In the following, we provide a deriva-
tion of this loss function that clarifies its connection to
pseudolikelihood maximization—a technique used by statis-
tical physicists to infer Potts models for protein families [37].

The experimental data take the form of a collection of
TCRs {σ1, σ2, . . . , σN }, where each sequence σi is associated
with a cognate pMHC πi [Fig. 1(c)]. To find an optimal metric,
we propose maximizing the pseudolikelihood of all observed
pairs of cospecific TCRs:

L =
∏

i �= j
πi=π j

Qπi (σi )Qπi (σ j )P(σi )P(σ j ). (1)

We have shown previously that coselection factors between
randomly chosen pairs of sequences at a given Levenshtein
distance dLD(σ, σ ′) = �,

〈Qπ (σ )Qπ (σ ′)〉P(σ,σ ′|dLD(σ,σ ′ )=�), (2)

decay exponentially at small distances � with a typical,
ligand-independent lengthscale [26]. In fitting a metric to
maximize the pseudolikelihood defined in Eq. (1), we thus
focus on capturing the average behavior of coselection factors
across pMHCs,

Qπi (σ )Qπi (σ
′) ≈ Q(σ, σ ′) ≡ 〈Qπ (σ )Qπ (σ ′)〉P(π ), (3)

according to an exponential ansatz

Q(σ, σ ′) ∝ e−dθ (σ,σ ′ ). (4)

Although outside the scope of our study, it is clear that this
metric could be improved for prediction on specific targets by
exploiting ligand-dependent variation in these rules [27,28],
as we have previously demonstrated for protein language
models [20]. Here, inference is instead restricted by design
to cospecificity rules that generalize across ligands.

To complete the specification of the optimization problem,
it remains to determine the proportionality constant in Eq. (4).
We use a normalization condition 〈Q(σ, σ ′)〉P(σ )P(σ ′ ) = 1,
such that

Q(σ, σ ′) = e−dθ (σ,σ ′ )

〈e−dθ (σ,σ ′ )〉P(σ )P(σ ′ )
. (5)

With sufficient data, the average in the denominator can
be approximated by summation over all pairs of TCRs in
the training data. We call this set of pairs the unlabeled
set, U = {(σi, σ j )|i �= j,∀i, j}, as it ignores the associated
pMHC labels. This means approximating the partition func-
tion with respect to P(σ )P(σ ′) by an average with respect

to the empirical distribution of unlabeled pairs U (σ, σ ′) =
|U |−1 ∑

(s,s′ )∈U δσ,sδσ ′,s′ . Here, |U | denotes the cardinality of
the unlabeled set, and δx,y denotes the Kronecker delta, δx,y =
1 for x = y and δx,y = 0 otherwise. We note that an alternative
approach would be to calculate the average only with respect
to pairs of TCRs with differing pMHC specificity or by us-
ing a large set of independently acquired TCRs, say from
an unsorted blood sample. However, in line with prior work
[20,38], we found that the inclusion of cospecific pairs in the
evaluation of the denominator has a regularizing effect on the
inference procedure.

To simplify notations, we similarly define the set of pos-
itive pairs, P = {(σi, σ j )|πi = π j,∀i, j}, and the empirical
probability of observing TCR pairs (σ, σ ′) in the set of cospe-
cific pairs, P (σ, σ ′) = |P|−1 ∑

(s,s′ )∈P δσ,sδσ ′,s′ . Plugging all
definitions into Eq. (1) allows us to write the negative log-
pseudolikelihood per positive pair as

− logL
|P| = 〈dθ (σ, σ )〉P (σ,σ ′ ) + log〈e−dθ (σ,σ ′ )〉U (σ,σ ′ ) + c, (6)

where c = −〈log P(σ )P(σ ′)〉P (σ,σ ′ ) is a term that is inde-
pendent of the distance metric dθ . Optimal parameters θ�

maximize the pseudolikelihood [Eq. (1)], or equivalently,
minimize terms in the negative log-likelihood dependent on
dθ , which yields the following loss function:

ε(θ |P,U ) = 〈dθ (σ, σ ′)〉P (σ,σ ′ ) + log〈e−dθ (σ,σ ′ )〉U (σ,σ ′ ). (7)

Figure 1(c) summarizes in a flowchart how the sets P and U
of cospecific and unlabeled sequence pairs are constructed.

B. Analytical solution for a simple case

To build intuition, we minimize Eq. (7) in closed form for a
simple distance metric. We consider distance metrics defined
in terms of a discrete-valued function g that maps each pair
of TCRs to a finite set of K integers [e.g., for K = 2 a simple
case would be g(σ, σ ′) = 1 if there is an insertion or deletion
and g(σ, σ ′) = 0 for an amino-acid substitution]. Given the
integer-valued function g, a family of distance metrics with
trainable parameters can be defined by

dg(σ, σ ′) =
K∑

i=1

θiδg(σ,σ ′ ),i, (8)

where θ1, θ2, . . . , θK are parameters assigned to the K possible
value of g. Substituting Eq. (8) into the loss function [Eq. (7)]
yields

ε(θ |P,U ) =
K∑

i=1

θi〈δg(σ,σ ′ ),i〉P (σ,σ ′ ) + log Z, (9)

where Z = 〈e− ∑
i θiδg(σ,σ ′ ),i〉U (σ,σ ′ ) is a normalizing constant. At

the optimal θ�
i , we have ∂ε/∂θi = 0. Taking the partial deriva-

tive of Eq. (9) with respect to θi yields

∂ε

∂θi
= 〈δg(σ,σ ′ ),i〉P (σ,σ ′ ) − e−θi

Z
〈δg(σ,σ ′ ),i〉U (σ,σ ′ ). (10)

Solving for θ�
i by setting Eq. (10) to zero, we derive

θ�
i = − log

〈δg(σ,σ ′ ),i〉P (σ,σ ′ )

〈δg(σ,σ ′ ),i〉U (σ,σ ′ )
− log Z. (11)
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This result shows that minimizing the contrastive loss function
[Eq. (7)] sets parameters based on the log-ratio between ob-
served occurrences of particular features among positive pairs
and a null expectation calculated across unlabeled pairs.

This analytical solution shows that contrastive learning
using Eq. (7) is closely connected to how BLOSUM and
related evolutionary amino-acid substitution matrices are tra-
ditionally defined in the bioinformatics literature [24,39].
These matrices are also constructed by calculating log-odds
ratios between observed and expected frequencies of amino
acid pairs. However, contrastive learning extends this by
accommodating more complex distance metrics that incorpo-
rate multiple substitution properties. Furthermore, empirical
frequencies across unlabeled TCR pairs are used in the de-
nominator, rather than assuming factorization as in BLOSUM.
This is a more appropriate choice for TCRs, where VDJ re-
combination introduces correlations between sites even in the
naive repertoire [31].

IV. DATA PREPARATION

To learn rules that generalize to unseen pMHCs, we cu-
rated the training data to eliminate confounding factors and to
reduce the complexity of the problem. We decided to restrict
training to a single dataset of TCRs with experimentally anno-
tated pMHC specificity to exclude confounding by data origin.
Consequently, we used a large-scale dataset on TCRs with
specificity to SARS-CoV-2 peptides obtained using a multi-
plexed assay called MIRA [11]. From these data we only used
pairs of TCR CDR3β sequences that differ by a single edit
step to maximize the signal-to-noise ratio given potentially
misannotated sequences [26]. Moreover, in both training and
testing, we only considered pairs of sequences with identical
V genes to ensure that learned rules only reflected amino-acid
substitutions in the CDR3β chain. We also excluded the (very
small) number of pairs involving substitutions of cysteine to
reduce overfitting, due to the rarity of cysteines within the
CDR3 junction following negative thymic selection [33].

To reduce overfitting to less commonly observed sequence
lengths, we restricted our analysis to TCR CDR3β sequences
with lengths between 11 and 15. These represented 72% of
the sequences in the MIRA database and 76% of sequences in
the VDJdb database. From the MIRA database, we identified
26 sets of TCRs specific to unique pMHCs, each contain-
ing at least 1000 TCR sequences. To mitigate the impact of
varying sizes of specificity groups, we equalized all group
sizes by subsampling without replacements to 1000 sequences
per pMHC. To still learn on all available data, we repeated
the procedure 15 times and averaged performance across
these training batches. Among the 26 000 TCRs included
per training batch, we identified on average ≈6000 pairs of
single-edit TCRs.

We evaluated the inferred metric using TCRs specific to
hold-out pMHCs from the MIRA database. To this end, we
collated sets of cospecific sequence pairs from 24 specificity
groups, each containing between 400 and 999 TCR sequences,
that were excluded during training. We again used subsam-
pling to address class imbalance, generating 15 sets of 400
sequences for each specificity group. Furthermore, to assess
generalization to TCR pairs differing by multiple edits, we

identified TCR pairs with edit distances ranging from 1 to 6
in the same dataset.

Using these data, we chose to test the ability of metrics to
discriminate between cospecific (i.e., ∈ P) and cross-specific
TCR pairs [i.e., ∈ C = {(σi, σ j )|πi �= π j, ∀i, j}]. We note
that this task represents an instance of positive-unlabeled
classification [40], as cross-specific pairs are not tested ex-
perimentally for cospecificity. We have shown previously that
about one in ten single edits maintains cospecificity [26],
setting an upper bound on achievable classification accuracy.
Nonetheless, we chose this task for its simplicity. Addition-
ally, when considering TCR pairs differing by multiple edits,
the prevalence of cospecific pairs decreases, reducing the im-
pact of this limitation.

To externally validate the predictive power of the inferred
rules, we used data from VDJdb [41], excluding any pMHCs
present in the MIRA dataset. In addition to TCRβ sequences,
VDJdb includes TCRα sequences for certain pMHCs, which
we used to further test the biological generalizability of the
inferred cospecificity rules. For the β chain validation task, we
selected TCRs from 131 specificity groups, each containing
at least 15 unique sequences. As before, this threshold was
chosen to maximize the number of cospecific pairs included
in the analysis after balancing the data across groups. For the
α chain validation task, we identified 49 specificity groups
meeting the same threshold of 15 sequences. Consistent with
our previous methodology, we employed subsampling and
identified TCR pairs with edit distances ranging from 1 to 6
across 15 balanced testing batches.

V. INFERENCE OF OPTIMAL SEQUENCE
SIMILARITY METRICS

A. Overview, notations, and baseline metric

To provide proof-of-concept for the applicability of our
framework to this dataset, we applied our inference pro-
cedure to optimize parameters within a family of simple
alignment-based distance metrics. Alignment-based metrics
of TCR sequence similarity have been widely used to predict
TCR cospecificity [3,4,42,43]. Among these, one of the most
widely used metrics is TCRdist [3], which calculates distances
between TCRs based on BLOSUM62-derived amino-acid
dissimilarity penalties. TCRdist furthermore optionally trims
CDR3 sequences to exclude residues at the edges from the
mismatch calculation, as a simple form of nonuniform weight-
ing of mismatches according to position inspired by structural
evidence showing that these flanking residues rarely make
direct contact with the peptide [3,43]. Building on the prin-
ciples of TCRdist, we focused on the inference of parameters
relating to two critical physical factors influencing the effects
of changes in the TCR hypervariable region: the identity of the
substituted amino acids and the position of the substitution.

Specifically, we define distance metrics in terms of edit
steps, which characterize the difference between a pair of TCR
sequences σ and σ ′ by a series of substitutions, deletions, and
insertions [Fig. 2(a)]. The simplest among these metrics, the
total unweighted number of edit steps required to transform
σ to σ ′, is known as the Levenshtein distance [44]. In the
following, we describe the ith edit step between σ and σ ′

033005-4



DATA-DRIVEN DISCOVERY OF BIOPHYSICAL T CELL … PRX LIFE 3, 033005 (2025)

FIG. 2. Learning of a CDR3β distance metric that generalizes to unseen ligands. (a) Distance metrics are defined in terms of the
edit steps between two CDR3β sequences. Each edit step includes the length of sequence 
, the position of substitution κ , and the
identity of substitution �. (b) Receiver Operating Characteristics (ROC) curves for identifying cospecific relative to cross-specific [i.e.,
∈ C = {(σi, σ j )|πi �= π j, ∀i, j}] TCR CDR3β pairs from the MIRA test set that differ by a single edit using different TCR similarity metrics.
The metrics include TCRdist (dTd, black) as a baseline, as well as a series of metrics optimized using the mathematical framework proposed
in this study. These metrics involve substitution type (which amino acids are substituted) and/or substitution site (which position along the
CDR3 sequence is substituted). Specifically, the curves show metrics using only type (dA, blue), only site (dS, green), or using both jointly
(dAS, red). Curves are averaged over 15 subsampled test sets, each equally balanced across pMHC groups. (c) Areas under the ROC (AUROC)
for the MIRA test set and an external validation set (VDJdb). Error bars indicate the standard error over resampled testing batches. Note that
due to cross-reactivity some cross-specific pairs also exhibit cospecificity, which bounds achievable AUROCs below 1.

by �i(σ, σ ′), the identity of substituted amino acids, and by
ki(σ, σ ′), the substitution position along the TCR sequence
[Fig. 2(a)].

In this notation, the baseline metric, TCRdist with-
out trimming, is given by dTd(σ, σ ′) = ∑

i d̃Td(�i ), where
d̃Td(�i ) = min (4, 4 − B62(�i)) if the ith edit step is an
amino-acid substitution, and d̃Td(�i ) = 8 if the ith edit step
is an insertion/deletion (see Fig. S1A of the Supplemental
Material [45]). Here, B62 denotes the BLOSUM62 matrix. In
the remainder of this section, we use dTd as a baseline for
comparisons.

B. Learning an amino-acid substitution matrix

To test whether an amino-acid substitution matrix directly
learned from TCR data would outperform the BLOSUM-
derived TCRdist score, we used our framework to train the
following simple metric:

dA(σ, σ ′) =
∑

i

A(�i ), (12)

where A is a matrix of amino-acid substitution weights
(Fig. S1B). We included a blank (“−”) in the amino-acid
alphabet to treat insertion/deletion as a substitution involving
“−.”

To evaluate the performance of dA, we generated pairs
of TCR CDR3β sequences from the MIRA database that
differed by a single edit step and belonged to a specificity
group not included in the training data. The performance
of distance metrics was quantified using a cospecific pair
identification test, in which cospecific TCRs were treated
as positive pairs, while TCR pairs across different speci-
ficity groups were treated as negative pairs as described
before. The receiver operating characteristic (ROC) curves for
different models show that dA outperforms dTd [Fig. 2(b)].
Furthermore, the learned substitution matrix also better clas-
sifies cospecific TCR CDR3β sequence pairs from the VDJdb
database [Fig. 2(c)], as assessed by the area under the receiver

operating curve (AUROC). Both tasks involve TCRs specific
to unseen pMHCs, which in the case of VDJdb additionally
originate from pathogens other than SARS-CoV-2, which was
used during training.

C. Substitution position influences TCR cospecificity

We next investigated whether the position of substitution
(independently of the identity of the substituted amino acids)
determines the likelihood of TCR cospecificity, as suggested
by structures [4,25]. To address this question, we trained a dis-
tance metric that considers only the position of substitution:

dS(σ, σ ′) =
∑

i

S(ki, 
), (13)

where S represents a matrix of site weights dependent on ki,
the position of substitution, and 
(σ, σ ′) = max(|σ |, |σ ′|), the
aligned length of the TCR pair (Fig. S2A).

Results on the testing task show that dS has some predictive
power on unseen pMHCs [Fig. 2(b)], and even outperforms
dTd on the validation task [Fig. 2(c)]. These findings confirm
that location matters for the impact of a substitution on TCR
specificity.

D. Joint inference of site- and identity-dependent
substitution weights

Having established that both the identity of substituted
amino acids and the position of substitution influence the
probability of cospecificity in a pair of TCRs, we next inferred
a model accounting for both factors jointly. Incorporating
multiple factors into phenomenological distance metrics is
challenging, as it requires ad hoc choices for setting the rela-
tive weight given to each factor. In contrast, in our framework,
different parameters are jointly optimized during the training
process to disentangle their relative influence.

To jointly optimize site and identity-dependent weights
while keeping the number of parameters manageable, we
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FIG. 3. Comparison of site-dependent weights with TCR-pMHC contact probabilities reveals the importance of noncontact sites. (a) Site
weights, PS, learned from joint optimization of substitution type-dependent and site-dependent weights (dAS). Sites that lack sufficient
substitution statistics are shown in gray. (b) Average contact probability in TCR-pMHC crystal structures (see Methods). Sites along the
CDR3β sequence that never contact the peptide in known structures are shown in gray. (c) Scatter plot showing the correlation of both
quantities across sites.

defined a factorized family of distance metrics,

dAS(σ, σ ′) = −
∑

i

log[1 − (1 − e−S(ki,
) )(1 − e−A(�i ) )],

(14)

where S and A are, respectively, the co-optimized substi-
tution weights that depend on the position of substitution
and the identity of the substitution. At first order, this ex-
pression simplifies to the product of weights, dAS(σ, σ ′) ∼∑

i S (ki, 
)A(�i ), but inspired by prior models of receptor-
ligand interactions [17,26,46], one can construct a simple toy
model to give Eq. (14) a more biophysical interpretation. We
define PS(k, 
) as the probability that a residue at site k on a
TCR of length 
 contributes to pMHC specificity, and PA(�)
as the probability that cospecificity is maintained at a given
site following a substitution �. Most naively, PS(k, 
) can be
interpreted as a contact probability between TCR residue and
target peptide, but the importance of a site might also reflect
MHC contact or allostery. Assuming further that substitution
penalties are only incurred at sites important to binding and
that PS and PA are statistically independent, we can express
coselection factors as

QAS(σ, σ ′) ∝
∏

i

{1 − PS(ki, 
)[1 − PA(�i )]}. (15)

We set QAS(σ, σ ′) ∝ e−dAS(σ,σ ′ ) and parametrize the proba-
bilities using substitution weights similar to those used in the
previous single-factor optimization: PS(ki, 
) = 1 − e−S(ki,
)

and PA(�i ) = e−A(�i ) Using these definitions, it follows that
Eq. (15) is equivalent to the family of distance metrics defined
in Eq. (14).

We found that by simultaneously accounting for both the
position and identity of substitutions, dAS outperforms all
other distance metrics [Fig. 2(b)]. This improved perfor-
mance extends to the external validation on data from VDJdb
[Fig. 2(c)]. Further stratification of the testing data reinforces
that the learned rules generalize broadly. They remain pre-
dictive even when tested on peptides differing by �6 amino

acids from the nearest training example, as well as when
filtering TCRs by sequence similarity and when stratifying by
HLA (Fig. S5). Generalization to such highly dissimilar pep-
tides has remained out of reach of previous sequence-based
machine learning approaches [18,21], providing empirical
support for the theoretical intuition developed in Sec. II re-
garding the greater universality of cospecificity rules.

VI. BIOPHYSICAL INTERPRETATION
OF INFERRED PARAMETERS

What physical properties govern TCR specificity? Having
established that the position and identity of substitutions de-
termine the likelihood of TCR cospecificity, we turned our
attention to the biophysical interpretation of the optimized
parameters of the jointly optimized dAS [Eq. (14)].

To judge how reliably parameters could be inferred from
the available training data, we calculated their coefficients of
variation across resampled training sets. We found them to
be modest (Figs. S3A,B and Figs. S4A,B), particularly for
more commonly observed substitutions (Figs. S3C and S4C).
We expect this variability to further decrease as more data
become available. This would potentially boost the correla-
tion coefficients between fitted site and substitution weights
and biophysical parameters, but some broad insights already
emerge from the analysis of the available data.

To test whether site weights PS, where higher values signify
increased impact on cospecificity, are in line with their intu-
itive role as a proxy for contact probabilities, we calculated
contact probabilities from TCR-pMHC complexes deposited
in the Structural T Cell Receptor Database [47] [Fig. 3(b);
see Methods for details]. We found that PS is moderately
correlated with these contact probabilities, with a Spearman’s
rank correlation of r = 0.47 [Fig. 3(c)]. Weights S learned by
single-factor optimization (Fig. S2A) were strongly correlated
with jointly optimized weights S (Fig. S2C), but showed a
marginally weaker correlation of r = 0.45 with contact prob-
abilities (Fig. S2B). In contrast to contact probabilities, the

033005-6



DATA-DRIVEN DISCOVERY OF BIOPHYSICAL T CELL … PRX LIFE 3, 033005 (2025)

FIG. 4. Optimized amino-acid substitution matrix differs from BLOSUM. (a) Probability of maintaining cospecificity, PA, learned from
joint optimization of substitution type-dependent and site-dependent weights (dAS). Note that cysteine was removed from the optimization due
to a lack of substitution statistics in CDR3β sequences. (b) BLOSUM62 amino-acid substitution matrix. (c) Comparison of learned PA and the
BLOSUM62 matrix.

optimal metric still heavily weights the edges of the CDR3
loop. This implies that substitutions of residues that do not
make direct contact with the peptide substantially impact
TCR specificity and should be taken into account for accurate
cospecificity prediction.

We next compared the learned amino-acid substitution
matrix PA(�) with prior expectations. Our results show that
as expected, TCR pairs differing by insertions or deletions
are much less likely to be cospecific compared to those dif-
fering by amino-acid substitutions (Fig. S1C). We further
compared log PA [Fig. 4(a)] and the widely used BLOSUM62
matrix B62 [Fig. 4(b)]. Both matrices are moderately cor-
related with a Spearman’s rank correlation coefficient of

r = 0.44 [Fig. 4(c)]. The jointly optimized amino-acid sub-
stitution matrix A was also correlated with the truncated
BLOSUM62 variant used by TCRdist (Fig. S1E), and the
matrix A obtained by single-factor optimization (Fig. S1F).
Single-factor optimization led to marginally weaker correla-
tions with BLOSUM-based scores (Fig. S1A).

What factors drive observed differences between A and
B62? To answer this question, we identified the physical
properties of amino acids that predict most closely the sub-
stitution matrices. For a given property h(n) of amino acid
n, we quantified the contribution of h to the substitution
matrices by calculating the matrix of absolute differences in
h, defined as H(n, m) = |h(n) − h(m)|. We then calculated

FIG. 5. Physical correlates of the optimized amino-acid substitution matrix highlight the contribution of shape to TCR specificity.
(a) Spearman’s rank correlation coefficient (r) of substitution matrices with matrices constructed from pairwise absolute difference in physical
properties of amino acids. Selected hydrophobic, electronic, and steric properties were compared. Hydrophobic properties: partition coefficient
in octanol/water (π1), solvation free energy (π2), and dG of transfer from organic solvent to water (π3). Electronic properties: polarity (ε1), pK
of COOH on Cα (ε2), and pK of NH2 on Cα (ε3). Steric properties: average volume of buried residue (ν1), normalized van der Waals volume
(ν2), and STERIMOL maximum width of the side chain (ν3). (b) Comparison of the correlation coefficients of both substitution matrices with
those obtained from a panel of 50 amino-acid properties (for the complete list, see the Supplemental Material). Centroids for each property
class are shown as “x.”
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FIG. 6. Learned metrics generalize to pairs of TCRs with a range of sequence similarities. AUROC of baseline method TCRdist (dTd,
black) and inferred site-specific metric (dS, green), amino-acid substitution metric (dA, blue), and jointly learned metric (dAS, red) for edit
distance 1–6 TCR pairs from different datasets. (a) MIRA test set. (b) VDJdb CDR3β validation set. (c) VDJdb CDR3α validation set. Error
bars show the standard error over resampled test batches.

Spearman’s rank correlation coefficient between the entries
of H and the entries of A and B62 for nine amino-acid
properties.

As shown in Fig. 5(a), we find that B62 is strongly depen-
dent on a number of hydrophobic and electronic properties of
amino acids. In contrast, these properties are less correlated
with the learned substitution matrix A. Instead, A correlates
most with the steric similarity of substituted amino acids. For
instance, many of the most strongly penalized substitutions
involve replacing glycine, the amino acid with the smallest
and most conformationally flexible side chain. These re-
sults are compatible with our prior findings using amino-acid
properties to determine optimal reduced alphabets [28]. The
importance of steric properties in determining the specificity
of TCRs was further confirmed by analyzing a larger panel
of 50 amino-acid properties [Fig. 5(b)] taken from Ref. [48]
(listed in Table S1).

To test whether the observed decrease in the significance
of hydrophobic properties—and the corresponding increase in
the significance of steric properties—extends to other classes
of protein-protein interactions, we analyzed thermodynamic
measurements from the SKEMPI database [49]. Specifi-
cally, we examined which physical properties of residues
(Table S1) most strongly correlate with the change in bind-
ing free energy ��G upon mutation. As shown in Fig. S6,
steric properties are most predictive for both TCR-pMHC
and antibody-antigen interactions. In contrast, for protease-
inhibitor interactions, hydrophobicity emerged as the most
significant factor. These results are compatible with the hy-
pothesis that steric effects may be particularly important
in interactions involving unstructured or flexible regions—
such as the CDR loops in TCRs and antibodies—whereas
hydrophobicity may dominate in interactions mediated by
well-structured binding pockets, such as those found in
proteases.

VII. EXTRAPOLATION OF LEARNED RULES

Having learned biophysically interpretable local rules
based on pairs of single-edit TCRβ sequences, we asked
whether these rules can be extrapolated to more dissimilar
TCR pairs and the TCRα chain. To quantify this, we tested

the ability of trained metrics to identify cospecific sequence
pairs among TCRs with an increasing number of edits on
the β chain [Figs. 6(a) and 6(b)] and the α chain [Fig. 6(c)].
This approach allowed us to evaluate the robustness and ap-
plicability of the metric across a broader range of sequence
variations, providing insights into whether the local sub-
stitution rules remain effective when sequence dissimilarity
increases.

We find that dAS and dS consistently outperform dTd across
all distances [Figs. 6(a) and 6(b)]. These metrics, which were
optimized to take into account amino-acid substitution type
(dA and dAS), retain strong predictive power for TCR pairs
with edit distances up to three to four edit steps. When ap-
plied to VDJdb, classification performance for certain metrics
even increases for sequences that differ by two or three edits
[Fig. 6(b)], as might be expected within the range of appli-
cability of an independent substitution model. This relatively
high predictability at moderate edit distances may, in part,
reflect compound effects of multiple substitutions that make it
easier to distinguish true positives from negatives. Addition-
ally, it is important to interpret this performance in light of the
labeling strategy: because we label TCR pairs from different
specificity groups as negative examples, there is a greater
chance of mislabeling for more similar TCRs—i.e., pairs that
differ by only one or two substitutions may actually be cross-
reactive, artificially decreasing the performance. At larger
edit distances, mislabeling of negative examples is no longer
significant, as cospecific sequences become very rare. The
decline in performance at even larger edit distances is likely
due to the growing influence of higher-order features—such
as multiple structurally distinct binding solutions [26]—that
are not captured by a simple independent substitution model.
These findings demonstrate the strength of basic distance met-
rics for refining notions of similarity for TCRs, while also
highlighting their limitations when comparing receptors that
are highly dissimilar.

We furthermore tested the generalization of the metrics to
the α chain using data from VDJdb. We find that the learned
amino-acid substitution matrix improves upon TCRdist scor-
ing across a range of edit distances [Fig. 6(c)]. These results
indicate that some of the local cospecificity rules are common
to both α and β chains.
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VIII. DISCUSSION

Despite rapid growth in TCR-pMHC data, only a tiny frac-
tion of the vast diversity of pairings has been measured. This
sparsity complicates the discovery of generalizable rules. In
this study, we addressed this problem by developing a pseu-
dolikelihood maximization framework for optimizing notions
of TCR sequence similarity. We demonstrate that it is possible
to use this framework to learn rules that robustly generalize to
pMHCs not used during training. Our findings highlight that,
while TCR-pMHC interactions are globally complex, local
sequence-based rules effectively predict cospecificity, offer-
ing a practical advance for deorphanizing TCRs of unknown
specificity.

Our results challenge the use of the BLOSUM62 amino-
acid substitution matrix for TCR sequence analysis. These
insights confirm the independent findings of Postovskaya et al.
[50] using alternative approaches and data, further under-
scoring the need for tailored distance matrices. Specifically,
we observed that hydrophobicity was a less significant fac-
tor than previously assumed, while steric similarity emerged
as a more meaningful—albeit moderate—predictor of sub-
stitution impact. This shift in emphasis aligns with the
classical immunological “shape space” concept [51], which
posits that shape complementarity is central to receptor-ligand
interactions. Interestingly, while hydrophobicity showed lim-
ited predictive value for two-point statistics in our study,
hydrophobic CDR3 residues are important in promoting
the development of self-reactive T cells [52], highlighting
a context-dependent role. Comparison of position-specific
terms in more complex models with structural data further
highlighted the importance of non-peptide-contact sites within
the CDR3 to binding specificity. Such a dependence on con-
text might limit the predictive performance of TCR metrics
using trimmed sequences or machine learning approaches
solely taking into account contacting residues [53], and it
is compatible with the presumptive role of all residues in
determining overall loop geometry.

The application of our optimization framework was limited
by the available sequence data. To make robust inferences
possible, we decided to simplify the problem setting and
restrict the family of metrics used for inference. We trained
on CDR3β sequences of restricted lengths and only con-
sidered sequence pairs with matching V genes. Moreover,
we only considered simple metrics with a limited number
of free parameters. We assumed, for example, a factoriza-
tion of site-dependent and substitution-dependent terms. With
increasing data availability, including more diverse data on
paired-chain TCRαβ sequences and their pMHC ligands, our
framework can be applied to learn more sophisticated distance
metrics.

Ultimately, we envisage that it will be possible to derive a
machine-learning optimized mlTCRdist metric, which can act
as a drop-in replacement for TCRdist. Additionally, we hope
that the biophysical insights, robust learning framework, and
data curation strategy introduced in this study can also be used

to overcome current bottlenecks in the supervised contrastive
training of TCR representations using deep learning architec-
tures [20,54]. Better TCR representations could significantly
enhance TCR clustering for biomarker and metaclonotype
discovery [43]. Improved understanding of the biophysical
determinants of TCR specificity could also advance rational
TCR design for therapeutic applications [55].

IX. METHODS

A. Training procedure

Parameters were optimized by gradient descent, using the
Adam algorithm as implemented in PyTorch [56]. To reduce
sampling bias, the summed loss over 15 batches with equal
representation of different pMHCs was simultaneously min-
imized, i.e., ε(d ) = ∑15

i=1 ε(d|Pi,Ui ). All distance metrics
were trained with a learning rate of 10−3, where 3000 steps
were taken to train dS, 5000 steps for dA, and 12 000 steps
for dAS.

B. Calculation of contact probabilities

To obtain TCR-peptide contact information, we utilized
179 publicly available TCR-pMHC complexes from the Struc-
tural T Cell Receptor Database [47]. The pairwise distances
between each residue in the TCR CDR3β loop and each pep-
tide residue were calculated as the minimum distance between
nonhydrogen atoms, as previously described [25]. Residues
were defined as being in contact if their pairwise distance was
less than or equal to 5 Å.
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