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Abstract
We present new results in arithmetic statistics, particularly in the statistics of number fields
and p-adic fields. For n ≤ 5, and conjecturally for n ≥ 6, the asymptotic counting of so-called
“Sn-n-ic” extensions of number fields amounts to computing the “masses” of certain sets of étale
extensions. This notion of mass was studied by Serre in his famous “Serre’s mass formula”, and
subsequently by Bhargava and others. By counting various families of étale extensions of p-adic
fields, we obtain novel refinements of Serre’s formula and apply them to prove results about
counting Sn-n-ic extensions of number fields with certain prescribed norm elements. Our results
are divided into two categories: a “pure” study of masses for wildly ramified extensions of 2-adic
fields, and a more “applied” study of Sn-n-ic extensions, where we use our techniques to deduce
results about counting number fields.

The upshot of our pure study of masses is as follows. Given a 2-adic field F , a finite group G,
and a positive integer m, we obtain a formula for the number of isomorphism classes of totally
ramified quartic field extensions L/F with Galois closure group G and discriminant valuation
m. As a corollary, we then use these counts to deduce our refinements of Serre’s mass formula.

As for the applied study of Sn-n-ic extensions, let k be a number field and let A ⊆ k× be a
finitely generated subgroup. For a positive integer n and a real number X, let Nk,n(X;A) be
the number of Sn-n-ic extensions K/k with A ⊆ NK/kK

× and Nm(disc(K/k)) ≤ X. For n ≤ 5,
and conjecturally for n ≥ 6, we express the limit

lim
X→∞

Nk,n(X;A)
X

as an Euler product, whose term at each prime p of k is the mass of a certain set of étale
algebras over the completion kp. Using, among other things, the techniques from our pure
study of masses, we evaluate almost all of these local factors explicitly and give an efficient
algorithm for computing the rest.
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Impact statement
This thesis is largely concerned with mass computations involving p-adic fields. Such compu-
tations appear often when studying the statistics of number fields. Indeed, we use our mass
formulae to prove results about the distribution of so-called “Sn-n-ic” extensions with prescribed
norm elements. Outside our own work, methods in this thesis have already found application
in upcoming work of Newton–Varma, in which the authors count certain families of S4-quartic
extensions. More generally, we expect our methods and results to be useful for a variety of
counting problems involving Sn-n-ics, especially in the quartic case.
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Part 1. Introduction

This thesis has two aims. The first is to introduce the uninitiated to the highly active field of
arithmetic statistics, and more specifically to the subdiscipline of field counting. The second is
to present original research in these areas.

Excluding this introduction, the thesis is divided into three parts: Part 2, Part 3, and Part 4.

The first of these, Part 2, contains background. It introduces the reader to arithmetic statis-
tics in general, before specialising to the statistics of number fields by introducing the Malle–
Bhargava heuristics and sketching their proof in low degree. Before stating the Malle–Bhargava
heuristics, we establish the notion of “mass” of étale algebras. We explore some well-known
properties of this mass, including the famous “Serre’s mass formula” and Bhargava’s generali-
sations thereof. We then state the Malle–Bhargava heuristics, and the major conjectures that
they motivate. Some of these conjectures have been proved for low-degree number fields, and
the final section of Part 2 is devoted to the key ideas in their proof.

The aim of Part 3 is to present several refinements of Serre’s mass formula in the case of wildly
ramified quartic extensions of p-adic fields. For a rational prime p, let F be a finite extension
of the p-adic numbers Qp, and let S be a set of degree n field extensions of F . The pre-mass1

of S is defined to be
m̃(S) =

∑
L∈S

1

#Aut(L/F )
· q−vF (dL/F ),

where dL/F is the discriminant of the extension, q is the size #FF of the residue field, and
Aut(L/F ) is the set of F -algebra automorphisms of L. Then Serre’s mass formula states that

m̃
(
{all totally ramified degree n extensions L/F}

)
=

1

qn−1
.

When p ∤ n, so that all ramification is tame, it is easy to classify such extensions and thus
prove the result. On the other hand, when p | n, there is no straightforward classification of
degree n extensions of F . Even with modern algorithms, computing all such extensions becomes
prohibitively expensive for all but the smallest values of n and [F : Qp]. The remarkable thing
about Serre’s result is that the same formula holds in the wild case as the tame. This is really
amazing; when p ∤ n, the mass is distributed among a few, well-behaved pieces. On the other
hand, when p | n, there are very many tiny, messy fragments, and yet somehow they still fit
together into the same simple shape.

Serre’s formula states the mass of all totally ramified field extensions of a given degree. One
might naturally ask similar questions about the masses of other sets of extensions. For example,
Dalawat [Dal10, Propositions 15-16] finds the mass of ramified cyclic extensions of prime degree.
Thus, in the case of prime degree, Dalawat proves a refinement of Serre’s formula. In general,
proving generalised and refined mass formulae is a popular pastime in the arithmetic statistics
community. Of particular relevance to our work, Bhargava generalises Serre’s formula in [Bha07,
Propositions 2.1-2.2], to compute the mass of certain sets of étale algebras, rather than fields
(we state his results concisely in Theorem 3.9). There is also much interest (for example [Ked07]
and [WY15]) in the masses of Galois representations, which are closely related to étale algebras,
as we will see in Section 3.2. Let F be a 2-adic field, so that totally ramified quartic extensions
of F are wildly ramified. The main result of Part 3 is to find the mass of all totally ramified

1This is the quantity Serre refers to as mass. We call it pre-mass because “mass” will refer to a closely related
but slightly different quantity.
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quartic extensions with each possible Galois closure group. Our formulae are stated fully in
Section 5.

In fact, our results are somewhat stronger than just stating masses. Rather, we compute the
number of totally ramified quartic field extensions L/F with each possible discriminant and
Galois closure group, from which it is easy to deduce the masses. In order to do this, we use
a variety of techniques, depending on the Galois closure group. For Galois closure groups S4
and A4, we adapt Serre’s original proof of his mass formula. Serre’s work allows us to reduce
our problem to the study of certain sets of Eisenstein polynomials. We establish congruence
conditions for these sets and use them to count the corresponding fields. The case V4 is already
available in the literature. Cyclic extensions are the most difficult to deal with, and we devote
significant effort to them. We adapt techniques of [CDO05], decomposing C4-extensions as
towers of quadratics, and counting the top and bottom halves separately. Finally, we count
D4-extensions by characterising them as the towers of quadratics that are neither C4 nor V4.
This allows us to relate their quantity to those we have already computed, and hence state it
explicitly.

In Part 4, we count so-called “Sn-n-ic1 extensions” with prescribed norms. Our choice of problem
is inspired by [FLN22], at the suggestion of our supervisor, Rachel Newton. In [FLN22], given a
number field k, a finite abelian group G, and a finitely generated subgroup A ⊆ k×, the authors
count Galois extensions K/k with

Gal(K/k) ∼= G and A ⊆ NK/kK
×.

We consider the same problem for degree n extensions K/k with Galois closure group Sn (these
are the aforementioned Sn-n-ic extensions). These are in some sense the furthest extensions
from being abelian, so that our work and [FLN22] constitute two extremes of a spectrum. Frei,
Loughran, and Newton prove their results by parametrising their extensions using class field
theory. Since our extensions are not abelian, these methods are inaccessible to us. Instead,
we use the famous Malle–Bhargava heuristics, which give a conjectural framework for under-
standing the distribution of Sn-n-ic extensions. Write Nk,n(X;A) for the number of Sn-n-ic
extensions K/k with Nm(disc(K/k)) ≤ X and A ⊆ NK/kK

×. Also write Nk,n(X) as shorthand
for Nk,n(X; {1}), which counts Sn-n-ics without any constraints on the norm group. Contingent
on the Malle–Bhargava heuristics, we show that

lim
X→∞

Nk,n(X;A)
X

=
1

2
· Ress=1

(
ζk(s)

)
·
∏
p∈Πk

mA,p,

where the product is over prime ideals of k, both finite and infinite, and the quantities mA,p

are certain local factors (depending implicitly on n) called “masses”. The eagle-eyed reader
might notice that this is not the first time we have used the word “mass”. Indeed, the masses
mA,p are none other than the masses of certain sets of étale algebras, in the sense of Serre’s
and Bhargava’s mass formulae. Thus, once again, we are essentially proving generalisations and
refinements of Serre’s mass formula. The flavour is different in this case, though; in Part 3,
our study is “pure”, in the sense that we ask questions primarily because they are natural and
interesting in their own right. On the other hand, Part 4 is more applied, because we are using
mass as a means to the end of counting number fields.

1Despite some aesthetic misgivings about the term “Sn-n-ic”, we find it to be concise and unambiguous, so
we have opted to use it.
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For general n, contingent on the Malle–Bhargava heuristics, we prove some qualitative results
about the proportion

lim
X→∞

Nk,n(X;A)
Nk,n(X)

of Sn-n-ics with A in their norm group. In particular, we show that (assuming the Malle–
Bhargava heuristics hold) this proportion is always positive, but can only be 100% in certain
trivial cases. In contrast to these qualitative statements, we also prove explicit, quantitative
results whenever n is an odd prime or n = 4. In the prime case, we give formulae for the local
masses mA,p, allowing us to express the density

lim
X→∞

Nk,n(X;A)
X

as an explicit Euler product. In the quartic case, we give a formula for mA,p whenever p is not
a finite prime lying over 2. For the finitely many such exceptional primes p, we give algorithms
for computing mA,p, in principle allowing one to find the same explicit Euler product as in the
prime case. As we mentioned earlier, in general the Malle–Bhargava heuristics are conjectural,
but in fact they are theorems for n ≤ 5. Since each of n = 3, 4, 5 is either an odd prime or equal
to 4, our explicit Euler product is unconditionally true in those cases.
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Part 2. Context and motivation

The aim of Part 2 is to set the scene for our work by giving exposition and historical context.
Most of this context is not essential for understanding the original results in Parts 3 and 4. The
only strict prerequisites are Section 3.1, and the statement of Theorem 3.53.

1. Arithmetic statistics is not statistics!

On multiple occasions, actual number theory graduate students have told me things like “I will
not go to the arithmetic statistics course at this summer school because I don’t like statistics”.
This is sad to hear, because arithmetic statistics has very little to do with statistics. The word
“statistics” just refers to the fact that we are counting arithmetic objects. For example, the
Prime Number Theorem1 is a result in arithmetic statistics, because we are counting prime
numbers.

1.1. A motivating example. Now that we know what arithmetic statistics is not (statistics),
we will start thinking about what it is. Consider the following question:

Question 1.1. What is the probability that a randomly selected integer is even?

It is obvious that the answer should be half. Unfortunately, there are a few obstacles to making
the question precise.

First of all, we haven’t specified the method of “random selection”, i.e. our probability distri-
bution. Naïvely, we would like a uniform distribution, but this is impossible for a countably
infinite set. Instead, we might think about truncating the integers by some large real number.
For any positive real number X, define

Z≤X = {n ∈ Z : |n| ≤ X}.

Since Z≤X is finite, we can actually define a uniform distribution on it. Write

N(X) = #Z≤X ,

and
N(X; even) = #{n ∈ Z≤X : n is even}.

Then we have
N(X) = 1 + 2bXc

and
N(X; even) = 1 + 2

⌊X
2

⌋
,

and it follows that the probability is given by

Pn∈Z≤X

(
{n is even}

)
=

1 + 2bX2 c
1 + 2bXc

.

It is easy to see that this probability converges to 1
2 , as one would expect. Since the quantities

N(X) and N(X; even) contain strictly more information than the probability alone, we might be
interested in them for their own sake. More likely, we might be interested in their asymptotics,
noting that

N(X) = X +O(1)

1We will see in Example 2.2 how the PNT fits into our framework of arithmetic statistics.
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and
N(X; even) =

1

2
·X +O(1).

It follows from these asymptotics that

lim
X→∞

Pn∈Z≤X

(
{n is even}

)
=

1

2
.

An important point is that all of the above depends on how we order the integers. For example,
we could order them as follows:

0,−2, 2,−1,−4, 4, 1,−6, 6,−3,−8, 8, 3, . . . .

We could then define

Z≤X = {The first bXc integers with respect to this other ordering},

and we would obtain
N(X) = X +O(1)

and
N(X; even) =

2

3
·X +O(1),

resulting in
lim

X→∞
Pn∈Z≤X

(
{n is even}

)
=

2

3
.

So the asymptotics of N(X) and N(X; even), and the resulting probabilities, depend meaning-
fully on how we order our objects. In the case of Z, this seems facetious, since there really is
an obvious way of ordering them. However, for other families of objects, there might be more
than one sensible ordering, and different ways might yield different results.

2. Examples of asymptotic counting problems

Many problems in arithmetic statistics concern the kind of “asymptotic counting” that we saw
in Section 1. In Section 2.1, we will make precise what we mean by asymptotic counting.
Subsequently, in Sections 2.2, 2.4, and 2.5, we give three famous examples of such problems.

2.1. Setup. Suppose that we have the following data:

(1) A countably infinite set C.
(2) A map f : C → R>0 such that for each X ∈ R>0, the set {c ∈ C : f(c) ≤ X} is finite.
(3) A property P that each element of C either satisfies or does not satisfy. We view this

property as a function P : C → {0, 1}, where P(c) = 1 if and only if c has the property.

We refer to the function f as an ordering on C. Given such an ordering, define the set

Cf≤X = {c ∈ C : f(c) ≤ X}

and the count
NC,f (X;P) = #{c ∈ Cf≤X : P(c) = 1}.

Write NC,f (X) for NC,f (X;P) in the case where P is the trivial property that is always true.
That is, we define

NC,f (X) = #Cf≤X .

In general, we will use the term asymptotic counting problem to mean finding asymptotics of
NC,f (X;P), for some choice of data (C, f,P).
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Example 2.1 (Even integers). Taking

(C, f,P) = (Z, n 7→ |n|, “n is even”),

we recover our motivating example, for which we obtained

NC,f (X) = X +O(1)

and
NC,f (X;P) = 1

2
X +O(1).

Example 2.2 (Prime Number Theorem). Taking

(C, f,P) = {Z>0, n 7→ n, “n is prime”},

the Prime Number Theorem is precisely that

NC,f (X;P) ∼ X

logX
,

as X →∞.

In the remainder of Section 2, we give some examples of prominent asymptotic counting prob-
lems. These examples are well-known, even outside specialist arithmetic statistics circles. The
most relevant example for this thesis, Malle’s conjecture, is postponed until Section 3.

2.2. Manin’s conjecture. This example involves some terminology from algebraic geometry.
If a word is unfamiliar, it can generally be replaced with “nice” or “suitable”.

Let V/k be a Fano (suitable) variety over a number field k, and let L be an adelically metrised
ample (suitable) line bundle on V . The line bundle induces a height on V , which is a function
HL : V (k)→ R≥0 with the property that H−1

L ([0, X]) is finite for all real numbers X.

Given a subset U ⊆ V (k) and a real number X, define

NU,L(X) = #{p ∈ U : HL(p) ≤ X}.

Then Manin’s conjecture states that there exists a “thin” set T ⊆ V (k) and real constants a, b,
and C, such that

NV (k)\T,L(X) ∼ CXa(logX)b−1.

This fits into our framework from before by taking

(C, f,P) = (V (k),HL, “p 6∈ T”).

Manin’s conjecture is a very active open problem in arithmetic geometry (see e.g. [J F89],
[Pey95], [Bro05]).

2.3. Goldfeld’s conjecture. Let E be an elliptic curve defined over Q. Then there are integers
A and B such that E is isomorphic to the curve defined over Q by y2 = x3 + Ax + B. For
a squarefree integer D, define the quadratic twist of E by D to be the elliptic curve ED with
equation Dy2 = x3+Ax+B. The twisting operation E 7→ ED is well-defined up to isomorphism,
and the curves E and ED are usually1 nonisomorphic over Q.

There is a famous conjecture, called Goldfeld’s conjecture ([Gol79, Page 113, Conjecture B]),
concerning the statistical behaviour of these quadratic twists. The conjecture states that, when

1This is not always the case. For example, the curve E : y2 = x3 − x is isomorphic to its twist E−1 by −1.
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ordered by the size of D, the average (analytic) rank of the quadratic twists ED is equal to 1
2 .

A natural refinement, often also called Goldfeld’s conjecture (see e.g. [BT22, Conjecture 2.4]),
is that 50% of quadratic twists have rank 0, 50% have rank 1, and 0% have any other rank.
This refined conjecture fits into our definition for an asymptotic counting problem, taking

(C, f,Pr) = ({squarefree integers D}, D 7→ |D|, “ED has rank r”),

for each nonnegative integer r. Then the conjecture is that

lim
X→∞

NC,f (X;Pr)
NC,f (X)

=

{
1
2 if r = 0 or r = 1,

0 otherwise.

2.4. Elliptic curves ordered by height. Let E be the set of isomorphism classes of elliptic
curves over Q. For each curve E ∈ E , there is a unique pair of integers (A,B) such that the
following two statements are true:

(1) The elliptic curve E is isomorphic over Q to the elliptic curve EA,B : y2 = x3 +Ax+B.
(2) For every prime p with p4 | A, we have p6 ∤ B.

For E ∈ E , define the height H(E) of E to be the quantity

H(E) = max{4|A|3, 27B2},

where the pair (A,B) is as above. For real numbers X, define

EH≤X = {E ∈ E : H(E) ≤ X}.

Given a property P of elliptic curves, write

NE,H(X;P) = #{E ∈ EH≤X : “E satisfies P”}.

Similarly to the refinement of Goldfeld’s conjecture stated above, it is also conjectured ([BS13a,
Corollary 6]) that, for nonnegative integers r, we have

(1) lim
X→∞

NE,H(X; rankE = r)

NE,H(X)
=

{
1
2 if r = 0 or r = 1,

0 otherwise.

In other words, when elliptic curves over Q are ordered by height, 50% of them have rank 0,
50% have rank 1, and 0% of them have any other rank. In fact, Bhargava and Shankar show
that Equation 1 is implied by a stronger set of conjectures, including1 [BS13a, Conjecture 4],
which states that, for all n, the average size of the n-Selmer group Seln(E) is equal to σ(n),
which is defined to be the sum of the divisors of n. That is, they conjecture that

lim
X→∞

∑
E∈EH≤X

#Seln(E)

NE,H(X)
=
∑
d|n

d,

for all n.

Bhargava and Shankar are able to prove this conjecture for n = 2, 3, 4, and 5, in [BS10, Theo-
rem 1.1], [BS15, Theorem 1.1], [BS13a, Theorem 1], and [BS13b, Theorem 1], respectively. They
use a powerful collection of techniques, referred to colloquially as “Bhargavology”, which in-
volves parametrising families of arithmetic objects by so-called “coregular representations”, and
then counting “integral points” of those representations. We will see much more Bhargavology
in Section 3, in the context of counting number fields rather than elliptic curves.

1The other conditions are that the root numbers of elliptic curves are equidistributed and that the parity
conjecture holds. See [BS13a, Corollary 6].
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2.5. Cohen–Lenstra heuristics. Write ClK for the class group of a number field K. The
Cohen–Lenstra heuristics are conjectural heuristics for understanding the distribution of the
p-part ClK [p∞] of ClK , as K ranges over either imaginary quadratic fields or abelian totally
real fields of a given degree. For non-quadratic fields, the original conjectures are known to
be false in some cases; see [BJ20] for a detailed discussion. Nevertheless, the Cohen–Lenstra
heuristics remain some of the best-known conjectures in arithmetic statistics. For simplicity,
we will restrict our attention to the imaginary quadratic case, noting that the full conjectures
are stated in [CL84, Fundamental Assumptions 8.1, Page 54]. For a real number X, write

IQ≤X
= {K ∈ IQ : |disc(K/Q)| ≤ X}.

The Cohen–Lenstra heuristics essentially say that, as K varies over IQ, the finite p-group
ClK [p∞] behaves like a “random finite abelian p-group”, in a sense we will now make precise.
Write [n] as shorthand for the set {1, . . . , n}. Define a group law on n symbols to be an associative
binary operation f : [n] × [n] → [n] with identity, and write GrpLaw(n) for the set of group
laws on n symbols. For f ∈ GrpLaw(n), write ([n], f) for the group defined by f .

Lemma 2.3. Let G be a finite group of size n. We have

#{f ∈ GrpLaw(n) : ([n], f) ∼= G} = n!

#Aut(G)
.

Proof. There is a well-defined, transitive right-action of AutSet([n]) on

{f ∈ GrpLaw(n) : ([n], f) ∼= G},

given by fσ(i, j) = σ−1f(σi, σj). For a given group law f ∈ GrpLaw(n) with ([n], f) ∼= G, this
action has

Stab(f) = AutGrp(([n], f)),

and the result follows by the Orbit-Stabiliser Theorem. □

For each positive integer i, we define a random p-group of size pi to be the group ([pi], f), where
f is selected uniformly at random from GrpLaw(pi). Let G be a random p-group of size pi,
and let G be a specific p-group of size pi. Then we have just shown that

P(G ∼= G) =
1

ci ·#Aut(G)
,

where, writing Grp(pi) for the set of isomorphism classes of groups of size pi, we have

ci =
∑

G∈Grp(pi)

1

#Aut(G)
.

It turns out (see [Woo16, Proposition 5.7]) that
∑

i ci <∞, so we can allow G to vary over the
set Grpp of p-groups of any size, by insisting that

P(#G = pi) =
ci∑
j cj

.

By the law of total probability, it follows that for any p-group G, we have

P(G = G) =
κp

#Aut(G)
,

for a constant κp depending only on p. We call a group G distributed in this way a random
p-group, with no size prescribed. From here, it is straightforward to define a “random abelian
p-group” to come from the same distribution, conditional on G being an abelian group. Letting
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G′ be a random abelian p-group, we then have

P(G′ ∼= G) =
κ′p

#Aut(G)
,

for a different constant κ′p. The Cohen–Lenstra heuristics for imaginary quadratic fields essen-
tially conjecture that, for odd p, the p-part of the class group of a “randomly selected” K ∈ IQ

is a random abelian p-group. That is, for any finite abelian p-group G, the conjecture is that

lim
X→∞

#{K ∈ IQ≤X
: ClK [p∞] ∼= G}

#IQ≤X

=
κ′p

#Aut(G)
.

This conjecture was originally made in [CL84, Fundamental Assumption 2, Page 54]. Our
formulation looks slightly different from Cohen and Lenstra’s formal statement, but resembles
more closely their informal explanation in the final paragraph of [CL84, Page 54].

The Cohen–Lenstra heuristics illustrate a common pattern in arithmetic statistics, namely that
an object’s prevalence is inversely proportional to its “complexity”, which in this case means
the number of automorphisms. We will see more examples of this idea later.

3. Background on counting rings of low rank

In Section 3, we explore the asymptotic counting problems most relevant to our work, namely
those involving number fields ordered by discriminant. We will try to understand the asymp-
totics of a certain function Nk,G(X; Σ), where k is a number field, G is a “permutation group”,
and Σ is a “collection of local conditions”. In order to define Nk,G(X; Σ) properly, we will need
more theory, so we postpone the full definition until Section 3.4. In the meantime, we will give
an imprecise definition, so that we can roughly explain the Malle–Bhargava heuristics.

Given a subgroup G ⊆ Sn, we will define Nk,G(X) to be the number of degree n extensions K/k
with Nm(disc(K/k)) ≤ X, such that the Galois closure group Gal(K̃/k) acts on the embeddings
Hom(K, k) in the same way that G acts on [n], via the inclusion G ⊆ Sn. Taking G = Sn, we
recover the count Nk,n(X) of Sn-n-ic extensions from Part 1. Moreover, we can insist that
the extensions K/k satisfy a “family of local conditions” Σ, which means that K has certain
prescribed behaviour “at each place” of the base field k. We write Nk,G(X; Σ) for the modified
count of extensions K/k satisfying the local conditions Σ. In keeping with our earlier notation,
we write Nk,n(X; Σ) for the special case where G is the whole group Sn. There is a set of
conjectures, called the “Malle–Bhargava heuristics”, which assume that the count Nk,G(X; Σ)

behaves in certain simple, intuitive ways, leading to conjectures about its asymptotics.

The Malle–Bhargava heuristics depend heavily on a notion called the mass of a collection of
étale algebras, which we discuss in Section 3.1. It turns out that there is a correspondence be-
tween étale algebras and Galois representations. We explain this correspondence in Section 3.2,
translating the masses of Section 3.1 into quantities related to Galois representations. Having
developed the prerequisite theory, in Sections 3.3 and 3.4 we present two different versions of
the Malle–Bhargava heuristics, which we call the “algebraic” and “analytic” MBH, respectively.

The algebraic MBH is quite intuitive, but it only addresses the special case G = Sn, giving
conjectural asymptotics for the count Nk,n(X; Σ). The analytic MBH is theoretically deeper,
but much more general, extending the conjectures to Nk,G(X; Σ) for any subgroup G of Sn.
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3.1. Étale algebras and their masses. In this subsection, we introduce étale algebras and the
notion of mass. We develop some theory concerning these concepts, mostly following [Bha07].

By a p-adic field, we mean a finite field extension of Qp, for some rational prime p. By a local
field, we mean a field that is either p-adic or isomorphic to R or C.

Definition 3.1 (Étale algebras). Let E be a field.

(1) An étale algebra over E is an E-algebra M that is isomorphic to a finite product M1 ×
. . .×Mr of separable field extensions Mi/E .

(2) The degree of an étale algebra over E is its dimension as an E-vector space.
(3) Write Étn/E for the set of isomorphism classes of degree n étale algebras over E .
(4) Assume that E is a number field or a local field, and letM be a finite degree étale algebra

over E , isomorphic to the product of fieldsM1× . . .×Mr. The fieldsMi correspond to
the maximal ideals of the algebraM, so they are unique up to reordering, and therefore
the following notions are well-defined. The norm map of the étale algebra is the map

NM/E :M→ E , (x1, . . . , xr) 7→
r∏

i=1

NMi/E(xi).

If E is a number field or a p-adic field, then the discriminant of M/E is

disc(M/E) =
r∏

i=1

disc(Mi/E).

For finite degree (étale or field) extensionsM/E , we will often write dM/E as shorthand for the
discriminant disc(M/E).

Definition 3.2 (Mass). Let n be an integer, let F be a local field, and let Σ ⊆ Étn/F . We
define a few related notions of “mass” of Σ as follows:

(1) The pre-mass of Σ is the quantity

m̃(Σ) =


∑

L∈Σ
1

#Aut(L/F ) · q
−vF (dL/F )

F if F is p-adic,∑
L∈Σ

1
#Aut(L/F ) if F is isomorphic to R or C,

where qF is the size of the residue field FF of F .
(2) The mass of Σ is the quantity

m(Σ) =

{
qF−1
qF
· m̃(Σ) if F is p-adic,

m̃(Σ) if F is isomorphic to R or C.

(3) For p-adic F , the generalised pre-mass of Σ is the rational function

m̃(t; Σ) =
∑
L∈Σ

1

#Aut(L/F )
· t−vF (dL/F ).

The notion of mass was first studied by Serre in the 1970s. Given a p-adic field F , he asked for
the mass (or, in our language, the pre-mass) of the set of all totally ramified field extensions
L/F of a given degree. In the tamely ramified case, it is easy to write down all such extensions
(see [PR01, Theorem 7.2]), and hence compute the mass, which turns out to be described by a
simple formula. In the wildly ramified case, there are very many more extensions, and they have
no known classification. Remarkably, Serre proved that in the wild case, the mass is given by
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exactly the same formula as in the tame case. His famous result, called “Serre’s mass formula”
is the following:

Theorem 3.3 (Serre’s mass formula). Let n be an integer, let F be a p-adic field with residue
field of size qF , and let Σ be the set of all totally ramified degree n field extensions of F . Then

m̃(Σ) =
1

qn−1
F

.

Proof. This is essentially [Ser78, Theorem 2]. □

In [Bha07], Bhargava extends Serre’s work in two directions:

(1) Bhargava defines and studies the mass of étale algebras, rather than just field extensions.
(2) He also considers different ramification behaviours, rather than just totally ramified

extensions.

In order to understand ramification behaviours of étale algebras, Bhargava defines the notion
of a “splitting symbol” as follows:

Definition 3.4 (Splitting symbols). Let n be a positive integer. A degree n splitting symbol is
a symbol (f e11 . . . f err ), where the fi and ei are positive integers with

∑
i fiei = n. We identify

splitting symbols that are permutations of each other, i.e. (1223) = (2312). The superscripts are
purely symbolic, and do not represent exponentiation, so for example (12) and (13) are different
splitting symbols. Finally, we suppress exponents with value 1, writing e.g. (2) instead of (21).
Write Splitn for the set of degree n splitting symbols.

Definition 3.5 (Splitting symbols). Let F be a local field and let L ∈ Étn/F . Then we have

L = L1 × . . .× Lr,

for field extensions Li/F with inertia degree fi and ramification index ei. We adopt the conven-
tion that the extension C/R has ramification index 2 and inertia degree 1. The splitting symbol
(L,F ) of L over F is defined to be the symbol

(L,F ) = (f e11 . . . f err ).

For a splitting symbol σ ∈ Splitn, write Étσ/F for the set of L ∈ Étn/F with (L,F ) = σ.

Example 3.6. For a p-adic field F and an integer n, the set Ét(1n)/F consists of all totally
ramified field extensions L/F of degree n, so Serre’s mass formula says precisely that

m̃(Ét(1n)/F ) =
1

qn−1
F

.

Bhargava gives two different generalisations of Serre’s mass formula. One of them gives the
mass of Étσ/F for an arbitrary splitting symbol σ, and the other involves something called a
“ramification partition”, which we will define shortly.

Definition 3.7 (Partitions). Let d be a nonnegative integer and let m be a positive integer.
The symmetric group Sm acts by permutation of coordinates on the set Zm

≥0 of nonnegative
integers. We make the following definitions:

(1) We define a partition of d into m parts to be an equivalence class

[(ai)] ∈ Zm
≥0/Sm
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such that
∑

i ai = d. This is often referred to as a partition into “at most” m parts, but
for our purposes it is more convenient to allow parts to be zero.

(2) Write Part(d,m) for the number of partitions of d into m parts.

Definition 3.8 (Invariants of splitting symbols). Let σ = (f e11 . . . f err ) be a degree n splitting
symbol.

(1) The ramification partition of σ is the partition

π(σ) := (e1 − 1, . . . , e1 − 1, e2 − 1, . . . , e2 − 1, . . . , er − 1, . . . , er − 1),

where each term ei − 1 appears fi times.
(2) The discriminant of σ is the integer

dσ =
∑
i

fi(ei − 1).

(3) The automorphism count of σ is the integer

#Aut(σ) =
(∏

i

fi

)
·#
{
τ ∈ Sr : (eτ(i), fτ(i)) = (ei, fi) for all i

}
.

Note that π(σ) is a partition of dσ into n − dσ parts. We are now ready to state Bhargava’s
generalisations of Serre’s mass formula:

Theorem 3.9 (Bhargava’s mass formulae). Let n be a positive integer and let F be a p-adic
field with residue field of size q. The following two statements are true:

(1) For each σ ∈ Splitn, we have

m̃(Étσ/F ) =
1

qdσ
· 1

#Aut(σ)
.

(2) Let d be an integer with 0 ≤ d ≤ n− 1, and let π0 be any partition of d into n− d parts.
Then

m̃
({
L ∈ Étn/F : π((L,F )) = π0

})
=

1

qd
.

Proof. These are essentially [Bha07, Propositions 2.1 and 2.2]. Bhargava states the results for
F = Qp, but the appendix of [Bha07] explains how to extend the proof to arbitrary F . □

We record the following corollary:

Corollary 3.10. Let F be a p-adic field for some rational prime p. Let n and d be integers
with 0 ≤ d ≤ n− 1. Then

m̃
({
L ∈ Étn/F : d(L,F ) = d

})
=

Part(d, n− d)
qd

.

Proof. This follows easily from Theorem 3.9(2). □

Lemma 3.11. Let E/F be a tamely ramified extension of p-adic fields, with ramification index
e and inertia degree f . Then

vF (dE/F ) = f(e− 1).

Proof. This follows easily from [NS13, Page 199, Theorem 2.6] and [NS13, Page 201, Theo-
rem 2.9]. □
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In the tamely ramified case, we can extend Bhargava’s formula for m̃(Étσ/F ) to a statement
about the generalised pre-mass, which will be useful when we consider the analytic Malle–
Bhargava heuristics.

Lemma 3.12 (Generalised Bhargava mass formula). Let F be a p-adic field, let n be a positive
integer, and let σ ∈ Splitn. Write σ = (f e11 . . . f err ), and assume that p ∤ ei for all i. The
following three statements are true:

(1) We have
m̃
(
t;Étσ/F

)
=

1

tdσ
· 1

#Aut(σ)
.

(2) We have
m̃
(
t;
{
L ∈ Étn/F : π((L,F )) = π(σ)

})
=

1

tdσ
.

(3) For each integer d with 0 ≤ d ≤ n− 1, we have

m̃
(
t;
{
L ∈ Étn/F : dL/F = d

})
=

Part(d, n− d)
td

.

Proof. Since p ∤ ei for each i, Lemma 3.11 tells us that every L ∈ Étn/F with π((L,F )) = π(σ)

has
vF (dL/F ) = dσ.

This has two consequences:

(a) We have
m̃(t;Étσ/F ) =

1

tdσ
·
∑

L∈Étσ/F

1

#Aut(L/F )

and

m̃(t; {L ∈ Étn/F : π((L,F )) = π(σ)}) = 1

tdσ
·

∑
L∈Étn/F

π((L,F ))=π(σ)

1

#Aut(L/F )
.

(b) By Theorem 3.9, we have∑
L∈Étσ/F

1

#Aut(L/F )
=

1

#Aut(σ)

and ∑
L∈Étn/F

π((L,F ))=π(σ)

1

#Aut(L/F )
= 1.

The result follows from Statements (a) and (b). □

3.2. Equivalence of étale algebras and Galois representations. The theory in this section
is well-known, and is often used without reference in the arithmetic statistics literature. It is
essentially what is known as “Grothendieck’s Galois theory” (see e.g. [Mil22, Chapter 8]). We
were unable to find a reference that uses the same language as Bhargava, so we have included
the proofs here to aid the coherence of the thesis.

Let F be a field and let F be an algebraic closure of F . Write GF for the absolute Galois group
Gal(F/F ).
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Definition 3.13. A permutation group is a triple (G, ι,X), where G is a finite group, X is
a finite set, and ι is an injective group homomorphism ι : G ↪→ Aut(X). A morphism of
permutation groups (G1, ι1, X1) → (G2, ι2, X2) is a pair (ϕ, f), where ϕ : G1 → G2 is a group
homomorphism and f : X1 → X2 is a bijection, such that the following diagram commutes:

G1 Aut(X1)

G2 Aut(X2),

ι1

ϕ f∗

ι2

where f∗ : Aut(X1)→ Aut(X2) is defined by

f∗(σ)(y) = f(σ(f−1(y)))

for all y ∈ X2. Composition of morphisms is defined by

(ϕ, f) ◦ (ψ, g) = (ϕ ◦ ψ, f ◦ g).

The degree of a permutation group (G, ι,X) is the size of X. Given a permutation group
(G, ι,X), a permutation subgroup of (G, ι,X) is a permutation group (H, ιH , X), where H is a
subgroup of G and ιH is the composition H ↪→ G

ι
↪→ Aut(X).

It is clear that permutation groups form a category, where a morphism (ϕ, f) is an isomorphism
if and only if ϕ is a group isomorphism.
Definition 3.14 (G-sets). Let G be a topological group. A G-set is a pair (ρ,X), where X
is a set and ρ : G → Aut(X) is a continuous1 group homomorphism. A morphism of G-sets
(ρ1, X1) → (ρ2, X2) is a function f : X1 → X2 such that for all g ∈ G, the following diagram
commutes:

X1 X1

X2 X2

f

ρ1(g)

f

ρ2(g)

Call a G-set (ρ,X) finite if the set X is finite.

For any choice of G, it is clear that G-sets form a category, which we denote by G-Set.
Definition 3.15. Let G be any topological group and let (ρ,X) be a finite G-set. The permu-
tation group induced by (ρ,X) is the permutation group(

im ρ, ι,X
)
,

where ι is the natural inclusion im ρ ↪→ Aut(X).
Definition 3.16 (Galois permutation groups). Let L be a degree n étale algebra over F . We
have a natural GF -set

ρ : GF → Aut(HomF (L,F )),

where σ ∈ GF acts by σ·ϕ = σ◦ϕ. The Galois permutation group of L over F is the permutation
group

Gal(L/F ) =
(
im ρ, ι,HomF (L,F )

)
,

where ι is the natural inclusion.

The definition of the Galois permutation group is quite abstract, but it is in fact closely re-
lated to the Galois groups of the component field extensions. When these field extensions are

1With respect to the discrete topology on Aut(X).
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linearly disjoint, in a sense we will make precise, the Galois permutation group admits a par-
ticularly simple description, which we will give in Lemma 3.20. In order to motivate the proof
of Lemma 3.20, we first study the special case in which L is a field:

Example 3.17 (Galois group of a field extension). Let L/F be a finite separable field extension,
not necessarily Galois. The homomorphism

ρ : GF → Aut(HomF (L,F ))

factors through
GF → Gal(L̃/F )

ι
↪→ Aut(HomF (L,F )),

where L̃ is the normal closure of L in F and, for all σ ∈ Gal(L̃/F ), we define ι(σ) to be the
postcomposition map σ◦−. It follows that im ρ ∼= Gal(L̃/F ), and the Galois permutation group
of L over F is isomorphic to (

Gal(L̃/F ), ι,HomF (L,F )
)
.

In other words, the Galois permutation group Gal(L/F ) is the group Gal(L̃/F ) together with
its natural action on the embeddings of L. Thus, our étale algebra notion of Galois permutation
groups strictly generalises the traditional notion of Galois groups of finite Galois field extensions.

Lemma 3.18. Let F be a field and let L1, . . . , Lr be field extensions of F , and let L = L1 ×
. . .× Lr. Let M be another field extension of F . There is a natural bijection

f :
r⊔

i=1

HomF (Li,M)→ HomF (L,M),

where for each ϕ ∈ HomF (Li,M), we have

f(ϕ)(x1, . . . , xr) = ϕ(xi).

Proof. It is easy to see that the map f is well-defined and injective, so we only need to show
surjectivity. Let ψ ∈ HomF (L,M). For each i, write ei for the element

(0, . . . , 0, 1, 0, . . . , 0) ∈ L,

where the 1 is in the ith entry, and define the map ϕi : Li →M by

ϕi(λi) = ψ(λiei).

It is easy to see that

ψ(x1, . . . , xr) =
r∑

i=1

ϕ(xi),

so there is some i such that ϕi 6= 0. There exists an element λi ∈ Li with ϕi(λi) 6= 0. For all
j 6= i and all λj ∈ Lj , we have

ϕi(λi)ϕj(λj) = ψ(λiλjeiej) = ψ(0) = 0,

so ϕj = 0 for all j 6= i. Since ψ is an F -algebra homomorphism, it is easy to see that ϕi is too,
and hence that ψ = f(ϕi), as required. □

In the case where the component field extensions of an étale algebra are linearly disjoint, the
Galois permutation group has a particularly nice description in terms of the Galois groups of
those field extensions. We isolate this description in Lemma 3.20, whose proof is a natural
extension of Example 3.17.
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Definition 3.19. Let F be a field and let L1, L2, . . . , Lr be finite-degree field extensions of F .
For each i, let fi(X) ∈ F [X] be a polynomial such that

Li
∼=

F [X]

(fi(X))
.

We say that the extensions L1, . . . , Lr are mutually linearly disjoint if, for each i, the splitting
fields of fi and

∏
j ̸=i fj over F are linearly disjoint.

Note that in the case r = 2, extensions L1 and L2 are mutually linearly disjoint if and only if
they are linearly disjoint.

Lemma 3.20. Let F be a field with algebraic closure F , and let L1, . . . , Lr be mutually linearly
disjoint finite field extensions of F . Let m1, . . . ,mr be positive integers, and let L be the étale
algebra

L =

r∏
i=1

Lmi
i

over F . For each i, let L̃i ⊆ F be a normal closure of Li over F . Then the Galois permutation
group of L/F is isomorphic to the permutation group( r∏

i=1

Gal(L̃i/F ), ι,
r⊔

i=1

mi⊔
j=1

HomF (Li, F )
)
,

where ι is the natural inclusion

ι :

r∏
i=1

Gal(L̃i/F )→ Aut
( r⊔

i=1

mi⊔
j=1

HomF (Li, F )
)
,

corresponding to the postcomposition action of Gal(L̃i/F ) on each copy of HomF (Li, F ).

Proof. By Lemma 3.18, there is a natural bijection

f :
r⊔

i=1

mi⊔
j=1

HomF (Li, F )→ HomF (L,F ).

Since each L̃i is a subfield of F . We have a commutative diagram,

GF Aut(HomF (L,F ))

∏r
i=1Gal(L̃i/F ) Aut(

⊔
i

⊔
j HomF (Li, F ))

f∗

where the horizontal maps come from the natural postcomposition actions, the map f∗ is the
same as in Definition 3.13, and the left-hand vertical map is the restriction map. We claim that
the left-hand vertical map is surjective. This is clear in the case r = 2, and for r ≥ 2 it follows
by induction on r. The result then follows from commutativity of the diagram and surjectivity
of the left-hand vertical map. □

Lemma 3.21. Let (G, ρ,X) be a permutation group, and let n = #X. There exists a subgroup
H ⊆ Sn and an isomorphism of permutation groups

(G, ρ,X) ∼= (H, ι, [n]),

where ι is the inclusion H ↪→ Sn. Moreover, if H ′ is another such subgroup of Sn, then there is
an element σ ∈ Sn such that H ′ = σHσ−1.
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Proof. Label the elements of X by {x1, . . . , xn}. Define the bijection f : [n]→ X by f(i) = xi.
The isomorphism f∗ : Sn → Aut(X) from Definition 3.13 simplifies to

Sn
f∗→ Aut(X), σ 7→ (xi 7→ xσi).

Let H be the image of the composition

G
ρ
↪→ Aut(X)

f−1
∗→ Sn.

Then we have a commutative diagram

G Aut(X)

H Sn,

ρ

f−1
∗ ◦ρ f−1

∗

ι

which tells us precisely that the permutation group (H, ι, [n]) is isomorphic to (G, ρ,X). Now
suppose that H ′ ⊆ Sn is another subgroup with inclusion ι′ : H ′ ↪→ Sn. The definition of
morphisms of permutation groups tells us that

(H ′, ι′, [n]) ∼= (H, ι, [n])

if and only if H ′ = σHσ−1 for some σ ∈ Sn. □

In light of Lemma 3.21, we can specify a permutation group up to isomorphism by giving a
subgroup of Sn. Given such a subgroup G ⊆ Sn, we will often just write G to refer to the
permutation group (G, ι, [n]), leaving the embedding of G into Sn implicit. As illustrated by
the following example, this embedding really matters, so it is important to understand that
writing G by itself is an abuse of notation. We will sometimes also write G ⊆ Sn as abuse of
notation for the same permutation group, (G, ι, [n]).

Example 3.22 (Choice of embedding matters). Let G1 and G2 be the permutation groups

G1 = (〈(12)(34), (13)(24)〉, ι1, [4])

and
G2 = (〈(12), (34)〉, ι2, [4]),

where ι1 and ι2 are the natural inclusions. In each case, the underlying group is isomorphic to
V4, but the embeddings into S4 give nonisomorphic permutation groups. A quartic étale algebra
always satisfies the hypotheses of Lemma 3.20, so we obtain the following two observations:

(1) An étale algebra has Galois permutation group G1 if and only if it is a Galois field
extension with Galois group V4.

(2) An étale algebra has Galois permutation group G2 if and only if it is a product of two
nonisomorphic quadratic field extensions.

Lemma 3.23. Let F be a field with algebraic closure F , and let GF be the absolute Galois
group GF = Gal(F/F ). The following three statements are true:

(1) There is a natural bijection

(ρ : GF → Aut(X)) 7→ Lρ

between isomorphism classes of GF -sets of size n and isomorphism classes of degree n
étale algebras over F .

(2) Given a GF -set ρ : GF → Aut(X) of size n and associated étale algebra Lρ, the GF -set
HomF (Lρ, F ) is isomorphic to (ρ,X).
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(3) Given a GF -set ρ : GF → Aut(X) of size n, the Galois permutation group of the étale
algebra Lρ is isomorphic to the permutation group induced by ρ.

Proof. Let ρ : GF → Aut(X) be a continuous homomorphism, where X is a set of size n. Let
X1, . . . , Xr be the orbits of the corresponding action. For each i, choose some element xi ∈ Xi,
let Hi = StabGF

(xi), and set Li = F
Hi . The subextensions of F/F isomorphic to Li correspond

to the conjugate subgroups of Hi in GF . Changing choice of xi ∈ Xi would give a conjugate
subgroup of Hi, so the field extension Li/F is well-defined up to isomorphism. Reordering
the sets Xi corresponds to reordering the Li, so we have a well-defined étale algebra up to
isomorphism, given by

Lρ = L1 × . . . Lr.

Conversely, let L = L1× . . .×Lr be a degree n étale algebra over F . For each i, the isomorphism
class of the field extension Li/F corresponds to a conjugacy class of subgroup Hi ⊆ GF , with
Li
∼= F

Hi . Given such a subgroup Hi, let Xi be the set of left cosets GF /Hi. Then there is
a natural action of GF on Xi, given by g · [f ] = [g ◦ f ]. Given a conjugate σHiσ

−1 of Hi, the
GF -sets GF /Hi and GF /σHiσ

−1 are isomorphic via the map

GF /Hi → GF /(σHiσ
−1), [f ] 7→ [f ◦ σ−1].

Thus, each GF -set Xi is well-defined up to isomorphism. Changing the ordering of the Li

corresponds to changing the ordering of the Xi, so the GF -set

X =
⊔
i

Xi

is well-defined up to isomorphism of GF -sets. It is clear that these two constructions are mutual
inverses, so we obtain the first statement. The second and third statements are immediate from
the construction. □

Definition 3.24. Let G = (G, ι,X) be a permutation group and let F be a field. A G-extension
of F is an étale algebra L/F with Galois permutation group isomorphic to G. Write (G−Ext)F
for the set of isomorphism classes of G-extensions of F .

Let G ⊆ Sn be a permutation group. We say that two homomorphisms ρ, ρ′ : GF → G are
Sn-conjugate if there is some f ∈ Sn such that fGf−1 = G and the diagram

G

GF

G

f∗

ρ

ρ′

commutes, where f∗ is the map f∗(σ) = fσf−1.

Lemma 3.25. Let G ⊆ Sn be a permutation group. There is a natural bijection between Sn-
conjugacy classes of surjective group homomorphisms ρ : GF → G and isomorphism classes of
étale algebras with Galois permutation group isomorphic to G.

Proof. This follows easily from Lemma 3.23. □

Example 3.26 (S3-cubics). Cubic étale algebras over Q correspond to isomorphism classes of
GQ-sets of size 3. Let ρ : GF → Aut(X) be such a GQ-set. Since we only care about our GQ-set
up to isomorphism, we may assume that X = {1, 2, 3}, so that we have ρ : GF → S3.
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Then the étale algebra Lρ is a field if and only if ρ is transitive, in which case

Lρ
∼= QStabGQ (1).

Since ρ is transitive, its image is either S3 or A3 = 〈(123)〉. If im ρ = A3, then StabGF
(1) = ker ρ,

so Lρ is a Galois extension with Galois group C3.

Suppose instead that im ρ = S3. Then

StabGF
(1) = ρ−1({id, (23)}),

which cuts out a non-Galois cubic extension Lρ/Q. Thus, isomorphism classes of S3-cubic exten-
sions correspond to equivalence classes of surjections ρ : GF → S3, where two such surjections
ρ1, ρ2 are equivalent if and only if there is some σ ∈ S3 such that

ρ2(f) = σρ1(f)σ
−1,

for all f ∈ GQ.

Example 3.27 (D4-quartics). By Lemma 3.23, quartic étale algebras over Q correspond to
isomorphism classes of GQ-sets of size 4. Let ρ : GQ → Aut(X) be such a GQ-set. We may
assume that X = {1, 2, 3, 4}, so that ρ : GQ → S4. The étale algebra Lρ is a field if and only if
ρ is transitive, in which case we have

Lρ
∼= QStabGQ (1).

The extension Lρ/F has Galois permutation group D4 if and only if the permutation group
induced by ρ is isomorphic to D4. Since there is only one copy of D4 in S4, this is the case
if and only if im ρ = D4. Thus, counting D4-quartics is equivalent to counting S4-equivalence
classes of surjections ρ : GQ → D4, where two such surjections ρ1, ρ2 are equivalent if and only
if there is some σ ∈ S4 such that

ρ2(f) = σρ1(f)σ
−1,

for all f ∈ GQ. Since the subgroup D4 ⊆ S4 is self-normalising, such a σ must in fact be in D4,
so we can forget about the embedding into S4 and just count surjections ρ : GQ → D4, where
we identify surjections that are related by conjugation by D4.

Definition 3.28. Let k be a number field and let v be a place of k. Fix algebraic closures k
and kv of k and kv, respectively. Also fix an embedding k ↪→ kv. There is a natural inclusion
Gkv → Gk given by restriction of maps. For any group homomorphism ρ : Gk → G, write ρv
for the composition

ρv : Gkv ↪→ Gk
ρ→ G.

Definition 3.29. Let K/k be a degree n extension of number fields, and let v be a place of k.
The completion of K over v is the étale algebra Kv over kv, given by

Kv = K ⊗k kv.

Let K/k be a degree n extension of number fields with Galois permutation group G ⊆ Sn. Let
ρ : Gk → G be the surjective homomorphism corresponding toK (defined up to Sn-conjugation).

Lemma 3.30. With notation as above, the following three étale algebras over kv are isomorphic:

(1) The completion Kv of K over v.
(2) The product

∏
w|vKw, where w ranges over the places of K lying over v.

(3) The étale algebra Lρv associated to the Gkv -set ρv : Gkv → Sn.
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Proof. The equivalence of (1) and (2) is well-known; see e.g. [NS13, Chapter II, Proposition 8.3].
We now prove the equivalence of (2) and (3). For each w | v, we have a natural morphism of
Gkv -sets given by the restriction map

Homkv(Kw, kv)→ Homk(K, k).

This map is injective, and its image consists precisely of the embeddings K ↪→ k that correspond
to the place w of K. Thus, we can glue such maps to obtain an isomorphism of Gkv -sets⊔

w|v

Homkv(Kw, kv)→ Homk(K, k).

The result follows from the natural isomorphism of Gkv -sets

Homkv

(∏
w|v

Kw, kv

)
∼=
⊔
w|v

Homkv(Kw, kv).

□

The reason we care about completions of K over places of k is that they give us the natural
language for talking about local conditions. This is made precise in the following definition:

Definition 3.31. Let k be a number field. We define the key terminology for local conditions
as follows:

(1) For a place v of k, a degree n local condition at v is a subset Σv ⊆ Étn/kv .
(2) A degree n collection of local conditions on k is a collection (Σv)v, where v ranges over

the places of k.
(3) For a place v and a local condition Σv at v, a degree n field extension K/k satisfies the

local condition Σv if the completion Kv is in Σv.

(4) A degree n extension K/k satisfies the collection (Σv)v of local conditions if it satisfies
Σv for every place v of k.

(5) We call a collection of local conditions (Σv)v acceptable if, for all but finitely many
(finite) v, the set Σv contains every L ∈ Étn/kv with v(dL/kv) ≤ 1.

(6) Let G = (G, ι,X) be a permutation group. A collection Σ of local conditions is G-
compatible if for each place v of k and each L ∈ Σv, the Galois permutation group
Gal(L/kv) is isomorphic to a sub-permutation group of G.

By Lemma 3.23, a degree n local condition at v is equivalent to a set Σv of Sn-conjugacy classes
of homomorphisms Gkv → Sn. Given a group G and a subgroup H ⊆ G, write ZG(H) for the
centraliser of H in G, defined to be

ZG(H) = {g ∈ G : gh = hg for all h ∈ H}.

Lemma 3.32. Let N/F be a (possibly infinite) Galois extension of fields with Galois group G,
and let H ≤ G be a (closed) subgroup. Let L = NH . Let X = G/H be the set of left cosets of H
in G. Let ρ be the natural group homomorphism ρ : G→ Aut(X), associated to the left-action
g · (aH) = (ga)H. There is a natural bijection

Φ : Aut(L/F )→ ZAut(X)(im ρ),

given by
ϕ 7→

(
aH 7→ aϕ̃H

)
,

where ϕ̃ is an arbitrary lift of ϕ to G = Gal(N/F ).
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Proof. Our proof is a simplified version of [AMS15, Proof of Theorem 3.6]. Our rewritten version
is considerably shorter, so we include it here.

It is easy to see that the map Φ is well-defined and injective. Let f ∈ ZAut(X)(im ρ). By
definition of the centraliser, for all g and a in G, we have

f(gaH) = gf(aH).

Let n ∈ G be an element such that f(gH) = nH. Then, taking a = 1 in the above equation,
we have

f(gH) = gnH

for all g ∈ H. It follows that for h ∈ H, we have

f(nhn−1H) = f(H),

so nhn−1 ∈ H, since f is injective. Therefore, nHn−1 = H, so n(L) = L, and therefore
n|L ∈ Aut(L/F ), and we have

Φ(n|L) = f

by definition of n. Therefore, Φ is surjective, so we are done. □

Lemma 3.33. Let (ρ,X) be a transitive GF -set of size n, and let L be the corresponding field
extension. Then

#AutGF -Set((ρ,X)) = #Aut(L/F ).

Proof. Write GL for the subgroup Gal(F/L) of GF . Up to isomorphism of GF -sets, we may
assume that X = GF /GL, with the natural left-multiplication action. Let ρ : GF → Aut(X)

be the group homomorphism associated to this action. By definition of morphisms in GF -Set,
we have

AutGF -Set((ρ,X)) = ZAut(X)(im ρ),

and the result follows from Lemma 3.32. □

3.3. The algebraic Malle–Bhargava heuristics. Throughout this thesis, we will always
write Πk to denote the set of places of a number field k. Moreover, we will write Πfin

k and Π∞
k

for the nonarchimedean and archimedean places (i.e. finite and infinite), respectively. We start
with the following elementary observation:

Lemma 3.34. Let k be a number field or a p-adic field, let k be an algebraic closure of k, and
let K/k be a finite field extension. Then

#{L ⊆ k : L ∼=k K} =
[K : k]

#Aut(K/k)
.

Proof. Let K̃ ⊆ k be a normal closure of K over k. There is a natural, transitive left-action of
Gal(K̃/k) on the set

{L ⊆ k : L ∼=k K},
where σ takes L to its set-theoretic image σ(L). It is clear that, under this action,

Stab(K) = {σ ∈ Gal(K̃/k) : σ|K ∈ Aut(K/k)}.

By Galois theory, each element of Aut(K/k) lifts to precisely [K̃ : K] elements of Aut(K̃/k), so

#Stab(K) = [K̃ : K] ·#Aut(K/k),

and the result follows by the Orbit-Stabiliser Theorem. □
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Our proof of Lemma 3.34 is very similar to our proof of Lemma 2.3. In both cases, we find
that the prevalence of an object is inversely proportional to its number of automorphisms. This
motif appears often in arithmetic statistics. In [Bha07, Page 9], Bhargava writes “It is a common
philosophy in number theory […] that isomorphism classes of algebraic objects tend to occur […]
by weights that are inversely proportional to the cardinalities of their respective automorphism
groups”. Inspired by this observation, Bhargava formulates the “Malle–Bhargava heuristics”,
which underpin much of our work. We will state the most basic version of these heuristics in
Heuristic 3.35, but first we need some notation.

Given a p-adic field F and a positive integer m, define

Étn/F,m = {L ∈ Étn/F : vF (dL/F ) = m}.

Let D be an integer, let v be a place of Q, and let L ∈ Étn/Qv
. Call L discriminant-compatible

with D if {
v(dL/Qv

) = v(D) if v is finite,
sign(dL/R) = sign(D) if v is infinite.

When v is infinite, this just means that

sign(D) = (−1)s,

where L = Rr×Cs. Bhargava imagines that number fields occur randomly, so that the number
of Sn-n-ics with a given discriminant is a random variable. Viewing the situation through this
lens, he writes En(D) for the expected number of Sn-n-ic number fields with discriminant equal
to D. For a randomly selected such number field K, and for each place v of Q, we expect the
completion K ⊗Q Qv to be a “random element” of

{L ∈ Étn/Qv
: L is discriminant-compatible with D},

where, in line with the philosophy above, the probability distribution is given by

P(K ⊗Q Qv
∼= L) ∝ 1

#Aut(L/Qv)
.

Thus, we expect En(D) to be proportional to the sum∑
L∈Étn/Qv

L discriminant-compatible
with D

1

#Aut(L/Qv)
.

Moreover, we expect the completions K⊗QQv to be independent random variables for different
places v. These assumptions lead us to the following heuristic:
Heuristic 3.35 (Algebraic Malle–Bhargava heuristics for Q). Let D be an integer. If D ≡ 0, 1

(mod 4), then

En(D) =
( ∑

L∈Étn/R
sign(D)=sign(dL/R)

1

#Aut(L/R)

)
·
∏

p∈Πfin
Q

( ∑
L∈Étn/Qp,vp(D)

1

#Aut(L/Qp)

)
,

where the product is over finite primes. If D ≡ 2, 3 (mod 4), then

En(D) = 0.

Define the functions En and En,∞ by

En(D) =
∏

p∈Πfin
Q

( ∑
L∈Étn/Qp,vp(D)

1

#Aut(L/Qp)

)
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and
En,∞(D) = m

({
L ∈ Étn/R : sign(D) = sign(dL/R)

})
,

so that Heuristic 3.35 implies that

En(D) = En,∞(D) · En(D),

whenever D ≡ 0, 1 (mod 4). Using Corollary 3.10, it is easy to see that En is multiplicative,
in the sense that En(DD

′) = En(D)En(D
′) for coprime integers D and D′. Assume that X is

some large positive real number. Let D be a randomly selected integer in (−X,X). Since

PD

(
D ≡ 0, 1 (mod 4)

)
=

1

2
,

the expectation of En(D) is given by

ED[En(D)] =
1

2
· ED[En,∞(D) · En(D)]

=
1

2
· ED

[
En,∞(D) ·

∏
p

En(p
vp(D))

]
≈ 1

2
· ED[En,∞(D)] ·

∏
p

ED

[
En(p

vp(D))
]
,

where the second equality comes form multiplicativity of En, and the approximate equalities
come from from approximate independence of the random variables vp(D) for different p. We
have

ED

[
En

(
pvp(D)

)]
=

∞∑
a=0

En(p
a) · P(vp(D) = a)

≈
∞∑
a=0

(( 1

pa
− 1

pa+1

)
·

∑
L∈Étn/Qp,a

1

#Aut(L/Qp)

)

=
p− 1

p
·
∑

L∈Étn/Qp

1

#Aut(L/Qp) · pvp(dL/Qp )

= m
(
Étn/Qp

)
.

Similarly, we have
ED

[
En,∞(D)

]
=

1

2
·m
(
Étn/R

)
.

Putting the above together, we have

ED[En(D)] =
1

4
·
∏
v∈ΠQ

m
(
Étn/Qv

)
.

The vague definition of En(D) suggests that we should have approximate equality

NQ,n(X) ≈
∑

D∈(−X,X)

En(D) ≈ 2X · ED[En(D)],

so we obtain the following conjecture:

Conjecture 3.36. For all n, we have

lim
X→∞

NQ,n(X)

X
=

1

2
·
∏
v∈ΠQ

m
(
Étn/Qv

)
.

We can actually go much further than Conjecture 3.36, extending the base field to an arbitrary
number field k and counting Sn-n-ics with local conditions. To that end, let k be a number field
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and let Σ = (Σv)v be an acceptable degree n collection of local conditions on k, in the sense of
Definition 3.31.

Let D be an ideal of Ok. Again taking the view that number fields occur randomly, define
Ek,n(D; Σ) to be the expected number of Sn-n-ic extensions K/k such that K satisfies Σ and
disc(K/k) = D. By the same reasoning we used to justify Heuristic 3.35, we obtain the following
heuristic:

Heuristic 3.37 (Algebraic Malle–Bhargava heuristics for arbitrary base number field). Let Σ

be an acceptable degree n collection of local conditions on k, and let D be an ideal of Ok. Then
Ek,n(D; Σ) is the product of the following two quantities:

(1)
1

2
·
∏

v∈Π∞
k

( ∑
L∈Σv

1

#Aut(L/kp)

)
.

(2) ∏
p∈Πfin

k

( ∑
L∈Σp

vp(dL/kp )=vp(D)

1

#Aut(L/kp)

)
.

The first quantity in Heuristic 3.37 is just
1

2
·
∏

v∈Π∞
k

m(Σv).

As before, write Ek,n(D; Σ) for the product∏
p∈Πfin

k

( ∑
L∈Σp

vp(dL/kp )=vp(D)

1

#Aut(L/kp)

)
.

Again, we may use Corollary 3.10 to see that

Ek,n(DD
′; Σ) = Ek,n(D; Σ) · Ek,n(D

′; Σ)

for any pair of coprime ideals D and D′.

Lemma 3.38. Let k be a number field, let X be a large positive real number, and let D be a
uniformly randomly selected ideal of Ok with Nm(D) ≤ X. For each nonzero ideal I of Ok, we
have

lim
X→∞

P(D ⊆ I) = 1

Nm(I)
.

Proof. Let S be the set of all ideals of Ok, let I be a nonzero ideal, and let

SI = {J ∈ S : J ⊆ I}.

For each positive real number T , define

S≤T = {J ∈ S : Nm(J) ≤ T},

and define SI,≤T = SI ∩ S≤T . It is well-known that

(2) lim
T→∞

#S≤T

T
= Ress=1 ζk(s).

There is a bijection
ϕ : S → SI , J 7→ JI,
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It is easy to see that Nm(ϕ(J)) ≤ X if and only if Nm(J) ≤ X
Nm(I) , so

(3) #SI,≤X = #S≤ X
Nm(I)

.

We have
P(D ⊆ I) =

#SI,≤X

#S≤X
,

and the result follows from Equations (2) and (3). □

Corollary 3.39. Let k be a number field, let I and J be coprime ideals of Ok, let X be a
positive real number, and let D be a uniformly randomly selected ideal of Ok with Nm(D) ≤ X.
The events {D ⊆ I} and {D ⊆ J} are “approximately independent”, in the sense that

lim
X→∞

P({D ⊆ I} ∩ {D ⊆ J})
P(D ⊆ I) · P(D ⊆ J)

= 1.

Proof. This follows easily from Lemma 3.38. □

Let k be a number field, let X be a large positive real number, and let D be a uniformly randomly
selected ideal of Ok with Nm(D) ≤ X. It follows from Corollary 3.39 that the valuations vp(D)

are approximately independent for different primes p, so Heuristic 3.37 implies

ED[Ek,n(D; Σ)] = ED

[1
2
·
∏

v∈Π∞
k

m(Σv) ·
∏

p∈Πfin
k

Ek,n(p
vp(D); Σ)

]
≈ 1

2
·
∏

v∈Π∞
k

m(Σv) ·
∏

p∈Πfin
k

ED

[
Ek,n(p

vp(D); Σ)
]
.

Moreover, for each finite prime p of k, Lemma 3.38 implies that

ED[Ek,n(p
vp(D); Σ)] =

∞∑
a=0

Ek,n(p
a; Σ) · P(vp(D) = a)

=
Nm p− 1

Nm p
·

∞∑
a=0

∑
L∈Σp

vp(dL/kp )=a

1

#Aut(L/kp) · (Nm p)a

=
Nm p− 1

Nm p
·
∑
L∈Σp

1

#Aut(L/kp) · (Nm p)vp(dL/kp )

= m(Σp).

Write Nk,n(X; Σ) for the number of Sn-n-ic extensions K/k such that Nm(disc(K/k)) ≤ X and
K satisfies Σ. Then

Nk,n(X; Σ) ∼
∑

D:Nm(D)≤X

Ek,n(D; Σ)

∼ #{D : Nm(D) ≤ X} · ED[Ek,n(D; Σ)]

∼ #{D : Nm(D) ≤ X} · 1
2
·
∏
v∈Πk

m(Σv).

Since
lim

X→∞

#{D : Nm(D) ≤ X}
X

= Ress=1 ζk(s),

we obtain the following conjecture:
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Conjecture 3.40. Let n be an integer, let k be a number field, and let Σ be an acceptable degree
n collection of local conditions on k. Then we have

lim
X→∞

Nk,n(X; Σ)

X
=

1

2
· Ress=1 ζk(s) ·

∏
v∈Πk

m(Σv).

3.4. The analytic Malle–Bhargava heuristics. The analytic MBH is a more general set
of conjectures, from which Conjecture 3.40 arises as a special case. Let G = (G, ι, [n]) be a
transitive permutation group, and let Σ be a G-compatible collection of local conditions on
k. Recall from Definition 3.24 that a G-extension of k is an étale algebra K/k whose Galois
permutation group is isomorphic to G, and that we write (G−Ext)k for the set of isomorphism
classes of such extensions. Define

Nk,G(X; Σ) =
∑

K∈(G−Ext)k
K satisfies Σ

Nm(disc(K/k))≤X

1

#Aut(K/k)
.

Remark 3.41. If the action of G on [n] is transitive, then Nk,G(X; Σ) counts field exten-
sions with Galois closure group G. Otherwise, it counts étale algebras. Thus, for arbitrary
permutation groups G, the counting function Nk,G(X; Σ) is very general.

For each ideal D of Ok, write

nk,G(D; Σ) =
∑

K∈(G−Ext)k
K satisfies Σ
disc(K/k)=D

1

#Aut(K/k)
.

Let ξk(G,Σ, s) be the Dirichlet series

ξk(G,Σ, s) =
∑
D

nk,G(D; Σ)

Nm(D)s
.

For each place v of k, define

Mv(s; Σv) =


∑

L∈Σp

1

#Aut(L/kp)·(Nm p)
vp(dL/kp

)s if v = p is finite,∑
L∈Σv

1
#Aut(L/kv)

if v is infinite.

Remark 3.42. Bhargava defines Mv(s; Σv) in the context where Σv is a set of Sn-conjugacy
classes of homomorphisms ρ : Gkv → G. By the work in Section 3.2, our definition is equivalent
to Bhargava’s.

For an as yet unspecified constant C(k,G), define

Mk(s; Σ) = C(k,G) ·
∏
v

Mv(s; Σv),

where the product is over all places of k, both finite and infinite.
Definition 3.43. We define the following two terms:

(1) A special Dirichlet series is a Dirichlet series f(s), such that the following three state-
ments are true:
• All coefficients of f(s) are nonnegative.
• There is some s0 > 0 such that f converges in the open right-half plane Re(s) > s0.
• For the same s0, the function f has a meromorphic continuation to the closed

right-half plane Re(s) ≥ s0.
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(2) Let f and g be special Dirichlet series. We say that f and g are asymptotically equivalent
if they have the same rightmost pole s0 ∈ R, and the order of the pole of f − g at s = s0
is strictly lower than the order of the pole of f or g at s = s0.

Theorem 3.44 (Tauberian Theorem). Let f(s) =
∑

n ann
−s be a special Dirichlet series with

rightmost pole of order k at s = s0, for some s0 ∈ R with s0 > 0. Then∑
n≤X

an ∼
lims→s0((s− s0)kf(s))

s0(k − 1)!
Xs0(logX)k−1.

Proof. This is [Woo16, Theorem 7.1]. □

Corollary 3.45. Let f(s) =
∑

n ann
−s and g(s) =

∑
n bnn

−s be asymptotically equivalent
special Dirichlet series. Then ∑

n≤X

an ∼
∑
n≤X

bn.

Proof. This follows easily from Theorem 3.44. □

Heuristic 3.46 (Analytic Malle–Bhargava heuristics). Given a positive integer n, a finite per-
mutation group G ⊆ Sn, and a base field k, there exists a value of C(k,G) such that, for
all suitably nice collections Σ of G-compatible local conditions, the functions Mk(s; Σ) and
ξk(G,Σ, s) are asymptotically equivalent special Dirichlet series.

Combining the analytic Malle–Bhargava heuristics with Theorem 3.44, we obtain the following
conjecture:

Conjecture 3.47 (Essentially Malle’s conjecture). Let k be a number field and let G be a finite
permutation group. There exist constants a(k,G), b(k,G), and c(k,G), with c(k,G) > 0 and
b(k,G) ≥ 1, such that

Nk,G(X) ∼ c(k,G) ·X1/a(k,G) · (logX)b(k,G)−1.

Lemma 3.48. Let k be a number field and let M(s) be a Dirichlet series with an Euler product
M(s) =

∏
pMp(s), indexed by finite primes of k. Suppose that Mp(s) > 0 for all p and for all

s with Re(s) > 0, and that there is a positive real number A such that

1 +
1

Nm(p)s
≤Mp(s) ≤ 1 +

1

Nm(p)s
+

A

Nm(p)2s
,

for all real s > 0 and all but finitely many primes p. Then M(s) has a simple pole at s = 1.

Proof. Without loss of generality, we may assume that the inequality

1 +
1

Nm(p)s
≤Mp(s) ≤ 1 +

1

Nm(p)s
+

A

Nm(p)2s
,

holds for all primes p. Since we have

ζk(s) =
∏
p

(1 + Nm(p)−s +Nm(p)−2s + . . .),

it is easy to see that

(4)
∏
p

(1−Nm(p)−2s) ≤ M(s)

ζk(s)
≤
∏
p

(1 +ANm(p)−2s).
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We have ∏
p

(1 +ANm(p)−2) ≤
∏

p∈Πfin
Q

∏
p|p

(1 +Ap−2)

≤
( ∏

p∈Πfin
Q

(1 +Ap−2)
)[k:Q]

,

and similarly ∏
p

(1−Nm(p)−2) ≥
( ∏

p∈Πfin
Q

(1− p−2)
)[k:Q]

.

We also have
log

∏
p∈Πfin

Q

(1 +Ap−2) ≤
∑

p∈Πfin
Q

A

p2
<∞

and
log

∏
p∈Πfin

Q

(1− p−2) ≥ −
∑

p∈Πfin
Q

1

p2
> −∞,

so both products in Equation (4) converge to positive values when s = 1. Therefore, the ratio
M(s)
ζk(s)

converges to a finite, nonzero value as s→ 1, and the result follows. □

Let Σ be an acceptable collection of local conditions on k. It follows from Lemma 3.12 that
there is a positive real number A such that, for all but finitely many primes p of k, we have

1 +
1

Nm(p)s
≤Mp(s; Σ) ≤ 1 +

1

Nm(p)s
+

A

Nm(p)2s
.

Lemma 3.48 tells us that Mk(s; Σ) has a simple pole at s = 1. Moreover, Part (3) of Lemma 3.12
tells us that

Ress=1Mk(s; Σ) = C(k,G) ·
∏

v∈Π∞
k

m(Σv) · lim
s→1

(
(s− 1)

∏
p∈Πfin

k

m̃(Nm(p)s; Σv)
)

= C(k,G) ·
∏
v∈Πk

m(Σv) · lim
s→1

(
(s− 1)

∏
p∈Πfin

k

1

1−Nm(p)−s

)
= C(k,G) · Ress=1 ζk(s) ·

∏
v∈Πk

m(Σv).

If Heuristic 3.46 is true, then Theorem 3.44 implies the following conjecture:

Conjecture 3.49. Let G ⊆ Sn be a permutation group and let Σ be degree n collection of
local conditions, such that Σ is both G-compatible and acceptable. There is a constant C(k,G),
determined by k and G, such that

Nk,G(X; Σ) ∼ C(k,G) · Ress=1 ζk(s) ·
∏
v∈Πk

m(Σv) ·X.

Lemma 3.50. Let G ⊆ Sn be a permutation group. For each v, let Σv be the set of étale
algebras L ∈ Étn/kv such that Gal(L/kv) is isomorphic to a sub-permutation group of G. Then
Σ is acceptable if and only if G contains a transposition.

Proof. Let p be a finite prime of k. Without loss of generality, we may assume that p does not
divide any integer e with e ≤ n, so that any degree n étale algebra over kp is tamely ramified.
By Lemma 3.11, the degree n étale algebras L/kp with v(dL/kp) ≤ 1 are precisely those with
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splitting symbols (11 . . . 11) and (121 . . . 11), whose Galois permutation groups are respectively
trivial and generated by a single transposition. □

We obtain the following consequence of Conjecture 3.49 and Lemma 3.50:

Conjecture 3.51. Let G ⊆ Sn be a permutation group containing a transposition. Then there
is a constant c(k,G), determined by k and G, with

Nk,G(X) ∼ c(k,G) ·X.

The following result, which is [BW07, Theorem 2], shows that we really need the transposition
in G:

Theorem 3.52 (Bhargava–Wood). Let S3 ⊆ S6 be the permutation group where S3 acts on
itself by left-multiplication. There is a positive constant c such that

Nk,S3⊆S6(X) ∼ cX1/3.

Recall that, given a collection Σ of local conditions on k, the special case G = (Sn ⊆ Sn) recovers
the notion of an Sn-n-ic extension, and we write Nk,n(X; Σ) as shorthand for Nk,Sn⊆Sn(X; Σ).
The following result is a special case of [BSW15, Theorem 3]:

Theorem 3.53 (Bhargava–Shankar–Wang). Let n be a positive integer with n ≤ 5. In the
case G = Sn, Conjecture 3.49 is true with C(k,G) = 1

2 . That is, for any acceptable degree n
collection of local conditions Σ, we have

Nk,n(X; Σ) ∼ 1

2
· Ress=1 ζk(s) ·

∏
v∈Πk

m(Σv) ·X.

More generally, we have the following conjecture:

Conjecture 3.54 (Bhargava). Let n be any positive integer with n ≥ 2, and let Σ be an
acceptable degree n family of local conditions. Then we have

Nk,n(X; Σ) ∼ 1

2
· Ress=1 ζk(s) ·

∏
v∈Πk

m(Σv) ·X.

4. Parametrising rings and counting integral points

According to Wikipedia, Bhargava’s 2014 Fields Medal was for “developing powerful new meth-
ods in the geometry of numbers, which he applied to count rings of small rank and to bound
the average rank of elliptic curves”. These powerful methods are known colloquially as “Bhar-
gavology”, and they form the crux of the proof of Theorem 3.53. The remainder of Section 3 is
devoted to a high-level sketch of the key ideas in the proof. Most writing about a difficult topic
will exist somewhere on the following spectrum:

{Easy to understand but missing details} ←→ {Hard but including all details}.

Of course, the right-hand limit of this spectrum exists in the original paper [BSW15], as well
as in Bhargava’s earlier work in [Bha04], [Bha05], [Bha08], and [Bha10]. On the other hand,
there are several excellent expositions more in the middle/middle-left of the spectrum, such as
[BST13, Sections 2-5 and Section 8] and [Woo16, Section 11]. The latter two references explain
the case of cubic number fields over Q.
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We endeavour to push a little further to the left of this spectrum, including fewer details and
emphasising the big picture. We do not claim that our exposition is in any way better than that
in [BST13] or [Woo16]. Both references are really excellent, and we merely hope that it is useful
to have an additional viewpoint with slightly different emphasis. We especially recommend
Pages 323-334 of [Woo16], which give an exceptionally clear explanation of the lattice point
counting techniques. In addition to the two references we have given, the reader may wish
to attempt Problems 47-80 of the 2014 Arizona Winter School, which walk through the same
special case in an exercise-driven manner.

Final appeal: This stuff is just hard! Most people will probably need to try to read Bhargava,
then try to read several different expository works, then try to read Bhargava again, and flit
about chaotically for a while before it starts to make sense.

4.1. Parametrising cubic rings: Delone–Fadeev and Davenport–Heilbronn. By an
integral binary cubic form we mean a homogeneous cubic polynomial f(x, y) ∈ Z[x, y]. Write
Sym3(Z2) for the set of integral binary cubic forms.

Definition 4.1. A cubic ring is a ring R that is a free Z-module of rank 3. The discriminant
disc(R) of a cubic ring R is the determinant of the bilinear form tR : R×R→ Z, where tR(α, β)
is the trace of the Z-linear map αβ : R→ R. The discriminant and trace and both integers.

Write CubRing(Z) for the category of cubic rings over Z. We will occasionally make reference
to the categories of cubic rings over other base rings, such as CubRing(Zp) and CubRing(Fp).
These are defined analogously, as full subcategories of Zp-algebras and Fp-algebras, respectively.

For a matrix g ∈ GL2(Z) with coefficients
(
a b

c d

)
, we define the integral binary cubic form

g · f by
(g · f)(x, y) = 1

det(g)
· f((x, y)g) = 1

ad− bc
· f(ax+ cy, bx+ dy).

The map f 7→ g · f gives a natural left-action of GL2(Z) on Sym3(Z2), since for g, h ∈ GL2(Z)
and f ∈ Sym3(Z2) we have

(g · (h · f))(x, y) = 1

det g
(h · f)((x, y)g)

=
1

det(g)
· 1

det(h)
· f((x, y)gh)

= ((gh) · f)(x, y).

Given a binary cubic form

f(x, y) = ax3 + bx2y + cxy2 + dy3,

we can define a cubic ring R(f) explicitly as the free abelian group Z⊕Zω⊕Zθ, with multipli-
cation induced by

ωθ = −ad,

ω2 = −ac− bω + aθ,

θ2 = −bd− dω + cθ.

One can check that the resulting multiplication is associative, so that R(f) is actually a ring.
For f ∈ Sym3(Z2) and g ∈ GL2(Z), it turns out that R(g ·f) ∼= R(f). Intuitively, this is because
the action of g corresponds to changing basis in R(f).
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The construction of R(f) is quite opaque. The following lemma gives a more natural interpre-
tation:

Lemma 4.2. Let f ∈ Sym3(Z2), and let ω and θ be as in the definition of R(f). Then we have

f(ω, a) = f(−d, θ) = 0.

Proof. This follows from the definition of R(f). □

In other words, Lemma 4.2 tells us that R(f) is obtained from Z by adjoining roots of f(x, y).

Theorem 4.3 (Delone–Fadeev correspondence). The following four statements are true:

(1) The map f 7→ R(f) gives a well-defined bijection

GL2(Z)\Sym3(Z2)→ CubRing(Z)/ ∼=,

between GL2(Z)-orbits on Sym3(Z2) and isomorphism classes of cubic rings over Z.
(2) We have disc(R(f)) = disc(f), for all f ∈ Sym3(Z2).
(3) The ring R(f) is an integral domain if and only if f is irreducible over Q.
(4) There is a natural group isomorphism

Aut(R(f)) ∼= StabGL2(Z)(f).

Proof. For (1), the original reference is [DF64, Section 15]. However, Delone and Fadeev only
work with cubic rings arising as orders in number fields; a reference for our slightly more general
setting is [BST13, Theorem 9]. The other statements are [BST13, Propositions 10-12]. □
Definition 4.4. A cubic ring R is maximal if it is not isomorphic to a proper subring of any
other cubic ring.

Lemma 4.5. Let R be a cubic ring. The following statements are equivalent:

(1) R is isomorphic to the ring of integers of a number field.
(2) R is maximal and an integral domain.

Proof. Let R be a cubic ring and an integral domain. Then R = R(f) for an irreducible integral
binary cubic form f(x, y). Lemma 4.2 tells us that R is isomorphic to an order in the number
field

Kf :=
Q[t]

(f(t, 1))
.

If R is a maximal cubic ring, then it is clearly a maximal order in Kf , hence the ring of integers
of Kf . Suppose conversely that R is isomorphic to the ring of integers of Kf . Let R′ be another
cubic ring such that there is an embedding R ⊆ R′. Then R′ = R(g) for an irreducible binary
cubic form g. But then we have a commutative diagram

R(f) Kf

R(g) Kg

∼=

so in fact R = R′. □

For each rational prime p, let Up be the set of f ∈ Sym3(Z2) such that the following two
statements are true:
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(1) f is not a multiple of p.
(2) For every binary cubic form ax3 + bx2y+ cxy2 + dy3 in the orbit GL2(Z) · f of f , either

p2 ∤ a or p ∤ b.

Theorem 4.6 (Davenport–Heilbronn correspondence). Let f ∈ Sym3(Z2). Then R(f) is max-
imal if and only if f ∈

⋂
p Up.

Proof. The original reference is [DH71, Proposition 4]. Our contemporary reference is [BST13,
Theorem 14]. □

Write U =
⋂

p Up, and write U irred for the set of irreducible elements of U . By Theorem 4.3,
Part 3, and Theorem 4.6, the orbits GL2(Z)\U irred correspond to rings that are both maximal
cubic rings and integral domains, hence to cubic number fields by Lemma 4.5. By Theorem 4.3,
Part 2, it follows that the number of cubic number fields K/Q with |disc(K/Q)| ≤ X is equal
to

N
(
X;U irred

)
= #

{
[x] ∈ GL2(Z)\U irred : |disc(x)| ≤ X

}
.

Remark 4.7. We actually care about S3-cubics. By Theorem 4.3, Part (4), this requires us to
specify the additional constraint that #StabGL2(Z)(x) = 1. It will turn out that this is usually
the case, so that the count N

(
X;U irred

)
is asymptotic to NQ,3(X).

One final consideration is that of local conditions. For each prime p, there is a commutative
diagram

Sym3(Z2) CubRing(Z)

Sym3(Z2
p) CubRing(Zp)

R(−)

−⊗ZZp

R(−)

where the horizontal maps are the Delone–Fadeev correspondence (which is also valid for cubic
rings over Zp). It follows that for a binary cubic form f ∈ U irred, corresponding to a field K, the
étale algebra Kp is the extension of Qp corresponding to the binary cubic form f ∈ Sym3(Z2

p).
Moreover, it follows from Krasner’s Lemma and Lemma 4.2 that1 the isomorphism class of Kp

is determined by f (mod pm) for some positive integer m. Thus, for the full picture, we will
consider counts of the form

N
(
X;Sirred

)
= #

{
[x] ∈ GL2(Z)\Sirred : |disc(x)| ≤ X

}
,

for GL2(Z)-invariant sets S ⊆ Sym3(Z2) that are defined by congruence conditions, in the
following sense:

Definition 4.8. Let p be a prime. A set Sp ⊆ Sym3(Z2) is defined by p-congruence if there is
some positive integer m such that, for all f ∈ Sym3(Z2), membership of Sp is determined by
the congruence class f (mod pm). A set S ⊆ Sym3(Z2) is defined by congruence conditions if it
is of the form

S =
⋂
p

Sp,

where for each p, the set Sp is defined by p-congruence.

1More properly, for a given cubic étale algebra L/Qp, there will be a positive integer mL such that whether
Kp

∼= L is determined by f (mod pmL). Then the isomorphism class of Kp is determined by f (mod pm), where
m = maxL{mL}, which exists since there are finitely many isomorphism classes of cubic étale algebras L/Qp.
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In the case of cubic number fields, we have defined the class of counting problems N
(
X;Sirred

)
we are interested in. As mentioned above, this cubic problem is solved in full detail in e.g.
[BST13]; rather than reproducing that work here, we will sketch some of the key ideas. One
advantage of our sketch is that it gives equally good insight into counting quartic and quintic
number fields, as is done in [BSW15]. We will still work in a simpler context than [BSW15].
In that paper, the authors parametrise low-rank rings over an arbitrary base ring (see [BSW15,
Section 3]), allowing them to count cubic, quartic, and quintic extensions of an arbitrary number
field, as in Theorem 3.53. In our treatment, we will restrict ourselves to the base field Q.

4.2. Parametrising quartics and quintics: Bhargava. Above, we saw how the Delone–
Fadeev correspondence parametrises cubic rings, and how the Davenport–Heilbronn correspon-
dence then refines the result to parametrise cubic number fields. One of Bhargava’s many
important contributions is the development of analogous parametrisations for quartic and quin-
tic rings and fields. In this shorter subsection, we will state these parametrisations and see how
they fit into a wider counting framework.

In general, we will have a reductive group G over Z and a representation V of G. Taking integer
points yields a concrete group GZ with a left-action on a concrete Z-module VZ. We will then
obtain a bijection

GZ\VZ → X ,
where X is a family of objects we want to count. So, in the case of cubic rings, we had:

• GZ = GL2(Z).
• VZ = Sym3(Z2).
• (g · f)(x, y) = 1

det(g) · f((x, y)g).
• X = CubRing(Z)/ ∼=.

In the quartic case, we parametrise slightly more structured data than just that of quartic rings.
Given a quartic ring Q, Bhargava defines ([Bha04, Definition 8]) a cubic resolvent ring of Q to
be another ring R satisfying certain technical properties, which we will not state here. Crucially,
a given quartic ring may have multiple resolvent rings up to isomorphism. It turns out that
the natural objects to parametrise are not quartic rings, but pairs (Q,R) where Q is a quartic
ring and R is a cubic resolvent ring of R. We say that two such pairs (Q,R) and (Q′, R′) are
isomorphic if Q ∼= Q′ and R ∼= R′. Then we have

X = {(Q,R) : Q quartic, R cubic resolvent of Q}/ ∼= .

Given such a pair (Q,R), Bhargava constructs a map

φ : Q/Z→ R/Z.

It turns out that, given choices of basis for the free Z-modules Q/Z ∼= Z3 and R/Z ∼= Z2, the
map φ : Z3 → Z2 is of the form

v 7→ (vTAv, vTBv),

for symmetric 3 × 3 integer matrices A and B. Write Sym2(Z3) ⊗ Z2 for the space of such
pairs of matrices. Changing basis for Q/Z and R/Z by elements (g3, g2) ∈ GL3(Z)×GL2(Z) is
equivalent to replacing (A,B) with the pair

(g3, g2) · (A,B) := (g3Ag
T
3 , g3Bg

T
3 )g

T
2 .
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To be precise, identifying (A,B) with the corresponding map f : Z3 → Z2, for each (g3, g2) ∈
GL3(Z)×GL2(Z) we have a commutative diagram

Z3 Z2

Z3 Z2

(A,B)

(−)·gT2

(g3,g2)·(A,B)

gT3 ·(−)

where the vertical maps are left- and right-multiplication by column and row vectors, respec-
tively. Setting GZ = GL3(Z) × GL2(Z) and VZ = Sym2(Z3) ⊗ Z2, it turns out that the orbits
GZ\VZ correspond bijectively to the pairs (Q,R) ∈ X .

To summarise, in the quartic case we have

• GZ = GL3(Z)×GL2(Z).
• VZ = Sym2(Z3)⊗ Z2.
• (g3, g2) · (A,B) = (g3Ag

T
3 , g3Bg

T
3 )g

T
2 .

• X = {(Q,R) : Q quartic, R cubic resolvent of Q}/ ∼=.

The quintic case is even more involved than the quartic. Bhargava unifies the cubic and quartic
parametrisations in a geometric framework. He then uses this framework to divine the correct
parametrisation for quintic rings. The construction is explained at a high level in [Bha08,
Section 1], and in detail in [Bha08, Section 2]. We will now briefly outline the key insights.
Given a rank n ring R, Bhargava constructs a certain set

XR = {x(1), . . . , x(n)} ⊆ Pn−2(C)

in projective space. He then constructs certain varieties in Pn−2 that vanish on the points of
XR. Taking a suitable intersection of such varieties, Bhargava realises XR as the vanishing set
of a collection of homogeneous polynomials in n − 1 variables. The idea is then roughly that
these polynomials will parametrise the degree n rings from which they arise.

In the case n = 3, the variety in question is cut out by a single binary cubic form, which turns out
to be none other than the form corresponding to R via Delone–Fadeev. For n = 4, the variety is
cut out by a pair of ternary quadratic forms, which is precisely the pair (A,B) ∈ Sym2(Z3)⊗Z2

from Bhargava’s parametrisation of quartic rings.

Finally, when n = 5, the variety is cut out by five quadrics in four variables. The 5-tuple
of quadrics arises as the “sub-Pfaffians” of a 5 × 5 skew-symmetric matrix of linear forms in
four variables, which is equivalent to the data of a 4-tuple (A,B,C,D) of 5× 5 skew-symmetric
matrices. Write VZ for the set ∧2(Z5)⊗Z4 of such 4-tuples. The choices made in this construction
amount to an action by GZ = GL4(Z)× SL5(Z) on VZ, given by

(g4, g5) · (A,B,C,D) = (g5Ag
T
5 , . . . , g5Dg

T
5 )g

T
4 .

Similarly to the quartic case, the orbits GZ\VZ correspond not to quintic rings, but to pairs
(Q,S), where Q is a quintic ring and S is something called a “sextic resolvent ring” of Q, defined
in [Bha08, Section 5]. So, for quintics, we have:

• GZ = GL4(Z)× SL5(Z).
• VZ = ∧2(Z5)⊗ Z4.
• (g4, g5) · (A,B,C,D) = (g5Ag

T
5 , . . . , g5Dg

T
5 )g

T
4 .

• X = {(Q,S) : Q quintic, S sextic resolvent of Q}/ ∼=.



42

We saw that in the cubic case, R(f) was an integral domain if and only if f was irreducible,
and R(f) was maximal if and only if f satisfied a certain family of congruence conditions.
Thus, cubic number fields correspond bijectively to irreducible orbits GZ\VZ satisfying the
maximality conditions. Moreover, imposing local conditions on the number field corresponds
to adding further congruence conditions on the orbits. Thus (ignoring C3-extensions, which are
rare), in order to evaluate NQ,3(X; Σ), it suffices to understand the count

(5) NGZ\VZ

(
X;Sirred

)
= #{[x] ∈ GZ\Sirred : |disc(x)| ≤ X},

where S ⊆ VZ is a certain GZ-invariant set defined by congruence conditions, and Sirred is the
set of irreducible elements of S.

In the quartic and quintic cases, Bhargava defines similar notions of discriminant, maximality,
and irreducibility, such that the relevant number fields correspond to maximal, irreducible ele-
ments of VZ, and the discriminant of the number field equals the discriminant of the correspond-
ing element. We can also define congruence conditions in a way analogous to Definition 4.8.
Once again, both maximality and local conditions on the number field amount to imposing
congruence conditions on VZ. Thus, finding NQ,n(X; Σ) for n = 4, 5 also boils down to counting
problems of essentially the same form as Equation (5). In the next subsection, we sketch the
ideas involved in performing such a count.

4.3. Counting integral orbits: Bhargava’s magic machine. Let (G,V ) be one of the
group-representation pairs above. Call an element of VZ generic if it is irreducible and cor-
responds to an order in an Sn-n-ic number field. The name refers to the fact that Sn-n-ics
are also called “generic” number fields. Given a subset S ⊆ VZ, we will always write Sgen for
the set of generic elements of S. Recall that maximality and local conditions on our number
field both correspond to congruence conditions on the orbit. Therefore, we want to be able to
count generic integer orbits in GZ\VZ satisfying congruence conditions. That is, when S is a
GZ-invariant subset of VZ defined by congruence conditions, we want the asymptotics of

(6) NGZ\VZ

(
X;Sgen

)
= #{[x] ∈ GZ\Sgen : |disc(x)| ≤ X}.

A priori, it is difficult to understand the action of GZ on VZ. Part of this difficulty comes
from the discrete nature of the lattice VZ. Therefore, we will make things more continuous by
embedding VZ in the real vector space VR. The left-action of GZ on VZ extends naturally to
a left-action of GZ on VR. We call an element v ∈ VR a lattice point if it is in VZ. We call
an orbit in GZ\VR integral if it is in the image of the embedding GZ\VZ → GZ\VR. In other
words, the integral orbits of GZ\VR are precisely those of the form GZv, for lattice points v.
So NGZ\VZ(X;Sgen) is the number of integral orbits of GZ\VR that are of the form GZv, for a
lattice point v ∈ Sgen.

Call an element v ∈ VR nondegenerate if disc(v) 6= 0. It is a fact that, for each pair (G,V ) we
are considering, for all g ∈ GR and v ∈ VR we have disc(v) = 0 if and only if disc(g · v) = 0.
Thus, nondegeneracy is preserved by the actions of GR and GZ, so it makes sense to refer to an
orbit as nondegenerate.

Lemma 4.9. Let n ∈ {3, 4, 5} and let (G,V ) be the representation associated to degree n rings.
Let r be the number of nondegenerate orbits of GR\VR. Then we have

r =

{
2 if n = 3,

3 if n = 4, 5.
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Let V (1)
R , . . . , V

(r)
R be these nondegenerate orbits. Then we may order the V

(i)
R in such a way

that, for any vi ∈ V (i)
R , the sizes of the stabilisers StabGR(vi) are given by

(
StabGR(v1), . . . , StabGR(vr)

)
=


(6, 2) if n = 3,

(24, 4, 8) if n = 4,

(120, 12, 8) if n = 5.

Proof. For n = 3 this is stated on [BST13, Pages 453 and 455]. The cases n = 4 and n = 5 are
stated on [Bha05, Page 1038] and [Bha10, Page 1567].

We also sketch an explanation of the result. Just as the integral orbits GZ\VZ parametrise
rank n rings over Z, the real orbits GR\VR parametrise rank n rings over R. Moreover, the
nondegenerate rank n rings over R are precisely the degree n real étale algebras. There are
two cubic étale algebras over R, and three quartic and quintic ones. Moreover, analogously to
Theorem 4.3(4), the elements of StabGR(v) correspond to automorphisms of étale algebras, and
it is easy to see that the degree n étale algebras over R have the stated number of automorphisms.

□

We will always write V
(1)
R , . . . , V

(r)
R for the orbits of GR\VR, ordered as in the statement of

Lemma 4.9.

Recall that we want to count the generic integral orbits in GZ\VR. If we had a fundamental
domain G for GZ\VR, counting such integral orbits would amount to counting integral points
in Sgen ∩ G. Unfortunately, we do not have a simple candidate for G. On the other hand, it is
not too difficult to write down an explicit fundamental domain for GZ\GR, where GZ acts by
left-multiplication. In the cubic case, a well-known such domain was constructed by Gauss (this
construction is stated at the beginning of [BST13, Section 5.1]). Two centuries later, Bhargava
generalised Gauss’s construction to the quartic and quintic cases (see [Bha05, Page 1038] and
[Bha10, Page 1567]). Thus, for each of n = 3, 4, 5, one can write down an explicit fundamental
domain for GZ\GR. From now on, we will write F for this fundamental domain.

Given an element v ∈ VR, there is a natural “pushforward” of F to VR, given by

F → VR, f 7→ f · v.

Write Fv for the image {f · v : f ∈ F} of this pushforward. The set Fv will behave somewhat
like a fundamental domain for GZ\VR. Firstly, we obvserve that Fv cannot literally be a
fundamental domain because GZFv ⊆ GRv, and the real orbit GRv will not in general be the
whole of VR. In fact, it will turn out that Fv is a union of fundamental domains for the action
of GZ on the orbit GRv, so we may consider these orbits separately.

Let v ∈ VR be a nondegenerate element. For g ∈ StabGR(v) and f ∈ F , define fg to be the
unique element of F with GZf

g = GZ(fg). This defines a natural right-action of StabGR(v) on
F . Let F0 be a fundamental domain for this action F/ StabGR(v).

Lemma 4.10. Let v ∈ V (i)
R for some i ∈ {1, . . . , r}, and let F0 be as above. Then the map

F0 → V
(i)
R , f 7→ f · v

is injective, and its image F0v is a fundamental domain for GZ\V
(i)
R .
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Proof. Suppose that f ·v = f ′ ·v for f, f ′ ∈ F0. Then f ′ = fg for some g ∈ StabGR(v), so f = f ′

by definition of F0. So indeed the map is injective.

To complete the proof, we need to show that for each x ∈ V (i)
R , there is exactly one element

f0 ∈ F0 such that GZf0v = GZx. Let x ∈ V (i)
R . Then there is some α ∈ GR such that x = αv.

By definition of F , there is some f ∈ F such that GZf = GZα, so GZfv = GZαv. It is easy to
see that the set

{f ′ ∈ F : GZf
′v = GZx}

is precisely the orbit
f StabGR(v) = {f

θ : θ ∈ StabGR(v)}.
By definition of F0, exactly one element of this orbit is in F0, and this element is the unique f0
we required. □

For each i ∈ {1, . . . , r}, let ni be the integer from Lemma 4.9, with

ni = #StabGR(v) for each v ∈ V (i)
R .

Write StabGR(v) = {θ1, . . . , θni}, and let Fi = F0θ for each i. Clearly, each Fi is a fundamental
domain for the right-action of StabGR(v) on F . Since this action is free, the fundamental domains
Fi are pairwise disjoint, so they constitute a partition of F into ni fundamental domains for
the right-action of StabGR(v). It follows that

Fv =

ni⋃
j=1

Fjv.

Lemma 4.10 tells us that each set Fjv ⊆ V
(i)
R is a fundamental domain for GZ\V

(i)
R , so Fv

is a union of ni such fundamental domains. Naïvely, one might hope that Fv is then an “ni-
fold fundamental domain”, in the sense that each orbit has exactly ni representatives in Fv.
Unfortunately, this is not the case, because the sets Fjv are not necessarily disjoint. That is,
for distinct j, k, we might have f ∈ Fj and f ′ ∈ Fk, such that fv = f ′v. Even though f and
f ′ map to the same point of V (i)

R , Bhargava keeps track of the difference by assigning the point
with a multiplicity. Formally, for each x ∈ Fv, we define

mult(x) = #{f ∈ F : f · v = x}.

For a subset S ⊆ Fv, we define the size of the multiset S to be

#S =
∑
x∈S

mult(x) = #{f ∈ F : f · v ∈ S}.

In the sense we discussed above, Fv would be an “ni-fold fundamental domain” for GZ\V
(i)
R

if and only if we had mult(x) = 1 for each x ∈ Fv. There is no simple way of knowing the
multiplicity of a single point of Fv. On the other hand, the combined multiplicity of the points
in an orbit has the following simple description:

Lemma 4.11. Let i ∈ {1, . . . , r} and let v ∈ V (i)
R . For each x ∈ GRv, we have

#(GZx ∩ Fv) =
ni

#StabGZ(x)
,

where the quantity on the left is a multiset cardinality.

Proof. The quantity on the left is just

#{f ∈ F : GZfv = GZx}.
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Since x is in the GR-orbit of v, there is some α ∈ GR with αv = x. Given θ ∈ StabGR(x), let
ϕ(θ) be the unique element of F with GZϕ(θ) = GZθα. Then we have a well-defined map

ϕ : StabGR(x)→ {f ∈ F : GZfv = GZx}.

It is easy to see that ϕ is surjective, and that, for all θ, θ′ ∈ StabGR(x), we have ϕ(θ) = ϕ(θ′) if
and only if StabGZ(x)θ = StabGZ(x)θ

′. Therefore, ϕ descends to a bijection

StabGZ(x)\ StabGR(x)→ {f ∈ F : GZfv = GZx},

where the left-hand side is the set of right-cosets of StabGZ(x) in StabGR(x). The result follows.
□

For any subset S ⊆ VR, write

S≤X = {x ∈ S : 0 < |disc(x)| ≤ X}.

Remark 4.12. Recall that the action of GZ preserves absolute discriminant. Therefore, if
S ⊆ VR is a GZ-invariant set, then for every X, the set S≤X is also GZ-invariant.

Let S be a GZ-invariant subset of VZ, and let X be a positive real number. Define Nstab(X;S)

to be the inverse-stabiliser-weighted count

Nstab(X;S) =
∑

GZx∈GZ\Sgen
≤X

1

#StabGZ(x)
.

Moreover, for i ∈ {1, . . . , r}, define the refinement N (i)
stab(X;S) of Nstab(X;S) by

N
(i)
stab(X;S) = Nstab

(
X;S ∩ V (i)

Z
)
.

Remark 4.13. Theorem 4.3(4) tells us that, in the cubic case n = 3, for each x ∈ VZ, the ring
R(x) corresponding to x has

#Aut(R(x)) = #StabGZ(x).

The same is true when n = 4 and n = 5, so N (i)
stab(X;S) counts fields weighted inversely to their

number of automorphisms.

Lemma 4.14. Let n ∈ {3, 4, 5}, and let (G,V ) be the representation parametrising rings of
rank n. Let v ∈ V (i)

R for some i ∈ {1, . . . , r}. Recall that we write ni for the size of the stabiliser
StabGR(v). For a GZ-invariant subset S of VZ, we have

N
(i)
stab(X;S) =

1

ni
·#(Fv ∩ Sgen

≤X),

where the cardinality on the right is the size of the multiset, i.e. counting multiplicities.

Proof. Lemma 4.11 tells us that

N
(i)
stab(X;S) =

∑
GZx∈GZ\(Sgen

≤X∩V (i)
Z )

1

ni
·#(GZx ∩ Fv)

=
1

ni
·#(Fv ∩ Sgen

≤X).

□

Lemma 4.14 tells us that we want to count lattice points in the region Fv. Given a lattice
L ⊆ VR and a subset S ⊆ VR, write VolL(S) for the volume of S, normalised so that the



46

fundamental region of L has volume 1. Our intuition for nice geometric spaces might suggest
that the number of lattice points in a region should be approximately equal to the volume of
that region, leading us to the following “Hope”:

Hope 4.15. Naïvely, one might hope that, given a lattice L ⊆ VR, we have

#(Fv ∩ Lgen
≤X) ≈ VolL((Fv)≤X).

This hope turns out to be true, but it is difficult to prove. Intuitively, we expect such results
to hold for nicely shaped regions, like spheres or cubes. The problem is that Fv is not nicely
shaped at all; it has long, thin cusps stretching to infinity. These cusps are often referred to more
evocatively as “tentacles”, and the region Fv is often visualised as in Figure 1. As illustrated in
Figure 2, these cusps are exactly the sort of thing that might cause Hope 4.15 to fail, since they
could pass through many lattice points, while having small volume because they are so thin.

Figure 1. Intuitive visual representation of the region Fv. It is somewhat easy
to count lattice points in the main body, but more difficult in the cusps.

In the cubic case, there is only one such cusp. This cusp turns out not to contain any irreducible
points, so we can ignore it and just count lattice points in the main body, as was done by
Davenport–Heilbronn. For n = 4, two of the cusps do contain irreducible points. Finally, in
the case n = 5, there are hundreds of cusps containing irreducible points. Thus, Davenport–
Heilbronn’s methods are difficult to extend to n = 4 and n = 5.

Bhargava’s famous insight is as follows. Since the quantity in Lemma 4.14 is independent
of choice of v, we can select v at random (from some suitable distribution) and then take
expectations over our random variable v. We make this precise in Lemma 4.16.

Figure 2. A narrow cusp can pass through many lattice points, while having
arbitrarily small volume, causing the volume estimate to fail.
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Figure 3. If we thicken the cusps probabilistically, the resulting “fuzzy cusps”
behave well enough that they can’t have such small volume, so the volume esti-
mates can be salvaged.

Lemma 4.16 (Bhargava’s averaging method). Given some i ∈ {1, . . . , r}, let v be a random
variable taking values in V

(i)
R . For each GZ-invariant subset S ⊆ VZ, we have

N
(i)
stab(X;S) =

1

ni
· Ev

[
#(Fv ∩ Sgen

≤X)
]
.

Proof. This is immediate from Lemma 4.14, since we are taking the expectation of a constant.
□

The averaging method replaces the thin, concrete cusp of Figure 2 with a thicker, fuzzy, prob-
abilistic cusp, as illustrated in Figure 3. In other words, we perform a probability-weighted
count of lattice points, where the weight of a lattice point x is the probability that the random
set Fv contains x. It turns out that these thickened cusps are nice enough that they do obey
Hope 4.15.

People often use the slogan “averaging over many fundamental domains” to describe Bhargava’s
averaging method. This slogan refers to the fact that, up to multiplicity, Fv is a random
fundamental(ish) domain, and we are averaging the lattice point count over all possible choices
of this random domain.

Fix a lattice L ⊆ VZ. We will now sketch the steps in actually evaluating N (i)
stab(X;L), using the

averaging method. Bhargava starts by constructing a subset G0 ⊆ GR with certain desirable
properties, and fixing an arbitrary element v0 ∈ V

(i)
R . He then defines a Haar measure µ on

GR, which induces a probability measure on G0. Through our probabilistic lens, Bhargava
uses this probability measure to take a random g ∈ G0, and then uses Fgv0 as his random
multi-fundamental domain. Bhargava uses integral instead of probabilistic notation, writing

N
(i)
stab(X;L) =

1

ni
·
∫
g∈G0

#(Fgv0 ∩ Lgen
≤X)dg∫

g∈G0
dg

.

In an imprecise sense, the numerator above is counting pairs (g, f) ∈ G0 ×F such that fgv0 ∈
Lgen
≤X . More precisely, this “counting” consists of integrating continuously over G0 and summing

discretely over F . A careful argument (see Problem 63 of the Arizona Winter School problems)
allows us to exchange the integration and summation, to obtain∫

g∈G0

#(Fgv0 ∩ Lgen
≤X)dg =

∫
f∈F

#(fG0v0 ∩ Lgen
≤X)df.
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We are now performing a different but related averaging operation: previously, we had a fixed
set F ⊆ GR, and we were pushing it forward to VR using the randomly selected element v = gv0;
now, we instead have a fixed region G0v0 ⊆ V (i)

R , and we are translating it by a randomly selected
element f ∈ F .

The idea is that, since G0 is a specially chosen region in GR, the subset (fG0v0)≤X of VR should
be nice enough that its lattice point count #((fG0v0)≤X ∩ Lgen) is approximately equal to its
volume. The crucial difference between G0 and F is that G0 is compact; it is the openness of
F that makes the cusps particularly unruly, since they stretch off to infinity. While the region
fG0v0 still has cusps, its compactness makes them bounded, hence easier to work with.

The cusps are defined by explicit conditions involving the coefficients of the parametrising
objects. For example, in the cubic case, the unique cusp is given by the subset {a = 0} of
VZ = {ax3 + bx2y + cxy2 + dy3}. In the cases n = 4 and n = 5, there are multiple cusps, but
they are handled one at a time. Therefore, we will assume without loss of generality that there
is only one cusp, allowing us to write

fG0v0 = (fG0v0)
main t (fG0v0)

cusp,

where (fG0v0)
main and (fG0v0)

cusp refer to the points of fG0v0 that are in the main body
and the cusp, respectively. Using the explicit definition of the cusp, Bhargava does one of the
following:

• Either he shows that all points in the cusp are nongeneric1, as is the case when n = 3,
since a = 0 implies that f(x, y) = y(bx2 + cxy + dy2);
• or he shows that the region (fG0v0)

cusp is nice enough that

#((fG0v0)
cusp
≤X ∩ L

gen)� VolL((fG0v0)
cusp
≤X ).

In this case, he shows that the volume VolL((fG0v0)
cusp
≤X ) is O(X1−δ), for a positive real

number δ, stated explicitly in [BSW15, Theorem 11].

On the other hand, Bhargava also shows that the region (fG0v0)
main is nice enough that

#((fG0v0)
main
≤X ∩ L) ≈ Vol((fG0v0)

main
≤X ).

He also shows that 100% of the points in the main body are generic, so we have

#((fG0v0)
main
≤X ∩ Lgen) ≈ VolL((fG0v0)

main
≤X ).

As we will discuss shortly, Bhargava also finds that VolL((fG0v0)
main
≤X ) ∼ cX for a positive

constant c, so the contributions from the cusp are negligible, meaning that

#((fG0v0)≤X ∩ Lgen) ≈ VolL((fG0v0)≤X).

Thus, we obtain

N
(i)
stab(X;L) ≈ 1

ni
·
∫
f∈F VolL((fG0v0)≤X)df

Vol(G0)
,

where the volume in the denominator is computed with respect to the Haar measure µ. The
quantity in the numerator is a double integral over F and G0, and we can again (via a similar

1In the cubic and quintic cases, he shows that these points are all reducible, whereas in the quartic he shows
that they are not “absolutely irreducible”, meaning that they are either reducible or the corresponding number
field has a nontrivial automorphism.
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careful argument to the one we used before) change the order of integration to obtain

(7) N
(i)
stab(X;L) ≈ 1

ni ·Vol(G0)

∫
g∈G0

VolL((Fgv0)≤X)dg.

For each g ∈ G0, the volume VolL((Fgv0)≤X) is by definition given by an integral over Fgv0.
Bhargava gives1 a change of variables formula relating integrals over Fgv0 to integrals over F .
This change of variables formula allows us to do two things:

• The integral may be shown to be independent of g, in the sense that

VolL((Fgv0)≤X) = VolL((Fv0)≤X),

for all g ∈ GR, so Equation (7) reduces to

N
(i)
stab(X;L) ≈ 1

ni
·VolL((Fv0)≤X),

which Lemma 4.14 tells us implies that Hope 4.15 is true. Thus, the asymptotic count we
want reduces to computing the “fundamental volume” VolL((Fv0)≤X) for an arbitrary
element v0 ∈ V (i)

R .
• Moreover, the same change of variables formula expresses this fundamental volume as

an integral over F , which can be evaluated using the explicit definition of F . Performing
this integral, one obtains

VolL((Fv0)≤X) =
c

det(L)
·X,

where det(L) is the covolume of the lattice L, normalised such that det(VZ) = 1, and c

is a constant given by2

c =


1
2ζ(2) if n = 3,
1
2ζ(2)

2ζ(3) if n = 4,
1
2ζ(2)

2ζ(3)2ζ(4)2ζ(5) if n = 5.

Thus, we have shown that

lim
X→∞

N
(i)
stab(X;L)

X
=

c

ni · det(L)
for any lattice L ⊆ VZ, where c is the constant defined above, which depends on n. Recall
that, rather than points in a lattice L, we actually want to count points in a set S defined by
congruence conditions. To that end, let S =

⋂
p Sp ⊆ VZ be a GZ-invariant set, where each Sp

is defined by congruence conditions modulo p. Let P be a positive real number. Then the finite
intersection

SP =
⋂
p<P

Sp ⊆ VZ

is defined by congruence modulo some integer m, so it is a disjoint union of finitely many
translates of the lattice mVZ. Let J be the number of such translates, and denote them by
L1, . . . , LJ , so

SP =

J⊔
j=1

Lj .

1In the cubic, quartic, and quintic cases, this formula is [BST13, Proposition 23], [Bha04, Proposition 21],
and [Bha08, Proposition 16], respectively; a more abstract, general version of the same formula is [BSW15,
Proposition 20].

2See [BST13, Section 5.4], [Bha04, Page 1055], and [Bha08, Page 1585], respectively. Each paper denotes
(Fv0)≤X by RX(v0).
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For each j, we have det(Lj) = md, where d = dimVR, so

lim
X→∞

N
(i)
stab(X;Lj)

X
=

c

ni ·md
.

For each p, write µp(Sp) for the p-adic density of the p-adic closure Sp⊗Z Zp of Sp in VZp . That
is, µp is the Haar measure on VZp , normalised so that µp(VZp) = 1. It is easy to see that

J

md
=
∏
p<P

µp(Sp),

and hence we obtain

N
(i)
stab(X;SP ) =

J∑
j=1

N
(i)
stab(X;Lj)

∼ c

ni
· J
md
·X

=
c

ni
·
∏
p<P

µp(Sp) ·X.

Bhargava, Shankar, and Wang then apply a sieving argument to show that, for well-behaved
collections of congruence conditions (Sp)p, this product formula holds in the limit, by which we
mean that

(8) N
(i)
stab

(
X;

⋂
p∈Πfin

Q

Sp

)
∼ c

ni
·
∏

p∈Πfin
Q

µp(Sp) ·X.

This formula looks very similar to the statement of Theorem 3.53. In that theorem, we have
a product of masses m(Σp) of local conditions, and in Equation (8), we have a product of p-
adic densities µp(Sp) of congruence conditions. We can relate these masses and densities using
essentially the same change of variables formula we mentioned earlier, adapted to the p-adic
setting:

Lemma 4.17. Let p be a rational prime, let n ∈ {3, 4, 5}, and let Σp ⊆ Étn/Qp
. Let S(Σp) be

the set of v ∈ VZ such that v is maximal at p and R(v)⊗Z Qp ∈ Σp. Then we have

µp(S(Σp)) = f(p) ·m(Σp),

where f(p) is the function given by

f(p) =


1− p−2 if n = 3,

(1− p−2)2(1− p−3) if n = 4,

(1− p−2)2(1− p−3)2(1− p−4)2(1− p−5) if n = 5.

Sketch proof. The case n = 3 is essentially [BST13, Lemma 32]. We restate the proof of that
result in our own words, asserting that the statements extend naturally to the cases n = 4 and
n = 5.

Write dg and dv for the Haar measures on GZp and VZp , respectively, normalised so that∫
g∈GZp

dg =

∫
v∈VZp

dv = 1.

Let L ∈ Étn/Qp
, let OL be the ring of integral elements of L, and let v0 ∈ VZp be such that

R(v0) ∼= OL. We have
S({L}) = {v ∈ VZ : R(v)⊗Z Zp

∼= OL},
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so
µp(S({L})) =

∫
v∈GZpv0

dv.

There is a natural right-action of StabGZp (v0) on GZp . Write GZp/ StabGZp (v0) as shorthand
for a fundamental domain of this action, and assume that this fundamental domain has nice
measure-theoretic properties. There is a continuous bijection

GZp/ StabGZp (v0)→ GZp · v0, g 7→ g · v0.

With respect to the Haar measures dg and dv, [BSW15, Proposition 20] tells us1 that the
Jacobian of this bijection is given by

∂ϕ

∂g
(g) = ap · |disc(ϕ(g))|p,

for some constant ap, depending on p. Since |disc(gv0)|p = |disc(v0)|p for all g ∈ GZp , we obtain

µp(S({L})) =
∫
v∈GZpv0

dv

=

∫
g∈GZp/ StabGZp

(v0)

∂ϕ

∂g
dg

= ap ·
∫
g∈GZp/ StabGZp

(v0)
|disc(g · v0)|pdg

= ap · |disc(v0)|p
∫
g∈GZp/ StabGZp

(v0)
dg

= ap ·
|disc(v0)|p

#StabGZp (v0)

= ap ·
|disc(L/Qp)|p
#Aut(L/Qp)

= ap · m̃({L}).

It follows that
µp(S(Σp)) = ap · m̃(Σp)

for any subset Σp ⊆ Étn/Qp
. By definition of S(Σp), we have

S(Étn/Qp
) = Up,

so we have
ap =

µp(Up)
m̃(Étn/Qp

)
.

By Corollary 3.10, we have

m̃(Étn/Qp
) =


(p2 + p+ 1)/p2 if n = 3,

(p3 + p2 + 2p+ 1)/p3 if n = 4,

(p4 + p3 + 2p2 + 2p+ 1)/p4 if n = 5.

1The Jacobian calculation can also be performed directly from explicit descriptions of G and V . Bhargava
does this in his earlier work, but never includes any details of the computation. The 2014 Arizona Winter
School problems give more context on the Jacobian of the analogous map GR → GR · v0 in the cubic case. In
Problems 64 and 65, they describe dg explicitly in terms of a parametrisation of GR. Subsequently, in Problem 74,
the reader is tasked with proving the change of variables formula dg = |disc(v0)|−1dv, which is essentially the
same as computing the Jacobian.
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For n = 3, 4, 5, the densities µp(Up) are stated explicitly in [BST13, Lemma 19], [Bha04, Equa-
tion (45)], and [Bha08, Equation (48)], respectively, and it follows from those references that

ap =


(p− 1)(p2 − 1)/p3 if n = 3,

(p− 1)4(p+ 1)2(p2 + p+ 1)/p8 if n = 4,

(p− 1)8(p+ 1)4(p2 + 1)2(p2 + p+ 1)2(p4 + p3 + p2 + p+ 1)/p24 if p = 5.

Finally,
µp(S(Σp)) = ap ·

p

p− 1
·m(Σp),

and the result follows. □

Lemma 4.18. Let f(p) be the function from Lemma 4.17. Then we have

∏
p∈Πfin

Q

f(p) =


1

ζ(2) if n = 3,
1

ζ(2)2ζ(3)
if n = 4,

1
ζ(2)2ζ(3)2ζ(4)2ζ(5)

if n = 5.

Proof. This is immediate from the well-known Euler product for ζ(s). □

Let Σ be an acceptable collection of local conditions on Q, and define the sets S(Σp) as in
Lemma 4.17. Let

Sfin(Σ) =
⋂

p∈Πfin
Q

S(Σp).

Then Equation (8), Lemma 4.17, and Lemma 4.18 tell us that

N
(i)
stab(X;Sfin(Σ)) ∼

c

ni
·
∏

p∈Πfin
Q

µp(S(Σp)) ·X

=
c

ni
·
∏

p∈Πfin
Q

f(p) ·
∏

p∈Πfin
Q

m(Σp) ·X

=
1

2ni

∏
p∈Πfin

Q

m(Σp) ·X.

Each real étale algebra L in Étn/R corresponds to a real orbit V (i)
R . Let

S(Σ∞) = {i ∈ {1, . . . , r} : the real étale algebra corresponding to V (i)
R is in Σ∞}

and
S(Σ) = Sfin(Σ) ∩

( ⋃
i∈S(Σ∞)

V
(i)
Z

)
,

so that the irreducible elements of S(Σ) are precisely the lattice points x ∈ VZ corresponding to
maximal orders in degree n number fields satisfying the local conditions Σ. Since Nstab(X;S(Σ))

counts generic orbits of such elements, it follows that

Nstab(X;S(Σ)) = NQ,n(X; Σ).

Since stabilisers of points in VR correspond to automorphism groups of étale algebras, each
L ∈ Σ∞ has

#Aut(L/R) = ni,
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where L corresponds to the real orbit V (i)
R , so∑

i∈S(Σ∞)

1

ni
= m(Σ∞).

Therefore, we have

NQ,n(X; Σ) = Nstab(X;S(Σ))

=
∑

i∈S(Σ∞)

N
(i)
stab(X;Sfin(Σ))

∼ 1

2

∏
v∈ΠQ

m(Σv) ·X.

This is precisely Theorem 3.53, in the special case k = Q.



54

Part 3. Counting wildly ramified quartic extensions with
prescribed discriminant and Galois closure group

5. Introduction

By a 2-adic field, we mean a finite field extension of the 2-adic numbers Q2. Recall that the
Galois closure group of a field extension L/F is the Galois group of its Galois closure. Recall
also that we write Étn/F for the set of isomorphism classes of degree n étale algebras over F ,
and Étσ/F for the set of étale algebras with a given splitting symbol σ. Moreover, for an integer
m, we add the subscript m to specialise to étale algebras with discriminant valuation m. That
is, we define

Étn/F,m = {L ∈ Étn/F : vF (dL/F ) = m}
and

Étσ/F,m = Étn/F,m ∩ Étσ/F .
In particular, Ét(1n)/F denotes the set of all totally ramified degree n field extensions of F , and
Ét(1n)/F,m is the set of such extensions with discriminant valuation m. For a p-adic field F ,
write qF for the size of its residue field. Recall that the pre-mass of a set S ⊆ Étn/F is the
quantity

m̃(S) =
∑
L∈S

1

#Aut(L/F )
· q−vF (dL/F )

F ,

for all choices of n and F . Earlier, in Theorem 3.3, we stated Serre’s mass formula, which is
probably the most famous result concerning mass. Serre’s formula states that

m̃(Ét(1n)/F ) =
1

qn−1
F

.

Given a finite group G, write ÉtG/F
n/F for the set of L ∈ Étn/F such that L/F is a field extension

with Galois closure group isomorphic to G. Define ÉtG/F
σ/F similarly, where σ is any splitting

symbol of the form (f e). When n = 4, each L ∈ Ét(14)/F has Galois closure group among
S4, A4, D4, V4, and C4. The main objective of Part 3 is to obtain, for each such group G, a
formula for the pre-mass

m̃(ÉtG/F
(14)/F ),

where F is an arbitrary 2-adic field. In order to obtain this mass formula, we actually compute
the size of the set

ÉtG/F
(14)/F,m =

{
L ∈ ÉtG/F

(14)/F : vF (dL/F ) = m
}
,

for each G and m, whenever F is a 2-adic field.

Remark 5.1. It would perhaps have been more natural to let G be a permutation group and
define ÉtG/F

n/F to be the set of all étale algebras with Galois permutation group isomorphic to G.
We have opted not to do this, because it would make our results less convenient to state.

Remark 5.2. Our discussion so far has been focused on mass formulae, but the quantities

#ÉtG/F
(14)/F,m

are natural to consider in their own right; there are finitely many such objects, so it makes
sense to ask how many. Questions of this sort were already studied by Krasner in [Kra66,
Théorème 1], where he gives a formula for the size #Ét(1n)/F,m, for each m and n. More
recently, Sinclair [Sin15] and Pauli–Sinclair [PS15] refined Krasner’s formula by enumerating
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the elements of Ét(1n)/F,m with certain prescribed ramification polygons (along with some other
invariants). In the Galois group direction, Wei and Ji [WJ07] enumerated the sets ÉtS4/F

4/F

and ÉtA4/F
4/F , without imposing conditions on discriminant. The problem we are solving can be

viewed as a combination of the flavours of [PS15] and [WJ07]; we take Pauli–Sinclair’s prescribed
discriminant valuations, but replace their invariants with the Galois closure groups of Wei–Ji.

5.1. Outline and key results. Given a 2-adic field F , write eF and fF for the absolute
ramification index and absolute inertia degree of F , respectively, so qF = 2fF . When the choice
of field F is clear, we will drop the subscript and write q for qF . In Section 6, we use a result
of Serre to relate

#
(

ÉtS4/F
(14)/F,m ∪ ÉtA4/F

(14)/F,m

)
to the density of the corresponding Eisenstein polynomials. We then find explicit congruence
conditions for these Eisenstein polynomials and use them to compute the required density.
Finally, we establish conditions for distinguishing between ÉtS4/F

(14)/F,m and ÉtA4/F
(14)/F,m, which we

use to obtain the following two results:

Theorem 5.3. Suppose that fF is even. Then ÉtS4/F
(14)/F,m is empty for all m. Moreover,

ÉtA4/F
(14)/F,m is nonempty if and only if m is an even integer with 4 ≤ m ≤ 6eF + 2. In that case,

we have

#ÉtA4/F
(14)/F,m =

{
1
3q

⌊m
3
⌋−2(q2 − 1) if 3 | m,

q⌊
m
3
⌋−1(q − 1) if 3 ∤ m.

Theorem 5.4. Suppose that fF is odd.

• The set ÉtS4/F
(14)/F,m is nonempty if and only if m ∈ 2Z \ 6Z and 4 ≤ m ≤ 6eF + 2. In

that case, we have
#ÉtS4/F

(14)/F,m = q⌊
m
3
⌋−1(q − 1).

• The set ÉtA4/F
(14)/F,m is nonempty if and only if m is a multiple of 6 and 6 ≤ m ≤ 6eF . In

that case, we have
#ÉtA4/F

(14)/F,m =
1

3
· q⌊

m
3
⌋−2(q2 − 1).

The case V4 was addressed by Tunnell in [Tun78]. We repackage his result in Section 7 as the
following theorem:

Theorem 5.5. If ÉtV4/F
(14)/F,m is nonempty, then m is an even integer with 6 ≤ m ≤ 6eF + 2.

For all such m, we have

#ÉtV4/F
(14)/F,m = 2(q − 1)q

m−4
2

(
q−⌊m

6
⌋(1 + 13|m ·

q − 2

3
)− 1m≤4eF+2 · q−⌊m−2

4
⌋
)
.

The bulk of our work goes into the C4 case, which spans Section 8. In [CDO05], Cohen, Diaz
y Diaz, and Olivier obtain asymptotic formulae for the number of C4-extensions of a number
field. We adapt their methods to compute the size of ÉtC4/F

(14)/F,m. Our formula depends on the
discriminant valuation

d(−1) = vF (dF (
√
−1)/F ),

which is an even integer by Lemma 8.16.
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Theorem 5.6. If ÉtC4/F
(14)/F,m is nonempty, then either m = 8eF + 3 or m is an even integer

with 8 ≤ m ≤ 8eF . For even m with 8 ≤ m ≤ 8eF , the number #ÉtC4/F
(14)/F,m is the sum of the

following four quantities:

(1) 18≤m≤5eF−2 · 1m≡3 (mod 5) · 2q
3m−14

10 (q − 1).
(2) 14eF+4≤m≤5eF+2 · 2q

m
2
−eF−2(q − 1).

(3) 15eF+3≤m≤8eF ·1m≡2eF (mod 3) · 2q
m+4eF

6
−1(1+1m≤8eF−3d(−1)

)(q− 1−1m=8eF−3d(−1)+6).
(4) 110≤m≤5eF · 2(q − 1)(q⌊

3m
10

⌋−1 − qmax{⌈m+2
4

⌉,m
2
−eF }−2).

We also have

#ÉtC4/F
(14)/F,8eF+3 =


4q2eF if −1 ∈ F×2,

2q2eF if F (
√
−1)/F is quadratic and totally ramified,

0 if F (
√
−1)/F is quadratic and unramified.

Finally, in Section 9, we compute the number of towers of two quadratic extensions L/E/F with
vF (dL/F ) = m and express this number in terms of #ÉtC4/F

(14)/F,m, #ÉtV4/F
(14)/F,m, and #ÉtD4/F

(14)/F,m.
Rearranging, we obtain:

Theorem 5.7. If ÉtD4/F
(14)/F,m is nonempty, then one of the following holds:

(1) m is an even integer with 6 ≤ m ≤ 8eF + 2.
(2) m ≡ 1 (mod 4) and 4eF + 5 ≤ m ≤ 8eF + 1.
(3) m = 8eF + 3.

For even m with 6 ≤ m ≤ 8eF + 2, we have

#ÉtD4/F
(14)/F,m = 2(q − 1)q

m
2
−2(1m≥4eF+4 · q−eF + 1m≤8eF · (q

min{0,eF+1−⌈m
4
⌉} − q−min{⌊m−2

4
⌋,eF }))

− 1

2
#ÉtC4/F

(14)/F,m −
3

2
#ÉtV4/F

(14)/F,m.

For m ≡ 1 (mod 4) with 4eF + 5 ≤ m ≤ 8eF + 1, we have

#ÉtD4/F
(14)/F,m = 2(q − 1)qeF+m−1

4
−1 − 1

2
#ÉtC4/F

(14)/F,m −
3

2
#ÉtV4/F

(14)/F,m.

If m = 8eF + 3, then
#ÉtD4/F

(14)/F,m = 2q3eF − 1

2
#ÉtC4/F

(14)/F,8eF+3.

Theorems 5.5 and 5.6 make these expressions completely explicit.

5.2. Application: refinements of Serre’s mass formula. As we discussed in Part 2, masses
play a vital role in the Malle–Bhargava heuristics, which are our best tool for understanding
Sn-n-ic extensions. We use the results of Section 5.1 to find explicit formulae for m̃(ÉtG/F

(14)/F )

for each G, which we state in the current subsection. The proofs are deferred to later sections.

Our results find genuine application in upcoming work of Newton–Varma, which uses a slightly
modified version of Corollary 5.11. More generally, we expect our refined mass formulae to be
useful for obtaining explicit masses when counting S4-quartic extensions with local conditions.
In our own work in Part 4, we will apply the theory to our concrete number field counting
problem.
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Corollary 5.8. If fF is even, then

m̃
(
ÉtS4/F

(14)/F

)
= 0,

and
m̃
(
ÉtA4/F

(14)/F

)
=

1

3
(q − 1) · q

4eF − 1

q4 − 1
· q−4eF−3

(
3q3 + q2 + q + 3

)
.

Corollary 5.9. Suppose that fF is odd. Then

m̃
(
ÉtS4/F

(14)/F

)
=

q3 + 1

q3 + q2 + q + 1
· (q−3 − q−4eF−3),

and
m̃
(
ÉtA4/F

(14)/F

)
=

1

3
· 1

q2 + 1
· (q−2 − q−4eF−2).

Corollary 5.10. We have

m̃
(
ÉtV4/F

(14)/F

)
=
q − 1

6
·
(
q−4eF−3 · q

4eF − 1

q4 − 1
· (3q3 + q2 + q + 3)− 3q−3eF−3 · q

3eF − 1

q3 − 1
· (q2 + 1)

)
.

Corollary 5.11. The mass m̃
(
ÉtC4/F

(14)/F

)
is the sum of the following nine quantities:

(1)
1

2
· (q − 1)(1− q−7⌊ eF

2
⌋)

q7 − 1
.

(2)
1

2
· q−3eF−3(1− q−⌊ eF

2
⌋).

(3)

1d(−1)<eF ·
(q − 1)(q−5⌊ eF

2
⌋−eF−1 − q

5
2
d(−1)−6eF−1)

q5 − 1
.

(4)
1

2
· 1d(−1)≥2 · q−6eF+ 5

2
d(−1)−6(q − 2).

(5)
1

2
· 1d(−1)≥4 ·

(q − 1)(q
5
2
d(−1)−6eF−6 − q−6eF−1)

q5 − 1
.

(6)

1eF≥2 ·
1

2
(q − 1)q−7⌊ eF

2
⌋−1
(q(q7⌊ eF

2
⌋−7 − 1)(q6 + q4 + q3 + q + 1)

q7 − 1
+ 1 + 12∤eF (q

−2 + q−3)
)
.

(7)

−1eF≥2 ·
1

2
· (q − 1)(q + 1)(q−7 − q−3eF−1)

q3 − 1
.

(8)
−1

2
q−3eF−2(1− q−⌊ eF

2
⌋).

(9) 
q−6eF−3 if −1 ∈ F×2,
1
2q

−6eF−3 if F (
√
−1)/F is quadratic and totally ramified,

0 otherwise.
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Corollary 5.12. We have the following formula for m̃
(
ÉtD4/F

(14)/F

)
, which is made completely

explicit by Corollaries 5.10 and 5.11.

m̃
(
ÉtD4/F

(14)/F

)
=

1

q2 + q + 1
· (q−3eF−3 + q−3eF−1 + q−2)− m̃

(
ÉtC4/F

(14)/F

)
− 3m̃

(
ÉtV4/F

(14)/F

)
.

5.3. Correctness of results. Using MAGMA [BCP97] and the LMFDB [LMFDB], we have
verified Theorems 5.3-5.7 and Corollaries 5.8-5.12 for all extensions F/Q2 of degree at most 3.
Whenever eF ≤ 10 and fF ≤ 10, we have also checked numerically the deduction of Corollar-
ies 5.8-5.12 from Theorems 5.3-5.7. Our code is available at https://github.com/Sebastian
-Monnet/Mass-Formula-Checks.

In Table 1, we state the size of ExtG/Q2

(14)/Q2,m
for each m and G. The values in Table 1 are taken

from the LMFDB, but it is easy to check that they agree with our formulae in Theorems 5.3-
5.7. We find the case with G = C4 and m = 8 particularly interesting, since it illustrates the
dependence of the count #ExtC4/F

(14)/F,m
on the extension F (

√
−1)/F . Since q = 2 and eF = 1,

Theorem 5.6 tells us that

#ExtC4/Q2

(14)/Q2,8
= 4(1 + 1d(−1)=0)(1− 1d(−1)=2).

Thus, even though we already knew that #ExtC4/Q2

(14)/Q2,8
= 0, our formula tells us why; it is

precisely because the extension Q2(
√
−1)/Q2 has discriminant exponent 2.

m
G

S4 A4 D4 V4 C4

4 1 0 0 0 0
6 0 1 2 0 0
8 2 0 2 4 0
9 0 0 8 0 0
10 0 0 8 0 0
11 0 0 12 0 8

Table 1. Number of totally ramified quartic extensions of Q2 by discriminant
exponent m and Galois group G.

6. The cases G = S4 and G = A4

Fix a 2-adic field F . An Eisenstein polynomial over F is a monic polynomial

Xn + an−1X
n−1 + . . .+ a0 ∈ F [X],

such that vF (ai) ≥ 1 for all i and vF (a0) = 1. Write P for the set of quartic Eisenstein
polynomials in F [X]. For f ∈ P , let Lf be the field F [X]/(f), which is a totally ramified
quartic extension of F . Given a finite group G, let PG be the set of f ∈ P such that Lf/F

has Galois closure group isomorphic to G. For any integer m, let Pm be the set of f ∈ P

such that vF (dLf/F ) = m, or equivalently such that vF (disc(f)) = m. For each G, write
PG
m for the intersection PG ∩ Pm. Write P 1−aut and P 1−aut

m as shorthand1 for PS4 ∪ PA4 and
PS4
m ∪ PA4

m respectively. Similarly, write Ét1−aut/F
(14)/F and Ét1−aut/F

(14)/F,m for ÉtS4/F
(14)/F ∪ ÉtA4/F

(14)/F and
ÉtS4/F

(14)/F,m ∪ ÉtA4/F
(14)/F,m respectively.

1The superscript “1− aut” refers to the fact that #Aut(L/F ) = 1 if and only if L ∈ ÉtS4/F

(14)/F ∪ ÉtA4/F

(14)/F .

https://github.com/Sebastian-Monnet/Mass-Formula-Checks
https://github.com/Sebastian-Monnet/Mass-Formula-Checks
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The quartic Eisenstein polynomials in F [X] embed naturally into O4
F via

X4 + a3X
3 + a2X

2 + a1X + a0 7→ (a3, a2, a1, a0).

Write µ for the Haar measure on O4
F , normalised such that µ(O4

F ) = 1. We will apply this Haar
measure to sets of Eisenstein polynomials, viewed as subsets of O4

F via the embedding described
above.

Lemma 6.1. Let G ∈ {S4, A4}, and let m be a positive integer. We have

#ÉtG/F
(14)/F,m =

qm+2

q − 1
· µ(PG

m).

Proof. This follows easily from [Ser78, Equation 13]. □

So our problem reduces to finding the density of Eisenstein polynomials that give rise to the
desired Galois closure groups. We will do this by establishing explicit congruence conditions on
the polynomials for this to be the case.

6.1. Congruence conditions for P 1−aut
m . In [Lbe09, Theorem 2.9], Lbekkouri gives congru-

ence conditions for a quartic Eisenstein polynomial f(X) ∈ Q2[X] to define a Galois extension.
We extend his methods to Eisenstein polynomials over arbitrary 2-adic base fields, to obtain
congruence conditions for the set P 1−aut

m , which we will state in Lemma 6.4 and Corollary 6.7.

It should be noted that Lbekkouri’s statement of [Lbe09, Theorem 2.9] is incorrect. In items
(2i) and (2ii), both instances of “a0 + a2” should read “a0 + 2”. This typo is first introduced in
the statement of Proposition 2.8 and is carried over into Theorem 2.9.

For f ∈ P , we will always denote the coefficients of f by f(X) = X4+a3X
3+a2X

2+a1X+a0.
Whenever we refer to the coefficients ai, the choice of f will be clear. Let πf = X + (f) be
the natural uniformiser of Lf . We will always drop the subscript and denote πf by π, since
our choice of f will be clear. Write vπ for the 2-adic valuation on Lf , normalised such that
vπ(π) = 1. Fix an algebraic closure F of Lf , and let

σi : Lf → F, i = 1, 2, 3, 4

be the four embeddings of Lf , where σ1 is the identity embedding. For elements α of algebraic
extensions of F , we will write vF (α) as shorthand for ṽF (α), where ṽF is the unique extension
of vF to the algebraic closure F of F .

Lemma 6.2. For all f ∈ P 1−aut, the three valuations

vF (σi(π)− π), i = 2, 3, 4

are equal.

Proof. Suppose that f ∈ P and the quantities vF (σi(π) − π) are not all equal for i = 2, 3, 4.
Reordering the σi if necessary, we have

vF (σ2(π)− π) 6= vF (σi(π)− π)

for i = 3 and i = 4. The cubic polynomial X−1f(X + π) ∈ Lf [X] has roots

σi(π)− π, i = 2, 3, 4.
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Therefore, the minimal polynomial of σ2(π)− π over Lf divides X−1f(X + π), and all its roots
have the same valuation, so

σ2(π)− π ∈ Lf ,

and therefore f has at least two roots in Lf , so f 6∈ P 1−aut. □

For each even integer 4 ≤ m ≤ 6eF + 2, define Tm to be the set of f ∈ P such that{
vF (a1) =

m
4 , vF (a2) ≥ m

6 , vF (a3) ≥ m
4 , if m ≡ 0 (mod 4),

vF (a1) ≥ m+2
4 , vF (a2) ≥ m

6 , vF (a3) =
m−2
4 , if m ≡ 2 (mod 4).

Lemma 6.3. The following two statements are true:

(1) Let m be an even integer with 4 ≤ m ≤ 6eF + 2 and let f ∈ Pm. Then f ∈ Tm if and
only if

vF (σi(π)− π) =
m

12
for i = 2, 3, 4.

(2) Let m be a positive integer. If P 1−aut
m is nonempty then m is even, 4 ≤ m ≤ 6eF + 2,

and P 1−aut
m ⊆ Tm.

Proof. Let f ∈ Pm for any positive integer m, not necessarily even. Define the polynomial

g(X) := X−1f(X + π),

and write g(X) =
∑3

i=0 biX
i for bi ∈ Lf . It is easy to see that

b0 = a1 + 2πa2 + 3π2a3 + 4π3,

b1 = a2 + 3πa3 + 6π2,

b2 = a3 + 4π.

Since the vπ(ai) are all multiples of 4, we have

vπ(b0) = min{vπ(a1), vπ(2πa2), vπ(3π2a3), vπ(4π3)},

vπ(b1) = min{vπ(a2), vπ(3πa3), vπ(6π2)},
vπ(b2) = min{vπ(a3), vπ(4π)}.

The polynomial g(X) ∈ Lf [X] has roots σi(π)− π for i = 2, 3, 4. Suppose that

vF (σi(π)− π) =
m

12

for each i. Then the Newton polygon of g(X) consists of one line segment (0,m)↔ (3, 0), so

(∗)


m = min{vπ(a1), vπ(2πa2), vπ(3π2a3), vπ(4π3)},
2m
3 ≤ min{vπ(a2), vπ(3πa3), vπ(6π2)},
m
3 ≤ min{vπ(a3), vπ(4π)},

and for even m this implies membership of Tm. Reversing the argument, it is easy to see that
for even m with 4 ≤ m ≤ 6eF + 2, every f ∈ Tm has

vF (σi(π)− π) =
m

12
, i = 2, 3, 4.

Thus we have proven (1). Now let f ∈ P 1−aut
m for some positive integer m. Then Lemma 6.2

implies that
vF (σi(π)− π) =

m

12
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for i = 2, 3, 4, and we have shown that this implies Equation (∗), so{
m = min{vπ(a1), vπ(a2) + 4eF + 1, vπ(a3) + 2, 8eF + 3},
2m
3 ≤ min{vπ(a2), 4eF + 2}.

Since f is Eisenstein, vπ(ai) ≥ 4 for each i, and therefore 4 ≤ m ≤ 6eF + 3. Moreover,
vπ(a2) ≥ 2m

3 implies that m ≤ vπ(a2) + 2eF + 1, so m 6= vπ(a2) + 4eF + 1. Since m < 8eF + 3,
we obtain

m = min{vπ(a1), vπ(a3) + 2},
so m is even, so in fact 4 ≤ m ≤ 6eF + 2. Finally, Part (1) of this lemma shows that f ∈ Tm,
completing the proof of (2). □

Lemma 6.4. Let m be an even integer with 4 ≤ m ≤ 6eF +2. If m is not a multiple of 3, then
P 1−aut
m = Tm.

Proof. Lemma 6.3 tells us that P 1−aut
m ⊆ Tm, so we just need to show that Tm ⊆ P 1−aut

m . Let
f ∈ Tm. Lemma 6.3 tells us that

vπ(σi(π)− π) =
m

3
, i = 2, 3, 4,

so σi(π) 6∈ Lf for each i, since m
3 is not an integer, and therefore Tm ⊆ P 1−aut

m . □

From now on, fix a system of representatives R for (OF /pF )
×. When 3 | m, for each u ∈ R and

f ∈ Pm, define the polynomial

g
(u)
f (X) := f(X + π + uπ

m
3 ),

and write g(u)f (X) =
∑4

i=0 b
(u)
i Xi for b(u)i ∈ Lf . We will always omit the subscript and write

g(u)(X) for g(u)f (X), leaving f implicit.

Lemma 6.5. Let m be a multiple of 6 with 4 ≤ m ≤ 6eF + 2. Let f ∈ Tm and u ∈ R. The
following four statements are true:

(1) vF (b(u)3 ) ≥ m−2
4 .

(2) vF (b(u)2 ) ≥ m
6 .

(3) vF (b(u)1 ) = m
4 .

(4)

vF (b
(u)
0 )


≥ m

3 + 1 if 4 | m and a1 + ua2a
m
12
0 + u3a

m
4
0 ≡ 0 (mod p

m
4
+1

F ),

≥ m
3 + 1 if 4 ∤ m and a3 + ua2a

⌊m
12

⌋
0 + u3a

⌊m
4
⌋

0 ≡ 0 (mod p
⌊m

4
⌋+1

F ),

= m
3 otherwise.

Proof. It is easy to see that for each i and u, we have

b
(u)
i =

4∑
j=i

(
j

i

)
aj(π + uπ

m
3 )j−i,
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where we adopt the convention that a4 = 1. Using this formula for the b(u)i , along with the
congruence conditions defining Tm, gives us the following three congruences:

b
(u)
3 ≡ a3 (mod πm+1).

b
(u)
2 ≡ a2 (mod π

2m
3

+1).

b
(u)
1 ≡

{
a1 (mod πm+1) if m ≡ 0 (mod 4),

3π2a3 (mod πm+1) if m ≡ 2 (mod 4).

We can read off the first three claims from these congruences. Expanding the formula for b(u)0

and ignoring the high-valuation terms, we obtain

b
(u)
0 ≡

{
ua1π

m
3 + u2a2π

2m
3 + u4π

4m
3 (mod π

4m
3

+1) if m ≡ 0 (mod 4),

u2a2π
2m
3 + ua3π

m
3
+2 + u4π

4m
3 (mod π

4m
3

+1) if m ≡ 2 (mod 4).

It follows that vF (b(u)0 ) ≥ m
3 , and vF (b

(u)
0 ) ≥ m

3 + 1 if and only if{
a1 + ua2π

m
3 + u3πm ≡ 0 (mod πm+1) if m ≡ 0 (mod 4),

a3 + ua2π
m
3
−2 + u3πm−2 ≡ 0 (mod πm−1) if m ≡ 2 (mod 4).

The result then follows from the fact that1, for any positive integer k, we have

π4k ≡ (−a0)k (mod π4k+
2m
3

−2).

□

Lemma 6.6. Let 4 ≤ m ≤ 6eF + 2 be a multiple of 6 and let f ∈ Tm. Then f 6∈ P 1−aut
m if and

only if vF (b(u)0 ) ≥ m
3 + 1 for some u ∈ R.

Proof. Suppose that f 6∈ P 1−aut
m . Then f has at least two roots in Lf . Reordering the σi if

necessary, we may assume that σ2(π) ∈ Lf . Since f ∈ Tm, it follows from Lemma 6.3 that
vF (σ2(π)− π) = m

12 , so
σ2(π) = π + ũπ

m
3

for some ũ ∈ O×
Lf

. Since Lf/F is totally ramified, there is some u ∈ R with u ≡ ũ (mod π),
which means that

vF
(
σ2(π)− π − uπ

m
3
)
>
m

12
.

The other three roots of g(u) all have valuation at least m
12 , so

vF (b
(u)
0 ) ≥ m

3
+ 1.

Suppose conversely that vF (b(u)0 ) ≥ m
3 +1 for some u ∈ R. Lemma 6.5 tells us that vF (b(u)1 ) = m

4

and vF (b
(u)
2 ) ≥ m

6 , so considering the Newton polygon of g(u) tells us that it has exactly one
root σi(π)− π − uπ

m
3 with

vπ
(
σi(π)− π − uπ

m
3
)
≥ m

3
+ 1.

Therefore we have
σi(π)− π − uπ

m
3 ∈ Lf ,

so σi(π) ∈ Lf , which means that f 6∈ P 1−aut. □

1This follows from expanding the binomial on the right-hand side of
(π4)k = ((−a0) + (−a1π − a2π

2 − a3π
3))k.
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Corollary 6.7. Let m be a multiple of 6 with 4 ≤ m ≤ 6eF +2, and let f ∈ Tm. The following
are equivalent:

(1) We have f 6∈ P 1−aut
m .

(2) There is some u ∈ R such that{
a1 + ua2a

⌊m
12

⌋
0 + u3a

⌊m
4
⌋

0 ≡ 0 (mod p
⌊m

4
⌋+1

F ) if m ≡ 0 (mod 4),

a3 + ua2a
⌊m
12

⌋
0 + u3a

⌊m
4
⌋

0 ≡ 0 (mod p
⌊m

4
⌋+1

F ) if m ≡ 2 (mod 4).

Proof. This is immediate from Lemmas 6.5 and 6.6. □

Remark 6.8. The examiners pointed out a much slicker proof of Corollary 6.7. We have opted
to retain our original proof, as we would like this thesis to be a record of our personal experience
and thought process during the PhD. However, since the examiners’ proof is nicer than ours, we
include a sketch of it here. Recall that, given f ∈ Tm with 6 | m, we defined g(X) = 1

X f(X+π),
whose roots are σi(π)− π for i = 2, 3, 4. We may then define h(X) = 1

πm g(π
m
3 X), whose roots

are σi(π)−π

π
m
3

, for i = 2, 3, 4. The differences between these roots have discriminant valuation 0,
so the discriminant of h has valuation 0, and therefore h is separable modulo π, hence Hensel’s
Lemma tells us that it has a root in Lf if and only if it has a root modulo π. Thus, f 6∈ P 1−aut

m

if and only if h has a root modulo π, which is equivalent to the existence of an element u ∈ R
with

b0
πm

+
b1

π
2m
3

u+
b2

π
m
3

u2 + u3 ≡ 0 (mod π).

Using the expressions for the coefficients bi in the proof of Lemma 6.3, and the definition of
Tm, this reduces to Condition (2) in Corollary 6.7. Moreover, since h is separable modulo π,
its splitting field over Lf is unramified, hence cyclic, which implies that the splitting field of f
over F is an A4-extension, rather than an S4-extension.

6.2. Computing the densities.

Lemma 6.9. Let m be an even integer with 4 ≤ m ≤ 6eF + 2. Then

µ(Tm) = q−⌈ 2m
3

⌉−3(q − 1)2.

Proof. This is easy to see from the definition of Tm. □

Since FF
∼= F2fF , the Galois group Gal(FF /F2) is generated by the squaring map. Therefore,

the trace map TrFF /F2
: FF → F2 is given by

TrFF /F2
(x) = x+ x2 + . . .+ x2

fF−1
.

Lemma 6.10. Let α, β, γ ∈ FF with α 6= 0, and let g be the polynomial αX2 + βX + γ in
FF [X]. The number of roots of g in FF is

1 if β = 0,

2 if β 6= 0 and TrFF /F2
(αγ/β2) = 0,

0 if β 6= 0 and TrFF /F2
(αγ/β2) = 1.

Proof. The case with β = 0 is clear, so assume β 6= 0. Let u be a root of g in a splitting field
over FF , and let θ = αu

β . Clearly u ∈ FF if and only if θ ∈ FF , which is equivalent to θ+ θq = 0.
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Since
Gal(FF /F2) = {x 7→ x2

i
: i = 0, 1, . . . , fF − 1},

it is easy to see that
TrFF /F2

(θ + θ2) = θ + θq,

and also that
θ + θ2 =

αγ

β2
.

Therefore, u ∈ FF if and only if TrFF /F2
(αγ
β2 ) = 0, and the result follows. □

Lemma 6.11. Let n ≥ 0 be an integer and let λ, µ ∈ pnF , with µ 6∈ pn+1
F . Define the map

α : OF /pF → OF /p
n+1
F , c 7→ λc+ µc3.

The following two statements are true:

(1) For c ∈ (OF /pF )
×, we have

#
{
c′ ∈ (OF /pF )

× : α(c′) = α(c)
}
=


1 if c2 ≡ λ/µ (mod pF ),

1 if c2 6= λ/µ and TrFF /F2

(
λ

c2µ

)
6≡ fF (mod 2),

3 if c2 6= λ/µ and TrFF /F2

(
λ

c2µ

)
≡ fF (mod 2).

(2) We have

#imα =


2q+(−1)fF

3 if λ 6∈ pn+1
F ,

q+1+(−1)fF

2+(−1)fF
if λ ∈ pn+1

F .

Proof. It is easy to see that for c, c′ ∈ (OF /pF )
×, we have α(c) = α(c′) if and only if

(c− c′)
(
(c′)2 + cc′ +

λ

µ
+ c2

)
≡ 0 (mod pF ).

The first statement then follows from Lemma 6.10. For the second statement, suppose first that
λ 6∈ pn+1

F . Then there is some c ∈ (OF /pF )
× with α(c) = 0, so

#imα =
∑

c∈(OF /pF )×

1

#{c′ ∈ (OF /pF )× : α(c′) = α(c)}

= 1 + (q − 2− a) + a

3
,

where
a = #

{
c ∈ (OF /pF )

× : c2 6= λ

µ
and TrFF /F2

( λ

c2µ

)
≡ fF (mod 2)

}
.

Since λ 6∈ pn+1
F , the map

(pF /OF )
× → (pF /OF )

×, c 7→ λ

c2µ
is a bijection, so

a = #
{
u ∈ (OF /pF )

× \ {1} : TrFF /F2
(u) ≡ fF (mod 2)

}
=

1

2

(
q − 3− (−1)fF

)
,

and the result follows. Now suppose that λ ∈ pn+1
F . Then α(c) = 0 if and only if c = 0, so

#imα = 1 +
∑

c∈(OF /pF )×

1

#{c′ ∈ (OF /pF )× : α(c′) = α(c)}
.
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We have λ
c2µ
≡ 0 (mod pF ) for all c ∈ (OF /pF )

×, so

#
{
c′ ∈ (OF /pF )

× : α(c′) = α(c)
}
= 2 + (−1)fF ,

and the result follows. □

Lemma 6.12. Let a and b be positive integers, and let S be the set of triples (x0, x1, x2) ∈ O3
F

such that the following two conditions hold:

(1) vF (x0) = 1, vF (x1) = a+ b, vF (x2) ≥ b.
(2) There is some u ∈ R such that x1 + ux2x

a
0 + u3xa+b

0 ≡ 0 (mod pa+b+1
F ).

Then µ(S) = 1
3q

−a−2b−4(q − 1)2(2q − 1).

Proof. Suppose that, for xi and x′i in OF , we have xi ≡ x′i (mod pa+b+1
F ) for i = 0, 1, 2. Then

(x0, x1, x2) ∈ S if and only if (x′0, x′1, x′2) ∈ S, so

µ(S) =
#S

q3a+3b+3
,

where S is the set of triples

(x̄0, x̄1, x̄2) ∈
(
(pF /p

a+b+1
F ) \ (p2F /pa+b+1

F )
)
×
(
(pa+b

F /pa+b+1
F ) \ {0}

)
×
(
pbF /p

a+b+1
F

)
such that there is some u ∈ R with

x̄1 + ux̄2x̄
a
0 + u3x̄a+b

0 = 0.

For each x̄0 ∈ (pF /p
a+b+1
F ) \ (p2F /p

a+b+1
F ) and x̄2 ∈ pbF /p

a+b+1
F , define the map

αx̄0,x̄2 : OF /pF → pa+b
F /pa+b+1

F , u 7→ −ux̄2x̄a0 − u3x̄a+b
0 .

Then
S =

⊔
x̄0∈(pF /pa+b+1

F )\(p2F /pa+b+1
F )

x̄2∈pbF /pa+b+1
F

{x̄0} ×
(
imαx̄0,x̄2 \ {0}

)
× {x̄2}.

Since αx̄0,x̄2(0) = 0, we always have 0 ∈ imαx̄0,x̄2 , so

#
(
imαx̄0,x̄2 \ {0}

)
= # imαx̄0,x̄2 − 1,

and therefore
#S =

∑
x̄0∈(pF /pa+b+1

F )\(p2F /pa+b+1
F )

x̄2∈pbF /pa+b+1
F

(# imαx̄0,x̄2 − 1),

Lemma 6.11 tells us that

#imαx̄0,x̄2 =


2q+(−1)fF

3 if x̄2 6∈ pb+1
F /pa+b+1

F ,
q+1+(−1)fF

2+(−1)fF
if x̄2 ∈ pb+1

F /pa+b+1
F .

It follows that
#S =

1

3
q2a+b−1(q − 1)2(2q − 1),

so
µ(S) =

1

3
q−a−2b−4(q − 1)2(2q − 1).

□

Remark 6.13. As was the case in Remark 6.8, the examiners proposed a more elegant proof
of Lemma 6.12. For the same reasons as before, we opt to describe their proof in addition to,
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rather than instead of, our own. Define S′ to be the set of triples

(y0, y1, y2) ∈ (pF \ p2F )×O×
F ×OF

such that the polynomial X3 + y2X + y1 has a root in FF . Then there is a bijection

ϕ : S′ → S, (y0, y1, y2) 7→ (y0, y
a+b
0 y1, y

b
0y2).

From the definition of ϕ, it is easy to see that

µ(S) =
1

qa+2b
µ(S′).

By definition of S′, we have

µ(S′) =
(1
q
− 1

q2

)
· 1
q2
·#
{
(λ1, λ2) ∈ F×

F × FF : X3 + λ2X + λ1 has a root in FF

}
.

The cardinality of the set above is equal to

q(q − 1)−#{irreducible polynomials X3 + λ2X + λ1 in FF [X]}.

Let F′ be the unique cubic field extension of FF . There is a 3-to-1 surjection

{α ∈ F′ \ FF : TrF′/FF
(α) = 0} → {irreducible polynomials X3 + λ2X + λ1 in FF },

taking α to its minimal polynomial over FF . It is easy to see that

#{α ∈ F′ \ FF : TrF′/FF
(α) = 0} = q2 − 1,

and the result of Lemma 6.12 follows.

Corollary 6.14. Let 4 ≤ m ≤ 6eF + 2 be a multiple of 6. Then

µ(Tm \ P 1−aut
m ) =

1

3
q−

2m
3

−4(q − 1)2(2q − 1).

Proof. Suppose first that 4 | m. Setting xi = ai for i = 0, 1, 2 and (a, b) = (m12 ,
m
6 ), Corollary 6.7

tells us that Tm \ P 1−aut
m is the set S from Lemma 6.12, together with the added congruence

condition that vF (a3) ≥ m
4 , so

µ(Tm \ P 1−aut
m ) = µ(S) · q−

m
4 =

1

3
q−

2m
3

−4(q − 1)2(2q − 1).

If 4 ∤ m, then set
(x0, x1, x2) := (a0, a3, a2), (a, b) =

(m− 6

12
,
m

6

)
,

and proceed similarly. □

Corollary 6.15. Let 4 ≤ m ≤ 6eF + 2 be an even integer. Then

µ(P 1−aut
m ) = q−⌈ 2m

3
⌉−3(q − 1)2 ·

(
1 + 16|m ·

(1− 2q

3q

))
.

Proof. This is immediate from Lemma 6.9 and Corollary 6.14. □

Corollary 6.16. If Ét1−aut/F
(14)/F,m is nonempty, then m is an even integer with 4 ≤ m ≤ 6eF + 2,

and
#Ét1−aut/F

(14)/F,m = q⌊
m
3
⌋−1(q − 1)

(
1 + 16|m ·

(1− 2q

3q

))
.

Proof. This is immediate from Lemma 6.1, Lemma 6.3 Part (2), and Corollary 6.15. □
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6.3. Distinguishing between A4 and S4. Write µ3 for the group of cube roots of unity in
the algebraic closure of F .

Lemma 6.17. The following three statements are true:

(1) (Tower law for discriminant) Let M/L/F be extensions of 2-adic fields. Then

vF (dM/F ) = [M : L] · vF (dL/F ) + f(L/F ) · vL(dM/L).

(2) We have µ3 ⊆ F if and only if fF is even.
(3) If µ3 6⊆ F , then F has only one C3-extension up to isomorphism, namely the unramified

extension.

Proof. Claim (1) is [Ser95, Proposition III.8]. Claim (2) follows from Hensel’s Lemma. As for
Claim (3), let L/F be a C3-extension. Then L/F is either unramified or tamely ramified. If
L/F is tamely ramified, then it is well-known that L = F ( 3

√
πF ) for some uniformiser πF of F .

But then L/F is Galois if and only if µ3 ⊆ F , proving the claim. □

Lemma 6.18. If µ3 ⊆ F , then F has no S4-extensions.

Proof. Suppose for contradiction that there is an S4-extension M/F . Take a copy of D8 inside
S4, and let L =MD8 . Then L/F is cubic. If L/F is unramified, then it is cyclic. On the other
hand, if L/F is ramified, then it is tamely ramified, so L = F ( 3

√
πF ) for some uniformiser πF

of F , and therefore L/F is Galois since µ3 ⊆ F . This implies that D8 is a normal subgroup of
S4, which is not the case, so the result follows by contradiction. □

Proof of Theorem 5.3. By Lemma 6.17(2), we have µ3 ⊆ F , so Lemma 6.18 tells us that
ÉtA4/F

(14)/F,m = Ét1−aut/F
(14)/F,m, and the result follows by Corollary 6.16. □

Lemma 6.19. Let M/F be a V4-extension of 2-adic fields, and let E1, E2, E3 be its three
quadratic intermediate extensions. Then the following two statements are true:

(1) We have vF (dM/F ) =
∑3

i=1 vF (dEi/F ).
(2) If vF (dE1/F ) < vF (dE2/F ), then vF (dE3/F ) = vF (dE2/F ).

Proof. This proof relies on some class field theory that we will develop in Section 12.2. We feel
that developing that theory here would disrupt the flow of the section, so we instead use forward
references. This does not introduce circularity, since the proofs of Theorem 12.10, Lemma 12.11,
and Lemma 12.12 are self-contained, and do not reference any other results in this thesis.

The first statement follows easily from [Keu23, Theorem 17.50]. For the second statement,
suppose that vF (dE1/F ) < vF (dE2/F ). For each i, let χi : F×/F×2 → C2 be the quadratic
character associated to Ei, as in Lemma 12.12. Theorem 12.10 and Lemma 12.11 tell us that

vF (dEi/F ) = f(Ei/F ) = f(χi),

for each i. It is easy to see that χ3 = χ1χ2, so f(χ3) = f(χ2), and the result follows. □

Lemma 6.20. Suppose that µ3 6⊆ F and let L ∈ Ét1−aut
(14)/F . Then 3 | vF (dL/F ) if and only if L

is an A4-quartic.

Proof. Suppose that 3 | vF (dL/F ). Then the final line of Remark 6.8 shows that L/F is an
A4-quartic extension. Suppose conversely that L/F is A4-quartic. Let M be a normal closure
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of L over F , so Gal(M/F ) ∼= A4, and let K = MV4 . The extension K/F is a C3-extension, so
it is unramified by Lemma 6.17(3). Since L/F is totally ramified, we have e(M/F ) = 4 and
f(M/F ) = 3, so V4 is the inertia group of M/F . Since K/F is unramified, the tower law for
discriminant gives

vF (dM/F ) = 3vK(dM/K).

Let E1, E2, E3 be the three intermediate extensions of the V4-extension M/K. Since the three
double transpositions in A4 are conjugate, the extensions Ei/F are isomorphic, so they have
the same discriminant. By the tower law for discriminant, it follows that the valuations

vK(dEi/K), i = 1, 2, 3

are all equal. By Lemma 6.19, we have

vK(dM/K) =

3∑
i=1

vK(dEi/K) = 3vK(dE1/K),

so
vF (dM/F ) = 9vK(dE1/K).

Since M/L is unramified, the tower law also gives

vF (dM/F ) = 3vF (dL/F ),

and the result follows. □

In the statement and proof of the following lemma, the term “A4-extension” refers to a Galois
extension with Galois group A4.

Lemma 6.21. Suppose that µ3 6⊆ F . Then there is a bijection between ÉtA4/F
(14)/F and the set of

isomorphism classes of A4-extensions of F .

Proof. For an A4-quartic extension L/F , let L̃ be the normal closure of L over F . The map
L 7→ L̃ is a well-defined bijection between the set of isomorphism classes of A4-quartics and the
set of isomorphism classes of A4-extensions. Therefore, to prove the lemma, it suffices to show
that every A4-quartic is totally ramified.

Let L/F be an A4-quartic. Then there is an extension M/L such that M/F is an A4-extension
and L = MA3 for some choice of embedding A3 ⊆ A4. Let G0 ⊆ A4 be the inertia group
of M/F . Since MV4/F is a C3-extension, it is unramified by Lemma 6.17(3), and therefore
G0 ⊆ V4. Since M/F is not cyclic, it is ramified, so #G0 ≥ 2. Since G0 is a normal subgroup
of A4, we must have G0 = V4, so e(M/F ) = 4. Since M/L is a C3-extension, it is unramified
by Lemma 6.17(3), so L/F is totally ramified, as required. □

Proof of Theorem 5.4. Lemma 6.17(2) tells us that µ3 6⊆ F . The result then follows from
Corollary 6.16 and Lemma 6.20. □

Proof of Corollary 5.8. Theorem 5.3 tells us that m̃
(
ÉtS4/F

(14)/F

)
= 0 and

m̃
(
ÉtA4/F

(14)/F

)
=

∑
4≤m≤6eF+2

m even

q−⌈ 2m
3

⌉−1(q − 1)
(
1 + 16|m ·

(1− 2q

3q

))
.

The result then follows from a tedious computation, which we omit since it is straightforward.
□
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Proof of Corollary 5.9. By Theorem 5.4, we have

m̃
(
ÉtS4/F

(14)/F

)
=

∑
4≤m≤6eF+2

2|m, 3∤m

q⌊
m
3
⌋−m−1(q − 1),

which can easily be rearranged into the required form. The computation of m̃
(
ÉtA4/F

(14)/F

)
is

similar. □

7. The case G = V4

This case is essentially already in the literature. We collect the relevant results here.

Lemma 7.1. Let d ∈ F× \F×2 and let E = F (
√
d). If vF (d) is even, then vF (dE/F ) is an even

integer with 0 ≤ vF (dE/F ) ≤ 2eF . If vF (d) is odd, then vF (dE/F ) = 2eF + 1.

Proof. This is part of the p = 2 case of [Dab01, Theorem 2.4]. □

Lemma 7.2. If ÉtV4/F
(14)/F,m is nonempty, then m is an even integer and 6 ≤ m ≤ 6eF + 2.

Proof. Let L ∈ ÉtV4/F
(14)/F,m, and let E1, E2 and E3 be the intermediate quadratic subfields of L.

Let ci = vF (dEi/F ) for each i, so that

m = c1 + c2 + c3,

by Lemma 6.19. We may write Ei = F (
√
di), for di ∈ F× \F×2, such that d1d2d3 ∈ F×2. Since

vF (d1d2d3) is even, it follows from Lemma 7.1 that either 0 or 2 of the ci are equal to 2eF + 1,
and the rest are even integers with 2 ≤ ci ≤ 2eF . The result follows. □

Lemma 7.3 (Tunnell). Let m be a positive even integer with 2 ≤ m ≤ 6eF + 2. Then

#ÉtV4/F
(14)/F,m = 2(q − 1)q

m−4
2

(
q−⌊m

6
⌋
(
1 + 13|m ·

q − 2

3

)
− 1m≤4eF+2 · q−⌊m−2

4
⌋
)
.

Proof. This is [Tun78, Lemma 4.7]. □

Proof of Theorem 5.5. The result follows immediately from Lemmas 7.2 and 7.3. □

Proof of Corollary 5.10. By Lemmas 7.2 and 7.3, we have

m̃(ÉtV4/F
(14)/F ) =

1

2
(q − 1) ·

( ∑
4≤m≤6eF+2

m even

q−
m+4

2
−⌊m

6
⌋
(
1 + 13|m ·

q − 2

3

)
−

∑
4≤m≤4eF+2

m even

q−
m+4

2
−⌊m−2

4
⌋
)
,

and it is straightforward to rearrange this expression into the desired form. □

8. The case G = C4

8.1. Sketch of our approach. Let F be a p-adic field and let n be a positive integer. We will
write Extn/F for the set of isomorphism classes of degree n field extensions of F . The notation
Ext can be adorned with all the same decorators as Ét, with the obvious meanings. That is,
for any choice of decorators Ét••, we have

Ext•• = {L ∈ Ét•• : L is a field}.
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Remark 8.1. If σ is a splitting symbol of the form (f e), then Étσ/F = Extσ/F . In these cases,
we will prefer the notation Étσ/F , since morally we view field extensions as a special case of
étale algebras.

We define a C4-extendable extension of F to be a quadratic field extension E/F such that there
is some quadratic extension L/E such that L/F is a C4-extension. For any real number m1,
write Ext↑C4

2/F,m1
(respectively Ext↑C4

2/F,≤m1
) for the set of C4-extendable extensions E/F such

that vF (dE/F ) = m1 (respectively vF (dE/F ) ≤ m1). For any quadratic extension E/F , write
ExtC4/F

2/E for the set of quadratic extensions L/E such that L/F is a C4-extension. Note that
ExtC4/F

2/E is nonempty if and only if E/F is C4-extendable. We allow the usual discriminant-
related decorators, writing ExtC4/F

2/E,m2
and ExtC4/F

2/E,≤m2
to denote elements L ∈ ExtC4/F

2/E with
vE(dL/E) = m2 and vE(dL/E) ≤ m2, respectively.

Recall that we write d(−1) = vF (dF (
√
−1)/F ). In the current subsection, we state the main

results, whose proofs are postponed to the later subsections.

For even integers m1 with 2 ≤ m1 ≤ 2eF , define

Next(m1) = (1 + 1m1≤2eF−d(−1)
)q

m1
2

−1(q − 1− 1m1=2eF−d(−1)+2).

For m1 = 2eF + 1, define

Next(2eF + 1) =


2qeF if −1 ∈ F×2,

qeF if F (
√
−1)/F is quadratic and totally ramified,

0 if F (
√
−1)/F is quadratic and unramified.

Set Next(m1) = 0 for all other real numbers m1. For the reader’s convenience, we will also state
the definition of Next(m1) in Appendix B.
Lemma 8.2. If E/F is a totally ramified C4-extendable extension, then 2 ≤ vF (dE/F ) ≤ 2eF +1

and vF (dE/F ) is either even or equal to 2eF + 1. For such m1, we have

#Ext↑C4

2/F,m1
= Next(m1),

where Next(m1) is the explicit function defined above.

Let m1 be an even integer with 2 ≤ m1 ≤ eF . For each integer m2, define

NC4(m1,m2) =


qm1−1 if m2 = 3m1 − 2,

q⌊
m1+m2

4
⌋ − q⌊

m1+m2−2
4

⌋ if 3m1 ≤ m2 ≤ 4eF −m1 and m2 is even,
qeF if m2 = 4eF −m1 + 2,

0 otherwise.
Suppose that m1 = 2eF + 1 or m1 is even with eF < m1 ≤ 2eF . Then define

NC4(m1,m2) =

{
2qeF if m2 = m1 + 2eF ,

0 otherwise.

Finally, define NC4(m1,m2) = 0 for all other pairs of integers (m1,m2). As with Next(m2), we
will also state the definition of NC4(m1,m2) in Appendix B.
Lemma 8.3. Let E be a totally ramified C4-extendable extension and let m1 = vF (dE/F ). For
all m2, we have

#ExtC4/F
2/E,m2

= NC4(m1,m2),
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where NC4(m1,m2) is the explicit function defined above.

Corollary 8.4. If ÉtC4/F
(14)/F,m is nonempty, then either m = 8eF + 3 or m is an even integer

with 8 ≤ m ≤ 8eF . For any even integer m, the number #ÉtC4/F
(14)/F,m is the sum of the following

four quantities:

(1) 18≤m≤5eF−2 · q
m−3

5 ·Next(
m+2
5 ).

(2) ∑
max{2,m−4eF }≤m1≤min{m

5
,eF }

m1≡m (mod 4)

q
m−m1

4
−1(q − 1)Next(m1).

(3) 14eF+4≤m≤5eF+2 · qeF ·Next(m− 4eF − 2).

(4) 15eF+3≤m≤8eF · 2qeF ·Next(
m−2eF

3 ).

Moreover,

#ÉtC4/F
(14)/F,8eF+3 =


4q2eF if −1 ∈ F×2,

2q2eF if F (
√
−1)/F is quadratic and totally ramified,

0 if F (
√
−1)/F is quadratic and unramified.

8.2. Counting C4-extendable extensions. The aim of this subsection is to prove Lemma 8.2.
The paper [CDO05] gives conditions on d ∈ F× for the extension F (

√
d)/F to be C4-extendable.

We use these conditions and adapt the methods of [CDO05] to parametrise and count C4-
extendable extensions.

Lemma 8.5 (Hecke’s Theorem). Let E be a 2-adic field, let α ∈ E× \E×2, and let L = E(
√
α).

If vE(α) is odd, then vE(dL/E) = 2vE(2) + 1. If vE(α) is even, then L/E is totally ramified if
and only if α/x2 ≡ 1 (mod p

2vE(2)
E ) has no solution x ∈ E. In that case, we have

vE(dL/E) = 2vE(2) + 1− κE,α,

where
κE,α = max{0 ≤ l < 2vE(2) : α/x

2 ≡ 1 (mod plE) has a solution in E}.

Proof. This is the special case p = 2 of [Dab01, Theorem 2.4]. □

Corollary 8.6. Let E,α, and L be as in Lemma 8.5, and assume that vE(α) is even. Let t be
an integer with 0 ≤ t ≤ vE(2). Then vE(dL/E) is an even integer and

vE(dL/E) ≤ 2vE(2)− 2t

if and only if there is some x ∈ E× with α/x2 ≡ 1 (mod p2tE ).

Proof. This follows from Lemma 8.5, along with the fact1 that for 0 ≤ t < vE(2) and u ∈ O×
E ,

if u is square modulo p2tE , then it is also square modulo p2t+1
E . □

1If u ≡ x2 (mod p2tE ), then u/x2 = 1 + π2t
E y for some y ∈ OE . Taking z ∈ OE with y ≡ z2 (mod pE), we

obtain u/x2 ≡ (1 + πt
Ez)

2 (mod p2t+1
E ).
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Lemma 8.7. Let E = F (
√
d) for d ∈ F× \ F×2 and let L = E(

√
α) for α ∈ E× \ E×2. The

Galois closure group of L/F is 
V4 if NE/F (α) ∈ F×2,

C4 if NE/F (α) ∈ dF×2,

D4 otherwise.

Proof. Write α = a+ b
√
d for a, b ∈ F and let θ =

√
α. Let m(X) be the minimal polynomial of

θ over F . Let N be a splitting field of m(X) over L. The polynomial m(X) has roots ±θ,±ϕ
for some element ϕ ∈ N .

We claim that L/F is a V4-extension if and only if θϕ ∈ F . Suppose that L/F is a V4-extension.
Since L/F is the splitting field ofm(X), there are σ, τ ∈ Gal(L/F ) with σ(θ) = ϕ and τ(θ) = −θ.
These have order 2, so σ(θϕ) = τ(θϕ) = θϕ, and therefore θϕ ∈ F . Suppose conversely that
θϕ ∈ F . Then F (θ) = F (ϕ), so L is the splitting field of m(X) over F , and therefore there are
σ, τ ∈ Gal(L/F ) with σ(θ) = ϕ and τ(θ) = −θ. Since θϕ ∈ F , it is fixed by σ, so

θϕ = ϕσ(ϕ),

and therefore θ = σ(ϕ), so σ has order 2. Clearly τ has order 2, so Gal(L/F ) ∼= V4.

Let λ := θ
ϕ −

ϕ
θ . We claim that L/F is a C4-extension if and only if λ ∈ F . Suppose that L/F

is a C4-extension. Then θ, ϕ ∈ L, so there is a generator σ ∈ Gal(L/F ) such that σ(θ) = ϕ.
It follows that σ(λ) = λ, so λ ∈ F . Suppose conversely that λ ∈ F . There is some element
σ ∈ Gal(N/F ) such that σ(θ) = ϕ. It is easy to see that σ2(θ) = εθ for some ε ∈ {±1}. Since
λ ∈ F , we have ε = −1, so σ has order 4. Clearly θ2 + ϕ2 = 2a, so

λ =
2θ2 − 2a

θϕ
,

which means that
ϕ =

2θ2 − 2a

θλ
∈ L,

so L/F is Galois and hence C4 with Galois group 〈σ〉. Finally,

λ2 =
4b2d

NE/F (α)
,

and the result follows. □

Corollary 8.8. For d ∈ F× \ F×2, the following are equivalent:

(1) The extension F (
√
d)/F is C4-extendable.

(2) The element d is a sum of two squares in F .
(3) The element d is in the norm group of the extension F (

√
−1)/F .

Proof. The equivalence of (1) and (2) follows from Lemma 8.7. If −1 ∈ F×2, then (2) and (3)

are equivalent because every element of F can be written as a sum of two squares, due to the
identity

d =
(d+ 1

2

)2
+
( d− 1

2
√
−1

)2
.

If −1 6∈ F×2, then the equivalence of (2) and (3) is trivial. □
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By symmetry of the quadratic Hilbert symbol, it follows from Corollary 8.8 that we need to
count extensions F (

√
d) such that −1 ∈ NmF (

√
d). It turns out that this is a special case of a

problem we will need to solve in Part 4, whose solution is stated in Corollary 12.31. However,
the special case we currently need admits a more elementary proof, which we will include,
eventually stating the result in Corollary 8.13.

Remark 8.9. The more general proof of Corollary 12.31 will involve using class field theory to
parametrise Cp-extensions of F by the associated characters F× → Fp. In our current special
case, we can instead parametrise quadratic extensions of F by F×/F×2 in the obvious way.
Thus, the techniques of the upcoming proof rely on the fact that all quadratic extensions are
Kummer extensions, so we will genuinely need different ideas for the generalisation in Part 4.

We start by defining some notation. Let A be a finitely generated subgroup of F×. Write A2

for the subgroup AF×2/F×2 of F×/F×2. For each nonnegative integer t, define

At = A ∩
(
U

(t)
F F×2

)
and

A2
t = A

2
t ∩
(
U

(t)
F F×2/F×2

)
,

where U (t)
F is the tth term in the unit filtration of F , defined by U

(t)
F = 1 + ptF , and we adopt

the convention that U (0)
F = O×

F . Let F (
√
A) be the field extension

F ({
√
α : α ∈ A})

of F , and write N(A) for the norm group NF (
√
A)/FF (

√
A)×. Let Ext••/F,• be a set of field

extensions of F , for some choice of decorators •. Then we define

Ext•,A•/F,• = {E ∈ Ext••/F,• : A ⊆ NE/FE
×}.

Lemma 8.10. Let t be an integer with 0 ≤ t ≤ eF , and let A ⊆ F× be a finitely generated
subgroup. We have a bijection

N(A)22t → ExtA2/F,≤2eF−2t ∪ {F}, u 7→ F (
√
u).

Proof. By Lemma 8.5, the map u 7→ F (
√
u) gives a well-defined bijection

O×
F /O

×2
F → Ext2/F,≤2eF

∪ {F}.

For u ∈ O×
F \ O

×2
F , we claim that the following two statements are true:

(1) F (
√
u) ∈ ExtA2/F,≤2eF

if and only if u ∈ N(A).
(2) F (

√
u) ∈ Ext2/F,≤2eF−2t if and only if u ∈ U (2t)

F F×2.

The first statement follows from symmetry of the quadratic Hilbert symbol, and the second
follows from Corollary 8.6. The result then follows by definition of N(A)22t. □

Lemma 8.11. Let t be an integer with 0 ≤ t ≤ eF , and let A ⊆ F× be a finitely generated
subgroup. Then we have

U
(2eF−2t)
F N(A) = N(A2t).
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Proof. For α ∈ A2t, Corollary 8.6 tells us that vF (dF (
√
α)/F ) ≤ 2eF − 2t, so1 U

(2eF−2t)
F ⊆

NmF (
√
α), and therefore

U
(2eF−2t)
F ⊆ NmF (

√
A2t).

Since A2t ⊆ A, class field theory tells us that

NmF (
√
A) ⊆ NmF (

√
A2t),

and therefore
U

(2eF−2t)
F NmF (

√
A) ⊆ NmF (

√
A2t).

Suppose that
U

(2eF−2t)
F NmF (

√
A) ⊆ G ⊆ NmF (

√
A2t),

for a subgroup G of F×. By class field theory, there is a unique abelian extension L/F such
that NmL = G. We have

F (
√
A2t) ⊆ L ⊆ F (

√
A),

so
L = F (

√
B)

for some subgroup B ⊆ A. Let β ∈ B. Since U
(2eF−2t)
F ⊆ NmL ⊆ NmF (

√
β), we have

vF (dF (
√
β)/F ) ≤ 2eF − 2t, so Corollary 8.6 tells us that β ∈ U (2t)

F F×2, and therefore β ∈ A2t. It
follows that B ⊆ A2t, and therefore L ⊆ F (

√
A2t), so G = NmF (

√
A2t). Therefore, as claimed,

we have
NmF (

√
A2t) = U

(2eF−2t)
F NmF (

√
A).

□

Lemma 8.12. Let t be an integer with 0 ≤ t ≤ eF , and let A ⊆ F× be a finitely generated
subgroup. Then

#N(A)22t = 2qeF−t ·
#A2

2eF−2t

#A2 .

Proof. By definition, we have

N(A)22t =
(
N(A)/F×2

)
∩
(
U

(2t)
F F×2/F×2

)
.

Viewing these groups as F2-vector spaces, it is easy to see that

#N(A)22t =
#(N(A)/F×2) ·#(U

(2t)
F F×2/F×2)

#(U
(2t)
F N(A)/F×2)

=
#(N(A)/F×2) ·#(U

(2t)
F F×2/F×2)

#(N(A2eF−2t)/F×2)

=
[F× : N(A2eF−2t)]

[F× : N(A)]
· [U (2t)

F F×2 : F×2]

=
#A2

2eF−2t

#A2 · [U (2t)
F F×2 : F×2].

where the second equality follows from Lemma 8.11, and the final equality follows from class
field theory. Finally, we claim that

[U
(2t)
F F×2 : F×2] = 2qeF−t.

1Here we are using the well-known fact that, for a quadratic extension E/F , the discriminant valuation
vF (dE/F ) equals the smallest integer c such that U

(c)
F ⊆ NE/FE

×. We will later prove a more general version of
this statement, in Lemma 12.11.
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We consider this final fact well-known; it may be seen e.g. from the proof of [Tun78, Lemma 4.3].
Alternatively, we prove a more general result later in this thesis, in Corollary 12.22. □

Corollary 8.13. Let m1 be an even integer with 0 ≤ m1 ≤ 2eF , and let A ⊆ F× be a finitely
generated subgroup. Then we have

#ExtA2/F,≤m1
= 2qm1/2 ·

#A2
m1

#A2 − 1.

Proof. This is immediate from Lemma 8.10 and Lemma 8.12. □

Corollary 8.14. Let m1 be an even integer with 2 ≤ m1 ≤ 2eF . We have

#Ext↑C4

2/F,≤m1
= (1 + 1m1≤2eF−d(−1)

) · qm1/2 − 1.

Proof. Let A = 〈−1〉 ⊆ F×. Corollary 8.8 tells us that

Ext↑C4

2/F,≤m1
= ExtA2/F,≤m1

,

and it follows by Corollary 8.13 that

Ext↑C4

2/F,≤m1
= 2qm1/2 ·

#A2
m1

#A2 − 1.

Suppose first that −1 ∈ F×2. Then #A2
= #A2

m1
= 1, and the result follows since d(−1) = 0.

Suppose instead that −1 6∈ F×2. Then

#A2
= 2,

and, by Corollary 8.6, we have

#A2
m1

= 1 + 1d(−1)≤2eF−m1 ,

and the result follows. □

Lemma 8.15 (Tunnell). Let F be a 2-adic field with residue field of size q, and let m be an
integer. Then we have

#Ext2/F,m =


1 if m = 0,

2(q − 1)qm/2−1 if m is even and 2 ≤ m ≤ 2eF ,

2qeF if m = 2eF + 1,

0 otherwise.

Proof. This is [Tun78, Lemma 4.3]. □

Proof of Lemma 8.2. The first claim follows from Lemma 8.15. The result for 2 ≤ m1 ≤
2eF follows from Corollary 8.14. By Lemma 8.5, for any quadratic extension E/F , we have
vF (dE/F ) = 2eF + 1 if and only if E = F (

√
α) for some α ∈ F× with vF (α) = 1. Assume that

this is the case. Then Corollary 8.8 tells us that E/F is C4-extendable if and only if α is in the
norm group of F (

√
−1)/F , and the result follows from the fact that O×

F ⊆ NF (
√
−1)/FF (

√
−1)×

if and only if F (
√
−1)/F is unramified. □

Since Lemma 8.2 expresses the number of C4-extendable extensions in terms of the discriminant
d(−1), we will need to know the possible values of d(−1). We state these in the following lemma.
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Lemma 8.16. The constant d(−1) is an even integer with

d(−1) ≤ 2
⌈eF
2

⌉
.

Proof. This follows from Corollary 8.6, along with the trivial fact that

−1 ≡ 1 (mod peFF ).

□

8.3. Counting C4-extensions with a given intermediate field.

Lemma 8.17. Let E = F (
√
d) be a totally ramified C4-extendable extension of F with m1 =

vF (dE/F ), and let 0 ≤ m2 ≤ 4eF be an even integer. The following are equivalent:

(1) The set ExtC4/F
2/E,≤m2

is nonempty.
(2) There is some β ∈ O×

E such that β ≡ 1 (mod p4eF−m2
E ) and NE/F (β) ∈ dF×2.

(3) We have m2 ≥ min{m1 + 2eF , 3m1 − 2}.

Proof. The first two points are equivalent by Corollary 8.6 and Lemma 8.7. The equivalence
of (2) and (3) is essentially [CDO05, Proposition 3.15]. At the start of the proof, the authors
state that their “condition (∗)” is equivalent to (2), and the statement of their proposition is
equivalent to (3), where t = 2eF − m2

2 . Their result is stated for prime ideals of number fields
lying over 2, but it is trivial to check that the proof works for 2-adic fields. □

The following parametrisation is due to Cohen, Diaz y Diaz, and Olivier:

Lemma 8.18 (Parametrisation of C4-extensions). Let E/F be a C4-extendable extension, and
suppose that m2 is an integer such that ExtC4/F

2/E,≤m2
is nonempty. Let ω ∈ E× be such that

E(
√
ω) ∈ ExtC4/F

2/E,≤m2
. If m2 ≤ 2eE, then we have a 2-to-1 surjection(

U
(2eE−2⌊m2

2
⌋)

E E×2 ∩ F×
)
/F×2 → ExtC4/F

2/E,≤m2
, u 7→ E(

√
uω).

If m2 > 2eE, then we have a 2-to-1-surjection

F×/F×2 → ExtC4/F
2/E,≤m2

, u 7→ E(
√
uω).

Proof. By [CDO05, Proposition 1.2], there is a 2-to-1 surjection

F×/F×2 → ExtC4/F
2/E , u 7→ E(

√
uω),

and the result follows from Lemma 8.5 and Corollary 8.6. □

Lemma 8.19. Let F be a 2-adic field and let E/F be a quadratic extension. The following two
statements are true:

(1) If E/F is unramified, then for integers t with 0 ≤ t ≤ eF , we have

U
(2t)
E E×2 ∩ F× = U

(2t)
F F×2.
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(2) If vF (dE/F ) = m1 for a positive integer m1, and t is an integer with 0 ≤ t ≤ 2eF − m1
2 ,

then we have

(
U

(2t)
E E×2 ∩ F×)/F×2 =


F×/F×2 if t ≤ m1

2 − 1,

U

(
2

⌈
t−m1

2
2

⌉)
F F×2/F×2 if t ≥ m1

2 .

Proof. Claim (1) is essentially [CDO05, Proposition 3.6]. We now prove Claim (2). The case
t = 0 is obvious. For t ≥ 1, the result is essentially [CDO05, Proposition 3.11], combined with
the fact that

U
(2c)
F F×2 = U

(2c+1)
F F×2

for all nonnegative integers c with 0 ≤ c < eF . This fact is stated in the proof of [Tun78,
Lemma 4.3], and we will also prove it later ourselves, in Corollary 12.21. □

Corollary 8.20. Let E/F be a totally ramified C4-extendable extension such that the dis-
criminant valuation m1 = vF (dE/F ) is even. Let m2 ≤ 4eF be an even integer and write
n0 := min{m1 + 2eF , 3m1 − 2}. Then we have

#ExtC4/F
2/E,≤m2

=


0 if m2 < n0,

q⌊
m1+m2

4
⌋ if n0 ≤ m2 ≤ 4eF −m1,

2qeF if m2 ≥ max{4eF −m1 + 2, n0}.

Proof. Lemma 8.17 deals with the case m2 < n0. Let n0 ≤ m2 ≤ 4eF . By Lemma 8.17, the set
ExtC4/F

2/E,≤m2
is nonempty, and the result follows from Lemma 8.18 and Lemma 8.19. □

Proof of Lemma 8.3. By Lemma 8.15, either m1 = 2eF + 1 or m1 is even with 2 ≤ m1 ≤ 2eF .
The case where m1 is even follows easily from Corollary 8.20. For the case with m1 odd, suppose
that m1 = 2eF + 1. Then by Lemma 8.5 we have E = F (

√
d) for d ∈ F× with vF (d) = 1.

By Lemma 8.7, each C4-extension L/F extending E has L = E(
√
α) for some α ∈ E× with

vF (NE/F (α)) odd. It follows that vE(α) is odd, so vE(dL/E) = 4eF+1 by Lemma 8.5. Therefore,

ExtC4/F
2/E = ExtC4/F

2/E,4eF+1,

so the result follows from Lemma 8.18. □

Proof of Corollary 8.4. Suppose that L/F is a C4-extension with intermediate quadratic field
E. By the tower law for discriminant, we have

vF (dL/F ) = 2vF (dE/F ) + f(E/F ) · vE(dL/E).

So if L ∈ ÉtC4/F
(14)/F,m with m1 = vF (dE/F ) and m2 = vE(dL/E), then m = 2m1 + m2, and

Lemmas 8.2 and 8.3 tell us that either (m1,m2) = (2eF + 1, 4eF + 1) or m1 and m2 are both
even with 2 ≤ m1 ≤ 2eF and 4 ≤ m2 ≤ 4eF . It follows that either m is even with 8 ≤ m ≤ 8eF
or m = 8eF + 3. If m = 8eF + 3, then the result follows from Lemmas 8.2 and 8.3.

Now consider the case where 8 ≤ m ≤ 8eF and m is even. For positive integers m1 and m2,
write ΣC4

m1,m2
for the set of totally ramified C4-extensions L/F such that vF (dE/F ) = m1 and

vE(dL/E) = m2. By the discussion above, we have

#ÉtC4/F
(14)/F,m =

∑
2≤m1≤2eF
m1 even

#ΣC4
m1,m−2m1

.
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Let 2 ≤ m1 ≤ 2eF be even. By Lemmas 8.2 and 8.3, whenever Next(m1) 6= 0 we have

#ΣC4
m1,m−2m1

Next(m1)
=



qm1−1 if m1 =
m+2
5 and m1 ≤ eF ,

q⌊
m−m1

4
⌋ − q⌊

m−m1−2
4

⌋ if m− 4eF ≤ m1 ≤ min{m5 , eF },
qeF if m1 = m− 4eF − 2 and m1 ≤ eF ,
2qeF if eF < m1 ≤ 2eF and m1 =

m−2eF
3 ,

0 otherwise.

=



q
m−3

5 if m1 =
m+2
5 and 8 ≤ m ≤ 5eF − 2,

q⌊
m−m1

4
⌋ − q⌊

m−m1−2
4

⌋ if m− 4eF ≤ m1 ≤ min{m5 , eF },
qeF if m1 = m− 4eF − 2 and 4eF + 4 ≤ m ≤ 5eF + 2,

2qeF if m1 =
m−2eF

3 and 5eF < m ≤ 8eF ,

0 otherwise.
To finish the proof, we just need to observe that

q⌊
m−m1

4
⌋ − q⌊

m−m1−2
4

⌋ =

{
q

m−m1
4

−1(q − 1) if m1 ≡ m (mod 4),

0 if m1 6≡ m (mod 4).

□

Proof of Theorem 5.6. The possible values of m come from Corollary 8.4. The result for m =

8eF + 3 is immediate from Corollary 8.4. Now consider the case where m is even and 8 ≤ m ≤
8eF . The first, third, and fourth items of Corollary 8.4 respectively are equal to

(1) 18≤m≤5eF−2 · 1m≡3 (mod 5) · q
3m−14

10 (1 + 1m≤10eF−5d(−1)−2)(q − 1− 1m=10eF−5d(−1)+8).
(2) 14eF+4≤m≤5eF+2 · q

m
2
−eF−2(1 + 1m≤6eF−d(−1)+2)(q − 1− 1m=6eF−d(−1)+4).

(3) 15eF+3≤m≤8eF ·1m≡2eF (mod 3) · 2q
m+4eF

6
−1(1+1m≤8eF−3d(−1)

)(q− 1−1m=8eF−3d(−1)+6).

Lemma 8.16 turns these into the first three points of Theorem 5.6. It remains to compute the
value of ∑

max{2,m−4eF }≤m1≤min{m
5
,eF }

m1≡m (mod 4)

q
m−m1

4
−1(q − 1)Next(m1).

For such m1, we have

Next(m1) =


2q

m1
2

−1(q − 1) if m1 ≤ 2eF − d(−1),

q
m1
2

−1(q − 2) if m1 = 2eF − d(−1) + 2,

q
m1
2

−1(q − 1) if m1 ≥ 2eF − d(−1) + 4.

Lemma 8.16 tells us that 2eF − d(−1) + 2 > eF , so the sum is actually∑
max{2,m−4eF }≤m1≤min{m

5
,eF }

m1≡m (mod 4)

2q
m+m1

4
−2(q − 1)2.

For integers l and u, the substitution m1 = −m+ 4k makes it easy to see that∑
l≤m1≤u

m1≡m (mod 4)

q
m+m1

4 = 1l≤u ·
qb+1 − qa

q − 1
,
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where a = dm+l
4 e and b = bm+u

4 c. In this case, we have l = max{2,m − 4eF } and u =

min{eF , m5 }, which gives

a =
⌈
max

{m+ 2

4
,
m

2
− eF

}⌉
, b =

⌊
min

{m+ eF
4

,
3m

10

}⌋
.

Finally, it is easy to see that l ≤ u if and only if 10 ≤ m ≤ 5eF . In that case, we have b = b3m10 c,
so ∑

max{2,m−4eF }≤m1≤min{eF ,m
5
}

m1≡m (mod 4)

q
m+m1

4 = 110≤m≤5eF ·
q⌊

3m
10

⌋+1 − q⌈max{m+2
4

,m
2
−eF }⌉

q − 1
,

and the result follows. □

Proof of Corollary 5.11. Theorem 5.6 and Lemma 8.16 tell us that the mass is the sum of the
following quantities:

(1)
1

2
·

∑
8≤m≤5eF−2

m≡8 (mod 10)

q−
7m+14

10 (q − 1).

(2)
1

2
·

∑
4eF+4≤m≤5eF+2

m even

q−
m
2
−eF−2(q − 1).

(3) (a) ∑
5eF+3≤m≤8eF−3d(−1)

m≡2eF (mod 6)

q
4eF−5m

6
−1(q − 1).

(b)
1d(−1)≥2 ·

1

2
· q−6eF+ 5

2
d(−1)−6(q − 2).

(c)
1

2
·

∑
8eF−3d(−1)+12≤m≤8eF

m≡2eF (mod 6)

q
4eF−5m

6
−1(q − 1).

(4) (a)
1

2
(q − 1)q−1

∑
10≤m≤5eF

m even

q⌊−
7m
10

⌋.

(b)
−1

2
(q − 1)q−2

∑
10≤m≤5eF

m even

qmax{⌈−3m+2
4

⌉,−m
2
−eF }.

(5) 
q−6eF−3 if −1 ∈ F×2,
1
2q

−6eF−3 if F (
√
−1)/F is quadratic and totally ramified,

0 otherwise.

We address these one by one.
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(1) Making the substitution m = 10k + 8, we have∑
8≤m≤5eF−2

m≡8 (mod 10)

q−
7m+14

10 = 1eF≥2 ·
1− q−7⌊ eF

2
⌋

q7 − 1
,

so the contribution to the mass is
1

2
· 1eF≥2 ·

(q − 1)(1− q−7⌊ eF
2
⌋)

q7 − 1
,

and we can omit the indicator function since eF = 1 gives 1− q−7⌊ eF
2
⌋ = 0.

(2) Making the substitution m = 2k, it is easy to see that∑
4eF+4≤m≤5eF+2

m even

q−
m
2 = 1eF≥2 ·

q−2eF−1 − q−⌊ 5eF+2

2
⌋

q − 1
,

so the contribution is
1

2
· (q−3eF−3 − q−⌊ 7eF+6

2
⌋) =

1

2
· q−3eF−3(1− q−⌊ eF

2
⌋),

where we omit the indicator function since eF = 1 gives q−2eF−1 − q−⌊ 5eF+2

2
⌋ = 0.

(3) (a) The substitution m = 2eF + 6k gives∑
5eF+3≤m≤8eF−3d(−1)

m≡2eF (mod 6)

q
4eF−5m

6 = 1d(−1)<eF

q−5⌊ eF
2
⌋−eF − q

5
2
d(−1)−6eF

q5 − 1
,

so the contribution is

1d(−1)<eF ·
(q − 1)(q−5⌊ eF

2
⌋−eF−1 − q

5
2
d(−1)−6eF−1)

q5 − 1
.

(b) This is already in closed form.
(c) The substitution m = 2eF + 6k gives∑

8eF−3d(−1)+12≤m≤8eF
m≡2eF (mod 6)

q
4eF−5m

6 = 1d(−1)≥4 ·
q

5
2
d(−1)−6eF−5 − q−6eF

q5 − 1
.

Therefore, the contribution is

1

2
· 1d(−1)≥4 ·

(q − 1)(q
5
2
d(−1)−6eF−6 − q−6eF−1)

q5 − 1
.

(4) (a) We need to compute

∑
10≤m≤5eF

m even

q⌊
−7m
10

⌋ =

⌊ 5eF
2

⌋∑
k=5

q−⌈ 7k
5
⌉.

For an integer b ≥ 1, it is easy to see that
5b∑
k=5

q−⌈ 7k
5
⌉ =

(q−6 − q1−7b)(q6 + q4 + q3 + q + 1)

q7 − 1
+ q−7b.
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If eF is even, then we have
⌊ 5eF

2
⌋∑

k=5

q−⌈ 7k
5
⌉ =

5· eF
2∑

k=5

q−⌈ 7k
5
⌉

= 1eF≥2 ·
((q−6 − q1−

7eF
2 )(q6 + q4 + q3 + q + 1)

q7 − 1
+ q−

7eF
2

)
.

If eF is odd, then we have
⌊ 5eF

2
⌋∑

k=5

q−⌈ 7k
5
⌉ =

( 5· eF−1

2∑
k=5

q−⌈ 7k
5
⌉
)
+ q−⌈ 7

5
· 5eF−3

2
⌉ + q−⌈ 7

5
· 5eF−1

2
⌉

= 1eF≥2 ·
((q−6 − q1−7· eF−1

2 )(q6 + q4 + q3 + q + 1)

q7 − 1
+ q−7· eF−1

2

+ q−7· eF−1

2
−2 + q−7· eF−1

2
−3
)
.

In other words, the sum
∑⌊ 5eF

2
⌋

k=5 q−⌈ 7k
5
⌉ is equal to

1eF≥2 ·
((q−6 − q1−7⌊ eF

2
⌋)(q6 + q4 + q3 + q + 1)

q7 − 1
+ q−7⌊ eF

2
⌋(1 + 12∤eF (q

−2 + q−3))
)
,

and therefore we have a contribution of

1eF≥2 ·
1

2
(q − 1)

((q−7 − q−7⌊ eF
2
⌋)(q6 + q4 + q3 + q + 1)

q7 − 1
+ q−7⌊ eF

2
⌋−1(1 + 12∤eF (q

−2 + q−3))
)
.

(b) We need to evaluate
⌊ 5eF

2
⌋∑

k=5

qmax{⌈−3k+1
2

⌉,−k−eF } =

2eF∑
k=5

q⌈
−3k+1

2
⌉ +

⌊ 5eF
2

⌋∑
k=2eF+1

q−k−eF .

We have
2eF∑
k=5

q⌈
−3k+1

2
⌉ = 1eF≥3 ·

(q2 + q)(q−6 − q−3eF )

q3 − 1
,

so the first half of the sum gives a contribution of

−1eF≥2 ·
1

2
· (q − 1)(q + 1)(q−7 − q−3eF−1)

q3 − 1
.

We also have
⌊ 5eF

2
⌋∑

k=2eF+1

q−k−eF = 1eF≥2 ·
q−3eF − q−⌊ 5eF

2
⌋−eF

q − 1
,

so we also get a contribution of

−1

2
(q−3eF−2 − q−⌊ 7eF

2
⌋−2).

□
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9. The case G = D4

For G ∈ {V4, C4, D4} and L ∈ ÉtG/F
(14)/F , let

Ext↪→L
2/F := {E ∈ Ext2/F : ∃F -morphism E ↪→ L}.

Let L ∈ ÉtG/F
(14)/F and E ∈ Ext↪→L

2/F . There is a unique embedding E ↪→ L, so we may naturally
view L as an extension of E. We define an F -twist of L/E to be an element of the set

TwistF (L/E) = {L′ ∈ Ext2/E : ∃F -isomorphism L′ ∼= L}.

Lemma 9.1. Let G ∈ {V4, C4, D4}. The following two statements are true:

(1) For L ∈ ÉtG/F
(14)/F , we have

#Ext↪→L
2/F =

{
1 if G ∈ {C4, D4},
3 if G = V4.

(2) For L ∈ ÉtG/F
(14)/F and E ∈ Ext↪→L

2/F , we have

#TwistF (L/E) =

{
1 if G ∈ {C4, V4},
2 if G = D4.

Proof. Claim (1) is obvious. For Claim (2), write E = F (
√
d) and L = E(

√
α), where d ∈ F

and α ∈ E. Let L′ ∈ TwistF (L/E). Then there is a F -isomorphism ϕ : E(
√
α) → L′. We will

view E as a subset of both extensions L and L′, even though L and L′ are not necessarily inside
the same algebraic closure of E.

The element ϕ(
√
α) ∈ L′ has the same minimal polynomial over F as

√
α ∈ L, so either

L′ ∼= E(
√
α) or L′ ∼= E(

√
α), where α is the conjugate of α over F . It is easy to see that both

these choices for L′ are in TwistF (L/E), so

TwistF (L/E) = {E(
√
α), E(

√
α)}.

By elementary Galois theory, we have E(
√
α) 6∼= E(

√
α) over E if and only if G = D4. □

For an integer m, define an m-tower to be a pair (E,L), where E ∈ Ext2/F and L ∈ Ext2/E ,
such that L/F is a totally ramified extension with vF (dL/F ) = m. Write Towm for the set of
m-towers. There is a natural surjection

Φm : Towm → ÉtC4/F
(14)/F,m ∪ ÉtV4/F

(14)/F,m ∪ ÉtD4/F
(14)/F,m, (E,L) 7→ L.

Lemma 9.2. Let G ∈ {C4, V4, D4}, let m be an integer, and let L0 ∈ ÉtG/F
(14)/F,m. The fibre

Φ−1
m (L0) has size 

1 if G = C4,

2 if G = D4,

3 if G = V4.

Proof. It is easy to see that

Φ−1
m (L0) = {(E,L) : E ∈ Ext↪→L0

2/F , L ∈ TwistF (L0/E)},

and the result follows from Lemma 9.1. □
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Corollary 9.3. For every integer m, we have

#ÉtC4/F
(14)/F,m + 2 ·#ÉtD4/F

(14)/F,m + 3 ·#ÉtV4/F
(14)/F,m = #Towm.

Proof. This is immediate from Lemma 9.2. □

Lemma 9.4. If Towm is nonempty, then one of the following three statements is true:

(1) m is an even integer with 6 ≤ m ≤ 8eF + 2.
(2) m ≡ 1 (mod 4) and 4eF + 5 ≤ m ≤ 8eF + 1.
(3) m = 8eF + 3.

For even m with 6 ≤ m ≤ 8eF + 2, we have

#Towm = 4(q − 1)q
m
2
−2
(
1m≥4eF+4 · q−eF + 1m≤8eF ·

(
qmin{0,eF+1−⌈m

4
⌉} − q−min{⌊m−2

4
⌋,eF })).

For m ≡ 1 (mod 4) with 4eF + 5 ≤ m ≤ 8eF + 1, we have

#Towm = 4(q − 1)qeF+m−1
4

−1.

We also have
#Tow8eF+3 = 4q3eF .

Proof. Let m be an integer such that Towm is nonempty. Let (E,L) ∈ Towm, and let m1 =

vF (dE/F ) and m2 = vE(dL/E), so that m = 2m1 +m2 by the tower law for discriminant. By
Lemma 8.15, either m1 is even with 2 ≤ m1 ≤ 2eF , or m1 = 2eF + 1. Similarly, either m2 is
even with 2 ≤ m2 ≤ 4eF , or m2 = 4eF +1. If m2 is even, then m is even and 6 ≤ m ≤ 8eF +2.
If m2 = 4eF + 1 and m1 is even, then m ≡ 1 (mod 4) and 4eF + 5 ≤ m ≤ 8eF + 1. Finally, if
m1 and m2 are both odd, then m = 8eF + 3. Now that we have identified the possibilities, we
can enumerate Towm in each case.

Suppose first that m is even with 6 ≤ m ≤ 8eF + 2. Then each (E,L) ∈ Towm has m2 even, so
#Towm is the sum of the following two quantities:

(1) ∑
max{2,m

2
−2eF }≤m1≤min{m

2
−1,2eF }

m1 even

∑
E∈Ext2/F,m1

#Ext2/E,m−2m1
.

(2)
1m≥4eF+4 ·

∑
E∈Ext2/F,2eF+1

#Ext2/E,m−4eF−2.

By Lemma 8.15, the first of these quantities is equal to

#Ext2/E,m−2m1
=

∑
max{2,m

2
−2eF }≤m1≤min{m

2
−1,2eF }

m1 even

4(q − 1)2q
m−m1

2
−2

= 4(q − 1)2q
m
2
−2

b∑
k=a

q−k

= 4(q − 1)2q
m
2
−2 · 1a≤b ·

q1−a − q−b

q − 1

= 16≤m≤8eF · 4(q − 1)q
m
2
−2(q1−a − q−b),
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where
a := max

{
1,
⌈m
4

⌉
− eF

}
, b := min

{⌊m− 2

4

⌋
, eF

}
.

For m = 2, 4 we have q1−a− q−b = 0, so we may drop the “6 ≤ m” from the indicator function,
giving

#Ext2/E,m−2m1
= 1m≤8eF · 4(q − 1)q

m
2
−2(q1−a − q−b).

Similarly, the second quantity is equal to

1m≥4eF+4 · 4(q − 1)q
m
2
−eF−2,

and we obtain the desired expression for #Towm. Now suppose that m ≡ 1 (mod 4) and
4eF + 5 ≤ m ≤ 8eF + 1. Then each (E,L) ∈ Towm has m2 = 4eF + 1 and m1 =

m−1
2 − 2eF , so

Lemma 8.15 gives us

#Towm =
∑

E∈Ext
2/F,m−1

2 −2eF

#Ext2/E,4eF+1

= 4(q − 1)qeF+m−1
4

−1.

Finally, if m = 8eF + 3, then each (E,L) ∈ Towm has m1 = 2eF + 1 and m2 = 4eF + 1, so

#Towm =
∑

E∈Ext2/F,2eF+1

#Ext2/E,4eF+1

= 4q3eF ,

by Lemma 8.15. □

Proof of Theorem 5.7. This is immediate from Corollary 9.3 and Lemma 9.4. □

Lemma 9.5. We have
1

4
·
∑
m

q−m#Towm =
1

q2 + q + 1
(q−3eF−3 + q−3eF−1 + q−2).

Proof. Lemma 9.4 tells us that 1
4

∑
m q

−m#Towm is the sum of the following four quantities:

(1)
∑

4eF+4≤m≤8eF+2
m even

(q − 1)q−
m
2
−eF−2.

(2)
∑

6≤m≤8eF
m even

(q − 1)qmin{0,eF+1−⌈m
4
⌉}−m

2
−2.

(3) −
∑

6≤m≤8eF
m even

(q − 1)q−
m
2
−2−min{⌊m−2

4
⌋,eF }.

(4)
∑

4eF+5≤m≤8eF+1
m≡1 (mod 4)

(q − 1)qeF+−3m−1
4

−1.

(5) q−5eF−3.

We can simplify this as the sum of the following quantities:

(1) (q − 1)q−eF−2 ·
∑4eF+1

k=2eF+2 q
−k.

(2) (a) (q − 1)q−2 ·
∑2eF+2

k=3 q−k.
(b) (q − 1)qeF−1 ·

∑4eF
k=2eF+3 q

−⌈ 3k
2
⌉.

(3) (a) −(q − 1)q−eF−2 ·
∑4eF

k=2eF+1 q
−k.

(b) −(q − 1)q−2 ·
∑2eF

k=3 q
−⌊ 3k−1

2
⌋.

(4) (q − 1)qeF−2 ·
∑2eF

k=eF+1 q
−3k.

(5) q−5eF−3.
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We put the pieces together to obtain the contributions to the final sum:

• (1) and (3)(a) cancel to give a contribution of

(q − 1)(q−5eF−3 − q−3eF−3).

• (2)(a) simplifies to a contribution of

q−4 − q−2eF−4.

• We have
4eF∑

k=2eF+3

q−⌈ 3k
2
⌉ =

q + 1

q3 − 1
(q−3eF−3 − q−6eF ),

so (2)(b) gives a contribution of
q + 1

q2 + q + 1
(q−2eF−4 − q−5eF−1).

• We have
2eF∑
k=3

q−⌊ 3k−1
2

⌋ =
q + 1

q3 − 1
(q−2 − q1−3eF ),

so (3)(b) gives a contribution of

− q + 1

q2 + q + 1
(q−4 − q−1−3eF ).

• We have
2eF∑

k=eF+1

q−3k =
q−3eF − q−6eF

q3 − 1
,

so (4) gives a contribution of
1

q2 + q + 1
(q−2eF−2 − q−5eF−2).

• Finally, (5) obviously gives a contribution of

q−5eF−3.

So far, we have shown that 1
4

∑
m q

−m#Towm is the sum of the following six quantities:

(A) (q − 1)(q−5eF−3 − q−3eF−3).
(B) q−4 − q−2eF−4.
(C) q+1

q2+q+1
(q−2eF−4 − q−5eF−1).

(D) − q+1
q2+q+1

(q−4 − q−3eF−1).
(E) 1

q2+q+1
(q−2eF−2 − q−5eF−2).

(F) q−5eF−3.

The sum of (C), (D) and (E) is

q−2eF−4 − q−5eF−2 +
q + 1

q2 + q + 1
(q−3eF−1 − q−4),

so we have shown that
∑

m q
−m#Towm is the sum of the following four quantities:

(1) (q − 1)(q−5eF−3 − q−3eF−3).
(2) q−4 − q−2eF−4.
(3) q−2eF−4 − q−5eF−2 + q+1

q2+q+1
(q−3eF−1 − q−4).
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(4) q−5eF−3.

It is easy to check that this sum simplifies to
1

q2 + q + 1
(q−3eF−3 + q−3eF−1 + q−2),

so we are done. □

Proof of Corollary 5.12. This follows easily from Corollary 9.3, Lemma 9.5, and the definition
of mass. □
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Part 4. Asymptotic counts for generic extensions with
prescribed norms

10. Introduction

As we saw in Part 2, the community has devoted much attention to counting families of Sn-n-ic
extensions of a fixed base field k. One way of obtaining such a family is to “prescribe” certain
norms. That is, we choose elements α1, . . . , αr ∈ k× and count Sn-n-ic extensions K/k such that
αi ∈ NK/kK

× for every i. Equivalently, we choose a finitely generated subgroup A ⊆ k× and
count Sn-n-ic extensions K/k with A ⊆ NK/kK

×. The latter formulation is more convenient
to work with, so we will use it from now on.

Write Nk,n(X;A) for the number of Sn-n-ic extensions K/k such that A ⊆ NK/kK
× with

Nm(disc(K/k)) ≤ X. It turns out ([Vos88, Corollary to Theorem 4]) that an Sn-n-ic extension
K/k has A ⊆ NK/kK

× if and only if

A ⊆ NKv/kvK
×
v

for every place v of k, where Kv is the completion of K over v, as in Definition 3.29. For each
place v of k, define

ÉtAn/kv =
{
L ∈ Étn/kv : A ⊆ NL/kvL

×}.
Then

(
ÉtAn/kv

)
v

is a collection of local conditions, in the sense of Definition 3.31, and we will
see (Lemma 11.3) that it is in fact acceptable, so that we may apply Theorem 3.53 and Con-
jecture 3.54 to prove results for n ∈ {3, 4, 5} and make conjectures for n ≥ 6. In the rest of
Section 10, we state the key results of Part 4, postponing all proofs.

10.1. Qualitative results. In Section 11, we will start by exploring our problem in as much
generality as possible, namely for all n ≥ 3. We will obtain qualitative statements for all
n, which are theorems for n ∈ {3, 4, 5}, and conjectures contingent on the Malle–Bhargava
Heuristics (i.e. Conjecture 3.54) for n ≥ 6. Specialising to the known cases, n ∈ {3, 4, 5}, we
isolate the following headline result:

Theorem 10.1. Let n ∈ {3, 4, 5}. For every finitely generated subgroup A ⊆ k×, we have

0 < lim
X→∞

Nk,n(X;A)
Nk,n(X)

≤ 1,

with equality if and only if A ⊆ k×n.

Corollary 10.2. Let n ∈ {3, 4, 5}. For every finitely generated subgroup A ⊆ k×, there are
infinitely many Sn-n-ic extensions K/k with A ⊆ NK/kK

×.

For n ≥ 6, there is a natural conjectural analogue of Theorem 10.1. This analogue is a little
too fiddly to state in this introductory section, but we refer the reader to Theorems 11.10 and
11.12.

Let us unpack the content of Theorem 10.1. It tells us that, for n ∈ {3, 4, 5}, any finitely
generated subgroup A ⊆ k× is contained in the norm group of a positive proportion of Sn-n-ic
extensions. Moreover, it tells us that A can only be contained in 100% of such norm groups if
it is contained in every such norm group.
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Remark 10.3. In the special case where A is generated by one element, Corollary 10.2 can
be obtained by classical methods, using Hilbert’s irreducibility theorem. See [FLN22, Exam-
ple 1.13] for details. For general subgroups A, ours is the first proof we are aware of.

10.2. Quantitative results: mass computations. As discussed above, our methods rely
upon the fact that, for Sn-n-ic K/k, we have A ⊆ NK/kK

× if and only if K satisfies the
acceptable family

(
ÉtAn/kv

)
v

of local conditions. Thus, by the Malle–Bhargava heuristics, we
have (certainly for n ∈ {3, 4, 5} and conjecturally for n ≥ 6)

lim
X→∞

Nk,n(X;A)
X

=
1

2
· Ress=1 ζk(s) ·

∏
v∈Πk

m
(
ÉtAn/kv

)
,

where the product is over all places of k, both finite and infinite. Thus, we may express this
density explicitly as an Euler product if we can find the mass m

(
ÉtAn/kv

)
for each place v of k.

We will study these masses in the following two cases:

(1) n = ` is an odd prime.
(2) n = 4.

Our motivation for considering these two cases is that they include each of n = 3, n = 4, and
n = 5, which are the degrees for which the Malle–Bhargava heuristics are known (Theorem 3.53).

We start by stating the masses at archimedean places, which are easy to compute for all n:

Theorem 10.4. Let v be an archimedean (i.e. infinite) place of k, and let f : k → C be the
corresponding embedding. The following two statements are true:

• If f is a real embedding, then

m
(
ÉtAn/kv

)
=


∑⌊n

2
⌋

s=0
1

s!(n−2s)!2s if f(α) > 0 for all α ∈ A,∑⌈n
2
⌉−1

s=0
1

s!(n−2s)!2s otherwise.

• If f is a complex embedding, then

m
(
ÉtAn/kv

)
=

1

n!
.

For finite primes p, we will state the pre-masses m̃(ÉtAn/kp) instead of the corresponding masses.
This is just for notational convenience, as it is trivial to pass from pre-mass to mass. Our next
result, Theorem 10.8, states the masses explicitly whenever n = ` for an odd prime `. Before
we can state the result, we need a few definitions. For a p-adic field F , a finitely generated
subgroup A ⊆ F×, and a positive integer n, define

An
= AF×n/F×n.

For each nonnegative integer t, write

An
t = An ∩

(
U

(t)
F F×n/F×n

)
,

where U (t)
F is the tth term of the unit filtration, given by U

(t)
F = 1 + ptF , and we adopt the

convention that U (0)
F = O×

F .

Remark 10.5. In the special case n = 2, we already saw the groups An and An
t in Section 8.2.

Indeed, in Section 12.2, we will generalise the results of Section 8.2, using more sophisticated
proof techniques.



89

Definition 10.6. Let F be a p-adic field, let n be a positive integer, and let A be a subgroup
of F×/F×n. A stratified generating set for A is a collection (Ai)i≥0, indexed by nonnegative
integers, where each Ai is a subset of F×, such that the following three conditions hold:

(1) For each i and each α ∈ Ai, we have vF (α) = i.
(2) For α, β ∈

⋃
iAi, if α 6= β then [α] 6= [β] in F×/F×n.

(3) The image of
⋃

iAi under the natural map F× → F×/F×n is a minimal generating set
for the group A.

Lemma 10.7. Let F be a p-adic field, let n be a positive integer, and let A be a subgroup of
F×/F×n. Write D for the set of proper divisors of n. There exists a stratified generating set
(Ai)i≥0 for A, such that Ai = ∅ unless i = 0 or i ∈ D.

Proof. Let (Ai)i≥0 be any stratified generating set for A (it is clear that such an object exists
and is finite). Suppose that there is at least one element x ∈

⋃
iAi such that vF (x) 6= 0 and

vF (x) 6∈ D. We will show that (Ai)i≥0 can be replaced by another stratified generating set with
strictly fewer such elements, thus proving the result by induction.

Without loss of generality, we may assume that 1 ≤ vF (x) < n. Let a = vF (x), and let g be
the greatest common divisor of a and n. By Bézout’s Lemma, there exist integers k and l such
that ka + ln = g. Let a′ = a/g and n′ = n/g, so that a′ and n′ are coprime. It is easy to
see that vF (xk) ≡ g (mod n) and vF (x

n′
) ≡ 0 (mod n). Thus, there are elements β1, β2 ∈ F×

with [x]k = [β1] and [x]n
′
= [β2] in F×/F×n, such that vF (β1) = g and vF (β2) = 0. It is

easy to see that k and n′ are coprime, so another application of Bézout’s Lemma tells us that
〈[x]〉 = 〈[β1], [β2]〉, and the result follows. □

Lemma 10.7 tells us that when n is prime, any subgroup of F×/F×n has a stratified generating
set of the form (A0, A1). Similarly, in the case n = 4, any subgroup of F×/F×4 has a stratified
generating set of the form (A0, A1, A2). We will use these special cases without reference
throughout the rest of the thesis.

We are now ready to state our main result for the case where n = ` is an odd prime:

Theorem 10.8. Let p be a rational prime, let F be a p-adic field with residue field of size q,
and let ` be a rational prime. Let A ⊆ F× be a finitely generated subgroup. Let (A0, A1) be a
stratified generating set for A`. The following four statements are true:

(1) We have

m̃
(
ÉtA`/F

)
= m̃

(
ÉtA(`)/F

)
+ m̃

(
ÉtA(1ℓ)/F

)
+
(
1− `−1

)
+

`−2∑
d=1

Part(d, `− d)
qd

,

where Part(d,m) is the partition function defined in Section 11.
(2) We have

m̃
(
ÉtA(`)/F

)
=

{
1
` if A1 = ∅,
0 otherwise.

(3) Suppose that p 6= `. Then we have

m̃
(
ÉtA(1ℓ)/F

)
=


1

qℓ−1 if q 6≡ 1 (mod `) or A ⊆ F×`,
1

`qℓ−1 if q ≡ 1 (mod `) and A0 = ∅ and #A1 = 1,

0 otherwise.
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(4) Suppose that p = `. Then we have

m̃
(
ÉtA(1p)/F

)
=

1

qp−1
− m̃

(
ÉtCp/F

(1p)/F

)
+ m̃

(
ÉtCp/F,A

(1p)/F

)
.

The two missing ingredients, m̃
(
ÉtCp/F

(1p)/F

)
and m̃

(
ÉtCp/F,A

(1p)/F

)
, are as follows. We have

m̃
(
ÉtCp/F

(1p)/F

)
=
q − 1

p− 1
·q−2·

(
1eF≥p−1·A

(⌈ peF
p− 1

⌉)
+1(p−1)∤eF ·B

(⌈ peF
p− 1

⌉))
+1µp⊆F ·q−(p−1)(eF+1),

where A and B are the explicit functions defined in Appendix B, and

m̃
(
ÉtCp/F,A

(1p)/F

)
= 1µp⊆F ·1Ap

peF
p−1

=0 ·
q−(p−1)(eF+1)

#Ap +
1

(p− 1)#Ap ·q−2 ·
∑

1≤c≤⌈ peF
p−1

⌉
c ̸≡1 (mod p)

q ·#Ap
c −#Ap

c−1

q
(p−2)c+⌊ c−2

p
⌋

.

Since the sizes #Ap
c can all be different, the series for m̃

(
ÉtCp/F,A

(1p)/F

)
does not have a closed

form. In the special case where A is generated by one element, we can write down such a closed
form, which is stated in Theorem 12.37. Along the way, we find the exact number of extensions
L ∈ ÉtCp/F

(1p)/F with each possible discriminant, which we state in Theorem 12.24.

We now turn our attention to the final case of particular interest, n = 4. When p is a prime of
k not lying over 2, the pre-masses m̃

(
ÉtA4/kp

)
are described explicitly by the following result:

Theorem 10.9. Let p be a rational prime and let F be a p-adic field with residue field of size
q. For any choice of p, we have

m̃
(
ÉtA4/F

)
=

5q2 + 8q + 8

8q2
+

∑
σ∈{(4),(22),(1212),(22),(14)}

m̃
(
ÉtAσ/F

)
.

Moreover, the following statements are true:

(1) For any choice of p, we have

m̃
(
ÉtA(4)/F

)
=

{
1
4 if 4 | vF (α) for all α ∈ A,
0 otherwise,

and

m̃
(
ÉtA(22)/F

)
=

{
1
8 if 2 | vF (α) for all α ∈ A,
0 otherwise.

(2) Suppose that p 6= 2. Let (A0, A1) be a stratified generating set for A2. Then we have

m̃
(
ÉtA(1212)/F

)
=


1

2q2
if A ⊆ F×2,

3
8q2

else if A0 = ∅ and #A1 = 1,
1

4q2
otherwise.

(3) Suppose that p 6= 2. Let (A0, A1, A2) be a stratified generating set for A4. Then we have

m̃
(
ÉtA(22)/F

)
=


1

2q2
if A0 ⊆ F×2 and A1 = A2 = ∅,

1
4q2

else if A0 ⊆ F×2 and A1 = ∅ and αi
αj
∈ F×2 for all αi, αj ∈ A2,

0 otherwise.
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If q ≡ 1 (mod 4), then we have

m̃
(
ÉtA(14)/F

)
=


1
q3

if A ⊆ F×4,
1

2q3
if A0 = A1 = ∅ and #A2 = 1 and A2 ⊆ F×2,

1
4q3

if A0 = A2 = ∅ and #A1 = 1,

0 otherwise.

If q ≡ 3 (mod 4), then

m̃
(
ÉtA(14)/F

)
=


1
q3

if A ⊆ F×2,
1

2q3
if A0 = A2 = ∅ and #A1 = 1,

0 otherwise.

So our problem is completely solved for p ∤ 2. Since there are only finitely many primes p | 2,
it suffices to have a practicable method for computing m̃

(
ÉtA4/kp

)
for each such p. In principle,

this can be done by brute-force, since there are finitely many isomorphism classes of quartic
étale algebras over kp, and we can find all of them e.g. by adapting the methods of [PR01].
Unfortunately, [Kra66, Theorem 2] tells us that #Ét4/kp is on the order of 23[kp:Q2], which
becomes very large very quickly, so the brute-force approach is unfeasible in many cases.

For p | 2, Theorem 10.9 tells us the value of m̃
(
ÉtAσ/kp

)
for all σ 6∈ {(1212), (22), (14)}, so it

remains to address these three cases. For σ = (1212) and σ = (22), we state the required masses
in Theorems 10.10 and 10.11, respectively.

For each integer m, define the explicit function N ̸=
(1212)

by

N ̸=
(1212)

(m) =



2(q − 1)2q
m
2
−2(m2 − 1)− 14|m(q − 1)q

m
4
−1 if 4 ≤ m ≤ 2eF and m is even,

2(q − 1)2q
m
2
−2(2eF − m

2 + 1)− 14|m(q − 1)q
m
4
−1 if 2eF + 2 ≤ m ≤ 4eF and m is even,

4(q − 1)q
m−1

2
−1 if 2eF + 3 ≤ m ≤ 4eF + 1 and m is odd,

qeF (2qeF − 1) if m = 4eF + 2,

0 otherwise.

For the reader’s convenience, we will also state the definition of N ̸=
(1212)

(m) in Appendix B.

Theorem 10.10. Let F be a 2-adic field with residue field of size q and absolute ramification
index eF . The pre-mass m̃

(
ÉtA(1212)/F

)
is equal to the sum of the following quantities:

(1)
1

8
·

∑
4≤m≤4eF+2

q−m#ÉtA(12)/F,m
2
,

which can be stated explicitly using Corollary 8.13.
(2)

1

4
·

∑
4≤m≤4eF+2

q−mN ̸=
(1212)

(m),

where N ̸=
(1212)

is the explicit function defined in Appendix B.

In order to address the symbols (22) and (14), and specifically to understand the C4-extensions,
we need some further definitions. Let F be a 2-adic field, and let A ⊆ F× be a finitely generated
subgroup. Let G4(A) ⊆ F× be a subset whose image in F×/F×4 generates the group A4. We
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will assume that a choice of G4(A) is fixed implicitly in the definition of A; all results dependent
on G4(A) will be independent of this choice. Recall from Part 3 that a C4-extendable extension of
F is a quadratic field extension E/F that can be embedded into a C4-extension of F . The set of
isomorphism classes of C4-extendable extensions is denoted by Ext↑C4

2/F . Let E ∈ Ext↑C4,A
2/F , and

let ω ∈ E× be such that E(
√
ω) is an element of ExtC4/F

2/E with minimal discriminant valuation.
For each α ∈ F×, write

Nα = NF (
√
α)/FF (

√
α)×,

and similarly write
Nω = NE(

√
ω)/FE(

√
ω)×.

Define
NA

ω =
⋂

α∈G4(A)∩Nω

N
2
α \

⋃
α∈G4(A)\Nω

N
2
α ⊆ F×/F×2.

For each E ∈ Ext↑C4,A
2/F , fix once and for all a choice of element ω as defined above, and write

NA
E = NA

ω .

For each nonnegative integer c, write

NA
E,c = NA

E ∩
(
U

(c)
F F×2/F×2

)
.

Theorem 10.11. Let F be a 2-adic field, and let A ⊆ F× be a finitely generated subgroup. If
2 ∤ vF (α) for some α ∈ A, then ÉtA(22)/F = ∅. Otherwise, the following four statements are
true:

(1) For G ∈ {S4, A4}, we have ÉtG/F
(22)/F = ∅, so

m̃
(
ÉtG/F,A

(22)/F

)
= 0.

(2) We have

m̃
(
ÉtD4/F,A

(22)/F

)
=

1

2
·
(
q−2 − q−2eF−2 − 1

q2 + q + 1

(
q−1 − q−3eF−1

)
+ q−3eF−2

(
qeF − 1

))
.

(3) We have

m̃
(
ÉtV4/F,A

(22)/F

)
=

1

4#A2

(
1A2

2eF
=0
· q−3eF−2 +

eF∑
c=1

q−3c−1
(
q ·#A2

2c −#A2
2c−1

))
.

(4) Let E be the unique unramified quadratic extension of F . If 2 | vF (α) for all α ∈ A,
then m̃

(
ÉtC4/F,A

(22)/F

)
is the sum of the following two quantities:

(a)
1

8
·

eF∑
c=1

q−4c(#NA
E,2eF−2c −#NA

E,2eF−2c+2),

(b)
1

8
· q−4eF−2(#NA

E −NA
E,0).

Otherwise, we have m̃
(
ÉtC4/F,A

(22)/F

)
= 0.

For σ = (14), the actual mass is too cumbersome to state in closed form, so we instead study the
quantities #ÉtG/F,A

(14)/F,m for each G. For G 6= C4, we state these quantities explicitly. For G = C4,
we give a formula for #ÉtC4/F,A

(12)/E,m2
, whenever E is a totally ramified quadratic extension of F

and m2 is an integer.
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Let m1 be either 2eF + 1 or an even integer with 2 ≤ m1 ≤ 2eF . Define

NV4(m1,m2) =



2(q − 1)q
m2
2

−1 if 2 ≤ m2 < m1 and m2 is even,
(q − 2)q

m1
2

−1 if m2 = m1 and m1 is even,
(q − 1)q

m1+m2
4

−1 if m1 < m2 ≤ 4eF −m1 and m1 ≡ m2 (mod 4),

qeF if m2 > m1 and m1 +m2 = 4eF + 2,

0 otherwise.

Define NV4(m1,m2) = 0 for all other pairs of integers (m1,m2). For each integer m2, define

NC2(m2) =


2(q − 1)q

m2
2

−1 if 0 ≤ m2 ≤ 4eF and m2 is even,
2q2eF if m2 = 4eF + 1,

0 otherwise.

For the reader’s convenience, we will also state the definitions of NV4(m1,m2) and NC2(m2) in
Appendix B.

Theorem 10.12. Let F be a 2-adic field, and let A ⊆ F× be a finitely generated subgroup. The
following four statements are true:

(1) For G ∈ {S4, A4}, we have

m̃
(
ÉtG/F,A

(14)/F

)
= m̃

(
ÉtG/F

(14)/F

)
,

which is known from Corollaries 5.8 and 5.9.
(2) For each positive integer m, we have

#ÉtD4/F,A
(14)/F,m =

1

2

∑
0<m1<m/2

#ÉtA(12)/F,m1
·
(
NC2(m2)−NC4(m1,m2)−NV4(m1,m2)

)
,

where NC2, NC4, and NV4 are the functions defined in Appenix B. We can compute this
quantity explicitly using Corollary 12.31.

(3) Let m be a positive integer. The quantity #ÉtV4/F,A
(14)/F,m is the sum of the following two

quantities:
(a)

1

2
·

∑
m1<m2

m1+2m2=m

(#ÉtA(12)/F,m1
)(#ÉtA(12)/F,m2

).

(b)

13|m ·
2

3(#A2
)2
· q

m
6
−2
(
q#A2

m/3 −#A2
m/3−1

)(
q#A2

m/3 − 2#A2
m/3−1

)
.

This expression can be made explicit using Corollary 12.31.
(4) Let E ∈ ÉtA(12)/F be a C4-extendable extension, let m1 = vF (dE/F ), and let m2 be a

positive integer. If m1 > eF , then

ÉtC4/F,A
(12)/E,m2

=

{
1
2 ·#N

A
E if m2 = m1 + 2eF ,

0 otherwise.

Suppose instead that m1 ≤ eF . For each even integer t, define

c(t) = 2eF − 2
⌊m1 + t

4

⌋
.
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Then we have

#ÉtC4/F,A
(12)/E,m2

=



1
2 ·#N

A
E,c(m2)

if m2 = 3m1 − 2,

1
2 ·
(
#NA

E,c(m2)
−#NA

E,c(m2−2)

)
if 3m1 ≤ m2 ≤ 4eF −m1 + 1 and m2 is even,

1
2 ·
(
#NA

E −#NA
E,c(m2−2)

)
if m2 = 4eF −m1 + 2,

0 otherwise.

Using the formula in Theorem 10.12, we are able to formulate an efficient algorithm for com-
puting #ÉtC4/kp,A

(14)/kp,m
for each m. We will state the time complexity of this algorithm in Theo-

rem 10.13, but first we need some notation.

Let F be a p-adic field for some rational prime p. In most computer algebra packages, p-
adic fields are defined up to a certain precision, which refers to the length of p-adic series
representations stored. We will be working with field extensions E/F with [E : F ] ≤ 4, and
we need enough precision to construct the quotient E×/E×4 of units modulo fourth powers. It
follows that we need precision on the order of eF . Suppose that we are working with precision
m. In any sensible implementation, the computation time for a field operation in F will be
polynomial in [F : Qp] and m. Since for our applications we have m = O(eF ), a field operation
in F can be performed with time complexity O(t([F : Qp])), for some polynomial function t.
Moreover, since we are bounding the degree by a constant, any field operation in any extension
E/F with [E : F ] ≤ 4 can also be performed with time complexity O(t([F : Qp])). Given a
function f in unspecified variables, we write

OF (f) = O(f · t([F : Qp])).

Thus, the notation OF should be thought of as Big O notation, where we are suppressing the
polynomial t([F : Q2]) to account for field operations in F , and quadratic and quartic extensions
thereof. By the discussion above, the brute-force computation of m̃

(
ÉtA4/kp

)
has time complexity

at least Okp

(
#G4(A) · 23[kp:Q2]

)
. We present the following improvements:

Theorem 10.13. Let p be a prime of k lying over 2, and choose a set G4(A) as above. There are
two algorithms for computing m̃

(
ÉtA4/kp

)
, whose time complexities respectively are as follows:

(1)
Okp

(
ekp ·#G4(A) · 22[kp:Q2] · [kp : Q2]

3
)
.

(2)
Okp

(
ekp · 2#G4(A) · 2[kp:Q2] · [kp : Q2]

3
)
.

Remark 10.14. The first time complexity in Theorem 10.13 is unconditionally a big improve-
ment over the brute-force algorithm. The second time complexity is a significantly bigger im-
provement, conditional on the number of generators of A4 being kept reasonably small. Thus,
the algorithms are both useful, and the choice between them will depend on the application.

11. Results for general n

The main goal of this section is to prove Theorem 10.1, along with its conjectural generalisations
in Theorems 11.10 and 11.12. We start by proving Theorem 10.4, which addresses the case where
v is an archimedean place.
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Proof of Theorem 10.4. Suppose that f is a real embedding. Then

Étn/kv =
{
Rr × Cs : r + 2s = n and r, s ≥ 0

}
.

If L = Rr × Cs, then we have

NL/kvL
× =

{
R× if r > 0,

R>0 if r = 0,

and
#Aut(L/kv) = 2s · r! · s!.

The result for real f follows. If f is a complex embedding, then the only element of Étn/kv is
Cn, which has n! automorphisms and norm group C×, so we are done. □

11.1. Expressing our problem in terms of local conditions. As we discussed in Section 10,
for each place v of k, we may view A as a subgroup of k×v , so it makes sense to write ÉtAn/kv ,
which is the set of degree n étale algebras L/kv with A ⊆ NL/kvL

×. In particular, we have a
system of local conditions

(
ÉtAn/kv

)
v
.

The following theorem says that for an extension K/k, we have A ⊆ NK/kK
× if and only if K

satisfies the system of local conditions
(
ÉtAn/kv

)
v
:

Theorem 11.1 (Hasse Norm Principle holds for Sn-n-ics). Let n be a positive integer, let K/k
be an Sn-n-ic extension of number fields, and let A ⊆ k× be a finitely generated subgroup. Then
A ⊆ NK/kK

× if and only if K/k satisfies the system
(
ÉtAn/kv

)
v

of local conditions.

Proof. This is [Vos88, Corollary to Theorem 4]. □

Remark 11.2 (The Hasse norm principle is a special case of the Hasse principle). Theorem 11.1
says that being a norm globally is equivalent to being a norm everywhere locally. On the surface,
the result looks quite different from the usual Hasse principle, since the former is about norms
of field extensions, while the latter is about roots of polynomials. However, given a k-basis
{e1, . . . , en} for K, we have a homogeneous degree n polynomial

f(x1, . . . , xn) = NK/k(x1e1 + . . .+ xnen) ∈ k[x1, . . . , xn].

The Hasse norm principle then says that the polynomial f(x) − α has a root in k if and only
if it has a root in kv for every place v of k. Thus, Theorem 11.1 says precisely that the Hasse
principle holds for so-called “norm equations”.

Lemma 11.3. Let k be a number field, let n be an integer with n ≥ 3, and let A ⊆ k× be a
finitely generated subgroup. Then the system

(
ÉtAn/kv

)
v

of local conditions is acceptable.

Proof. Let p be a finite prime such that gcd(Nm(p), n) = 1 and vp(α) = 0 for all α ∈ A.
Note that all but finitely many primes satisfy these conditions. Let L ∈ Étn/kp such that
vkp(dL/kp) ≤ 1. Writing L = L1 × . . . × Lr for field extensions Li/kp, at most one of the
extensions Li/kp is ramified, so either L = L1 or Li/kp is unramified for some i. Suppose that
L = L1. Let (L, kp) = (f e). Since Nm(p) is coprime to n, the field extension L/kp is tamely
ramified, so Lemma 3.11 tells us that vkp(dL/kp) = f(e− 1), and therefore f = 1 and e ≤ 2, so
n ≤ 2, contradicting the assumption that n ≥ 3. Therefore, Li/kp is unramified for some i, so
O×

kp
⊆ NL/kpL

×, and hence L ∈ ÉtAn/kp . The result follows. □
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Corollary 11.4. For n ∈ {3, 4, 5}, we have

lim
X→∞

Nk,n(X;A)
X

=
1

2
· Res
s=1

(
ζk(s)

)
·
∏
v∈Πk

m
(
ÉtAn/kv

)
,

and the same result holds conjecturally for n ≥ 6, subject to the Malle–Bhargava heuristics.

Proof. This is immediate from Theorem 3.53, Theorem 11.1, and Lemma 11.3. □

Recall the notion of splitting symbols from Section 3. Call a splitting symbol (f e11 . . . f err )

predictable if the integers ei are mutually coprime. Call a symbol (f e11 . . . f err ) epimorphic if it
is predictable and the integers fi are mutually coprime. For a p-adic field F , write Étpredn/F and
Étepin/F for the sets of L ∈ Étn/F such that (L,F ) is predictable and epimorphic, respectively.
Write Splitpredn and Splitepin for the sets of predictable and epimorphic degree n splitting symbols,
respectively. The following lemma justifies the terminology; it says that predictable splitting
symbols have “predictable” norm groups, and epimorphic splitting symbols have surjective norm
maps.

Lemma 11.5. Let F be a p-adic field and let σ be a predictable splitting symbol. Write
σ = (f e11 . . . f err ) and let L ∈ Étσ/F . Let g = gcd(f1, . . . , fr). Then we have

NL/FL
× =

{
x ∈ F× : g | vF (x)

}
.

In particular, if L ∈ Étepin/F , then
NL/FL

× = F×.

Proof. Write L = L1× . . .×Lr, where each Li/F is a field extension with ramification index ei
and inertia degree fi. For each i, let Lur

i be the maximal unramified subextension of Li/F . By
considering the towers Li/L

ur
i /F , it is easy to see that we have

O×ei
F ⊆ NLi/FL

×
i

for each i. Moreover, for each i, there is some xi ∈ NLi/FL
×
i with vF (xi) = fi. Since the ei are

mutually coprime, there exist integers ri such that
∑

i riei = 1, so for each α ∈ O×
F , we have

α =
∏
i

(αei)ri ∈
∏
i

NLi/FL
×
i = NL/FL

×.

Therefore, O×
F ⊆ NL/FL

×. On the other hand, there are integers si such that
∑

i sifi = g.
Setting

x =
∏
i

xsii ∈ NL/FL
×,

we obtain vF (x) = g, so
{x ∈ F× : g | vF (x)} ⊆ NL/FL

×.

Conversely, we have

NLi/FL
×
i ⊆ NLur

i /FL
ur,×
i = {x ∈ F× : fi | vF (x)} ⊆ {x ∈ F× : g | vF (x)}

for each i, so we are done. □

Corollary 11.6. Let F be a p-adic field and let A = 〈α1, . . . , αd〉 be a finitely generated subgroup
of F×. Let n be a positive integer and suppose that n | vF (αi) for each i. For every finite prime
p of k, we have

Étpredn/kp ⊆ ÉtAn/kp .
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Proof. This is immediate from Lemma 11.5. □

Lemma 11.7. Let n be an integer with n ≥ 3, let p be a rational prime with p > n, let F be a
p-adic field, and let L ∈ Étn/F \ Étpredn/F . Then vF (dL/F ) ≥ 2.

Proof. Let (L,F ) = (f e11 . . . f err ). Since p > n, we have p ∤ ei for each i, so by Lemma 3.11 we
have

vF (dL/F ) =
∑
i

fi(ei − 1).

Since (L,F ) is not predictable, the ei are not mutually coprime, so there is some d ≥ 2 with
d | ei for all i, and therefore ei ≥ 2 for each i. If any of the integers ei is at least 3, then we are
done. On the other hand, if ei = 2 for every i, then

vF (dL/F ) =
∑
i

fi =
n

2
> 1,

so we are done. □

Lemma 11.8. For n ≥ 3, we have ∏
v∈Πk

m̃
(
ÉtAn/kv

)
m̃
(
Étn/kv

) > 0.

Proof. Since the factor
m̃
(
ÉtAn/kv

)
m̃
(
Étn/kv

)
is strictly positive for each v, without loss of generality we may assume that v = p is a finite
prime with char(Ok/p) > n and vp(αi) = 0 for all i. Then all degree n étale algebras L/kp are
tamely ramified, so Lemma 3.11 tells us that1

vkp(dL/kp) = d(L,kp),

for each L ∈ Étn/kp . For 0 ≤ d ≤ n− 1, let ad = Part(d, n− d). Corollary 3.10, Corollary 11.6,
and Lemma 11.7 tell us that

m̃
(
ÉtAn/kp

)
≥ m̃

(
Étpredn/kp

)
≥ a0 + a1q

−1

and
m̃
(
Étn/kp

)
= a0 + a1q

−1 + . . .+ an−1q
−(n−1),

where we write q as shorthand for Nm(p). It is easy to write down a positive real number a,
independent of p, such that

1− aq−2 ≤
m̃
(
ÉtAn/kp

)
m̃
(
Étn/kp

) ≤ 1,

and the result follows. □

Lemma 11.9. Let F be a local field and let n be any positive integer. Then⋂
L∈Étn/F

NL/FL
× = F×n.

1Recall that d(L,kp) was defined in Definition 3.8.
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Proof. If F is R or C, then the result is easy to see. Therefore, we will assume that F is p-adic.
By the structure theorem for finitely generated abelian groups, we may write

F×/F×n =

r⊕
i=1

(Z/diZ)ei,

for basis elements ei ∈ F×/F×n and integers di ≥ 2 with di | n. For each i, let

Ai =
⊕
j ̸=i

(Z/djZ)ej ,

and let Ei/F be the degree di abelian field extension with(
NEi/FE

×
i

)
/F×n = Ai.

For each i, let Li/Ei be any field extension of degree n
di

, so that(
NLi/FL

×
i

)
/F×n ⊆ Ai.

The result follows since
⋂

iAi = 0. □

Theorem 11.10. Let n ≥ 3, let k be a number field, and let A ⊆ k× be a finitely generated
subgroup. Assuming Conjecture 3.54 is true for n (as is the case for n ≤ 5), we have

0 < lim
X→∞

Nk,n(X;A)
Nk,n(X)

≤ 1,

with equality if and only if
A ⊆ ker

(
k× →

∏
v∈Πk

k×v /k
×n
v

)
.

Proof. Since we are assuming that Conjecture 3.54 holds for n, Lemma 11.8 and Corollary 11.4
tell us that

0 < lim
X→∞

Nk,n(X;A)
Nk,n(X)

≤ 1,

with equality if and only if ÉtAn/kv = Étn/kv for all v ∈ Πk. The result then follows from
Lemma 11.9. □

Definition 11.11. Given a number field k, we say that a positive integer n is power-pathological
in k if the following three statements are true:

(1) n = 2rn′ for an odd integer n′ and an integer r ≥ 3.
(2) The extension k(µ2r)/k is not cyclic.
(3) All primes p of k lying over 2 decompose in k(µ2r)/k.

Theorem 11.12 (Hasse principle for nth powers). For any number field k, we have

#ker
(
k×/k×n →

∏
v∈Πk

k×v /k
×n
v

)
=

{
1 if n is not power-pathological in k,

2 if n is power-pathological in k.

Proof. This is the special case T = Πk of [NSW00, Theorem 9.1.11]. □

Corollary 11.13. If n is not power-pathological in k, then

ker
(
k× →

∏
v∈Πk

k×v /k
×n
v

)
= k×n.
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If n is power-pathological in k, then

ker
(
k× →

∏
v∈Πk

k×v /k
×n
v

)
= k×n ∪ uk×n,

for some u ∈ k×(n/2) \ k×n.

Proof of Theorem 10.1. This is immediate from Theorems 3.53, 11.10, and 11.12. □

Corollary 11.14. If n is not power-pathological in k and Conjecture 3.54 is true for n, then A
is in the norm group of 100% of Sn-n-ics if and only if A is in the norm group of all Sn-n-ics.

12. Prime degree extensions

The main purpose of this section is to prove Theorem 10.8, which states the mass m̃
(
ÉtA`/F

)
whenever ` is an odd prime, F is a p-adic field, and A ⊆ F× is a finitely generated subgroup.
We start by fixing some notation: Let p and ` be rational primes; let F be a p-adic field with
residue field of size q; let πF be a uniformiser of F ; let A ⊆ F× be a finitely generated subgroup.

Lemma 12.1. We have
Split` = {(1`), (`)} t Splitepi` .

Proof. Let σ ∈ Split` \ {(1`), (`)}. Writing σ = (f e11 . . . f err ), we have ` =
∑

i fiei, so the ei
(respectively the fi) are mutually coprime, and therefore σ ∈ Splitepi` . □

Corollary 12.2. We have

m̃
(
ÉtA`/F

)
= m̃

(
ÉtA(1ℓ)/F

)
+ m̃

(
ÉtA(`)/F

)
+ m̃

(
Étepi`/F

)
.

Proof. This follows easily from Lemmas 11.5 and 12.1. □

Lemma 12.3. We have

m̃
(
Étepi`/F

)
=
(
1− 1

`

)
+

`−2∑
d=1

Part(d, `− d)
qd

.

Proof. Since (1`) is the only degree ` splitting symbol σ with dσ = `− 1, we have

m̃
(
Étepi`/F

)
=

`−2∑
d=0

m̃
(
{L ∈ Étepi`/F : d(L,F ) = d}

)
.

Since d(`) = 0, it follows from Lemma 12.1 that

{L ∈ Étepi`/F : d(L,F ) = d} = {L ∈ Ét`/F : d(L,F ) = d}

whenever 1 ≤ d ≤ `− 2. The result follows from Corollary 3.10. □

Recall from Section 10 that for each positive integer n, we write An for the group AF×n/F×n.
Recall the notion of a stratified generating set from Definition 10.6.

Lemma 12.4. Let (A0, A1) be a stratified generating set for A`. Then we have

m̃
(
ÉtA(`)/F

)
=

{
1
` if A1 = ∅,
0 otherwise.
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Proof. This follows from the fact that the unramified degree ` extension of F has norm group
O×

FF
×`. □

Because of Corollary 12.2 and Lemmas 12.3 and 12.4, it remains only to find the pre-mass
m̃
(
ÉtA(1ℓ)/F

)
of totally ramified degree ` extensions with A in their norm group. We address the

tamely ramified case p 6= ` and the wildly ramified case p = ` separately.

12.1. Finding m̃
(
ÉtA(1ℓ)/F

)
when p 6= `. For each positive integer m, fix a primitive mth root

of unity ζm in the algebraic closure of F .

Lemma 12.5. Let e be a positive integer coprime to q and define g = gcd(e, q − 1). For
0 ≤ j ≤ g − 1, define

Lj = F
(

e

√
ζjq−1πF

)
.

The extensions Lj/F are all nonisomorphic, and

Ét(1e)/F =
{
Lj : j = 0, 1, . . . , g − 1

}
.

Proof. This is essentially [PR01, Theorem 7.2], where we replace the polynomial Xe + ζjq−1πF

with Xe − ζjq−1πF . The modifications to the proof are trivial. □

Lemma 12.6. Suppose that p 6= `. The following two statements are true:

(1) If ` | q − 1, then Ét(1ℓ)/F = {L0, . . . , L`−1}, where Lj = F
(

ℓ

√
ζjq−1πF

)
. Moreover, for

each j we have Aut(Lj/F ) ∼= C` and

NLj/FL
×
j =

{
u`((−1)`+1ζjq−1πF )

m : u ∈ O×
F ,m ∈ Z

}
.

(2) If ` ∤ q−1, then Ét(1ℓ)/F = {L}, where L = F ( ℓ
√
πF ). Moreover, we have Aut(L/F ) = 1

and NL/FL
× = F×.

Proof. In both cases, the classification of extensions comes from Lemma 12.5. To prove the
statements about norms and automorphisms, we consider the two cases separately.

(1) Suppose that ` | q−1, so that ζ` ∈ F×. Since the elements ζj`πF are all uniformisers of F ,
and πF is an arbitrary uniformiser, we only need to prove the result for L0 = F ( ℓ

√
πF ).

The element ℓ
√
πF has minimal polynomial X`−πF over F , which splits in L0, so L0/F

is Galois, hence cyclic. By class field theory, we have

[F× : NL0/FL
×
0 ] = `.

Moreover, it is clear that{
u`((−1)`+1πF )

m : u ∈ O×
F ,m ∈ Z

}
⊆ NL0/FL

×
0 .

By [Neu13, Part II, Proposition 3.7], we have

[O×
F : O×`

F ] = #µ`(F ) = `.

It follows that [
F× :

{
u`((−1)`+1πF )

m : u ∈ O×
F ,m ∈ Z

}]
= `,

and the result follows.
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(2) Suppose that ` ∤ q − 1. Since ` 6= p and ` ∤ q − 1, the result [NS13, Page 140, Propo-
sition 5.7] tells us that ζ` 6∈ L. It follows that the polynomial X` − πF has only one
root in L, and therefore L/F is not Galois, hence it has only one automorphism. The
maximal abelian subextension of L/F is F , so it has trivial norm group.

□

Lemma 12.7. Suppose that p 6= ` and ` | q − 1. Let (A0, A1) be a stratified generating set for
A`. Then

#ÉtA(1ℓ)/F =


` if A ⊆ F×`,

1 if A0 = ∅ and #A1 = 1,

0 otherwise.

Proof. This follows easily from Lemmas 12.5 and 12.6. □

Corollary 12.8. Suppose that p 6= `, and let (A0, A1) be a stratified generating set for A`. The
following two statements are true:

(1) If ` ∤ q − 1, then
m̃
(
ÉtA(1ℓ)/F

)
=

1

q`−1
.

(2) If ` | q − 1, then

m̃
(
ÉtA(1ℓ)/F

)
=


1

qℓ−1 if A ⊆ F×`,
1

`qℓ−1 if A0 = ∅ and #A1 = 1,

0 otherwise.

Proof. This is immediate from Lemmas 3.11, 12.6 and 12.7. □

12.2. Finding m̃
(
ÉtA(1ℓ)/F

)
when p = `. In the current subsection, we will address the wildly

ramified case p = `.

Lemma 12.9. We have

m̃
(
ÉtA(1p)/F

)
= m̃

(
Ét(1p)/F

)
− m̃

(
ÉtCp/F

(1p)/F

)
+ m̃

(
ÉtCp/F,A

(1p)/F

)
.

Proof. Let L ∈ Ét(1p)/F \ ÉtCp/F
(1p)/F . Then the maximal abelian subextension of L/F is F , so by

class field theory we have NL/FL
× = F×. Therefore, we have

ÉtA(1p)/F = ÉtCp/F,A
(1p)/F ∪

(
Ét(1p)/F \ ÉtCp/F

(1p)/F

)
,

and the result follows. □

Let L/F be an abelian extension of p-adic fields, and let G = Gal(L/F ). Write f(L/F ) for the
conductor of the extension L/F , defined to be the smallest integer m such that U (m)

F ⊆ NL/FL
×.

For a character χ : G→ C×, the Artin conductor of χ is defined to be

f(χ) =
∑
i≥0

|Gi|
|G0|

(
χ(1)− χ(Gi)

)
,
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where (Gi)i is the ramification filtration of G, defined by

Gi =
{
ϕ ∈ G : vL

(ϕ(πL)− πL
πL

)
≥ i
}
,

and χ(Gi) is the average value of χ(g) as g ranges over Gi. Write G∨ for the set of characters
χ : G→ C×.

Theorem 12.10. Let L/F be an abelian extension of p-adic fields, and let G = Gal(L/F ). We
have

(1) f(L/F ) = maxχ∈G∨ f(χ).
(2) vF (dL/F ) =

∑
χ∈G∨ f(χ).

Proof. The first item is [AT68, Page 135, Corollary to Theorem 14]. The second is [Keu23,
Theorem 17.50]. □

Lemma 12.11. Let L/F be a Cp-extension of p-adic fields. Then

f(L/F ) =
vF (dL/F )

p− 1
.

Proof. Take G = Gal(L/F ) = 〈g〉, and write c for the unique integer with Gc−1 6= Gc. Writing
ω for the complex number e

2πi
p , we have

G∨ = {χj : j = 0, 1, 2, . . . , p− 1},

where χj(g) = ωj . We have

f(χj) =

{
0 if j = 0,

c otherwise,
so Theorem 12.10 tells us that f(L/F ) = c and vF (dL/F ) = (p− 1)c, and the result follows. □

Given a set Ét••/F of étale algebras over F , write Ét••/F,m and Ét••/F,≤m for the sets of L ∈ Ét••/F
with vF (dL/F ) = m and vF (dL/F ) ≤ m, respectively. Given a field F and vector spaces V and
W over F , write EpiF (V,W ) for the set of surjective F -linear maps V →W .

Lemma 12.12. Let m be a positive integer. There is a surjective (p− 1)-to-1 map

EpiFp

(
F×/U

(⌊ m
p−1

⌋)
F F×p,Fp

)
→ ÉtCp/F

p/F,≤m,

where the map χ : F×/U
(⌊ m

p−1
⌋)

F F×p ↠ Fp is sent to the unique abelian extension L/F with

NL/FL
× = ker

(
F× → F×/U

(⌊ m
p−1

⌋)
F F×p χ→ Fp

)
.

Proof. This follows from Lemma 12.11 by basic class field theory. □

Corollary 12.13. For every positive integer m, we have

#ÉtCp/F
p/F,≤m =

1

p− 1

(
#
(
F×/U

(⌊ m
p−1

⌋)
F F×p

)
− 1
)
.

Proof. This is immediate from Lemma 12.12. □

Lemma 12.14. Let u ∈ O×
F , and let n be an integer with n > peF

p−1 . Then U (n)
F F×p = U

(n+1)
F F×p.
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Proof. Let u ∈ U (n)
F F×p. Then there exist elements a ∈ F× and x ∈ pnF with u = ap(1 + x).

Since vF (x) ≥ n and n > peF
p−1 , it is easy to see that(

1 +
x

p

)p
≡ 1 + x (mod pn+1

F ),

and it follows that u ∈ U (n+1)
F F×p, as required. □

Corollary 12.15. We have U
(⌊ peF

p−1
⌋+1)

F ⊆ F×p.

Proof. This follows from Lemma 12.14 by Hensel’s lemma. □

Lemma 12.16. For 0 ≤ i ≤ b peFp−1c, let Wi = U
(i)
F F×p/U

(i+1)
F F×p. For each positive integer c,

there is a group isomorphism

F×/U
(c)
F F×p ∼=

(
F×/U

(0)
F F×p

)
⊕

min{c−1,⌊ peF
p−1

⌋}⊕
i=0

Wi.

Proof. Corollary 12.15 tells us that

F×/U
(c)
F F×p = F×/U

(⌊ peF
p−1

⌋+1)

F F×p

whenever c ≥ b peFp−1c+ 1, so we only need to prove the result for c ≤ b peFp−1c+ 1.

The left- and right-hand sides have the same cardinality by definition of the Wi. Moreover,
both are p-torsion groups, hence Fp-vector spaces, so they are isomorphic as groups. □

Lemma 12.17. We have
U

(0)
F F×p = U

(1)
F F×p.

Proof. The p-power map
F×
F → F×

F , x 7→ xp

is injective, hence bijective. Thus, every element of U (0)
F is congruent to a pth power modulo

pF , and the result follows. □

Lemma 12.18. Let 0 ≤ i ≤ b peFp−1c, and let m ∈ U (i)
F .

(1) If p ∤ i, then m ∈ U (i+1)
F F×p if and only if m ∈ U (i+1)

F .

(2) If p | i, then m ∈ U (i+1)
F F×p if and only if there is some x ∈ p

i
p

F such that (1 + x)p ≡ m
(mod pi+1

F ).
(3) If p | i and i < peF

p−1 , then m ∈ U (i+1)
F F×p, and in particular

m ≡
(
1 + π

i
p

F y
)p

(mod pi+1
F ),

where [y] ∈ OF /pF is the unique element with [y]p =
[
m−1
πi
F

]
, which exists by Lemma 12.17.

(4) If i = peF
p−1 , then m ∈ U (i+1)

F F×p if and only if
[

m−1

π
eF /(p−1)

F p

]
∈ OF /pF is in the image of

the map

OF /pF → OF /pF , y 7→ y +
πeFF
p
yp,

and in that case m ≡
(
1 + π

i
p

F y
)p

(mod pi+1
F ), for each y in the preimage.
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Proof. By Lemma 12.17, the case i = 0 is trivial, so we assume that i ≥ 1. For the first two
statements, the “if” directions are trivial, so we focus on the “only if”.

Suppose that m ∈ U (i+1)
F F×p \ U (i+1)

F , so vF (m − 1) = i. We will show that this implies p | i

and there is some x ∈ p
i
p

F with (1 + x)p ≡ m (mod pi+1
F ), proving the first two statements.

Since m ∈ U (i+1)
F F×p, there is some c ∈ F× such that vF (c) = 0 and m ≡ cp (mod pi+1

F ). Write
c = 1 + x for x ∈ OF , so that

m− 1 ≡
p−1∑
j=1

(
p

j

)
xj + xp (mod pi+1

F ).

Since vF (m− 1) > 0, we have vF (x) > 0, so

(9)

vF
(∑p−1

j=1

(
p
j

)
xj
)
= eF + vF (x),

vF (x
p) = pvF (x).

Suppose for contradiction that vF (x) > eF
p−1 . Then vF (x) + eF < pvF (x), so

i = vF (m− 1) = vF (x) + eF >
peF
p− 1

,

which is impossible since by assumption i ≤ peF
p−1 .

Therefore, vF (x) ≤ eF
p−1 . We will consider the cases vF (x) = eF

p−1 and vF (x) <
eF
p−1 separately.

Suppose first that vF (x) = eF
p−1 . Then pvF (x) = eF +vF (x) =

peF
p−1 , so Equation (9) tells us that

i = vF (m− 1) ≥ peF
p− 1

,

and therefore i = peF
p−1 and vF (x) ≥ i

p , as required.

Suppose instead that vF (x) < eF
p−1 . Then pvF (x) < vF (x) + eF , so Equation (9) tells us that

i = vF (m− 1) = pvF (x),

and therefore p | i and vF (x) ≥ i
p . Thus we have proved Statements (1) and (2).

Suppose that p | i and i < peF
p−1 . By Lemma 12.17, there is a y ∈ OF with yp ≡ m−1

πi
F

(mod pF ).

Let x = π
i
p

F y. Then we have

(1 + x)p ≡ 1 + xp ≡ m (mod pi+1
F ),

so Statement (3) follows from Statement (2).

Suppose that i = peF
p−1 . Statement (2) tells us that m ∈ U (i+1)

F F×p if and only if there is some

x ∈ p
eF
p−1

F with

m− 1 ≡ px+ xp (mod p
peF
p−1

+1

F ),

and Statement (4) follows easily. □

We note the following algorithm as an immediate consequence of Lemma 12.18:

Algorithm 12.19.

Input: α ∈ O×
F .
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Output: Returns a pair (i, λ). If α ∈ F×p, then i =∞ and λ ∈ O×
F is such that

α ≡ λp (mod p
⌊ peF
p−1

⌋+1

F ).

Otherwise, i is the largest integer with α ∈ U (i)
F F×p, and λ ∈ O×

F is an element such that α ≡ λp
(mod piF ).

Algorithm:

(1) Set m0 = α and λ0 = 1.
(2) For 0 ≤ i ≤ peF

p−1 , do the following:

If p ∤ i, then:
• If mi ≡ 1 (mod pi+1

F ), then set mi+1 = mi and λi+1 = λi.
• Otherwise, return (i, λi) and break the for loop.

If p | i and i < peF
p−1 , then:

• Let [y] ∈ OF /pF be the unique element with [y]p =
[
mi−1
πi
F

]
, and set λi+1 = λi(1 +

π
i/p
F y) and mi+1 =

mi

(1+π
i/p
F y)p

.
If i = peF

p−1 , then:
• If

[
mi−1

π
eF /(p−1)

F p

]
∈ OF /pF is in the image of the map

OF /pF → OF /pF , y 7→ y +
πeFF
p
yp,

then take y in the preimage and set λi+1 = λi(1 + π
i/p
F y) and mi+1 =

mi

(1+π
i/p
F y)p

.
• Otherwise, return ( peFp−1 , λ peF

p−1
).

By Lemma 12.18, we see inductively that mi ≡ 1 (mod piF ) and α = λpimi for all i that
it is defined.

(3) If the for loop from the previous step finishes, then return (∞, λ peF
p−1

+1).

Lemma 12.20. Suppose that (p− 1) | eF . Define ϕ to be the map

ϕ : OF /pF → OF /pF , y 7→ y +
πeFF
p
yp.

We have

#imϕ =

{
q/p if µp ⊆ F,
q if µp 6⊆ F.

Proof. The map is Fp-linear, and its kernel consists of the roots of the polynomial

X
(
Xp−1 +

πeFF
p

)
∈ FF [X].

Since FF contains all (p−1)st roots of unity, the polynomial has either 1 or p roots. By Hensel’s
lemma, any root of Xp−1+

π
eF
F
p in FF lifts to a root in F , which exists if and only if −p ∈ F×(p−1).

The result [Was97, Lemma 14.6] states that Qp( p−1
√
−p) = Qp(ζp), and the result follows. □

Recall from Lemma 12.16 that we are interested in the groups Wi = U
(i)
F F×p/U

(i+1)
F F×p, for

integers i with 0 ≤ i ≤ b peFp−1c.
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Corollary 12.21. Let i be an integer with 0 ≤ i ≤ peF
p−1 . We have group isomorphisms

Wi
∼=


FF if i < peF

p−1 and p ∤ i,
Fp if i = peF

p−1 and µp ⊆ F,
0 otherwise.

Proof. Suppose first that p ∤ i. Then Lemma 12.18(1) tells us that the natural sequence

1→ U
(i+1)
F → U

(i)
F →Wi → 1,

is exact, so Wi
∼= FF . If p | i and i < peF

p−1 , then Lemma 12.18(3) tells us that Wi = 0. Finally,
suppose that i = peF

p−1 . Write ϕ for the map

ϕ : OF /pF → OF /pF , y 7→ y +
πeFF
p
yp.

By Lemma 12.18(4), we have an exact sequence

1→ imϕ→ U
(i)
F /U

(i+1)
F →Wi → 1,

where the map imϕ → U
(i)
F /U

(i+1)
F is given by [x] 7→ [1 + π

eF
p−1

F px]. The result then follows by
Lemma 12.20. □

Corollary 12.22. Let c be a nonnegative integer. If 0 ≤ c ≤ d peFp−1e, then we have

#
(
F×/U

(c)
F F×p

)
= pq

c−1−⌊ c−1
p

⌋
.

If c > d peFp−1e, then we have

#
(
F×/U

(c)
F F×p

)
=

{
p2qeF if µp ⊆ F,
pqeF otherwise.

Proof. This follows easily from Lemma 12.16 and Corollary 12.21. □

Corollary 12.23. Let L ∈ ÉtCp/F
p/F . Then we have vF (dL/F ) = (p− 1)c for some integer c with

0 ≤ c ≤ b peFp−1c+ 1.

If 1 ≤ c ≤ d peFp−1e, then we have

#ÉtCp/F
p/F,≤(p−1)c =

1

p− 1

(
pq

c−1−⌊ c−1
p

⌋ − 1
)
.

If (p− 1) | eF , then we have

#ÉtCp/F
p/F,≤peF+p−1 =


1

p−1

(
p2qeF − 1

)
if µp ⊆ F,

1
p−1

(
pqeF − 1

)
otherwise.

Proof. This follows easily from Corollaries 12.13 and 12.22. □

Theorem 12.24. If ÉtCp/F
(1p)/F,m is nonempty, then we have m = (p − 1)c for an integer c with

1 ≤ c ≤ b peFp−1c+ 1, and

#ÉtCp/F
(1p)/F,m =


p(q−1)
p−1 · q

c−2−⌊ c−2
p

⌋ if c 6≡ 1 (mod p),

pqeF if c = peF
p−1 + 1 and µp ⊆ F,

0 otherwise.
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Proof. This follows easily from Corollary 12.23. □

With p and q fixed implicitly, we define functions A(t) and B(t) as follows. For integers t with
t ≥ 2, define

A(t) =

q
1−⌊ t

2
⌋ · q

⌊ t
2 ⌋−1
q−1 if p = 2,

q−p(p−2) · q
(p−1)(p−2)−1

qp−2−1
· q

−(p−1)2·⌊ t
p ⌋−1

q−(p−1)2−1
if p 6= 2,

and

B(t) =

0 if p = 2,

q
−⌊ t

p
⌋ · q

−(p−2)(t+1)−q
−(p−2)(⌊ t

p ⌋p+2)

q−(p−2)−1
if p 6= 2.

For the reader’s convenience, we will also state the definitions of A(t) and B(t) in Appendix B.

Lemma 12.25. Let p be an integer with p ≥ 2 and let q be a positive rational number. For any
integer t with t ≥ 2, we have∑

1≤c≤t
c ̸≡1 (mod p)

q
−(p−2)c−⌊ c−2

p
⌋
= 1t≥p ·A(t) + 1t ̸≡0,1 (mod p) ·B(t),

where A(t) and B(t) are the functions defined above.

Proof. The proof is a straightforward computation. To eliminate the possibility of a manipula-
tion error, we have checked the identity numerically (see the Python notebook in the Github
repository https://github.com/Sebastian-Monnet/Sn-n-ics-paper-checks). □

Corollary 12.26. Recall the explicit functions A(t) and B(t) from Appendix B. We have

m̃
(
ÉtCp/F

(1p)/F

)
=
q − 1

p− 1
q−2
(
1eF≥p−1·A

(⌈ peF
p− 1

⌉)
+1(p−1)∤eF ·B

(⌈ peF
p− 1

⌉))
+1µp⊆F ·q−(p−1)(eF+1).

Proof. By Theorem 12.24, the mass m̃
(
ÉtCp/F

(1p)/F

)
is the sum of the following two quantities:

(1)
q − 1

p− 1
· q−2 ·

∑
1≤c<

peF
p−1

+1

c ̸≡1 (mod p)

q
−
(
(p−2)c+⌊ c−2

p
⌋
)
.

(2)
1µp⊆F · q−(p−1)(eF+1).

For c ∈ Z, we have c < peF
p−1 + 1 if and only if c ≤ d peFp−1e. Setting t = d peFp−1e, Lemma 12.25 tells

us that∑
1≤c<

peF
p−1

+1

c ̸≡1 (mod p)

q
−
(
(p−2)c+⌊ c−2

p
⌋
)
= 1⌈ peF

p−1
⌉≥p ·A

(⌈ peF
p− 1

⌉)
+ 1⌈ peF

p−1
⌉̸≡0,1 (mod p) ·B

(⌈ peF
p− 1

⌉)
.

It is easy to see that d peFp−1e ≥ p if and only if eF ≥ p− 1. We claim that d peFp−1e ≡ 0, 1 (mod p)

if and only if (p − 1) | eF . To see this, write eF = m(p − 1) + r for integers m and r with
0 ≤ r ≤ p− 2. Then ⌈ peF

p− 1

⌉
= pm+

⌈ pr

p− 1

⌉
.

If (p−1) | eF , then r = 0, so
⌈ peF
p−1

⌉
≡ 0 (mod p). Otherwise, we have r ≥ 1, so 1 < pr

p−1 ≤ p−1,
hence

⌈ peF
p−1

⌉
6≡ 0, 1 (mod p). The result follows. □

https://github.com/Sebastian-Monnet/Sn-n-ics-paper-checks
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Recall that, given nonnegative integers n and t with n ≥ 1 and t ≥ 0, we write

An
= AF×n/F×n

and
An

t = An ∩
(
U

(t)
F F×n/F×n

)
.

Lemma 12.27. Let c be an integer with 0 ≤ c ≤ peF
p−1 + 1. We have

#ÉtCp/F,A
p/F,≤(p−1)c =

1

p− 1
·
(#Ap

c

#Ap ·#
(
F×/U

(c)
F F×p

)
− 1
)
.

Proof. By Lemma 12.12, we need to count Fp-linear transformations

χ : F×/F×p → Fp

such that
χ
(
Ap)

= χ
(
U

(c)
F F×p/F×p

)
= 0.

In other words, we need to compute the size of the annihilator(
Ap

+
(
U

(c)
F F×p/F×p

))⊥
.

It is easy to see that

dimFp

((
Ap

+ (U
(c)
F F×p/F×p)

)⊥)
= dimFp

(
F×/U

(c)
F F×p

)
− dimFp

(
Ap
/Ap

c

)
,

so
#
(
Ap

+ (U
(c)
F F×p/F×p)

)⊥
=

#Ap
c

#Ap ·#
(
F×/U

(c)
F F×p

)
.

The result then follows by Lemma 12.12. □

Corollary 12.28. Let c be an integer with 0 ≤ c ≤ peF
p−1 + 1. We have

#ÉtCp/F,A
p/F,≤(p−1)c =

1

p− 1
·
(#Ap

c

#Ap

(
1 + (p− 1)#ÉtCp/F

p/F,≤(p−1)c

)
− 1
)
.

Proof. This is immediate from Corollary 12.13 and Lemma 12.27. □

Remark 12.29. Taking p = 2 in Corollary 12.28 yields the same result we proved earlier in
Corollary 8.13.

Corollary 12.30. Let c be an integer with 1 ≤ c ≤ peF
p−1 + 1. We have

#ÉtCp/F,A
p/F,(p−1)c =

#
(
F×p/U

(c−1)
F F×p

)
(p− 1)#Ap ·

(
#Ap

c ·#Wc−1 −#Ap
c−1

)
Proof. This follows immediately from Lemma 12.27, together with the definition of the groups
Wi. □

Corollary 12.31. For 1 ≤ c ≤ peF
p−1 + 1, we have

#ÉtCp/F,A
p/F,(p−1)c =


p

(p−1)#Ap q
c−2−⌊ c−2

p
⌋
(
q ·#Ap

c −#Ap
c−1

)
if c 6≡ 1 (mod p),

pqeF

#Ap if c = peF
p−1 + 1 and µp ⊆ F and Ap

peF
p−1

= 0,

0 otherwise.

Proof. This follows easily from Corollary 12.22, Theorem 12.24, and Lemma 12.27. □
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Corollary 12.32. The mass m̃
(
ÉtCp/F,A

(1p)/F

)
is given by

m̃
(
ÉtCp/F,A

(1p)/F

)
= 1µp⊆F ·1Ap

peF
p−1

=0 ·
q−(p−1)(eF+1)

#Ap +
1

(p− 1)#Ap ·q−2 ·
∑

1≤c≤⌈ peF
p−1

⌉
c ̸≡1 (mod p)

q#Ap
c −#Ap

c−1

q
(p−2)c+⌊ c−2

p
⌋
.

Proof. This is immediate from Theorem 12.24 and Corollary 12.31. □

Proof of Theorem 10.8. We prove the statements one by one.

(1) This is immediate from Corollary 12.2 and Lemma 12.3.
(2) This is precisely Lemma 12.4.
(3) This is precisely Corollary 12.8.
(4) Serre’s mass formula [Ser78, Theorem 2] tells us that

m̃
(
Ét(1p)/F

)
=

1

qp−1
,

and the first part of the statement follows from Lemma 12.9. The rest of the theorem
is given by Corollaries 12.26 and 12.32.

□

Definition 12.33. Let α ∈ F×. We define cα ∈ Z ∪ {∞} as follows:

• If α ∈ F×p, then cα =∞.
• Otherwise, adopting the convention that U (−1)

F = F×, we define cα to be the largest
integer c such that α ∈ U (c)

F F×p.

Remark 12.34. We can compute cα using Algorithm 12.19. We will state the time complexity
of this computation in Lemma 13.35.

Lemma 12.35. Let α ∈ F× \ F×p. Then we have −1 ≤ cα ≤ b peFp−1c. Moreover, if cα < peF
p−1

then p ∤ cα, and if cα = peF
p−1 then µp ⊆ F .

Proof. This follows from Corollaries 12.15 and 12.21. □

Lemma 12.36. Let α ∈ F× and let c be an integer with 1 ≤ c ≤ peF
p−1 + 1. Then we have

(1) If c ≤ cα, then we have

#ÉtCp/F,α
p/F,(p−1)c =


p(q−1)
p−1 · q

c−2−⌊ c−2
p

⌋ if c 6≡ 1 (mod p),

pqeF if c = peF
p−1 + 1 and µp ⊆ F,

0 otherwise.

(2) If 1 ≤ cα < peF
p−1 , then

#ÉtCp/F,α
p/F,(p−1)(cα+1) =

q − p
p− 1

· qcα−1−⌊ cα
p
⌋
.

(3) If cα = peF
p−1 , then

#ÉtCp/F,α
p/F,(p−1)(cα+1) = 0.
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(4) If cα + 2 ≤ c ≤ peF
p−1 + 1, then

#ÉtCp/F,α
p/F,(p−1)c =


q−1
p−1q

c−2−⌊ c−2
p

⌋ if c 6≡ 1 (mod p),

qeF if c = peF
p−1 + 1 and µp ⊆ F,

0 otherwise.

Proof. This follows easily from Corollary 12.21, Corollary 12.22, Corollary 12.30, and Lemma 12.35.
□

Theorem 12.37. Let α ∈ F× \ F×p. If p ∤ vF (α), then

m̃
(
ÉtCp/F,α

(1p)/F

)
=

1

p
· m̃
(
ÉtCp/F

(1p)/F

)
.

If p | vF (α), then m̃
(
ÉtCp/F,α

(1p)/F

)
is the sum of the following seven quantities:

(1)
1cα≥p ·

q − 1

p− 1
· q−2 ·A(cα).

(2)
1cα ̸≡0,1 (mod p) ·

q − 1

p− 1
· q−2 ·B(cα).

(3)
1cα<

peF
p−1
· q − p
p− 1

· 1
p
· q−2−(p−2)(cα+1)−⌊ cα

p
⌋
.

(4)

1cα<
peF
p−1

−1 ·
q − 1

pq2(p− 1)
·
(
1eF≥p−1 ·A

(⌈ peF
p− 1

⌉)
− 1cα≥p−1 ·A(cα + 1)

)
.

(5)
1cα<

peF
p−1

−1 · 1(p−1)∤eF ·
q − 1

pq2(p− 1)
·B
(⌈ peF
p− 1

⌉)
.

(6)
−1cα< peF

p−1
−1 · 1cα ̸≡−1,0 (mod p) ·

q − 1

pq2(p− 1)
·B(cα + 1).

(7)
1cα<

peF
p−1
· 1µp⊆F ·

1

p
· q−(p−1)(eF+1).

Proof. If p ∤ vF (α), then the result follows from Corollary 12.28, so we will assume that p | vF (α).
Lemma 12.35 tells us that cα ≥ 1. By Lemma 12.36, the pre-mass is the sum of the following
four quantities:

(1)
q − 1

p− 1
· q−2 ·

∑
1≤c≤cα

c ̸≡1 (mod p)

q
−(p−2)c−⌊ c−2

p
⌋
.

(2)
1cα<

peF
p−1
· q − p
p− 1

· 1
p
· q−2−(p−2)(cα+1)−⌊ cα

p
⌋
.
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(3)
q − 1

p− 1
· 1
p
· q−2 ·

∑
cα+2≤c<

peF
p−1

+1

c ̸≡1 (mod p)

q
−(p−2)c−⌊ c−2

p
⌋
.

(4)
1(p−1)|eF · 1cα< peF

p−1
· 1µp⊆F ·

1

p
· q−(p−1)(eF+1).

By Lemma 12.25, the first three quantities rearrange to:

(1)
q − 1

p− 1
· q−2 · (1cα≥p ·A(cα) + 1cα ̸≡0,1 (mod p)B(cα)).

(2)
1cα<

peF
p−1
· q − p
p− 1

· 1
p
· q−2−(p−2)(cα+1)−⌊ cα

p
⌋
.

(3)

1cα<
peF
p−1

−1 ·
q − 1

p− 1
· 1
p
· q−2 ·

(
1eF≥p−1 ·A

(⌈ peF
p− 1

⌉)
− 1cα≥p−1A(cα + 1)

+ 1⌈ peF
p−1

⌉̸≡0,1 (mod p)B
(⌈ peF
p− 1

⌉)
− 1cα ̸≡−1,0 (mod p)B(cα + 1)

)
.

We saw in the proof of Corollary 12.26 that
⌈ peF
p−1

⌉
≡ 0, 1 (mod p) if and only if (p− 1) | eF , so

1⌈ peF
p−1

⌉̸≡0,1 (mod p) = 1(p−1)∤eF .

Since the extension Qp(ζp)/Qp is totally ramified1 of degree p− 1, we have

1(p−1)|eF · 1µp⊆F = 1µp⊆F ,

and the result follows. □

13. S4-quartic extensions

The goal of Section 13 is to prove Theorems 10.9, 10.10, 10.11, and 10.12, which concern the
pre-mass m̃

(
ÉtA4/F

)
, for p-adic fields F . Throughout the section, let p be a rational prime, let

F be a p-adic field, and let A ⊆ F× be a finitely generated subgroup. With F fixed, write q for
the size #FF of the residue field of F .

13.1. Tamely ramified parts. The goal of this subsection is to prove Theorem 10.9.

Lemma 13.1. We have

Splitepi4 = {(13), (122), (112), (1211), (131), (1111)}

and
Split4 = {(4), (22), (1212), (22), (14)} ∪ Splitepi4 .

Proof. The eleven possible splitting symbols are listed on [Bha04, Page 1353], and it is clear
that the epimorphic ones are as stated. □

1Since the polynomial xp−1 + . . .+ x+ 1 becomes Eisenstein after the substitution x 7→ x+ 1.
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Lemma 13.2. For all p, we have

m̃
(
Étepi4/F

)
=

5q2 + 8q + 8

8q2
.

Proof. This follows from Theorem 3.9(2), and Lemma 13.1. □

Lemma 13.3. For all p, we have

m̃
(
ÉtA(4)/F

)
=

{
1
4 if 4 | vF (α) for all α ∈ A,
0 otherwise,

and

m̃
(
ÉtA(22)/F

)
=

{
1
8 if 2 | vF (α) for all α ∈ A,
0 otherwise.

Proof. This follows easily from Lemma 11.5. □

Lemma 13.4. Suppose that p is odd. Let (A0, A1) be a stratified generating set for A2. Then
we have

m̃
(
ÉtA(1212)/F

)
=


1

2q2
if A ⊆ F×2,

3
8q2

if A0 = ∅ and #A1 = 1,
1

4q2
otherwise.

Proof. By Lemma 12.5, we have

Ét(1212)/F = {L0 × L0, L0 × L1, L1 × L1},

where
Lj = F

(√
ζjq−1πF

)
, j = 0, 1.

Lemma 3.11 tells us that vF (dLj/F ) = 1 for each j. It follows that, for i, j ∈ {0, 1}, we have

m̃
(
{Li × Lj}

)
=

{
1

8q2
if i = j,

1
4q2

if i 6= j.

The result then follows from the fact that

NLj/FL
×
j = 〈O×2

F ,−ζjq−1πF 〉.

□

Lemma 13.5. Suppose that p is odd. Let (A0, A1, A2) be a stratified generating set for A4.
Then we have

m̃
(
ÉtA(22)/F

)
=


1

2q2
if A0 ⊆ F×2 and A1 = A2 = ∅,

1
4q2

else if A0 ⊆ F×2 and A1 = ∅ and αi
αj
∈ F×2 for all αi, αj ∈ A2,

0 otherwise.

If q ≡ 1 (mod 4), then we have

m̃
(
ÉtA(14)/F

)
=


1
q3

if A ⊆ F×4,
1

2q3
if A0 = A1 = ∅ and #A2 = 1 and A2 ⊆ F×2,

1
4q3

if A0 = A2 = ∅ and #A1 = 1,

0 otherwise.
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If q ≡ 3 (mod 4), then we have

m̃
(
ÉtA(14)/F

)
=


1
q3

if A ⊆ F×2,
1

2q3
else if A0 = A2 = ∅ and #A1 = 1,

0 otherwise.

Proof. Let E/F be the quadratic unramified extension. Lemma 12.5 tells us that

Ét(12)/E = {L0, L1},

where
Lj = E

(√
ζj
q2−1

πF

)
,

for each j. On the other hand, we have two index 4 subgroups

〈O×2
F , π2F 〉, 〈O×2

F , ζq−1π
2
F 〉

of F×. Clearly the quartic abelian extensions corresponding to these subgroups have splitting
symbol (22), so they must be equal to L0 and L1 in some order, which implies that L0 and L1

are nonisomorphic abelian extensions of F . Lemma 3.11 tells us that vF (dLj/F ) = 2 for each j,
so m̃({Lj}) = 1

4q2
, and the formula for m̃

(
ÉtA(22)/F

)
follows.

Lemma 12.5 tells us that

Ét(14)/F =

{
{L0, L1, L2, L3} if q ≡ 1 (mod 4),

{L0, L1} if q ≡ 3 (mod 4),

where
Lj = F

(
4

√
ζjq−1πF

)
.

Suppose first that q ≡ 1 (mod 4). Then the minimal polynomial of 4
√
πF over F splits in L0,

so L0/F is Galois. Since πF is an arbitrary choice of uniformiser, it follows that Lj/F is Galois
for each j, and therefore

NLj/FL
×
j = 〈O×4

F ,−ζjq−1πF 〉.
Lemma 3.11 tells us that m̃({Lj}) = 1

4q3
for each j, and the result follows. Finally, suppose

that q ≡ 3 (mod 4). Then µ4 6⊆ F , so 4
√
πF has only two conjugates in L0, and therefore L0 is

non-Galois with a maximal abelian subextension F (
√
πF ), so

NL0/FL
×
0 = 〈O×2

F ,−πF 〉,

and similarly L1/F is non-Galois with

NL1/FL
×
1 = 〈O×2

F ,−ζq−1πF 〉.

By Lemma 3.11, we have vF (dLj/F ) = 3 for each j, and the result follows. □

Proof of Theorem 10.9. This is immediate from Lemmas 13.1 to 13.5 inclusive. □

13.2. 2-adic fields. In this subsection, we specialise to the case p = 2, so that F is a 2-adic
field. Recall that, for an integer m, the decorators Ét••/F,m and Ét••/F,≤m denote the sets of
L ∈ Ét••/F with vF (dL/F ) = m and vF (dL/F ) ≤ m, respectively. By Theorem 10.9, in order to
compute m̃

(
ÉtA4/F

)
, all we need is to compute m̃

(
ÉtAσ/F

)
for each σ ∈ {(1212), (22), (14)}. The

goal of Section 13.2 is to address the first two of these cases, by proving Theorems 10.10 and
10.11.
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Lemma 13.6. We have

ÉtA(1212)/F =
{
L1 × L2 ∈ Ét(1212)/F : L1 6∼= L2

}
∪
{
L1 × L1 : L1 ∈ ÉtA(12)/F

}
.

Proof. It is clear that the left-hand side is contained inside the right-hand side, and also that

{L1 × L1 : L1 ∈ ÉtA(12)/F } ⊆ ÉtA(1212)/F .

Finally, for distinct elements L1, L2 ∈ Ét(12)/F , the norm groups NLi/FL
×
i are distinct index 2

subgroups of F×, and therefore Nm(L1 × L2) = F×, so L1 × L2 ∈ ÉtA(1212)/F . □

Lemma 13.7. Let m be an integer. We have

#{L1 × L2 ∈ Ét(1212)/F,m : L1 6∼= L2} = N ̸=
(1212)

(m),

where N ̸=
(1212)

(m) is the explicit function defined in Appendix B.

Proof. Theorem 12.24 tells us that, for all m1, we have

#Ét(12)/F,m1
=


2(q − 1)q

m1
2

−1 if m1 is even with 2 ≤ m1 ≤ 2eF ,

2qeF if m1 = 2eF + 1,

0 otherwise.

We will use this fact without reference for the rest of this proof. For any m, the number we are
looking for is equal to

(10) 1

2
·
( ∑

m1+m2=m

(
#Ét(12)/F,m1

·#Ét(12)/F,m2

)
−#Ét(12)/F,m/2

)
.

It is easy to see that this is 0 unless one of the following is true:

• 4 ≤ m ≤ 4eF and m is even.
• 2eF + 3 ≤ m ≤ 4eF + 1 and m is odd.
• m = 4eF + 2.

The result follows by considering these cases separately. □

Proof of Theorem 10.10. This is immediate from Lemmas 13.6 and 13.7. □

Lemma 13.8. For each nonnegative integer m, we have

#ÉtV4/F,A
(22)/F,m =

{
1
2 ·#ÉtA(12)/F,m/2 if 2 | vF (α) for all α ∈ A,
0 otherwise.

Proof. Write Eur for the unramified quadratic extension of F . Let L ∈ ÉtV4/F
(22)/F,m. It follows

from Lemma 6.19 that there are exactly two elements E ∈ Ét(12)/F,m/2 with L = EurE. For
such E, we have

NmL = NmEur ∩NmE = {x ∈ NmE : 2 | vF (x)}.

Therefore, if there is some α ∈ A with 2 ∤ vF (α), then ÉtV4/F,A
(22)/F = ∅. On the other hand, if

2 | vF (α) for all α ∈ A, then we have a 2-to-1 surjection

ÉtA(12)/F,m/2 → ÉtV4/F,A
(22)/F,m, E 7→ EurE,

and the result follows. □
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Lemma 13.9. We have

ÉtD4/F,A
(22)/F =

{
ÉtD4/F

(22)/F if 2 | vF (α) for all α ∈ A,
∅ otherwise.

Proof. Let E/F be the unramified quadratic extension. By class field theory, every element
L ∈ ÉtD4/F

(22)/F has NL/FL
× = NE/FE

×, and the result follows. □
Lemma 13.10. Let E/F be the unique unramified quadratic extension. For each nonnegative
integer m, we have

#ÉtD4/F
(22)/F,m =

1

2
·
(
#Ét(12)/E,m/2 −#ÉtC4/F

(12)/E,m/2 −#ÉtV4/F
(12)/E,m/2

)
.

Proof. Using the tower law for discriminant, it is easy to see that there is a well-defined surjection

Ét(12)/E,m
2
\
(

ÉtC4/F
(12)/E,m

2
∪ ÉtV4/F

(12)/E,m
2

)
→ ÉtD4/F

(22)/F,m.

Moreover, Lemma 9.1(2) tells us that this surjection is 2-to-1. □
Lemma 13.11. Let E/F be the unique unramified quadratic extension. For each nonnegative
integer m, we have

#ÉtC4/F
(12)/E,m =

1

2
·#Ét(12)/F,m.

Proof. If ExtC4/F
2/E,m 6= ∅, then either m is even with 0 ≤ m ≤ 2eF , or m = 2eF + 1. Suppose

that m is an even integer with 0 ≤ m ≤ 2eF . Let ω ∈ E× be such that E(
√
ω)/E is unramified,

hence a C4-extension of F . By Lemma 8.19, we have

U
(2eE−m)
E E×2 ∩ F× = U

(2eF−m)
F F×2,

so Lemma 8.18 gives a 2-to-1 surjection

U
(2eF−m)
F F×2/F×2 → ExtC4/F

2/E,≤m, t 7→ E(
√
ωt).

But Lemma 8.5 and Corollary 8.6 tell us that, for u ∈ F×/F×2, we have

vF (dF (
√
u)/F ) ≤ m ⇐⇒ u ∈ U (2eF−m)

F F×2/F×2,

and therefore
#Ext2/F,≤m = #(U

(2eF−m)
F F×2/F×2)− 1,

so
#ExtC4/F

2/E,≤m =
1

2
#Ext2/F,≤m +

1

2
,

and the result follows for 2 ≤ m ≤ 2eF . By Lemmas 8.18 and 8.5, there is a 2-to-1 surjection

{[x] ∈ F×/F×2 : vF (x) = 1} → ÉtC4/F
(12)/E,2eF+1, x 7→ E(

√
ωx),

and a bijection

{[x] ∈ F×/F×2 : vF (x) = 1} → Ét(12)/F,2eF+1, x 7→ F (
√
x),

and the result for m = 2eF + 1 follows. □
Lemma 13.12. Let E/F be the unique unramified quadratic extension. For each nonnegative
integer m, we have

#ÉtV4/F
(12)/E,m =

1

2
·#Ét(12)/F,m.

Proof. This follows easily from Lemma 9.1 and Lemma 13.8. □
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Lemma 13.13. If ÉtD4/F,A
(22)/F,m is nonempty, then either m is a multiple of 4 with 4 ≤ m ≤ 4eF ,

or m = 4eF + 2. If m is a multiple of 4 with 4 ≤ m ≤ 4eF , then

#ÉtD4/F,A
(22)/F,m =

(q − 1)
(
(q + 1)q

m
2
−2 − q

m
4
−1
)

if 2 | vF (α) for all α ∈ A,
0 otherwise.

If m = 4eF + 2, then

#ÉtD4/F,A
(22)/F,m =

{
qeF (qeF − 1) if 2 | vF (α) for all α ∈ A,
0 otherwise.

Proof. This follows easily from Theorem 12.24 and Lemmas 13.9, 13.10, 13.11, and 13.12. □

Lemma 13.14. If 2 | vF (α) for all α ∈ A, then

m̃
(
ÉtD4/F,A

(22)/F

)
=

1

2
·
(
q−2 − q−2eF−2 − 1

q2 + q + 1

(
q−1 − q−3eF−1

)
+ q−3eF−2

(
qeF − 1

))
.

Proof. This follows easily from Lemma 13.13. To eliminate the possibility of a manipulation
error, we have checked the required summation numerically in the Python notebook in the
Github repository https://github.com/Sebastian-Monnet/Sn-n-ics-paper-checks. □

Lemma 13.15. Let M/L/K be a tower of quadratic extensions of p-adic fields. Suppose that
M/K is Galois and let β ∈ L×. Let α = NL/Kβ. Then

α ∈ NM/KM
× ⇐⇒ β ∈ NM/LM

×.

Proof. The (⇐) direction is obvious. For (⇒), suppose that α ∈ NM/KM
×. Then α = NL/Kθ

for some θ ∈ NM/LM
×. Since NL/K(θ/β) = 1, Hilbert’s theorem 90 tells us that θ = β x

x̄ for
some x ∈ L×. Writing M = L(

√
d) for d ∈ L×, we have

(β, d)L = (d, θ)L(d, x)L(d, x̄)L

= (d, x)L(d̄, x)L

= 1,

where the final equality comes from the fact that M/K is Galois, so L(
√
d) = L(

√
d) =M . □

Next, we want to understand the sets ÉtC4/F,A
(22)/F,m, for positive integers m. Recall from Section 10

that, given a C4-extendable extension E/F , we defined a certain subset NA
E of F×/F×2. We

would suggest rereading this definition, which is just before the statement of Theorem 10.11,
before tackling the next lemma.

Lemma 13.16. Let E ∈ ExtA2/F be C4-extendable, and let m2 be an integer such that ExtC4/F
2/E,≤m2

is nonempty. If m2 ≤ 2eE, then we have

#ExtC4/F,A
2/E,≤m2

=
1

2
·#

((
U

(2eE−2⌊m2
2

⌋)
E E×2 ∩ F×

)
/F×2 ∩NA

E

)
.

If m2 ≥ 2eE + 1, then we have

#ExtC4/F,A
2/E,≤m2

=
1

2
·#NA

E .

https://github.com/Sebastian-Monnet/Sn-n-ics-paper-checks
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Proof. Let ω ∈ E× be the element we fixed in the definition of NA
E . If m2 ≤ 2eE , then

Lemma 8.18 gives us a 2-to-1 surjection(
U

(2eE−2⌊m2
2

⌋)
E E×2 ∩ F×

)
/F×2 → ExtC4/F

2/E,≤m2
, t 7→ E(

√
ωt).

If m2 ≥ 2eE + 1, then Lemma 8.18 gives a 2-to-1 surjection

F×/F×2 → ExtC4/F
2/E,≤m2

, t 7→ E(
√
ωt).

Let t ∈ F× and let L = E(
√
ωt). Let α ∈ A, and let α̃ ∈ E× be such that NE/F α̃ = α.

Lemma 13.15 tells us that α ∈ NL/FL
× if and only if α̃ ∈ NL/EL

×. By Lemma 13.15 and
properties of quadratic Hilbert symbols, we have

α̃ ∈ NL/EL
× ⇐⇒ (α̃, ωt)E = 1

⇐⇒ (α̃, t)E = (α̃, ω)E

⇐⇒ (α, t)F =

{
1 if α ∈ NE(

√
ω)/FE(

√
ω)×,

−1 otherwise.

⇐⇒

{
t ∈ Nα if α ∈ Nω,

t 6∈ Nα otherwise.

It follows that A ⊆ NL/FL
× if and only if t ∈ NA

E , and the result follows. □

Lemma 13.17. Let E be the unramified quadratic extension of F , and let m be a nonnegative
integer. If m ≤ 4eF + 1, then

#ÉtC4/F,A
(22)/F,≤m =


1
2 ·#N

A
E,2eF−2⌊m

4
⌋ − 1 if vF (α) ≡ 0 (mod 4) for all α ∈ A,

1
2 ·#N

A
E,2eF−2⌊m

4
⌋ else if 2 | vF (α) for all α ∈ A,

0 otherwise.

If m ≥ 4eF + 2, then

#ÉtC4/F,A
(22)/F,≤m =


1
2 ·#N

A
E − 1 if vF (α) ≡ 0 (mod 4) for all α ∈ A,

1
2 ·#N

A
E else if 2 | vF (α) for all α ∈ A,

0 otherwise.

Proof. Clearly, if 2 ∤ vF (α) for any α ∈ A, then ÉtC4/F,A
(22)/F,≤m = ∅. Therefore, we will assume

that 2 | vF (α) for all α ∈ A. By Lemma 9.1, the natural map

ÉtC4/F
(12)/E,≤⌊m

2
⌋ → ÉtC4/F

(22)/F,≤m

is a bijection. Let m2 = bm2 c. Suppose that m ≤ 4eF + 1. Then Lemmas 8.19 and 13.16 tell us
that

#ExtC4/F,A
2/E,≤m2

=
1

2
·#NA

E,2eF−2⌊m2
2

⌋.

It is easy to see that bm2
2 c = b

m
4 c, and also that ExtC4/F,A

2/E,≤m2
contains the unramified quadratic

extension if and only if vF (α) ≡ 0 (mod 4) for all α ∈ A. The result for m ≤ 4eF + 1 follows.

The argument for m ≥ 4eF + 2 is similar but easier, so we omit it. □
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Corollary 13.18. For each nonnegative integer m, we have

#ÉtC4/F,A
(22)/F,m =


1
2 ·
(
#NA

E,2eF−m
2
−#NA

E,2eF−m
2
+2

)
if 4 | m and 4 ≤ m ≤ 4eF ,

1
2 ·
(
#NA

E −#NA
E,0

)
if m = 4eF + 2,

0 otherwise.

Proof. This follows easily from Lemma 13.17. □

Proof of Theorem 10.11. We address the statements one by one.

(1) An S4- or A4-quartic extension has no proper intermediate fields, so it cannot have
splitting symbol (22).

(2) This is precisely Lemma 13.14.
(3) This follows from Corollary 12.31 and Lemma 13.8.
(4) This follows from Corollary 13.18.

□

In the special case where A is generated by a single element, we can write down a simple
description of the sizes #NA

E,c, and hence of the counts #ÉtC4/F,A
(22)/F,m. We note these descriptions

in Lemma 13.19 and Corollary 13.20.

Lemma 13.19. Let α ∈ F×\F×2, let dα = vF (dF (
√
α)/F ), and let E/F be the unique unramified

quadratic extension of F . For each nonnegative integer c, we have

#N
⟨α⟩
E,c =


qeF−⌈ c−1

2
⌉ if c < dα,

2qeF−⌈ c−1
2

⌉ if dα ≤ c ≤ 2eF and vF (α) ≡ 0 (mod 4),

0 otherwise.

Proof. From the definition of NA
E , it is easy to see that

N
⟨α⟩
E =

{
N

2
α if vF (α) ≡ 0 (mod 4),

(F×/F×2) \N2
α otherwise.

By Lemma 12.11, we have U (c)
F F×2/F×2 ⊆ N

2
α if and only if c ≥ dα. By elementary linear

algebra, it follows that

#N
⟨α⟩
E,c =


1
2 ·#

(
U

(c)
F F×2/F×2

)
if c < dα,

#
(
U

(c)
F F×2/F×2

)
if c ≥ dα and vF (α) ≡ 0 (mod 4),

0 otherwise.
The result follows by Corollary 12.22. □

Corollary 13.20. Let α ∈ F× \ F×2, and let m be an integer. If ÉtC4/F,⟨α⟩
(22)/F,m is nonempty, then

vF (α) is even and either m = 4eF + 2 or m is a multiple of 4 with 4 ≤ m ≤ 4eF . If vF (α) ≡ 0

(mod 4) and m is a multiple of 4 with 4 ≤ m ≤ 4eF , then

#ÉtC4/F,⟨α⟩
(22)/F,m =


1
2q

m
4
−1(q − 1) if m > 4eF − 2dα + 4,

1
2q

m
4
−1(q − 2) if m = 4eF − 2dα + 4,

q
m
4
−1(q − 1) if m < 4eF − 2dα + 4.
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If vF (α) ≡ 2 (mod 4) and m is a multiple of 4 with 4 ≤ m ≤ 4eF , then

#ÉtC4/F,⟨α⟩
(22)/F,m =


1
2q

m
4
−1(q − 1) if m > 4eF − 2dα + 4,

1
2q

m
4 if m = 4eF − 2dα + 4,

0 if m < 4eF − 2dα + 4.

If vF (α) is even and m = 4eF + 2, then

#ÉtC4/F,⟨α⟩
(22)/F,4eF+2 =


1
2q

eF if dα > 0,

qeF if vF (α) ≡ 2 (mod 4) and dα = 0,

0 otherwise.

Proof. By Lemma 8.5, if vF (α) is even then dα is even. The result follows from Corollary 13.18
and Lemma 13.19. □

Lemma 13.21. For G ∈ {S4, A4}, we have

ÉtG/F,A
(14)/F = ÉtG/F

(14)/F .

Proof. Let L ∈ ÉtG/F
(14)/F , for G ∈ {S4, A4}. Then L/F has no intermediate fields, so class field

theory tells us that NL/FL
× = F×. □

Lemma 13.22. We have

#ÉtD4/F,A
(14)/F,m =

1

2

∑
2m1+m2=m
m1,m2>0

∑
E∈ÉtA(12)/F,m1

(
#Ét(12)/E,m2

−#ÉtC4/F
(12)/E,m2

−#ÉtV4/F
(12)/E,m2

)
.

Proof. We will construct a 2-to-1 surjection⊔
2m1+m2=m
m1,m2>0

⊔
E∈ÉtA(12)/F,m1

{
L ∈ Ét(12)/E,m2

: L/F not Galois
}
→ ÉtD4/F,A

(14)/F,m,

thus proving the result. An element of the left-hand side may be written as a pair (E,L), where
E ∈ ÉtA(12)/F,m1

and L ∈ Ét(12)/E,m2
. Using the tower law for discriminant, it is easy to see that

there is a well-defined map

Φ :
⊔

2m1+m2=m
m1,m2>0

⊔
E∈ÉtA(12)/F,m1

{
L ∈ Ét(12)/E,m2

: L/F not Galois
}
→ ÉtD4/F,A

(14)/F,m, (E,L) 7→ L.

Let L ∈ ÉtD4/F,A
(14)/F,m. Since L/F has Galois closure group D4, it has a unique quadratic interme-

diate field E. It is easy to see that the pair (E,L) is in the domain of Φ, so Φ is surjective. Let
L ∈ ÉtD4/F,A

(14)/F,m. It is easy to see that

Φ−1(L) = {(E,E(
√
α)), (E,E(

√
ᾱ))},

where E/F is the unique quadratic subextension of L/F , and α ∈ E× is an element with
L = E(

√
α). Since L/F is non-Galois, we have E(

√
α) 6∼= E(

√
ᾱ) as extensions of E, and

therefore the preimage Φ−1(L) has exactly two elements, so we are done. □

Lemma 13.23. Let E ∈ Ét(12)/F,m1
for some integer m1. For each nonnegative integer m2, we

have
#ÉtV4/F

(12)/E,m2
= NV4(m1,m2),
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where NV4 is the function defined in Appendix B.

Proof. By the tower law for discriminant, every L ∈ ÉtV4/F
(12)/E,m2

has vF (dL/F ) = 2m1 + m2.
We will use this fact without reference throughout the proof. Suppose that m2 < m1. By
Lemma 6.19, we have a bijection

Ét(12)/F,m2
→ ÉtV4/F

(12)/E,m2
, E′ 7→ EE′.

If m2 > m1, then similarly we obtain a 2-to-1 surjection

Ét(12)/F,m1+m2
2
→ ÉtV4/F

(12)/E,m2
, E 7→ EE′.

Using these two maps, the result for m1 6= m2 follows from Theorem 12.24. Finally, suppose
that m1 = m2. Suppose that L ∈ ÉtV4/F

(12)/E,m2
and L = EE′ for some quadratic extension E′/F .

Let χ, χ′ : F×/F×2 → F2 be the quadratic characters associated to E and E′ respectively. By
Theorem 12.10 and Lemma 12.11, we have

f(χ) = vF (dE/F ) = min
{
c : U

(c)
F F×2/F×2 ⊆ kerχ

}
,

and similarly for χ′ and E′. By Lemma 6.19, we have

m1 + f(χ′) + f(χχ′) = vF (dL/F ) = 2m1 +m2 = 3m1,

so
f(χ′) + f(χχ′) = 2m1.

If f(χ′) 6= m1, then Lemma 6.19 tells us that

f(χχ′) = max{m1, f(χ
′)},

so
f(χ′) + max{m1, f(χ

′)} = 2m1,

which is impossible. It follows that f(χ′) = f(χχ′) = m1, so

#ÉtV4/F
(12)/E,m1

=
1

2
·#
{
χ′ : F×/U

(m1)
F F×2 → F2

∣∣∣ χ′|Wm1−1 6∈ {0, χ|Wm1−1}
}
.

If m1 = 2eF + 1, then Wm1−1
∼= C2 by Corollary 12.21, so ÉtV4/F

(12)/E,m1
= ∅. If m1 is even with

2 ≤ m1 ≤ 2eF , then Corollary 12.21 tells us that #Wm1−1 = q, so there are q − 2 possible
restrictions χ′|Wm1−1 . Each such restriction lifts to

#(F×/U
(m1−2)
F F×2) = 2q

m1
2

−1

characters, so we have

#
{
χ′ : F×/U

(m1)
F F×2 → F2

∣∣∣ χ′|Wm1−1 6∈ {0, χ|Wm1−1}
}
= 2q

m1
2

−1(q − 2),

and the result for m1 = m2 follows. □

Lemma 13.24. We have

#ÉtD4/F,A
(14)/F,m =

1

2
·

∑
0<m1<m/2

#ÉtA(12)/F,m1
·
(
NC2(m−2m1)−NC4(m1,m−2m1)−NV4(m1,m−2m1)

)
,

where the functions NC2 , NC4, and NV4 are as defined in Appendix B. We can compute this
quantity explicitly using Corollary 12.31.

Proof. This follows easily from Lemma 8.3, Theorem 12.24, Lemma 13.22, and Lemma 13.23.
□
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Lemma 13.25. Let m be an integer. If ÉtV4/F,A
(14)/F,m is nonempty, then m is an even integer

with 6 ≤ m ≤ 6eF + 2. In that case, the number #ÉtV4/F,A
(14)/F,m is the sum of the following two

quantities:

(1)
1

2
·

∑
m1<m2

m1+2m2=m

(
#ÉtA(12)/F,m1

)(
#ÉtA(12)/F,m2

)
.

(2)

13|m ·
2

3(#A2
)2
· q

m
3
−2
(
q#A2

m/3 −#A2
m/3−1

)(
q#A2

m/3 − 2#A2
m/3−1

)
.

Proof. The necessary conditions on m, namely that m is even with 6 ≤ m ≤ 6eF + 2, come
from Lemma 5.5. Assume that m satisfies these conditions. Define the map

Φ :
⊔

m1<m2
m1+2m2=m

ÉtA(12)/F,m1
× ÉtA(12)/F,m2

→ ÉtV4/F,A
(14)/F,m, (E1, E2) 7→ E1E2.

By Lemma 6.19, this map is well-defined and 2-to-1, so

#imΦ =
1

2
·

∑
m1<m2

m1+2m2=m

(
#ÉtA(12)/F,m1

)(
#ÉtA(12)/F,m2

)
.

If 3 ∤ m, then Φ is surjective, so we are done. Suppose that 3 | m. Let S be the set of
L ∈ ÉtV4/F,A

(14)/F,m such that every intermediate quadratic field E of L has vF (dE/F ) = m/3. Then

ÉtV4/F,A
(14)/F,m = S t imΦ,

so
#ÉtV4/F,A

(14)/F,m = #S +
1

2
·

∑
m1<m2

m1+2m2=m

(
#ÉtA(12)/F,m1

)(
#ÉtA(12)/F,m2

)
.

Let Σ be the set of pairs (χ1, χ2), where:

(1) χ1 and χ2 are quadratic characters χi : F
×/U

(m/3)
F F×2 → F2.

(2) The restrictions of χ1 and χ2 to U (m/3−1)
F F×2/U

(m/3)
F F×2 are nonzero and distinct.

(3) For i = 1, 2, we have

χi

(
AU (m/3)

F F×2/F×2U
(m/3)
F

)
= 0.

Then there is a natural 6-to-1 surjection Σ→ S, so

#S =
1

6
·#Σ.

Evaluating #S amounts to a simple linear algebra problem. To emphasise this simplicity, we
define:

(1)
V = F×/U

(m/3)
F F×2.

(2)
M = U

(m/3−1)
F F×2/U

(m/3)
F F×2.
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(3)
N = AU (m/3)

F F×2/U
(m/3)
F F×2.

Then V is an F2-vector space, M and N are subspaces of V , and we are looking for pairs of
linear transformations χ1, χ2 : V → F2 such that the following two statements are true:

(1) χi(N) = 0 for i = 1, 2.
(2) The restrictions χ1|M and χ2|M are nonzero and distinct.

These correspond bijectively to pairs χ1, χ2 : V/N → F2 such that the restrictions χ1|(M+N)/N

and χ2|(M+N)/N are nonzero and distinct. There are(
#
(M +N

N

)
− 1
)(

#
(M +N

N

)
− 2
)

possibilities for the pair (χ1|(M+N)/N , χ2|(M+N)/N ). Each of these lifts to(
#
( V

M +N

))2
pairs (χ1, χ2), so we have

#Σ =
(
#
( V

M +N

))2
·
(
#
(M +N

N

)
− 1
)(

#
(M +N

N

)
− 2
)
.

We evaluate the sizes of the relevant vector spaces.

(1) Corollary 12.22 tells us that
#V = 2q

m
6 .

(2) By the second and third isomorphism theorems for groups, we have

N =
AU (m/3)

F F×2

U
(m/3)
F F×2

∼=
A2

A2
m/3

,

so

#N =
#A2

#A2
m/3

.

(3) We have

M +N =
AU (m/3−1)

F F×2

U
(m/3)
F F×2

,

so
#(M +N) =

[
AU (m/3−1)

F F×2 : U
(m/3−1)
F F×2

]
·#Wm/3−1.

By the second and third isomorphism theorems for groups, we have

AU (m/3−1)
F F×2

U
(m/3−1)
F F×2

∼=
A2

A2
m/3−1

,

so Corollary 12.21 tells us that

#(M +N) = q · #A2

#A2
m/3−1

.

It follows that

#Σ =
4q

m
3
−2

(#A2
)2
·
(
q#A2

m/3 −#A2
m/3−1

)(
q#A2

m/3 − 2#A2
m/3−1

)
.
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□

13.3. Totally wildly ramified C4-extensions. Our goal in this subsection is to prove The-
orem 10.12, which gives us algorithms for computing m̃

(
ÉtC4/F,A

(14)/F

)
, and analyse the time com-

plexity of those algorithms to prove Theorem 10.13.

Lemma 13.26. Let m1 and m2 be integers, with m1 even. Then⌊m1

4
+

1

2

⌊m2

2

⌋⌋
=
⌊m1 +m2

4

⌋
.

Proof. This is easy to see by writing m1 = 2k1 and m2 = 2k2 + r, for r ∈ {0, 1}. □

Lemma 13.27. Let F be a 2-adic field and let E ∈ ÉtA(12)/F . If −1 6∈ NE/FE
×, then

ÉtC4/F
(12)/E = ∅.

For the rest of the lemma, assume that −1 ∈ NE/FE
×. Let m1 = vF (dE/F ), and let m2 be an

integer. Let
c(m2) = 2eF − 2

⌊m1 +m2

4

⌋
.

If m1 ≤ eF , then

#ÉtC4/F,A
(12)/E,≤m2

=


0 if m2 < 3m1 − 2,
1
2 ·#N

A
E,c(m2)

if 3m1 − 2 ≤ m2 ≤ 4eF −m1 + 1,
1
2 ·#N

A
E if m2 ≥ 4eF −m1 + 2.

If m1 > eF , then

#ÉtC4/F,A
(12)/E,≤m2

=

{
0 if m2 < m1 + 2eF ,
1
2 ·#N

A
E if m2 ≥ m1 + 2eF .

Proof. If −1 6∈ NE/FE
×, then ÉtC4/F

(12)/E = ∅ by Corollary 8.8. Suppose that −1 ∈ NE/FE
×.

Then Corollary 8.8 and Lemma 8.17 tell us that ÉtC4/F
(12)/E,≤m2

is nonempty if and only if

m2 ≥

{
3m1 − 2 if m1 ≤ eF ,
2eF +m1 if m1 > eF .

Suppose that m1 ≤ eF and m2 ≥ 3m1 − 2. If m2 ≤ 4eF −m1 + 1, then Lemmas 8.19, 13.16,
and 13.26 give a 2-to-1 surjection

NA
E,c(m2)

→ ExtC4/F,A
2/E,≤m2

.

If m2 ≥ 4eF −m1 + 2, then Lemma 8.3 tells us that

ExtC4/F
2/E,≤m2

= ExtC4/F
2/E,≤4eF−m1+2,

and we have
#ExtC4/F

2/E,≤4eF−m1+2 =
1

2
·#NA

E

by Lemmas 8.19 and 13.16. The result for m1 ≤ eF follows. The argument for m1 > eF is
similar but easier, so we omit it. □

Proof of Theorem 10.12. We prove the statements one at a time:

(1) This is immediate from Lemma 13.21.
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(2) This follows easily from Lemma 8.3, Theorem 12.24, Lemma 13.22, and Lemma 13.23.
(3) This is precisely Lemma 13.25.
(4) This is immediate from Lemma 13.27.

□

Algorithm 13.28. Let F be a 2-adic field, let m1 be an even integer with m1 ≤ eF , and let
E ∈ Ét(12)/F,m1

be C4-extendable.

(1) Take d ∈ F× such that E = F (
√
d) and vF (d) = m1.

(2) Take a, b ∈ F× with d = a2 + 4b, such that vF (a) = m1/2 and vF (b) = 1.
(3) Define ρ = a+

√
d

2 , which is a uniformiser of E.
(4) Choose ω ∈ E× such that NE/Fω ∈ dF×2 and vE(ω) = 0.
(5) Take λ ∈ F× such that

NE/Fω ≡ λ2 (mod p2eF+1−m1
F ).

(6) Define

ω1 =

{
ω if vE(ω − λ) ≥ m1,
ωb
ρ2

if vE(ω − λ) = m1 − 1.

(7) Define

ω2 =

{
ω1 if vE(ω1 − ω̄1) = 2m1,

ω1(1 + ρ)2 if vE(ω1 − ω̄1) > 2m1,

and

λ2 =

{
λ if vE(ω1 − ω̄1) = 2m1,

λ(1 + a− b) if vE(ω1 − ω̄1) > 2m1.

(8) Write ω2 = r2 + s2ρ for r2, s2 ∈ F , and define

q =
r2 − λ2
s2

, n =
q2 + b

r2
.

(9) Output ω2n
(q+ρ)2

.

Theorem 13.29. Let E,m1 be as in Algorithm 13.28.

(1) All the steps of the algorithm are well-defined.
(2) Let ω be the output of the algorithm. Then E(

√
ω) ∈ ÉtC4/F

(12)/E,3m1−2.

Proof. This is essentially [CDO05, Proposition 3.15]. We rewrite their proof using our notation
in Appendix A. □

Definition 13.30. Let K be a field and let M be a matrix with entries in K. A reduced row
decomposition of M is a triple (M̃, T, T−1), where M̃ is a matrix in reduced row echelon form
and T is a composition of elementary matrices with M = TM̃ . For computational efficiency,
we consider the inverse matrix T−1 to be part of the data of the reduced row decomposition.

Lemma 13.31. Let M be an m× n matrix defined over a field K. We can compute a reduced
row decomposition of M using O(mnmin{m,n}) field operations in K.

Proof. For i = 1, . . . ,min{m,n}, the ith step of Gaussian elimination (i.e. reducing the ith

column) requires O(n) elementary row operations. Each elementary row operation requires
O(m) field operations in K, so we are done. □
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Definition 13.32. Let F be a p-adic field for some rational prime p. Let E/F be a field
extension with [E : F ] ≤ 4, let m(X) ∈ Qp[X] be a monic degree fE polynomial that is
irreducible over Fp[X], and let α ∈ E be a root of m(X). Define the set

BE0 = {1, α, . . . , αfE−1}.

We will assume that (as is the case with Magma’s ‘FldPad’ object class) the maximal unramified
subextension of E/Qp is defined as Qp[X]

(m(X)) , so that BE0 is part of the data of E.

Lemma 13.33. Let F and E be as in Definition 13.32. The following three statements are
true:

(1) The set BE0 descends to an Fp-basis for the vector space FE.
(2) For any x ∈ OE, we can compute the BE0 -coefficients of [x] ∈ FE with time complexity

OF (1).
(3) Suppose that we have an Fp-linear transformation ϕ : FE → FE that we can evaluate

with time complexity OF (t), for some function t. We can compute the matrix [ϕ]BE
0

with
time complexity OF (fF · t).

Proof. Recall the polynomial m(X) ∈ Qp[X] from Definition 13.32. The first statement follows
from the fact that FE is defined by m(X) as an extension of Fp. The second statement follows
from the fact that (at least in Magma) x is implemented as a power series in πE with coefficients
in the maximal unramified subextension Eur of E, and elements of Eur are stored as Zp-linear
combinations of BE0 . We can reduce all of these Zp-coefficients modulo p with time complexity
O(fF )� OF (1). The third statement follows immediately from the second. □

Lemma 13.34. Let F be a p-adic field for some rational prime p, and let E/F be a field
extension with [E : F ] ≤ 4. Recall the map

ϕ : FE → FE , [y] 7→
[
y +

πeEE
p
yp
]

from Algorithm 12.19. We can compute a reduced row decomposition of the matrix [ϕ]BE
0

with
time complexity OF (f

3
F + fF log eF + fF log p).

Proof. A single evaluation of ϕ has time complexity OF (log eF +log p), so Lemma 13.33 tells us
that we can compute [ϕ]BE

0
with time complexity OF (fF log eF + fF log p). The result follows

from Lemma 13.31. □

Lemma 13.35. Let F be a p-adic field for some rational prime p and let ϕ : FF → FF be the
map from Algorithm 12.19. If we have already computed a reduced row decomposition for [ϕ]BF

0
,

then Algorithm 12.19 can be run with time complexity OF ([F : Qp]).

Proof. Steps (1) and (3) have time complexity OF (1). Consider the iteration in Step (2). The
steps with p ∤ i have time complexity OF (1), and there are O(eF ) such steps, so we can perform
them all with time complexity OF (eF ). The steps with p | i and i < peF

p−1 have time complexity
OF (fF log p), since taking pth roots in FF is equivalent to raising to the power of pfF−1. There
are O(eF /p) such steps, so we can perform all of them with time complexity OF ([F : Qp] · log pp ).
Thus, we can perform all the steps where i < peF

p−1 with time complexity OF ([F : Qp]).

Assume that we have a primitive root modulo p and a logarithm table for Fp with respect to
this primitive root, so that we can perform any field operation in Fp with time complexity O(1).
This is a modest requirement, and we consider it to be part of any sensible implementation. Let



126

(M̃, T, T−1) be our reduced row descomposition of [ϕ]BF
0

. Then the final step amounts to finding
a vector v ∈ FfF

p with M̃v = T−1[ mi−1

π
eF /(p−1)

F p
]BE

0
. This has time complexity O(f2F )� OF (1). □

Lemma 13.36. Let F be a p-adic field for some rational prime p, and let E be an extension of
F with [E : F ] ≤ 4. Let B−1 = {πE} and let B0 = BE0 . If µp 6⊆ E, then set B peE

p−1
= ∅. Suppose

instead that µp ⊆ E. Let u peE
p−1
∈ O×

E be an element such that [u peE
p−1

] ∈ FE is not in the image
of the map

ϕ : FE → FE , [y] 7→
[
y +

πeEE
p
yp
]
,

and define B peE
p−1

= {1 + pπ
eE/(p−1)
E u peE

p−1
}. Define

B = B−1 t B peE
p−1
t

⊔
1≤i≤⌈ peE

p−1
⌉−1

p∤i

{1 + πiEu : u ∈ B0}.

The following two statements are true:

(1) B is a system of representatives for a basis of the Fp-vector space E×/E×p.
(2) Assume that we have already computed a reduced row decomposition of [ϕ]BE

0
. For any

element α ∈ E×, we can compute the coefficients of [α] ∈ E×/E×p with respect to the
basis induced by B with time complexity OF ([F : Qp]).

Proof. Corollary 12.22 tells us that the size of B equals the dimension of E×/E×p. Therefore,
it suffices to prove that B spans E×/E×p. We will thus give an OF ([F : Qp]) algorithm for
expressing [α] ∈ E×/E×p as a linear combination of B, for any α ∈ E×, thus proving both
statements simultaneously.

Let α ∈ E×. Without loss of generality, we may assume that vE(α) ∈ {0, 1, . . . , p − 1}. Let
α0 = α

π
vE(α)

E

. We will recursively define an element αi+1 for each i = 0, 1, 2, . . . , d peEp−1e − 1. We

claim that for each of these i, we have αi+1 ∈ U (i+1)
E . Clearly α0 ∈ U (0)

E , so we have the base
case for our induction.

• Suppose that p | i. With time complexity OF (fF log p), we can find [yi] ∈ FE such that

ypi ≡
αi − 1

πiE
(mod pE).

Then set αi+1 = αi/(1 + π
i/p
E yi)

p, so that αi+1 ∈ U (i+1)
E by Lemma 12.18.

• Suppose that p ∤ i. Since
[
αi−1
πi
E

]
∈ FE , there are unique coefficients λ(i)u ∈ {0, 1, . . . , p−1}

such that [αi − 1

πiE

]
=
∑
u∈B0

λ(i)u [u],

and by Lemma 13.33 we can determine the coefficients λ(i)u with time complexity OF (1).
By the natural isomorphism FE → U

(i)
E /U

(i+1)
E , we have

αi ≡
∏
u∈B0

(1 + πiEu)
λ
(i)
u (mod pi+1

E ),

so we define
αi+1 =

αi∏
u∈B0

(1 + πiEu)
λ
(i)
u

∈ U (i+1)
E .
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Suppose that µp 6⊆ E. Then Corollary 12.21 tells us that α⌈ peE
p−1

⌉ ∈ E×p, and therefore

αE×p = π
vE(α)
E ·

∏
1≤i≤⌈ peE

p−1
⌉−1

p∤i

(1 + πiEu)
λ
(i)
u E×p,

as required.

The coefficients λ(i)u we have found so far were computed in O(eF ) steps of time complexity
OF (1), and O(eF /p) steps of time complexity OF (fF log p), so the algorithm so far has time
complexity OF ([F : Qp]).

Suppose instead that µp ⊆ E, so (p− 1) | eE . Let λ(
peE
p−1

) be the unique element of Fp with

α peE
p−1
− λ(

peE
p−1

)
u peE

p−1
∈ imϕ.

Let (M̃, T, T−1) be our reduced row decomposition of [ϕ]BE
0

. Then λ
(
peE
p−1

) can be read off from
the final entries of the vectors T−1[α peE

p−1
]BE

0
and T−1[u peE

p−1
]BE

0
, which can be computed with

time complexity O(fF )� OF (1).

By Corollary 12.15, Lemma 12.18, and Lemma 12.20, we have

α peE
p−1

/(1 + pπ
eE/(p−1)
E u peE

p−1
)λ

(
peE
p−1 )

∈ E×p.

Thus, we have

αE×p = π
vE(α)
E · (1 + pπ

eE/(p−1)
E u peE

p−1
)λ

(
peE
p−1 )

·
∏

1≤i≤ peE
p−1

−1

p∤i

∏
u∈B0

(1 + πiEu)
λ
(i)
u E×p,

as required. □

Lemma 13.37. Let F be a 2-adic field and let L/E/F be a tower of field extensions, where
L/E is quadratic and [E : F ] ≤ 2. Let d ∈ E×. We can do the following with time complexity
OF ([F : Q2]

3):

(1) Determine whether d ∈ NL/EL
×.

(2) If so, find an element ω ∈ L× such that NL/Eω ∈ dE×2.

Proof. By Lemma 13.34, we can quickly compute a reduced row decomposition of [ϕ]BE
0

. Using
Lemma 13.36, we can quickly write down a set B ⊆ L×, of size 2 + [L : Q2], that descends to a
basis of L×/L×2. Taking norms1, we obtain a spanning set NmB for NL/EL

×/E×2.

Again using Lemma 13.36, fix a basis for E×/E×2. Let A ∈ F(2+[E:Q2])×(2+[L:Q2])
2 be the matrix

whose columns are the coordinates of the elements of NmB, and let v ∈ F2+[E:Q2]
2 be the

coordinate vector of [d] ∈ E×/E×2. Note that, by Lemma 13.36, A and v can be computed
with time complexity OF ([F : Q2]

2). It then suffices to perform Gaussian elimination on the
augmented matrix (A v). By Lemma 13.31, this Gaussian elimination be performed with time
complexity OF ([F : Q2]

3), so we are done. □

1Note that norms can be computed quickly since they are determinants of linear transformations in 2 dimen-
sions.
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Theorem 13.38. Let F be a 2-adic field and let ϕ : FF → FF be the map from Algorithm 12.19.
Assume that we have already computed a reduced row decomposition for [ϕ]BF

0
. Then Algo-

rithm 13.28 can be performed with time complexity OF ([F : Q2]
3).

Proof. We compute the time complexity of each step of the algorithm, one by one. In Appen-
dix A, we give expanded descriptions of these steps. In our analysis here, we use these expanded
descriptions without reference.

(1) Clearly this has time complexity OF (1).
(2) We need to solve the congurence X2

d − 1 ≡ 0 (mod p2eF+1−m1
F ). By Lemma 13.35, we

can do this with time complexity OF ([F : Q2]).
(3) This is clearly OF (1).
(4) By Lemma 13.37, this has time complexity OF ([F : Q2]

3).
(5) Using Algorithm 12.19, we can find λ with time complexityOF ([F : Q2]), by Lemma 13.35.

(6)-(9) The remaining steps are all just computations in F , so they have time complexity OF (1).

□

Lemma 13.39. Let K be a field, and let m, n1, and n2 be positive integers. For each i ∈ {1, 2},
let Mi be an m× ni matrix with entries in K. We can compute a basis for

colspan(M1) ∩ colspan(M2)

using O(m · (n1 + n2) ·min{m,n1 + n2}) field operations in K.

Proof. We acknowledge the StackExchange answer [glS] as the inspiration for our argument.
For each i, let ri = rank(Mi). For each i, Lemma 13.31 tells us that, with O(mnimin{m,ni})
field operations in K, we can use elementary column operations to replace Mi with an m × ri
matrix with the same column span. Do this for both i, so that both linear transformations
Mi : Kri → Km are injective. Let A be the matrix (M1| − M2), so that we have a linear
transformation A : Kr1+r2 → Km. Lemma 13.31 tells us that we may compute a reduced row
decomposition of A using O(m · (n1 + n2) ·min{m,n1 + n2}) field operations in K. Using this
decomposition, we may then quickly find a basis {vi}i for kerA. For each i, write

vi =

(
xi
yi

)
for xi ∈ Kr1 and yi ∈ Kr2 . Since M1 and M2 are injective, it is easy to see that {M1xi}i is a
basis for colspan(M1) ∩ colspan(M2), so we are done. □

Lemma 13.40. Let F be a 2-adic field, let A ⊆ F× be a finitely generated subgroup, and let c
be a nonnegative integer. Given choices for ω and G4(A), the size #NA

E,c may be computed with
either of the following two time complexities:

(1) OF (#G4(A) · 2[F :Q2] · [F : Q2]
3).

(2) OF (2
#G4(A) · [F : Q2]

3).

Proof. The first algorithm is by brute-force. For each x ∈ F×/F×2 and each α ∈ G4(A),
Lemmas 13.15 and 13.37 tell us that we can check whether α ∈ Nω and whether x ∈ N2

α with
time complexity OF ([F : Q2]

3). Since F×/F×2 has 22+[F :Q2] elements, this first algorithm has
the claimed time complexity.
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We now describe the second algorithm. Using Lemma 13.36, fix a basis for F×/F×2. Also using
Lemma 13.36, for each α ∈ G4(A), we can write down a basis for F (

√
α)×/F (

√
α)×2 and use

it to obtain a generating set for N2
α. We can do this for all α ∈ G4(A) with time complexity

OF (#G2(A) · [F : Q2]). Moreover, using Lemma 13.36, we can quickly express these generating
sets in terms of our fixed basis for F×/F×2, and by Lemma 13.31 we can reduce all of these
generating sets to bases with time complexity

OF (#G2(A) · [F : Q2]
3).

Define the F2-vector subspace V ⊆ F×/F×2 by

V = U
(c)
F F×2/F×2 ∩

⋂
α∈G4(A)∩Nω

N
2
α.

By Lemmas 13.15, 13.36, and 13.37, we can compute the intersection G4(A) ∩ Nω with time
complexity OF (#G4(A) · [F : Q2]

3). Taking successive intersections, Lemma 13.39 tells us that
we can compute a basis of V with time complexity

OF (#G4(A) · [F : Q2]
3).

Write {α1, . . . , αm} = G4(A) \Nω, and for each i let

Ui = N
2
αi
.

Let k be a positive integer and suppose that we have integers ij with 1 ≤ i1 < . . . < ik ≤ m.
If we already have a basis for V ∩

⋂
1≤j≤k−1 Uij , then using Lemma 13.39, we can compute a

basis for V ∩
⋂

1≤j≤k Uij with time complexity OF ([F : Q2]
3). Doing this for each of the 2#G4(A)

possible tuples (ij), we can use the inclusion-exclusion principle to evaluate

#NA
E,c = #

(
V \

⋃
i

Ui

)
with time complexity OF (2

#G4(A) · [F : Q2]
3), as required. □

Lemma 13.41. Let F be a 2-adic field, let A ⊆ F× be a finitely generated subgroup, and fix a
choice of G4(A). Let E ∈ Ét(12)/F . For each positive integer m2, we can compute #ÉtC4/F,A

(12)/E,m2

with either of the following two time complexities:

(1) OF (eF ·#G4(A) · 2[F :Q2] · [F : Q2]
3).

(2) OF (eF · 2#G4(A) · [F : Q2]
3).

Proof. By class field theory, we have

NmF
(√
〈A,−1〉

)
= NmF (

√
−1) ∩

⋂
α∈G4(A)

NmF (
√
α).

Let d ∈ F× be such that E = F (
√
d). By Lemma 13.37, we can determine whether d ∈

NmF
(√
〈A,−1〉

)
with time complexityOF (#G4(A)·[F : Q2]

3). Suppose that d 6∈ NmF
(√
A,−1

)
.

By symmetry of the quadratic Hilbert symbol, we have A 6⊆ NE/FE
× or −1 6∈ NE/FE

×. By
the tower law for norms and Corollary 8.8, this implies that ÉtC4/F,A

(12)/E,m2
= ∅.

Suppose instead that d ∈ NmF
(√
A,−1

)
, so that E ∈ ÉtA(12)/F and −1 ∈ NE/FE

×. Let
m1 = vF (dE/F ). If m1 ≤ eF , then Theorem 13.29, Lemma 13.34, and Theorem 13.38 tell
us that we can compute ω ∈ E× such that E(

√
ω) ∈ ÉtC4/F

(12)/E,3m1−2 with time complexity
OF ([F : Q2]

3). If m1 > eF , then let d ∈ F× be such that E = F (
√
d), and, again with

time complexity OF ([F : Q2]
3), let ω ∈ E× be such that NE/Fω ∈ dF×2. In that case,
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Lemma 8.7 tells us that E(
√
ω) ∈ ÉtC4/F

(12)/E . Moreover, Lemma 8.3 tells us that E(
√
ω) has

minimal discriminant among elements of ÉtC4/F
(12)/E . By Lemma 13.27, we now just need to

compute each size #NA
E,c for O(eF ) values of c, so the result follows by Lemma 13.40. □

Lemma 13.42. Let F be a 2-adic field, and let A ⊆ F× be a finitely generated subgroup. Given
a choice of G4(A), the mass

m̃
(
ÉtC4/F,A

(14)/F

)
can be computed with either of the following time complexities:

(1)
OF

(
eF ·#G4(A) · 22[F :Q2] · [F : Q2]

3
)
.

(2)
OF

(
eF · 2#G4(A) · 2[F :Q2] · [F : Q2]

3
)
.

Proof. There is a natural bijection⊔
2m1+m2=m
m1,m2>0

⊔
E∈ÉtA(12)/F,m1

ÉtC4/F,A
(12)/E,m2

←→ ÉtC4/F,A
(14)/F,m.

Since #ÉtC2/F
(12)/F = 4qeF − 2, the result follows from Lemma 13.41. □

Proof of Theorem 10.13. It is clear that of all the quantities in Theorems 10.9, 10.10, 10.11,
and 10.12, those in Theorem 10.12(4) are by far the most difficult to evaluate. Thus, the result
follows immediately from Lemma 13.42. □

Appendix A. Proof of Theorem 13.29

Let E,m1 be as in the setup of Algorithm 13.28. In this appendix, we will step through the
algorithm, showing that each stage is well-defined, and eventually proving that the output has
the desired property.

(1) Start by taking any d with E = F (
√
d). Since vF (dE/F ) ≤ eF , Lemma 8.5 tells us

that vF (d) is even, which means we can multiply by some even power of πF to get
vF (d) = m1.

(2) Lemma 8.5 tells us that there is some a ∈ F× such that d
a2
≡ 1 (mod p2eF+1−m1

F ), and
moreover that there is no such a for any higher power of pF . This implies that

vF

( d
a2
− 1
)
= 2eF + 1−m1,

so
vF (d− a2) = 2eF + 1.

Setting b = d−a2

4 , we obtain a, b as required.
(3) It is easy to see that ρ2−aρ−b = 0, so the minimal polynomial of ρ over F is Eisenstein,

and therefore ρ is a uniformiser of E with OE = OF ⊕OF · ρ.
(4) Since −1 ≡ 1 (mod peFF ), we have vF (dF (

√
−1)/F ) ≤ eF+1 by Corollary 8.6, so U (eF+1)

F ⊆
NmF (

√
−1), and therefore

d

a2
∈ U (2eF+1−m1)

F ⊆ U (eF+1)
F ⊆ NmF (

√
−1),
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which implies that (−1, d)F = 1, and therefore Lemma 8.7 and Corollary 8.8 tell us that
we may choose ω ∈ E× with NE/Fω ∈ dF×2. Moreover, we may ensure that vE(ω) = 0,
since vF (d) is even.

(5) We know that NE/Fω = dx2 for some x ∈ F× with vF (x) = −m1/2. Setting λ = ax, it
is easy to see that NE/Fω ≡ λ2 (mod p2eF+1−m1

F ).
(6) We address Step 6 with a sequence of lemmas.

Lemma A.1. For all x ∈ OE, we have vF (TrE/F x) ≥ m1
2 .

Proof. This follows easily from the fact that x = s+ tρ for elements s, t ∈ OF . □

Lemma A.2. We have
vE(ω − λ) ≥ m1 − 1.

Proof. Let γ = ω − λ. Define the sequence (an)n≥0 as follows. Set a0 = 0, and for each
n ≥ 0, define

an+1 = min
{⌊an

2

⌋
+
m1

2
, 2eF + 1−m1

}
.

We claim that vE(γ) ≥ an for all n. The base case n = 0 is clear. Suppose that
vE(γ) ≥ an for some n. Then γ/π

⌊an
2
⌋

F ∈ OE , so it follows from Lemma A.1 that

vF (TrE/F γ) ≥
m1

2
+
⌊an
2

⌋
.

Since NE/Fω ≡ λ2 (mod p2eF+1−m1
F ), we have

λTrE/F γ +NE/Fγ ≡ 0 (mod p2eF+1−m1
F ),

and it follows that vF (NE/Fγ) ≥ an+1. Since E/F is totally ramified, we have

vF (NE/Fγ) = vE(γ),

so indeed vE(γ) ≥ an+1, and by induction this is true for all n.
It is easy to see that if an < m1 − 1, then an < an+1, so there is some n with

an ≥ m1 − 1, and therefore vE(γ) ≥ m1 − 1, as required. □
Lemma A.2 tells us that ω1 is well-defined.

Lemma A.3. The following two statements are true:
(a) NE/Fω1 = NE/Fω.
(b) ω1 ≡ λ (mod pm1

E ).

Proof. If vE(ω − λ) ≥ m1, then there is nothing to prove, so let us assume that vE(ω −
λ) = m1− 1. The first claim follows from that fact that NE/Fρ = −b. Write γ = ω− λ.
Since vE(γ) = m1 − 1, we have γ/π

m1/2−1
F = u + vρ for elements u, v ∈ OF with

vF (u) ≥ 1 and vF (v) = 0. We have

NE/Fω − λ2 = λTrE/F γ +NE/Fγ

= λπ
m1
2

−1

F (2u+ av) + πm1−2
F (u2 + auv − bv2)

≡ λavπ
m1
2

−1

F − bv2πm1−2
F (mod pm1

F ).

We know that NE/Fω ≡ λ2 (mod p2eF+1−m1
F ), and m1 ≤ eF , so in fact

NE/Fω ≡ λ2 (mod pm1
F ),

and it follows that

λavπ
−m1

2
F − bv2π−1

F ≡ 0 (mod pF ).
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Since vF (v) = 0, it follows that

v ≡ λa

bπ
m1
2

−1

F

(mod pF ),

and therefore
γ ≡ λaρ

b
(mod pm1

E ),

so
ω ≡ λ

(
1 +

aρ

b

)
(mod pm1

E ),

and it follows that

ω1 =
ωb

ρ2

≡ λ
( b
ρ2

+
a

ρ

)
(mod pm1

E )

= λ · b+ aρ

ρ2

= λ.

□
(7) Write ω1 = r1 + s1ρ, for r1, s1 ∈ OF .

Lemma A.4. The following two statements are true:
(a) vF (s1) ≥ m1

2 .
(b) vE(ω1 − ω̄1) = 2vF (s1) +m1.

Proof. Since ω1 ≡ λ (mod pm1
E ), we have

(r1 − λ) + s1ρ ≡ 0 (mod pm1
E ),

so vF (s1) ≥ m1
2 . The second statement is obvious. □

It follows that ω2 and λ2 are well-defined and their definitions are equivalent to

ω2 =

{
ω1 if vF (s1) = m1

2 ,

ω1(1 + ρ)2 if vF (s1) > m1
2 ,

and

λ2 =

{
λ if vF (s1) = m1

2 ,

λ(1 + a− b) if vF (s1) > m1
2 .

Write ω2 = r2 + s2ρ.

Lemma A.5. We have
(a) NE/Fω2 ≡ λ22 (mod p2eF+1−m1

F ).
(b) ω2 ≡ λ2 (mod pm1

E ).
(c) vF (s2) = m1

2 .

Proof. If vF (s1) = m1
2 , then this is Lemma A.3, so we will assume that vF (s1) > m1

2 . The
first statement follows from Lemma A.3, along with the fact that NE/F (1+ρ) = 1+a−b.
It is easy to see that

(1 + ρ)2 −NE/F (1 + ρ) = (1 + ρ)
√
d,

so
(1 + ρ)2 ≡ 1 + a− b (mod pm1

E ),

and the second statement follows. Since (1 + ρ)2 = (1 + b) + (2 + a)ρ, we have

ω2 = (1 + b)ω1 + (2 + a)ρω1,
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and therefore
ω̄2 = (1 + b)ω̄1 + (2 + a)ρ̄ω̄1,

so
ω2 − ω̄2 = (1 + b)(ω1 − ω̄1) + (2 + a)(ρω1 − ρ̄ω̄1).

We know that vE(ω1 − ω̄1) > 2m1, so

ω2 − ω2 ≡ (2 + a)(ρω1 − ρ̄ω̄1) (mod p2m1+1
E ).

Since ω1 = r1 + s1ρ, we have

ρω1 − ρ̄ω̄1 = (ρ− ρ̄)(r1 + s1(ρ+ ρ̄)).

It is easy to see that vE(ρ− ρ̄) = m1. Since vE(ω1) = 0, we have vE(r1) = 0, so

vE(r1 + s1(ρ+ ρ̄)) = 0,

and therefore
vE(ρω1 − ρ̄ω̄1) = m1.

It is easy to see that vE(2 + a) = m1, so vE(ω2 − ω2) = 2m1, and therefore

vF (s2) =
m1

2
.

□

(8) We know that s2 6= 0 since NE/Fω2 ∈ dF×2, so ω2 6∈ F×. Similarly, vE(ω2) = 0 so
r2 6= 0. It follows that q and n are well-defined.

(9) Since q ∈ F and ρ 6∈ F , we have q + ρ 6= 0, and therefore the output is well-defined.
Since n ∈ F×, we have

NE/F

( ω2n

(q + ρ)2

)
∈ dF×2.

Lemma A.6. We have vF (r2 − λ2) = m1
2 .

Proof. We have
NE/Fω2 = r22 + ar2s2 − bs22,

so

(∗) (r22 − λ22) + ar2s2 − bs22 ≡ 0 (mod p2eF+1−m1
F ).

We know that vF (bs22) = m1 + 1 and vF (ar2s2) = m1, so Equation (∗) implies that

vF (r
2
2 − λ22) = m1.

Suppose for a contradiction that vF (r2 − λ2) ≥ eF . Then vF (r2 + λ2) ≥ eF , so

m1 = vF (r
2
2 − λ22) ≥ 2eF > eF ,

contradicting the fact that m1 ≤ eF . Therefore, we have vF (r2 − λ2) < eF , and conse-
quently vF (r2 + λ2) = vF (r2 − λ2), so the result follows. □
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We also have

ω2n− (q + ρ)2 = (b− ρ2) + ρbs2
r2
− qρλ2 + r2

r2

= (b− ρ2) + ρbs2
r2

+ ρ
λ22 − r22
r2s2

=
ρ

r2s2

(
λ22 − r22 +

r2s2
ρ

(b− ρ2) + bs22
)

=
ρ

r2s2
(λ22 − r22 + bs22 − ar2s2)

=
ρ

r2s2
(λ22 −NE/Fω2).

Since vE(r2) = 0 and vE(s2) = m1, we have vE( ρ
r2s2

) = 1−m1. Since

vE(λ
2
2 −NE/Fω2) ≥ 4eF + 2− 2m1,

it follows that
ω2n ≡ (q + ρ)2 (mod p4eF+3−3m1

E ).

Lemmas A.5 and A.6 tell us that vF (q) = 0, and therefore vE(q + ρ) = 0, so it follows
that

ω2n

(q + ρ)2
≡ 1 (mod p4eF+3−3m1

E ).

Theorem 13.29 then follows by Lemma 8.3 and Lemma 8.5.

Appendix B. Explicit helper functions

• Let p be an integer with p ≥ 2, and let q be a positive rational number. For integers t
with t ≥ 2, define the functions A(t) and B(t) by

A(t) =

q
1−⌊ t

2
⌋ · q

⌊ t
2 ⌋−1
q−1 if p = 2,

q−p(p−2) · q
(p−1)(p−2)−1

qp−2−1
· q

−(p−1)2·⌊ t
p ⌋−1

q−(p−1)2−1
if p 6= 2,

and

B(t) =

0 if p = 2,

q
−⌊ t

p
⌋ · q

−(p−2)(t+1)−q
−(p−2)(⌊ t

p ⌋p+2)

q−(p−2)−1
if p 6= 2.

• Define the explicit function N ̸=
(1212)

by

N ̸=
(1212)

(m) =



2(q − 1)2q
m
2
−2(m2 − 1)− 14|m(q − 1)q

m
4
−1 if 4 ≤ m ≤ 2eF and m is even,

2(q − 1)2q
m
2
−2(2eF − m

2 + 1)− 14|m(q − 1)q
m
4
−1 if 2eF + 2 ≤ m ≤ 4eF and m is even,

4(q − 1)q
m−1

2
−1 if 2eF + 3 ≤ m ≤ 4eF + 1 and m is odd,

qeF (2qeF − 1) if m = 4eF + 2,

0 otherwise.
• For even integers m1 with 2 ≤ m1 ≤ 2eF , define

Next(m1) := (1 + 1m1≤2eF−d(−1)
)q

m1
2

−1(q − 1− 1m1=2eF−d(−1)+2).

For m1 = 2eF + 1, define

Next(2eF + 1) =


2qeF if −1 ∈ F×2,

qeF if F (
√
−1)/F is quadratic and totally ramified,

0 if F (
√
−1)/F is quadratic and unramified.
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Set Next(m1) = 0 for all other real numbers m1.
• For each integer m2, define

NC2(m2) =


2(q − 1)q

m2
2

−1 if 0 ≤ m2 ≤ 4eF and m2 is even,
2q2eF if m2 = 4eF + 1,

0 otherwise.

• Let m1 be an even integer with 2 ≤ m1 ≤ eF . For each integer m2, define

NC4(m1,m2) =


qm1−1 if m2 = 3m1 − 2,

q⌊
m1+m2

4
⌋ − q⌊

m1+m2−2
4

⌋ if 3m1 ≤ m2 ≤ 4eF −m1 and m2 is even,
qeF if m2 = 4eF −m1 + 2,

0 otherwise.
Suppose that m1 = 2eF + 1 or m1 is even with eF < m1 ≤ 2eF . Then define

NC4(m1,m2) =

{
2qeF if m2 = m1 + 2eF ,

0 otherwise.

Finally, define NC4(m1,m2) = 0 for all other pairs of integers (m1,m2).
• Let m1 be either 2eF + 1 or an even integer with 2 ≤ m1 ≤ 2eF . Define

NV4(m1,m2) =



2(q − 1)q
m2
2

−1 if 2 ≤ m2 < m1 and m2 is even,
(q − 2)q

m1
2

−1 if m2 = m1 and m1 is even,
(q − 1)q

m1+m2
4

−1 if m1 < m2 ≤ 4eF −m1 and m1 ≡ m2 (mod 4),

qeF if m2 > m1 and m1 +m2 = 4eF + 2,

0 otherwise.

Define NV4(m1,m2) = 0 for all other pairs of integers (m1,m2).
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