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Abstract

Global Navigation Satellite Systems (GNSS) are the primary tool for navigation and

positioning in mobile devices. However, GNSS is unreliable or unusable in many

environments, such as large indoor buildings, tunnels, and caves—referred to as

GNSS-degraded or GNSS-denied environments. This research focuses on positioning

techniques for indoor environments using the WiFi Fine Time Measurement (FTM)

also known as WiFi Round Trip Timing (RTT) protocol. This protocol, enabled in

802.11mc-compatible routers and devices, allows for determining the Time of Flight

(ToF) of a signal.

The research described in this thesis explores the characteristics of WiFi RTT

signals and their use as a positioning solution when combined with techniques such

as least squares positioning, filtering, and Simultaneous Localization and Mapping

(SLAM). A common assumption in indoor positioning solutions is the prior

knowledge of landmark locations; SLAM techniques were investigated to remove this

assumption. The filtering methods explored included particle filters, genetic filters,

and grid filters. The exploration of SLAM focused on FastSLAM 2.0-based methods,

which were extended into posterity SLAM, a form of cooperative SLAM. These

methods were further enhanced with RSSI-based outlier detection. This outlier

detection method allows the positioning algorithms to account for unreliable signals

by identifying inconsistencies between the RSSI of a signal and the RTT measured

range of that signal.

The filtering methods achieved sub-2-meter accuracy 97% of the time when the mobile

device was stationary. When the device was in motion, it was tracked within 2 meters

81% of the time. For the SLAM algorithm, landmarks were positioned to sub-2-

meter accuracy 61% of the time, which improved to 78% when posterity SLAM was

incorporated. In summary, this research advances the understanding and application

of WiFi RTT for indoor positioning.
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Impact Statement

The research presented in this thesis contributes significantly to the field of indoor

navigation and positioning using WiFi RTT. The thesis provides several innovations

to the relatively new topic of WiFi RTT positioning, demonstrating sub-two-metre

positioning accuracy and in certain cases sub-metre accuracy. In most cases, this

level of positioning is sufficient for locating a mobile device to the correct room.

Academically, this study advances WiFi RTT positioning within indoor

environments. By using the WiFi RTT protocol available in most modern WiFi

access points, it is possible to apply Time of Flight-based positioning algorithms to

WiFi signals. This enables positioning algorithms and techniques, previously not

widely applicable to indoor environments, to become accessible. The application of

these algorithms has the potential to make sub-metre indoor positioning

commercially viable in any building worldwide. The implementation of WiFi

RTT-based algorithms in this thesis offers practical approaches to indoor positioning

challenges. The exploration of WiFi RTT with filtering algorithms marks

contributions to indoor positioning methods, while the investigation of SLAM

algorithms offers solutions for navigation and positioning in unmapped indoor

environments. Additionally, this study demonstrates outlier detection methods to

address limitations of WiFi RTT signals, such as NLOS and multipath effects, to

improve the accuracy of WiFi RTT-based indoor positioning systems.

Practically, the applications of this research are extensive and diverse. The

improved accuracy and reliability of WiFi-based positioning in indoor environments

have benefits for pedestrian, emergency, security, military, and visually impaired

navigation. This advancement is crucial for location-based services (LBS), which are

increasingly integral to operations in extended reality, logistics, targeted advertising,

and social networking. Enhanced positioning accuracy can significantly boost these

services, improving user experiences and operational efficiency. Improved indoor

positioning enables social benefits such as improved emergency caller localisation
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and tracking of vulnerable people. Furthermore, the entertainment and gaming

industries can utilize these advancements to create more immersive and accurate

experiences, leading to innovative applications that seamlessly blend digital and

physical worlds in urban settings.

The impact of this research can be amplified through various channels. Research

from this paper has been presented at conferences on four separate occasions, at

ION GNSS+ 2023, ION GNSS+ 2024, ENC 2024 and Next Gen Nav 2022. These

presentations have raised awareness around WiFi RTT and its potential as an

indoor positioning solution. Publishing findings in academic journals, such as a

paper being published in the Journal of Navigation, will further raise awareness and

encourage the adoption of these techniques. Collaboration with industry partners

and policymakers can facilitate the translation of these research outcomes into

practical applications.

In summary, this research not only contributes to the academic field of navigation

and positioning, but also has the potential to transform a wide range of

applications. Applications from urban navigation to entertainment are improved,

leading to enhanced urban living experiences, more efficient public services, and

innovative commercial and cultural applications.

3



Acknowledgements

I would first and foremost like to acknowledge my supervisor, Dr Paul Groves. Paul

has been a truly formative person in my life, and I feel honoured to have worked with

him. When I first started my PhD, I was anxious about the research, but Paul quickly

helped alleviate these feelings with his methodical approach and commitment to the

field. To Paul, working on WiFi RTT—which at the time seemed crazy to me—was

work that needed to be done because it would push the industry into unexplored

areas. Looking back, I couldn’t agree with him more. Paul’s diligence, rigour, deep

knowledge, and ability to think independently are qualities I will strive to emulate.

That being said, given the quality of his jokes during our meetings, I can confidently

say that Paul does not have a future as a comedian.

I would like to thank the UCL CEGE department, which has been my home for

eight years. I am also exceedingly grateful to UCL for funding the PhD through a

departmental scholarship.

I would also like to acknowledge my research group. Peter, Qiming, and Taylor have

been great to chat with and learn from over the past few years, and meeting them

has been one of the highlights of my PhD journey.

Last but certainly not least, I owe a great deal of gratitude to my family: my mother,

for putting up with my nonsense for far too long, always listening, looking after, and

caring for me unconditionally; my father, for being a bastion of support, providing

valuable advice, and instilling in me a strong work ethic; my brother, for always

being someone I could talk to about anything; my sisters, and the rest of my family.

Ultimately, my late grandfather inspired my decision to pursue a PhD. He came to

the UK many years ago to acquire his, and though he is not around to see me finish,

I remember how happy he was when I started.

4



5



6



7



8



Contents

1 Introduction 19

1.1 Positioning in Indoor environments . . . . . . . . . . . . . . . . . . . 19

1.2 WiFi RTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Mitigating NLOS and multipath . . . . . . . . . . . . . . . . . . . . . 21

1.4 Prior knowledge of indoor environments . . . . . . . . . . . . . . . . 22

1.5 Aims of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.7 Structure of the thesis and contributions . . . . . . . . . . . . . . . . 25

2 Literature Review and Background 28

2.1 Overview of Positioning . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.1.1 Overview of radio positioning technologies . . . . . . . . . . . 30

2.1.2 Overview of Global Navigation Satellite Systems (GNSS) . . . 32

2.1.3 Limitations of GNSS . . . . . . . . . . . . . . . . . . . . . . . 34

2.2 Overview of Indoor Positioning . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 WiFi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Pedestrian Dead Reckoning . . . . . . . . . . . . . . . . . . . 42

2.2.3 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.4 Ultrawideband . . . . . . . . . . . . . . . . . . . . . . . . . . 44

9



2.3 Existing research on WiFi RSSI and WiFi RTT positioning . . . . . . 45

2.3.1 WiFi RSSI-based ranging . . . . . . . . . . . . . . . . . . . . 45

2.3.2 WiFi RSSI-based fingerprinting . . . . . . . . . . . . . . . . . 46

2.3.3 WiFi RTT-based ranging . . . . . . . . . . . . . . . . . . . . . 47

2.4 Existing research on WiFi-based SLAM for indoor positioning . . . . 52

3 WiFi RTT Characteristics 56

3.1 Devices Used . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Experiment 1 - Instrument Bias . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Experiment 2 - Multipath effects . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Experiment 3 - Attenuation and NLOS . . . . . . . . . . . . . . . . . 67

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 67

3.4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 68

3.5 Experiment 4 - Instrument Orientation . . . . . . . . . . . . . . . . . 72

3.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 73

4 Positioning algorithms 76

4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Least squares positioning . . . . . . . . . . . . . . . . . . . . . 76

4.1.2 Weighted Least-Squares Multi-Lateration . . . . . . . . . . . . 79

4.1.3 Particle Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.1.4 Genetic Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1.5 Grid Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

10



4.1.6 Outlier detection techniques . . . . . . . . . . . . . . . . . . . 92

4.1.7 Pedestrian Dead Reckoning Model . . . . . . . . . . . . . . . . 96

4.2 Method and Data collection . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.1 Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.2 Stationary Data collection - Least Squares algorithms . . . . . 99

4.2.3 Stationary Data collection - Filtering algorithms . . . . . . . . 100

4.2.4 In-Motion Data collection . . . . . . . . . . . . . . . . . . . . 104

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.3.1 Least squares positioning . . . . . . . . . . . . . . . . . . . . . 105

4.3.2 RSSI-Weighted least squares positioning with RSSI-based

outlier detection . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.3.3 Stationary Filtering . . . . . . . . . . . . . . . . . . . . . . . . 112

4.3.4 Filtering in-motion . . . . . . . . . . . . . . . . . . . . . . . . 119

5 SLAM 130

5.1 Simultaneous Localisation and Mapping . . . . . . . . . . . . . . . . 131

5.1.1 FastSLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1.2 Factor Graph Optimisation SLAM . . . . . . . . . . . . . . . 132

5.1.3 Posterity SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.2 Experimental Methodology . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.1 WiFi RTT SLAM . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.3.2 WiFi RTT Posterity SLAM . . . . . . . . . . . . . . . . . . . 142

6 Conclusions 154

6.1 WiFi RTT Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 154

6.2 WiFi RTT Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . 155

6.3 WiFi RTT SLAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

7 Recommendations for future work 160

11



List of Figures

2.1 Categorisations of positioning and some applications [1] . . . . . . . . 31

2.2 GNSS architecture [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 GNSS trilateration example [1] . . . . . . . . . . . . . . . . . . . . . 34

2.4 GNSS multilateration example [1] . . . . . . . . . . . . . . . . . . . . 35

2.5 GNSS error sources [1] . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.6 GNSS error sources in buildings . . . . . . . . . . . . . . . . . . . . . 37

2.7 WiFi FTM RTT in practice [2] . . . . . . . . . . . . . . . . . . . . . 42

3.1 Experiment 1 Setup Plan view . . . . . . . . . . . . . . . . . . . . . 59

3.2 Experiment 1 mean FTM range error, including linear approximation

determined via least squares . . . . . . . . . . . . . . . . . . . . . . . 60

3.3 Experiment 2a setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Experiment 2b setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 AP-2 Experiment 2a and 2b (Reflective Surface) mean FTM range error

against true range, including linear approximation determined via least

squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 AP-3 Experiment 2a and 2b (Reflective Surface) mean FTM range error

against true range, including linear approximation determined via least

squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

12



3.7 Scenario 1 with sub-scenarios A and B. The difference between the sub-

scenarios is an open and closed door at 1m between the mobile device

and AP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Scenario 2 with sub-scenarios a and b. The AP and mobile device can

be moved in 10cm increments away from each other. The walls between

the mobile device and AP each have a width of approximately 10cm. 69

3.9 Scenario 2 with sub-scenarios a (LOS) and b (NLOS) calibrated results,

the black line represents the true range (i.e. y=x) . . . . . . . . . . . 72

3.10 Experiment 4 Orientation Test Plan view . . . . . . . . . . . . . . . 74

3.11 Experiment 4 mean WiFi RTT at different orientations . . . . . . . . 75

4.1 Generic particle filter and genetic filter process . . . . . . . . . . . . . 81

4.2 Step-lagged PDR motion model . . . . . . . . . . . . . . . . . . . . . 84

4.3 Genetic resampling process . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Google Pixel 4a in holder, operating position during ranging sessions 99

4.5 Google Nest WiFi Point . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.6 Experimental layout of APs and device for trial 1. x,y coordinates

represent the distance from the origin, z coordinate represents the

distance from the floor. Coordinates are represented in millimetres. . 102

4.7 Experimental layout of APs and device for trial 2. x,y coordinates

represent the distance from the origin, z coordinate represents the

distance from the floor. Coordinates are represented in millimetres. . 103

4.8 Experimental layout of APs and device for trial 3. x,y coordinates

represent the distance from the origin, z coordinate represents the

distance from the floor. The diagonally striped rectangles are tables

that do not block signals, but may reflect them. Coordinates are

represented in millimetres. . . . . . . . . . . . . . . . . . . . . . . . . 103

4.9 Experimental layout of APs and device for filtering trials. x,y

coordinates represent the distance from the origin. . . . . . . . . . . . 104

4.10 Experimental layout of APs and device for in-motion trials. x,y

coordinates represent the distance from the origin. . . . . . . . . . . . 106

13



4.11 the results of the experiments on trial 1 using least squares positioning

and outlier detection, with APs spread across multiple rooms . . . . . 109

4.12 the results of the experiments on trial 2 using least squares positioning

and outlier detection, with a tighter cluster of APs . . . . . . . . . . 111

4.13 Trial 1 - RSSI-Weighted least squares positioning with RSSI-based

outlier detection positioning result . . . . . . . . . . . . . . . . . . . . 113

4.14 Trial 2 - RSSI-Weighted least squares positioning with RSSI-based

outlier detection positioning result . . . . . . . . . . . . . . . . . . . . 114

4.15 Trial 3 - RSSI-Weighted least squares positioning with RSSI-based

outlier detection positioning result . . . . . . . . . . . . . . . . . . . . 115

4.16 Environment E particle distribution diagram . . . . . . . . . . . . . . 120

4.17 Environment F particle distribution diagram . . . . . . . . . . . . . . 121

4.18 Trial 1F position per epoch . . . . . . . . . . . . . . . . . . . . . . . 127

4.19 Trial 1R position per epoch . . . . . . . . . . . . . . . . . . . . . . . 127

4.20 Trial 2F position per epoch . . . . . . . . . . . . . . . . . . . . . . . 128

4.21 Trial 2R position per epoch . . . . . . . . . . . . . . . . . . . . . . . 128

4.22 Trial 3F position per epoch . . . . . . . . . . . . . . . . . . . . . . . 129

4.23 Trial 3R position per epoch . . . . . . . . . . . . . . . . . . . . . . . 129

5.1 WiFi RTT FastSLAM algorithm . . . . . . . . . . . . . . . . . . . . . 133

5.2 WiFi RTT FastSLAM visual representation . . . . . . . . . . . . . . 134

5.3 SLAM paths for SLAM and Posterity SLAM algorithms . . . . . . . 137

5.4 Graph showing the performance of the SLAM algorithm in the forward

trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.5 Mobile device position error per step for the forward trial . . . . . . . 139

5.6 Graph showing the performance of the SLAM algorithm in the reverse

trial, AP predictions represent the final AP position estimates . . . . 141

5.7 Position Horizontal Error per step for the reverse trial . . . . . . . . . 142

5.8 Forward Path posterity SLAM horizontal error per step . . . . . . . . 143

5.9 Reverse Path posterity SLAM horizontal error per step . . . . . . . . 144

14



5.10 Forward then Reverse AP position error per step. The white cut-off

in the centre of the chart represents the switch from the forward trial

to the reverse trial. The error bars represent the standard deviation of

each landmark particle filter . . . . . . . . . . . . . . . . . . . . . . . 146

5.11 Reverse then Forward AP position error per step. The white cut-off in

the centre of the chart represents the switch from the reverse trial to

the forward trial. The error bars represent the standard deviation of

each landmark particle filter . . . . . . . . . . . . . . . . . . . . . . . 147

5.12 Reverse Trial using Forward Trial Path posterity SLAM position

estimate and landmark estimates . . . . . . . . . . . . . . . . . . . . 148

5.13 Short Path regular SLAM position estimate and landmark estimates . 149

5.14 Short using Forward Path posterity SLAM position estimate and

landmark estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.15 Reverse then Short AP position error per step. The white cut-off in

the centre of the chart represents the switch from the reverse trial to

the short trial. The error bars represent the standard deviation of each

landmark particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.16 Short then Reverse AP position error per step. The white cut-off in

the centre of the chart represents the switch from the short trial to the

reverse trial. The error bars represent the standard deviation of each

landmark particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . 152

15



List of Tables

1.1 Comparison of some Indoor Positioning Technologies . . . . . . . . . 24

3.1 Devices used during WiFi RTT Ranging Characteristics experiments 57

3.2 Experiment 1 mean FTM range error and standard deviation . . . . . 59

3.3 Scenario 1a and 1b calibrated results, estimated range standard

deviation and RSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Trial 1 - Access Points and Mobile Device . . . . . . . . . . . . . . . 101

4.2 Trial 2 - Access Points and Mobile Device . . . . . . . . . . . . . . . 101

4.3 Trial 3 - Access Points and Mobile Device . . . . . . . . . . . . . . . 102

4.4 Trial C - Access Points and Mobile Device . . . . . . . . . . . . . . . 104

4.5 Trial E and F - Access Points and Mobile Device . . . . . . . . . . . 105

4.6 In motion trial positions . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Trial 1 - Access Point RSSI and average RTT ranging measurements . 108

4.8 Trial 2 - Access Point RSSI and average RTT ranging measurements . 110

4.9 Positioning solution RMSE for each environment and algorithm

configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.10 Percentage decrease of RMSE against least squares for each

environment and algorithm configuration . . . . . . . . . . . . . . . 116

4.11 Percentage decrease of RMSE comparing outlier detection against no

outlier detection for each algorithm . . . . . . . . . . . . . . . . . . . 117

16



4.12 Computation time per epoch for each algorithm alongside mean

accuracy improvement over least squares . . . . . . . . . . . . . . . . 119

4.13 RMSE position error statistics for trials in motion and each algorithm

combination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.14 Initial Position RMSE for each trial in motion . . . . . . . . . . . . . 123

4.15 RMSE percentage position error improvement for algorithms and trials

in motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.1 Configuration for the SLAM algorithm . . . . . . . . . . . . . . . . . 136

5.2 Statistics for the forward and reverse trials for the SLAM algorithm . 138

5.3 Statistics for the landmark position estimates . . . . . . . . . . . . . 141

5.4 Statistics for the mobile device position estimates for the Forward and

Reverse Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Statistics for the landmark position estimates for the Forward and

Reverse Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.6 Statistics for the mobile device position estimates for the Short and

Forward Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.7 Statistics for the mobile device position estimates for the Short and

Reverse Trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.8 Statistics for the landmark position estimates for the Short and Reverse

Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.9 Statistics for the landmark position estimates for the Short and

Forward Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

17





CHAPTER 1

Introduction

This chapter will provide an overview of the problem that this thesis aims to address,

the aims and objectives and the outline of the thesis along with contributions made

in each chapter.

1.1 Positioning in Indoor environments

Positioning and Navigation play an integral role in everyday life. Smartphones have

almost become a necessity for regular functioning of society, and with this has come

a reliance on smartphones for positioning and navigation. Thus, a reliable

positioning solution is becoming an ever-growing concern. Smartphones are outfitted

with Global Navigation Satellite Systems (GNSS) receivers and a variety of sensors

such as Inertial Measurement Units (IMUs), altimeters, mobile network receivers

and WiFi receivers. These sensors allow for a smartphone user to be positioned,

enabling navigation. GNSS works well in line of sight (LOS) conditions where there

is a direct line of sight between the transmitter and the receiver of the signal.

However, there are many environments categorised as GNSS degraded and denied

environments where GNSS does not provide a reliable positioning solution or does

not provide a positioning solution at all. In these environments the GNSS signals
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20 CHAPTER 1. INTRODUCTION

might be blocked, reflected, degraded by multipath effects, received via

Non-line-of-sight (NLOS) or received with low power. Some examples include urban

canyons, tunnels, jammed environments and the focus of this thesis: indoor

environments. Indoor environments are mostly classed as GNSS degraded

environments. With GNSS for most indoor environments it is possible to have a

good estimate of the building a device is in but not the exact room. With a growing

need for accurate location and navigation in many habitable places, i.e. indoor

environments, which do not have access to reliable positioning via GNSS,

alternatives must be explored.

To improve the performance of indoor positioning, different technologies, methods,

and sensors can be used to provide information about a mobile device’s position.

Indoor positioning in its current state mostly works by using local infrastructure, be

this infrastructure dedicated to indoor positioning or infrastructure that has other

use-cases but can be used for indoor positioning. Such infrastructure includes WiFi

networks, mobile communication base stations, ultra-wideband technology and

Bluetooth beacons [3] [4] [5] [6] [7]. Light detection and ranging (LIDAR) [8] and

image based solutions can also be used for indoor positioning, but these are typically

limited to professional applications such as in factory settings or robotics. Dedicated

signals used for positioning would include the WiFi Round Trip Timing (RTT)

Protocol [9] (which is a sub-protocol of WiFi), Bluetooth beacons or ultra-wideband

beacons. All of these technologies serve to provide information of a mobile device’s

position, where GNSS is not able to at least position a user in the correct room.

The various indoor positioning methods, their advantages, and disadvantages and

how they are used will be discussed in Chapter 2.

An indoor positioning system that makes use of multiple indoor positioning

technologies as well as other sensors available in a mobile device such as Inertial

Measurement Units (IMUs) can produce a more versatile system as the solution is

available in environments with different signals available [10].
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1.2 WiFi RTT

WiFi Fine Time Measurement Round Trip Timing (referred to henceforth as FTM

RTT or RTT) was introduced in WiFi protocol update 802.11mc [9]. Google has

included FTM RTT in their WiFi aware devices, and included FTM RTT support

within Android apps, allowing all FTM RTT enabled Android devices to make use

of the protocol [9]. The protocol allows for the round trip time of a WiFi signal

between a mobile device and an access point to be calculated and provided to the

mobile device. This protocol is specifically designed for positioning. A single access

point (AP) can be used to determine proximity to an AP, and 3 or more APs can be

used to determine the location of a mobile device using multilateration. This

technology has seen limited support in WiFi routers [11] and mobile devices [12]

despite having potential to greatly improve current indoor positioning solutions.

This is mostly due to the need to change old WiFi infrastructure and/or certain

router manufacturers not enabling WiFi RTT by default. In Android 12, the WiFi

RTT API provided support for one-sided ranging [13]. This enabled a mobile device

to get an RTT measurement from an AP that was 802.11mc or 802.11az compatible

but did not have WiFi RTT enabled. This is known as one-sided RTT, as the AP is

not cooperative and the measurement received does not account for the turn around

time in the AP. It was found that the error of the turnaround is between 2-3m [14].

An indoor positioning system by Horn et al. [14] produced 1-2 metre accuracy for

two-sided RTT, but for one-sided RTT the accuracy reduced to 3-4m. One-sided

RTT was not used in this thesis.

This thesis will focus on WiFi RTT to understand its limitations and potential to

provide sub-metre and reliable indoor positioning and navigation (reliable meaning

positioned to sub-two-metre accuracy consistently).

1.3 Mitigating NLOS and multipath

RF signals are susceptible to NLOS and multipath [10] [1]. This extends to WiFi

RTT. Indoor environments typically contain walls, furniture, people and various
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other obstacles. These surfaces can lead to multipath effects where direct, reflected,

refracted, diffracted or attenuated signals can reach the receiving antenna via

multiple paths. This leads to interference of the signal, which can result in an

incorrect range estimate. NLOS signal reception is caused by a signal being

obstructed resulting in the strongest signal not being in a straight line, this leads to

an overestimate of the range. These factors will reduce the accuracy of the WiFi

RTT signals, which in turn reduces the reliability and accuracy of an indoor

positioning solution that uses WiFi RTT. The ability to identify and account for

NLOS signals or signals that have been interfered with can potentially increase the

accuracy and reliability of WiFi RTT. This thesis first explores WiFi RTT’s

susceptibility to NLOS and multipath effects. This is followed by outlier detection

methods that can mitigate the impact of NLOS and multipath effects. These outlier

detection models are applied to several WiFi RTT-based positioning algorithms in a

series of environments.

1.4 Prior knowledge of indoor environments

A common feature of indoor positioning research and to a certain extent real-world

systems is the necessity of a survey step or some prior knowledge of the environment.

For most techniques, the assumption is some knowledge of the location of the access

points or landmarks of an environment. Alternatively, in the case of fingerprinting

methods such as RSSI-based fingerprinting, a lengthy survey step is required to collect

the fingerprints at each grid point in the given environment [15]. Given the number

and diversity of indoor environments, this method is not scalable. In addition, access

points can be moved around, and indoor environments have dynamic obstacles which

can change the properties of the environment [16]. An approach that is able to

reliably position a user to sub-metre accuracy without significant cost of setup is

an ideal and scalable approach for indoor positioning. WiFi RTT and Simultaneous

localisation and mapping (SLAM) techniques have potential to enable this [17] [18].

SLAM algorithms do not require prior knowledge of an environment as by definition

the algorithm is locating the user and landmarks at the same time, in real time.

Furthermore, the solution can improve over time with more users as more data can
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be collected. This method is likely adopted by large technology companies such as

Apple and Google who have access to vast amounts of data (such as GNSS positions,

WiFi RTT and RSSI measurements) and a large network of mobile devices.

1.5 Aims of the thesis

The overall aim of this thesis is to research and develop positioning algorithms for

mobile devices that function indoors and potentially outdoors by using WiFi RTT as

the underlying technology.

The target use case for the research presented in this thesis is pedestrian indoor

navigation. For this use case, sub-metre accuracy is ideal and sub-two-metre accuracy

is acceptable. This level of accuracy will typically place a user in the correct room. For

this level of accuracy, there are a number of usable technologies. These are discussed

in depth in Section 2. A summary and comparison of these technologies is presented

in Table 1.1 to demonstrate the shortcomings and why WiFi RTT was selected. As

suggested by the table, WiFi RTT is generally underexplored, but has the potential

to provide accurate indoor positioning by applying time-of-flight based positioning

techniques to WiFi within the existing widely deployed WiFi network.

The specific objectives are as follows:

• Explore existing research on the effectiveness of WiFi RTT as an indoor

positioning solution. Identify any potential gaps in knowledge that would push

the frontier of WiFi RTT use. These gaps in knowledge will help inform the

direction of the research.

• Investigate WiFi RTT behaviour in NLOS and LOS environments and its signal

characteristics in terms of its susceptibility to multipath effects, NLOS signal

reception and instrument bias.

• Research positioning algorithms such as Least Squares, weighted least squares,

Particle Filters and variations of particle filters such as a genetic filter and a grid

filter. These methods were tested in a variety of environments and scenarios to

determine whether these multi-epoch algorithms perform better than the basic
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Table 1.1: Comparison of some Indoor Positioning Technologies

single epoch least squares method and can reach a sub-metre mobile positioning

accuracy.

• Compare various methods for outlier detection in the context of WiFi RTT-

related positioning in order to deduce methods that can be used to mitigate

positioning error. Being able to identify anomalous ranging measurements will

enable more robust positioning solutions.

• Prior research concerning WiFi RTT has mostly assumed that the location of

access points is known. As previously mentioned, this in reality this is difficult to

do and a more scalable solution would likely need to predict the location of these

access points instead. An objective of this thesis is to explore the application

of SLAM algorithms to WiFi RTT positioning to determine the feasibility of

SLAM to locate a mobile device to sub-two-metre accuracy and access point

positions to sub-two-metre accuracy.

• Explore the feasibility of cooperative SLAM positioning solutions. This solution

explores the possibility of using previous SLAM maps of an environment in an
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iterative fashion. This innovation essentially revolves around crowdsourcing the

information needed to provide a more accurate indoor positioning solution. This

allows for indoor maps of environments to be built over-time.

1.6 Research Questions

The research questions of this thesis are shown below and are answered at the end of

the thesis in the conclusion.

• How susceptible is WiFi RTT to multipath effects, NLOS signal reception and

instrument bias?

• How does NLOS reception affect the accuracy of WiFi RTT measurements?

• What accuracy can be achieved when least squares-based positioning algorithms

are used for pedestrian WiFi RTT-based positioning and navigation?

• What accuracy can be achieved when filtering-based positioning algorithms such

as particle filters, genetic filters and grid filters are used for pedestrian WiFi

RTT-based positioning and navigation?

• What accuracy and reliability improvements can be achieved for WiFi RTT-

based positioning and navigation by using outlier detection techniques?

• What accuracy can be achieved when SLAM-based techniques are used with

WiFi RTT for indoor pedestrian navigation?

• What accuracy can be achieved when SLAM-based techniques are used with

WiFI RTT to estimate the position of WiFi RTT access points?

1.7 Structure of the thesis and contributions

This thesis consists of seven chapters.

• Chapter 1: Introduction, provides a brief outline into the indoor positioning

problem and its importance. This is followed by WiFi RTT and positioning
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techniques that can be used to harness this technology for indoor positioning.

Then introduces the aims and objectives of the thesis.

• Chapter 2: Literature review and background, provides a review of the

limitations of GNSS-based positioning techniques, followed by an exploration

of various indoor positioning technologies and techniques. Finally, the chapter

provides a detailed analysis of the state-of-the-art in WiFi RTT-based

positioning research, as well as research that applied SLAM to WiFi

RTT-based positioning systems.

• Chapter 3: WiFi RTT characteristics, aims to uncover insights into the causes

of error, magnitude of error and behaviour of WiFi RTT in various situations.

This is done with four experiments that aim to expose WiFi RTT to scenarios

that may result in range errors. The first experiment bolstered existing research

on the existence of instrument bias from the router and/or mobile device, which

necessitates the need for calibration of most modern WiFi RTT compatible

routers. The second experiment demonstrated that WiFi RTT was susceptible

to multipath effects. An experiment specifically designed to identify multipath

effects has not been done before this thesis. The third experiment supported

evidence of WiFi RTT’s susceptibility to multipath effects and NLOS signal

reception, and that the relationship between the RSSI and RTT of the signal

could be exploited to identify NLOS reception. Finally, this chapter explores

the impact of orientation of the access point and the mobile device and whether

an orientation-dependent ranging basis exists within the WiFi RTT products

tested. To date, no research has explored the relationship of AP to mobile device

orientation for WiFi RTT ranging accuracy.

• Chapter 4: Filtering techniques applied to WiFi RTT. This chapter applies

various positioning algorithms to WiFi RTT across various experimental

environments in both stationary and motion-based scenarios. These

algorithms include single-epoch least-squares, weighted least-squares, particle

filtering, genetic filtering and grid filtering. In addition, residual-based outlier

detection and RSSI-based outlier detection are applied to the algorithms.
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Work from this chapter was presented at ION GNSS+ 2023 [19] and is

pending review as a journal paper in the Journal of Navigation.

• Chapter 5: WiFi RTT SLAM. This chapter presents and tests a SLAM

algorithm applied to WiFi RTT, including RSSI-based outlier detection. Then

a posterity SLAM algorithm is presented and tested which demonstrates the

potential of cooperative SLAM techniques for WiFi RTT based positioning

solutions. Work from this chapter was presented at ENC 2024 and ION

GNSS+ 2024.

• Chapter 6: Conclusions, will conclude the result and outcomes of this thesis.

• Chapter 7: Recommendations for future work, will provide recommendations

for future work of this research.



CHAPTER 2

Literature Review and Background

Navigation and positioning are an important enabler for a large number of activities

in the modern day from vehicle navigation [20] and remote surveillance [21] to

warehouse robotics positioning [22]. Navigation and positioning is achieved via a

variety of methods such as the Global Navigation Satellite System (GNSS), WiFi

positioning, inertial sensors and visual methods that take advantage of distinct

environmental features. Each method has its own advantages and disadvantages

which often depends on the environment. Some methods such as GNSS are highly

effective in certain environments (such as large open fields) but ineffective in others

(such as tunnels or large multi-storey office buildings). Given the proliferation of

smart mobile devices, positioning in any environment is becoming an ever-growing

concern. The navigation and positioning space has many problems to solve. This

thesis will focus in on the use of mobile devices for navigation and positioning in

areas where GNSS is not a viable solution in isolation, this includes most indoor

scenarios or other GNSS degraded environments (refer to Section 2.1.3).

The goal of the review is to highlight the advantages and disadvantages of each

solution and identify problems that need to be solved and researched further within

28
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the subject area. This thesis focuses on positioning applied to navigation and

tracking. Thus, the categories to be explored with respect to positioning are mobile

bodies (although static bodies are used to understand the characteristics of signals

and for algorithm proof of concepts), real time positioning (although post-processing

is used in experiments, the positioning algorithms are aimed to be utilised in real

time) and self positioning.

The following review of literature is structured by first reviewing basic positioning

concepts and identifying the limitations of current popular positioning methods.

Then the main positioning systems for GNSS degraded environments, specifically

indoor environments, in use at the time of thesis submission are reviewed. Then the

review will focus in on positioning techniques utilising a subset of tools such as

WiFi, WiFi RSSI, Bluetooth, Ultrawide band (UWB) and WiFi RTT. The review

will then focus primarily on WiFi RTT-based positioning methods alongside outlier

detection methods and WiFi RTT Simultaneous Localisation and Mapping (SLAM)

research.

2.1 Overview of Positioning

Positioning is the determination of the position of a body [1]. This has a broad

definition in practise as positioning can be categorised in three ways. This is best

represented in Figure 2.1 from [1].

Firstly, a “body” can be classed as being in motion or static. It is important to

distinguish between the two classifications as it impacts the solution that must be

adopted to position these bodies. For example, if an object is known to be static

then it removes the complexity of the velocity variable from calculations as that

object’s velocity relative to the earth is known, whereas mobile bodies by definition

will have unknown velocity so must be accounted for in calculations. As such, it is

typically much easier to achieve higher levels of precision when positioning a static

object because lots of measurements can be made and the noise can be averaged

out. An example of static positioning is construction surveying. Some examples of
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mobile positioning include smartphone tracking and vehicular navigation.

Next, positioning can be real-time or post-processed. With real time positioning the

position of an object is determined as soon as possible once measurements are

recorded, whilst post-processed position solutions are typically determined at any

point after a positioning measurements are determined. With post-processed

positioning there are more possibilities with what can be done with the

measurement data and thus higher accuracy and precision can potentially be

achieved which is a large contributor in why it is used for surveying and mapping.

Navigation applications generally use self-positioning whereby the object determines

its own position using the positioning system or navigation system available to it.

For example, smartphone positioning for navigation when using GNSS is self

positioning as it is using that system to determine its own position.

The accuracy of most positioning methods depends on the environment, equipment,

and algorithm. For example, WiFi-based positioning would be impractical in an

open field away from any broadband network, whilst GNSS performs well in an open

field. This means that different positioning solutions will have different value

depending on the target environment and ultimately the most versatile solution is

that which can utilise as many positioning methods as possible.

2.1.1 Overview of radio positioning technologies

Most positioning systems in practical use are radio positioning technologies. They

utilise a radio system which functions to broadcast or even transfer information

from one terminal to other terminals [10]. Three fundamental techniques that enable

positioning via wireless positioning technologies are:

• Time of Flight (ToF) — The distance between a transmitter and a receiver

equals the time of flight of the transmitted signal multiplied by the speed of

light [10]. If the ToF method follows a Round Trip Timing (RTT) protocol

then the time of flight of the transmitted signal multiplied by the speed of light
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Figure 2.1: Categorisations of positioning and some applications [1]

divided by 2 represents the distance between the transmitter and receiver. There

are other types of ToF measurement paradigms. The focus of this thesis will be

on RTT. Before continuing it is important to discuss passive ranging which is the

paradigm that GNSS follows. In this method the receiver measures the time of

arrival of a signal that was transmitted at a known time, the difference between

the times is then multiplied by the speed of light in free space to get the distance.

This method requires the receiver to be aware of the transmitter’s clock as if

the clocks are not properly synchronised then the range will be underestimated

if the transmitter clock is ahead of the receiver clock and overestimated if the

transmitter clock is behind the receiver clock [1]. An RTT protocol allows a

receiver to determine its range from an RTT compatible access point (AP).

This is the basis of the WiFi Fine Time Measurement (FTM) RTT protocol. If

multiple signal sources are introduced it is possible to position a receiver using

the various distances. This will be discussed later in Section 2.2.2.

• Received signal strength (RSS) — RSS is the strength of a signal at the

receiver. In free space, the intensity of radio waves is inversely proportional to
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the square of the distance to the source of the radio waves. In non-free space

obstacles distort this relationship. This means that with some calibration it is

possible to determine the distance between a radio signal emitter and a

receiver if only the signal strength is known. RSSI can be used for WiFi

RSSI-based ranging (although WiFi RSSI-based fingerprinting tends to be

more accurate) [10] [16], Bluetooth RSSI-based fingerprinting [23], amongst

other methods. RSSI fingerprinting with respect to WiFi will be discussed

further in section 2.2.1. The common issue with RSS is that due to

interference, multipath and path blocking, location accuracy is generally less

than what can be achieved by Time of Flight methods and furthermore when

RSS is used it must be tailored to the environment in which it will be used due

to the need to catalogue AP power variations or fingerprint surveying,

resulting in operational expense [10]. Methods of how RSSI is used practically

are discussed in Section 2.2.1.

• Angle of Arrival (AoA) also known as Direction of Arrival (DOA) - The

wavefront of a signal is perpendicular to the direction of propagation of the

wave. Position cannot be determined by one AoA measurement alone, multiple

measurements or a combination of AoA and ToF are needed [10]. Whilst not

related entirely to AoA, antenna rotation can be used in mobile devices to

maximise signal strength (by rotating the entire device). This was noted

during the experimental work of this thesis. During experimental work, the

mobile device was always oriented to maximise WiFi RSSI and thus provide a

more reliable RTT reading.

2.1.2 Overview of Global Navigation Satellite Systems

(GNSS)

GNSS is a term for a type of navigation system that uses a group of satellites

orbiting the earth and transmitting radio signals to provide any receiver access to a

3D positioning solution by passive ranging. GNSS is an example of a self positioning

system [1].
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Figure 2.2: GNSS architecture [1]

Figure 2.2 describes the structure of a GNSS. GNSS consists of three components:

the space segment, the control segment and the user segment. Each GNSS will have

its own independent space and control segments whilst the user segment uses signals

from multiple different GNSS constellations. The space segment consists of the

satellites which broadcast signals to the control segment and users. GNSS satellites

broadcast multiple signals on several frequencies. These comprise ranging codes and

for most signals, navigation data messages. Ranging codes contain details on the

time at which signals were transmitted whilst the data message includes timing

parameters and information about the satellite’s orbit. The control segment consists

of stations at known locations and is used to determine the satellite orbits and

calibrate the satellite clocks. This is also needed for determining whether satellites

need to make any manoeuvres to ensure their orbit is correct. Consumer-grade

GNSS user equipment used in mobile devices are designed to minimize cost and

power consumption and are thus not as accurate as professional grade equipment [1].

GNSS positioning works by passive ranging in three spatial dimensions and one

temporal dimension. One range measurement from a satellite will give a sphere of
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Figure 2.3: GNSS trilateration example [1]

possible positions around the satellite. Two range measurements will give a circle of

intersection which represents the locus of the user position. A third satellite will

give two possible positions of the device. In most scenarios one will be far more

likely than the other as the other may be in a location where it is highly unlikely for

the user to be. However, if both solutions are just as likely, then another ranging

measurement is required. The case of three satellites is shown diagrammatically in

Figure 2.3 [1]. Then in Figure 2.4 the case of adding another satellite to confirm the

position (multilateration) is shown.

2.1.3 Limitations of GNSS

Figure 2.5 shows some GNSS error sources. Navigation solution errors arise from the

differences between the true and broadcast ephemeris (set of data that contains

position, velocity, and clock information for navigation constellations in the Global

Navigation Satellite System (GNSS) and satellite clock errors. Refraction of signals

caused by the ionosphere and troposphere result in pseudo-ranges larger than they

would be in free space [1].
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Figure 2.4: GNSS multilateration example [1]

Receiver measurement error can be caused by radio interference (RF) and multipath

interference. Radio interference can degrade GNSS performance by disrupting a

direct GNSS signal to a receiver, this can be caused by communication signals,

strong signals in neighbouring and harmonic frequencies and even deliberate GNSS

signal jamming. RF interference is particularly potent as GNSS signals are very

weak when compared to most terrestrial radio signals. Multipath interference occurs

when a signal reaches a receiver by more than one path as a result of GNSS signals

being reflected by buildings, vehicles or the ground. This introduces another source

of interference and is prevalent in urban environments as signals have more surfaces

to reflect from due to a high concentration of buildings.
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Figure 2.5: GNSS error sources [1]

Figure 2.6 focuses on the error sources in buildings, an example of a GNSS degraded

environment. As discussed previously, multipath effects will result in the same signal

being received via multiple paths by the receiver meaning that the signal received

from different paths will overlap. GNSS transmitted signals can also be interfered

with by attenuation from buildings. Attenuation will result in the signal being

weaker as a result of the building materials. This will reduce the strength of the

signal, thus the pseudo-range measurement will be inaccurate, and multipath effects

are enhanced on some signals and diminished on others.

A receiver is also subject to non-line of sight (NLOS) signal reception. NLOS signal

reception is another error source that involves the strongest signal received by a

receiver being a signal that has reflected off of surfaces either outside or inside a

building. This results in the signal propagation time between the transmitter and

receiver to be longer than the propagation time of an unobstructed signal; this will
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result in a positive pseudo-range error. Finally, in GNSS-degraded environments it

is likely that some GNSS signals simply do not reach the receiver, this is a result of

signals being absorbed and reflected by buildings. This further reduces the accuracy

and reliability of the system as fewer received signals result in a position solution

with fewer points of reference (satellites). For example, if there were 5 satellites

transmitting whilst the user was indoors (in reality, typically, 20-30 are receivable

outdoors), if at least 2 signals are reflected/absorbed or otherwise blocked then the

solution cannot achieve a full position fix. If 1 signal is reflected/absorbed then there

will be 2 equally possible positions, even though in most circumstances one will be

more likely than the other (as one will most likely be inside the earth). These

limitations demonstrate the need for a more reliable positioning solution for mobile

positioning and navigation that can be used when GNSS is not reliable. The use of

specific indoor positioning technologies will be discussed in the following section.

Figure 2.6: GNSS error sources in buildings

2.2 Overview of Indoor Positioning

An Indoor positioning system (IPS) is a system which can deduce the position of a

device in buildings. However, with this term it is important to appreciate that the
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technologies described can also be used for outdoor positioning and actually a

ubiquitous positioning system that works both indoors and outdoors is more useful.

Alternative methods to GNSS are required in order to improve the accuracy and

performance of positioning and navigation indoors. Indoor environments are varied

and dynamic so IPSs must be able to account for unpredictable environments. For

example, people moving within an environment, doors being open or closed, moving

furniture. The most researched indoor positioning systems will be explored within

this section, these include WiFi RSSI-based positioning, WiFi Fine Time

Measurement (FTM) RTT, Bluetooth, Ultrawideband, Visual Methods and

Pedestrian Dead Reckoning.

2.2.1 WiFi

Wireless local area networks (WLAN) or WiFi networks are deployed in most indoor

environments as they are the most popular infrastructure to connect devices in a

building to the internet. WiFi signals are a form of radio signals and their primary

function is to provide internet connectivity to devices that are on the WiFi network.

As RF signals, they can also be used to determine the distance between an access

point (AP) and an RF signal receiver such as a mobile device, this can currently be

done via WiFi RSSI and WiFi FTM RTT. With three or more APs it is possible to

use the signals from each of these APs to form a 2D positioning solution of a device

(and four or more for a 3D positioning solution). This is typically done through

multilateration, a technique that involves using the measured distance from at least

three fixed points to determine the position of an object (using simultaneous

equations), Kalman filtering and particle filtering. [10]. Another technique that can

be used with WiFi signals is WiFi fingerprinting [24] [16] [25]. A common

characteristic of WiFi, Bluetooth and UWB is that they operate using low power

generally up to 100m [10]. Furthermore, some environments will have the IPS in

that environment optimised for positioning such as in warehouse environments

where the primary purpose of the solution is positioning. Whereas in most office

buildings where WiFi may be the primary source of positioning, the network will

not be optimised for positioning as the WiFi infrastructure is likely optimised for
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connectivity. These will be discussed in the following subsections.

WiFi RSSI

WiFi RSSI represents the signal strength of the WiFi signals received by a device on

the network. RSSI-based positioning techniques are separated into two approaches,

fingerprinting and RF propagation loss model approaches. RF propagation loss

models are the less performant of the two models as they rely on a relationship

between RSSI and distance which then feeds into a multi-lateration algorithm to

determine the positioning solution. This is not an ideal approach as RSSI can be

heavily influenced by multipath interference and NLOS signal reception as a result

of obstacles and surfaces. There is no agreed upon standard for conversion between

RSSI and distance, and even then this is determined on a site-by-site basis in

research or the accuracy limitations are accepted by the positioning solution [24].

Generally, the more accurate method of positioning that uses WiFi RSSI is

fingerprinting.

WiFi fingerprinting takes place in two phases, the training/survey phase followed by

a positioning phase. To summarise the process, the survey phase involves creating a

database of detected WiFi signals at specific reference points (RPs), i.e. known

locations in an environment. Each data point in the database will contain the RP

coordinates and the corresponding RSSI of all WiFi signals detected at that RP.

Therefore, each RP is characterised by the combination of RSSI measurements

received at that RP. Once in a database these can be queried. [16], [26], [10], [24].

The positioning phase involves a device sampling the RSSI signals where it is

currently located and comparing this result to a database on a server or to the

device. The algorithm compares the received RSSI measurements from the mobile

device with the fingerprints in the database collected from the survey phase. The

server will return the most probable position of the mobile device based on the

result of the pattern matching algorithm used. This means that a positioning fix can

be determined without knowing the location of the APs nor the distance or angle

between the APs and the device [26].
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There are various pattern matching algorithms for comparing received vectors and

surveyed fingerprints. Most commonly, variations of the K-nearest neighbour

algorithm are used [26] [25] [16] but statistical Bayesian classification

methods [27] [10] and convolutional neural networks (CNNs) [28] have also been

used for RSSI fingerprint pattern matching.

K-nearest neighbours (KNN) [29] is a pattern matching algorithm that determines

the K most similar instances of the measurement to the database reference points.

Based on this, the target’s position can be estimated to be at the location where the

instances most closely match. Similarity is typically determined by a distance

between the measurement and a reference point typically using Euclidean

distance [30]. A great example can be seen in [10] from page 160-161. A process of

kNN applied to RSSI fingerprinting is summarised as follows:

1. The RSSI vector at a given grid point is sent to the server that contains the

fingerprint database. This is shown in Equation 2.1. Where P is the RSSI vector

and An represents RSSI in dBmW at the nth access point.

P = (A1, A2...An)T (2.1)

2. Equation 2.2 [10] is then applied to the normalised received RSSI vector and the

database to get the signal strength Euclidean distance vector differences, D, between

them.

Dn = |ST − Sn| (2.2)

In Equation 2.2, ST represents the received RSSI vector, the target signal strength

read at each AP, Sn is a database signal strength vector with the same component

layout as ST and n is the index of the reference point.

3. The smallest D values up to K (the number of reference points to include in the
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nearest neighbour determination), are found, and a position is determined from the

corresponding reference point by averaging the coordinates of the selected reference

point (this average can be unweighted or can be weighted according to D).

Fingerprinting is dependent on establishing a reliable database of fingerprints which

requires upfront effort and expense to construct. Furthermore, due to dynamic

environments it is also possible for the fingerprint database to be less reliable as the

fingerprints of a location may change after the time that the data was taken [1].

In [16] the fingerprint database of an underground train station was collected, but it

was found that trains entering and exiting the station could alter the expected

fingerprint of a specific reference point, indicating that dynamic environments can

disrupt the reliability of a fingerprint map. This could be solved by surveying a

location at multiple different times and then storing the means and standard

deviations of the RSSI measurements in the database.

A way of improving the performance of fingerprinting for positioning is by

integrating more signal measurements at reference points in the database. For

example, using Bluetooth signals and WiFi FTM RTT ranging

measurements [31] [32].

WiFi FTM RTT

WiFi Fine Time Measurement (FTM) Round Trip Timing (RTT) (referred to in

this thesis as FTM RTT, WiFi FTM RTT or WiFi RTT) is a feature included in the

IEEE 802.11mc WiFi protocol in 2016 [33]. FTM RTT involves measuring the time

taken for a signal to be transmitted and received from a mobile device to an AP and

then the AP to the mobile device. RTT does not require clock synchronisation as

the time taken to send and receive an RF packet is measured instead [34].

This is represented visually in Figure 2.7. Since radio signals travel at the speed of

light if you multiply the time taken by the speed of light and divide this value by 2

you can get the distance between the device and the AP. With multiple ranges

multi-lateration can be used to determine the position of the device. Google
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suggests that with about 4 APs 1-2m accuracy can be achieved for most

buildings [2]. A ranging request consists of 8 bursts of the FTM requests, then a

mean and standard deviation of these 8 bursts is given to the user for the ranging

result. It has been demonstrated that WiFi RTT is susceptible to multipath effects

and NLOS reception [34] [35]. Thus, applying mitigation techniques from the GNSS

community poses a great opportunity for WiFi RTT research and application. WiFi

RTT is an interesting research area, research on the technology is limited, and it

also has high potential as a core aspect of indoor positioning systems. This is

because of widespread WiFi access points in indoor environment and higher

accuracy when compared to WiFi RSSI RF loss propagation models [36] (these are

compared as the same amount of set-up is required for both methods).

Figure 2.7: WiFi FTM RTT in practice [2]

2.2.2 Pedestrian Dead Reckoning

Pedestrian navigation is a complex application of navigation technology as it must

work in varied environments, both indoor and outdoor. At the same time devices

must be mobile, so will be low-cost, lightweight and low-power. Inertial

Measurement Units (IMUs) are devices that contain accelerometers and gyroscopes,

most will contain three accelerometers and three gyroscopes each limited to one

sensitive axis. An accelerometer measures specific force, essentially non-gravitational

acceleration and not the total acceleration of the IMU housing the accelerometer. A

gyroscope measures angular rate of the IMU with respect to inertial space. With

current technology smaller IMUs found in smartphones (or other pedestrian devices)
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will have low inertial navigation performance [1].

Pedestrian Dead Reckoning (PDR) involves step detection [1]. Using an IMU, more

specifically the accelerometers in an IMU and optionally, the gyroscopes, it is

possible to identify steps made by a pedestrian holding a device. In this thesis,

mobile devices are assumed to house the IMU as opposed to externally mounted

IMUs [1]. PDR is made up of three phases: step detection, step length estimation

and navigation-solution update. Put simply, steps can be detected by identifying

points where the specific force output by the accelerometers cross acceleration due

to gravity or from peaks in the accelerometer signals [1]. The step length

determination process has many variables that would result in an assumed step

length to be invalid, such as terrain, whether the pedestrian is running, the

pedestrian’s size, slope and obstacles. This problem can be solved by using context

identification and then selecting the appropriate step length model [1]. PDR is

rarely used in isolation as a positioning solution as the error in distance travelled

grows as you travel further. Thus, PDR is used in combination with other solutions

such as WiFi RTT, WiFi RSSI fingerprinting and GNSS.

2.2.3 Bluetooth

Bluetooth is a type of Wireless Personal Access network (WPAN) that uses radio

frequency signals to transmit packets of data between Bluetooth compatible devices.

Bluetooth positioning systems typically include a set of Bluetooth beacons

distributed throughout an environment and a Bluetooth compatible mobile device.

Some Bluetooth methods adopt a proximity approach where if a device connects

with a Bluetooth beacon then it is assumed that the device is within 10m. Then as

more beacons connect or disconnect from the Bluetooth compatible mobile device it

is possible to determine the position of the mobile device by determining the

overlapping constant radius circles [10] [37] [38]. Thus, in this method it is assumed

that the location of the Bluetooth beacons is known. Additionally, the average time

to determine a location estimation off of five Bluetooth beacons was 19.2 seconds.

This is long compared to the time taken for a user walking at an average walking
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speed to pass through a 20m diameter circle (the range of a single Bluetooth

beacon) [10].

The more up-to-date Bluetooth positioning technology involves Bluetooth Low

Energy (BLE), a feature of Bluetooth 4.0. This method follows a similar paradigm

to WiFi RSSI, whereby the two primary positioning methods are RF propagation

loss and fingerprinting. BLE improves Bluetooth based positioning as the beacons

used require less power and will last longer in an environment and enquiry from the

target to the transmitter are significantly faster between the beacon and receiver [1].

Furthermore, BLEs will provide the RSSI of the signal [1]. However, a common

problem with Bluetooth beacons is that they require prior set-up and thus have

setup and maintenance costs. This means they are unlikely to be used in

environments where positioning is not an important requirement.

2.2.4 Ultrawideband

Ultrawideband (UWB) communication systems use bandwidths larger than most

cellular and WLAN wireless networks, so absolute bandwidths of at least

500MHz [1]. The wide bandwidth translates to higher resolution timing of pulse

arrivals, so multipath effects are easier to distinguish. This is because the correct

signal (at 1GHz for example) and multipath components with a differential path

delay greater than a certain threshold can be separated [1]. Furthermore, UWB

NLOS reception is less severe as it is possible to distinguish between an LOS

estimate and NLOS estimate as the variance of the TOA is greater for the NLOS

estimate [10]. UWB signals typically provide ranges by following the ToF paradigm

and thus can use similar methods to particle filtering. Generally, UWB range

measurements can achieve cm level accuracy in LOS conditions [10]. However, the

power of the signals are restricted by regulated power constraints and are thus

limited to short range environments [10]. Moreover, UWB access points suffer from

the same issue as Bluetooth beacons whereby devices must be actively maintained,

and a cluster must be set up.
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2.3 Existing research on WiFi RSSI and WiFi RTT

positioning

2.3.1 WiFi RSSI-based ranging

As discussed previously, WiFi RSSI-based positioning follows two key paradigms,

RF loss propagation ranging or fingerprinting. This section will go over RF loss

propagation. An early paper by Kotanen et al. [39] explored WiFi-RSSI positioning

using an RF loss propagation model and an extended Kalman filter. A Kalman filter

is an algorithm that takes a series of measurements observed over time such as

signal strength, ranges, IMU data as well as noise and bias then produce an estimate

on these unknown variables depending on how those data points have changed [40].

The measured error of this system was 2.6m on average. Kotanen et al. deduced

that this was inaccurate for mobile pedestrian positioning as in most cases it would

not position a mobile device within the correct room but could be suitable for

indoor proximity detection or determining the correct floor that a device was on in a

building. The errors were caused by several factors including noise, multipath

propagation, interference and obstacles, factors for which the RF loss propagation

model used could not take into account. Furthermore, the coordinates of the APs,

the TX power levels of the APs and other information that affects the propagation

model must be determined prior to positioning in order to achieve a reliable

positioning solution. This phase increases the operational expense of this method.

Bose et al. [41] conducted experiments on using RF loss propagation from WiFi

routers for positioning. They first constructed a model of the correlation of RSSI to

distance and found that the signal strength value shows an exponential decrease

with respect to distance. Applying the experimentally deduced trend line as the RF

loss propagation model to the various APs with trilateration found that in LOS

conditions the average positioning error was 2.3m whilst in NLOS conditions the

average positioning error was 2.9m. Again, two issues with this are the required

knowledge of the AP locations and the RSSI behaviours of each AP.
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2.3.2 WiFi RSSI-based fingerprinting

A common problem within fingerprinting is that a changing environment impacts

the performance of an RSSI fingerprint database. This is backed up by Bensky [10],

Zixiang Ma et al. [42], Ma et al. [16], and Yiu et al. [43].

Yiu et al. [43] conducted experiments on WiFi RSSI fingerprinting using K-nearest

neighbours. Roughly, the RMS localisation accuracy achieved by using 4-NN was

between 5.4m and 8.3m for different length scenarios with the largest RMS

localisation being on the longest path. Chengqi Ma et al. [16] researched the benefits

of applying a filtered solution alongside a dead reckoning system. These two

additions are both designs that can improve all WiFi based positioning solutions.

Therefore, they are discussed here to represent their improvement in comparison to

WiFi RSSI fingerprinting. These experiments were conducted in the London

Underground and found that both trains and people affected the accuracy of the

positioning solution. The experiments compared a KNN matching algorithm to a

Kalman Filter fingerprinting implementation combined with PDR to provide a

velocity update during the correction stage of the Kalman filter. During peak

congestion times when there are more people and more trains there was an average

positioning error of 2.9m whereas in low congestion times the error was 1.7m. It was

also observed that during the off-peak times that the maximum average positioning

error discrepancy between the two methods was 0.47m whilst for peak times the

maximum discrepancy between average positioning errors of the methods were

2.29m, both in favour of the Kalman Filter and PDR method. This indicates that

the Kalman filter algorithm and integration of PDR (which is less dependent on the

environment) was a more performant positioning method. Dong et al. [44] developed

a multimodal fingerprinting model that used WiFi RSSI fingerprints but identified

that most models do not account for the geometric relations between WiFi APs and

the location of the fingerprint. Having this information allows for a more granular

understanding of the features of the fingerprint. The algorithm was able to provide

a median positioning error of 2.1m. This thesis also suggested that future work

could involve fusing WiFi RTT data into the fingerprint map.
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Dai et al. [45] implemented a method to autonomously collect WiFi RSSI

fingerprints using a robot to roam an environment. It used visual methods and

IMUs to construct a map and then collected fingerprints throughout the

experimental environment. This method saved 68% time on average when compared

to manual RSSI fingerprint collection. Due to fingerprint maps changing it is likely

that surveyed maps would need to be changed in the long term, meaning this

specific solution is potentially not cost-effective. An issue with fingerprinting is the

data collection aspect of the method during the positioning phase. This is an issue

for fingerprinting and any sort of surveying based method. Therefore, methods

which can reduce or even remove the surveying phase present an opportunity to

make indoor positioning solutions easier to deploy.

2.3.3 WiFi RTT-based ranging

WiFi RTT ranging was popularised by Diggelen et al. in an article called “How to

achieve 1-meter accuracy in Android” [2] where it was announced that the WiFi

RTT protocol would be publicly enabled in all subsequent Google WiFi-aware

Devices. A demonstration of WiFi RTT was carried out using multi-lateration as

the positioning algorithm. A total of eight bursts of FTM packets are transferred

between the mobile device and an AP. This allows the system to calculate range

statistics such as mean and variance which enables a better accuracy than if one

burst alone was used. It was noted in this article that WiFi RTT could have range

calibration offsets up to 0.5m [2] and also suffered from multipath effects which will

both increase the error in a positioning solution.

Garcia-Fernandez et al. [46] researched a solution to help identify and account for

instrument bias present in WiFi Access Points by providing a database of the AP

location and bias to other users once one user had interacted with an AP. The

existence of instrument bias has also been noted by Diggelen et al. [2], Ma et al. [35]

and Horn et al. [47]. The research in [46] involved carrying out a test on 5 Access

point in an outdoor environment (open sky without obstruction between the mobile
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devices and the access points) in order to test in an environment where multipath

effects are reduced as much as possible. The results showed an instrument bias

between 1 and 1.5m. When a second device used the database containing the AP

locations and the AP bias after the first device had gathered this information it was

found that the horizontal positioning error was within 10cm of the manually

calibrated method. However, the vertical and height errors were greater by 1.2m

and 3m on average. The vertical and height error position dimensions were larger

because of Dilution-Of-Precision (DOP) which causes an error amplification when

the geometry of the receivers and transmitters are not diverse [1] (i.e. all

observations aligned). A paper by Dong et al. [48] explored error on WiFi RTT

devices. The paper investigated the error of WiFi RTT. It was found that in all

scenarios a hardware-dependent bias was present. With obstructions between the

mobile device and AP it was found that obstructions made of metal caused a

ranging error between 2m to 2.5m greater than a glass or wooden obstruction.

These biases did not change depending on whether the range or position varied. The

standard deviation of the range estimate increased by roughly 6 times when both

the range and position varied when compared to no range variation with position

variation and almost 30 times compared to no range or position variation.

Another source of error that was highlighted by Jurdi et al. [49] is that the body of

a pedestrian blocking a WiFi RTT signal can result in as much as an 8m increase in

ranging error with larger fluctuations. This demonstrates the susceptibility of WiFi

RTT to NLOS signal reception error. This error was also identified by Mohsen et

al. [50] who used the effect of body blockage to identify the presence of a human in

an environment regardless of if they were carrying a device or not. This is because

they identified that a human blocking a signal would result in an outlier ranging

error that would not normally be present, thus indicating the presence of a moving

object such as a pedestrian.

Ma et al. [35] explored a variety of positioning algorithms that used only WiFi RTT.

This included recursive least squares (RLS), weighted concentric circle generation
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(WCCG), clustering based trilateration (CbT) as well as standard iterated least

squares (using multilateration). RLS is a version of sequential least squares that

finds coefficients to minimise a weighted least square cost function at each step.

WCCG is a method which provides a solution to the case where there is no

horizontal intersect between the ranging circles of two APs in multilateration.

Instead, by applying probability weighting to a set of concentric circles around the

AP it increases the chances of finding an intersection point and also provides a

weighting for the reliability of that intersection point, providing a form of outlier

detection. The method can be thought of increasing the thickness of a concentric

circle and applying a probability distribution as a gradient on the thickness. CbT is

an algorithm that searches for high densities of AP ranging circle intersection points

and assigns a higher probability to that location for being the position of the device.

It can be used for identifying anomalous points as those points will be excluded

from the clusters if they do not meet the neighbouring point requirements. All

variations of the algorithm outperformed basic least squares. CbT and WCCG with

instrument bias not removed performed very well, as there was only a 10cm

difference between the same method with instrument bias removed. A shortfall of

this model is that knowledge of the AP locations is required.

Guo et al. [51] focused on a method that incorporated both RSSI ranging and RTT

data into a positioning solution. The algorithm used was a Kalman Filter with RSSI

path loss ranging and RTT data used as inputs to the filter. For static positioning it

was found that the model started with a mean positioning error of 3.41m for RSSI

based fingerprinting. RTT ranging on its own had a mean positioning error of

2.042m whilst the ranging error for a model that integrated both RSS and RTT into

a Kalman Filter had a ranging error of 1.435m. The inclusion of RSSI path loss

ranging into the Kalman filter had the effect of identifying outliers as if there were a

large disparity between the RSSI path loss range and the RTT range then the

measurement would be removed from the solution. The inclusion of RSSI data gave

the Kalman filter more information for the measurement update phase.

Furthermore, it demonstrated how both metrics together can improve the overall

positioning solution, as WiFi RTT-based trilateration produced a positioning error
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of 2.04m. As with most RTT-based positioning and RSSI loss propagation based

positioning, the locations of APs were required knowledge.

Dong et al. [52] developed a technique to identify NLOS signals in real time. The

paper used machine learning algorithms and resulted in outlier detection of over

96%. The machine learning algorithms explored were random forest, least square

support vector machine and a deep neural network approach. The experiment

involved smartphones at several stationary locations with 3 APs. Two test sites were

used, an office site for training and testing and then a student accommodation

environment for validation. The machine learning algorithms were essentially

intending to determine whether a given signal was from an NLOS or LOS signal.

The models were trained with different combinations of datasets of RSSI and RTT

range data. It was found that only using RTT range data or only using RSSI could

not provide good performance for NLOS/LOS signal identification. This paper

found that the features extracted from the RTT range data are more helpful for

NLOS identification compared to RSSI. It was also found that the deep neural

network model had the best detection accuracy but had the highest computation

complexity and thus took the longest time to train. Overall, this paper takes a

different approach to NLOS detection than other papers which focus on RSSI and

found that RTT range-based features might be better for outlier detection for RTT

based positioning.

Han et al. [53] implemented an algorithm that integrated PDR with WiFi RTT to

create a novel positioning solution. The model harnesses PDR to conduct trajectory

alignment and step length estimation to test the validity of positioning updates that

are suggested by WiFi RTT multilateration. The accelerometers of the mobile’s

IMU can be used to determine distance travelled by counting the number of steps

and multiplying this by a step length. The gyroscope can be used to recognise

turning direction. By combining these methods it is possible to obtain a user’s

trajectory. Han et al. suggested that by combining PDR and WiFi RTT into a

Kalman Filter it is possible to use both the WiFi RTT measurements and IMU
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sensor data to reach a position estimate. It was found that while walking in a

straight line in LOS environments the proposed method of WiFi RTT positioning

combined with an Extended Kalman Filter (EKF) had a positioning error of 1.359m.

Another research paper that used PDR in combination with WiFi RTT (referred to

as FTM ranging in the paper) by Sun et al. [54] integrated PDR (specifically step

detection and length estimation) with WiFi RTT in an extended Kalman Filter.

The model in this paper also used RSSI for outlier detection by determining the

standard deviation of the RSSI and ranging data in one second. If the standard

deviation was above a certain threshold then the data point was removed from

consideration for the positioning solution. This method achieved an RMSE of 1.1m.

This is better than the EKF alone which achieved an RMSE of 2.74m.

Si et al. [55] proposes a model using weighted least squares for RTT based

positioning and feeds the difference between a predicted RSSI and the measured

RSSI, the RSSI variance, the distance measurement and the RSSI measurement into

a Naive Bayes Classifier. The predicted RSSI was acquired by collecting RSSI data

in the environment at various distances from an AP and then fitting a double

exponential model to this data such that this model gave the best possible

prediction for the relationship between RSSI and the true distance. The Naive

Bayes Classifier then classifies the signals into NLOS or LOS signals. Then a

probability is applied to these classifications which is used for the weight matrix

during weighted least squares. This makes sense as it uses the RSSI measurements

for an RTT signal as a proxy for reliability of the RTT measurement which will be

able to distinguish between NLOS and LOS signals. This solution outperformed

traditional least squares positioning with no outlier detection by 29.1% in terms of

mean position error and is also practically a good solution as RSSI data is provided

with all RTT measurements.

Cao et al. [56] developed a solution that focused on the identification of NLOS

signals and a LOS ranging calibration model to improve LOS range accuracy. They
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were able to achieve a mean absolute error of 1.082m. The NLOS identification

model followed an RSSI-based outlier detection model that use a path loss model

calibrated to the environment being tested in.

The recent research on WiFi RTT points to the fact that, as expected, WiFi RTT

based positioning performs significantly better when other sensors and WiFi RSSI

are introduced. This is because these signals help with identifying outliers from the

WiFi RTT ranging results. Since these sensors and signals are present when WiFi

RTT is operational, it makes sense that any research going forward should focus on

fusing the various sensors and signals. It is worth noting, the work in this thesis was

done in parallel to some of the research discussed above. Specifically, work in this

thesis explored RSSI-based outlier detection around the same time as other

researchers.

2.4 Existing research on WiFi-based SLAM for

indoor positioning

Simultaneous Localisation and Mapping (SLAM), first discovered by John Leonard

and Hugh Durrant-Whyte [18], is a procedural method to build a map of an

unknown environment while at the same time navigating that environment using the

map. SLAM uses sensors within the device being positioned, such as IMUs, visual

data, signal data etc. This section will focus on the application of SLAM to mobile

devices where WiFi is a key component of creating the map of the WiFi AP

locations in an environment. SLAM is a solution to the problem of requiring

previous knowledge of the environment in order to carry out positioning. SLAM can

enable mobile devices to position themselves in any building where the signals that

it uses to construct a map of the environment are present.

A paper by Faragher et al. [57] demonstrated WiFi SLAM. A positioning technique

for an indoor environment where an initial GPS position fix was used then WiFi

signals and IMU data was used in combination with SLAM. The IMU in the device
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was used for step detection (accelerometer) and as a compass (magnetometer).

Using an assumed step length it is possible to roughly calculate the distance moved

and heading of a device. However, in this experiment the step length for each

particle was randomly assigned within a range to account for different step lengths

and noise was applied at each epoch to account for changes in minor changes in step

length. Then various other signals were polled every second including WiFi RSSI,

GNSS and cellular measurements. As with most SLAM systems, a particle filter was

used for navigation and mapping. A particle filter, based on sequential Monte Carlo

can be used to estimate the position of a mobile device. The algorithm takes a

number of particles to represent a distribution of likely states. Whenever the device

moves the algorithm predicts the new state based on the movement (deliberately

adding noise during the process) and then compares this prediction with the

measured state to determine how well they correlate. The weighted average of all

particles should be a good estimate of the actual position of the device. For a more

thorough description of the particle filter refer to Section 4.1.3. In this paper, the

particle filter is initialised using a GPS position, its associated uncertainty, the

average step length and compass bias. As the device moves from the starting point

the position solution from the IMU becomes less accurate. This is because error in

the IMU measurement will affect the predicted state which will affect the predicted

state of the next IMU measurement and so on. Essentially, over time the error in

predicted state increases if left uncorrected.

However, the position solution corrects itself when the device passes a location it has

better certainty on, either from a more reliable GNSS signal or because the device

has already been at that position (thus the WiFi signal signatures at that location

match). Loop closure (or a device returning to a location it has previously visited) is

a key part of SLAM, it is the primary way to remove the drift accumulated from the

IMU errors that accumulate over time. By returning to a previously travelled

reference point it is possible to reset the position of a device and also adjust the rest

of the map to account for the drift error. For this method, over a 15-minute walking

period the final position error was 4 metres compared to an 86m error for an
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uncorrected particle filter solution. Given that the SLAM solution has no prior

knowledge of the environment, this is a good result, especially since the final

position error is not reflective of the position error throughout the positioning phase

which was lower but not measured in the experiment.

A paper by Ferris et al. [58] also explored WiFi SLAM. The results of this paper

yielded an average position error of 3.97m with a standard deviation of 0.59m. This

model however used a Gaussian Process Latent Variable Model, a technique used for

mapping high-dimensional data (signal strength information for all WiFi APs in the

environment in this case) to a low-dimensional latent space (a two-dimensional

latent space in this case [xy coordinates]) [59]. A paper by Liu et al. [60] focused on

WiFi SLAM that integrated visual methods through Google’s Tango (now known as

ARCore [61]). This tool enables mobile devices to combine visual input from the

Tango’s camera which had better optical sensors than an ordinary phone camera

with IMU data to track the movement of the device. This paper used a particle

filter as the positioning engine and ran two experiments. The first experiment used

WiFi RSSI and step-detection-based PDR and the second experiment used WiFi

RSSI and Tango-based PDR using visual inertial odometry. The Tango-based-PDR

required the user to hold the phone upright such that the phone’s camera could view

the environment to conduct visual inertial odometry. The Tango-based-PDR and

WiFi SLAM yielded a average positioning error of 0.6m which is better when

compared to step-detection-PDR and WiFi SLAM which yielded an average

positioning error of 4.76m. The results of the Tango/visual-based model are

impressive and has its benefits for specific mobile positioning tasks. However, in

most cases of mobile pedestrian navigation it is unlikely that a user will be holding

their phone upright with the camera on, especially considering the power

requirements.

WiFi RTT SLAM has not been explored in much depth at the time of writing. WiFi

RTT SLAM was explored by Gentner and Avram [62] in 2021. This positioning

solution used WiFi RTT signals and IMU data (gyroscope and accelerometer)
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processed using a particle filter. As a mobile device moves around an environment it

is possible to narrow down the location of each AP to a specific area, thus enabling

map creation. The WiFi RTT SLAM positioning algorithm used in this paper

yielded an average positioning error under 1m. Gentner and Avram did not explore

any outlier detection methods and more importantly did not use a pedestrian dead

reckoning model for estimating the movement of the pedestrian, instead using a set

of fixed markers with a known position in the environment. This is an improvement

on WiFi SLAM when compared to WiFi RSSI SLAM and a good positioning

performance. This paper is a great proof of concept for WiFi RTT SLAM and more

research on this technique to explore alternative filter methods, outlier detection

models and more sensor fusions would advance the field significantly.



CHAPTER 3

WiFi RTT Characteristics

This chapter describes the tests undertaken to understand the characteristics of WiFi

RTT and how the protocol behaves in certain conditions and environments. Each test

aimed to identify a characteristic of WiFi RTT and these results have been used to

guide the best methods for data collection, device calibration, outlier detection and

the positioning solution. The tests undertaken include:

Experiment 1: Basic WiFi RTT AP to mobile device range test between 0 - 5m at

0.5m intervals. The objective of this experiment was to identify the presence of any

instrument bias in the AP or mobile device.

Experiment 2: Incremental WiFi RTT AP to mobile device range tests between 1

- 1.5m at 0.02m intervals comparing results with the devices on a reflective surface

against the devices on a dull surface. The objective of this experiment was to identify

the impact of multipath effects for WiFi RTT.

Experiment 3: Various WiFi RTT AP to mobile device ranging non line of sight and

multipath scenarios, although multipath scenarios will be present in Experiments 1

and 2, the aim of this experiment is to enhance multipath effects through the setup

of the experiment. The objective of this experiment was to understand the effects of

building attenuation and non-line of sight signal reception on WiFi RTT.

56
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Table 3.1: Devices used during WiFi RTT Ranging Characteristics experiments

Access Point/Device Description MAC address

AP-1 Google Nest WiFi Router cc:f4:11:4b:fb:1b

AP-2 Google Nest WiFi Point b0:e4:d5:1a:85:5d

AP-3 Google Nest WiFi Point b0:e4:d5:01:eb:5d

Mobile Device Google Pixel 4a

Experiment 4: WiFi RTT AP ranging error based on orientation of the mobile device

compared to the AP. The objective of this experiment was to determine if there were

ranging errors depending on the orientation of the access point relative to the mobile

device.

This chapter will first describe the devices used. Then each experiment will be

discussed including an introduction, experimental setup and a discussion of the

results.

3.1 Devices Used

The devices outlined in Table 3.1 have been used for the experiments in this thesis.

These devices are all produced by Google, a supporter of WiFi RTT. These devices

have been used as they are WiFi RTT compatible and are cost-effective. Henceforth,

the access points will be referred to by their AP designations (AP-1, AP-2, AP-3). The

MAC (Media Access Control) address of each AP is important for distinguishing the

different devices. The router, AP-1 is a device connected directly to the broadband

line and a power outlet, whilst the points only connect to a power outlet and are

reliant on the router (AP-1) being online in order to function.

3.2 Experiment 1 - Instrument Bias

3.2.1 Introduction

This experiment aims to determine whether a fixed range offset exists between

actual distance measurements and FTM range measurements for 3 different Wi-Fi
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FTM/RTT capable Access Points, and if so, what this range offset is.

After setting up three Wi-Fi RTT (Round Trip Timing) capable Google Nest Access

Points (1 Google Nest Router and 2 Google Nest Points), it was observed that a

mobile device’s Fine Time Measurement (FTM) ranges would have a constant

negative bias when utilising the Wi-Fi RTT capabilities of the access point. For

example, a mobile device one metre away from the Access Point (AP) would return

a negative range, indicating that the FTM range was being underestimated. This

required further investigation to determine the necessity of calibrating the ranging

measurements to improve the accuracy of the system. This experiment did not test

different mobile devices.

3.2.2 Experimental Setup

The experimental layout is shown in Figure 3.1. A mobile device and an AP were

placed with no obstacles between them and no walls within 3m. Ideally there should

be no walls, but this is not possible given constraints of the experimental environment.

Both devices were at the same height. These conditions exist to ensure that the device

and AP have an unobstructed line of sight and also so that reflections off of nearby

surfaces can be mitigated. The mobile was moved from the AP in 0.5m increments

from 0 to 5m. At each increment the FTM RTT readings from the mobile device

over a 30-second period were logged. The logging included the timestamp of the

reading, the measured range, the measured range standard deviation, the number of

successful FTM bursts, RSSI, AP name and channel frequency (MHz). The reference

range between the AP and the mobile device was measured using a laser measurer

(a measuring tape would also suffice). For all readings the channel frequency was

5180MHz, this was the default presented by the WiFi RTT logging mobile app used.

This process was repeated for three APs, all in the same location for their respective

measurement period. This experiment was repeated 5 times for each AP.
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Figure 3.1: Experiment 1 Setup Plan view

Table 3.2: Experiment 1 mean FTM range error and standard deviation
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Figure 3.2: Experiment 1 mean FTM range error, including linear approximation
determined via least squares

3.2.3 Results and Discussion

Table 3.2 shows the mean measurement range error from the FTM RTT measurement

between the mobile device and the AP, as well as the standard deviation of the

measurements over the five repetitions. Figure 3.2 shows the FTM range error, with

the standard deviation represented as error bars.

As can be seen in Figure 3.2, the FTM range error for almost all measured distances

is negative. This negative offset is more severe in AP-2 and AP-3, the Google WiFi

Points, with an average offset of -2.48m and -2.35m respectively. Whereas in AP-1,

the Google WiFi Router the range offset is less severe at an average of -0.3m. Due to

the fact that the ranging offset is consistently negative, it is unlikely that the error is

a result of noise, NLOS reception and multipath effects. Noise leads to more random

errors which contrasts the consistent offset of the results. NLOS errors are always

positive whilst the offsets seen here are negative, and multipath effects should vary

as the devices are moved. The equations for the linear line of best fit for each AP are

also shown. These are determined via linear regression, as described in Equation 3.1

and Figure 3.2.
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y = Ax+B (3.1)

(3.2)

The gradients (A) for the ranging error over distance AP-2 and AP-3 are 0.0586 and

0.0255 respectively. The RMS of these values are 0.9827 and 0.9789 respectively due

to the small magnitude of these gradients and their high RMS it is appropriate to

put this down to statistical noise, thus indicating that there is not an observable

scaling factor involved in the ranging error for AP-2 and AP-3. The gradient

associated with AP-1 however is 0.127. This is larger than the gradients of AP-2

and AP-3 and indicates that there is a factor causing the ranging error to reduce as

the distance between the AP and mobile device increases. However, this is unlikely

to be related to the offset itself and is more indicative of multipath effects which

vary as the mobile or AP move.

For AP-2 and AP-3, the y intercepts (b) are −2.61m and −2.41m respectively. The

ranging offset for AP-2 and AP-3 falls between −2.4m and −2.6m. This indicates

that for Nest points, in order to produce accurate FTM range results, the

measurements must be calibrated to account for negative ranging errors of this

magnitude. This ranging offset is not always negative. The y intercept for AP-1 is

smaller in magnitude at −0.6m, meaning that the range offset is less severe, hence

why the average range error is −0.3m. Accounting for this offset and the standard

deviation of the measurement, AP-1 (Google Nest router) should be calibrated

between −0.3 and −0.6m. For subsequent experiments this offset was determined at

the start of the experiments.
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An important note is that since the errors between the Google router and Google

points are so different, it is likely that the source of error originates from device

manufacturing in software in the mobile device or the software/hardware in the APs

as opposed to any errors that may result via signal propagation especially since the

APs were tested under identical conditions. However, understanding the source of

this offset is outside the scope of this experiment. It could be deduced that there is

a fault in the devices, but this could only be confirmed by understanding the device

bias specification set by the manufacturer, which is not publicly available. Dong et

al. [48] discovered that the bias does differ from device to device, both for the APs

and the mobile devices.

Furthermore, whilst for the 2 Nest points (AP-2 and AP-3) the offset is relatively

consistent, it is possible that this does not apply to other Nest Points for a

multitude of reasons: the points tested could have been from the same batch and

the error could vary from batch to batch, there could exist a bias in the mobile

device, this can be tested by using an alternative mobile device that is WiFi RTT

compatible. Over time the instrument bias does change, the bias was noticed to

coincide with software updates of the access points.

Ultimately, for the sake of the following experiments, this range error will be

removed from the results, henceforth referred to as “calibrated results”, however, the

ranging error will be monitored throughout testing to determine if these values need

to be adjusted. Before every experiment the ranging offset was determined and

calibrated into the ranging measurements by measuring between 0m to 2m at 0.5m

increments. Want et al. [2], Ma et al. [35], Dong et al. [48] and Horn et al. [47]

amongst others also noted instrument bias within the range of 1.2m to 3m.
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3.3 Experiment 2 - Multipath effects

3.3.1 Introduction

These experiments aimed to understand how WiFi RTT range behaves on a more

granular level. In essence, the mobile device was moved from the APs in much

smaller increments of 2cm. This is important to understand as it can give potential

insights into how signals should be modelled and whether certain patterns can be

identified that would reveal information on the error sources or predictable features

of RTT. Experiment 2a and 2b had very similar experimental setups, however

Experiment 2b had all devices on a reflective surface. The purpose was to determine

the impact of multipath effects by utilising the reflective surface to increase the

strength of signals reflected by the surface. The experimental setup differences are

described in Experimental Setup.

3.3.2 Experimental Setup

Experiment 2a was laid out as shown in Figure 3.3. The AP was placed on a large

table, the mobile device was placed 1m away from it in a standing position and moved

in 0.02m increments up to 1.5m, this was carried out for two APs (AP-2 and AP-

3) three times each. At each increment, WiFi RTT readings were collected over a

30-second period at 500ms intervals. Experiment 2b was set up as shown in Figure

3.4. The experimental process was identical with the only difference being that below

the mobile device and AP a reflective surface should be placed. In this experiment

aluminium foil was used to produce a reflective surface. The distance between the

mobile and the APs was measured using a laser distance measurer.

3.3.3 Results and Discussion

The calibrated results of experiments 2a and 2b are shown in Figure 3.5, which shows

the calibrated results for AP-2 and Figure 3.6 which shows the calibrated results for

AP-3. The graphs show the reference range against the calibrated estimated range

error, with error bars representing the standard deviation of that specific reading. AP-
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Figure 3.3: Experiment 2a setup

Figure 3.4: Experiment 2b setup
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Figure 3.5: AP-2 Experiment 2a and 2b (Reflective Surface) mean FTM range error
against true range, including linear approximation determined via least squares

1 was not used due to limitations in the experimental environment. The results exhibit

noise, and it is unclear whether there is an underlying trend. There is a potential

sinusoidal or period based trend shown in both APs, but this relationship is not

consistent between the two APs. However, this is difficult to conclude or disprove given

the data collected. It is immediately clear that the standard deviations and differences

of the ranges from experiment 2b (reflective surface) are larger than experiment 2a.

This indicates that the aluminium foil is introducing further interference in the ranges.

This could be due to enhanced multipath effects as the signals are reflected off the

surface with greater strength, thus equally strong signals are reaching the devices and

therefore the devices interpret signals as equally possible range results. This would

explain why a larger standard deviation and spread in the results may arise. Since

the true reading is being obfuscated by the non-true reflected readings, however, for

this to be the case then the ranging errors should be larger as a result of the longer

path. To date, no experiment such as this has been conducted on WiFi RTT.
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Figure 3.6: AP-3 Experiment 2a and 2b (Reflective Surface) mean FTM range error
against true range, including linear approximation determined via least squares
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3.4 Experiment 3 - Attenuation and NLOS

3.4.1 Introduction

In a non-experimental environment, it is highly unlikely that a mobile device will have

a clear or unobstructed line of sight to an AP at all times. The previous experiments

have all investigated the behaviour of WiFi RTT given a direct line of sight between

the AP and the mobile device. The following experiments investigated WiFi RTT’s

behaviour in scenarios that force NLOS signal transmission between the mobile device

and AP.

3.4.2 Experimental Setup

For this experiment there are 2 scenarios, each split into 2 sub scenarios. The aim of

each scenario is to place the mobile device and AP in a different situation to

investigate various impacts of obstructed transmission. Each subscenario of a

scenario represents a LOS condition (where the mobile and AP have a clear line of

sight) and a NLOS condition (where there is an obstruction between the mobile and

AP).

The experimental layouts of each scenario are shown in Figure 3.7 and Figure 3.8.

In Scenario 1, a door is placed between the mobile device and AP in the NLOS

condition, this experiment aims to test the performance of WiFi RTT when

completely obstructed. In Scenario 2, the mobile device and AP are obstructed with

a varying distance, but there is an opening to one side allowing for a reflected signal

between the mobile device and AP. As seen in each figure (Figures 3.7 and 3.8) they

are split into sub scenarios ’a’ and ’b’. Scenario a represents the LOS condition and

b represents the NLOS condition. Once the AP and Mobile device were set up as

specified, measurements were logged at the specified ranges. Readings were collected

over 30 seconds at 500ms intervals. RSSI readings were also collected, but these

readings are already included in the Google WiFi RTT Scan App’s data

collection [63]. AP biases identified in experiment 1 were calibrated into the results.
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Figure 3.7: Scenario 1 with sub-scenarios A and B. The difference between the sub-
scenarios is an open and closed door at 1m between the mobile device and AP

3.4.3 Results and Discussion

The calibrated results for scenario 1 are shown in Table 3.3. Overall the ranging

error is less than 10cm with the LOS scenario (sc1-a) showing marginally higher

accuracy and a marginally stronger RSSI than the NLOS scenario results. The error

caused by NLOS here is on average 0.045m. It is important to note that there are

no unobstructed lines of sight between the access point and mobile device. In the

Table 3.3: Scenario 1a and 1b calibrated results, estimated range standard deviation
and RSSI

subscenario-trial Reference
Range (m) Average Est. Range (m) SD (m)

Average
RSSI

(dBmW)
sc1-a-trial1 2 2.0445 0.0635 -48.7
sc1-a-trial2 2 2.0333 0.0679 -48.7
sc1-a-trial3 2 2.0242 0.0505 -48.4
sc1-b-trial1 2 2.0738 0.0810 -49.9
sc1-b-trial2 2 2.0872 0.0691 -48.9
sc1-b-trial3 2 2.0758 0.0764 -49.9



3.4. EXPERIMENT 3 - ATTENUATION AND NLOS 69

Figure 3.8: Scenario 2 with sub-scenarios a and b. The AP and mobile device can
be moved in 10cm increments away from each other. The walls between the mobile
device and AP each have a width of approximately 10cm.
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NLOS scenario the door is closed and the room is closed off, thus the signals must

pass through the door or walls to reach the receivers. The source of signal

obstruction is most likely the permittivity of the wall. This indicates that in this

experimental environment, doors have a minuscule impact on the RTT ranging

measurement. It is unlikely to be NLOS reception caused by the signals reflecting

off walls and other surfaces or multipath effects. It is possible that the strongest

signal will have had to pass through the door in scenario B to reach each receiver.

This explains the slightly higher range estimate as well as the decrease in the signal

strength. The door that obstructs the signal path in scenario 1 is made of wood.

Research conducted by Suherman et al [64] and Mohammed et al [65], investigated

the impact of building materials on WiFi received signal strength. Overall the

research found that wood caused a minor reduction to the RSSI when compared to

free space. Suherman et al. found that wood reduced the signal strength by an

average of 0.73dBm whilst concrete reduced the signal strength by 1.53dBm on

average. This is inline with the experimental results achieved in these experiments,

as the RSSI strength decrease caused by the wooden door in Scenario 1 was

substantially lower than the 2 brick walls of Scenario 2.

The calibrated results for scenario 2 are shown in Figure 3.9. By comparing scenario

2a to 2b, the results shows that the LOS conditions produce a more accurate

ranging solution with a smaller standard deviation than the NLOS conditions.

Ranging under NLOS conditions produces a ranging solution with an average

ranging error of 0.81m and a standard deviation of 0.17m (standard deviation based

on three measurements at the same distance), these are less accurate when

compared to the LOS conditions results which produce a ranging error of −0.21m

and a standard deviation of 0.08m. In Figure 3.9, RSSI has also been plotted for

each data point. The RSSI results show that under LOS conditions with a more

reliable ranging solution, the RSSI is stronger whereas under NLOS conditions the

RSSI is significantly weaker. The difference between the two scenarios is an average

of 18.8 dBm, with a standard deviation of 1.37dBm in NLOS conditions and

0.56dBm in LOS conditions (standard deviation based on three measurements at the
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same distance). This suggests that it is possible to identify reflected NLOS signals

by a large decrease in the RSSI when compared to the RTT reading received from

that AP or other signals in an experimental environment, although in the latter case

this could be as a result of a greater distance between the AP and mobile device.

This observation of reduced RSSI resulting in greater ranging errors between 0.4 -

2m indicates the potential of RSSI as an indicator of ranging error.

One of the most important results of this experiment is the correlation between low

RSSI and NLOS conditions. This trend is likely due to two factors: attenuation at

the point of reflection or RTT signals reflecting off surfaces in the environment and

thus the signal strength being lower than a direct signal would have been.

Dong et al. [48] conducted experiments to understand WiFi RTT error

characteristics, in these experiments, in addition to comparing NLOS and LOS

conditions they also explored changes in accuracy when the user was moving and

wood, glass and metal as the obstruction. The paper found that NLOS conditions

could cause as much as a 2.8m ranging error when the obstruction was made of

metal and both the mobile device and AP were stationary, demonstrating the

impact of NLOS effects. When the range and position were varied there was up to a

2.9m ranging error in NLOS conditions. Additionally, there was a 3.3m standard

deviation for the WiFi RTT ranges for this experiment, indicating that the

combination of motion and metal obstructions can significantly impact the accuracy

of WiFi RTT. This level of error could place a user in an incorrect room. The paper

identified that obstructions weakened the average RSSI of the RTT signal,

consistent with the findings in this thesis. Furthermore, a metal obstruction

provided more signal interference than wood or glass. These results are as expected,

as a more conductive obstacle will typically yield more signal interference.
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Figure 3.9: Scenario 2 with sub-scenarios a (LOS) and b (NLOS) calibrated results,
the black line represents the true range (i.e. y=x)

3.5 Experiment 4 - Instrument Orientation

3.5.1 Introduction

This experiment aims to determine whether the orientation of a mobile device

relative to a AP impacts WiFi RTT ranging error. During data collection,

significant ranging errors were noticed when the mobile device and access point were

at certain orientations. By orientation, what is meant is shown in Figure 3.10.

This requires further investigation to determine the necessity of calibrating the ranging

measurements based on relative orientation of the devices to improve the accuracy

of the system. This experiment will aim to provide clarification on this observation.

This experiment will not explore testing different mobile devices.
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3.5.2 Experimental Setup

The experimental layout is shown in Figure 3.10. A mobile device and an AP (AP-1)

were placed with no obstacles between and no walls within 3m. Both devices were at

the same height. These conditions exist to ensure that the device and AP have an

unobstructed line of sight and also so that reflections off of nearby surfaces can be

mitigated. The ranges were measured at a 1m and a 2m distance. At each position,

the FTM RTT readings were logged from the mobile device over a 30-second period.

The reference range between the AP and the mobile device was measured using a

measuring tape and the angle between the mobile device and the front of the AP was

measured with a protractor. For all readings the channel frequency was 5180MHz, this

was the default presented by the WiFi RTT logging mobile app used. This experiment

was then repeated 5 times for each AP.

3.5.3 Results and Discussion

As can be seen in Figure 3.11 the WiFi RTT ranging error does vary depending on

the relative orientation of the mobile device to the access point. This variation also

changed depending on the distance between the mobile device and the access point.

For the 1m trial, the measured range varied between 0.61m to 1.59m whereas for the

2m trial, the range varied between 0.5m and 5.05m. At 0 degrees both range

measurements were within 2.5cm of the true range. However, for the 1m trial at 180

and 315 degrees, the range error was greatest with range errors of 0.59m and 0.53m

respectively. Then for the 2m trial at 90, 180 and 315 degrees the range error was

greatest with range errors of 1.45m, 2.39m and 3.05m respectively. The greatest

outliers for both ranges occurred at 180 and 315 degrees. At 45 and 135 degrees,

there were large negative ranging errors of -0.39m and -0.36m for the 1m trial

respectively and −1.5m and −0.86m for the 2m trial respectively.

These errors could be attributed to multipath effects. There are a few pieces of

evidence to support this. Firstly, there are both negative and positive ranging errors

these are likely a result of constructive and destructive interference of the signals.
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Figure 3.10: Experiment 4 Orientation Test Plan view
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Figure 3.11: Experiment 4 mean WiFi RTT at different orientations

For the 2m trials, a correct signal had an RSSI of approximately −66dBmW (0 and

225 degrees) whereas the outlier signals at 45, 180 and 315 degrees had an RSSI of

−72dBmW, −71dBmW and −75dBmW respectively. This indicates some sort of

signal interference as there are no physical obstacles to attenuate or cause NLOS

signals. There could be attenuation or reflection effects present in the hardware that

would cause ranging error, but these would not cause negative ranging errors.



CHAPTER 4

Positioning algorithms

This chapter will describe a number of positioning algorithms that use WiFi RTT

and the experiments conducted to determine their positioning reliability and

accuracy. The algorithms explored include least squares, weighted least squares,

particle filters, genetic filters and grid filters. In addition, residual-based outlier

detection is tested and an RSSI-based outlier detection model is introduced. Section

4.1 describes the algorithms, Section 4.2 describes the experimental methodology

and Section 4.3 discusses the results of the experiments.

4.1 Algorithms

4.1.1 Least squares positioning

Unweighted Least Squares Multi-lateration

Least squares positioning is a method that determines the position of an object by

minimising the sum of the squared differences between the measured distances from

reference points and the predicted distance between a candidate position and the

reference points. Least Squares has been applied to WiFi FTM RTT, as discussed

in Ma et al. [35]. There are two versions of the algorithm used for this experiment,

76
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one that ignores the z (vertical) value (i.e. a 2D positioning solution) and one that

includes the z value in the calculation of the position. It is worth noting that, although

the signal geometry is insufficient for accurate vertical positioning, the z position and

axis is included in the following equations as it could help improve the accuracy of a

2D solution, and deriving the 2D least squares solution from this equation is trivial.

For this experiment, it is assumed that the mobile device knows the location of all

APs. Estimating the AP position from the ranging results is out of the scope of this

experiment.

The distance between each device and an AP can be calculated using Pythagoras’

theorem. Equation 4.1 shows the start of the least squares process derived from

the distance between each AP and the device. In Equation 1 x, y, z represents the

coordinates of the mobile device. Xn, Yn, Zn represents the coordinates of the nth

AP and dn represents the distance between the nth AP and the mobile device.



(X1 − x)2 (Y1 − y)2 (Z1 − z)2

(X2 − x)2 (Y2 − y)2 (Z2 − z)2

... ... ...

(Xn − x)2 (Yn − y)2 (Zn − z)2


=



d2
1

d2
2

...

d2
n


(4.1)

To get the intersection point of these ranges, and thus the position of the object,

subtract the last equation in the matrix from the rest of the equations, as shown in

Equation 4.2. This is a technique also used by Ma et al. [35]. If there are less than

3 APs then this equation cannot work, and therefore it may be beneficial to switch

to a 2D version of Equation 4.2, shown in Equation 4.3. This involves omitting the

z coordinate, assuming that all devices lie on the same plane. However, it is worth

noting that whilst 3 APs is the lower limit, it is best to have a few more APs in order

to allow measurements to be removed if measurements from those APs are invalidated

due to outlier detection. For this research, 6 APs were used.
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

(Xn −X1)x (Yn − Y1) y (Zn − Z1) z

(Xn −X2)x (Yn − Y2) y (Zn − Z2) z
... ... ...

(Xn −Xn−1)x (Yn − Yn−1) y (Zn − Zn−1) z


=



(d2
1 − d2

n +X2
n + Y 2

n + Z2
n −X2

1 − Y 2
1 − Z2

1 ) /2

(d2
2 − d2

n +X2
n + Y 2

n + Z2
n −X2

2 − Y 2
2 − Z2

2 ) /2
...(

d2
n−1 − d2

n +X2
n + Y 2

n + Z2
n −X2

n−1 − Y 2
n−1 − Z2

n−1

)
/2


(4.2)



(Xn −X1)x (Yn − Y1) y

(Xn −X2)x (Yn − Y2) y
... ...

(Xn −Xn−1)x (Yn − Yn−1) y


=



(d2
1 − d2

n +X2
n + Y 2

n −X2
1 − Y 2

1 ) /2

(d2
2 − d2

n +X2
n + Y 2

n −X2
2 − Y 2

2 ) /2
...(

d2
n−1 − d2

n +X2
n + Y 2

n −X2
n−1 − Y 2

n−1

)
/2


(4.3)

The least squares equation is shown in Equation 4.4.

P = (ATA)−1ATb (4.4)

where (based on Equation 4.2),

P =


x

y

z

 (4.5)

A =



Xn −X1 Yn − Y1 Zn − Z1

Xn −X2 Yn − Y2 Zn − Z2

... ... ...

Xn −Xn−1 Yn − Yn−1 Zn − Zn−1


(4.6)
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P =



(d2
1 − d2

n +X2
n + Y 2

n + Z2
n −X2

1 − Y 2
1 − Z2

1 ) /2

(d2
2 − d2

n +X2
n + Y 2

n + Z2
n −X2

2 − Y 2
2 − Z2

2 ) /2
...(

d2
n−1 − d2

n +X2
n + Y 2

n + Z2
n −X2

n−1 − Y 2
n−1 − Z2

n−1

)
/2


(4.7)

The position of the mobile device P will be calculated at each epoch.

4.1.2 Weighted Least-Squares Multi-Lateration

The FTM RTT readings produced by the device provide a standard deviation of the 8

burst ranging packets, this represents the standard deviation of that specific ranging

measurement (this also highlights the fact that the outputted ranging measurement

is a mean of the ranging measurements of the 8 burst ranging packet). By using

weighted least squares it is possible to account for the varying precision of each FTM

RTT measurement. The algorithm mostly stays the same except for the addition of

the measurement error covariance matrix in the least squares calculations. This is

shown in Equations 4.8 and 4.9.

P = (ATC−1
k A)−1ATC−1

k b (4.8)

where,

Ck =



σ2
k1 0 . . . 0

0 σ2
k2 . . . 0

... ... . . . ...

0 0 . . . σ2
k(n−1)


(4.9)

k represents the epoch of the matrix, σ represents the standard deviation of the

RTT signals of the AP at that epoch. The measurement error covariance matrix

assumes that the measurement errors are independent for different APs for each epoch
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and therefore the covariances are 0, and only the variances of each measurement are

accounted for, as shown with the main diagonal.

4.1.3 Particle Filters

Bayesian filtering is a probabilistic approach to estimate the state of a system that

evolves over time. By combining prior knowledge with new information from

measurements that provide information on how the system has changed. As new

data becomes available the probability distribution of the system’s state is updated

using Bayes’ theorem [66]. In the context of positioning and navigation the state

would most likely be the coordinates, velocities etc. of an object to be tracked.

Bayesian filters include Kalman filters and particle filters amongst others. Particle

filtering, is based on the sequential Monte Carlo method which involves simulating a

large number of particles and assigning a position within the state space and weight

to each particle. The position and weight distribution is then used to form a

probability distribution of the final position, providing a weighted average of the

particles to get the estimated position. As an example, if all particles are clumped

around a specific place, this means the particle filter has determined there is a high

probability that the object being tracked is in that location.

Particle Filters are a promising method for WiFi RTT positioning as they are better

suited than standard Kalman filters for highly nonlinear problems [67] [68]. WiFi

RTT is a non-linear problem as the RTT measurements are not linear functions of

the mobile device position and are non-Gaussian. The latter is mainly a result of

NLOS reception errors and multipath effects.

The process for the particle filter follows the diagram shown in Figure 4.1. Broadly,

a particle filter begins with an initialisation step where the particle states are

initialised, this can be done in several ways such as a uniform distribution in the

state space or a Gaussian distribution around an initial state. Following this, there

is a prediction step which involves moving the particles in the state space based on

some inputs. The next step is the update step which involves weighting the particles
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Figure 4.1: Generic particle filter and genetic filter process

based on some measurements, the particles which most closely align with the

measurement are weighted higher. This process can be repeated indefinitely so long

as there is new information. There are other steps such as resampling and

estimation which will be explained later, but the above steps give a broad overview

of how a particle filter works.

An initial position estimate is determined based on a single-epoch least-squares

algorithm.

Initialisation – Np particles are created using the initial position estimate as the

mean. The particles are then randomly distributed around the initial position

estimate to account for uncertainty. The standard deviation of the state distribution

matches the uncertainty of the initial position estimate. The initial distribution of

the particles follows a Gaussian distribution.
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Prediction – For positioning in motion, a pedestrian dead reckoning model described

in Section 4.1.7 is used. The positions of the particles are adjusted using:

Qj

k+1 = Qj

k cos(φjk+1 )rjk+1 (4.10)

Rj

k+1 = Rj

k sin(φjk+1 )rjk+1 (4.11)

Where Q are the x coordinates of the particles and R are the y coordinates of the

particles, according to the coordinate frame of the environment, which can vary for

indoor environments, k represents the epoch of the particles and j represents the

particle index. Where the displacement, rk, and orientation φk, are retrieved as

described below and defined in Equation 4.12 and 4.13 respectively. As steps are

discrete events, the movement of the device appears to be discrete from the perspective

of the filter as the prediction step will update the device’s position at each step. This is

an issue as WiFi measurements can be recorded mid-step, which are used to determine

the weights of particles. Thus, only updating the particle states once per step will

not give a precise representation of the device’ state. To resolve this, step-lagged

smoothing is used. This method allows the filter to account for the movement of

the mobile device during a step by using the time taken between a step along with

the step length to determine a velocity of the step. When a new epoch of WiFi

RTT ranges are received, the distance travelled is determined using the step velocity

and the time taken between the WiFi RTT epochs, allowing the particles access to

a more precise representation of the mobile device’s expected position during a step.

The step length and orientations are retrieved as described in Section 4.1.7 and then

system noise is applied to these values, as described as follows for the displacement

and heading respectively.

rjk+1 = N(qk+1, σq)
ne

(4.12)
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ψj

k+1 = N(ψk+1, σψ) (4.13)

Where, rk, represents the displacement of the device for an epoch, q represents the

step length, σq, represents the assumed standard deviation of the step length error,

ne represents the number of filter epochs that have occurred between a full step, N

indicates that each element is sampled from a Gaussian distribution. In Equation

4.13, ψk represents the heading of the mobile device, ψj
k+1, represents the heading of

the device with Gaussian noise incorporated and σψ represents the assumed standard

deviation of the heading error.

The full motion model algorithm is shown in Figure 4.2 and occurs during the

prediction step of all filters.

Update – The weights of each particle are updating by calculating how closely the

measured ranges to each landmark match the particles distance to the landmarks.

The model used for weighting is described below:

wj

k+1 = wj

k

n∏
i=1

1
σik

√
2π
e

−
1
2

(
zik − dj,ik
σik

)2

(4.14)

The update step for computing weightings is the step for determining how strongly

a particle state matches the state suggested from measurements. The Euclidean

distance, dj,ik , between each particle, j, and the landmarks is computed using

Pythagoras’ theorem, where i is the AP landmark being measured from, n is the

number of APs and k represents the epoch. This distance is then treated as the

mean in a Normal distribution alongside a standard deviation. This standard

deviation is modified using RSSI-based outlier detection which is described in

Section 4.1.6. Once the normal distribution is determined, the PDF of the

distribution of zik, the measurement obtained of the distance between the AP, i, and

the mobile device is calculated using Pythagoras’ theorem at epoch k. This gives the

particle weight for that landmark. The weights for all landmarks for each epoch are
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Figure 4.2: Step-lagged PDR motion model
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then multiplied together and the previous weight of that particle, wj
k, to give a final

weight for that particle, wj
k+1, this process is repeated for all particles. Following

this, the weights are normalised using L1 normalisation.

Resampling – If Equation 4.15 evaluates to be true then Sequential Importance

Resampling (SIR) is carried out, in this process the higher weighted particles are

retrieved and replace lower weighted particles whilst resetting all weights. The

effective sample size, Neff , is determined as shown in Equation 4.16 so long as

Equation 4.15 evaluated as true.

Neff <
Np

2 (4.15)

Neff = 1
ΣNp

n=1(wj
k)2

(4.16)

Where Np is the number of particles and wj
k is the normalised weight of particle j at

epoch k. In most particle filters, SIR is used [67], where resampling is triggered

because the number of effective particles is too low. SIR essentially replicates higher

weighted particles and deletes lower weighted particles. This is done to ensure more

efficient computation or use of particles. Over time the number of particles with

extremely small weights will increase, meaning a large amount of unnecessary

computation as only a small number of particles with higher weighting contribute to

the positioning solution. This is known as particle degeneracy. As the algorithm

progresses there will be particles that have very low weight and contribute nothing

to the solution and are thus wasted computation. The resampling step essentially

removes these low weighted particles in favour of the higher weighted particles such

that more particles are being used to identify the position of the mobile device.

Estimate – compute the mean and standard deviation of the states using the

particle weights according to the following:
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qkw =
ΣNp

j=1w
j
kQ

j
k

ΣNp

j=1w
j
k

(4.17)

rkw =
ΣNp

j=1w
j
kR

j
k

ΣNp

j=1w
j
k

(4.18)

Where q̄kw is the weighted average of the x coordinate of the position estimate at epoch

k and r̄kw is the weighted average of the y coordinate of the position estimate at epoch

k. The Prediction, Update, Resampling and Estimation steps are repeated for each

epoch.

4.1.4 Genetic Filter

Genetic Algorithm

A genetic algorithm [69] [70] is an optimisation method that simulates the biological

evolution process, typically conforming to natural selection. Similar to a particle

filter, there are multiple discrete candidate solutions that represent a possible state

of the system. The process of a genetic algorithm requires representing every

candidate solution as a vector of real numbers which represent characteristics of the

possible state of the system. This is known as real-value encoding. There is also

binary encoding, but that will not be explored in this thesis.

There are generally three operations within a genetic algorithm: selection, crossover

and mutation. The selection operation is responsible for classifying the candidate

solutions into good solutions and bad solutions or alternatively for ranking the

solutions. This is typically done by assigning a ”fitness value” which is used to

compare the candidate solutions against each other. The fitness value represents

how strong the candidate solution is relative to an optimal solution. The candidate

solutions are then passed onto the mating pool with their ranking according to the

fitness value for further processing. This process is akin to ”survival of the fittest”
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where candidates are ranked based on their strength. These candidate solutions are

then passed onto the crossover operation.

The crossover operation is akin to mating. In this process two candidate solutions

(typically ”good” candidate solutions) are selected and information is exchanged

between them to create two new candidate solutions. This exchange can take

various forms, the operation used in this thesis is an arithmetic crossover which is

explained in the following section. Finally, as with nature, a mutation is applied to

the offspring solutions. This is done to ensure population diversity and to ensure the

genetic algorithm does not get trapped into local optimal solutions.

Genetic Resampling

The genetic filter offers an alternative to SIR at the resampling step; instead, the

resampling follows a genetic algorithm. The genetic filter is otherwise identical to

the particle filter as can be seen in Figure 4.1. The intention of using a genetic

algorithm for the resampling step is to provide an alternative and potentially more

effective way of mitigating particle degeneracy and increasing the diversity of the

particles during resampling than SIR, such that fewer particles could be used for the

same level of accuracy. Mitigating particle degeneracy is important as it reduces the

chance of the particles of a particle filter focusing on false positives too quickly.

Essentially, the genetic filter enables the particles more opportunity to explore the

search space to identify regions which could result in a higher weighting. A genetic

filter has been applied to an Ultrawideband (UWB) positioning solution in [71].

The resampling step of the genetic filter is shown in Figure 4.3. It is composed of 3

steps: classification, crossover and mutation. No prior-processing of the particles is

necessary as the particles of the particle filter are already an appropriate data

structure for a genetic algorithm as each particle is real-value encoded by default

with their combination of position, orientation and velocity states. At the

classification step, the algorithm gets a set of strongly weighted and weakly weighted

particles. Classification is the process of sorting the particles into mating pools to be

used in the crossover step. The particles are sorted into ascending order based on
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weight, which is the fitness value of this algorithm. Then the particles are split into

a strong particle set and a weak particle set. The particle sets are determined with

Equation 4.19.

nint(p) ≤ Neff < nint(p+ 1) (4.19)

Where nint(p) represents the nearest integer to p. p represents the integer that is

used as the index to split the ordered particle set, where the set with index 0 to p is

the higher weighted set and the set with starting index p+1 to the total number of

particles, Np, is the lower weighted set. Neff is calculated using Equation 4.16. For the

crossover step, each strongly weighted particle undergoes an arithmetic crossover with

another strongly weighted particle to produce two offspring particles which will replace

the two parent particles, then all weakly weighted particles undergo an arithmetic

crossover with a strongly weighted parent particle and the new particles replace the

original particles. Equation 4.20 and 4.21, describe the arithmetic crossover conducted

on the higher weighted set, the two offspring particles, j and j+1 are then used for

the next epoch. The total number of particles remains the same. ωoffk represents

the states of the offspring particles, ωhk represents the states of the higher weighted

particles.

ωoff,jk = α1ω
h,j
k + (1 − α1)ωh,j+1

k

ωoff,j+1
k = α2ω

h,j+1
k + (1 − α2)ωh,jk

where j ≤ p (4.20)

α1 = wh,j

k

(wh,j

k + wh,j+1
k )

α2 = wh,j+1
k

(wh,j

k + wh, j+1
k )

where j ≤ p (4.21)

Equation 4.22 describes the arithmetic crossover conducted for the lower weighted

particle set. In this version of the crossover, instead of taking two parents from

the same set, the highest weighted particle from the higher-weighted set is crossed
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Figure 4.3: Genetic resampling process
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over with a random particle from the lower-weighted particle set. The higher weighted

parent particle and the new offspring particle are then passed onto the next generation.

ωlk represents the states of the lower-weighted particles. Where β is a random number

between 0 and (Np −Neff)/Np.

ωoff,jk = βωl,jk + (1 − β)ωh,0k where p ≤ j + 1 ≤ Np (4.22)

For this algorithm, a mutation step was not implemented. This is because during

the prediction step of the particle filter noise is applied to all the particles following a

Gaussian distribution which achieves a similar objective as mutation. The noise added

during the prediction step could be deemed as more appropriate than mutation, as

the particles are mutated in accordance with an observed change in the system state.

4.1.5 Grid Filter

The Grid filter differs from the genetic filter and particle filter in the initialisation,

prediction and resampling steps. Instead of using particles, the search space is split

into grid squares. Each grid square intersection represents a candidate position of

the mobile device and fundamentally, instead of particles moving around and each

particle’s weight being updated, weights are moved throughout the grid to represent

the posterior distribution of the device’s state. The process follows the following

steps:

Initialisation - The search area is initialised as a square grid of a given size κ (in

mm) centred around the initial position estimate, this is then split into 2D grid

squares with grid spacing, η (in mm), to form an array of dimensions κ/η. Following

this, the grid squares are weighted according to their distance to the centre of the

grid (the initial position estimate) according to a Gaussian distribution with a

standard deviation that matches the sensor noise. For this thesis η, was set as 50mm

and κ was initialised as 2m.

Prediction - For positioning in motion, the pedestrian dead reckoning model
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described in Section 4.1.7 is used to retrieve the displacement and heading values.

However, the position displacement differs from that of the particle filters in order to

ensure that the coordinates remain in a grid formation. The displacement of all grid

coordinates is determined as described by:

Qj

k+1 = Qj

k + cos (φ̄k) r̄k (4.23)

Rj

k+1 = Rj

k + sin(φ̄k) r̄k (4.24)

where the mean values of the heading, φ̄k and displacement, r̄k are used to displace

the grid. However, this does not effectively account for sensor noise. Thus, a

separate process must be followed in order to incorporate sensor noise into the grid

coordinates and weights. This is described as follows. First, a new set of grid

coordinates “c grid” are generated that are equal to the grid coordinates of the main

grid. A multivariate Gaussian distribution is generated from the heading

uncertainty and step length uncertainty. From this distribution, a new set of weights

are generated for the “c grid” by calculating the probability density function of the

distribution for the distances between each coordinate and the mean of the

coordinates. With the weights of the “c grid” and the weights of the grid

coordinates from the previous epoch the weights are convolved using direct

convolution, to form a new set of weights for the grid coordinates that incorporate

the sensor noise of the PDR.

Weighting – each grid point is weighted according to its distance from all the

landmarks. The model used for the weighting is the same as the particle filter and

genetic filter, described in Equation 4.14. This weighting represents the likelihood

that the device is at that grid point. Following this, the weights are normalised

using L1 normalisation. Using the weights of each grid point, the weighted average

position is determined according to Equation 4.17 and 4.18. This represents the

estimated position of the mobile device at that epoch. Repeat the Prediction,
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Weighting and Estimation steps for each epoch.

4.1.6 Outlier detection techniques

In any positioning solution that uses signals, an important consideration is the

reliability of the signals, since unreliable signals can ultimately result in a

positioning solution with an error greater than what is acceptable for the use case.

In the context of mobile indoor positioning this value would be anything above 2m

as this is a big enough ranging error to place a mobile device in the incorrect room

in most circumstances. Thus, within WiFi RTT based positioning in most scenarios,

some ranging signals will be inaccurate and unreliable, therefore, excluding these

signals from the positioning solution should theoretically improve the positioning

accuracy. Two outlier detection models will be explored in this thesis: RSSI

Threshold-based outlier detection and Residual-based outlier detection.

Residual-based outlier detection

Residual-based outlier detection is described in the following equations. It is a method

used to identify how well a solution fits the measurements, this identifies gross outliers

and excludes them from the final solution. The residuals have been normalised here

as this is generally a more reliable indicator [1].

Firstly, the residual vectors must be calculated, as shown in Equation 4.25.

v =
(
A(ATA

)−1
AT − I)b (4.25)

Next, the residual covariance matrix should be calculated, as shown in Equation 4.26.

Cv =
(
I − A(ATA

)−1
AT )σ2 (4.26)

Finally, the normalised residuals should be calculated and these should be compared

with a threshold. In Equation 4.27 if the condition is true for the residual then

measurement ς is an outlier and should be removed from the process such that the

solution can be redetermined without the gross outlier. It is likely that removing

the single greatest outlier may result in the other residuals being reduced when the



4.1. ALGORITHMS 93

positioning solution is redetermined.

|vj| <
√
CvςςT (4.27)

RSSI-based outlier detection

As discovered in Section 3, there is a correlation between the RSS of a signal and

the RTT range when a signal is LOS. Signals that do not conform to this correlation

are more likely to have originated from NLOS reception for a given RTT range as

a result of obstacles affecting the signal strength or the signals reflecting off walls.

Since RSSI is available on all RTT readings it is possible to use this as a metric for

the identification of outlier results. These outlier results can then be excluded from

further processing in a positioning algorithm. The algorithm detects NLOS signals and

severe multipath interference by finding and accounting for inconsistencies between

the RTT range measurement and the RSSI of the signal. Guo et al [36] and Sun

et al [54] have also used RSSI for outlier detection of RTT signals, however, these

algorithms were optimised for the environments by conducting surveys of the RSSI

path loss model and fingerprinting.

The RSSI-based outlier detection algorithm of this thesis is discussed for application

to weighted least squares and particle filtering separately as the implementations are

slightly different.

RSSI-based Weighted Least Squares with RSSI-based path loss derived

outlier detection

This method takes in the strengths of the other outlier detection and positioning

methods to form a solution that allows the RSSI-threshold to be set automatically,

correctly distinguishes between LOS and NLOS signals and weights signals according

to their closeness to a predicted RSSI value. The algorithm is defined as follows: For

each epoch:

1. Use Equation 4.28 and 4.29 to determine a RSSI-threshold for an AP, these

equations were derived from [10] but modified slightly to account for its use as

threshold detection by increasing the constant value. Repeat this for all APs. This
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gives the expected RSSI signal for the mean measured distance, which is the

expected RSSI if the signal was unobstructed (i.e. LOS), therefore if the RSSI is

weaker than this prediction it could indicate that the signal is obstructed and thus

could provide an incorrect range estimate.

RSSI-threshold determination:

Rthreshold

i,k = −(51.4dbmW + 20 log10 (d̄)) where dmin < d̄ < 8m (4.28)

Rthreshold

i,k = −(65.5dbmW + 33log10(d̄)/8) where d̄ > 8m (4.29)

For each access point, i, the expected RSSI is computed given, d̄, which represents

the mean measured RTT distance between an AP and the mobile device across 2

seconds worth of data (or approximately 20 RTT measurements if sampling at

100ms), giving the RSSI threshold, Rthreshold
i,k . k represents the epoch and dmin is a

minimum distance, in this case 4m, below which RSSI-based outlier detection is not

used.

2. If the RTT estimated range for an AP at an epoch is less than 4m then select

that AP for that epoch, this is done because it was deduced during experimental

analysis that for ranges below 4m, RSSI-based outlier detection resulted in a higher

rate of false positives than above 4m.

3. If the RTT estimated range for an AP at an epoch is more than 4m then check if

the RSSI of that signal is stronger than the RSSI-threshold. If it is then select that

AP.

4. Check if the number of selected APs in an epoch is greater than 3, if it is not

then increment the RSSI-thresholds of all APs for that epoch by 1dBm and repeat

step 3 until there are at least 3 APs stored.
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Steps 2–4 are described in Algorithm 1

Algorithm 1 RSSI threshold based outlier detection
Data: n WiFi RTT raw datapoints RTT , RSSI and RSSIThreshold
Result: na WiFi RTT datapoints held in matrix RTT

1 na = 0
2 RTT = [ ]
3 while na < 3 do
4 for i = 0; i < n; i = i + 1 do
5 if RTTi < 4m then
6 if RSSIi≥ RSSIThreshold then
7 na = na + 1
8 RTT .append(RTTi)
9 end

10 end
11 end
12 if na < 3 then
13 RSSIThreshold = RSSIThreshold - 1
14 end
15 end
16 return RTT

5. Compute the weighted least-squares position of all stored APs (that passed the

above checks) using the processes described in Section 4.1.1 and 4.1.2. For the error

covariance matrix for each AP, use the difference between the RSSI threshold and

RSSI for that AP at that epoch for the sigma value in Equation 4.1.2 as described

in Equation 4.30. This is done because the difference between the two values will

provide an indication if the signal is not LOS and has thus been obstructed. This can

be used as a metric for reliability as it provides an indication of whether the signal is

direct or not.

σki = Rki −Rthreshold

i (4.30)

Where Rki is the RSSI value for epoch, k, and AP, i, and Rthreshold
i is the RSSI threshold

for AP, i.

RSSI-based outlier detection for filtering

The RSSI-threshold is calculated using Equation 4.28 and 4.29.
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During the filtering process, following the prediction step but before the update step,

each AP is compared against the measured RSSI threshold of that AP. If the measured

RSSI is lower than the threshold then this particle is treated with lower confidence

and the absolute difference between the measured RSSI and threshold is taken, δrssi.

For each epoch these differences are normalised using L1 normalisation to produce an

RSSI-based weighting factor, ϵik, for AP, i and the epoch, k.

ϵik are then used during the update step as a multiple of the standard deviation of the

measured distances, this increases the measurement noise of the measurements with

an RSSI below the threshold with the magnitude of the difference creating greater

measurement noise. The standard deviation is computed in the following equation:

σik = σ × (1 + ϵik) (4.31)

This can then be used to obtain the standard deviation, σik, used in Equation 4.14 for

all filters. Where σ is the sensor standard error of the WiFi RTT range.

4.1.7 Pedestrian Dead Reckoning Model

A motion model must be integrated into the prediction step of the filters in order to

properly reflect the expected position of a particle. Pedestrian dead reckoning is an

approach that takes advantage of step detection and uses a human step to indicate

the movement of the mobile device. The step detection is carried out using the Google

Android API [9] due to its convenience and as this thesis does not intend on exploring

step detection models. This detects a “high variation in acceleration” [9] from the

mobile device’s accelerometer. Following step detection, a step length estimation

is required in order to determine the distance travelled by a mobile device when a

step occurs. The step length varies for many reasons. It can vary due to different

pedestrians having different walking gaits and pedestrians walking at different speeds.

The model used in this thesis is based on the Mikov step length estimation equation

[72].
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q = max(αtstep 4

√
(fz,max − fz,min), qmax) (4.32)

Where q is the step length, α is a constant parameter that is calibrated per

pedestrian, tstep is the time taken for a given step, fz,max is the maximum specific

force along the z axis during the step and fz,min is the minimum specific force along

the z axis during the step. Where the z axis points towards the outside of the front

face of the screen. This model was selected because it provided an improvement [72]

over the commonly used Weinberg model [73] but does not require significant

calibration such that this model would be difficult to reproduce. The model was

calibrated by walking along 2 paths of known length with different step sizes and

selecting the value of the constant that minimised the overall distance measurement

error. An upper limit of qmax = 1100mm was imposed to mitigate the impact of

gross outliers in the mobile device’s IMU measurements.

The direction of travel was assumed to match the heading output by the Android

‘orientation sensor’ [9], which calculates 3D orientation using the device’s

magnetometers, accelerometers and gyroscopes. This was transformed to the

coordinate frame of the indoor map. The initial heading error is smaller than

subsequent heading error as these are subject to random hand-orientation changes

from the pedestrian during walking.

The standard deviation of the step length assuming white noise was calibrated as

follows. A pedestrian carrying the mobile device walks 20 steps in a straight line 10

times, the real distance travelled is measured and the estimated distance travelled is

calculated using the PDR model, the standard deviation of the difference is

computed and this is divided by the number of steps to give the standard deviation

of a step.
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4.2 Method and Data collection

The algorithms were tested in both static and motion-based scenarios. The method

and experimental setup used for data collection are outlined in the following sections;

once collected, the positioning solution was determined in post-processing.

4.2.1 Equipment

The mobile device used was a Google Pixel 4a. This is shown in Figure 4.4. The

Google Pixel 4a is WiFi RTT compatible and readily available. The data collected

by the mobile device included WiFi RTT data collected at 100ms intervals, WiFi

RSSI data collected at 100ms intervals, on-board accelerometer, gyroscope,

magnetometer and orientation data at sub 20ms intervals and the mobile-provided

step counter was used for step identification. No extra equipment was used to

enhance the sensor quality of the mobile device as this does not represent a realistic

scenario for a pedestrian and the intention is to test the algorithm’s effectiveness

with low-cost sensors. A custom mobile app was developed that allowed for

collecting all data simultaneously. The orientation of the mobile device for the

stationary experiments is shown in Figure 4.4. For the experiments in motion the

mobile device was held in the hand with the back of the phone parallel to and facing

the ground.

For the stationary data collection for the least squares algorithm, one Google Nest

WiFi Router and two Google Nest WiFi Points were used twice to produce 6 total

access points for a given experiment. For the stationary data collection for the

filtering algorithms and the in-motion data collection, four Google Nest WiFi

routers and two Google Nest WiFi Points were used for the data collection. These

devices are WiFi RTT compatible and relatively cheap. Each router is less than

$100. A Google Nest WiFi router is shown in Figure 4.5. It is important to note

that for all of the APs, a negative ranging bias existed. This varied for each AP;

AP-3 and AP-4 had a small bias (0.6m) whilst AP-1, AP-2, AP-5, AP-6 had similar

biases larger than AP-3 and AP-4 (1.5m). These biases were deducted from the
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Figure 4.4: Google Pixel 4a in holder, operating position during ranging sessions

WiFi RTT ranges for all data analysis.

During the data collection a secondary mobile device was used to video record the

trials in-motion in order to provide better ground truth data for the movement of

the pedestrian. Timestamps could be used to match the location of the pedestrian

at a given time in their movement to the ground truth. Finally, all distances in the

environments were measured using a laser distance measure or a tape measure. As

each environment had their own coordinate reference system, the APs and mobile

device positions could be determined in the context of the environment’s coordinate

reference system.

4.2.2 Stationary Data collection - Least Squares algorithms

The APs and mobile device (standing, refer to Figure 4.4) were laid out as shown in

Figure 4.6 for Experiment 1, Figure 4.7 for Experiment 2 and Figure 4.8 for

Experiment 3. Note that a coordinate system was used based on the experimental

environment, with a convenient position set as the origin, as shown by the axes in

Figure 4.6, Figure 4.7 and Figure 4.8. This system will vary from environment to

environment. The coordinates and devices for each experiment are shown in Table
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Figure 4.5: Google Nest WiFi Point

4.1, 4.2 and 4.3. All walls of the experimental environment had widths of

approximately 10cm, excluding the exterior walls which were approximately 30cm.

The location of the APs were mostly governed by the locations of power sockets in

the experimental environment. In this experiment, a WiFI RTT scan was initiated

that ranged and logged the resulting FTM RTT measurements every 500ms for one

minute, resulting in approximately 120 readings per AP per session.

4.2.3 Stationary Data collection - Filtering algorithms

This section describes the stationary data collection for the particle filters. The

environments were selected to test the algorithms across a diverse range of

environments that aimed to include LOS and NLOS signal reception as well as

multipath effects. Six environments were used. The diagrams of the environments

are shown in Figure 4.9. In this experiment a scan was initiated that ranged and

logged the resulting FTM RTT measurements every 100ms for one minute, resulting

in approximately 600 readings per AP per session. The location of access points and

the mobile device are as follows.

Trial A - Same as Table 4.1

Trial B - Same as Table 4.2
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Table 4.1: Trial 1 - Access Points and Mobile Device

Access Point/Device Description Coordinates (x,y,z) (mm)
Actual distance

from AP to
device (mm)

AP-1 Google Nest Point (2500, 8900, 760) 2737

AP-2 Google Nest Point (2500, 6350, 760) 3245

AP-3 Google Nest Router (7325, 3600, 850) 5106

AP-4 Google Nest Router (8550, 3250, 600) 6027

AP-5 Google Nest Point (9460, 6375, 750) 4689

AP-6 Google Nest Point (7000, 9750, 1290) 2441

Mobile Device Google Pixel 4a (5150, 8220, 850) 0

Table 4.2: Trial 2 - Access Points and Mobile Device

Access Point/Device Description Coordinates (x,y,z) (mm)
Actual distance

from AP to
device (mm)

AP-1 Google Nest Point (8200, 3300, 500) 1639

AP-2 Google Nest Point (7420, 5150, 650) 3221

AP-3 Google Nest Router (8150, 1900, 650) 1972

AP-4 Google Nest Router (10350, 1650, 650) 1439

AP-5 Google Nest Point (11500, 2650, 850) 4743

AP-6 Google Nest Point (9300, 5100, 500) 2183

Mobile Device Google Pixel 4a (9800, 2980, 650) 0
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Table 4.3: Trial 3 - Access Points and Mobile Device

Access Point/Device Description Coordinates (x,y,z) (mm)
Actual distance

from AP to
device (mm)

AP-1 Google Nest Router (1100, 1300, 750) 2724

AP-2 Google Nest Router (250, 3750, 750) 2912

AP-3 Google Nest Router (200, 6000, 750) 4066

AP-4 Google Nest Router (6200, 6050, 750) 4245

AP-5 Google Nest Router (6200, 2450, 750) 3178

AP-6 Google Nest Router (4700, 100, 750) 3444

Mobile Device Google Pixel 4a (3100, 3150, 750) 0

Figure 4.6: Experimental layout of APs and device for trial 1. x,y coordinates
represent the distance from the origin, z coordinate represents the distance from the
floor. Coordinates are represented in millimetres.
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Figure 4.7: Experimental layout of APs and device for trial 2. x,y coordinates
represent the distance from the origin, z coordinate represents the distance from the
floor. Coordinates are represented in millimetres.

Figure 4.8: Experimental layout of APs and device for trial 3. x,y coordinates
represent the distance from the origin, z coordinate represents the distance from the
floor. The diagonally striped rectangles are tables that do not block signals, but may
reflect them. Coordinates are represented in millimetres.
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Figure 4.9: Experimental layout of APs and device for filtering trials. x,y coordinates
represent the distance from the origin.

Trial C - Table 4.4

Trial D - Same as Table 4.3

Trial E and F - Table 4.5

4.2.4 In-Motion Data collection

The experiments to test the algorithms in motion involved moving through different

routes in a single environment. The environment was irregular in shape and had

Table 4.4: Trial C - Access Points and Mobile Device

Access Point/Device Description Coordinates (x,y,z) (mm)

AP-1 Google Nest Router (50, 10000, 500)

AP-2 Google Nest Router (10080, 1270, 500)

AP-3 Google Nest Router (10080, 10350, 500)

AP-4 Google Nest Router (1720, 270, 500)

AP-5 Google Nest Router (10080, 6200, 500)

AP-6 Google Nest Router (50, 7250, 500)

Mobile Device Google Pixel 4a (5000, 5500, 500)
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Table 4.5: Trial E and F - Access Points and Mobile Device

Access Point/Device Description Coordinates (x,y,z) (mm)

AP-1 Google Nest Router (11200, 1500, 500)

AP-2 Google Nest Router (6000, 1000, 500)

AP-3 Google Nest Router (3000, 9300, 500)

AP-4 Google Nest Router (7500, 9450, 500)

AP-5 Google Nest Router (2250, 11800, 500)

AP-6 Google Nest Router (11200, 4300, 500)

Trial E Mobile Device Google Pixel 4a (7600, 5500, 500)

Trial F Mobile Device Google Pixel 4a (7000, 7900, 500)

many walls, both interior and exterior, to create a diverse range of multipath and

NLOS scenarios during the routes walked by the pedestrian. The algorithms were

tested across 3 different routes, varying in complexity and NLOS conditions; these

are shown in Figure 4.10. Each route was repeated in both directions, so in total 6

scenarios are collected. In Figure 4.10 the “forward” route starting point is shown

with the purple rectangle and the “reverse” route starting point is shown with the red

rectangle. The trials involved a pedestrian holding the smartphone and walking on top

of fixed step markers placed on the ground along the route of the trial. The markers

were approximately 670mm apart. The location of each marker was measured against

the reference origin to generate the step marker’s ground truth coordinates. In order

to align the ground truth data with the measured data, the trials were filmed. The

timestamps of the steps from the video were used to determine the expected position

of a device at a given time, allowing the algorithms to be compared to the ground

truth at each step during data analysis.

4.3 Results and Discussion

4.3.1 Least squares positioning

Figure 4.11 shows the results of the positioning experiment for Trial 1, using least

squares positioning as the positioning solution. The results also show the two outlier
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Figure 4.10: Experimental layout of APs and device for in-motion trials. x,y
coordinates represent the distance from the origin.
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Table 4.6: In motion trial positions

Access Point/Device Description Coordinates (x,y,z) (mm)

AP-1 Google Nest Router (2050, 9150, 500)

AP-2 Google Nest Router (2500, 6450, 500)

AP-3 Google Nest Router (7650, 3150, 500)

AP-4 Google Nest Router (10250, 1700, 500)

AP-5 Google Nest Router (9950, 6450, 500)

AP-6 Google Nest Router (6300, 9850, 500)

Trial 1 Mobile Device Forward Google Pixel 4a (6800, 7450, 500)

Trial 1 Mobile Device Reverse Google Pixel 4a (2780, 7450, 500)

Trial 2 Mobile Device Forward Google Pixel 4a (4100, 7850, 500)

Trial 2 Mobile Device Reverse Google Pixel 4a (9700, 4200, 500)

Trial 3 Mobile Device Forward Google Pixel 4a (6000, 8650, 500)

Trial 3 Mobile Device Reverse Google Pixel 4a (3150, 4450, 500)

detection algorithm position results.

In Figure 4.11, the calibrated least squares positions are tightly clustered at

approximately 2m away from the true position of the mobile device. The solutions

from each epoch are consistent with each other. Once RSSI-based outlier detection

is introduced, the positioning solution drastically improves, placing the position

within 20cm of the mobile device with consistent reliability and accuracy for this

trial. This can be quantified via the Root Mean Square Error (RMSE) which was

2.03m and 0.23m for Least squares without RSSI-based outlier detection and Least

Squares with RSSI-based outlier detection, respectively. The residual-based outlier

detection does not perform well and does not seem to provide a positioning solution

that is more accurate than the raw least-squares results.

The RSSI readings and average ranges for each AP are shown in Table 4.7. As can

be seen, a lower RSSI correlates with a larger range discrepancy of approximately

1.9m. This explains the large position inaccuracy seen with the raw results and once
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Table 4.7: Trial 1 - Access Point RSSI and average RTT ranging measurements

Access Point Mean RSSI
(dBm)

True Range
(m)

Mean
Measured
Range (m)

Ranging
Error (m)

AP-1 -58 2.73 3.12 0.39

AP-2 -59 3.25 2.91 -0.34

AP-3 -75 5.11 7.00 1.89

AP-4 -71 6.03 7.92 1.89

AP-5 -61 4.69 4.85 0.16

AP-6 -56 2.44 1.82 -0.62

the larger discrepancies are removed, the positioning accuracy performs well as

shown by the large decrease in RMSE described above, hence providing further

evidence that RSSI can be a strong indicator for WiFi RTT measurement accuracy

and reliability.

Furthermore, this demonstrates issues with the least-squares positioning method

without outlier detection, as an incorrect measurement can affect the entire

positioning solution and thus this positioning solution can produce inaccurate final

positions depending on the inaccuracy of that specific reading. A database of RSSI

path loss models could allow for thresholds to be tailored to each specific

environment. This could allow environment-specific outlier detection on all RTT

readings, which would present the possibility to identify inaccurate RTT range in

most environments, environments with highly reflective surfaces or environments

with large amounts of high density obstacles will be a problem for any RSSI-based

outlier detection technique. However, this suffers from a common issue of indoor

positioning solutions where there is a reliance on costly surveying of the

environment before indoor positioning can be conducted. As a result, the

RSSI-based outlier detection model will retain a generic model in order to avoid

environment over-optimisation.

Figure 4.12 shows the results of the positioning experiment for Trial 2, using least

squares positioning as the positioning solution. The results also show the positioning
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Figure 4.11: the results of the experiments on trial 1 using least squares positioning
and outlier detection, with APs spread across multiple rooms
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Table 4.8: Trial 2 - Access Point RSSI and average RTT ranging measurements

Access Point Mean RSSI (dBm) True Range (m) Mean Measured Range (m)

AP-1 -58 1.64 0.87

AP-2 -56 3.22 3.81

AP-3 -57 1.97 2.06

AP-4 -53 1.44 0.78

AP-5 -58 1.74 1.26

AP-6 -58 2.18 2.34

solution when the two outlier detection algorithms (RSSI-based outlier detection

and residual-based outlier detection) are applied to the least squares method.

In trial 2 the APs had unobstructed lines of sight to the mobile device. As seen in

Figure 4.12, the positioning solutions for the least squares with no outlier detection,

least squares with RSSI-based outlier detection and least squares with

residual-based outlier detection perform similarly with an RMSE of 487mm, 667mm

and 480mm, respectively. This actually suggests that RSSI-based outlier detection

reduced the accuracy of the positioning solution when compared to no outlier

detection and residual-based outlier detection provided a minor improvement. Table

4.8 shows the mean RSSI values and mean measured ranges, generally there are no

major discrepancies in the ranges. The RSSI values of Trial 2 have a range of

5dBmW compared to a range of 19dBmW in Trial 1, this suggests that the RF

signals in Trial 2 were roughly similar in strength.

4.3.2 RSSI-Weighted least squares positioning with

RSSI-based outlier detection

For Trial 1, The positioning solution using RSSI-weighted least squares positioning

with RSSI-based outlier detection showed an RMSE of 239mm compared to

2025mm for least-squares using all measurements. This is visualised in Figure 4.13,

suggesting that in this trial this model works well for automatically selecting an

acceptable RSSI threshold value. In Trial 2 the algorithm produces an RMSE of
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Figure 4.12: the results of the experiments on trial 2 using least squares positioning
and outlier detection, with a tighter cluster of APs
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458mm, meaning that the algorithm performs better than least-squares with no

outlier detection, even when all signals are unobstructed which had an RMSE of

487mm. This demonstrates the benefit of not removing signals that have a measured

RTT range below 4m, this is because these signals have a higher chance of being

reliable. The results of this trial are visualised in Figure 4.14.

In Trial 3, this positioning solution shows further improvements. The RMSE for

least squares with no outlier detection, manually configured RSSI-based outlier

detection and the weighted least squares algorithm were 499mm, 493mm and

418mm respectively. This is visualised in Figure 4.15.

The RSSI-based weighted least squares algorithm performs best on all trials. This is

because in shorter range environments where manually configured RSSI

threshold-based outlier detection was used, signals may be incorrectly removed. This

doesn’t occur in the RSSI-weighted least squares positioning algorithm as smaller

ranges are kept regardless of whether they are above or below their respective RSSI

thresholds. The algorithm also performs well in obstructed line of sight

environments as the RSSI-threshold detection that uses an RF loss propagation

model can predict when a signal has not come from a direct line of sight.

4.3.3 Stationary Filtering

The resulting measurements were then processed by all algorithms with and without

RSSI-based outlier detection to determine a final position solution. First, all

algorithms will be analysed against what WiFi RTT has been advertised to be

capable of, then each algorithm will be compared against one another, then the

algorithms will be compared with and without outlier detection. Finally, the

computational efficiency of the algorithms will be explored.

The root-mean-square error (RMSE) of the positioning solution for each

environment is shown in Table 4.9. 27 out of 42 or 64.3% of tests produced

sub-metre accuracy, 41 out of 42 or 97.6% trials had an RMSE below 2 metres,
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Figure 4.13: Trial 1 - RSSI-Weighted least squares positioning with RSSI-based
outlier detection positioning result

Table 4.9: Positioning solution RMSE for each environment and algorithm
configuration
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Figure 4.14: Trial 2 - RSSI-Weighted least squares positioning with RSSI-based
outlier detection positioning result
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Figure 4.15: Trial 3 - RSSI-Weighted least squares positioning with RSSI-based
outlier detection positioning result
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Table 4.10: Percentage decrease of RMSE against least squares for each environment
and algorithm configuration

indicating there is a strong argument for WiFi RTT being able to produce

sub-metre accuracy for positioning as claimed by Google [2] as long as the AP biases

are calibrated. Environments B, C and D where all APs had a LOS to the mobile

device produced sub-metre accuracy for 20 out of 21 trials, indicating that in

optimal conditions (with calibration), WiFi RTT could provide a reasonable

positioning solution for most pedestrian navigation use cases. In environments A, E

and F where there were NLOS signals present, only 7 out of 21 trials achieved

sub-metre accuracy. This is to be expected as NLOS and multipath effects vary

substantially from environment to environment. As most indoor pedestrian

navigation and tracking use cases will likely involve NLOS signals, this needs to be

improved. The filters and outlier detection provide an improvement. In the case of

the genetic filter’s improvement over the particle filter, this could be attributed to

poor mitigation of particle degeneracy as the genetic filter has the most advanced

particle degeneracy mitigations.

Table 4.10 shows the percentage improvement of each algorithm combination

against the baseline least squares algorithm. In all environments except environment

F, all of the filters improved the positioning accuracy over least square. However, in

environment F, the particle filter and grid filter without outlier detection performs
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Table 4.11: Percentage decrease of RMSE comparing outlier detection against no
outlier detection for each algorithm

worse than least squares. The Grid Filter with outlier detection produced the

highest improvement overall of 80% in Environment A. The algorithms provided the

greatest mean improvement in Environment B; this is the simplest environment with

the smallest distances between the APs and mobile devices and no NLOS signals

and would be expected to have the highest accuracy given there are fewer error

sources when compared to more complex environments like E and F.

The best performing algorithm on average across all environments was the genetic

filter with and without outlier detection with respectively 48% and 36% mean

percentage improvement over single epoch least squares. This could be attributed to

better handling of particle degeneracy as well as RSSI-based outlier detection, which

provides a bonus 12% over the algorithm with no outlier detection. Furthermore,

the only case where the algorithms did not improve accuracy was with the particle

filter without outlier detection in environment F.

Table 4.11 focuses specifically on the improvement that RSSI-based outlier detection

provided for each algorithm in each environment. For all the environments where

NLOS signals were present, RSSI-based outlier detection provided an improvement

on average. This is because the RSSI-based outlier detection model’s purpose is to

de-weight NLOS signals by identifying inconsistencies with the received RSSI and

measured range as signals that are not direct will have weaker RSSIs due to signal
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reflection, building attenuation and multipath effects. All results produced by the

genetic filter with outlier detection and 5 out of 6 of the results produced by the

particle filter with outlier detection resulted in sub-metre accuracy. This is because

the RSSI-based outlier detection is identifying and de-weighting NLOS signals

successfully, thus prioritising stronger and more reliable RTT signals. In

environment F, the mean improvement was 28% with the outlier detection providing

a 38% improvement for the particle filter and a 36% improvement for the genetic

filter. For environments B, C and D, RSSI-based outlier detection was less effective

and in 5 out of 9 cases provided worse performance than no outlier detection. This

is because the outlier detection model is best placed for identifying outliers from

NLOS signals whereas in situations where LOS signals it is possible that the model

will remove signals that have reliable ranges but have had reduced RSSI for other

reasons such as noise or multipath effects. The model caused a 16% reduction in

performance accuracy in environment D, suggesting that the algorithm may need to

be better refined for environments with LOS signals. However, these environments

are less common in real world use cases like pedestrian navigation and thus are not

as important as getting a better method for dealing with NLOS signal reception

error. Additionally, any outlier detection algorithm will have false negatives if not

properly tuned to a specific scenario.

Comparing the stationary results to another paper, Guo et al. [36] showed that a

positioning model using a Kalman filter and WiFi RTT achieved a mean positioning

error of 2.042m. When the algorithm incorporated RSSI data into a form of outlier

detection, the mean positioning error improved to 1.435m. When compared to RSSI

fingerprinting, which achieved 3.41m on the same data in that paper, it is clear that

WiFi RTT can provide an improvement over current techniques.

The computational efficiency of all algorithms (ran with outlier detection) was

compared and the results are shown in Table 4.12, showing the computation time

per epoch and the mean accuracy improvement. It is worth noting that the code is

currently not optimised and is written in Python and ran on a MacBook Pro 2021



4.3. RESULTS AND DISCUSSION 119

Table 4.12: Computation time per epoch for each algorithm alongside mean accuracy
improvement over least squares

(Apple M1 Pro) so these computation times could be reduced significantly. The

computational efficiency is as expected; the genetic filter has more computation than

the other algorithms and as expected has the longest total processing time.

Positioning performance would seem to correlate with processing load.

4.3.4 Filtering in-motion

In this section, the algorithms will be analysed for all scenarios where the mobile

device was in-motion. Each scenario going forward and in reverse will be analysed

separately. Table 4.13 summarises the results of the trials such as the minimum

positioning solution RMSE at any step in the trial, the maximum positioning

solution RMSE at any step in the trial, the average positioning solution RMSE of all

steps in the trial and the final positioning estimate RMSE of a trial.

As shown in Table 4.13, the least squares solution positioning accuracy is poorer

than the other algorithms. The average positioning RMSE for least squares was

2.79m when taking an average across all trials. For all trials except Trial 2R, least

squares was the worst performing algorithm based on the average RMSE across all

steps. Furthermore, for all trials except Trial 2R and 3R, the final position RMSE

was highest for least squares. Observing the least squares position estimates in the

maps shown in Figures 4.18, 4.19, 4.20, 4.21, 4.22 and 4.23, it is clear that

irrespective of the results in Table 4.13, the position estimates do not correctly

follow the pedestrian’s path and are visibly inaccurate, placing the pedestrian in an

incorrect room on most occasions, demonstrating the importance of the PDR model
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Figure 4.16: Environment E particle distribution diagram
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Figure 4.17: Environment F particle distribution diagram
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Table 4.13: RMSE position error statistics for trials in motion and each algorithm
combination
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Table 4.14: Initial Position RMSE for each trial in motion

in the positioning algorithm. The following analysis will exclude least squares due to

the reasons described above.

In 8 out of 36 trials with filtered solutions, the average position RMSE over all steps

of a given trial was sub-metre and in 29 out of 36 trials the average position RMSE

was below two metres. In virtually all trials, the particle filter and genetic filter

performed similarly to each other and the grid filter performed worse on average in

comparison to the other algorithms when looking at average RMSE. All algorithms

in Trial 1R had a positioning RMSE greater than 2m. For Trial 1R, as can be seen

in Figure 4.19, the path of all filters are translated around 2.5m to the north of the

actual path. This positioning error is worse than Trial 1F for all algorithms. The

poor accuracy of the algorithms in comparison could be a result of poor

initialisation which could be a result of fewer LOS APs. During the earlier part of

the trial. This discrepancy is potentially caused by the geometry of the Access

Points, as shown in Figure 4.19, in combination with the pedestrian’s path. In this

trial the pedestrian blocks AP1 and AP2 with their body. This results in

attenuation and since the range is lower than 4m the outlier detection algorithm will

not de-weight the range estimate and without outlier detection the algorithms will

treat the ranges as reliable, even though they are NLOS due to the pedestrian’s

body blocking the signals. This threshold could be calibrated and varied to account

for these scenarios, but this has not been explored in this thesis.

As shown in Table 4.14, the initial position RMSE was 3.11m, which is
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approximately 5.4 times the initial position RMSE of Trial 1F. This will drastically

reduce the accuracy of the results from all algorithms. The grid filter in Trial 2R

also had an average position RMSE greater than 2m. In Figure 4.21, this is evident

as, compared to the other algorithms, the path of the pedestrian is estimated at a

different location. In Table 4.14, it can be seen that the initial position RMSE was

greater than 3m, contributing to the overall positioning inaccuracy of the trial. For

all algorithms, the larger positioning error at the final steps of Trial 2R is due to a

poor orientation value at step 7. This poor orientation value could be caused by

many things such as the low cost sensors exacerbating movements of the device.

This poor orientation value resulted in an incorrect trajectory of the pedestrian.

Poor orientation readings are to be expected and also impacted the performance of

the algorithms in 3F and 3R. This demonstrates that improving the orientation

sensor, orientation processing model or applying outlier detection to the orientation

could improve the overall positioning accuracy of the algorithms.

In 33 out of 36 trials, the final position estimate was more accurate than the initial

position estimate. This indicates that not only were the algorithms successful at

maintaining the path of the pedestrian, they also improved the accuracy of the

position estimate compared to the initial position estimate. With outlier detection

included, the greatest absolute improvement was made by the particle filter in Trial

2F with an improvement of 1.32m and the greatest improvement without outlier

detection was made by the particle filter in Trial 2R with an improvement of 1.23m.

The greatest percentage improvement between the initial and final position

estimates without outlier detection was made by the grid filter in Trial 2F with an

improvement of 287%.

Trials 3F and 3R were the longest trials with a combination of different manoeuvres

by the pedestrian. These trials consisted of 35 steps with the pedestrian also

walking outside of the building. Figure 4.22 shows a sample run on the map when

the device is moving through the forward scenario (Trial 3F). Figure 4.23 shows a

sample run on the map when the device is moving through the reverse scenario
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Table 4.15: RMSE percentage position error improvement for algorithms and trials
in motion

(Trial 3R), beginning outside of the building. In the case of Trial 3F, the grid filter

final position RMSE is almost double that of the other filters with an RMSE of

2.51m and 2.37m for the grid filter without and with RSSI-based outlier detection,

respectively, and from Figure 4.22, the path is also visibly incorrect, unlike the other

filters. However, in Trial 3R it appears that the grid filter better guides the PDR

model through the path and most accurately represents the path of the user. The

final position estimate for the grid filter in this trial was sub-metre both with and

without outlier detection.

Table 4.15 shows the RMSE percentage improvement of the average positioning

error for each trial for the algorithms with and without RSSI-based outlier

detection. As can be seen in 15 out of 18 trials, the RSSI-based outlier detection

improved the positioning solution. Any outlier detection will have a false positive

rate, so these results are quite promising as the false positive rate does not result in

a decrease in accuracy to the overall positioning solution. The largest improvement

was with the genetic filter in Trial 2F where the outlier detection provided an

improvement of 25%. The outlier detection provided the greatest improvement for

the particle filter with an average improvement of 14%, whilst the outlier detection

provided the least improvement to the grid filter with an average of 4%.

Using an EKF, Han et al. [53] was able to achieve a positioning error of 1.359m.

Another paper by Sun et al. [54] achieved an RMSE of 1.1m when a form of
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RSSI-based outlier detection was used. This improved over an EKF alone, which

achieved an RMSE of 2.74m. Cao et al. [74] who also used a form of RSSI-based

outlier detection achieved an accuracy of 1.082m. A caveat to these comparisons is

that they were performed on different data, making the comparisons less

meaningful. The range of results here combined with the findings in this thesis for

filtering algorithms suggests that WiFi RTT when combined with outlier detection

can reliably achieve sub-two-metre accuracy.
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Figure 4.18: Trial 1F position per epoch

Figure 4.19: Trial 1R position per epoch
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Figure 4.20: Trial 2F position per epoch

Figure 4.21: Trial 2R position per epoch



4.3. RESULTS AND DISCUSSION 129

Figure 4.22: Trial 3F position per epoch

Figure 4.23: Trial 3R position per epoch



CHAPTER 5

SLAM

As mentioned in previous chapters of this thesis, an assumption of the majority of

research concerning WiFi RTT and RSSI-fingerprinting with the notable exception

of [62] is prior knowledge of the location of access points or the presence of a fingerprint

map. The gathering of this information requires a lengthy and potentially costly

survey step. Large technology companies such as Google, Apple, and Huawei are able

to construct these RSSI maps and estimate the location of access points with the

benefit of a large network of mobile devices and data [2]. With WiFi RTT there is

an opportunity to improve on these models and also provide a more accessible way

to estimate the location of access points and construct WiFi RTT and even RSSI

fingerprint maps (if you were to walk to all parts of the grid of the environment) of

indoor environments faster. This opportunity is best taken of advantage of by using

simultaneous localisation and mapping (SLAM) techniques. These techniques allow

for a mobile device moving through an environment to position itself as well as the

location of landmarks simultaneously, essentially enabling indoor positioning with no

prior knowledge of an environment. This chapter will explore WiFi RTT SLAM which

will then extend to Posterity WiFi RTT SLAM which is an unexplored technique for

WiFi RTT based positioning whereby SLAM maps of an environment can be re-used

130
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for future datasets, hence the term “posterity”. These algorithms were presented at

the ENC 2024 conference and the ION GNSS+ 2024 conference.

5.1 Simultaneous Localisation and Mapping

There are several types of SLAM algorithms, these include factor graph optimisation

SLAM algorithms (GraphSLAM) and FastSLAM.

5.1.1 FastSLAM

Fast SLAM 2.0 [75] [76] conceptually follows a similar flow to a Particle filter.

However, in addition to the particle filter of the mobile device state estimates; each

landmark has their own particle filter state with their own state estimates. This

means that the estimated position of the landmarks are actually variable, and the

location estimate is determined as the mobile device moves through the

environment. During the earlier epochs of the SLAM model, the algorithm is more

akin to Odometry (the use of data from motion sensors to estimate change in

position over time). Due to the uncertainty around the landmark locations, the

algorithm relies more heavily on the motion sensors in the earlier epochs of the

algorithm. Furthermore, by using particles, the mobile device and landmark states

can scale more efficiently whilst dealing with a more complex non-linear error

distributions and AP geometries. This is a general benefit of Monte-Carlo based

filters. This means that FastSLAM is well suited for positioning during operation as

the number of particles can be altered to accommodate for computational

requirements. Admittedly, this will have an effect on positioning accuracy. The

algorithm used in this paper follows the process shown in Figure 5.1. The particle

filter follows the model described in Section 4.1.3.

1. The mobile device position and heading are assumed to be known. The landmark

/ access point coordinates are initialised based on a uniform distribution in the

environment, where each access point will have its own particle filter. This

initialisation occurs when each access point is observed.



132 CHAPTER 5. SLAM

2. The PDR model is applied during the prediction step. In this step the mobile

device particles are moved according to the PDR model with noise distributed on a

Gaussian distribution. The PDR follows the algorithm described in Section 4.1.7.

3. For the access point update step the particles of each access point are weighted

against the distance between the particle and the estimated mean coordinates of the

mobile device following equation 4.14.

4. The particles of the mobile device are weighted against their distance from each

estimated access point position, the estimate is based on the mean coordinates of

each access point particle filter.

5. The particles for both the mobile device and access points go through Sequential

Importance Resampling (SIR) if the particle degeneracy limit is exceeded.

6. Finally, the position estimate of the mobile device and all access points is

calculated using the weighted average of the particle positions.

Figure 5.2 shows a visual representation of the FastSLAM system. As the mobile

device denoted by the “x” traverses the environment, the landmark particle filters are

estimated, as shown by the coloured dots.

5.1.2 Factor Graph Optimisation SLAM

Factor Graph Optimisation SLAM or GraphSLAM [77] [78] is a popular form of

SLAM where the problem is solved by using graphs consisting of nodes and edges.

The node corresponds to the mobile device’s states or landmark states, a different

node is produced at each epoch. Every edge between any two nodes correspond to

the constraints between the nodes. For example, the edge between mobile device

state nodes would represent a step, whereas the edge between a mobile device state

node and a landmark state node would represent a WiFi RTT measurement. The

overall objective of GraphSLAM is to find a node configuration that minimises the
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Figure 5.1: WiFi RTT FastSLAM algorithm
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Figure 5.2: WiFi RTT FastSLAM visual representation

errors introduced by the constraints. The algorithm is split into two parts, graph

construction and graph optimisation. The graph construction involves moving the

mobile device through the environment and storing the node states and the edge

constraints. The graph optimisation step which aims to find a node configuration

that minimises the errors of each edge, this can use a Gauss-Newton optimisation

algorithm [79] since the optimisation is essentially a least-squares problem.

A notable benefit of GraphSLAM is that loop closures can be used to improve the

map as constraints (edges) can be generated between the nodes. Loop closure is

when a device returns to a point it has previously observed. This means the map

can be modified to optimise the edges that appeared due to the loop closure,

meaning a more reliable SLAM map. FastSLAM does not benefit from this feature

as it does not directly keep track of previous mobile device positions.

GraphSLAM is more computationally intense, making it less optimal for mobile

devices with limited computational power. Furthermore, as the primary objective is

navigation, the algorithm should be better at positioning the mobile device in real

time without the need for a loop closure. For these reasons the SLAM algorithm
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that will be used will be FastSLAM 2.0 as this is better suited for WiFi RTT error

sources. The ability to alter the number of particles to account for different

computational requirements and selectively update landmarks when they are

observed allows the algorithm to be more flexible for available computational power.

5.1.3 Posterity SLAM

The posterity SLAM algorithm is similar to the regular FastSLAM 2.0 algorithm

with one key difference. During the initialisation step of the landmark particles

instead of using a uniform distribution throughout the environment; each

landmark’s particles are initialised with a Gaussian distribution around the final

landmark coordinates of the previous SLAM trial. The standard deviation of each

access point particle filter of the previous trial is taken to initialise the standard

deviation of the Gaussian distribution of the access point particle filters for the new

trial. This essentially allows each SLAM trial to benefit from previous SLAM trials

improving the overall positioning solution over time whilst being aware of potential

uncertainty in those estimates. Posterity SLAM is a form of cooperative SLAM as it

takes advantage of multiple cooperative mobile devices to map a given environment.

Allowing multiple mobile devices to construct a shared map simultaneously using

their own paths, cooperative SLAM, is scope for future work.

5.2 Experimental Methodology

The equipment and layout used was the same as in Table 4.6. The methodology for

testing the SLAM algorithm involved moving through a route both forward and in

reverse in an environment. These routes were designed to enable NLOS signal

reception to occur. The routes and environment explored are shown in Figure 5.3.

The trials involved a pedestrian holding the smartphone and walking on top of fixed

step markers placed on the ground along the route of the trial. The markers were

approximately 670mm apart, the location of each marker was measured against the

reference points in the environment to generate the step marker’s ground truth

coordinates. In order to align the ground truth data with the measured data, the
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Table 5.1: Configuration for the SLAM algorithm

trials were filmed. The timestamps of the steps from the video were used to

determine the expected position of a device at a given time, allowing the analysis to

have an accurate comparison point at each step.

The standard deviation of the step length assuming white noise, used to determine

the noise applied during the prediction step was calibrated as follows. A pedestrian

carrying the mobile device walks 20 steps in a straight line 10 times, the real

distance travelled is measured and the estimated distance travelled is calculated

using the PDR model, the standard deviation of the difference is computed and this

is divided by the number of steps to give the standard deviation of a step. All data

was collected simultaneously using a custom mobile app. RTT and RSSI

measurements were received at 100ms intervals and IMU data was collected at

approximately 20ms intervals. RSSI-based outlier detection is implemented as

described in Section 4.1.6 ”RSSI-based outlier detection for filtering”. The locations

of the access points were also calculated and these were used to test the effectiveness

of the SLAM algorithm landmark predictions.

For posterity SLAM, the same data as the SLAM algorithm was used. For the

second SLAM trial the landmark position estimates of another trial were used to

provide an initial position estimate of the landmark positions. For this set of

experiments the parameters were set up as shown in Table 5.1.
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Figure 5.3: SLAM paths for SLAM and Posterity SLAM algorithms
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Table 5.2: Statistics for the forward and reverse trials for the SLAM algorithm

5.3 Results and Discussion

This section will first evaluate the accuracy of the SLAM algorithm, including the

mobile device position estimates and the landmark position estimates. The posterity

SLAM algorithm will then be explored, looking at the horizontal error of the mobile

device position estimates and the landmark position estimates when using the

landmark position estimates from the first trial to initialise the landmark positions

for the second trial.

5.3.1 WiFi RTT SLAM

In Table 5.2, the statistics of the performance of the algorithm in the forward and

reverse trials can be seen. Overall the results are promising with the mean, median,

and final position horizontal error for the forward trial being about a metre. The

maximum horizontal error and standard deviation for the trial are 3.2m and 0.69m

respectively. In Figure 5.4 and Figure 5.5 during the loop section of the trial in the

bottom right of the environment, the position horizontal error increases by more

than double. The algorithm then recovers the positioning solution to sub-metre

accuracy, ending the trial at 1.01m.

In the reverse scenario, where the mobile device begins outside and ends inside, the

results are slightly worse. Firstly, in Figure 5.6, whilst the rough shape of the

predicted path of the pedestrian matches the true path, the entire path is translated

down the y-axis by around 2m. The final horizontal position error is 1.7m with an
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Figure 5.4: Graph showing the performance of the SLAM algorithm in the forward
trial

Figure 5.5: Mobile device position error per step for the forward trial
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average and median horizontal error of 1.91m and 2.03m respectively. This is nearly

a metre worse than the forward trial. In the reverse scenario the mobile device has

no line of sight with any AP at the start of the trial, whereas in the forward trial the

mobile device has a direct line of sight with 3 APs at the start of the trial. The lack

of a line of sight signal will drastically reduce the reliability of the signals and thus

the overall positioning solution will be degraded with fewer line of sight APs. The

NLOS signal reception will also have an impact on the predictions of the landmark

coordinates as in the earlier stages of the algorithm, the distance between each

mobile device and the AP will be less reliable. Therefore, the starting layout of APs

and the number of LOS signals plays a major role in the accuracy of the positioning

solution.

When we compare these results with previous WiFi SLAM research, the results are

promising. In Gentner and Avram’s paper [62] they achieved an average positioning

error under 1m, which is better than what was achieved in this thesis. However, it is

very important to note that that paper did not incorporate a pedestrian dead

reckoning model and assumed knowledge of the user’s location along known markers

on the user’s path. Ferris et al. [58] and Liu et al. [60] achieved an average position

error of 3.79m and 4.76m, respectively, when using WiFi RSSI and a pedestrian

dead reckoning model alone. In Liu et al. [60], when they integrated visual inertial

odometry within the PDR model, they were able to achieve sub-metre accuracy.

This indicates that WiFi RTT is a promising solution on its own, as its performance

was better than WiFi RSSI and has potential to improve even further when

integrated with more advanced sensors such as visual sensors.

The final estimated landmark coordinates shown in Table 5.3 are important to

analyse as they will demonstrate the overall effectiveness of the SLAM algorithm.

At the end of the forward trial, AP6 reached a horizontal error of just 0.16m and the

maximum horizontal error of 2.31m was seen on AP2. This can be visualised in

Figures 5.4 and 5.5. This demonstrates that the algorithm was able to identify the

location of 4 landmarks with sub-metre accuracy during this trial. In the forward
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Figure 5.6: Graph showing the performance of the SLAM algorithm in the reverse
trial, AP predictions represent the final AP position estimates

Table 5.3: Statistics for the landmark position estimates

trial, as can be seen in Figure 5.4, the path of the device roughly matches the shape

of the true path of the pedestrian. For the reverse trial final landmark horizontal

position error, the average AP final position horizontal error is 1.4m, with the lowest

position horizontal error being 0.78m and the highest position horizontal error being

2.4m. Interestingly, in the forward scenario, AP3 had a horizontal error of 0.58m

and the same AP had a horizontal error of 2.4m in the reverse. This can be

visualised in Figures 5.6 and 5.7.

The SLAM algorithm is able to determine the location of the landmarks to a degree of

accuracy below 2m 83% of the time and sub-metre 50% of the time. It was observed

that when the starting position of the mobile device had access to line of sight signals
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Figure 5.7: Position Horizontal Error per step for the reverse trial

the location of the landmarks could be determined to sub-metre accuracy 67% of the

time. With NLOS signals, the accuracy declined, which is expected as it impacts both

the location estimates of the mobile device and the access points.

5.3.2 WiFi RTT Posterity SLAM

This section will explore the use of SLAM-determined landmark coordinates to

initialise the landmark coordinates for new SLAM trials. All combinations of the

forward, reverse and short trials are shown, these include: forward using reverse,

reverse using forward, forward using short, short using forward, reverse using short

and short using reverse. For example, with forward using reverse, the trial is the

forward trial using the landmark position estimates from the reverse trial.

The positioning metrics of the forward using reverse and reverse using forward trials

can be seen in Table 5.4 alongside the trials on their own. Posterity SLAM improved

the final horizontal error of the mobile device from 1.55m for the reverse trial to

0.8m from 1.55m for the reverse using forward trial, providing sub-metre accuracy to

the positioning solution. The mean horizontal error improved from 1.78m to 1.14m,

whilst the median improved from 1.96m to 1.05m. However, in the case of forward

using reverse whilst the final horizontal error was lower by 0.04m the maximum

horizontal error increased by 0.62m and the mean horizontal error increased to

1.06m from 0.92m. The change in horizontal error per step for the forward path
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Table 5.4: Statistics for the mobile device position estimates for the Forward and
Reverse Trial

Figure 5.8: Forward Path posterity SLAM horizontal error per step

trials can be seen in Figure 5.8. The forward using reverse trial begins well, but its

position estimates degrade during the loop section of the path. The change in

horizontal error per step for the reverse trials can be seen in Figure 5.9. Posterity

SLAM demonstrates that the mobile device can be more consistently accurately

positioned than regular SLAM.

The final horizontal position error for all APs for the forward-reverse trials are

shown in Table 5.5. The final horizontal position error of the landmarks for the

reverse using forward trial improved for 4 out of 6 access points when compared to

the reverse trial. All landmarks were positioned to sub two metre accuracy. The
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Figure 5.9: Reverse Path posterity SLAM horizontal error per step

Table 5.5: Statistics for the landmark position estimates for the Forward and Reverse
Trial

most substantial improvement was in AP3 which improved from 2.69m to 1.6m.

Comparing the AP horizontal errors of the reverse using forward trial to the forward

trial on their own shows that 4 out of 6 AP positions improved. Comparing the

forward and reverse using forward data, the best improvement was 0.88m on AP1.

The largest decrease in accuracy was on AP3 with a decrease of 0.76m. However,

this is in contrast to a 1.09m improvement when comparing the reverse using

forward to the reverse trial alone. This is somewhat undesirable. An ideal outcome

would be able to take the best landmark position estimates of both datasets.
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In the forward using reverse data also shown in Table 5.4, the landmark horizontal

error only improved for 2 APs when compared to the forward trial alone. The

greatest improvement being 0.92m on AP2 and the greatest decrease in accuracy

being 1.27m on AP3. Comparing the forward using reverse trial to the reverse trial

alone showed that posterity SLAM improved the horizontal error for 5 out of 6 APs.

The mean horizontal error across all APs were 1.06m, 1.26m, 1.14m and 1.53m for

the reverse using forward, forward using reverse, forward and reverse trials

respectively. This demonstrates that posterity SLAM can improve the average AP

horizontal error. This can be seen in Figures 5.10 and 5.11 which shows the AP

position error per epoch for the reverse using forward trial and the forward using

reverse trial respectively. Posterity SLAM allows the second trial to have a better

starting point for the landmark estimates, enabling a better set of landmark position

estimates. There is an opportunity for the most accurate landmark estimates to be

picked over time as more trials occur, thus improving the overall positioning

solution. This opportunity has not been explored in this thesis and represents scope

for future work.

Finally, Figure 5.6 shows the path and landmark estimates using regular SLAM for

the reverse path and Figure 5.12 shows the reverse using forward and landmark

estimates using posterity SLAM. As can be seen the landmark position estimates

have benefited from the landmark estimates of the forward trial and this has in turn

made the estimated pedestrian path more closely follow the ground truth.

The Short Trial dataset was used to demonstrate the poor performance of the

algorithm on shorter paths with fewer turns, more specifically poor performance for

the AP positions. The reason that a shorter path would have poorer performance

for determining landmark positions is that the algorithms have less time to allow the

landmark particle filters to converge to a strong landmark position estimate, so

essentially the algorithm relies heavily on Odometry for the positioning solution.

Furthermore, it is possible that observing landmarks from a range of different

directions also has an impact on the landmark positioning accuracy. Theoretically,
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Figure 5.10: Forward then Reverse AP position error per step. The white cut-off
in the centre of the chart represents the switch from the forward trial to the reverse
trial. The error bars represent the standard deviation of each landmark particle filter

this scenario is where posterity SLAM can provide a significant improvement to the

positioning solution as more reliable landmark position estimates can be used.

The mobile device positioning metrics for the short and forward trials are shown in

Table 5.6 and the metrics for the short and reverse trials are shown in Table 5.7.

The Short trial final positioning error was 1.42m. Using posterity SLAM, this

improved to 0.82m when the forward trial landmark position estimates were used

and 0.96m when the reverse trial landmark position estimates were used. The

improvement can be seen by comparing Figure 5.13 which shows the short path

without posterity SLAM and Figure 5.14 which shows the short path when the

landmark position estimates of the forward trial are used to initialise the short

SLAM trial.

The AP final horizontal position error for the short and reverse trial combinations

can be seen in Table 5.8. The short trial landmark position errors are on average

2.78m with a maximum horizontal error of 5.57m for AP2. 1 out of 6 APs were
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Figure 5.11: Reverse then Forward AP position error per step. The white cut-off
in the centre of the chart represents the switch from the reverse trial to the forward
trial. The error bars represent the standard deviation of each landmark particle filter
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Figure 5.12: Reverse Trial using Forward Trial Path posterity SLAM position
estimate and landmark estimates

Table 5.6: Statistics for the mobile device position estimates for the Short and
Forward Trials

Table 5.7: Statistics for the mobile device position estimates for the Short and Reverse
Trials
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Figure 5.13: Short Path regular SLAM position estimate and landmark estimates

Figure 5.14: Short using Forward Path posterity SLAM position estimate and
landmark estimates
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Table 5.8: Statistics for the landmark position estimates for the Short and Reverse
Trial

positioned to sub two metre accuracy. When posterity SLAM using the reverse trial

is incorporated, the errors improve to 4 out of 6 being sub-metre with all 6 AP

positions improving. In the case of the short using reverse trial, in 5 out of 6 trials

the landmark position accuracy improved compared to the reverse trial alone.

Additionally, the landmark position estimates improved for 4 out of 6 trials for the

reverse trial when the short landmark estimates were used when compared to the

reverse trial alone. Despite the poor performance of the short trial, it was still useful

in providing a more accurate set of landmark position errors for the reverse trial.

The final mobile device horizontal error for the reverse using short trial improved to

1.14m from 1.55m for the reverse trial. This trend of improvement in AP position

accuracy per step can be seen in Figures 5.15 and 5.16 which show the short using

reverse and reverse using short trials respectively.

The trend of results for the landmark position estimates is mostly similar for the

short and forward trial combinations shown in Table 5.9. The short trial landmark

position error improved for 6 out of 6 APs when the forward trial landmarks were

used for initialisation. However, when the short trial landmark estimates were used

for the forward trial, 5 out of 6 AP position errors increased when compared to the

forward trial alone.
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Figure 5.15: Reverse then Short AP position error per step. The white cut-off in the
centre of the chart represents the switch from the reverse trial to the short trial. The
error bars represent the standard deviation of each landmark particle filter
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Figure 5.16: Short then Reverse AP position error per step. The white cut-off in the
centre of the chart represents the switch from the short trial to the reverse trial. The
error bars represent the standard deviation of each landmark particle filter
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Table 5.9: Statistics for the landmark position estimates for the Short and Forward
Trial

Posterity SLAM benefits the overall positioning solution as data from trials can be

shared meaning that over time the system can have a better estimate of the

landmark positions due to more data. This specific version of the algorithm presents

a positioning solution that has sub two metre accuracy without the need for a

dedicated survey step, as previous SLAM paths essentially conduct the survey steps

automatically. Furthermore, it has been shown that landmark position estimate

accuracy is normally lower for shorter paths. This impacts the positioning solution

as the particle filter is not able to weight paths correctly because the individual

particle weights are less reliable. Posterity SLAM offers a solution to this problem as

the landmark estimates of longer trials can be used to improve the positioning

solution for shorter paths.
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Conclusions

This thesis explored indoor positioning using WiFi RTT based positioning solutions.

Review of the literature highlighted a number of gaps in knowledge, these included

the exploration of filtering techniques, WiFi RTT SLAM, WiFi RTT cooperative

SLAM and systems that integrated WiFi RTT alongside other radio signals. Outlier

detection methods were also under researched. A common issue within WiFi RTT

and other WiFi-based positioning techniques were the requirements of a survey phase

where certain data of an environment would be collected before positioning could

actually be done, for example the position of APs or fingerprints. A technique that

removes the need for any prior knowledge of an environment and any survey phases

is SLAM. This is a technique that is very promising in the context of WiFi RTT

positioning. Using SLAM to conduct the survey step in order to provide an estimate

of AP positions for subsequent SLAM was also explored. This technique is known as

Posterity SLAM. There were a number of conclusions which are discussed below.

6.1 WiFi RTT Characteristics

The answers to the research questions How susceptible is WiFi RTT to multipath

effects, NLOS signal reception and instrument bias? and How does NLOS reception

154
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affect the accuracy of WiFi RTT measurements? are provided below.

• Instrument Bias — It was confirmed that a device-dependent instrument bias

existed in the APs and/or mobile device. During initial experimentation, the

bias was between -2.4m and -2.6m for two Google Nest WiFi Points and -0.6m

for a Google Nest WiFi router when a Google Pixel 4a smartphone is used.

This bias changed over time, the changes coinciding with software updates to

the mobile device or AP.

• Multipath interference — It was demonstrated that WiFi RTT is susceptible

to multipath interference. In the presence of forced multipath conditions, the

error of WiFi RTT increased.

• NLOS signal reception error — Experiments that forced NLOS conditions

demonstrated that WiFi RTT is susceptible to attenuation and NLOS

reception. The WiFi RTT signal was attenuated by a wooden door, resulting

in a range error of roughly 0.045m. It was found that NLOS conditions which

resulted in the WiFi RTT signal being reflected before reaching the mobile

device led to ranging errors of more than a metre in indoor environments.

• The NLOS signal reception experiment showed that the RSSI of the WiFi RTT

signal could be used to identify potential NLOS conditions if the WiFi RTT

measured range did not correlate with the RSSI path propagation of the signal.

This presented an opportunity for RSSI-based outlier detection.

6.2 WiFi RTT Positioning

The answers to the research questions What accuracy can be achieved when least

squares-based positioning algorithms are used for pedestrian WiFi RTT-based

positioning and navigation?, What accuracy can be achieved when filtering-based

positioning algorithms such as particle filters, genetic filters and grid filters are used

for pedestrian WiFi RTT-based positioning and navigation? and What accuracy and

reliability improvements can be achieved for WiFi RTT- based positioning and

navigation by using outlier detection techniques? are provided below.
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• Filtering techniques applied to WiFi RTT in stationary scenarios — a particle

filter with sequential importance resampling, a genetic filter and a grid filter,

were tested in a variety of environments. It is possible to achieve sub-metre

accuracy in the tested environments, as 64.3% of trials produced sub-metre

accuracy. Sub-two-metre accuracy is consistently achievable in the tested

environments, as 97.6% of trials produced sub-two-metre accuracy. The results

were compared to single-epoch least squares, and it was found that the

algorithms including outlier detection improved the positioning accuracy on

average across all environments by 40%, 48% and 40% for the particle filter,

genetic filter and grid filter respectively. The best performing algorithm on

average across all environments was the genetic filter. This could be attributed

to better handling of particle degeneracy. The grid filter performed better

than the other filters in the simplest environments with only LOS signals.

WiFi RTT can provide a viable solution for sub-two-metre indoor positioning

accuracy in most environments, provided that RSSI-based outlier detection is

used in NLOS environments. In LOS conditions, WiFi RTT is able to offer

sub-metre accuracy. The computational efficiency of the algorithms were also

compared, and it was shown that the genetic filter takes around 60% longer

per epoch than the particle and grid filter for 400 particles.

• Filtering techniques applied to WiFi RTT in motion-based scenarios — In

motion-based scenarios, single-epoch least squares is completely ineffective. All

filtering algorithms combined with PDR both with and without RSSI-based

outlier detection demonstrated that sub-two-metre positioning accuracy is

achievable when combined with WiFi RTT in the residential environment

used. In 33 out of 36 trials, the final position estimate was more accurate than

the initial position estimate. In motion-based scenarios, the best performing

filter varied per trial, with no clear standout best. WiFi RTT can be fused

with sensors available in a mobile device to produce an integrated navigation

solution that can achieve sub-metre accuracy for a moving pedestrian. The

performance of the algorithm at the start of a trial is impacted by the initial

position estimate. The initial position estimates for certain trials were
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impacted by NLOS error at the start of the trials caused by walls, obstacles,

and pedestrian body-blocking. Furthermore, poor orientation readings and to

a certain extent, poor step length estimation can result in a degraded path

estimation due to over-reliance on the PDR at the prediction step.

• RSSI-based outlier detection in stationary scenarios — An RSSI-based outlier

detection algorithm was developed and was applied to all positioning

algorithms. In the stationary scenarios the outlier detection provided a 10.3%,

16.8% and a 10% mean improvement in the positioning accuracy across all

environments for the particle filter, genetic filter and grid filter respectively.

RSSI-based outlier detection improved the positioning accuracy of the

algorithms for 13 out of 18 of the stationary trials. However, the 5 trials which

resulted in a reduced positioning accuracy came from environments with only

LOS conditions. RSSI-based outlier detection is likely to provide false

positives in these kinds of environments, but so long as there is an overall

improvement in the positioning solution in a diverse range of environment,

these false positives are acceptable. Furthermore, it is rare to have only LOS

conditions in a practical environment.

• RSSI-based outlier detection in motion-based scenarios — The RSSI-based

outlier detection algorithm was applied to all positioning algorithms.

RSSI-based outlier detection was found to improve the positioning accuracy of

the algorithms for 15 out of 18 of the in-motion trials. This improvement was

between 0 and 25%. The RSSI-based outlier detection improved accuracy, but

to a lesser degree than in the static experiments.

6.3 WiFi RTT SLAM

The answers to the research questions What accuracy can be achieved when SLAM-

based techniques are used with WiFi RTT for indoor pedestrian navigation? and What

accuracy can be achieved when SLAM-based techniques are used with WiFI RTT to

estimate the position of WiFi RTT access points? are provided below.
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• WiFi RTT SLAM — a FastSLAM algorithm was applied to WiFi RTT

positioning in order to explore WiFi RTT’s potential as a positioning solution

where prior knowledge of the environment is not a requirement (except for

initial position and initial heading which can be readily available due to GNSS

readings when entering a building and the mobile device’s orientation sensors).

The algorithm was able to provide a final horizontal error that was

sub-two-metre and a mean horizontal error across all steps below

sub-two-metre. The algorithm was able to determine the location of the

landmarks to sub-two-metre 83% of the time and sub-metre 50% of the time.

Performance was found to be better when more direct line of sight signals were

available at the starting position. With NLOS signals the accuracy was worse,

which is expected as it impacts both the location estimates of the mobile

device and the access points. These results are promising as they represent

that a mobile device can be position to sub-two-metre accuracy without prior

knowledge of the indoor environment.

• WiFi RTT Posterity SLAM — the FastSLAM algorithm was then improved by

taking advantage of previous SLAM maps to initialise the landmark state of

the landmark particle filters of subsequent trials. This is referred to as

Posterity SLAM and is a type of cooperative SLAM. Posterity SLAM benefits

the overall positioning solution as data from trials can be shared, meaning that

over time the system can have a better estimate of the landmark positions due

to more data. This specific version of the algorithm presents a positioning

solution that has sub two metre accuracy for the mobile device without the

need for a dedicated survey step, as previous SLAM paths essentially conduct

the survey steps automatically. The number of improved landmark estimates

due to posterity SLAM was greater than or equal to 50% for all but one trial.

Posterity SLAM achieved sub-two-metre landmark position accuracy 78% of

the time, improving on regular SLAM, which achieved sub-two-metre accuracy

61% of the time. The landmark position accuracy was sub-metre 42% of the

time for Posterity SLAM and 28% of the time for regular SLAM. A limitation

of this algorithm is the potential error that can be caused by using poor AP
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position estimates. However, it would be expected that with more data in the

same environment, this error would reduce over time.



CHAPTER 7

Recommendations for future work

This chapter will provide recommendations for future work that this thesis did not

explore or only partially explored.

• Experimenting on multiple mobile devices and APs — overall, all algorithms

would benefit from being tested with different WiFi routers and mobile devices.

The experiments in this paper were limited to Google Nest products and the

Google Pixel 4a in this regard. Testing on more devices would allow for a

better understanding of instrument bias. Newer products may also have better

sensors, receivers and transmitters, meaning the algorithms could benefit from

the more up-to-date equipment. Conversely, cheaper equipment may lead to

worse performance, making the algorithm designs more critical.

• Experimenting in more environments and scenarios — overall, all algorithms

would benefit from being tested in more environments. For example,

environments with thicker walls, pedestrians moving around, APs at different

heights, shopping centres, airports, hotels etc. Motion-based scenarios could

also benefit from having more steps and longer trials.

• Automatic Instrument bias calibration — it was observed that a constant

instrument bias existed for the WiFi RTT ranges. For the duration of the

160
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research, this bias was manually calibrated out of the WiFi RTT ranges.

Research should be conducted on whether this bias is consistent for each

specific WiFi RTT product or if the bias varies across the same product line

depending on the batch. If the biases are consistent across different WiFi

product lines, then it is possible that these biases could be added to a

database which could be used to automatically calibrate the instrument bias.

SLAM methods could also be used to calibrate these AP biases.

• Automatic orientation-dependent bias calibration and understanding of

changing mobile device orientation instead of AP orientation. The research

conducted in this paper on the orientation-dependent bias was inconclusive.

More research is needed to understand the nature of this error and if possible

calibrate for it. Calibrating for this error should be relatively straightforward,

as with a position estimate and a possible location for the landmark, it is

possible to determine the orientation of the signal with respect to the AP and

the orientation of the signal with respect to the mobile device.

• Multipath and NLOS — the specific error pattern and nature of multipath

interference on WiFi RTT was not explored in-depth. A better analysis of

multipath in WiFi RTT could provide insights into further methods of outlier

detection. Identifying signals that have succumbed to multipath would serve to

improve the overall positioning solution.

• Improved Pedestrian dead reckoning algorithm — this thesis did not optimise

the pedestrian dead reckoning model, better models could certainly be used.

All algorithms could benefit from using a superior pedestrian dead reckoning

algorithm. This would allow the positioning algorithm to be less susceptible to

erroneous orientation or step length estimates.

• RTT fingerprinting — WiFi RTT could be used for fingerprinting in a similar

fashion to WiFi RSSI. The use of WiFi RTT in fingerprint maps could

potentially allow for a better indoor positioning solution when using

fingerprinting. With more data, it is likely that fingerprint maps would
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improve, representing another use case that could give RTT better mainstream

adoption.

• Computational characteristics of the algorithms — the algorithms as they are

currently written are noticeably slow and not optimised for real-time use.

Improving the speed of the algorithms to allow them to be used in real time

would be useful future work.

• WiFi RTT GraphSLAM — Factor graph optimisation is another SLAM

method that is popular. This thesis did not apply GraphSLAM to WiFi RTT

SLAM. The application of GraphSLAM to WiFi RTT would be interesting

and could outperform FastSLAM. The application of more state-of-the-art

SLAM algorithms would also be useful future work.

• WiFi RTT Posterity SLAM with explicit focus on selecting more accurate access

point estimates. The posterity SLAM algorithms had an issue where while the

accuracy of the landmark position estimates would improve for some APs, for

other APs the landmark position accuracy would reduce. This is potentially

problematic as over-time these errors could grow. This problem could be solved

with more data, better tuning of the algorithms and better outlier detection.

More SLAM maps will be constructed as more users traverse an environment.

These SLAM maps can be compared to identify outliers in landmark position

estimates. With every SLAM trial, a set of new SLAM maps can be constructed

based on the posterity of a combination of other SLAM maps. With every new

SLAM map, the number of landmark position estimates that can be constructed

will grow. Overtime the system will have a better estimate of the landmark

positions as with more trials the APs will be ranged from more angles making

the landmark position estimates more reliable.

• WiFi RTT Cooperative SLAM — Multiple devices traversing multiple paths can

be used simultaneously to construct SLAM maps. This could be particularly

practical in large venues where there will be many mobile devices. Multiple

mobile devices contributing to the construction of a single SLAM map at the

same time would allow for more geometries to each AP to be determined. By
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having more geometries to each AP, it would be expected that the AP position

estimates would be better. This improvement in AP position estimate would

allow for a better indoor positioning system in a shorter amount.

• One-sided WiFi RTT was not explored in this thesis. The use of one-sided

WiFi RTT would allow access to more potential range measurements in many

environments. However, these range measurements are less accurate than two-

sided WiFi RTT. Using one-sided WiFi RTT measurements would be useful for

determining how the algorithms perform in more practical scenarios where WiFi

RTT is not supported by default. This is because the only way to access a range

measurement from these APs is by using one-sided WiFi RTT. A combination

of two-sided WiFi RTT and one-sided WiFi RTT would also be interesting to

explore.

• In 2023, WiFi Protocol 802.11az launched [80]. This new protocol, known also

as “Next Generation Positioning” could improve WiFi RTT to consistent sub-

metre accuracy. Following this, WiFI Protocol 802.11bk is under development

and aims to improve WiFi RTT even further. This upgrade will allow WiFi

RTT to use 320MHz waveforms, which will improve the precision of WiFi RTT

ranging [81]. The APs used in this thesis were only 802.11mc compatible, and it

is unclear when 802.11az will roll out to production use. 802.11bk is still under

active development. The algorithms would benefit from being trialled on these

upgrades to WiFi RTT.
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